
Autonomous Robot Exploration
using Deep Learning:
An Experimental Analysis

Tesi di Laurea Magistrale in
Computer Science and Engineering -
Ingegneria Informatica

Author: Marco Premi

Student ID: 941388
Advisor: Prof. Francesco Amigoni
Co-advisors: Dr. Matteo Luperto
Academic Year: 2021-2022

i

Abstract

Among the different research fields in robotics, autonomous mobile robotics has been ac-
tively addressed in the last years.
Autonomous exploration is one of the most important tasks that an autonomous robot,
deployed in an initially unknown environment, must accomplish. The robot, with no prior
information about the environment, has to choose where to move and consequently the
best strategy to explore the environment in order to build its map incrementally. Over the
years, different strategies have been proposed and developed. Even if classical techniques
proved to be mostly successful, a recent research thrust aims to develop Machine Learning
and in particular Deep Learning techniques to address the exploration problem, because
of the performance achieved by these approaches in other fields.
The purpose of this thesis is to compare classical and Deep Learning algorithms for ex-
ploration in order to understand what are the positive and negative sides of the different
techniques. We compare them on different tasks and environments, obtaining comparable
results for the classical and learning algorithms in most of the metrics considered. Re-
sults also highlight the difficulties faced by some learning algorithms when tested in more
complex environments than those used in training.

iii

Sommario

La robotica mobile autonoma è stata molto studiata negli ultimi anni.
Uno dei compiti più importanti che un robot autonomo, posto in un ambiente inizialmente
sconosciuto, deve essere in grado di compiere è l’esplorazione. Il robot, senza alcuna
conoscenza pregressa dell’ambiente, deve scegliere dove muoversi e conseguentemente la
miglior strategia per esplorare l’ambiente stesso in modo da costruirne incrementalmente
la mappa. Lungo gli anni diverse strategie sono state proposte e sviluppate. Anche se le
tecniche classiche hanno dimostrato di avere successo nella maggior parte dei casi, una
recente tendenza di ricerca mira a sviluppare algoritmi di Machine Learning e in partico-
lare di Deep Learning per risolvere il problema dell’esplorazione, in virtù delle prestazioni
raggiunte da queste tecniche in altri campi.
Lo scopo di questa tesi è quello di confrontare algoritmi di esplorazione classici e algoritmi
Deep Learning in modo da capire quali sono gli aspetti positivi e negativi delle differenti
tecniche. Nella tesi abbiamo comparato questi algoritmi in base a compiti diversi e in
ambienti diversi, ottenendo risultati simili per gli algoritmi classici e per quelli che fanno
uso di learning per la maggior parte delle metriche considerate. I risultati ottenuti evi-
denziano anche le difficoltà incontrate da alcuni algoritmi che usano tecniche di learning
quando vengono testati in ambienti più complessi rispetto a quelli di training.

Ringraziamenti

In questo spazio vorrei dedicare un pensiero a tutte le persone che hanno contribuito, in
maniere diverse ma fondamentali, alla realizzazione di questa tesi.
In primis, un ringraziamento speciale va al mio relatore, il Prof. Amigoni Francesco per
la disponibilità e l’attenzione che mi ha dedicato in questo percorso.
Grazie anche al mio correlatore, il Dr. Luperto Matteo per i preziosi consigli e suggeri-
menti su come modificare la tesi per renderla migliore.
Ringrazio mia mamma e mio padre, per il supporto durante questi anni di università,
senza di loro sarebbe stato impossibile seguire questo percorso.
Un grazie con tutto il mio cuore, il grazie sicuramente più grande, alla mia ragazza
Martina, che mi è sempre stata vicina nei momenti più difficili e tesi degli ultimi anni;
probabilmente non ce l’avrei mai fatta senza il tuo aiuto.
Ringrazio anche tutti gli “ Idiosincratici ”: Gianty, Giordie, Guaro, Gwen, Chiara, Louise,
Eleonora e Nick. I momenti di leggerezza, ma anche di serietà che abbiamo condiviso
assieme ultimamente sono stati davvero fondamentali per arrivare a questo traguardo.
Tra di loro un ringraziamento particolare a Gianty, per l’amicizia che ha saputo superare
mille difficoltà.
Grazie anche a Marco, Sarah, Stefano e Margherita per il tempo trascorso insieme, ricco
di spensieratezza e risate.
Un ringraziamento a Martina B. soprattutto per l’amicizia ritrovata.
Infine, grazie a Martina, Dylan e Camillo per i bellissimi momenti passati assieme e per
quelli che verranno.

vii

Contents

Abstract i

Sommario iii

Ringraziamenti v

Contents vii

1 Introduction 1

2 State of the art 5
2.1 Sensors . 8
2.2 Map representation . 8
2.3 Exploration tasks . 10
2.4 Exploration framework modules . 11

2.4.1 Deep Learning algorithms . 13
2.4.2 Mapping . 18
2.4.3 Exploration policy . 22
2.4.4 Navigation policy . 27
2.4.5 Exploration and navigation end-to-end learning 30

2.5 Simulation environments and datasets . 34
2.5.1 Noise in simulation environments 36

2.6 Algorithms tested on robots in real world 38

3 Problem definition 39
3.1 Exploration problem . 39
3.2 Purpose of the thesis . 40
3.3 Classical exploration algorithm . 42
3.4 Deep Learning algorithms - ANS, OccAnt, and DRL 43

3.4.1 Learning to explore using active neural SLAM - ANS 44

viii | Contents

3.4.2 Occupancy anticipation for efficient exploration and navigation -
OccAnt . 45

3.4.3 Goal-driven autonomous exploration through Deep Reinforcement
Learning - DRL . 46

3.5 Simulation environment for comparison . 47
3.6 Key elements of the comparison . 48

4 Implementation 51
4.1 Software components . 51

4.1.1 Robot Operating System (ROS) . 52
4.1.2 Gazebo . 53
4.1.3 Stage . 53
4.1.4 AI Habitat . 53
4.1.5 ROS-X-Habitat . 55
4.1.6 Utilities for Gibson Environments 56

4.2 Software implementation and changes . 57
4.2.1 DRL . 57
4.2.2 Frontier exploration in ROS-X-Habitat 58
4.2.3 ANS and OccAnt . 59

5 Experimental results 61
5.1 Comparing different methods . 61

5.1.1 Gibson dataset environments . 61
5.1.2 DRL environment . 64
5.1.3 Metrics . 64

5.1.3.1 Exploration for map building metrics 64
5.1.3.2 Point-goal driven exploration metrics 65

5.2 Comparison procedure . 67
5.3 Exploration for map building results . 69

5.3.1 OccAnt vs. ANS exploration for map building results - Noise free . 69
5.3.2 OccAnt vs. ANS exploration for map building results - Noisy 71
5.3.3 Frontier exploration vs. OccAnt vs. ANS 75

5.3.3.1 Greigsville . 76
5.3.3.2 Scioto . 79
5.3.3.3 Swormville . 81
5.3.3.4 Cantwell . 83
5.3.3.5 Results analysis . 86

5.3.4 Decision-making time comparison frontier exploration vs. OccAnt
vs. ANS . 87

5.4 Point-goal driven exploration results . 88
5.4.1 Point-goal driven exploration ANS vs. OccAnt results - Noise free . 88
5.4.2 DRL tests . 89
5.4.3 Point-goal driven exploration ANS vs. OccAnt vs. classical algorithm 93
5.4.4 Results anaysis . 96

6 Conclusion and future work 97

Bibliography 101

A Appendix A 113
A.1 OccAnt vs. ANS exploration for map building results - Noise free - Different

environments size . 113
A.2 OccAnt vs. ANS exploration for map building results - Noisy - Different

environments size . 115
A.3 Frontier exploration vs. OccAnt vs. ANS - Small environments 117

A.3.1 Elmira . 117
A.3.2 Eudora . 118

A.4 Point-goal driven exploration ANS vs. OccAnt vs. classical algorithm -
Complete tables . 119

List of Figures 123

List of Tables 127

1

1| Introduction

Among the different research fields in robotics, autonomous mobile robotics has been ac-
tively addressed in the last years. A robot, in order to be called autonomous, must be
able to move in an environment or to fulfill a task without the need for continous human
intervention. One of the most important tasks that a robot has to perform is exploration
of initially unknown environments. In this task, the robot is required to autonomously
visit a possibly unknown environment and incrementally build a map of it, with the data
collected during the exploration.
Different techniques have been developed in the last years in order to make a robot au-
tonomously explore an unknown environment. Even if these classical techniques proved
to be successful in many cases, a recent research thrust aims to develop Machine Learning
and in particular Deep Learning algorithms to address the exploration problem, because
of the performance achieved by these methods in other fields. Deep Learning techniques
are used for example with successful results in speech [91] or image recognitions [94].
Even if Deep Learning is proposed in place of the classical paradigms, to date, these tech-
niques have not been extensively compared. Deep Learning methods require a lot of data
and in most cases when we compare these kinds of methods to classical ones they lack
explainability [17]. After training on a lot of episodes (in order of hundreds of thousands),
the cause of problems during exploration (like a collision, or a point-goal not reached),
may not be found so easily. In addition, most of the Deep Learning exploration algorithms
are studied only in simulation environments and only sometimes have also been tested in
real-world environments. Most of the real-world experiments are, however, done in very
simple environments [73].
The purpose of this thesis is so to compare classical exploration algorithms and algorithms
that exploit the possibility offered by Deep Learning. Each of the two approaches offers
downsides and upsides and because of the high computational power required to train a
Deep Learning algorithm, it may be useful to understand when it is worth being used.
More precisely, in this thesis, we survey different works that address the exploration prob-
lem, classifying them into different categories in order to understand how Deep Learning
and classical techniques can be compared.

2 1| Introduction

When we talk about exploration, Deep Learning can be used in different parts of the
exploration framework. Traditionally, during exploration, maps are built with SLAM (Si-
multaneous Localization and Mapping) [112] algorithms. With SLAM we refer to the task
of building a map while trying to localize the agent in it. Maps built with this method can
be enhanced in order to simplify exploration. Predictions of unseen areas can be added to
the maps with numerical or Deep Learning techniques. In [110] the authors use a method
to infer the unobserved portion of a map from the observed portion. Deep Learning tech-
niques can be used to make such predictions, like in [100] or [74]. In these two works, the
authors use a Deep Learning network that takes as input the current observed map and
outputs predictions of the unknown parts of the environment.
Works like [48] propose Deep Learning algorithms that, working similarly to SLAM, pro-
duce as output the map update with the current observations (and no predictions) and
the pose estimate.
During exploration of an unknown environment, selection of the next location to explore
is a very important step. Most of the classical methods proposed to select the next explo-
ration location are based on the concept of frontiers, defined as the regions between free
and unexplored space. The most famous algorithm is called frontier exploration [121] and
has been proposed in 1997. With this approach, the robot moves to the closest frontier,
until no more frontiers are reachable. Beyond this initial strategy, the next frontier to be
visited can be selected in multiple ways, i.e., randomly or by selecting the frontier point
that maximizes the amount of unknown area that can be seen from it [43]. Selection
of the next exploration location, as already said, can be done in a classical way with a
frontier exploration strategy or with Deep Learning algorithms. An example of a Deep
Learning algorithm trained to learn what is the next location to explore is reported in
[48]. Authors train a Deep Reinforcement Learning policy that rewards increase in area
coverage. The policy takes as input the current map and pose in order to output the
next point goal to reach. In the literature, other works follow this idea, rewarding other
elements like giving positive rewards if actions are smooth or if the current observations
add obstacles of free-spaces to the map (e.g., [55] and [50]).
Classical frontier exploration techniques can also be enhanced with Deep Learning. For
example authors of [66] use a Deep Learning network to learn a policy that selects the
best frontier point, instead of simply selecting the nearest frontier point.
Once the next exploration point has been selected, different techniques can be deployed
in order to reach it. Agents can for example use classical path planning algorithms like
A* or Dijkstra in order to plan a path from their current position to the point to be
explored (e.g., [111] and [106]). Deep Learning techniques can be used also in this case.
For example authors of [60] use a Deep Learning network that takes as input the point

1| Introduction 3

selected for exploration and a description of the environment in order to output the action
that must be executed by the agent in order to reach that point.
One key element to keep in mind when developing Deep Learning algorithms is their
tendency to exploit imperfections [17]. Because these exploration algorithms are trained
in a simulator and not in the real world, they may learn how to exploit imperfections of
the simulator that can’t be found in the real world. If simulation environments where
Deep Learning algorithms are trained are too simple, the agent may not perform well
when deployed in more complex environments. In other cases, agents may learn to move
in ways that can’t be replicated in reality. In [16], for example, agents in Habitat simu-
lator [84] learn to slide along obstacles when colliding, exhibiting a behavior that can’t
be replicated in the real world. Deep Learning algorithms in many cases require high
computational power in order to be trained, for example in [6] where authors reported a
training with 72 parallel threads on a system with 8 Nvidia V100 GPUs that lasted 24
hours. While classical algorithms can be simply deployed in the exploration environments
without particular computation needs, Deep Learning algorithms require, as just said, a
long training and may suffer from generalization issues in new environments.
Because of the reasons just stated, the purpose of this thesis is to compare Deep Learning
and classical exploration algorithms, in order to understand what can be the difficulties
faced by these two kinds of approaches. They are compared on different tasks in order
to understand if all the exploration steps can have big performance improvements with
the introduction of Deep Learning algorithms, or if these new techniques have a material
impact only when used for specific jobs (like map prediction). Furthermore, some of the
exploration steps, like the navigation step, are already solved with the optimal solution
with classical algorithms like A*. In this case, we must understand if Deep Learning
algorithms are worth using. Results of the classical and learning algorithms obtained
during the comparison are comparable in most of the metrics considered. Results also
highlight the difficulties faced by some learning algorithms when tested in more complex
environments than those used in training.

In order to fulfill the purpose previously highlighted, the thesis is structured as described
in the following lines.
In Chapter 2, we describe the state of the art regarding the exploration strategies that can
be found in the literature. The focus of this section lies in the identification of classical
and Deep Learning techniques that can be used in different modules of the exploration
framework.
In Chapter 3, we describe the problem analyzed in the thesis work, starting from a de-

4 1| Introduction

scription of how classical and Deep Learning techniques can be used in order to solve the
exploration problem. Then we discuss the purpose of the thesis, which is the comparison
of classical and Deep Learning algorithms in order to understand what are the upsides
and downsides of every implementation. Furthermore, we describe the algorithms chosen
for the comparison and how the comparison is done.
In Chapter 4, we describe the main software and simulators used in order to compare the
algorithms and how they have been modified to suit our needs.
In Chapter 5, we describe the tests done in order to compare the algorithms and the
results obtained.
In Chapter 6, we briefly summarize the purpose of the thesis, highlighting the results
obtained. We finally propose other elements to be taken into consideration for future
developments.

5

2| State of the art

Autonomous mobile robotics is a research field that has received significant attention in
the last years [107]. An autonomous mobile robot is an agent that, through different
sensors, perceives the environment. A robot, in order to be autonomous, must be able to
make movements and fulfill tasks like “pick an object” or “move to point A” without any
human intervention. Actions are made through actuators (like electric motors). The task
of exploration is, of course, one of the most important tasks that an autonomous agent has
to solve. In order to solve the exploration for map building problem, the robot has to visit a
possibly unknown environment (in some cases the agent has access to partial information
about it) and incrementally build a map. The maps (in most of the cases 2D maps)
represent all the free areas and the obstacles present in the environment. There exist
different map types associated to each environment (Section 2.2) and are built using the
information collected by agent’s sensors when it is moving in the environment. During the
exploration, the agent, has also to localize itself and the inputs received from the sensors
and the partial map built till that moment, moreover, the robot must be able to decide
where to go next without any human supervision.
To solve this problem some exploration strategies have been proposed during past years
and most of the algorithms works even if no knowledge of the environment is given to the
agent before the exploration process.
One of the most popular algorithm for this task is called frontier exploration [121], which
makes the agent move to the closest frontier (defined as a region between free space
and unexplored space). In other methods like [64] the agent moves to “good” positions
where “good” is referred to the quality and quantity of information that will be available
when arrived at the specific location. In this method, at each iteration the algorithm
first generates a set of potential candidates and next it evaluates them according to the
expected information gain that will be sensed in the candidate position and the cost
required to navigate to the new position.
In the last few years, Deep Learning techniques have been proposed in order to solve the
exploration problem. Deep Learning algorithms have recently achieved important success
among different fields like speech recognitions [91], image [94], or video recognition [120].

6 2| State of the art

Among these, Deep Reinforcement Learning algorithms have been proposed to train agents
that can play complex games like Go [108], Atari [85], Starcraft [72], . . .
Deep Learning networks has shown to be effective in learning and integrating information
from different inputs (like cameras, laser, GPS, . . .); consequently, researchers tried to
use these techniques also with mobile robots. Authors of preliminary works like [56]
provide a Deep Learning algorithm able to recognize doors while the agent is moving in
the environment and to create a roadmap based on the recognized doors. Authors of [44]
proposed a Reinforcement Learning algorithm able to learn a policy to navigate from an
initial to a target position by generating a collision-free path. However, different types
of approaches have been proposed to solve the problem of exploration using also Deep
Learning methods. Figure 2.1 shows an overview of the steps used for solving this tasks
and the most popular approaches used for each one of these steps.

Figure 2.1: Steps of the exploration process.

2| State of the art 7

The exploration steps described in Figure 2.1 are:

1. Perception P: the agent observes the environment and collects the input data

(RGB images, depth images, or laser scans).
2. Integration P into map M: the data collected at the previous step are used

to build maps of different types. Some algorithms that don’t require an explicit

memorization of the map are also proposed.
3. Choose what action to do: the agent, given the data collected and the map

built, has to select a list of candidates, i.e., the next thing to do. Candidates can

be:

• POINTS to reach in the environment.
• ACTIONS to do (like move left, move right, stay in place, . . .).

The agent has to compare the elements in the list of candidates and can do this

with an explicit evaluation function or with the help of predictions (for example

it can predict unseen areas in the map and use this information to select the best

candidate).
4. Action execution:

• If at step 3 the agent has selected a POINT, it has to execute motion planning

to reach that point.
• If at step 3 the agent has selected ACTION, it has to send the action command

to the actuators.
5. Reset:

• If time limit is not reached and goal is not reached, go back to step 1.
• If time limit or goal is reached, algorithm stops execution.

Deep Learning algorithms can be used in different parts of the formalization proposed.
Some authors use them in order to add predictions to the maps (e.g., [97] and [100]) or to
add class labels (e.g., [49], [50] and [51]) to the pixels in the map in order to identify specific
objects to be reached. Others employ these techniques to select the next exploration point
or action (e.g., [48]). And others employ Deep Learning to learn a navigation policy used
to reach the point selected among the list of candidates (e.g., [60]). In the next sections,
we provide a detailed description of these main points and of how they were addressed in
the literature.

8 2| State of the art

2.1. Sensors

In order to explore the environment in an autonomous way and to build a map, the

robot must be able to perceive what is around itself and determine its current localization

through sensors. The robot acquires different kinds of inputs that are used and processed

in multiple ways by the different algorithms.

• RGB sensor: a sensor made of an RGB camera.
• Depth sensor: a sensor that measures the distance to the surrounding objects.
• RGBD sensor: a sensor made of a union of RGB cameras and depth (D) sensor.

It is used to associate the image coming from the RGB sensor to a depth channel,

in order to combine each pixel with the distance to the corresponding object.
• Laser range finder: a sensor that uses a laser beam to determine the distance to

an object. They are also known as lidars.
• GPS: the sensor used to measure the position of the robot in the environments.
• IMU - Inertial Measurements Sensor: a sensor used to measure orientation

and accelerations.
• Bump sensor: a sensor used to sense contact with obstacles.

2.2. Map representation

A robot that is autonomously exploring the environment is required to acquire and update

a map representation of the surrounding environments, to perform all the operations and

calculations needed to define the exploration path. Different representations of the maps

have been proposed and commonly used; among so, relevant ones are (also shown in

Figure 2.2):

• Grid-based map: the map is divided into cells of fixed dimensions. Each cell has

a value that represents the probability of the cell to be occupied by an obstacle.

Different thresholds can be set to this value in order to consider the cell occupied or

not. Another example of a grid-based map can be the acoustic map, a grid where

each cell contains a value that represents audio intensity in that location.
• Topological map: a graph is used to represent the map. Even if commonly used,

there is not a standard definition of what nodes and edges represent, and their

meaning varies based on the kind of applications developed. For example in [98]

nodes correspond to locations and edges represent the existence of a path between

2| State of the art 9

two edges.
• Semantic map: the map is divided into cells of fixed dimensions. Each cell has

a value that represents if the cell is an obstacle, explored or contains an object of

the corresponding category (from a list of possible predefined categories). Another

example of a semantic map can be the affordance map, a grid where each cell

contains a value that represents the probability of that location to allow a specific,

given, affordance. Examples of affordances are: “pickupable”, “sliceable”, and so on.

Figure 2.2: Examples of the different map representation: grid-based map and acoustic
map are taken from [52], affordance map and semantic map are taken from [49].

Other contexts do not use a map and are mapless. In this case, actions to take are derived
immediately after sensor readings.

10 2| State of the art

2.3. Exploration tasks

The most common exploration tasks are:

• Exploration: the standard exploration for map building task, where the agent is

required to explore the environment and build a map as accurate as possible (e.g.,

[106], [48], and [97]).
• Point-goal driven exploration: the agent is required to explore the environment

and build a map used to reach the point in space provided as input (e.g., [60], [48],

and [97]).
• Object-goal driven exploration: the agent is required to explore the environment

and build a map used to reach a specific object (e.g., refrigerator, car, keys, ...)

provided as input (e.g., [49], [122], and [78]).
• Area-goal driven exploration: the agent is required to explore the environment

and build a map used to reach a specific area in the environment (e.g., kitchen,

garage, foyer, ...) provided as input (e.g., [90]).
• Audio-goal driven exploration: the agent is required to explore the environment

and build a map used to reach the source of the emitted sound (e.g., [52]).
• Image-goal driven exploration: the agent is required to explore the environment

and build a map used to reach a specific image provided as input (e.g., [55], and

[101]).
• Interaction-goal driven exploration: the agent is required to explore the envi-

ronment and build a map used to make it possible for the agent to interact with as

many objects as possible (e.g., [51]).
• Objects detection exploration: the agent is required to explore the environment

and build a map used to make it possible for the agent to correctly label as many

objects as possible (e.g., [51]).

In most cases an algorithm designed to accomplish a specific exploration task is unable
to achieve also another task. Some exceptions are possible, for example [48] and [97] with
little changes can be used for both exploration and point-goal driven exploration.
In [55] the authors explicitly want to create an algorithm that is not only able to solve
the standard exploration task but it is also able to solve the other exploration tasks.
In the proposed algorithm the agent first explores the environment in order to solve the
exploration for map building task end then, once exploration is finished, the agent is given
a different task, for example object-goal driven exploration.

2| State of the art 11

2.4. Exploration framework modules

From the literature, in order to understand how exploration tasks can be solved, we have
identified three macro modules useful to classify the different modules required to perform
exploration, as shown in Figure 2.3. These modules are obtained from the exploration
steps already formalized in Figure 2.1.

Figure 2.3: High-level schema of the exploration framework.

Each one of these blocks could be implemented in several ways. Each framework for
performing exploration should select an algorithm or a methodology (or more than one)
for each block. Most of the proposed frameworks start by generating a map from the
current observations (mapping module). Then they use an exploration policy to select the
next point goal that must be reached in order to solve one of the proposed exploration
tasks. In order to reach this point in space they use a navigation policy.
Mapping, exploration policy, or navigation policy modules can be implemented with Deep
Learning networks or use classic methods. Some of the algorithms, for example, use Deep
Learning methods only in one of the modules, preferring to use well-established classic
techniques in the other modules.
Other exploration frameworks instead consider exploration policy and navigation policy
as a single module, that can be trained end-to-end taking advantage of Deep Learning
neural networks, as shown in Figure 2.4.

Figure 2.4: High-level schema of the exploration framework with end-to-end module.

Different types of algorithms are used to implement the mapping module, often fusing this
step with other ones: some of them simply update the map with the current observations,
others try to predict the unseen parts of the maps, still others add semantics information
over it.

