
Field Oriented Control of PMSM motor enhanced with Neural Net-
works

Tesi di Laurea Magistrale in
Automation and Control Engineering - Ingegneria dell’automazione

Juan Camilo Nustes, 10793367

Advisor:
Prof. Giambattista Gruosso

Co-advisors:
Danilo Pau

Academic year:
2022-2023

Abstract: This thesis presents a Field Oriented Control scheme implemented in
Matlab/Simulink as well as the modelling for a Permanent Magnet Synchronous
Motor which acts as the plant to be controlled. The simulated environment is
used to generate data with great capabilities for training and validating multiple
architectures of Neural Networks. The dataset is gathered after the design of
specific speed profiles applied to the motor in order to verify how the motor and
control scheme behave to the appearance of possible non-linearities that occur
when high magnitude speed variations take place. Using the TensorFlow libraries
in python, different Neural Networks are trained and validated from the gathered
dataset, this trained networks are then brought back to the matlab environment
to complement the PID regulator with the goal of improving the overall control
capabilities in means of stabilization time and overshoot reduction.

An enhanced version of the FOC scheme is implemented, where a neural network
is developed to compensate the torque generated with the PID regulator. This
improved control scheme is able to totally eliminate the overshoot generated by
the control action while still being able to stabilize the system. Furthermore, the
control sees an improvement of 40% in the stabilization time.

Key-words: Motor control, Simulink, Neural Networks, Field Oriented Control, Machine Learning

1. Introduction

Motor control has been one of the engineering targets for the previous decades, as it is a field of engineering
concerned with the regulation and management of electric motors, which are essential components in many
industrial and consumer applications. Efficient motor control is crucial for achieving optimal performance and
energy efficiency in a wide range of devices, from washing machines to electric cars. One of the most common
approaches for controlling Permanent Magnet Synchronous Machines is the Field Oriented Control (FOC),
which consists of two control loops connected in cascade, where the outer loop controls the motor speed, while
the internal loop oversees controlling the current.

Field oriented control is a widely used technique in motor control that allows for precise regulation of the motor’s
speed and torque. FOC involves transforming the AC current and voltage signals of a motor into two orthogonal

1



components: the magnetic flux and torque producing components. This allows for independent control of the
two components and enables efficient management of motor operation. Permanent Magnet Synchronous Motors
(PMSM) are widely used in industrial and consumer applications due to their high efficiency, high power density,
and low maintenance requirements. PMSMs are synchronous machines with permanent magnets embedded in
the rotor, and their operation requires precise control of the stator current and voltage using techniques such
as FOC.

Regression neural networks are a subset of artificial neural networks used to forecast numerical values; they are
made up of several interconnected layers of nodes, or neurons, that process the input data to produce a set of
output values. Each hidden layer after the input layer transforms the data in a nonlinear way, enabling the
network to learn intricate relationships and patterns in the input data. The predicted value is then produced
by the output layer using the recognized patterns. In order to reduce the discrepancy between the projected
output and the actual output for a particular input, the weights of the connections between the neurons are
changed during the training of a regression neural network. Using optimization techniques like stochastic gra-
dient descent and a loss function like mean squared error or mean absolute error, this is accomplished.

The sophisticated control method known as enhanced field oriented control (FOC) is used in electric motor
drives to increase performance and robustness. It combines classic FOC with extra compensating mechanisms
like feedforward or feedback control. In order to increase the accuracy and robustness of the control system
while reducing the reliance on physical sensors, enhanced FOC may also incorporate the use of cutting-edge
sensing and estimating approaches, such as model-based observers or sensorless control.

2. System description and Control

A simulated environment of the motor and the control scheme is developed in Matlab / Simulink in order
to test the control capabilities of the system without the risk of damaging any component when the overall
system is brought to the limit conditions. Changes in the speed reference can and will produce non-linearities
in the system, as an example, when the speed variations are of a high magnitude or when the reference is
constantly fluctuating at a high frequency. In this section, the structure of the proposed speed controller is
explained by defining each component of the FOC scheme as well as the overall implementation of the system
in the simulink environment. The control capability is then verified by feeding the system with different input
signals such as step and ramps to measure the stabilization time and overshoot percentage, as well as multi-
ple speed profiles specifically designed as tests to bring to the limit the control capabilities of the PID regulators.