12 2| State of the art

Paper Mapping
NAVIGATION

POLICY
EXPLORATION

POLICY
END-TO-END NOISE

[66] Deep Learning Classical Classical X NO

[46] Deep Learning Classical Classical X NO

[100] Deep Learning Classical Classical X NO

[106] Deep Learning Classical Classical X NO

[48] Deep Learning Deep Learning Deep Learning X YES

[74] Deep Learning X X X NO

[92] Classical Classical Deep Learning Deep Learning NO

[90] Deep Learning Deep Learning Deep Learning X NO

[75] Deep Learning Classical Classical X NO

[39] Deep Learning Classical X X NO

[97] Deep Learning Deep Learning Deep Learning X YES

[110] Classical Classical Classical X NO

[52] Classical Classical Deep Learning X YES

[82] Classical Classical Classical X NO

[124] Deep Learning Deep Learning Classical X NO

[55] Classical X X Deep Learning YES

[101] Classical Deep Learning Deep Learning X NO

[41] Classical X X Deep Learning NO

[60] Classical Deep Learning Classical X YES

[76] Classical X X Deep Learning NO

[49] Deep Learning Classical Deep Learning X YES

[50] Deep Learning X X Deep Learning NO

[89] Deep Learning X X Deep Learning YES

[122] Mapless X X Deep Learning NO

[111] Classical Classical Deep Learning X NO

[96] Deep Learning Classical Classical X NO

[78] Deep Learning Classical Classical X NO

[71] Mapless X X Deep Learning NO

[51] Deep Learning Classical Deep Learning X NO

[123] Classical Deep Learning Classical X NO

Table 2.1: Some representative papers from the literature.

2| State of the art 13

Table 2.1 classifies a representative sample of papers from the literature in order to build
a framework for exploration. With classical we refer to the kind of algorithms that don’t
use Deep Learning. In mapping, navigation policy, and exploration policy columns we
have shown if the authors of the paper have used Deep Learning algorithms or classical
ones in the module. Mapping module is covered in detail in Section 2.4.2, exploration
policy module in Section 2.4.3, and navigation policy module in Section 2.4.4. In the
papers that use the end-to-end Deep Learning module (considered in Section 2.4.5), as
already said, exploration policy and navigation policy are considered as a single module,
and because of this are marked with an “X”. In the noise column we have shown if the
authors of the paper have considered noise in the simulation settings, as described in
Section 2.5.1.
Looking at Table 2.1 we can see that most of the authors prefer to consider exploration
and navigation policies as separate modules, given that end-to-end module is used in only
8 cases. In more than half of the examined papers (17 cases) Deep Learning algorithms are
used to implement the mapping module, while Deep Learning is less used in navigation
policy module (7 cases) and exploration policy module (9 cases.)

2.4.1. Deep Learning algorithms

Different Deep Learning algorithms can be used in all the modules of the framework; some

for example can be used for map prediction, others for training a navigation or exploration

policy.

The Deep Learning algorithms used to train the policies described in the papers belong

to these families:

• Reinforcement Learning: used in exploration policy, navigation policy, end-to-

end modules.
• Imitation Learning: used in navigation policy and end-to-end modules.
• Supervised Learning: used in mapping, exploration policy, end-to-end modules.
• Unsupervised Learning: used in mapping module.
• Self-Supervised Learning: used in mapping, navigation policy modules.

We now briefly describe these frameworks.

14 2| State of the art

Reinforcement Learning (RL)
The typical structure of a Reinforcement Learning algorithm (RL) is composed of two
main components: agent and environment, as shown in Figure 2.5.

Figure 2.5: High-level schema of Reinforcement Learning.

The goal of the method is to use the observations collected from the environment (the
inputs of the Deep Learning environment) to maximize the reward function.
The agent first receives a state from the environment. In the exploration framework here
analyzed, this state is composed by either by RGB images (e.g., [97]), depth images (e.g.,
[97]), laser readings (e.g., [60]) or entire maps (e.g., [50]). The agent, based on the amount
of experience accumulated till that moment, takes an action (move forward, rotate, ...)
in the environment. After that, the agent receives from the environment the next state
and the reward obtained by acting in that way. The agent so trains the policy in order
to maximize the reward obtained.
In RL the agent continuously learns from experience in the environment until it has
reached the goal or the maximum number of steps allowed.
In the examined papers ([48], [49], [50], [51], [52], [60], [63], [76], [90], [97], [101], [111],
[122], and [123]) different reward functions recognize as important different aspects in the
proposed exploration tasks (Section 2.3), most of them use:

• Positive reward: if area seen increases; if reduction in distance to goal (local or
global); if current observation adds obstacles or free-spaces to the map; if accuracy
in map prediction increases; if more than a certain percentage of the area has been
explored; if agent gains confidence in predicting object categories; if reduction in
temporally inconsistent predictions (objects in the scene are labeled different in sub-
sequent frames); if goal is reached fast; if actions are smooth (no excessive rotational
velocity).

• Negative reward: with a collision/invalid states; per timestep (small, but used to
avoid unnecessary movements).

Most of the Reinforcement Learning-based frameworks proposed in the thesis are trained

2| State of the art 15

with Proximal Policy Optimization (PPO) [103]. Some of them also take advantage of
Decentralized Distribute Proximal Policy Optimization (DD-PPO) [118]. DD-PPO is
a distributed Reinforcement Learning method that allows training in resource-intensive
simulated environments on multiple machines. The possibility of training simultaneously
on different environments allows the agent to obtain more experience more quickly, but
uses a lot of computational resources.
Writing a reward function may be tricky and sometimes a conceptually good function
may lead to unwanted behaviors. For example if we reward an exploring agent only for
seeking novelty, we can have a situation as the one described in [45]: if we place a tele-
vision continuously reproducing new images the agent is trapped by its reward function
and keeps observing it without exploring the environment anymore.
Reinforcement Learning algorithms are used in the modules that consider agent’s move-
ments in the environments: exploration policy, navigation policy, and end-to-end. They
are never used in the mapping module.

Imitation Learning
As just described, RL algorithms require pre-specified reward functions. Most of the time
specifying a reward function is a difficult task and it can be convenient to instead use
Imitation Learning (IL) techniques. With Imitation Learning, agents learn a policy from
experts that provide the agent a set of demonstrations. The agent, once having accessed
this set of demonstrations, tries to learn a policy by following what experts do. There are
some situations where it is very useful to use Imitation Learning instead of other tech-
niques, for example when, for an expert, it is easier to demonstrate the desired behavior
rather than writing an explicit reward function. For a human, for example, the act of
navigation from one point to another point in space is a simple and instinctive behavior,
that can be in most situations very difficult to formalize.
In this case, the environment contains a set of states, a set of actions, a probability tran-
sition model, and an unknown reward function. The agent performs actions in the envi-
ronment, trying to optimize its policy, having access to the expert’s optimal policy.
Different implementations of Imitation Learning-based framework exist like Direct Policy
Learning [58] or Inverse Reinforced Learning [35], but the one used in the examined pa-
pers is Behavioral Cloning [116], used in [48] and [55].
Imitation Learning (and Behavioral Cloning in particular, as just said) is used in the nav-
igation policy and end-to-end modules. The algorithm is strongly based on the concept
of “experts showing how to solve a task” , and because of this it can be a good choice for
learning how to move in an environment, but it can’t be used in mapping module.

16 2| State of the art

Behavioral Cloning represents a way in which Imitation Learning can be implemented. A
high-level schema of the algorithm is presented in Figure 2.6.

Figure 2.6: High-level schema of Behavioral Cloning algorithm.

The agent tries to learn a policy as much similar as possible to the one provided by ex-
perts in the environments. This method is not robust to training errors and often fails
in settings where not enough experts demonstrations are provided. One example of this
behavior is when the agent visits a state never visited by the experts (and so not consid-
ered in training) and so it has no data on how to behave from that state. There is a high
correlation between the amount of available data and the quality of the policy obtained
with Behavioral Cloning. As just described Behavioral Cloning is simple to implement,
but its issues must be carefully considered.

Supervised Learning

Supervised Learning is a class of algorithms where the training selects the function that

best describes the input data. Input data during training are provided with labels that

describe them. The algorithm learns a function that must be able to associate labels to

unlabeled data. There exist two main ways of implementing Supervised Learning:

• Classification: algorithms used to classify discrete values (like true or false, dog

or cat, . . .).
• Regression: algorithms used to estimate continuous values (like velocities, meters,

. . .).

Supervised Learning paradigm can be used to learn a policy for exploration. The network
used to train the policy, for example, can take as input a map and provide as output
the optimal action from the current point in the map. The training dataset in this case
requires images of the map with the current agent location labeled with the optimal action,
as shown in Figure 2.7.

2| State of the art 17

Figure 2.7: An example of the use of Supervised Learning for exploration.

Supervised Learning algorithms are used in mapping (e.g., [90]), exploration policy (e.g.,
[90]) and end-to-end (e.g., [41]) modules.

Unsupervised Learning
In Unsupervised Learning the situation is the opposite with respect to what we have in
Supervised Learning. In this learning task, the input data have no labels or classification
associated. The goal is to find some underlying pattern that can characterize the dataset.
One task where Unsupervised Learning is usually included is segmentation. The input is
not associated with any labels, and so the best way to find a pattern is to find a function
able to cluster the input.
Unsupervised Learning is used in mapping module in generative networks like in Section
2.4.2 where the proposed networks want to learn a function able to generate the unseen
parts of the maps (used in works of [39], [74], and [106]). Generative networks are a
very common choice in papers that want to predict unseen parts of the maps with Deep
Learning techniques.

Self-Supervised Learning
Self-Supervised Learning is a class of algorithms similar to Unsupervised Learning, but
that tries to solve problems traditionally targeted by Supervised Learning (e.g., classifica-
tion). Also in this class of problems the algorithm has to solve classification or regression
problems as previously described. In this case, labels are not directly provided during
training stage. The algorithm has to extract the labels from the samples in order to be
able to solve the problem.
Self-Supervised Learning algorithms are used in mapping ([50] and [96]) and navigation
policy modules ([101]).

18 2| State of the art

2.4.2. Mapping

Most of the algorithms that we have investigated use an explicit map to represent the

environment. Maps are created or updated at the beginning of each algorithm step in

the environment, after having received inputs of different types (RGB images, depth

images, current position, estimate of the current position, actions. . .). In the simplest

case maps are simply updated adding the input received to the current map without

adding prediction or other kinds of information. Map predictions can be obtained with

numerical techniques or with Deep Learning algorithms.

Before the arrival of Deep Learning, mapping was traditionally obtained with SLAM

(Simultaneous Localization and Mapping) [112]. With SLAM we indicate the task of

building the map of the environment while trying to localize the agent in it.

Even algorithms that use Deep Learning techniques for map prediction or map labeling

sometimes take maps generated with SLAM and then add predictions or other information

to them, as we will see later in this section.

SLAM can be formally described taking into consideration:

• Path (sequence of locations): XT = x0, . . . , xT
• Odometry sequence: UT = u0, . . . , uT
• Sensors measurement sequence: ZT = z0, . . . , zT

Figure 2.8: Graphical representation of SLAM, from [30].

In Figure 2.8 we can see a graphical representation of the SLAM problem where the arcs
represent the causal relationships and shaded nodes what can directly seen by the robot.
The SLAM problem is so formalized as the problem of recovering a model of the world
(the map m) and the sequence of robot locations (XT) from what it can directly observe
(odometry and sensors data).
Authors from [92], for example, use SLAM with information coming from 3D sensor and

2| State of the art 19

odometry sensor to update the map at each step. This map is then provided to the ex-
ploration policy.
In [52] authors use as inputs depth images and sound received from left and right micro-
phones to build and update two maps (occupancy map and acoustic map) as the agents
move in the unmapped environment.
Deep Learning networks can be used in mapping, even if in most of the cases they are
used for map predictions (taking as input map created with SLAM).
One example of Deep Learning networks used for mapping is the one provided in [89],
where authors use U-net [99] having as input only RGB images in order to output affor-
dance maps.
Another example is the mapper structure presented in [48], similar to U-net. It takes as
input an RGB image and produces as output an egocentric top-down 2D spatial map.
Deep Learning networks can be used in order to obtain semantic maps, as done in [49],
[50], [51]. In these papers, authors use the same structure (shown in Figure 2.9), built
with a pretrained Mask R-CNN network ([68]).

Figure 2.9: High-level schema of the semantic mapping module implemented in [49] and
[50].

Mask R-CNN receives as input an RGB image, used to produce the object predictions
as output. The output values combined with the values from depth images are used to
produce the semantic map. It is interesting to note that with the schema presented in
Figure 2.9 authors can use a pretrained network.
We now briefly describe how predictions can be added to the maps with or without Deep
Learning techniques.

Map prediction without Deep Learning
Techniques that do not depend on Deep Learning can be used to add predicted elements
to the maps.
In [110] authors use a method that takes as input the observed portions of the map (white)
to infer the unobserved portions (red), as shown in Figure 2.10.

20 2| State of the art

Figure 2.10: Example of map generated by [110]: in white the observed portions of the
map, in red the unobserved portions inferred.

The inference method developed in this paper is made of two components:

• Heuristic-based perimeter prediction: the algorithm proposed estimates the
exterior boundary of the map. Observed grid-based map cells are used to predict
unobserved portions.

• Structural inference: it uses the predicted perimeter and the observed portions
of the map to infer the unobserved internal map. The main assumption under
structural inference is that most environments are similar to other structures that
exist. So they use a collection of general maps to match structures with the observed
cells in the map.

This algorithm of course requires a lot of entries in the environments library in order to
provide as many examples as possible and this situation has an impact on computation
time.
In [82] authors use a method presented in [80] and [81] to predict the shape of partially
observed rooms (partial grid-based map acquired till that moment), but in principle any
other method that provides a geometrical estimate of room shape could be used. The
method takes as input the partial grid-based map and outputs the predicted grid-based
map. The main idea is to identify the shape of the parts that are fully observed in the
environment and to use this knowledge of the structures to predict what can be the shape
of partially observed rooms.

Map prediction with Deep Learning
Multiple kind of Deep Learning networks are implemented in the papers in order to predict
maps or elements in the maps. The Deep Learning methods can use different kinds of
inputs (RGB images, depth images, previous maps (sometimes obtained with SLAM),
actions, previous actions). Some of the Deep Learning networks are pretrained, others
must be trained on the specific task.
The most common networks architectures used are: Convolutional Neural Network (CNN)

2| State of the art 21

[36], U-net [99], GAN [61], VAE [32], CVAE [32], and Sequence to Sequence [113].
The first example of algorithm trained to predict elements of a map is the one proposed
in [100]. Authors of this work use a U-net network which takes as input the currently
explored environment map (converted into an image) and outputs a prediction of the
unknown parts of the environment.
Also in [75] the authors use a U-net architecture taking as input the current grid-based
map and producing as output the prediction the unseen area.
In [97], the network is the one represented in Figure 2.11.

Figure 2.11: High-level schema of how map prediction is implemented in [97].

In this case, two inputs are provided to the network: RGB images and depth images, and
the features extracted from them are combined for feature encoding. The output is the
anticipated occupancy (tensor of probabilities which represent the probabilities of having
obstacles in unseen areas).
Different Generative Networks (networks trained to generate new data very similar to the
one contained in a specific dataset) like GAN, VAE and CVAE are used in several works.
In [74] the authors train a GAN with Unsupervised Learning to perform map completion.
The network takes as input the uncompleted map and outputs the complete map. In [106]
the authors train a VAE with Unsupervised Learning in order to produce a prediction of
a small part of the map. The network takes as input a four channel image representing
the currently known map and the mask for the prediction region. It produces as output a
single channel image representing the probability of obstacles. In [39], the authors use a
CVAE network because of its capability of conditioning the generation process to differ-
ent variables. Because of this, the network takes as input a sub-map and an action and
produces as output a map conditioned on the action chosen.
Authors of [90] use a Sequence to Sequence network for map prediction. The network
takes as input the current image (RGB), the previous semantic map and the previous ac-
tions in order to predict the current semantic map. The policy is trained with Supervised
Learning.
Authors of [46], instead, use a CNN trained with Supervised Learning to predict the exit

22 2| State of the art

locations of the floor plan. The training dataset of this algorithm is composed of labeled
images where all the sub-images are labeled with 1 if they contain exit locations, 0 oth-
erwise. The algorithm takes as input a blueprint image of the plan and outputs a smaller
image where each pixel can have two values: 1 for exit locations, 0 otherwise (heatmap
of estimated exit locations).

2.4.3. Exploration policy

During exploration in an unknown environment different tasks must be accomplished:
the perception of environment information with agent’s sensors, the integration of the
inputs received into the current map and the selection of the most promising next goal
location. The selection of next location to be reached by the robot is probably the most
important component of the exploration strategy and it is done by the exploration policy.
The exploration policy follows different criteria (for example the distance from the current
agent position or the area that can be covered moving in a specified position) that can be
formalized in multiple ways.
Many models that are proposed in the literature are based on the concept of frontier
exploration: the agent, following different strategies, has to move to a frontier that is the
region between free space and unexplored space. This family of exploration strategies can
also be enhanced in different ways using Deep Learning.
Besides this famous implementation other methods are developed to select the next goal
location that must be fed to the navigation policy module. Some of these methods are
based on Deep Learning networks capable of predicting the next location to reach during
exploration. Others are geometric methods that select the next point of interest with
geometric heuristics.
We now describe how all the exploration policies described so far can be implemented.

Frontier exploration

Frontier exploration is one of the most popular exploration strategies, firstly introduced

by [121]. It is based on the concept of frontiers, regions on the boundary between free

space and unexplored space. The most common map used in this strategy is a grid-

based map (Section 2.2) where each cell stores a value representing the probability of the

corresponding location to be free or occupied by an obstacle. The frontier exploration

approach maximizes map coverage by moving to new frontiers. At the beginning a prior

probability value is assigned to each cell in the grid (usually 0.5, but different papers

2| State of the art 23

propose a specific method to calculate this value). The cells are updated when the robot

is moving, using the sensors readings. After the update the cells are placed into one of

three classes, according to their value:

• open: occupancy probability <eprior probability.
• occupied: occupancy probability >eprior probability.
• unknown: occupancy probability = prior probability.

Frontiers are so defined as a group of adjacent edge cells, where an edge cell is any open
cell adjacent to an unknown cell. A threshold can be set to the minimum number of
adjacent edges cells required to consider the group a frontier. An example can be seen in
Figure 2.12.

Figure 2.12: On the left an example of grid-based map used in frontier exploration; in
the middle the frontiers extracted from the grid-based map; on the right frontier regions
after threshold (right) [121].

The next frontier to be visited can be chosen in different ways, peculiar of each imple-

mentation, for example:

• Random exploration: the agent chooses a random element from the frontiers list.
• Greedy selection: the agent chooses as next exploration goal the point closest to

the current position, as implemented in [66].
• Next-Best-View selection: the agent selects the frontier point that maximizes

the amount of unknown area that can be seen from it, as shown in [43].

The point that must be reached is usually the point at the center of the frontier.
The maps used as input of this kind of algorithm can be of different types, as described
in Section 2.4.2 without or with predicted elements, like in [100], [106], [124], [96], [66]
and [82].

24 2| State of the art

In [96] the authors use the predicted map to select the best frontier that is also closest
to the point-goal for point-goal driven exploration. In [78] the authors use frontier explo-
ration to solve object-goal driven exploration task, selecting the region that is more likely
to contain the goal object (Deep Learning is used to create and update the semantic map).

Points of Interest (POI) and IDLE

In [60], the authors propose another method that doesn’t rely on Deep Learning, but

on geometric heuristic. In this method, the agent first needs to select Points of Interest

(POI) from the updated map. They use two methods to extract POIs:

• POI is added to the selected list if a value difference between two sequential laser

readings is larger than a threshold.
• POI is added to the selected list if sequential laser readings return a non-numerical

value (reading out of range, represented as free-space).

If POIs are near an obstacle, they are removed from the memory. The optimal POI is
selected with an evaluation method that the authors have developed, Information-Based
Distance Exploration (IDLE). The POI with the smallest IDLE is selected as the optimal
waypoint provided as input to the navigation policy.

Integrating frontier-based exploration with Deep Learning
The frontier-based exploration algorithms can be integrated with Deep Learning tech-
niques in different ways. For example, authors of [66] use a Deep Reinforcement Learning
technique in order to learn how to select the best frontier point. They use A3C (asyn-
chronous advantage actor-critic) network to maximize the total information gain along
agent’s navigation path.

Figure 2.13: High-level schema of the Deep Learning network proposed in [92] to evaluate
frontier points.

Figure 2.13 represents the network used in [92]. The network takes as input the current
discovered map, the robot locations, and the frontiers location. These inputs, before be-

2| State of the art 25

ing fed to the actor-critic network, pass through convolution layers, upsampling layers
and a long short-term memory (LSTM) (this unit is used to make the network take into
consideration previous robot state features). The network produces as output the goal
frontier location that maximizes the objective function.

Selection of the next exploration goal using Deep Learning
In the examined papers different algorithms other than frontier exploration have been
proposed to implement a policy capable of selecting the next point goal in the environ-
ment at each step. Many of these algorithms take advantage of Deep Learning networks
like: CNN [36], actor-critic network [87], ResNet18 [67], Multilayer Perceptron (MLP)
[95], Gated Recurrent Unit (GRU) [59]. Most of the examined policies are trained with
Reinforcement Learning, while only one work uses Supervised Learning. The different
implementation of Reinforcement Learning algorithms take into consideration different
aspects of the exploration to reward.
The first example of algorithm trained with Reinforcement Learning is the one proposed
in Figure 2.14.

Figure 2.14: High-level schema of the Deep Reinforcement Learning network proposed in
[48] to select the next exploration goal.

The figure is taken from [48], where the Global Policy uses a CNN. This network takes as
input the updated map end the pose estimate and outputs a short-term goal. Then with
Fast Marching Method (FMM) (described in Section 2.4.4) they compute the shortest
path between the current position and the long-term goal: a short-term goal is selected
along the path. Global policy is trained with Reinforcement Learning and the reward is
proportional to the increase in area coverage.
Also in [97] the authors use a similar structure (trained with PPO), with some differences
in the reward function. Reward function in this paper doesn’t reward the amount of area
seen, but the accuracy of the predicted map.
Also [49], [51], and [111] use a similar structure, but they eliminate the selection of the
short-term goal with FMM, so the long-term goal is directly fed to the navigation policy.
In particular, in [111], authors give a positive reward in case of increase explored area and
a negative reward in case of collisions.

26 2| State of the art

The work of [49] is trained with Reinforcement Learning (PPO) and it rewards the re-
duction in distance to the object-goal.
In [51], the exploration policy is likewise trained with RL (PPO) but authors introduce a
new reward called gainful curiosity reward. With gainful curiosity reward the authors en-
courage the agent in the environment to find new objects and keep looking at them (from
different points in space), until it obtains high confidence in predicting object categories.
In [52], authors try to accomplish the audio-goal driven exploration task with the structure
shown in Figure 2.15:

Figure 2.15: High-level schema of the Deep Reinforcement Learning network proposed in
[52] to select the next exploration goal.

The network takes as input the binaural inputs, the acoustic memory, and the grid-based
map. The three inputs are connected to a CNN and then concatenated into a GRU,
connected to an actor-critic network that outputs the predicted waypoint that must be
reached by the navigation policy. The policy is trained with Reinforcement Learning
(PPO) also in this case and it is rewarded for reducing the distance to the goal.
An example of work that doesn’t use Reinforcement Learning is the one proposed in [90]
where authors use Supervised Learning to train a MLP network to output the exploration
point that must be reached. MLP takes as input the predicted map, the current image
seen by the agent (RGB), and the room ID where it is asked to navigate (it solves area-
goal driven exploration tasks). RGB images and predicted maps inputs are embedded
using a pretrained ResNet50 network.

2| State of the art 27

2.4.4. Navigation policy

Navigation to the point selected by the exploration policy can be classified in two different
ways: classical path planning algorithms and learned policies.

Classical path planning algorithms

In different papers authors use well-established numerical techniques to navigate to the

point selected by the exploration policy. We have called them classical to distinguish

them from those that use Deep Learning.

The most used are:

• A* and Dijkstra: these algorithms are used to plan a path from the current

position to the point selected by the exploration policy in [111], [106], [96], [92], and

[82].
• Fast Marching Method (FMM) [104] [34]: this algorithm is used for path plan-

ning in [49] and [51].

Dijkstra algorithm

Dijkstra algorithm is used to determine the shortest path between a start node and any

other node in a graph. In path planning problems with nodes we refer to the points in

space to be reached. The key idea of this algorithm is to iteratively calculate the shortest

distance from a starting point, and can be described with the following steps:

1. Initialize all nodes with infinite distance; starting node is initialized with distance

0.
2. Only the distance of the starting node is marked fixed, all the others can change.

All the nodes are marked as not visited.
3. Set the starting node as active.
4. Calculation of the temporary distances of the not visited neighbours of the active

node.
5. If the temporary distance in the active node neighbours is lower than the current,

update the distance and set active node as predecessor of the neighbour node.
6. Set the node with the minimum temporary distance as active and mark its distance

as fixed. The previous active node is marked as visited.
7. Repeat from 4 to 7 until all nodes are visited.

This is the general formulation of the algorithm. It can also be adapted to find the

28 2| State of the art

shortest path between a start and a goal point in space, by stopping the algorithm once

the shortest path to the goal has been found.

A* algorithm

A* is a search algorithm used to find the shortest path between the initial and final node.

This algorithm is widely used in various applications, including, of course, maps. The key

part of this algorithm is the evaluation function f(n) = g(n) + h(n), where:

• g(n): is the accumulated cost to reach node n.
• h(n): known as the heuristic value, it is the estimated cost to reach the goal from

node n.

In path planning problems with node we refer to the points in space to be reached. Having
defined these values, f(n) represents the total estimated cost of a path passing through
node n. At each step the algorithm moves to the node with the lowest f(n) value, starting
from the initial point. Different heuristics can be used to estimate the distance from one
point to the goal, like the Euclidean distance heuristic or the Manhattan distance heuristic
[105].
Fast Marching Method (FMM) algorithm
Fast Marching Method is a numerical algorithm originally thought for modelling and
tracking the motion of a wave front. FMM has been applied to a lot of different fields,
including, of course, path planning. The mathematical model of FMM can be applied to
a wave in 2, 3, or n-dimensions. FMM calculates the time that a wave originated in one
or more points needs to reach every point in the space. The motion of the wave front
in every moment is described by the Eikonal equation [93]. The wave expansion speed is
non-negative and can be different in different parts of the environment.
This model can be applied to path planning considering for example a grid-based map
where free-space is valued as 1 and obstacles as 0. If our goal is to compute a path from
a start point to a goal point, we could expand a wave from the starting point. The wave
expansion speed is 0 at obstacles and 1 on free spaces. The path followed by the wave
front from start to goal point, because of the wave expansion properties (expansion speed
is considered constant), is the one with the shortest path.

Learned policies
In the literature several works use Deep Learning to learn a navigation policy in order to
reach a point goal selected by an exploration policy previously defined. Authors use both
pretrained networks and networks that need training. These policies can be formalized
in different ways. In almost all the cases the policies are trained with Reinforcement

2| State of the art 29

Learning, rewarding different aspects of the navigation and producing as output the next
action to be executed. In only one of the examined cases authors train the policy with
Imitation Learning and in another one with Self-Supervised Learning. Different Deep
Learning networks are used: actor-critic [87], long short-term memory LSTM [70], and
ResNet18 [67].
In [60] the exploration policy produces as output the description of the local environment
(bagged laser readings in 180 degrees range in front of the robot) and the waypoint goal
that the agent must reach. These outputs are merged together as input for the navigation
network. The navigation network is an actor-critic network trained with Twin Delayed
Deep Deterministic Policy Gradient (TD3) [63] to output an action, as shown in Figure
2.16.

Figure 2.16: High-level schema of Deep Reinforcement Learning network proposed in [60]
to select the next navigation action.

The policy is trained with Reinforcement Learning (TD3) and gives a positive reward if
distance to the goal is less than a threshold, a negative reward in case of collision and if
none of the previous conditions are satisfied it gives a reward based on the current lin-
ear velocity and angular velocity. The authors also employed a delayed attribute reward
method, giving a positive reward not only when the goal is reached, but also decreasingly
over the last steps before it.
Also in [123] authors use an actor-critic based PPO algorithm to train the Reinforcement
Learning policy. In the paper they consider the case when the agent has to avoid a pedes-
trian crowd moving in the environment. The network takes as input the laser scans, the
current velocity, and the goal provided by the exploration policy. The reward function
is designed to encourage the robot to avoid collisions, reach the destination as fast as
possible, and move the agent as smooth as possible (controlling its rotational velocity).
The output is a collision-free velocity command (linear and angular).
In [90], the authors train the point navigation policy using Reinforcement Learning Prox-
imal Policy Optimization (PPO) [103]. The policy, parametrized as a 2-layer LSTM
network, takes as input the previous action, the goal predicted by the exploration policy
and the encoding of the depth image input. It produces as output a softmax distribution
over the action space and an estimate of the value function, in order to select an action

30 2| State of the art

that must be executed. The reward is the reduction in distance to the goal.
In [97] the authors use a pretrained ResNet18 recurrent neural network, originally trained
with Reinforcement Learning rewarding the reduction in distance to the local goal. The
network takes as input the current RGB observation and the short-term goal selected by
the exploration policy and outputs a navigational action.
The policy used in [48] is the only one trained with Imitation Learning (Behavioral
Cloning). Also in this case the network is ResNet18, which takes as input the current
RGB observation and the short-term goal selected by the exploration policy and outputs
a navigational action.
In [101], the authors use a ResNet18 network as implemented in [18], but they train the
network on the specific task instead of using a pretrained network. The network used
in this paper takes as input two RGB images (current observation and goal observation)
and outputs a softmax distribution of all the available actions. The policy is the only one
trained with Self-Supervised Learning.

2.4.5. Exploration and navigation end-to-end learning

In different papers, exploration and navigation are jointly learned using and end-to-end
paradigm and can’t be clearly separated in two modules as in the previous cases.
In the following, we describe some algorithms proposed to implement end-to-end module.

Learning a policy with different Deep Supervised Learning networks to select
next exploration action

Figure 2.17: Pipeline of the end-to-end module presented in [41].

In [41], as shown in Figure 2.17, authors use a Deep Learning neural network that takes as

2| State of the art 31

input the locally visible portion of the map and outputs the optimal sensing action. The
network is trained and tested on locally visible portions of randomly-generated 2D maps
of indoor environments. The authors have tested the algorithm with different neural
networks: AlexNet [77], VGG [109], GoogleNet [114], ResNet [67], Locally Connected
Layers [57].
The networks are trained with Supervised Learning, as shown in Figure 2.17. Labels
are calculated offline before the training phase. Every label represents the index of the
optimal action that maximize the agent’s information gain (the action that allows the
agents to collect as much information as possible).
The network proposed in this paper must be carefully considered, because it is the only
one among all the examined papers that uses a Supervised Learning network structure.
This method carries along some drawbacks, for example the need of labeling the actions
before training. In addition, the method is only trained and tested on 2D randomly
generated maps and not on 3D more complex environments.

Learning a policy with Reinforcement Learning and Imitation Learning to
select the next exploration action
In [50], the authors use a network made of a pretrained ResNet18 visual encoder, followed
by two fully connected layers and a GRU layer. The network takes as input a semantic map
and outputs an action distribution and is trained with Reinforcement Learning (PPO).
The authors define the semantic curiosity reward, a reward that encourages to explore
frames with temporally inconsistent predictions (objects in the scene are labeled different
in subsequent frames).
In [55] a similar pipeline is used, as shown in Figure 2.18.

Figure 2.18: Pipeline of the end-to-end module presented in [55].

The network takes as input RGB images (processed with pretrained ResNet18), infor-
mation from grid-based map (features extracted with ResNet18). The outputs of these

32 2| State of the art

two ResNet18 networks are merged together into a Recurrent Neural Network in order
to output the next action. Approximate map and bump sensor information are used to
compute the reward function. Pretraining is done with Imitation Learning to imitate
human demonstrations of how to explore a new environment. The demonstrations are
composed of trajectories of real workers moving in House3D [62] environments.
Training is done with Reinforcement Learning (PPO). Reward function gives positive
reward if the current observation adds obstacles or free-spaces to the map. It adds a
negative reward if a collision (identified by the bump sensor) occurred.

Learning a policy with different Reinforcement Learning algorithms to select
the next exploration direction

Figure 2.19: Pipeline of the end-to-end module presented in [76].

In [76], as shown in Figure 2.19, the authors use different Reinforcement Learning al-
gorithms that output the direction that must be followed by the agent. The input is
represented by the sensory information acquired by the robot in the environment.
The authors have tested different algorithms: PPO [103], DQN-Rainbow [69], A3C [86],
SAC [65]. All the algorithms are trained with the same reward function that gives a pos-
itive reward if new cells are discovered, a negative reward per timestep (in order to avoid
unnecessary movements), a negative reward if the action done leads to invalid states and
a positive reward when more than a threshold value of the cells have been explored.

2| State of the art 33

Learning two Reinforcement Learning policies simultaneously to select the
next exploration direction in mapless exploration

Figure 2.20: Pipeline of the end-to-end module presented in [122].

The work of [122] presents an architecture with different peculiarities. In almost all
the examined papers authors use explicit map representation (grid-based maps in most
of the cases), while in this work they don’t store any expilict representation of a map.
The inputs (RGBD images, GPS+Compass, and goal ID) are directly fed to the Deep
Learning network for exploration policy and no map is created. We have called this
situation mapless (as described in Section 2.2). Another example of mapless exploration
is provided by [71], where aerial robots are implemented (in all the other papers examined
only terrestrial robots are implemented).
Another distinctive element introduced by [122] is the fact that unlike the others presented
in the thesis, it produces two outputs, as shown in Figure 2.20.
The network inputs go through belief modules, independent GRUs, each associated with
independent auxiliary tasks. The belief modules output is merged and used in a linear
actor-critic policy head. The agent can learn two policies simultaneously, for example
the acting policy for the exploration for map buildingtask, and the tethered policy for
object-goal driven exploration task.
Each policy is trained with Reinforcement Learning and has its own reward and the agent
can act according to any mix of the two policies (because the two policies share the same
action space).
In the paper, the acting policy for exploration is rewarded with a positive reward if goal
is reached, a negative reward for each step, and a positive reward for area explored in
the step. The tethered policy for object-goal driven exploration is only rewarded with a
positive reward if goal is reached.

34 2| State of the art

2.5. Simulation environments and datasets

Deep Learning techniques are characterized by a flexibility that made them suitable to
be deployed in different applications like speech recognition, image recognition, natural
language processing, and so on. These techniques, as known, are based on the concept
of training. In the robotics field, as in the other fields, these means that the robot has
to train a lot in order to obtain good performance. The training phase can’t be done in
the real world, but it has to be accomplished in a simulator. However, the simulation
environments can be very different from real ones. Deep Learning algorithms working
well in simulated environments may prove to be not so effective in the real world. This
behavior is due to the fact that they learn specific features from the simulated environ-
ments that do not exist in the real world, assuming for example unrealistic agent motion
not influenced by noise, perfect knowledge of its pose, or exploiting simulation behavior
that can’t happen in the real world. In Table 2.2 we have highlighted all the datasets (and
the corresponding environment types) and the simulators used in the examined papers.

Paper Dataset Environment type Simulator

[66] HouseExpo [79] and
generated

Indoor (floorplans) Simulation in Python

[46] KTH [40] Indoor (KTH floorplans) ROS stage [26]

[100] Environments proce-
durally generated

Tunnels Simulation in Python

[106] KTH [40] Indoor (floorplans) Stage [117]

[48] Gibson [10] and Mat-
terport3D [20]

Indoor Habitat simulator [4]

[74] HouseExpo [79] and
HOME [14]

Indoor (houses and Japanes
Homes)

Gazebo [9]

[92] Environments proce-
durally generated

Indoor/Outdoor (harsh sce-
narios)

ROS stage [26]

[90] Matterport3D [20] Indoor (house rooms) Habitat simulator [4]

[75] Google Cartographer Indoor (buildings) Gazebo [9]

[39] KTH [40] Most indoor, but no all Gazebo [9]

[97] Gibson [10] and Mat-
terport3D [20]

Indoor (houses/offices) Habitat simulator [4]

[110] Stachnis (link not ac-
cessible)

Indoor but generalizable for
tunnel, caves and mines

N.A.

2| State of the art 35

[52] Replica [28] and Mat-
terport3D [20] with
SoundSpaces audio

Indoor Habitat simulator [4]

[82] Ros stage environ-
ments

Indoor (map with walls
needed, office and schools
with more than 15 rooms)

ROS stage [26]

[124] HouseExpo [79] and
generated

Indoor (boundary known a
priori)

Simulation in Python

[55] SUNGC (not avail-
able)

Indoor (apartments) House3D [119] based on
SUNGC (not available)

[101] Doom environments Doom maze (videogame) Vizdoom [33]

[41] Environments proce-
durally generated

Dungeon N.A.

[60] Rooms randomly gen-
erated in gazebo

Indoor Gazebo [9]

[76] Environments proce-
durally generated

Outdoor (Mars environ-
ments)

Paper Open-AI gym com-
patible environment

[49] Gibson [10] and Mat-
terport3D [20]

Indoor Habitat simulator [4]

[50] Gibson [10] and Mat-
terport3D [20]

Indoor Habitat simulator [4]

[89] AI2THOR environ-
ments

AI2THOR environments
(only kitchen)

AI2THOR [1]

[122] Matterport3D [20] Indoor Habitat simulator [4]

[111] N.A. 2D grid maps N.A.

[96] Doom environments Doom maze (videogame)
with dynamics actors and
hazards

ViZDoom [33]

[78] Matterport3D [20] Indoor Habitat simulator [4]

[71] N.A. Offices and underground
tunnels

Gazebo [9]

[51] Gibson [10] Indoor Habitat simulator [4]
[123] Pedestrian Crowd

Table 2.2: Simulators, datasets and environment types used in every work analyzed in
this chapter.

36 2| State of the art

Most of the algorithms are tested in environments where no other agents are moving. A
notable difference is [96] that considers dynamic (hostile) actors; however the environ-
ments where the algorithm is trained are taken from Doom (the famous videogame). In
Doom levels the other agents have scripted moveset and their predictability don’t fully
represent situations that can happen in the real world.
The work of [110] considers a situation where multiple agents are exploring the environ-
ment. This element, of course, adds another cause of difficulty. However, in their work,
the robots can communicate with each other, a solution not always available in real world
situations.
Only in [123] the authors consider a real world situation where the agent has to move in
a pedestrian crowd (and avoid all the people moving).
Most of the papers focus on indoor environments like homes or offices without taking into
consideration what is the performance when deployed in outdoor environments (or vice
versa). Deep Learning algorithms that have learned how to explore caves or mine tunnels
may not be so good when deployed in an office. In emergency situations (like search and
rescue) environments become very different and unpredictable with respect to the ones
considered in the papers. Also this situation should be considered with more attention.
When we look at the simulators used in order to train and test the algorithms some
differences arise. Some of them, like Gazebo and Habitat simulator (better described in
Sections 4.1.4 and 4.1.2), allow simulation in rich 3D environments and also physics is
simulated. Other simulators like ROS Stage use 2D environments. Also in papers where
the simulator is specifically written in order to test the algorithm (like [111] or [53]) the
authors use 2D environments.
Different papers propose the use of procedurally generated environments. These environ-
ments are usually very simple with respect to the ones contained in Gibson, Matterport3D,
Replica, or AI2THOR datasets. These datasets, instead, try to reproduce real indoor
spaces (scanned in 3D and reconstructed) and AI2THOR also allows the interaction with
more than 2000 unique objects.

2.5.1. Noise in simulation environments

Inputs obtained by the agents in the simulation are very often noise free, a situation that

doesn’t exist in reality. The agents trained in noise free environments could suffer from

decreased performance when deployed in the real world.

The majority of the examined papers don’t take into account this behavior, but some of

them do.

In [55], [97] authors try to improve the simulation physical realism by using noise models

2| State of the art 37

on both actuation and odometry sensors in the Habitat simulator. Noise models are

collected by letting the agent move in the real world and building the motion and sensor

noise models. The two noise models are:

• Actuation noise: is measured as the difference between the real agent pose in the

world after an action and the corresponding intended pose.
• Sensor noise: is measured as the difference between the sensor pose estimate and

the real agent pose in the world.

The real robot used by the authors to collect the data is LoCoBot [19] and pyrobot API
[88] together with ROS [23] are used to obtain the readings associated to the control
commands fed to the robot itself. In their proposed algorithm the robot can be controlled
with three navigational actions: forward, turn right, and turn left. For each action the
authors fit two Gaussian mixture models: one for the actuation noise and one for the
sensor noise. In order to get an accurate agent pose the authors use Hokuyo UST-10LX
Scanning Laser Rangefinder (LiDAR). They use noise s for both training and evaluation.
A similar model is used also in [89].

Figure 2.21: Actuation noise in Habitat simulator [15].

In Figure 2.21, from [15], we can see the effect of actuation noise implemented in Habi-
tat simulator. The black line is the trajectory that represents the action sequence in an
environment with no noise and perfect actuation. The red lines represent the trajectories
obtained from the black line with actuation noise. The black line represents the behav-
ior followed by the robot acting deterministically (for example when the agent executes
turn right 15 and it turns exactly 15). No robot moves deterministically in a real world
environment and this behavior is represented by the red lines. The image represents 100
possible trajectories for the deterministic trajectory. The figure shows how the same ac-

38 2| State of the art

tions can lead to very different final locations when we consider noise.
In [73], the authors test what is the influence of noise in training on Habitat simulator.
The authors test the agent in point-goal driven exploration task in a simple real world
environment (a room with some boxes/obstacles). They have tested different algorithm
trained in Habitat environment with noise settings and they have discovered that the best
performance in the real world was obtained when no actuation noise was involved during
training. This behavior may suggest that the sampled noise doesn’t correctly reflect the
situations that we can have in a real room.

2.6. Algorithms tested on robots in real world

As already said, Deep Learning exploration algorithms can exploit imperfections to obtain
an exploration behavior that can’t really be replicated in the real world. In a simulator,
an agent may learn to move in ways that can’t be replicated in reality. For example, as
reported in [16], agents in Habitat simulator used to slide along obstacles when collid-
ing, leading to paths that can’t be followed in the real world. As reported in [73] the
sliding behavior can be found in other simulators, like Gibson, AI2THOR, MINOS [102],
Deepmind Lab [42], and in different video game engines. Because of these unintended
behaviors it is important to test exploration algorithms in the real world in order to fully
understand their capabilities. Only a few number of the algorithms presented in the an-
alyzed papers are also tested on a real robot (e.g., [48] and [49] on a Locobot, [110] and
[60] on a Pioneer P3-DX, [92] on Turtlebot 2, [71] on DJI Snail racing drone). In [73]
the authors have tested an algorithm trained in Habitat simulator in a real environment
for the point-goal driven exploration task. The authors have 3D-scanned a lab space to
create a virtualized replica and tested the algorithms in both the simulation environment
and the real world. The lab is a very simple environment when compared to the ones
used in Habitat simulator datasets but even in a simpler environment algorithm has lower
performance. They have also discovered that some algorithms performing better than
others in simulation environments, weren’t the best in the real world environment.

Figure 2.22: Reality on the left and simulation environment on the right (from [73]).

39

3| Problem definition

In this chapter, we describe the problem analyzed and discussed in the thesis work, i.e.,
what are the advantages and disadvantages of Deep Learning algorithms over methods
commonly used in the past to solve the exploration problem. In particular, Section 3.1
describes the exploration problem, while Section 3.2 describes the goal of this thesis.
Sections 3.3 and 3.4 describe what are the algorithms chosen to perform the comparison
between traditional and Deep Learning algorithms, while Section 3.5 describes the simu-
lator used. Finally, Section 3.6 illustrates how the comparison should be implemented.

3.1. Exploration problem

Autonomous exploration is an important task that a robot deployed in an unknown envi-
ronment must accomplish [47]. The robot with no previous information about the envi-
ronment has to choose where to move and consequently the best strategy to explore the
environment in order to build its map incrementally. Over the years different strategies
have been proposed and developed. Some algorithms proposed to solve the exploration
problem are described in Section 2.4.
In the last few years, Deep Learning techniques have become very popular in different
fields like speech recognition and image or video recognition. Researchers have therefore
decided to use Deep Learning and in particular Deep Reinforcement Learning to solve the
exploration problem, in contrast to methods commonly used in the past, that we consider
as classical. Different examples are reported in Section 2.4.
In the same section, we have described how the exploration steps can be divided in dif-
ferent modules in order to understand where Deep Learning or classical (like frontier
exploration) techniques can be used. The schematization is the one proposed in Figure
3.1.

40 3| Problem definition

Figure 3.1: Schematization of the exploration problem. On the top the case where ex-
ploration and navigation policies are considered separate modules. On the bottom the
case where exploration and navigation policies are considered a single module, learned
end-to-end.

From Figure 3.1 we can see the different modules where classical or Deep Learning tech-
niques can be used in the exploration framework: mapping, exploration policy, and
navigation policy.
Mapping is the module in charge of generating or updating the map. The map can be
simply updated with the information coming from the current observations or enhanced
with predictions. Exploration policy module is responsible for the selection of the next
point that must be reached during the exploration and navigation policy is the mod-
ule responsible for reaching that point. Exploration and navigation can also be solved
end-to-end with Deep Learning algorithms. As described in Section 2.3 there exist dif-
ferent exploration tasks that can be solved by the algorithms and the most common are
exploration for map building and point-goal driven exploration.

3.2. Purpose of the thesis

The purpose of this thesis is to experimentally compare classical exploration algorithms
(like frontier exploration) and Deep Learning algorithms in order to understand what are
the positive and negative sides of the different techniques.
The community of researchers that is dedicated to study classical exploration algorithms
and the one that devotes its time to Deep Learning exploration paradigm are in most of
the cases separate communities. Many researchers in the field of classical exploration rely
on these techniques because they have proven to be robust and with reliable performance

3| Problem definition 41

also when used by actual robots in the real world; however, this may prevent them to
benefit from innovations and better performance that may be offered by Machine Learn-
ing and in particular Deep Learning. Deep Learning researchers, on the other hand, in
most of the cases compare algorithms only with other learning-based approaches, without
taking into account classical exploration algorithms and the challenge of deploying the
agents in the real world.
The classical methods that can be used in navigation module (A* and Dijkstra) already
offer the optimal solution and because of this fact we have to understand if Deep Learning
algorithms are worth using in this module. The classical methods used in mapping or
exploration module can have advantages or disadvantages depending on the implemen-
tations and because of this we have to understand if Deep Learning techniques can offer
better results.
The first step in order to compare these paradigms is to find algorithms that implement
Deep Learning techniques for the different modules described in Figure 3.1.
The next step after having identified the algorithms to compare is to select the right
simulation environment. As simulators use very different environments when compared
to the real world, Deep Learning algorithms may learn how to exploit fictional features to
solve their tasks, features that may be unique to the simulation but that don’t really exist
in a real-world deployment. One example of this behavior is reported in [17]. Here the
author reported an experiment done at the University of Washington to create a classifier
capable of distinguishing between images of wolves from huskies. The system managed
to obtain 90% accuracy, but with later experiments, they discovered that the model was
basing its decisions on the background. Wolf images usually had snow in the background,
while husky images usually did not. The researchers have so created a snow detector,
rather than a husky/wolf classifier.
Classical and Deep Learning algorithms must be tested in the same environments on
common metrics in order to understand what are the differences in terms of performance,
reliability, and generalization.
Deep Reinforcement Learning algorithms tested in very simple environments (small or
few rooms with few objects in them) must also be tested in more complex environments.
This test is useful to understand the solidity of the reward function and its ability to gen-
eralize. In fact, as described in Section 2.4.1, writing a reward function can be a difficult
task and a reward function perfectly working in an environment may be not good in an
environment with different characteristics.
Deep Learning algorithms that try to solve more than one of the different exploration
tasks must be compared in all of them, in order to understand what are the strengths and
limitations of the specific techniques in the different tasks.

42 3| Problem definition

3.3. Classical exploration algorithm

In order to compare Deep Learning algorithms on exploration for map building task with
a classical exploration algorithm, we have selected as an example of a classical method the
greedy frontier exploration of [8]. In greedy frontier exploration, as described in Section
2.4.3, the agent chooses as the next exploration goal the point, from the frontier list,
closest to the actual position. More technical information is reported in Sections 4.1.1
and 4.2.2.
The classical algorithm used for comparison in this thesis is simple, but other more com-
plex and efficient algorithms exist in the literature [37].
Figure 3.2 represents the classical structure selected to be compared with Deep Learning
algorithms. The comparison on point-goal driven exploration task is done with a similar
structure, but only with mapping and navigation module.

Figure 3.2: High-level schema of how the different modules of the exploration framework
are implemented in classical frontier exploration algorithm.