2.1. Mathematical model of PMSM

A synchronous motor’s working principle is based on the interaction of the rotor’s constant magnetic field and
the stator’s revolving magnetic field. Like three-phase induction motors, synchronous motors operate with a
revolving magnetic field in their stator. According to Ampere’s Law, the magnetic field of the rotor interacts
with the synchronous alternating current of the stator windings to produce torque, which causes the rotor to
revolve. A consistent magnetic field is produced by permanent magnets on the PMSM’s rotor. The rotor poles
lock with the revolving magnetic field of the stator at a synchronous speed of rotation of the rotor with the
stator field. In this regard, when linked directly to the three-phase current network, the PMSM cannot start
itself.

The mathematical model of a PMSM is described in the two-axis d–q synchronous rotating frame [7, 11]:
∂id
∂t

= −∂Rs

∂Ld
id + ωe

∂Lq

∂Ld
iq +

1

Ld
vd,

∂iq
∂t

= ωe
∂Lq

∂Ld
id −

∂Rs

∂Lq
iq + we

∂Λf

∂Lq
+

1

Lq
vq,

(1a)

(1b)

where id, iq and vd, vq are respectively the currents and voltages in rotating coordinates. Rs is the phase
winding resistance, Ld and Lq are respectively the d and q axis inductance. ωe is the rotating speed, and Λf is
the permanent magnet flux linkage.

2



The torque Te of the PMSM can be expressed as:

Te =
3

2
∗ P ∗ [Λf iq + (Ld − Lq)idiq], (2)

The rotating speed ωe is defined by:
we = Pωm, (3)

where P is the number of poles in the motor and ωm is the rotor angular velocity .

The rotor angular velocity is given by:

∂ωm

∂t
=

3

2
∗ P ∗ [Λf iq + (Ld − Lq)idiq], (4)

The rotor angular position can be estimated from the angular velocity as shown in equation 5:

∂θm
∂t

= ωm, (5)

A visual representation of the PMSM construction is presented in Figure 1

Figure 1: Motor construction of a PMSM.

2.2. Field Oriented Control Scheme

FOC is a variable-frequency drive control method. It has seen significant advancements since its launch, making
it feasible to utilize induction motors in places where only DC motors were previously employed. FOC is one
of the greatest motor control methods available due to its effectiveness and precision, particularly in terms of
speed and torque ripple, making it suitable for both high and low power applications [1]. In Figure 2 is shown
a graphical representation of the sensorless FOC focused on the motor speed control.

Figure 2: Block scheme of the field oriented control.

3



FOC depicts stator currents as vectors, with one vector corresponding to the motor’s torque (subscript Q) and
the other corresponding to the magnetic flux (subscript D). The algorithm figures out the references for the
currents that PID controllers require to produce reference voltages. These voltages are sent through the inverse
Park transform, which produces the two-phase orthogonal components in the stationary reference frame. At
this point, these voltages are represented in a QD orthogonal reference frame [2, 10]. Vα and Vβ represent the
inputs of the Space Vector Modulator (SVM), The motor phase currents are first acquired and then used as
input of the Clarke transform which provides the components in a stationary αβ reference frame.

The internal control loop receives the reference of the Iq current and subtracts the measured value of the Iq
current, this set of currents are then fed to two PID regulators which will the produce the voltages Vq, Vd,
these voltages are then fed to the inverse park transform, which changes the reference frame of the voltage from
a stationary to a rotary reference frame. Through the Park transform, the αβ stationary reference frame is
converted into a qd rotating reference frame, providing the signals that close the feedback loop. For the speed
control, a second PID is introduced upstream the Q-D PID controllers. Through this cascade, it is possible to
regulate the electric motor speed. The phase currents are measured from the motor and then fed to the Clarke
transform, this transform provides the current in a αβ reference frame. The position value is gathered using a
Flux Observer block which computes the electrical motor position θe from the Voltages and currents in the αβ
reference frame.