Gmapping, explore_lite, and move_base are packages (modules that provide functionali-

ties in an easy-to-consume manner [25]) provided by ROS, an open-source, meta-operating

system for robots (better described in 4.1.1).

• Input: laser readings and odometry readings.
• Modules output: mapping module outputs a grid-based map; exploration module

outputs the frontier point to be reached; navigation module outputs the stream of

velocity commands the robot has to execute to reach the selected point.
• Exploration tasks: exploration for map building and point-goal driven exploration

(only Gmapping SLAM and move_base module).
• Mapping module: the map is updated using SLAM procedure with Gmapping

[12].
• Exploration policy module: greedy frontier exploration with explore lite [8].
• Navigation policy module: move_base [21] with Dijkstra for path selection.

3| Problem definition 43

3.4. Deep Learning algorithms - ANS, OccAnt, and

DRL

In the list of algorithms proposed by authors of the papers analyzed in Chapter 2, only

few present a public available code implementation. Among them, we have selected

three algorithms that show different ways of implementing the three fundamental modules

identified.

• ANS from D.S. Chaplot et al. [48].
• OccAnt from S.K. Ramakrishnan et al. [97].
• DRL from R. Cimurs et al. [60].

In the next sections, we provide a detailed description of these three methods.
ANS, OccAnt, and DRL present three different ways of implementing the mapping mod-
ule. Whether both OccAnt and ANS use Deep Learning, DRL doesn’t implement this
technique in the module. In ANS the mapping module is trained to generate an estimate
of only the visible occupancy that can be obtained from agent’s egocentric view. In Oc-
cAnt the authors train the network to anticipate the area not directly visible because of
occlusion (for example the area that can be around a corner or behind a wall or table).
Exploration policies in both ANS and OccAnt are trained with Reinforcement Learning,
but they reward different aspects of the exploration. DRL doesn’t use Deep Learning
in the exploration policy module, but a geometrical method to select and evaluate POIs
(Points of Interest), similarly to frontier exploration algorithm.
Navigation policy in all the three papers is trained with Deep Learning (but with multiple
techniques).
ANS and OccAnt are developed in order to solve both exploration and point-goal driven
exploration tasks, while DRL only solves point-goal driven exploration task.
Other works from the literature, like the one of [55], with end-to-end implementation, are
not immediately replicable due to the fact that they do not provide source code, trained
model, nor dataset to replicate their results.

44 3| Problem definition

3.4.1. Learning to explore using active neural SLAM - ANS

Figure 3.3: High-level schema of how the different modules of the exploration framework
are implemented in ANS algorithm from [48].

• Input: sensor pose readings and observations (RGB images).
• Modules output: mapping module outputs a grid-based map and agent’s pose

estimate; exploration module outputs the short-term goal to be reached; navigation

module outputs the action the robot has to execute to reach the selected point.
• Exploration tasks: exploration for map building and point-goal driven explo-

ration.
• Mapping module: Neural SLAM module. This module takes as input the current

RGB observation, the current and last sensor reading of the agent pose, the last map

estimates, and the last agent pose. It outputs the updated map and the current

agent pose estimate. Two learned submodules are used: the map module (that

outputs the obstacles and explored area for the current observation) and the pose

estimate module (that outputs the estimate agent pose taking as input the past

pose estimate and last two map updates).
• Exploration policy module: the module used to solve exploration for map build-

ing task is made of two submodules: global policy and fplan. Global policy module

takes as input the map, the pose estimated by the Neural SLAM module, and the

visited locations and uses a CNN to output the long-term goal. The policy is trained

using Reinforcement Learning (PPO) and rewards increasing area coverage. Fplan

is a planner and takes as input the long-term goal, the obstacle map and the agent

pose to output the short-term goal using the Fast Marching method.

For the point-goal driven exploration task the module is the same, but global policy

always outputs the point-goal coordinates and no additional training is needed.

3| Problem definition 45

• Navigation policy module: it is a Recurrent Neural Network (RNN) that uses

pretrained ResNet18 as encoder. It takes as input the observations (RGB images)

and the short-term goal produced by the exploration policy module. The policy

is trained using Imitation Learning (Behavioral Cloning) to output a navigational

action.

3.4.2. Occupancy anticipation for efficient exploration and nav-
igation - OccAnt

Figure 3.4: High-level schema of how the different modules of the exploration framework
are implemented in OccAnt algorithm from [97].

• Input: RGB images, depth images, and sensor pose reading.
• Modules output: mapping module outputs a grid-based map and agent’s pose

estimate; exploration module outputs the short-term goal to be reached; navigation

module outputs the action the robot has to execute to reach the selected point.
• Exploration tasks: exploration for map building and point-goal driven explo-

ration.
• Mapping module: it is a U-net network that takes as input RGB and depth image

and outputs the anticipated occupancy for the region in front of the agent.
• Exploration policy module: the module used to solve exploration for map build-

ing task is the same network as that of Section 3.4.1 trained with Reinforcement

Learning (PPO) with a small difference; while ANS rewards increase in area cover-

age, in OccAnt the reward function rewards actions that allow to predict correctly

the map, irrespective of the fact that the robot has actually observed that predicted

location or not.

46 3| Problem definition

• Navigation policy module: an RNN trained with Imitation Learning, as in Sec-

tion 3.4.1.

3.4.3. Goal-driven autonomous exploration through Deep Rein-

forcement Learning - DRL

Figure 3.5: High-level schema of how the different modules of the exploration framework
are implemented in DRL algorithm from [60].

• Input: laser readings and odometry readings.
• Output: mapping module outputs a grid-based map; exploration module outputs

the point in space to reach; navigation module outputs the action the robot has to

execute to reach the selected point.
• Exploration tasks: point-goal driven exploration.
• Mapping module: the map is updated using traditional SLAM procedure (in the

simulator, ROS package SLAM Toolbox is used [83]).
• Exploration policy module: the algorithm at each step selects a list of POIs

(Points of Interest). POIs are extracted with two methods:

– POI is added if a value difference between two sequential laser readings is larger

than a threshold,

– POI is placed in the environment if sequential laser readings return a non-

numerical value (reading out of range, represented as free-space).

The optimal POI is selected with an evaluation method developed by the authors of

the algorithm, Information-Based Distance Exploration (IDLE). In IDLE authors

evaluate a fitness function that considers the Euclidean distance between the agent

and the POI, the Euclidean distance between the POI and the global goal, and a

3| Problem definition 47

map information score (that calculates the information around POI coordinates).

The POI with the smallest IDLE is selected as the optimal waypoint provided as

input to the navigation policy.
• Navigation policy module: is an actor-critic network trained with Twin Delayed

Deep Deterministic Policy Gradient (TD3) [63] that takes as input the waypoint

goal selected in the exploration policy and the description of the local environment

(bagged laser readings in 180 degrees range in front of the robot). The network

outputs a navigational action.

3.5. Simulation environment for comparison

In order to obtain a good comparison of the different algorithms mentioned so far it is
important to choose a good simulation environment [38].
DRL is originally trained in the Gazebo simulator. Both DRL and frontier exploration
are developed using ROS.
OccAnt and ANS are trained and tested in the Habitat simulator (more technical info
about this simulator are reported in Section 4.1.4), with two different datasets that can
be used: Gibson and Matterport3D.

Figure 3.6: On the left an example of robot in the Gazebo simulator, on the right an
example of robot in Habitat simulator with an environment from the Gibson dataset.

OccAnt and ANS code implementation are strongly dependent on the tools provided by
the Habitat simulator and because of this cannot be tested on other simulation environ-
ments. As a consequence, we rely on the Habitat simulator as the main simulator used in
the comparison.
DRL and frontier exploration can be used in the Habitat simulator using ROS-X-Habitat,

48 3| Problem definition

a software interface able to bridge the Habitat simulator with other robotics resources
which use ROS (more information about this implementation is reported in Sections 4.1.4
and 4.2.2). Habitat is a physics-enabled 3D simulator specifically developed to allow fast
simulation for Deep Learning algorithms that need a lot of training. Thus, Habitat is
a good simulator choice because it allows algorithms to be tested with different photo-
realistic datasets. All the photorealistic environments used during the comparison are
assumed to be static, meaning that in the environments no any other agent is moving
and the environment itself doesn’t change during the exploration. The environments used
are taken from the Gibson dataset, a reproduction of real indoor spaces made with 3D
scanning and reconstructions. Frontier exploration, for a reason that emerged during the
execution of the comparison, is also tested in the Stage simulator in a 2D environment.
This has been requested because frontier exploration in the Habitat simulator with ROS-
X-Habitat suffers from problems related to incorrect laser readings, because of holes in
Gibson dataset textures. OccAnt and ANS don’t suffer from this problem because they
don’t use the laser sensor, but only RGB and depth sensors. In addition, the agent gets
stuck in invisible textures in all the exploration episodes. Using 2D maps of the same
Gibson environments a more qualitative analysis can be obtained because no holes and
invisible textures are present.

3.6. Key elements of the comparison

Different elements of the selected algorithms must be taken into consideration in order to
obtain a fair comparison of the different exploration tasks.
OccAnt and ANS algorithms present a very similar structure. One of the most significative
differences is about how the mapping module is implemented. While in ANS the mapping
module simply integrates current agent observation in the map, OccAnt algorithm intro-
duces an occupancy anticipation model used to predict occupancy in not visible areas.
Because each one of these two algorithms is designed to solve both exploration and point-
goal driven exploration tasks, it is important to understand if the occupancy anticipation
model introduced by OccAnt is useful in both the tasks or in either of the two.
OccAnt, ANS, and frontier exploration can be compared on the exploration for map build-
ing task, in order to understand what are the downsides and upsides aspects of the Deep
Learning and classical implementations.
In order to test the strength of the reward function written by the authors of DRL [60]
and its ability to generalize, it can be useful to test the algorithm trained in Gazebo
(DRL) also in Habitat more complex environments.
OccAnt, ANS, and DRL can be compared also with a classical algorithm on point-goal

3| Problem definition 49

driven exploration task.
In all the cases analyzed so far, the comparison on exploration for map building task must
be done with the same starting points and the comparison on point-goal driven explo-
ration task with the same starting points and goal points. Exploration and point-goal
driven exploration are tested with specific metrics which depend on the particular task
that must be solved and that will be discussed in Chapter 5.

51

4| Implementation

In this chapter, we are going to describe the main software used during the implementa-
tion of the thesis work.
In Section 4.1, we describe the most important software components used in this thesis.
In Section 4.2, we describe how these software components are used in the different algo-
rithms analyzed in this thesis.

4.1. Software components

In this section, we describe all the main pieces of software used in the thesis work.
This software is:

• Robot Operating System (ROS): an open-source, meta-operating system for
robots [23].

• Gazebo: a simulator widely used in the robotic field, adopted together with ROS
[9].

• Stage: a 2(.5)D robotics standalone simulator, usually adopted together with ROS
[117].

• AI Habitat: a simulation platform developed to speed up research in the embodied
AI field [84]. It works by enabling the training of embodied AI agents (intelligent
agents with a physical body used to interact with the environment) in a photore-
alistic and efficient 3D simulator, in order to transfer the learned skills to the real
world [115] [2].

• ROS-X-Habitat: a software interface that bridges the AI Habitat platform with
other robotic resources implemented under ROS [54].

• Utilities for Gibson environment: a Python library [11] that offers a series of
utilities for the Gibson environments described in Section 3.5.

52 4| Implementation

4.1.1. Robot Operating System (ROS)

ROS is an open-source, meta-operating system for robots [23]. It provides the services
we would expect from an operating system, including hardware abstraction, low-level de-
vice control, implementation of commonly-used functionality, message-passing between
processes, and package management. It also provides tools and libraries for obtaining,
building, writing, and running code across multiple computers. ROS helps in building
robot components, like actuators, sensors, and control systems, and connects them using
ROS tools.

Terminology
The most important elements of ROS are: nodes, messages, topics, services, and ROS
packages.
A node is a process that performs computation [24] and it is used to divide the computa-
tion into a set of single elements. For example, one node can control the laser, another the
robot’s wheel motors, and so on. Nodes can communicate with other nodes with messages
over the ROS network. Every node is a separated entity and it can be stored on one or
more computers.
The messages are defined by their data format and types.
The communication network follows a classical publish/subscribe pattern. If a node wants
to send a message (for example, the velocity values) it has to publish the message to a
specific topic (in this case, in the topic called /cmd_vel). If a node wants to receive data
from another node it has to subscribe to the specific topic published by the other node. A
service is a synchronous remote procedure call (like the client/server mechanism): using
a service a node can call a function on another node.
ROS master is a particular node that provides registration and naming services for the
rest of the nodes in the network. It is responsible for tracking the publishers and the
subscribers of all the topics in the network.
ROS organizes the software in packages, called rospackages, described by an XML file. A
package might be made of nodes, libraries, datasets, third-party software, or other ele-
ments.
ROS also provides different helpful tools, for example, rqt_graph, a tool used to display
a visual graph of all the processes (nodes, messages, . . .) running in ROS and their con-
nections. Another helpful tool is RVIZ plugin, which allows 3D visualization in ROS. It
is used in [60] to display the map while training and evaluating the algorithm [27].

4| Implementation 53

4.1.2. Gazebo

Gazebo is an open-source 3D robotics simulator. It allows to test algorithms, design
robots, and train AI algorithms using different scenarios. Gazebo is highly supported by
the community and it provides standard compatibility with ROS.
Gazebo allows programmers to create 3D simulated settings with robots, obstacles, and
different kinds of objects. Gazebo comes also with a physical engine able to simulate
gravity and inertia.

4.1.3. Stage

Stage is a 2(.5)D robotics standalone simulator that supports virtual worlds populated by
different numbers of robots and sensors. Robots operate in a 2(.5)D bitmapped environ-
ment. Stage was originally designed to support both single-agent and multi-agent systems.
Because of this is not intended to provide high-fidelity robot simulations,but good-enough
fidelity, meaning that Stage is realistic enough to enable users to move robots developed
in Stage simulator to the real world. Every robot can be equipped with different sensor
and actuators models.

4.1.4. AI Habitat

AI Habitat is a simulation platform developed to speed up research in the Embodied AI
field.

Figure 4.1: The frame-per-second in simulations for Habitat ([5]) when compared to other
popular simulators.

The main goal of Habitat, as shown in Figure 4.1, is provide fast simulations with a higher

54 4| Implementation

framerate. This capability to perform high framerate simulations is an enabling factor for
many experiments that involve several training epochs/run and that thus were not very
practical to carry out before.

Figure 4.2: High-level schema of Habitat platform, from [84].

As shown in Figure 4.2, AI Habitat aims to standardize the embodied AI software stack.
The embodied AI software stack used to train embodied agents is usually made of datasets
(which provide 3D models), simulators that implement different capabilities, and the tasks
that the agent has to accomplish.
Habitat proposes a standardization of this software stack based on a general flexible design
capable of allowing people to load any datasets, to have a highly efficient implementation
of different capabilities with a performant simulator (Habitat-Sim) and to define a variety
of tasks with flexible APIs (Habitat-Lab). Habitat consists of two different modules:

• Habitat-Sim [4]: the physics-enabled 3D simulator itself. It supports:

– 3D scans of indoor/outdoor spaces
– Models of spaces and piecewise-rigid objects
– Configurable sensors (RGBD cameras, egomotion sensing)
– Robots described via Unified Robot Description Format (URDF)
– Rigid-body mechanics

• Habitat-Lab [3]: a modular high-level library for end-to-end development. It al-
lows to define the tasks, train the agents (with Reinforcement Learning, Imitation
Learning, or no learning at all), configure the agents, and benchmark the perfor-
mance on the defined tasks with standard metrics. It uses Habit-Sim as the basic
simulator, but in principle, it can be used with any other simulator.

The photorealistic datasets most used with the Habitat simulator are: HM3D [13], Mat-
terport3D [20], Gibson [10], and Replica [28].

4| Implementation 55

Terminology

Figure 4.3: Habitat terminology, from [5].

The agent can take actions in a particular environment, and it receives from that envi-
ronment some observations. From the observations, it can learn the current state of the
environment and its state within that environment. The agent is associated with the con-
cepts of embodiment, sensors, and action spaces. The environment is instead associated
with the concepts of 3D assets, tasks, goal definition, and simulation parameters.

4.1.5. ROS-X-Habitat

ROS-X-Habitat is a software interface that is capable of bridging the AI Habitat platform
with other robotics resources developed in ROS. Using this interface, people can train the
Habitat Reinforcement Learning agent in other simulation environments to gain better
generalization. It also allows using classical agents implemented with ROS packages in
the Habitat simulator, as can be seen from the overview of the software interface reported
in Figure 4.4. The reason why the authors proposed this framework is to overcome ROS
and Gazebo (the standard simulation environment for ROS) limitations. ROS is one of
the most popular tools in the robotics community, but its ability to directly support a
Reinforcement Learning agent is limited. Gazebo simulator doesn’t match the simulation
speed of software specifically designed to support Reinforcement Learning training. ROS-
X-Habitat, using an agent implemented with ROS packages, can also decrease the time
required to move the agent to the real world (because of ROS support to real robots).

56 4| Implementation

Figure 4.4: Overview of ROS-X-Habitat, from [29].

4.1.6. Utilities for Gibson Environments

This is a Python library that offers a series of utilities for Gibson environments described
in Section 3.5. We have used this library to generate 2D floor maps (and their metadata)
starting from Gibson *.obj datataset 3D files. The map’s metadata created by this utility
includes the origin’s coordinate in pixel and the scale which indicates the real distance
covered by a pixel. The produced 2D maps are used in Stage simulator.

4| Implementation 57

4.2. Software implementation and changes

In this section, we explain how the software components presented in Section 4.1 are used
in the different exploration algorithms considered.

4.2.1. DRL

DRL algorithm, from [60], is implemented by [7]. The authors simulate the robot in

the Gazebo simulator, and the system is based on ROS. The proposed implementation

doesn’t directly consider any metrics related to the point-goal driven exploration task

(like the number of successes during the episodes, the number of steps, or the distance

to the goal at the end of the episode) and the metrics considered (average reward and

average collision) are not directly produced as output. Because of this, we have added

them to the code:

• Average reward and average collision over a number of episodes for every epoch
• Number of successes
• Total distance to goal in the comparison episodes
• Total number of steps in the comparison episodes

In order to test this algorithm in the Habitat simulator, we have adapted the code with
the help of the utilities provided by ROS_X_Habitat. The architecture used is the one
proposed in Figure 4.5.

Figure 4.5: Schema of DRL implementation with ROS-X-Habitat [29].

With this architecture, the robot controlled by the DRL node is able to explore the

58 4| Implementation

Habitat environment publishing ROS-based velocity command messages. The RGB and
depth sensors readings are published as rgb and depth messages. Depth readings are
converted to laser scan readings by using an ad hoc node before being processed by the
planner. RGB readings are used only for representation purposes. An important note
is about the fact that the Habitat simulator doesn’t provide the implementation of the
velodyne laser of Gazebo as used in [7]. The DRL developers provided the possibility to
select different reward functions: some based on the value read by the velodyne laser and
some not. Because of this possibility we have selected a reward function that is not based
on the velodyne laser from Gazebo. The original code changes the goal position and the
start position randomly at every iteration. Because the goal is to compare the algorithm
with ANS and OccAnt with the same goal and start positions, we have modified the code
in order to load these positions from the same json file as the Habitat algorithms. Distance
to the goal in the original code is calculated in a Euclidean way, but we have added also
the possibility to calculate the obstacle-free distance, using the related function provided
by the Habitat simulator.

4.2.2. Frontier exploration in ROS-X-Habitat

Frontier exploration for ROS is implemented with three packages:

• Gmapping: this package is used to provide laser-based SLAM [12]. Gmapping
package creates a 2D occupancy grid map of the environment using laser readings
and localizes the robot in the constructed map.

• move_base: The move_base package provides an implementation of an action
that, given a goal in the world, will attempt to reach it with a mobile base. The
move_base node links together a global and a local planner to accomplish its global
navigation task [21].

– Global planner: it keeps a global map of the environment and tries to create a
path to the goal from the current agent position.

– Local planner: it keeps a local map of the environment currently surrounding
the agent. This planner uses the local map and the path provided by the
global planner in order to output the movement commands needed to execute
the path.

• explore_lite: this package provides greedy frontier-based exploration. It takes as
input the map produced by Gmapping and it uses move_base to reach the frontier
selected at each step.

4| Implementation 59

In order to implement the ROS frontier exploration algorithm in Habitat simulator we
have used ROS_X_Habitat with the architecture represented in Figure 4.6.

Figure 4.6: Schema of frontier exploration implementation with ROS-X-Habitat [29].

The node in charge of doing SLAM, Gmapping, receives as input the laser readings (from
depthimage_to_laserscan node) and updates the map of the environment. The updated
map is used by explore_lite node to perform frontier exploration and select the next fron-
tier to visit, provided to move_base. In turn, move_base uses Dijkstra algorithm to plan
the path to the next frontier and, using Trajectory Rollout algorithm [31], it publishes
the velocities that are received by the Habitat Environment node.
The explore_lite node stops exploration when no more unexplored frontiers are present.

Frontier exploration in Stage simulator
Because of the problems related to incorrect laser readings and invisible textures with
frontier exploration in the Habitat simulator highlighted in Section 3.5 we have also tested
this algorithm in a 2D environment using Stage simulator. Maps are 2D *.png obtained
from the Gibson dataset *.obj files through Utilities for Gibson Environment (Section
4.1.6). Frontier exploration, as in the 3D case, is obtained with the use of Gmapping,
explore_lite, and move_base packages.

4.2.3. ANS and OccAnt

ANS and OccAnt are tested with the original code provided by authors in [22]. The
simulation directly runs in the Habitat simulator. For both OccAnt and ANS we have
used the pretrained models loaded on [22].

61

5| Experimental results

In this chapter, we describe the experiments performed to compare the different algorithms
(OccAnt, ANS, DRL, and frontier exploration) on exploration for map building and point-
goal driven exploration tasks.
In Section 5.1, we describe all the elements used to compare the algorithms, specifying
the ones used for exploration for map building and the ones used for point-goal driven
exploration.
In Section 5.2, we describe the procedure used to compare the different aspects of the
proposed algorithms.
In Section 5.3, we describe all the tests done and the results of the comparison between
the algorithms in exploration for map building task.
In Section 5.4, we describe all the tests done and the results of the comparison between
the algorithms in point-goal driven exploration task.

5.1. Comparing different methods

In this section, we describe the datasets, environments, and metrics used in order to
compare the different exploration algorithms. The metrics in exploration for map building
and point-goal driven exploration evaluate different elements.

5.1.1. Gibson dataset environments

Both exploration for map building and point-goal driven exploration experiments are per-
formed on the Gibson dataset [10] in Habitat simulator. Gisbon dataset is a reproduction
of real indoor spaces (made with 3D scanning and reconstructions).
In the comparison tests, we have considered 14 environments from the dataset, presented
in Table 5.1. All the environments selected, that are shown in Figure 5.1 and Figure 5.2
are not used during the training of OccAnt and ANS. In the figures are also represented
examples of paths followed during point-goal driven exploration episodes: in green the
starting position and in red the positions crossed to reach the goal.

62 5| Experimental results

area area area area

Pablo 37.789 Sisters 94.529 Elmira 42.795 Eudora 37.079

Cantwel 107.582 Ribera 50.645 Denmark 40.796 Swormville 66.793

Scioto 512.963 Greigsville 43.603 Sands 153.132 Eastville 121.44

Edgemere 23.62 Mosquito 419.697

Table 5.1: Area (m2) of Gibson environments used in comparison.

We divided the environments in three groups by considering their area.

• Small area: 0 m2 <= area < 70 m2

Edgemere, Eudora, Pablo, Denmark, Elmira, Greigsville, Ribera, Swormville
• Medium area: 70 m2 <= area < 140 m2

Sisters, Cantwell, Eastville
• Big area: area >= 140 m2

Sands, Mosquito, Scioto

Figure 5.1: Gibson dataset environments - part 1.

5| Experimental results 63

Figure 5.2: Gibson dataset environments - part 2.

64 5| Experimental results

5.1.2. DRL environment

The DRL algorithm is trained on smaller environments in the Gazebo simulator with a
small number of furniture elements and only one room and consequently no corridors.
All the DRL environments have the same size and at every algorithm interaction, some
random boxes are placed in the room. Textures are not photorealistic and pretty uniform
and all the elements in the room are taller than the exploring robot. A Deep Learning
agent trained in this simple environment may not perform well when tested in more
complex and realistic environments. In this kind of environment, represented in Figure
5.3, the robot has to avoid only few obstacles in order to reach the point-goal.

Figure 5.3: Example of DRL environment.

5.1.3. Metrics

In this section, we describe the metrics used in order to compare the algorithms in the two
exploration tasks taken into consideration: exploration for map building and point-goal
driven exploration. Some metrics are directly provided with algorithms implementation,
others have been added by us.

5.1.3.1. Exploration for map building metrics

• map_accuracy (m2): the area of the global map built during exploration that
matches the ground-truth provided. Directly provided by OccAnt and ANS.

• area_seen (m2): the total area seen during exploration. Directly provided by
OccAnt and ANS.

5| Experimental results 65

• free_space_seen (m2): the total free space seen during exploration. Directly
provided by OccAnt and ANS, added in frontier exploration.

• occupied_space_seen (m2): the total occupied space seen during exploration.
Directly provided by OccAnt and ANS.

• area_seen_over_time (m2/s): the ratio between area_seen and episode time.
Directly provided by OccAnt and ANS.

• AC/AS: the ratio between map_accuracy and area_seen. The more the value is
close to one, the more the area is mapped accurately. Added in thesis comparison.

• path_length (m): the total length of the path followed during the exploration
episode. We have calculated the path_length as the sum of the Euclidean distances
between each step. This metric allows us to understand how much the agent has
to explore the environment in order to be able to correctly map it. Added in thesis
comparison.

5.1.3.2. Point-goal driven exploration metrics

• success_rate: the ratio between the total number of successes (robot distance to
goal is lower than 0.3 m) and the number of comparison episodes. Directly provided
by OccAnt and ANS, added in DRL.

• SPL: the ratio between the minimum obstacle-free path distance to the goal and
the maximum value between the minimum obstacle-free path distance to the goal
and the current distance travelled by the robot during the episode. This value is
multiplied by 1 if the episode is successful, otherwise by 0. The closest the value is
to 1, the closest the actual path to goal is to the optimal path.
Directly provided by OccAnt and ANS, added in DRL.

SPL = success * (start_end_episode_distance /

max(start_end_episode_distance,agent_episode_distance))

• SoftSPL: is calculated similarly to SPL, but instead of multiplying to 0 or 1, it
multiplies to the max values between 0 and 1 - the ratio between distance to target
and the minimum obstacle-free path distance to target. In this way it is not 0 if the
episode is not successful, but it is a measure of how much the robot is following the
right path to the object. If the episode is successful the value is very close to SPL.

66 5| Experimental results

ep_soft_succ = max(0, 1 - distance_to_goal /

start_end_episode_distance)

SoftSPL = ep_soft_succ * (

start_end_episode_distance /

max(start_end_episode_distance, agent_episode_distance)

)

Directly provided by OccAnt and ANS, added in DRL.

• dist_to_goal: the distance to the goal (in m) at the end of the episode. The
lower the value, the closest every episode ends to the goal. Directly provided by
OccAnt and ANS, added in DRL.

• num_steps: the total number of steps taken during the episode. Directly provided
by OccAnt and ANS, added in DRL.

• avg_reward: the average of the rewards obtained during the episode. Big values
mean a high ability to reach the goal. Only provided in DRL.

• avg_col: the average of the collisions value obtained during the episode. Small
values mean a high ability to avoid obstacles. Only provided in DRL.

• path_length: the total length of the path (in m) followed during the episode.

SPL and SoftSPL are computed using the obstacle-free path distance, but the original
DRL code uses the Euclidean distance. As described in Chapter 4, we have added also
the possibility to use the obstacle-free path distance in the code. Because the original
implementation of the code doesn’t use the obstacle-free path distance we have done
experiments with both the Euclidean and the obstacle-free path distance.
SPL and SoftSPL as metrics are used only in episodes with obstacle-free path distance.

5| Experimental results 67

5.2. Comparison procedure

In this section, we describe how the different algorithms have been compared.

DRL [60] ANS [48] OccAnt [97] Classical [8]

DRL environment V X X X

Gibson environment V V V V

Exploration for map building task X V V V

map_accuracy X V V X

area_seen X V V X

free_space_seen X V V V

occupied_space_seen X V V X

area_seen_over_time X V V X

AC/AS X V V X

path_length X V V V

Point-goal driven exploration task V V V V

success_rate V V V V

SPL V V V X

SoftSPL V V V X

dist_to_goal V V V X

num_steps V V V X

avg_reward V X X X

avg_col V X X X

path_length X X X V

Table 5.2: Summary of the environments, tasks and metrics taken into consideration in
order to test the different algorithms.

Table 5.2 shows the different environments where the algorithms are tested, the different
tasks they try to accomplish, and the metrics used in order to compare them.
Because of the high GPU power required to train ANS and OccAnt we were not able to
train the models, but we have used the pretrained models loaded on [22]. ANS and OccAnt
are indeed trained with DD-PPO [118] method for distributed Reinforcement Learning in
resource-intensive simulated environments with 8 GPUs and 16/32GB memory per GPU
[6].
ANS or OccAnt can use RGB or depth as input and so the tested versions are:

• ANS (depth): ANS with depth input.

• ANS (rgb): ANS with RGB input.

68 5| Experimental results

• OccAnt (depth): OccAnt with depth input.

• OccAnt (rgb): OccAnt with RGB input.

• OccAnt (rgbd): OccAnt with RGB and depth input.

OccAnt and ANS are compared also in noise free and noisy simulations.
The pretrained ANS models loaded on [22] don’t consider rgbd as input, but only rgb and
depth inputs.
DRL, as also shown in Section 4.2.1, only uses depth inputs from the laser readings. RGB
images are provided only as user visual support by ROS-X-Habitat simulator environ-
ment.
Frontier exploration only uses depth inputs.

Comparison platform
The computer on which we have tested the algorithm is equipped with an Nvidia GeForce
GTX 970 GPU with 4GB of dedicated graphics memory. This of course influences the
results, in particular the parts concerning time_per_episode metric. Despite the GPU
is not one of the fastest on the market, the results are still useful because they provide
a comparison of the execution time of the different algorithms on the same platform
(provided in Section 5.3).

Examples of maps
In Figure 5.4 we show the kind of maps produced by OccAnt and ANS (on the top) and
frontier exploration (on the bottom):

Figure 5.4: Example of map produced by OccAnt and ANS (on the top), example of map
produced by frontier exploration (on the bottom).

5| Experimental results 69

5.3. Exploration for map building results

In this section, we present the results of the comparison done on exploration for map
building task.
In Section 5.3.1 and Section 5.3.2, we compare the results between OccAnt and ANS in
3D environments.
In Section 5.3.3, we compare results obtained by OccAnt, ANS, and frontier exploration
using both 2D and 3D environments. In Section 5.3.4, we show a comparison of OccAnt,
ANS, and frontier exploration on the decision-making times.

5.3.1. OccAnt vs. ANS exploration for map building results -
Noise free

The results here are obtained in the Habitat simulator in a setting where noise is not taken
into consideration. In this comparison, we have used the pretrained models loaded on [22].
The weights of the pretrained models are obtained from the algorithms trained in noise
free environments. We have decided to compare OccAnt and ANS alone before comparing
them to frontier exploration because they run directly in the Habitat simulator. Every
exploration episode that runs directly in the Habitat simulator is very fast and so we have
been able to test these two algorithms on a bigger number of episodes and environments.
In every one of the 14 maps from the Gibson dataset described in Section 5.1.1 we have
run 71 episodes (each one from a different starting location). The 71 episodes are directly
provided by the Gibson dataset for testing. The maximum number of steps (actions taken
by the agent) is 500 and after that exploration is stopped.
OccAnt (depth) and OccAnt (rgbd) with the pretrained models loaded on [22] perform
very poorly when compared to OccAnt (rgb) and don’t produce as output map_accuracy
metric, highlighting some problems in the pretrained models. As already said, due to the
high computational power required, we can’t retrain these two algorithm implementations
on our platform and so we have not considered them in this section (while they have been
considered in point-goal driven exploration task in Section 5.4.1).
Compared to the metrics originally considered in ANS and OccAnt we have also added
area_seen_over_time metric because considering only the area_seen metric in the episode
may not lead to a fair comparison. An agent, for example, could explore more areas, but
in a long time and so area_seen metric alone doesn’t provide a piece of very useful infor-
mation.

70 5| Experimental results

ANS (depth) ANS (rgb) OccAnt (rgb)

map_accuracy 47.451 (17.449) 43.478 (15.324) 48.725 (18.142)

area_seen 55.609 (19.849) 53.841 (18.872) 56.913 (21.031)

free_space_seen 29.801 (11.002) 29.059 (10.743) 30.991 (12.010)

occupied_space_seen 25.808 (9.437) 24.782 (8.794) 25.922 (9.415)

time_per_episode 0.865 (0.002) 0.908 (0.002) 0.984 (0.004)
area_seen_over_time 64.288 (22.242) 59.296 (20.382) 57.838 (20.072)

AC/AS 0.853 (0.045) 0.808 (0.048) 0.856 (0.042)

Table 5.3: Results of exploration for map building done in all the environments with
OccAnt and ANS in noise free simulation.

Table 5.3 presents the results of the complete comparison of 994 episodes on the 14
environments. In parentheses, we report also the standard deviation. Results breakdown
on small, medium, and big environments are shown in Appendix A.1.
OccAnt (rgb) proved to be the best choice for different metrics (map_accuracy, area_seen,
free_space_seen, and occupied_space_seen), except in small environments, where it
results to be really similar to ANS (depth).
As already highlighted, time_per_episode metric strongly depends on the GPU power
available to run the simulation episodes. Despite this limitation, the time_per_episode is
a useful metric, as it shows us how OccAnt (rgb) obtains better map_accuracy, area_seen,
free_space_seen, and occupied_space_seen at the expense of a longer exploration time
with respect to ANS (depth).
Despite OccAnt (rgb) being trained in order to anticipate the occupancy, there is no big
difference in occupied_space_seen metric.
ANS (depth) area_seen metric is lower than OccAnt (rgb), especially in big environments,
but the ratio AC/AS (map_accuracy over area_seen) is in all cases comparable, proving
that ANS (depth) explores less (as we said few lines above it also has the lowest in
time_per_episode metric), but it keeps the same level of map_accuracy over area_seen.
The introduction of time_per_episode (not originally considered in the authors’ works)
allows us to better understand the performance of the two algorithms: despite area_seen
value at the end of the 500 steps in ANS (depth) being lower than the value obtained by
OccAnt (rgb), ANS (depth) is able to explore more area in the same time. In any case,
with higher average values come also higher standard deviation values.
These results strengthen the importance of selecting metrics really able to identify the
strengths or weaknesses of every algorithm, especially when we compare Deep Learning

5| Experimental results 71

algorithms and classical algorithms.
The presence of occupancy anticipation module in OccAnt (rgb) doesn’t give to OccAnt
(rgb) a clear advantage in exploration for map building task, but in point-goal driven
exploration task (as later seen in Section 5.4.1) it allows better performance.

5.3.2. OccAnt vs. ANS exploration for map building results -

Noisy

The following results are obtained in Habitat simulator and noise is taken into consider-
ation. As already said, in this comparison, we have used the pretrained models loaded
on [22]. The weights of the pretrained models are obtained from the algorithms trained
in noisy environments. Even if, as highlighted in Section 2.5.1, the noise model may not
be a perfect reconstruction of the one we have in the real world, the results obtained
here are useful to understand how algorithms’ performance changes with different world
configurations. The maximum number of steps (actions taken by the agent) is 500 and
after that exploration is stopped.

ANS (depth) ANS (rgb) OccAnt (rgb)

map_accuracy 40.900 (13.426) 37.958 (11.391) 41.218 (13.740)

area_seen 51.816 (16.321) 50.574 (15.138) 54.062 (18.122)

free_space_seen 28.060 (10.298) 27.490 (9.736) 29.599 (11.320)

occupied_space_seen 23.757 (7.896) 23.085 (7.375) 24.462 (8.548)

time_per_episode 0.843 (0.002) 0.877 (0.002) 0.964 (0.005)
area_seen_over_time 61.466 (19.339) 57.677 (17.236) 56.081 (18.765)

AC/AS 0.789 (0.056) 0.750 (0.059) 0.762 (0.068)

Table 5.4: Results of exploration for map building done in all the environments with
OccAnt and ANS in noisy simulation.

Table 5.4 shows the results of the complete comparison on 994 episodes on the 14 environ-
ments. In parentheses, we report also the standard deviation. Results on small, medium,
and big environments are shown in Appendix A.2.
The results of this comparison done in noisy environments are comparable to the ones we
have obtained in noise free environments and discussed in Section 5.3.1.
Even in this configuration OccAnt (rgb) proved to be the best algorithm concerning
map_accuracy, area_seen, free_space_seen, and occupied_space_seen values while ANS
(depth) obtains the best values for time_per_episode, area_seen_over_time, and AC/AS.

72 5| Experimental results

Also in noisy environments OccAnt (rgb) obtains very similar values with respect to ANS
(depth) in map_accuracy, area_seen, free_space_seen, and occupied_space_seen met-
rics.
These results proved the ability of the two algorithms to obtain generalization in different
kinds of environments and configurations. However, as already said in Section 2.5.1, the
noise model on which the algorithms are trained and tested may not be so good which
is why the algorithms should be also tested in the real world. In any case, with higher
average values come also higher standard deviation values.
We can get more interesting considerations by comparing the results obtained in noise
free and noisy environments. Results in noisy environments are expected to be lower
compared to the ones obtained in noise free environments where movements can follow a
deterministic trajectory.

ANS (depth) ANS (depth) ANS (rgb) ANS (rgb) OccAnt (rgb) OccAnt (rgb)

noise free noisy noise free noisy noise free noisy

map_accuracy 47.451 (17.449) 40.900 (13.426) 43.478 (15.324) 37.958 (11.391) 48.725 (18.142) 41.218 (13.740)

area_seen 55.609 (19.849) 51.816 (16.321) 53.841 (18.872) 50.574 (15.138) 56.913 (21.031) 54.062 (18.122)

free_space_seen 29.801 (11.002) 28.060 (10.298) 29.059 (10.743) 27.490 (9.736) 30.991 (12.010) 29.599 (11.320)

occupied_space_seen 25.808 (9.437) 23.757 (7.896) 24.782 (8.794) 23.085 (7.375) 25.992 (9.415) 24.462 (8.548)

area_seen_over_time 64.288 (22.442) 61.466 (19.339) 59.296 (20.382) 57.677 (17.236) 57.838 (20.672) 56.081 (18.765)

AC/AS 0.854 (0.045) 0.789 (0.056) 0.808 (0.048) 0.750 (0.059) 0.856 (0.042) 0.762 (0.068)

Table 5.5: Results of the comparison of exploration for map building done with OccAnt
and ANS in noise free and noisy simulation.

Table 5.5 shows the differences between the executions of the algorithms in noise free and
noisy conditions on the total 994 episodes in the 14 environments. In parentheses, we re-
port also the standard deviation. All the metrics in noise conditions, as expected, present
on the average lower values. All the algorithms have lower values in area_seen_over_time
because, as expected, in noisy environments agents take more time in order to visit the
same amount of area.
All the algorithms see less area (area_seen is reduced) and even the map_accuracy is
reduced. In all the examined cases, the reduced AC/AS metric indicates a lower ability
to correctly map the environments, even if less area is observed during the exploration
episode. In both cases, however, with higher average values come also higher standard
deviation values.

5| Experimental results 73

It is also useful to consider the ratio between AC/AS in noisy and noise free environments

for the same algorithm, AC/ASnoisy
AC/ASnoisefree

:

• ANS (depth): 0.924
• ANS (rgb): 0.928
• OccAnt (rgb): 0.890

Observing these values it is clear that OccAnt (rgb) is the one that suffers the major
reduction for the AC/AS metric. However, even if AC/AS is reduced in the noisy envi-
ronments, it still shows a good value for all the three algorithms.
From what we have done in this section it becomes apparent that if we use different
simulation settings (noisy vs. noise free environments) results can change significantly.
Because of this, these algorithms should also be tested in the real world in order to un-
derstand if their behavior remain similar to the one obtained in the simulator or if they
only have learnt how to exploit specific elements of the simulator.

Figure 5.5: Examples of map produced in ANS (depth), ANS (rgb), and OccAnt (rgb) in
noise free and noisy simulation.

In Figure 5.5 we can see examples of maps produced by the three different algorithms
in noise free and noisy environments. Because the path chosen between the list of the
possible paths in noisy environments (Figure 2.21), sometimes the area_seen is sensibly
reduced as shown in figure by ANS (rgb) algorithm. However, as shown in the tables,
the average value on 994 episodes is not so different from the one obtained in noise free
environments.

74 5| Experimental results

Results in environments of different size

Figure 5.6: Exploration path by OccAnt(rgb) in small, medium, big environments in
exploration for map building.

Figure 5.6 shows the path (light blue line) followed during exploration for map building
by OccAnt (rgb) in small, medium, and big environments. In the figure dark grey indi-
cates the area not seen, while light grey indicates the area seen during the episode. The
agent during exploration (in both noisy and noise free environments) often comes back to
already visited places because it wants to achieve high accuracy. This behavior doesn’t
have an impact on the amount of area_seen in small and medium environments, but,
as clearly visible in the figure, in big environments the agent doesn’t get very far from
the starting point. With this attitude, the agent gains high accuracy in the small area
explored at the expense of exploring bigger areas.
Also ANS (rgb) and ANS (depth) often come back to already visited places during explo-
ration episodes.
This behavior will be particularly considered in the next section, where ANS and OccAnt
are compared to frontier exploration algorithm, which is characterized by an exploration
path that comes back to already visited places with reduced frequency.

5| Experimental results 75

5.3.3. Frontier exploration vs. OccAnt vs. ANS

In this section, we show the results of the comparison done between frontier exploration
(both in 2D, Stage simulator, and 3D, Habitat simulator), OccAnt, and ANS (both in
Habitat simulator).
In these tests, we have used path_length as a metric in order to compare the three different
implementations of exploration algorithms because of the difficulties in using some of the
metrics proposed by OccAnt and ANS with frontier exploration in 3D. Furthermore, in
Section 5.3.1, we have shown that only considering area_seen metric may not provide a
fair comparison of the different algorithms. Because of this, in this section, we analyze
the area explored and mapped with a specific path_length (specified later).
In the following tests, all the algorithms use the same initial position and rotation in the
environment. For performance reasons, we have tested the three algorithms only on some
maps, but with significant differences in size.
Frontier exploration algorithm uses laser readings as input and sometimes these readings
in the Habitat simulator with Gibson dataset don’t fully represent a real world situation.
As it can be seen in Figure 5.7 the textures present holes and so laser readings go beyond
walls or objects creating frontiers that don’t exist in the real world.

Figure 5.7: Example of incorrect laser readings with frontier exploration in Gibson envi-
ronments.

Sometimes the agent gets stuck due to some inaccurate textures and it can’t move any-
more, so the frontier exploration algorithm stops its iterations because the agent can’t
reach the previously saved frontiers. In all the different maps that we have tested, the
agent gets stuck in some textures at some time and because of this we have decided to
stop exploration in ANS (rgb), ANS (depth), and OccAnt (rgb) when path_length is the
same than the one obtained with frontier exploration, in order to get comparable results.
In order to propose a more qualitative analysis of the frontier exploration algorithm and

76 5| Experimental results

discover what happens when the agent doesn’t get stuck, we have used the tool Utilities
for Gibson environments discussed in Section 4.1.6 in order to evaluate frontier explo-
ration algorithm also in 2D environments. Using 2D floor maps with Stage simulator we
don’t have anymore the texture holes problems and the robot never gets stuck in broken
textures. On the other hand, we can have different path_length because all the objects in
the environments are flattened on the ground and different frontiers can be identified by
the algorithm. The maps produced by OccAnt and ANS represent obstacles in a different
way with respect to the one proposed by Gmapping SLAM and because of this, we have
decided to compare only the free_space_seen.

Figure 5.8: Obstacles representation (Gmapping on the left, ANS/OccAnt on the right).

As shown in Figure 5.8, we can see how Gmapping SLAM considers the obstacle area of
the table only the black line on the outline, while ANS and OccAnt consider as obstacle
area all the area painted in green. For this reason, occupied_space_seen would not be
fair.
Free_space_seen with frontier exploration is proposed only in the 2D case because in 3D,
as already said, there are a lot of holes in the textures and the obtained value would not
represent a real situation.
In the following pages we consider exploration episodes in one environment at a time.

5.3.3.1. Greigsville

Figure 5.9: Example of map produced by frontier exploration in 3D Greigsville.

5| Experimental results 77

As discussed earlier, from Figure 5.9 we can see that agent with frontier exploration gets
stuck in an obstacle after traveling 9.733 with frontier exploration in 3D environment.
The quality of the map after 11.281 m is worse than after 9.733 m because the agent is
stuck in the textures and it is rotating in place.
In Figure 5.10 we show the results of a single exploration episode stopped at 9.733 m.

Figure 5.10: Map produced and path_length of ANS (rgb), ANS (depth), OccAnt (rgb),
frontier exploration, and frontier exploration 2D in Greigsville.

78 5| Experimental results

Figure 5.11: Path followed by ANS (rgb), ANS (depth), OccAnt (rgb), and frontier
exploration in Greigsville.

Figure 5.12: Path followed by ANS (rgb), ANS (depth), and OccAnt (rgb) in Greigsville
with path length not limited to 9.733 m.

From Figure 5.10 we can see the different maps produced by the algorithms.
The agent with frontier exploration (in both 2D and 3D) is able to map more area. The
agent with frontier exploration in 3D is able to explore more area, as shown in Figure
5.11 when compared to OccAnt and ANS.
The area in the right part of the red circle is correctly predicted by ANS and OccAnt
algorithms, but even with a very high path_length (as verified in Figure 5.12) it is never
visited.
The area in the left part of the red circle is visited by frontier exploration agent event
with a low path_length, while it is visited by OccAnt and ANS only with an higher
path_length, as shown in Figure 5.12.
This behavior may lead to a correct mapping of the perimeter of an area, without knowing
the actual obstacles contained in it.
In Appendix A.3 we propose other two comparisons run in small environments. In both
the situations agent with frontier exploration (3D) is able to map more area than the
other algorithms with the same path_length.

5| Experimental results 79

5.3.3.2. Scioto

Figure 5.13: Map produced and path_length of ANS (rgb), ANS (depth), OccAnt (rgb),
frontier exploration, and frontier exploration 2D in Scioto.

80 5| Experimental results

Figure 5.14: Path followed by ANS (rgb), ANS (depth), and frontier exploration in Scioto.

Figure 5.15: Example of incorrect laser readings in Scioto.

Also in this exploration episode frontier exploration algorithm agent in 3D gets stuck in
an obstacle and can’t reach the other frontiers available. However, it still gets comparable
results when we consider path_length metric. The results of the single exploration episode
stopped at 30.448 m are shown in Figure 5.13. Looking at the area explored in Figure 5.14
we can compare frontier exploration in 3D with ANS (rgb) and ANS (depth). Frontier
exploration 3D agent sees two rooms that ANS (rgb) agent doesn’t reach because its path
is concentrated on a smaller area of the floorplan (it doesn’t explore the right part of
the floorplan) with the same path_length. Also ANS (depth) path is concentrated on
a smaller area of the floorplan. This behavior, previously identified in Section 5.3.2, is
particularly evident in this map: looking at the table in Figure 5.13, we can see that
free_space_seen in ANS and OccAnt is sensibly lower than the one obtained by frontier
exploration with the same path_length. OccAnt (rgb) is trained to achieve high mapping
accuracy and so its agent concentrates its paths on a smaller area with respect to the
path proposed by frontier exploration algorithm. ANS (rgb) and ANS (depth) reward
increases in area seen, but probably the reward function needs some tuning in order to
explore more area. From Figure 5.15, in the red circle, we can see an example of incorrect
readings obtained from laser only because of the holes in the texture in the simulator

5| Experimental results 81

environment. This behavior that worsens the mapping ability of frontier exploration in
3D of course will not happen in the real world (under reasonable assumptions on the
sensors and types of walls) and the algorithm will obtain better results, as it is confirmed
by frontier exploration 2D execution.

5.3.3.3. Swormville

Figure 5.16: Map produced and path_length of ANS (rgb), ANS (depth), OccAnt (rgb),
frontier exploration, and frontier exploration 2D in Swormville.