Each of the components presented in the FOC scheme are explained in detail bellow:

• Clarke transform converts 3-phase currents (Ia, Ib, Ic) into a 2-phase currents (Iα, Iβ). Since both
arrangements produce a rotating magnetic field of the same strength and speed, they are equivalent [13].
Equations 6a and 6b present the computation of Iα, Iβ currents respectively.


Iα = Ia = I ∗ sin(ωt),

Iβ =

√
3Ia
3

=
2
√
3Ib
3

= I ∗ sin(ωt+ π/2),

(6a)

(6b)

Figure 3 represents the 3-phase currents (Ia, Ib, Ic) and their transformation into a 2-phase currents (Iα,
Iβ).

Figure 3: Clarke transformation from 3-phase to 2-phase AC currents.

• The Park transformation takes the 2-phase (Iα, Iβ) currents represented in a stationary reference
frame, and converts the system into a rotating frame (Q-D) by means of the Cp matrix shown in equa-
tion 7 where θ is the angle between Iα and Iq [13].

[
Id
Iq

]
=

[
cosθ sinθ
−sinθ cosθ

] [
Iα
Iβ

]
= Cp

[
Iα
Iβ

]
(7)

The transformation is represented in Figure 4 resulting in the 2-phase (Id, Iq) in a rotating reference frame.

4



Figure 4: Park transformation from a stationary to a rotating reference frame.

• Space vector modulation creates pulse width modulated signals to regulate the switches of an inverter
and create the necessary modulated voltage to drive the motor at the required speed or torque [8]. The
viable space in the αβ plane for SVM space vector synthesis is a hexagon, which is then split into six
triangular sections by the active space vectors. The active vectors V1 and V2 are applied to the first
sector, vectors V2 and V3 are applied to the second sector and so on, as showed in Figure 5.

Figure 5: SVM hexagon space vectors.

• To implement the inverter in the simulation, the Average-Value Inverter block is used (Figure 6), which
converts the DC voltage duty cycles to the 3-phase AC phase voltage that feeds the motor. The inverter
is switched on when the DC supplied voltage is higher than the specified parameter VDC , which is selected
according to the motor specifications. When the inverter is turned off, the output AC current is null.

Figure 6: Average-value inverter block in Simulink.

• The flux observer block measures the voltage and current values of the rotating reference frame and
computes the value for the electrical position of the motor. The electrical position angle is then fed back to
the park and Clarke transforms, while also being used to calculate the motor speed in a sensorless approach
by obtaining the derivative of the motor position carried by the speed measurement block. The flux
observer block and the speed measurement block are presented in Figure 7 (a) and (b) respectively.

Figure 7: Flux Observer (a) and Speed Measurement (b) block in Simulink.

5



• To factor into the motor model inside the Simulink environment, a series of blocks inside the Motor
control blockset [4] can be used. In this case, the "Surface mount PMSM" is the block used to sim-
ulate the motor behavior. This block internally considers the motor equations for the non-sinusoidal
back-EMF, flux linkage and peak currents presented in and it can be fine-tuned with the desired mo-
tor parameters such as the pole pairs and maximum rated speed. The parameters are presented in Table 1:

Figure 8: Surface mount PMSM block in Simulink

Parameters Abbreviation Value Measure unit

Pole pairs p 7 -

Max. speed ωmax 15000 Rpm

Nominal current In 1.20 Apk

Nominal DC voltage VDC 12.0 V

Stator resistance Rs 0.11 Ohm

Stator inductance Ls 0.018 mH
Back-Emf constant B-Emf 0.4 Vms/krpm

Table 1: Motor parameters used in the Simulink model.