82 5| Experimental results

In this comparison, frontier exploration 3D agent is able to explore more area without
getting stuck in the textures for a longer time, and in fact, the algorithm, in this case,
is able to map all the environment (even if there are the usual imperfections due to the
presence of holes in the textures). Also in this environment, we can see how the path of
frontier exploration agent covers more area with respect to the paths of ANS and OccAnt
algorithms. In these two algorithms, the agent’s behavior is to come back on the same
path multiple times, as already highlighted in the previous comparison of Section 5.3.3.2.
In this case, frontier exploration 2D, as it is shown from the map in Figure 5.16 doesn’t
visit all the rooms visited by frontier exploration in 3D probably because of the different
path taken in 2D environment, but it is still comparable with OccAnt and ANS.

5| Experimental results 83

5.3.3.4. Cantwell

Figure 5.17: Map produced and path_length of ANS (rgb), ANS (depth), OccAnt (rgb),
frontier exploration, and frontier exploration 2D in Cantwell.

84 5| Experimental results

Figure 5.18: Path followed by ANS (rgb), ANS (depth), OccAnt (rgb) and frontier explo-
ration in Cantwell.

During this exploration episode, frontier exploration 3D agent gets stuck two times, but
after the second time it is not able to recover the right behavior and for this reason, we
stop exploration after 27.491 m.
Looking at Figure 5.18, we can see that frontier exploration 3D explores one room more
than ANS (rgb) and ANS (depth).
Looking at the table in the figure, we can see that frontier exploration 2D free_space_seen
is comparable to the one obtained with OccAnt (rgb), which gets better results than ANS
(rgb) and ANS (depth).

5| Experimental results 85

Figure 5.19: Map produced and path_length of ANS (rgb), ANS (depth), OccAnt (rgb),
frontier exploration, and frontier exploration 2D in Cantwell.

In Figure 5.19 we have conducted another comparison in the same map changing the
starting point. In this episode, we obtain results comparable to the ones obtained in the
previous run, proving that the results are consistent even if the starting point is different.

86 5| Experimental results

5.3.3.5. Results analysis

Frontier exploration (3D) agent finds some problems when deployed in the Habitat sim-
ulator with Gibson dataset because of the imperfections in the textures in the simulator
environments. The holes in textures cause incorrect laser readings as described in Sec-
tion 5.3.3. These incorrect laser readings are the cause of some inconsistencies in SLAM
mapping, that are not present when we consider the 2D case with no holes in textures.
Some other imperfections make the agent unable to resume navigation because it is stuck
in some inaccurate textures. These are situations that most likely will not happen in a
real world environment.
Considering the path_length of the exploration algorithms we can see how maps pro-
duced by frontier exploration (in 3D) are comparable with OccAnt and ANS. In frontier
exploration 2D where no problems about textures are present, we can see that results
are consistent with respect to ANS or OccAnt (concerning free_space_seen). The path
followed in frontier exploration 2D sometimes is not the same as the one followed by the
agent in 3D frontier exploration because of the fact that all the objects are flattened to
the ground by the utility used to generate the map.
OccAnt and ANS most of the time have lower free_space_seen values because their ex-
ploration paths are concentrated on a smaller area than fronter exploration (2D and 3D)
as can be clearly seen in big environments like those of Sections 5.3.3.2 and 5.3.3.3. This
behavior comes from the fact that OccAnt (rgb) is trained to maximize mapping accuracy,
while ANS (depth) and ANS (rgb) probably need some tuning of the reward function.
Also in smaller environments like the ones shown in Sections 5.3.3.1 and A.3.1, even if less
noticeable, they have this behavior, because, considering the same path_length, frontier
exploration algorithm has higher value in free_space_seen metric.
In order to correctly compare frontier exploration, OccAnt, and ANS, it should also be
considered that both OccAnt and ANS are trained with expensive techniques in this kind
of environment, while frontier exploration can be simply deployed without any kind of
particular optimization or expensive training.
Frontier exploration algorithm has already proven to provide comparable results when
deployed in a real world scenario. OccAnt and ANS, on the other hand, as described in
Section 5.3.2 can have different behaviors if the simulation settings change. Because of
this reason, a future test in the real world should be done in order to verify that the results
obtained in this section can also be obtained in real-world more complex environments.
After having shown that the selected classical and Deep Learning algorithms have com-
parable performance in exploration for map building task our goal is to understand also
their behavior in the point-goal driven exploration task, in order to figure out if Deep

5| Experimental results 87

Learning techniques can provide an advantage in that task (Section 5.4.3).

5.3.4. Decision-making time comparison frontier exploration vs.
OccAnt vs. ANS

In order to fully compare OccAnt, ANS, and frontier exploration it can be also useful to
compare the decision-making time required by each algorithm to select the next action to
be executed.
In OccAnt and ANS the simulator teleports the agent to the next location after the
algorithm has produced the next action and the movement time can be approximate
to zero. The time to select the next action to execute can so be approximate to the
execution_time over num_steps.
In frontier exploration implementation, however, movement time can’t be approximate
to zero. Because of this, the decision-making time considered is the one required to find
the frontiers, sort them, and select the next goal to follow. The time considered next is
obtained from the average of the execution of the algorithm in the different environments.
What comes out is that the decision-making time in OccAnt and ANS is lower than the
one of frontier exploration, as can be seen here:

• ANS (rgb): 0.001807 s.

• ANS (depth): 0.001722 s.

• OccAnt (rgb): 0.001958 s.

• Frontier exploration: 0.095430 s.

Frontier exploration implementation doesn’t use particular optimization techniques, while
as already said in Section 4.1.4, OccAnt and ANS are specifically developed for Habitat
simulator which focuses on execution time.
Frontier exploration decision-making time, however, is still low and fully compatible with
use in the real world. OccAnt and ANS require a long training time and a lot of com-
putational resources in order to be trained [6], while frontier exploration can be simply
deployed in the environment.

88 5| Experimental results

5.4. Point-goal driven exploration results

In this section, we present the results of the comparisons on point-goal driven exploration.
A point-goal is considered reached if the agent’s distance to it is lower than 0.3 m. In
Section 5.4.1 we propose a comparison of OccAnt and ANS in 14 environments. In Section
5.4.2 we present some tests done in order to understand how an algorithm (DRL) trained
in simple environments works when deployed in more complex environments and the
consequent difficulty in writing a reward function for Reinforcement Learning algorithm
that can work well in different environments. In Section 5.4.3 we propose a comparison
of OccAnt, ANS, and a classical algorithm in 3 different environments.

5.4.1. Point-goal driven exploration ANS vs. OccAnt results -
Noise free

The results in this section are obtained from simulation episodes where no noise is present.
As already said, in this comparison, we have used the pretrained models loaded from [22].
The weights of the pretrained models are obtained from the algorithms trained in noise
free environments. Because of the fact that both OccAnt and ANS directly run in the
Habitat simulator, we have been able to test these two algorithms on a big number of
episodes and environments. In every one of the 14 maps from Gibson dataset described in
Section 5.1.1, we have run 71 episodes (each one with a different starting location and goal
location). The 71 episodes are directly provided by the Gibson dataset for testing. The
maximum number of steps (actions taken by the agent) is 500 and after that point-goal
driven exploration is stopped.

ANS (depth) ANS (rgb) OccAnt (depth) OccAnt (rgb) OccAnt (rgbd)

succes_rate 0.722 0.316 0.867 0.808 0.347

dist_to_goal 1.911 (3.448) 4.230 (3.996) 1.030 (2.028) 1.462 (2.908) 4.106 (4.045)

SPL 0.627 (0.412) 0.293 (0.436) 0.754 (0.329) 0.673 (0.371) 0.314 (0.438)

SoftSPL 0.644 (0.338) 0.359 (0.381) 0.748 (0.266) 0.675 (0.308) 0.370 (0.383)

num_steps 208.792 381.020 145.561 182.773 361.389

Table 5.6: Results of comparison between OccAnt and ANS on point-goal driven explo-
ration.

Table 5.6 displays the results of the comparison done on the 14 environments described
in Section 5.1.1. In parentheses, we report also the standard deviation (the standard de-
viation for success_rate and num_steps is not reported because is almost uninformative)
The table provides us with the information that OccAnt (depth) obtains sensibly better

5| Experimental results 89

results than the best ANS configuration i.e., ANS (depth). OccAnt (depth) obtains the
best values in all the metrics considered. It is interesting to note that while in exploration
for map building task OccAnt (rgb) and ANS (depth) obtain very similar results in all
the metrics (Section 5.3.1), in point-goal driven exploration task, OccAnt (depth) obtains
noticeable better results. This improvement is achieved thanks to the presence of the
occupancy anticipation module, which allows the OccAnt agent to reach the goal faster.
The results obtained by OccAnt (rgbd) show that also in this case, like in Section 5.3,
OccAnt (rgbd) pretrained models loaded by the authors on the Github page have some
kind of problem when applied to new environments. In point-goal driven exploration
task, contrary to what happens in exploration for map building task, with higher average
values comes lower standard deviation values.

5.4.2. DRL tests

In order to understand how DRL algorithm works and how it can be compared with ANS
or OccAnt algorithms we have run different tests. First of all we have run a training
for the DRL algorithm on the original Gazebo random environments (shown in Section
5.1.2). This training lasted about 12 hours and is enough to obtain 100% success rate
during evaluation in Gazebo environments. In order to understand the behavior in more
complex environments like the ones proposed by Gibson dataset, we have tested DRL
algorithm (trained on Gazebo) in Habitat simulator through ROS_X_Habitat in Swor-
mville environment using the episodes proposed by Gibson dataset (the same used in the
previous tests). Results in this case are sensibly worse. In Figure 5.20 we can see the
paths followed by the agent in different evaluation episodes. In all of episodes presented
in the figure, the agent has some difficulties in moving to the goal and trying to get out
of the rooms.

Figure 5.20: Paths followed by DRL agent in Habitat simulator in first test.

90 5| Experimental results

One possible explanation for this behavior is the fact that the robot is originally trained
in an environment with only one square-shaped room, no corridor, nor complex elements.
Analyzing the start and goal position in case of success it appears that the agent is able
to reach the goal only when start and goal positions are very close (probably in the same
room), being the set-up similar to the one in the DRL environments. In another test, we
have trained DRL algorithm for 317 episodes in the Habitat simulator. The evaluation is
done in Swormville environment.

Figure 5.21: Paths followed by DRL agent in Habitat simulator in second test (left), path
followed in DRL environment (right).

In Figure 5.21, on the left, we can see examples of the path followed in the Habitat
simulator environment during the evaluation. The robot is now able to cover more space
than the robot simply trained in the DRL environments. A strange behavior appears when
we test these weights learned in the Habitat simulator back in Gazebo DRL environment:
as can be seen from Figure 5.21, on the right, the robot moves in circle and doesn’t try
to reach the goal. One possible explanation is the fact that on Habitat there are a lot of
obstacles and consequently a lot of collisions. Because of the negative reward obtained
with collision the robot has learned a policy that prefers not colliding over reaching the
goal. We have come to this conclusion also by looking at the training videos. In the first
episodes, the robot collides a lot trying to reach the goal, but then in the subsequent
episodes, it collides much less. At this point, we have compared the results of the two
different weights obtained from the training in Gazebo and Habitat simulator.

5| Experimental results 91

Trained on Habitat Trained on Gazebo

succes_rate 0.2532211268 0.26766056338

dist_to_goal 2.2001 1.964968772

num_steps 304.9859 555.9014085

avg_reward -14.269613 -127.939993
avg_col 0.676056 0.507042

Table 5.7: Comparison of the results on point-goal driven exploration in Habitat simulator
between DRL algorithm trained in Habitat and in Gazebo simualtor.

Table 5.7 confirms what we have already described. The algorithm trained on Gazebo
has the best succes_rate and distance to goal values, but the worst avg_reward and
num_steps. These two last metrics, in particular, are very bad when compared to the ones
obtained by the algorithm trained on Habitat. The sensibly better value of avg_reward
obtained by the algorithm trained on Habitat shows us that the algorithm has learned a
policy that can obtain better reward values when deployed in the Habitat environment
with respect to the policy trained in Gazebo. However, in both cases, there are a lot
of collisions and avg_reward is always negative, meaning that the reward function as
thought for DRL environments may not be so effective in Habitat environments. With
the analysis done until this moment, we have highlighted the importance and difficulty of
building a reward function able to provide consistent results even in environments really
different from the ones where the algorithm has been trained. This element of difficulty is
not present using classical algorithms and should be carefully considered. Another aspect
that should be taken into consideration is how to write a distance function. The original
DRL code uses Euclidean distance for computing the distance between start and goal
positions and deciding accordingly if the goal is reached or not (dist_to_goal < 0.3 m).
ANS and OccAnt otherwise use obstacle-free path distance.

Figure 5.22: Euclidean vs. obstacle-free path distance in complex Habitat environments.

92 5| Experimental results

In simple environments like those of DRL, using the Euclidean distance may be an appro-
priate choice, but in complex environments like Habitat photorealistic ones may be not
the right choice. A possible situation is the one shown in Figure 5.22, where start-goal
Euclidean distance is lower than 0.3 m, but the real obstacle-free path is a way longer. As
described in Section 4.2.1, we have implemented the possibility to use the obstacle-free
path distance also in the DRL algorithm to compare it with ANS and OccAnt.
SPL and SoftSPL metrics can be computed only with the obstacle-free path distance value
and because of that are shown only in the tests that use obstacle-free path distance values.
As done before we have compared the algorithm trained in Gazebo and Habitat, using
the obstacle-free path distance, comparing over 213 episodes in 3 different environments.

Trained in Gazebo
obstacle-free
path distance

Trained in Habitat
obstacle-free
path distance

Trained in Gazebo
Euclidean distance

Trained in Habitat
Euclidean distance

succes_rate 0.019 0.0 0.2532211268 0.26766056338

dist_to_goal 8.142 6.827 2.2001 1.964968772

num_steps 498.648 1275.817 304.9859 555.9014085

avg_reward -177.3473593 -210.9696753 -14.269613 -127.939993

avg_col 1.1971833333 0.5023486667 0.676056 0.507042

SPL 0.016 0.0 X X
SoftSPL 0.081 0.0205 X X

Table 5.8: DRL obstacle-free path and Euclidean distance comparison with training in
Gazebo environments and Habitat environments.

As can be clearly seen from the Table 5.8, results are worse than those obtained with
Euclidean distance.
The algorithm trained in the Habitat simulator obtains better results in dist_to_goal
and avg_col, but the agent behavior still prefers to avoid obstacles than reach the goal.
This strengthens our idea that the reward function must be changed in order to fit the
requirements of complex environments. In this case, the agent trained in the Habitat
simulator doesn’t obtain better results in avg_reward, but this can be referred to the
fact that the algorithms in the Habitat simulator are usually trained on a big number of
episodes with DD-PPO, while here we are training it with a single (not so powerful) GPU
for only relatively few episodes (780).
The results obtained in this section are very low when they are compared to ANS and
OccAnt results obtained in Section 5.4.1. The tests done on DRL algorithm in Habitat
environments suggest that probably the reward function should be adapted to better fit
the requirements in complex environments, preferring the exploration of the environments
over the avoidance of having collisions. The quick training done with DRL in the Gazebo

5| Experimental results 93

simulator is more than enough to obtain a 100% success rate on that simple domain,
but it proved to not generalize well using complex environments with multiple rooms and
long and narrow corridors. DRL agent in the original setting is not rewarded for trying
to reach the goal exploring different rooms to find the right path but only for reaching
the goal in a simple room with a fixed dimension and few obstacles with a regular shape.
While using the Euclidean distance in simple environments is not a big problem, using
it in a setting with multiple objects may lead to situations where the goal is not really
reached. As just suggested, one of the most likely causes of the differences between
performance in algorithms is to be found in the diversities between training environments
and settings. While DRL algorithm from [60] is trained with an Nvidia GTX 1080 GPU
for only 8 hours to obtain good results in the Gazebo environments, ANS and OccAnt
are trained with DD-PPO on configurations with multiple powerful GPUs (8 GPUs and
16/32GB memory per GPU) acquiring a way higher level of experience in exploration and
goal driven navigation. As also shown in Section 4.1.4 and Figure 4.1, Habitat simulator
focuses on speed, gaining high “frame per seconds” performance. This means that at
the same time, algorithms trained in the Habitat simulator can acquire more experience.
The quality of acquired experience proved to be very important in order to let the agent
generalize well when deployed in unseen environments.
Another cause of the differences is the fact that DRL code uses a velodyne laser, while
in the comparison we have replaced its readings with the laser readings provided ROS-X-
Habitat, but this element shouldn’t have a higher impact.
The kinds of issues related to the different computation power available for training are
not present when we consider classical algorithms. Because of this reason, in the next
section we compare ANS, OccAnt, and the classical algorithm in order to understand if
the higher computation demand allows to obtain better performance with Deep Learning
algorithms.

5.4.3. Point-goal driven exploration ANS vs. OccAnt vs. clas-
sical algorithm

In this section, we have run the comparison between ANS, OccAnt, and the classical algo-
rithm (implemented with ROS Gmapping and move_base packages) on 3 environments
of different dimensions: Elmira, Swormville, and Cantwell (sorted in ascending order by
area).
In every environment, we have run 30 episodes with different starting and goal locations.
ANS and OccAnt are tested in the Habitat simulator, while the classical algorithm be-
cause of the invisible textures and holes is tested in 2D maps in Stage simulator, as done

94 5| Experimental results

during exploration for map building comparison. As also shown in Section 5.3.3, explo-
ration results in 3D and 2D are very similar and so the comparison will be fair. Because
of the fact that SPL and SoftSPL are metrics considered only in the Habitat simulator,
we have not considered them here. In this comparison, we have used success_rate and
path_length as metrics. In Section 5.4.1 the results of the comparison show a high level
of success and because of this, it is interesting to understand if a classical algorithm can
obtain similar values with a comparable path_length.
In Section 5.3.1 we have shown that considering only area_seen as metric without the
time required to visit that area doesn’t provide a fair comparison. In Section 5.3.3 we
have also seen that the exploration capabilities between classical and Deep Learning al-
gorithms can be compared taking into consideration the path_lenght required to explore
the area. In this section, we consider not only success_rate as a relevant metric for point-
goal driven exploration, but also path_length. We use this metric because our focus is on
understanding not only if all the three algorithms are able to reach the point-goals but
also which of the three algorithms manages to travel fewer meters.
In Tables 5.9 and 5.10 are reported the values of the metrics obtained from the episodes
run in the different environments. Because of the results obtained in the previous section
we have considered only ANS (depth) and OccAnt (depth), the implementation of the two
algorithms that obtain the best values. We have not considered DRL algorithm because,
as seen in Section 5.4.2, its results are really low when compared to OccAnt and ANS.
The path_lenght values of all the episodes are shown in Appendix A.4.

classical OccAnt (depth) ANS (depth)

best path_length best path_length best path_length

Elmira 21 3 6

Swormville 19 7 4

Cantwell 19 10 1

Total 59 20 11

Table 5.9: Number of best path_length episodes in classical algorithm, OccAnt (depth),
and ANS (depth).

5| Experimental results 95

classical OccAnt (depth) ANS (depth)

success_rate success_rate success_rate

Elmira 0.967 0.900 0.800

Swormville 0.967 0.900 0.767

Cantwell 0.967 0.833 0.600

Total 0.967 0.878 0.722

Table 5.10: success_rate comparison between classical algorithm, OccAnt (depth), and
ANS (depth).

Results of Table 5.9 show that the classical algorithm, no matter what is the dimension
of the environment, performs better: it has the best path_length in most of the episodes.
Only in a few cases, results are significantly worse (as can be seen in Appendix A.4).
Classical algorithm bad results are probably due to the fact that in 2D implementation
all the objects in the environments are flattened on the ground and different paths can
be identified by the algorithm.
In every environment, the classical algorithm also has more success episodes (as shown in
Table 5.10). The classical algorithm fails only 3 times: in one case the agent collides at
the beginning of the episode while in the other two cases the agent isn’t able to find the
right path.
Even if OccAnt (depth) with occupancy anticipation module proved to perform better
with respect to ANS (depth) (Section 5.4.1), there is no clear advantage over the classical
algorithm neither in success_rate nor in path_length metric. Success_rate values shown
in Table 5.10, concerning OccAnt (depth) and ANS (depth), are comparable to the ones
obtained in the previous section (Table 5.6) in 994 episodes and therefore 90 episodes
are enough to obtain a fair comparison between classical algorithm, ANS, and OccAnt.
While the success_rate in the classical algorithm is constant and is not conditioned by
the size of the environment, both OccAnt and ANS have lower values as the size of the
environment increases. The classical algorithm not only doesn’t need expensive training
in these kinds of environments, but it also outperforms the Deep Learning algorithms
analyzed in all the metrics considered. In addition, the classical algorithm already proved
to perform well in the real world, while Deep Learning algorithms need to be carefully
tested.

96 5| Experimental results

5.4.4. Results anaysis

Results of the comparison done between OccAnt and ANS in point-goal driven exploration
task (Section 5.4.1) show that the presence of the occupancy anticipation module allows
OccAnt to achieve higher performance when compared to ANS. However, the occupancy
anticipation module, a Deep Learning network that requires extensive training, doesn’t
give any clear advantage in exploration for map building task (Sections 5.3.1 and 5.3.2),
and because of the computational and energy resources it needs, it should be considered
whether this module is worth using.
DRL bad results from Section 5.4.2 highlight the difficulties of writing a strong reward
function, which is also able to generalize well in unknown environments. The agent trained
in Gazebo simple environments has some problems in exploring Habitat complex environ-
ments with multiple rooms and corridors. DRL agent has proved to not perform well also
when the training is done in Habitat environments, probably because of the relatively few
episodes (780) of training. The tests done also suggest that probably the reward function
should be adapted to better fit the requirements in complex environments.
In Section 5.4.3, we have shown that even if OccAnt (depth) with occupancy anticipation
module proved to perform better with respect to ANS (depth), there is no clear advantage
over the classical algorithm neither in success_rate nor in path_length metric.
All the difficulties encountered by the Deep Learning algorithms described in this chapter
should make us consider whether to use these techniques for the point-goal driven explo-
ration task, considering that the classical algorithms have already proven to provide the
optimal solution.

97

6| Conclusion and future work

In this thesis, we have compared classical and Deep Learning algorithms on two different
tasks: exploration for map building and point-goal driven exploration in order to under-
stand what are the downsides and upsides of the algorithms proposed. Every task has
been evaluated using task-specific metrics in common environments.
The comparison is performed using the Habitat simulator, ROS-X-Habitat framework,
Gazebo simulator, and Stage simulator.
OccAnt [97] and ANS [48] have been compared on a big number of episodes and envi-
ronments on the Gibson dataset (Section 5.3.1 and Section 5.3.2), showing what is the
improvement given by the occupancy anticipation module introduced in OccAnt archi-
tecture. While their results are comparable in exploration for map building task, OccAnt
achieves better results in point-goal driven exploration task. The occupancy anticipation
module doesn’t help to build more accurate maps, but it allows better performance when
the agent has to reach a specific point-goal in space.
OccAnt and ANS have also been tested in exploration tasks on both noisy and noise free
simulations. This evaluation has shown that ANS compared to OccAnt explores a little
less, but with higher accuracy.
The results of the comparison done using Habitat simulator and environments on the Gib-
son dataset between frontier exploration [8], OccAnt, and ANS on exploration for map
building task (Section 5.3.3) show that they all have comparable performances on the
average. OccAnt and ANS, however, require a very long training time with big computa-
tional power and energy resources involved [6]. On the other side, the classical algorithm
with frontier exploration can be simply implemented on an agent and doesn’t have to deal
with all the issues regarding training or ability to generalize to an unknown environment,
because its performance doesn’t depend on the number and the quality of training envi-
ronments. In Section 5.3.4 we have also compared the decision-making time required by
these three algorithms and the results show that both OccAnt and ANS outperform fron-
tier exploration. Frontier exploration decision-making time, however, is still low (0.095 s)
and fully compatible with real world situations. In Section 5.4.3 we have compared ANS
and OccAnt with a classical algorithm showing that also on point-goal driven exploration

98 6| Conclusion and future work

task the results are very similar.
For the learning algorithms compared and for most of the literature considered, there
is little information about what is the real cost of training and hyperparameter-tuning.
Training is a very long activity (days and in some cases weeks) done on high-end com-
puters and its cost should be made more clear.
The development of a working reward function and the search required to obtain good hy-
perparameters are examples of other costs that should be taken into consideration in the
future in order to correctly compare Deep Learning and classical exploration algorithms.
The tradeoff between engineering costs and performance obtained should be really con-
sidered in order to understand if the effort required to develop Deep Learning algorithms
is worth. An example of how the duration of the training can have an impact on the
quality of exploration policy learned is provided in Section 5.4.2 where it has been shown
that DRL algorithm [60] trained a little time in complex environments doesn’t behave
well compared to algorithms trained for a longer time with powerful GPUs.
In most of the literature considered and in the algorithms compared, the authors proposing
Deep Learning algorithms omit to consider classical approaches like frontier exploration
as a baseline. In many cases, in fact, authors only consider other learning algorithms
and, in some cases, the metrics considered are relevant only for Deep Learning. Knowing
that a learning algorithm performs better compared to another learning algorithm doesn’t
give us any information about its performance when compared to classical state-of-the-art
algorithms.
Metrics that don’t lead to confusion should be taken into consideration in the future,
in order to be able to correctly compare learning and classical algorithms. In OccAnt
and ANS, for example, the map_accuracy metrics doesn’t take into consideration the
path_length required to obtain that mapping accuracy. As seen, when we take into con-
sideration this metric, we can compare Deep Learning and classical algorithms. In DRL
the avg_reward metric provided by the authors of the original implementation is not even
useful in order to compare it to the other two learning algorithms (OccAnt and ANS).
Our comparison highlights the fact that performance of OccAnt, ANS, and the classical
algorithm in complex simulation environments is comparable and because of the fact that
Deep Learning algorithms are known to exploit imperfections in order to obtain better
performance, it would be useful to know if these results can also be achieved in the real
world. The real world environments where the algorithms are tested should be complex
(with a lot of rooms and obstacles) and not simple like the one reported in [73].
The difficulty of writing a strong reward function, which is also able to generalize well in
unknown environments has been discussed theoretically in Section 2.4.1 and experimen-
tally tested in Section 5.4.2. Here we can see how the DRL algorithm performs well in the

6| Conclusion and future work 99

simple environments where it is tested, but when it is compared with ANS and OccAnt
in more complex environments its results are significantly lower. Furthermore, most of
Deep Learning algorithms don’t provide interpretability, contrary to classical algorithms.
Because of this reason, we can’t be really sure of what is the real problem when we deploy
DRL in a complex environment.
DRL’s lower performance also stresses out the importance of acquiring experience for a
Deep Learning algorithm. A good solution in order to avoid the problems identified with
DRL may be to train the algorithm in different simulators in an effort to acquire as much
experience as possible before deploying the agent in the real world. Training of the Deep
Learning algorithms on different simulators may also avoid them to learn the imperfec-
tions of a particular simulator. In all the papers examined, the training and the testing
in the simulator or in the real world are considered separate phases. This disjunction
doesn’t allow an agent to also learn from experience in the real world once it has been
trained (necessarily) in a simulator. As a future direction, it may be useful to consider
approaches where the agent is also able to learn from experience in the real world which,
as already mentioned, is naturally very different from all the simulators considered.

101

Bibliography

[1] Ai2thor simulator. https://ai2thor.allenai.org/. Last accessed: 01/02/2022.

[2] AI Habitat. https://aihabitat.org/. Last accessed: 06/01/2022.

[3] Habitat-lab. https://github.com/facebookresearch/habitat-lab. Last ac-
cessed: 06/01/2022.

[4] Habitat-sim. https://github.com/facebookresearch/habitat-sim. Last ac-
cessed: 06/01/2022.

[5] AI Habitat youtube. https://www.youtube.com/watch?v=L9GuINYhmZI&list=

PLGywud_-HlCORC0c4uj97oppQrGiB6JNy. Last accessed: 06/01/2022.

[6] Ans training time. https://github.com/devendrachaplot/Neural-SLAM/

issues/30. Last accessed: 18/04/2022.

[7] Drl robot navigation. https://github.com/reiniscimurs/

DRL-robot-navigation. Last accessed: 06/01/2022.

[8] Explore lite - frontier exploration. http://wiki.ros.org/explore_lite. Last
accessed: 01/02/2022.

[9] Gazebo simulator. http://gazebosim.org/. Last accessed: 16/01/2022.

[10] Gibson dataset. http://gibsonenv.stanford.edu/database/. Last accessed:
06/01/2022.

[11] Utilities for Gibson environment. https://github.com/micheleantonazzi/

gibson-env-utilities. Last accessed: 12/03/2022.

[12] Gmapping - SLAM. http://wiki.ros.org/gmapping. Last accessed: 01/02/2022.

[13] Hm3d. https://aihabitat.org/datasets/hm3d/. Last accessed: 06/01/2022.

[14] Lifull home’s dataset. https:/F/www.nii.ac.jp/dsc/idr/en/lifull/. Last ac-
cessed: 01/02/2022.

https://ai2thor.allenai.org/
https://aihabitat.org/
https://github.com/facebookresearch/habitat-lab
https://github.com/facebookresearch/habitat-sim
https://www.youtube.com/watch?v=L9GuINYhmZI&list=PLGywud_-HlCORC0c4uj97oppQrGiB6JNy
https://www.youtube.com/watch?v=L9GuINYhmZI&list=PLGywud_-HlCORC0c4uj97oppQrGiB6JNy
https://github.com/devendrachaplot/Neural-SLAM/issues/30
https://github.com/devendrachaplot/Neural-SLAM/issues/30
https://github.com/reiniscimurs/DRL-robot-navigation
https://github.com/reiniscimurs/DRL-robot-navigation
http://wiki.ros.org/explore_lite
http://gazebosim.org/
http://gibsonenv.stanford.edu/database/
https://github.com/micheleantonazzi/gibson-env-utilities
https://github.com/micheleantonazzi/gibson-env-utilities
http://wiki.ros.org/gmapping
https://aihabitat.org/datasets/hm3d/
https:/F/www.nii.ac.jp/dsc/idr/en/lifull/

102 | Bibliography

[15] Habitat noise. https://github.com/facebookresearch/habitat-sim/pull/89.
Last accessed: 16/02/2022.

[16] Habitat sliding problem. https://github.com/facebookresearch/habitat-sim/
pull/439. Last accessed: 01/02/2022.

[17] Explainable AI. https://becominghuman.ai/

its-magic-i-owe-you-no-explanation-explainableai-43e798273a08. Last
accessed: 25/05/2022.

[18] Keras resnet. https://github.com/raghakot/keras-resnet/blob/master/

resnet.py. Last accessed: 24/01/2022.

[19] Pyrobot. http://www.locobot.org/. Last accessed: 21/01/2022.

[20] Matterport3d. https://niessner.github.io/Matterport/. Last accessed:
06/01/2022.

[21] movebase. http://wiki.ros.org/move_base. Last accessed: 14/03/2022.

[22] Occupancy anticipation. https://github.com/facebookresearch/

OccupancyAnticipation. Last accessed: 16/01/2022.

[23] ROS. https://ros.org. Last accessed: 07/01/2022.

[24] ROS nodes. http://wiki.ros.org/Nodes. Last accessed: 08/06/2022.

[25] ROS packages. http://docs.ros.org/en/independent/api/rospkg/html/

packages.html. Last accessed: 21/06/2022.

[26] ROS stage simulator. http://wiki.ros.org/stage_ros. Last accessed:
01/02/2022.

[27] Rviz. https://github.com/ros-visualization/rviz. Last accessed:
07/01/2022.

[28] Replica. https://github.com/facebookresearch/Replica-Dataset. Last ac-
cessed: 06/01/2022.

[29] ROS-X-Habitat. https://github.com/ericchen321/ros_x_habitat. Last ac-
cessed: 16/01/2022.

[30] SLAM. http://ais.informatik.uni-freiburg.de/teaching/ss12/robotics/

slides/12-slam.pdf. Last accessed: 17/02/2022.

https://github.com/facebookresearch/habitat-sim/pull/89
https://github.com/facebookresearch/habitat-sim/pull/439
https://github.com/facebookresearch/habitat-sim/pull/439
https://becominghuman.ai/its-magic-i-owe-you-no-explanation-explainableai-43e798273a08
https://becominghuman.ai/its-magic-i-owe-you-no-explanation-explainableai-43e798273a08
https://github.com/raghakot/keras-resnet/blob/master/resnet.py
https://github.com/raghakot/keras-resnet/blob/master/resnet.py
http://www.locobot.org/
https://niessner.github.io/Matterport/
http://wiki.ros.org/move_base
https://github.com/facebookresearch/OccupancyAnticipation
https://github.com/facebookresearch/OccupancyAnticipation
https://ros.org
 http://wiki.ros.org/Nodes
 http://docs.ros.org/en/independent/api/rospkg/html/packages.html
 http://docs.ros.org/en/independent/api/rospkg/html/packages.html
http://wiki.ros.org/stage_ros
https://github.com/ros-visualization/rviz
https://github.com/facebookresearch/Replica-Dataset
https://github.com/ericchen321/ros_x_habitat
http://ais.informatik.uni-freiburg.de/teaching/ss12/robotics/slides/12-slam.pdf
http://ais.informatik.uni-freiburg.de/teaching/ss12/robotics/slides/12-slam.pdf

| Bibliography 103

[31] Trajectory rollout. http://wiki.ros.org/base_local_planner#

TrajectoryPlannerROS. Last accessed: 07/06/2022.

[32] VAE and CVAE. https://www.cs.hhu.de/fileadmin/redaktion/Fakultaeten/
Mathematisch-Naturwissenschaftliche_Fakultaet/Informatik/Dialog_

Systems_and_Machine_Learning/052020_vae.pdf. Last accessed: 31/01/2022.

[33] Vizdoom simulator. https://github.com/mwydmuch/ViZDoom. Last accessed:
01/02/2022.

[34] Fmm path planning. https://jvgomez.github.io/files/pubs/fm2star.pdf.
Last accessed: 22/05/2022.

[35] P. Abbeel and A. Y. Ng. Apprenticeship learning via Inverse Reinforcement Learn-
ing. In Proceedings of the twenty-first International Conference on Machine learning,
pages 1–8, 2004.

[36] S. Albawi, T. A. Mohammed, and S. Al-Zawi. Understanding of a convolutional
neural network. In Proceedings of the 2017 International Conference on Engineering
and Technology (ICET), pages 1–6, 2017.

[37] F. Amigoni. Experimental evaluation of some exploration strategies for mobile
robots. In Proceedings of the 2008 IEEE International Conference on Robotics and
Automation, pages 2818–2823. IEEE, 2008.

[38] F. Amigoni, M. Luperto, and V. Schiaffonati. Toward generalization of experimental
results for autonomous robots. Robotics and Autonomous Systems, 90:4–14, 2017.

[39] O. Asraf and V. Indelman. Experience-based prediction of unknown environments
for enhanced belief space planning. In Proceedings of the 2020 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 6781–6788,
2020.

[40] A. Aydemir, P. Jensfelt, and J. Folkesson. What can we learn from 38,000 rooms?
reasoning about unexplored space in indoor environments. In Proceedings of the
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
4675–4682, 2012.

[41] S. Bai, F. Chen, and B. Englot. Toward autonomous mapping and exploration
for mobile robots through deep supervised learning. In Proceedings of the 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 2379–2384, 2017.

http://wiki.ros.org/base_local_planner#TrajectoryPlannerROS
http://wiki.ros.org/base_local_planner#TrajectoryPlannerROS
https://www.cs.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-Naturwissenschaftliche_Fakultaet/Informatik/Dialog_Systems_and_Machine_Learning/052020_vae.pdf
https://www.cs.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-Naturwissenschaftliche_Fakultaet/Informatik/Dialog_Systems_and_Machine_Learning/052020_vae.pdf
https://www.cs.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-Naturwissenschaftliche_Fakultaet/Informatik/Dialog_Systems_and_Machine_Learning/052020_vae.pdf
https://github.com/mwydmuch/ViZDoom
https://jvgomez.github.io/files/pubs/fm2star.pdf

104 | Bibliography

[42] C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Küttler,
A. Lefrancq, S. Green, V. Valdés, A. Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

[43] F. Bissmarck, M. Svensson, and G. Tolt. Efficient algorithms for next best view
evaluation. In Proceedings of the 2015 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 5876–5883, 2015.

[44] A. Buitrago-Martínez, R. F. De la Rosa, and F. Lozano-Martínez. Hierarchical rein-
forcement learning approach for motion planning in mobile robotics. In Proceedings
of the 2013 Latin American Robotics Symposium and Competition, pages 83–88,
2013.

[45] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

[46] J. A. Caley, N. R. Lawrance, and G. A. Hollinger. Deep learning of structured
environments for robot search. Autonomous Robots, 43(7):1695–1714, 2019.

[47] D. Calisi, A. Farinelli, L. Iocchi, and D. Nardi. Autonomous exploration for search
and rescue robots. WIT Transactions on the Built Environment, 94:1–10, 2007.

[48] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov. Learning to
explore using active neural slam. arXiv preprint arXiv:2004.05155, 2020.

[49] D. S. Chaplot, D. P. Gandhi, A. Gupta, and R. R. Salakhutdinov. Object goal nav-
igation using goal-oriented semantic exploration. Advances in Neural Information
Processing Systems, 33:4247–4258, 2020.

[50] D. S. Chaplot, H. Jiang, S. Gupta, and A. Gupta. Semantic curiosity for active
visual learning. In Proceedings of the European Conference on Computer Vision,
pages 309–326, 2020.

[51] D. S. Chaplot, M. Dalal, S. Gupta, J. Malik, and R. Salakhutdinov. Seal: Self-
supervised embodied active learning using exploration and 3d consistency. arXiv
preprint arXiv:2112.01001, 2021.

[52] C. Chen, S. Majumder, Z. Al-Halah, R. Gao, S. K. Ramakrishnan, and K. Grau-
man. Learning to set waypoints for audio-visual navigation. arXiv preprint
arXiv:2008.09622, 2020.

[53] F. Chen, J. D. Martin, Y. Huang, J. Wang, and B. Englot. Autonomous exploration
under uncertainty via deep reinforcement learning on graphs. In Proceedings of

| Bibliography 105

the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 6140–6147, 2020.

[54] G. Chen, H. Yang, and I. M. Mitchell. Ros-x-habitat: Bridging the ros ecosystem
with embodied ai. arXiv preprint arXiv:2109.07703, 2021.

[55] T. Chen, S. Gupta, and A. Gupta. Learning exploration policies for navigation.
arXiv preprint arXiv:1903.01959, 2019.

[56] W. Chen, T. Qu, Y. Zhou, K. Weng, G. Wang, and G. Fu. Door recognition and
deep learning algorithm for visual based robot navigation. In Proceedings of the
2014 IEEE International Conference on Robotics and Biomimetics (robio 2014),
pages 1793–1798, 2014.

[57] Y.-h. Chen, I. L. Moreno, T. Sainath, M. Visontai, R. Alvarez, and C. Parada.
Locally-connected and convolutional neural networks for small footprint speaker
recognition. In Proceedings of the Sixteenth Annual Conference of the International
Speech Communication Association, pages 1–5, 2015.

[58] S. Chernova and M. Veloso. Confidence-based policy learning from demonstration
using gaussian mixture models. In Proceedings of the 6th International joint Con-
ference on Autonomous Agents and Multiagent Systems, pages 1–8, 2007.

[59] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[60] R. Cimurs, I. H. Suh, and J. H. Lee. Goal-driven autonomous exploration through
deep reinforcement learning. IEEE Robotics and Automation Letters, 7(2):730–737,
2022. doi: 10.1109/LRA.2021.3133591.

[61] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A.
Bharath. Generative adversarial networks: An overview. IEEE Signal Processing
Magazine, 35(1):53–65, 2018.

[62] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra. Embodied question
answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–10, 2018.

[63] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in
actor-critic methods. In Proceedings of the International Conference on Machine
Learning, pages 1587–1596, 2018.

106 | Bibliography

[64] H. H. González-Banos and J.-C. Latombe. Navigation strategies for exploring indoor
environments. The International Journal of Robotics Research, 21(10-11):829–848,
2002.

[65] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. In Proceedings
of the International Conference on Machine Learning, pages 1861–1870, 2018.

[66] S. Y. Hayoun, E. Zwecher, E. Iceland, A. Revivo, S. R. Levy, and A. Barel. In-
tegrating deep-learning-based image completion and motion planning to expedite
indoor mapping. arXiv preprint arXiv:2011.02043, 2020.

[67] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 770–778, 2016.

[68] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. In Proceedings of
the IEEE International Conference on Computer Vision, pages 2961–2969, 2017.

[69] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Hor-
gan, B. Piot, M. Azar, and D. Silver. Rainbow: combining improvements in deep
reinforcement learning. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence
Conference and Eighth AAAI Symposium on Educational Advances in Artificial In-
telligence, pages 3215–3222, 2018.

[70] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

[71] S. Jung and D. H. Shim. Mapless navigation: Learning uavs motion for exploration
of unknown environments. arXiv preprint arXiv:2110.01747, 2021.

[72] N. Justesen, P. Bontrager, J. Togelius, and S. Risi. Deep learning for video game
playing. IEEE Transactions on Games, 12(1):1–20, 2019.

[73] A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, S. Lee, M. Savva,
S. Chernova, and D. Batra. Sim2real predictivity: Does evaluation in simulation
predict real-world performance? IEEE Robotics and Automation Letters, 5(4):
6670–6677, 2020.

[74] Y. Katsumata, A. Kanechika, A. Taniguchi, L. E. Hafi, Y. Hagiwara, and
T. Taniguchi. Map completion from partial observation using the global structure
of multiple environmental maps. arXiv preprint arXiv:2103.09071, 2021.

| Bibliography 107

[75] K. Katyal, K. Popek, C. Paxton, P. Burlina, and G. D. Hager. Uncertainty-aware
occupancy map prediction using generative networks for robot navigation. In Pro-
ceedings of the 2019 International Conference on Robotics and Automation (ICRA),
pages 5453–5459, 2019.

[76] D. I. Koutras, A. C. Kapoutsis, A. A. Amanatiadis, and E. B. Kosmatopoulos.
Marsexplorer: Exploration of unknown terrains via deep reinforcement learning
and procedurally generated environments. arXiv preprint arXiv:2107.09996, 2021.

[77] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25:1097–1105, 2012.

[78] G. Kumar, N. S. Shankar, H. Didwania, R. Roychoudhury, B. Bhowmick, and K. M.
Krishna. Gcexp: Goal-conditioned exploration for object goal navigation. In Pro-
ceedings of the 2021 30th IEEE International Conference on Robot & Human Inter-
active Communication (RO-MAN), pages 123–130, 2021.

[79] T. Li, D. Ho, C. Li, D. Zhu, C. Wang, and M. Q.-H. Meng. Houseexpo: A large-
scale 2D indoor layout dataset for learning-based algorithms on mobile robots. In
Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5839–5846, 2020.

[80] M. Luperto and F. Amigoni. Extracting structure of buildings using layout recon-
struction. In Proceedings of the International Conference on Intelligent Autonomous
Systems, pages 652–667, 2018.

[81] M. Luperto, V. Arcerito, and F. Amigoni. Predicting the layout of partially observed
rooms from grid maps. In Proceedings of the 2019 International Conference on
Robotics and Automation (ICRA), pages 6898–6904, 2019.

[82] M. Luperto, L. Fochetta, and F. Amigoni. Exploration of indoor environments
through predicting the layout of partially observed rooms. In Proceedings of the 20th
International Conference on Autonomous Agents and MultiAgent Systems, pages
836–843, 2021.

[83] S. Macenski. On use of the slam toolbox: A fresh (er) look at mapping and local-
ization for the dynamic world. In Proceedings of the ROSCon, pages 1–17, 2019.

[84] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Y. Zhao, E. Wijmans,
B. Jain, J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra. Habitat: A

108 | Bibliography

Platform for Embodied AI Research. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 9339–9347, 2019.

[85] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[86] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
Proceedings of the International Conference on Machine learning, pages 1928–1937,
2016.

[87] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
Proceedings of the 33rd International Conference on Machine Learning, pages 1928–
1937, 2016.

[88] A. Murali, T. Chen, K. V. Alwala, D. Gandhi, L. Pinto, S. Gupta, and A. Gupta.
Pyrobot: An open-source robotics framework for research and benchmarking. arXiv
preprint arXiv:1906.08236, 2019.

[89] T. Nagarajan and K. Grauman. Learning affordance landscapes for interaction
exploration in 3d environments. arXiv preprint arXiv:2008.09241, 2020.

[90] M. Narasimhan, E. Wijmans, X. Chen, T. Darrell, D. Batra, D. Parikh, and
A. Singh. Seeing the un-scene: Learning amodal semantic maps for room nav-
igation. In Proceedings of the European Conference on Computer Vision, pages
513–529, 2020.

[91] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan. Speech recognition
using deep neural networks: A systematic review. IEEE Access, 7:19143–19165,
2019.

[92] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat. Deep reinforcement learning robot
for search and rescue applications: Exploration in unknown cluttered environments.
IEEE Robotics and Automation Letters, 4(2):610–617, 2019.

[93] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton-Jacobi formulations. Journal of Computational
Physics, 79(1):12–49, 1988.

[94] M. Pak and S. Kim. A review of deep learning in image recognition. In 2017

| Bibliography 109

4th International Conference on Computer Applications and Information Processing
Technology (CAIPT), pages 1–3. IEEE, 2017.

[95] M.-C. Popescu, V. E. Balas, L. Perescu-Popescu, and N. Mastorakis. Multilayer
perceptron and neural networks. WSEAS Transactions on Circuits and Systems, 8
(7):579–588, 2009.

[96] W. Qi, R. T. Mullapudi, S. Gupta, and D. Ramanan. Learning to move with
affordance maps. arXiv preprint arXiv:2001.02364, 2020.

[97] S. K. Ramakrishnan, Z. Al-Halah, and K. Grauman. Occupancy anticipation for
efficient exploration and navigation. In Proceedings of the European Conference on
Computer Vision, pages 400–418, 2020.

[98] E. Remolina and B. Kuipers. Towards a general theory of topological maps. Artificial
Intelligence, 152(1):47–104, 2004.

[99] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. In Proceedings of the International Conference
on Medical Image Computing and Computer-Assisted Intervention, pages 234–241,
2015.

[100] M. Saroya, G. Best, and G. A. Hollinger. Online exploration of tunnel networks
leveraging topological cnn-based world predictions. In Proceedings of the 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 6038–6045, 2020.

[101] N. Savinov, A. Dosovitskiy, and V. Koltun. Semi-parametric topological memory
for navigation. arXiv preprint arXiv:1803.00653, 2018.

[102] M. Savva, A. X. Chang, A. Dosovitskiy, T. Funkhouser, and V. Koltun. Minos: Mul-
timodal indoor simulator for navigation in complex environments. arXiv preprint
arXiv:1712.03931, 2017.

[103] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[104] J. A. Sethian. Fast marching methods. SIAM review, 41(2):199–235, 1999.

[105] S. K. Sharma and S. Kumar. Comparative analysis of Manhattan and Euclidean dis-
tance metrics using A* algorithm. Journal of Research in Engineering and Applied
Sciences, 1(4):196–198, 2016.

[106] R. Shrestha, F.-P. Tian, W. Feng, P. Tan, and R. Vaughan. Learned map prediction

110 | Bibliography

for enhanced mobile robot exploration. In Proceedings of the 2019 International
Conference on Robotics and Automation (ICRA), pages 1197–1204, 2019.

[107] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to autonomous
mobile robots. MIT press, 2011.

[108] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):
484–489, 2016.

[109] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[110] A. J. Smith and G. A. Hollinger. Distributed inference-based multi-robot explo-
ration. Autonomous Robots, 42(8):1651–1668, 2018.

[111] Y. Song, Y. Hu, J. Zeng, C. Hu, L. Qin, and Q. Yin. Towards efficient exploration
in unknown spaces: A novel hierarchical approach based on intrinsic rewards. In
Proceedings of the 2021 6th International Conference on Automation, Control and
Robotics Engineering (CACRE), pages 414–422, 2021.

[112] C. Stachniss, J. J. Leonard, and S. Thrun. Simultaneous localization and mapping.
In Springer Handbook of Robotics, pages 1153–1176. Springer, 2016.

[113] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems, pages 3104–3112,
2014.

[114] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[115] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner, N. Maestre,
M. Mukadam, D. Chaplot, O. Maksymets, A. Gokaslan, V. Vondrus, S. Dharur,
F. Meier, W. Galuba, A. Chang, Z. Kira, V. Koltun, J. Malik, M. Savva, and
D. Batra. Habitat 2.0: Training home assistants to rearrange their habitat. arXiv
preprint arXiv:2106.14405, 2021.

[116] F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. arXiv
preprint arXiv:1805.01954, 2018.

6| BIBLIOGRAPHY 111

[117] R. Vaughan. Massively multi-robot simulation in stage. Swarm intelligence, 2(2):
189–208, 2008.

[118] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva, and
D. Batra. Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion
frames. arXiv preprint arXiv:1911.00357, 2019.

[119] Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian. Building generalizable agents with a
realistic and rich 3d environment. arXiv preprint arXiv:1801.02209, 2018.

[120] X. Xiao, D. Xu, and W. Wan. Overview: Video recognition from handcrafted
method to deep learning method. In 2016 International Conference on Audio,
Language and Image Processing (ICALIP), pages 646–651. IEEE, 2016.

[121] B. Yamauchi. A frontier-based approach for autonomous exploration. In Proceed-
ings of the 1997 IEEE International Symposium on Computational Intelligence in
Robotics and Automation CIRA’97., pages 146–151, 1997.

[122] J. Ye, D. Batra, A. Das, and E. Wijmans. Auxiliary tasks and exploration enable
objectgoal navigation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 16117–16126, 2021.

[123] Z. Zheng, C. Cao, and J. Pan. A hierarchical approach for mobile robot exploration
in pedestrian crowd. IEEE Robotics and Automation Letters, 7(1):175–182, 2021.

[124] E. Zwecher, E. Iceland, S. R. Levy, S. Y. Hayoun, O. Gal, and A. Barel. Integrating
deep reinforcement and supervised learning to expedite indoor mapping. arXiv
preprint arXiv:2109.08490, 2021.

113

A| Appendix A

A.1. OccAnt vs. ANS exploration for map building

results - Noise free - Different environments size

In this section, we show the results of the comparison between OccAnt and ANS on
exploration for map building task in small, medium, and big environments (noise free).
In parentheses, we report also the standard deviation.

ANS (depth) ANS (rgb) OccAnt (rgb)

map_accuracy 38.761 (8.638) 36.685 (7.761) 38.068 (8.481)

area_seen 45.552 (9.960) 45.160 (9.431) 45.235 (10.030)

free_space_seen 22.603 (4.985) 22.503 (4.720) 22.873 (5.121)

occupied_space_seen 22.949 (6.292) 22.656 (6.055) 22.361 (6.213)

time_per_episode 0.865 (0.002) 0.896 (0.002) 0.995 (0.004)

area_seen_over_time 52.661 (10.514) 50.402 (10.525) 45.462 (10.008)
AC/AS 0.851 (0.025) 0.812 (0.033) 0.942 (0.030)

Table A.1: Results of exploration for map building done in small area group environments
with OccAnt and ANS in noise free simulation.

In Table A.1 are presented only the results of the comparison done on the 568 episodes
of the 8 small area group environments (Section 5.1.1).

114 A| Appendix A

ANS (depth) ANS (rgb) OccAnt (rgb)

map_accuracy 57.686 (17.943) 51.900 (16.387) 61.562 (17.314)

area_seen 66.340 (20.068) 62.584 (20.627) 69.377 (20.772)

free_space_seen 35.278 (11.007) 33.643 (12.050) 37.394 (11.397)

occupied_space_seen 31.062 (10.414) 28.940 (9.961) 31.983 (10.762)

time_per_episode 0.866 (0.002) 0.910 (0.002) 0.991 (0.005)
area_seen_over_time 76.605 (23.173) 68.774 (22.667) 70.007 (20.961)

AC/AS 0.870 (0.061) 0.829 (0.063) 0.887 (0.0494)

Table A.2: Results of exploration for map building done in medium area group environ-
ments with OccAnt and ANS in noise free simulation.

In Table A.2 are presented only the results of the comparison done on the 213 episodes
of the 3 medium area group environments (Section 5.1.1).

ANS (depth) ANS (rgb) OccAnt (rgb)

map_accuracy 60.389 (20.648) 53.172 (19.461) 64.306 (22.540)

area_seen 71.697 (22.969) 68.250 (22.679) 75.593 (24.817)

free_space_seen 43.517 (11.334) 41.958 (11.699) 46.237 (11.915)

occupied_space_seen 28.181 (12.106) 26.293 (11.501) 29.355 (13.281)

time_per_episode 0.878 (0.002) 0.917 (0.002) 0.968 (0.005)
area_seen_over_time 81.659 (25.161) 74.427 (24.732) 78.092 (25.637)

AC/AS 0.842 (0.060) 0.779 (0.053) 0.850 (0.046)

Table A.3: Results of exploration for map building done in big area group environments
with OccAnt and ANS in noise free simulation.

In Table A.3 are presented only the results of the comparison done on the 213 episodes
of the 3 big area group environments (Section 5.1.1).

A| Appendix A 115

A.2. OccAnt vs. ANS exploration for map building

results - Noisy - Different environments size

In this section, we show the results of the comparison between OccAnt and ANS on
exploration for map building task in small, medium, and big environments (noisy). In
parentheses, we report also the standard deviation.

ANS (depth) ANS (rgb) OccAnt (rgb)

map_accuracy 35.142 (7.354) 33.443(7.015) 34.092(7.250)

area_seen 44.480 (8.863) 44.084 (8.871) 44.807 (9.213)

free_space_seen 22.260 (4.576) 22.071 (4.489) 22.704 (4.794)

occupied_space_seen 22.220 (5.776) 22.013 (5.718) 22.102 (5.852)

time_per_episode 0.842 (0.002) 0.877 (0.002) 0.843 (0.005)
area_seen_over_time 52.827 (10.540) 50.267 (9.292) 53.151 (9.579)

AC/AS 0.790 (0.460) 0.758 (0.051) 0.760 (0.0569)

Table A.4: Results of exploration for map building done in small area group environments
with OccAnt and ANS in noisy simulation.

In Table A.4 are presented only the results of the comparison on the 568 episodes of the
8 small area group environments (Section 5.1.1).

ANS (depth) ANS (rgb) OccAnt (rgb)

map_accuracy 45.575 (15.184) 43.208 (12.651) 49.424 (12.817)

area_seen 59.261 (17.921) 56.615 (17.295) 63.979 (17.406)

free_space_seen 32.080 (10.334) 31.101 (10.093) 34.993 (10.12)

occupied_space_seen 27.026 (9.089) 25.513 (8.802) 28.986 (8.948)

time_per_episode 0.843 (0.002) 0.878 (0.002) 0.966 (0.006)
area_seen_over_time 70.298 (21.270) 64.482 (19.744) 66.231 (18.067)

AC/AS 0.803 (0.077) 0.763 (0.0687) 0.772 (0.083)

Table A.5: Results of exploration for map building done in medium area group environ-
ments with OccAnt and ANS in noisy simulation.

In Table A.5 are presented only the results of the comparison on the 213 episodes of the
3 medium area group environments (Section 5.1.1).

116 A| Appendix A

ANS (depth) ANS (rgb) OccAnt (rgb)

map_accuracy 49.531 (16.093) 44.747 (13.646) 52.197 (16.405)

area_seen 63.934 (19.146) 61.846 (17.094) 68.822 (21.414)

free_space_seen 39.504 (9.766) 38.329 (8.828) 42.590 (10.474)

occupied_space_seen 24.430 (10.038) 23.517 (8.944) 26.232 (11.451)

time_per_episode 0.843 (0.002) 0.878 (0.002) 0.964 (0.003)
area_seen_over_time 75.841 (22.651) 70.440 (19.434) 71.392 (22.113)

AC/AS 0.774 (0.058) 0.726 (0.062) 0.758 (0.079)

Table A.6: Results of exploration for map building done in big area group environments
with OccAnt and ANS in noisy simulation.

In Table A.6 are presented only the results of the comparison on the 213 episodes of the
3 big area group environments (Section 5.1.1).

A| Appendix A 117

A.3. Frontier exploration vs. OccAnt vs. ANS -

Small environments

In this section, we show the results of the comparison between OccAnt, ANS, and frontier
exploration on exploration for map building task in two additional small environments.

A.3.1. Elmira

Figure A.1: Map produced and path_length of ANS (rgb), ANS (depth), OccAnt (rgb),
frontier exploration, and frontier exploration 2D in Elmira.

From maps and table in Figure A.1 we can see that with the same path_length frontier
exploration in both 3D and 2D environments map more area than ANS and OccAnt
algorithm.

118 A| Appendix A

A.3.2. Eudora

Figure A.2: Map produced and path_length of ANS (rgb), ANS (depth), OccAnt (rgb),
frontier exploration, and frontier exploration 2D in Eudora.

In this case, frontier exploration 2D follows a slightly different path with respect to
the one proposed by frontier exploration in 3D and so at the same path_length it still
hasn’t reached the last room. The room is being explored shortly after: at 7.586 m the
free_space_seen is 16.214 m2.

A| Appendix A 119

A.4. Point-goal driven exploration ANS vs. OccAnt

vs. classical algorithm - Complete tables

In this section, we show all the path_length values of the point-goal driven exploration
comparison between ANS, OccAnt, and classical algorithm.

classical OccAnt (depth) ANS (depth)

success path_length success path_length success path_length

0 1 7.277 1 7.284 1 7.396

1 1 3.750 0 0.193 0 0.189

2 0 0.2 1 5.477 1 5.492

3 1 5.799 1 6.330 0 3.137

4 1 7.306 1 7.394 1 7.638

5 1 2.580 1 2.508 1 2.503

6 1 5.472 0 0.207 0 1.006

7 1 4.417 1 3.962 1 4.013

8 1 5.100 1 5.181 1 5.151

9 1 4.330 1 4.589 1 4.325

10 1 5.757 0 4.917 0 1.513

11 1 3.356 1 3.557 1 3.533

12 1 3.522 1 3.531 1 3.598

13 1 3.950 1 5.513 1 3.944

14 1 3.993 1 5.195 1 5.237

15 1 2.610 1 2.665 1 4.296

16 1 4.010 1 4.159 1 4.241

17 1 3.248 1 3.251 1 3.252

18 1 5.255 1 5.332 1 5.619

19 1 1.638 1 1.900 1 1.621

20 1 5.339 1 5.844 1 5.592

21 1 3.497 1 3.574 1 3.530

22 1 6.773 1 7.054 1 7.731

23 1 4.132 1 4.248 1 4.170

24 1 6.513 1 6.951 1 6.293

25 1 4.825 1 5.775 1 7.824

120 A| Appendix A

26 1 3.680 1 3.806 1 3.679

27 1 5.214 1 5.096 1 5.131

28 1 4.730 1 5.410 0 2.958

29 1 4.380 1 5.348 0 10.466

Table A.7: Results of comparison (with 30 episodes) on point-goal driven exploration in
Elmira between classical algorithm, OccAnt (depth), and ANS (depth).

classical OccAnt (depth) ANS (depth)

success path_length success path_length success path_length

0 1 5.770 1 6.868 1 6.227

1 1 7.200 1 8.011 0 2.170

2 1 2.802 1 3.455 1 3.052

3 1 8.985 1 9.886 1 10.035

4 0 19.50 1 9.391 0 7.527

5 1 5.920 1 5.438 0 3.447

6 1 5.294 1 5.436 1 5.659

7 1 6.220 0 1.465 1 6.379

8 1 5.195 1 5.101 1 5.283

9 1 8.211 1 9.196 0 3.359

10 1 6.140 1 6.860 1 7.330

11 1 3.980 1 4.007 0 3.889

12 1 8.490 1 8.576 1 9.235

13 1 9.871 1 9.937 1 12.346

14 1 4.05 1 3.838 1 3.458

15 1 6.046 1 9.920 1 6.246

16 1 2.965 1 2.992 1 2.903

17 1 7.887 1 7.849 1 10.058

18 1 6.770 1 7.312 1 7.948

19 1 15.145 1 9.852 1 11.509

20 1 16.240 1 9.051 0 20.951

21 1 3.619 1 3.972 1 3.690

22 1 7.370 1 7.450 1 9.962

23 1 5.900 1 5.622 1 5.574

A| Appendix A 121

24 1 8.980 1 8.738 1 10.904

25 1 5.510 0 5.671 0 1.369

26 1 4.086 1 4.209 1 4.582

27 1 7.120 1 6.290 1 5.672

28 1 5.120 1 5.135 1 5.309

29 1 1.520 0 0.514 0 0.506

Table A.8: Results of comparison (with 30 episodes) on point-goal driven exploration in
Swormville between classical algorithm, OccAnt (depth), and ANS (depth).

classical OccAnt (depth) ANS (depth)

success path_length success path_length success path_length

0 1 13.170 1 15.478 0 15.303

1 1 13.680 1 13.960 0 21.314

2 1 14.249 1 16.556 1 17.346

3 1 11.470 1 13.650 1 13.941

4 1 7.100 1 7.707 1 19.358

5 1 15.808 1 24.743 1 16.210

6 1 9.729 1 9.523 1 11.010

7 1 21.589 1 17.263 0 21.553

8 1 2.750 1 2.635 1 2.786

9 0 13.12 1 19.155 0 1.758

10 1 9.480 1 9.254 1 9.806

11 1 6.436 1 7.541 0 7.691

12 1 3.940 1 4.135 1 4.133

13 1 22.810 1 23.024 1 22.412

14 1 4.246 1 4.673 1 4.471

15 1 6.829 1 8.221 0 6.125

16 1 5.150 1 7.550 1 6.555

17 1 11.269 1 14.575 0 10.661

18 1 11.511 0 0.357 0 2.541

19 1 14.612 0 13.625 0 18.188

20 1 17.640 0 6.285 0 9.628

21 1 7.580 1 9.492 1 16.853

122 A| Appendix A

22 1 4.350 1 3.822 1 3.943

23 1 15.689 1 12.817 1 15.867

24 1 3.315 1 2.545 1 2.550

25 1 6.323 0 6.779 1 7.641

26 1 17.050 1 17.992 1 22.714

27 1 8.592 1 8.286 0 2.259

28 1 23.453 0 19.811 1 29.246

29 1 13.080 1 12.528 0 0.851

Table A.9: Results of comparison (with 30 episodes) on point-goal driven exploration in
Cantwell between classical algorithm, OccAnt (depth), and ANS (depth).

123

List of Figures

2.1 Steps of the exploration process. 6
2.2 Examples of the different map representation: grid-based map and acoustic

map are taken from [52], affordance map and semantic map are taken from
[49]. 9

2.3 High-level schema of the exploration framework. 11
2.4 High-level schema of the exploration framework with end-to-end module. . 11
2.5 High-level schema of Reinforcement Learning. 14
2.6 High-level schema of Behavioral Cloning algorithm. 16
2.7 An example of the use of Supervised Learning for exploration. 17
2.8 Graphical representation of SLAM, from [30]. 18
2.9 High-level schema of the semantic mapping module implemented in [49]

and [50]. 19
2.10 Example of map generated by [110]: in white the observed portions of the

map, in red the unobserved portions inferred. 20
2.11 High-level schema of how map prediction is implemented in [97]. 21
2.12 On the left an example of grid-based map used in frontier exploration; in

the middle the frontiers extracted from the grid-based map; on the right
frontier regions after threshold (right) [121]. 23

2.13 High-level schema of the Deep Learning network proposed in [92] to eval-
uate frontier points. 24

2.14 High-level schema of the Deep Reinforcement Learning network proposed
in [48] to select the next exploration goal. 25

2.15 High-level schema of the Deep Reinforcement Learning network proposed
in [52] to select the next exploration goal. 26

2.16 High-level schema of Deep Reinforcement Learning network proposed in
[60] to select the next navigation action. 29

2.17 Pipeline of the end-to-end module presented in [41]. 30
2.18 Pipeline of the end-to-end module presented in [55]. 31
2.19 Pipeline of the end-to-end module presented in [76]. 32

124 | List of Figures

2.20 Pipeline of the end-to-end module presented in [122]. 33
2.21 Actuation noise in Habitat simulator [15]. 37
2.22 Reality on the left and simulation environment on the right (from [73]). . . 38

3.1 Schematization of the exploration problem. On the top the case where ex-
ploration and navigation policies are considered separate modules. On the
bottom the case where exploration and navigation policies are considered
a single module, learned end-to-end. 40

3.2 High-level schema of how the different modules of the exploration frame-
work are implemented in classical frontier exploration algorithm. 42

3.3 High-level schema of how the different modules of the exploration frame-
work are implemented in ANS algorithm from [48]. 44

3.4 High-level schema of how the different modules of the exploration frame-
work are implemented in OccAnt algorithm from [97]. 45

3.5 High-level schema of how the different modules of the exploration frame-
work are implemented in DRL algorithm from [60]. 46

3.6 On the left an example of robot in the Gazebo simulator, on the right
an example of robot in Habitat simulator with an environment from the
Gibson dataset. 47

4.1 The frame-per-second in simulations for Habitat ([5]) when compared to
other popular simulators. 53

4.2 High-level schema of Habitat platform, from [84]. 54
4.3 Habitat terminology, from [5]. 55
4.4 Overview of ROS-X-Habitat, from [29]. 56
4.5 Schema of DRL implementation with ROS-X-Habitat [29]. 57
4.6 Schema of frontier exploration implementation with ROS-X-Habitat [29]. . 59

5.1 Gibson dataset environments - part 1. 62
5.2 Gibson dataset environments - part 2. 63
5.3 Example of DRL environment. 64
5.4 Example of map produced by OccAnt and ANS (on the top), example of

map produced by frontier exploration (on the bottom). 68
5.5 Examples of map produced in ANS (depth), ANS (rgb), and OccAnt (rgb)

in noise free and noisy simulation. 73
5.6 Exploration path by OccAnt(rgb) in small, medium, big environments in

exploration for map building. 74

| List of Figures 125

5.7 Example of incorrect laser readings with frontier exploration in Gibson
environments. 75

5.8 Obstacles representation (Gmapping on the left, ANS/OccAnt on the right). 76
5.9 Example of map produced by frontier exploration in 3D Greigsville. 76
5.10 Map produced and path_length of ANS (rgb), ANS (depth), OccAnt (rgb),

frontier exploration, and frontier exploration 2D in Greigsville. 77
5.11 Path followed by ANS (rgb), ANS (depth), OccAnt (rgb), and frontier

exploration in Greigsville. 78
5.12 Path followed by ANS (rgb), ANS (depth), and OccAnt (rgb) in Greigsville

with path length not limited to 9.733 m. 78
5.13 Map produced and path_length of ANS (rgb), ANS (depth), OccAnt (rgb),

frontier exploration, and frontier exploration 2D in Scioto. 79
5.14 Path followed by ANS (rgb), ANS (depth), and frontier exploration in Scioto. 80
5.15 Example of incorrect laser readings in Scioto. 80
5.16 Map produced and path_length of ANS (rgb), ANS (depth), OccAnt (rgb),

frontier exploration, and frontier exploration 2D in Swormville. 81
5.17 Map produced and path_length of ANS (rgb), ANS (depth), OccAnt (rgb),

frontier exploration, and frontier exploration 2D in Cantwell. 83
5.18 Path followed by ANS (rgb), ANS (depth), OccAnt (rgb) and frontier ex-

ploration in Cantwell. 84
5.19 Map produced and path_length of ANS (rgb), ANS (depth), OccAnt (rgb),

frontier exploration, and frontier exploration 2D in Cantwell. 85
5.20 Paths followed by DRL agent in Habitat simulator in first test. 89
5.21 Paths followed by DRL agent in Habitat simulator in second test (left),

path followed in DRL environment (right). 90
5.22 Euclidean vs. obstacle-free path distance in complex Habitat environments. 91

A.1 Map produced and path_length of ANS (rgb), ANS (depth), OccAnt (rgb),
frontier exploration, and frontier exploration 2D in Elmira. 117

A.2 Map produced and path_length of ANS (rgb), ANS (depth), OccAnt (rgb),
frontier exploration, and frontier exploration 2D in Eudora. 118

127

List of Tables

2.1 Some representative papers from the literature. 12
2.2 Simulators, datasets and environment types used in every work analyzed

in this chapter. 35

5.1 Area (m2) of Gibson environments used in comparison. 62
5.2 Summary of the environments, tasks and metrics taken into consideration

in order to test the different algorithms. 67
5.3 Results of exploration for map building done in all the environments with

OccAnt and ANS in noise free simulation. 70
5.4 Results of exploration for map building done in all the environments with

OccAnt and ANS in noisy simulation. 71
5.5 Results of the comparison of exploration for map building done with Oc-

cAnt and ANS in noise free and noisy simulation. 72
5.6 Results of comparison between OccAnt and ANS on point-goal driven ex-

ploration. 88
5.7 Comparison of the results on point-goal driven exploration in Habitat sim-

ulator between DRL algorithm trained in Habitat and in Gazebo simualtor. 91
5.8 DRL obstacle-free path and Euclidean distance comparison with training

in Gazebo environments and Habitat environments. 92
5.9 Number of best path_length episodes in classical algorithm, OccAnt (depth),

and ANS (depth). 94
5.10 success_rate comparison between classical algorithm, OccAnt (depth), and

ANS (depth). 95

A.1 Results of exploration for map building done in small area group environ-
ments with OccAnt and ANS in noise free simulation. 113

A.2 Results of exploration for map building done in medium area group envi-
ronments with OccAnt and ANS in noise free simulation. 114

A.3 Results of exploration for map building done in big area group environments
with OccAnt and ANS in noise free simulation. 114

128 | List of Tables

A.4 Results of exploration for map building done in small area group environ-
ments with OccAnt and ANS in noisy simulation. 115

A.5 Results of exploration for map building done in medium area group envi-
ronments with OccAnt and ANS in noisy simulation. 115

A.6 Results of exploration for map building done in big area group environments
with OccAnt and ANS in noisy simulation. 116

A.7 Results of comparison (with 30 episodes) on point-goal driven exploration
in Elmira between classical algorithm, OccAnt (depth), and ANS (depth). . 120

A.8 Results of comparison (with 30 episodes) on point-goal driven exploration
in Swormville between classical algorithm, OccAnt (depth), and ANS (depth).121

A.9 Results of comparison (with 30 episodes) on point-goal driven exploration
in Cantwell between classical algorithm, OccAnt (depth), and ANS (depth). 122

	Abstract
	Sommario
	Ringraziamenti
	Contents
	Introduction
	State of the art
	Sensors
	Map representation
	Exploration tasks
	Exploration framework modules
	Deep Learning algorithms
	Mapping
	Exploration policy
	Navigation policy
	Exploration and navigation end-to-end learning

	Simulation environments and datasets
	Noise in simulation environments

	Algorithms tested on robots in real world

	Problem definition
	Exploration problem
	Purpose of the thesis
	Classical exploration algorithm
	Deep Learning algorithms - ANS, OccAnt, and DRL
	Learning to explore using active neural SLAM - ANS
	Occupancy anticipation for efficient exploration and navigation - OccAnt
	Goal-driven autonomous exploration through Deep Reinforcement Learning - DRL

	Simulation environment for comparison
	Key elements of the comparison

	Implementation
	Software components
	Robot Operating System (ROS)
	Gazebo
	Stage
	AI Habitat
	ROS-X-Habitat
	Utilities for Gibson Environments

	Software implementation and changes
	DRL
	Frontier exploration in ROS-X-Habitat
	ANS and OccAnt

	Experimental results
	Comparing different methods
	Gibson dataset environments
	DRL environment
	Metrics
	Exploration for map building metrics
	Point-goal driven exploration metrics

	Comparison procedure
	Exploration for map building results
	OccAnt vs. ANS exploration for map building results - Noise free
	OccAnt vs. ANS exploration for map building results - Noisy
	Frontier exploration vs. OccAnt vs. ANS
	Greigsville
	Scioto
	Swormville
	Cantwell
	Results analysis

	Decision-making time comparison frontier exploration vs. OccAnt vs. ANS

	Point-goal driven exploration results
	Point-goal driven exploration ANS vs. OccAnt results - Noise free
	DRL tests
	Point-goal driven exploration ANS vs. OccAnt vs. classical algorithm
	Results anaysis

	Conclusion and future work
	Bibliography
	Appendix A
	OccAnt vs. ANS exploration for map building results - Noise free - Different environments size
	OccAnt vs. ANS exploration for map building results - Noisy - Different environments size
	Frontier exploration vs. OccAnt vs. ANS - Small environments
	Elmira
	Eudora

	Point-goal driven exploration ANS vs. OccAnt vs. classical algorithm - Complete tables

	List of Figures
	List of Tables