After defining the functionality of each component that takes place in the Field Oriented Control scheme, an
overall Simulink implementation is presented in Figure 9. This control scheme considers as an input the speed
reference applied to the motor, which will also be used to test the control capabilities of the system as explained
in section 2.3. The output of the system can be considered as the motor measured speed which is then fed back
to achieve the closed-loop control.

Figure 9: Block scheme of the field oriented control developed in Simulink.

6



2.3. Control tests

In the previous subsection, all the FOC scheme components where described except for the brain of the control
system, the PID regulators. PID stands for Proportional-Integral-Derivative, which is a control method used
to regulate or maintain a desired output or process variable in engineering and industrial applications. The
PID controller continuously monitors the error between the desired setpoint and the actual output, and applies
corrective actions to minimize that error [17]. The three components of the PID algorithm work together to
adjust the control output in response to changes in the input.

Proportional (P): Produces an output proportional to the error between the reference and the output, where
the larger the error, the larger the corrective action taken. Integral (I): Integrates the error over time, and
generates an output proportional to the accumulated error. Eliminates the steady-state errors and stabilize
the system. Derivative (D): Produces an output proportional to the rate of change of the error over time,
improving the system’s response to perturbations. By adjusting the gains of each component, the PID controller
can be tuned to achieve optimal performance for a given system.

Setting the ideal PID parameters is a time consuming task due to the fact that there is no straightforward
method to define the ideal gain values as the controller can be targeted at different control objectives. One
could need a an extremely fast controller which stabilizes in the lowest possible time and not care about the
overshoot produced by the controller, while other might be more concerned on not exceeding and overshoot
value in exchange on longer stabilization times. The goal for this thesis is to have a fast stabilizing controller
capable on accurately following the speed reference while keeping the overshoot value under 12%.

In order to set the starting values for the PID regulators, the "Motor Control Workbench" software developed
by ST Microelectronics [16] is used, where the user is able to plug to the computer a control microprocessor
connected to the physical motor and then run tests directly on the hardware. After setting up the hardware
and the computer, the gains of the controllers for both the inner and outer loop are displayed in the sofware UI
as shown in Figure 10.

Figure 10: Motor control workbench UI displaying the PID gains.

To start with the control performance regarding the settling time, overshoot and bandwidth, a series of test
have been designed, where a speed profile is applied to the motor model, and the control capabilities of the FOC
are tested. This testing is approached by varying the input desired speed and comparing it to the measurement
of the motor speed value through the scope in Simulink. In Figure 11 is shown an example of a speed profile
(a) that will be applied to the motor as well as some other test cases (b) that will be explained in more detail
after defining the PID controllers.

7



Figure 11: Speed profile to be applied to the motor.

Once the gain values for the PID regulators are set inside the simulated environment, the following tests are
carried out to verify the control capabilities of the overall system:

• Test case: Step Input
For the first test, a step block is used as an input to the FOC scheme considering the starting point as
the open loop speed (10% of maximum motor speed). Once one simulation second has elapsed, the final
value of the step is the desired motor speed. As an example, Figure 12 shows the system response to a
specific input step which is set up with the following values:

◦ Initial value: Open loop speed (1500 rpm).
◦ Step time: 1 second.
◦ Final value: 80% of the maximum speed value (12000rpm).

Figure 12: Motor response to a step input of 12000 rpms.

Using the measurement tool from the Simulink scope we can obtain the overshoot value (17.9%) and we
are also able to measure the settling time which is around 0.44s, this means that the obtained PID regu-
lator is very aggressive, causing a high overshoot but no oscillations, and therefore, a faster stabilization
time.

• Test case: Ramp Input
The ramp block will increase the motor speed from the open loop value (10% of max speed) with a
constant slope. The test cases are defined by changing the slope value, which is expressed as a percentage
of the maximum motor speed (15000 rpm).

8



Figure 13: Motor response to a ramp input.

In Figure 13, the motor experiences a small undershoot of (6.56%) when the ramp starts to act on the
speed reference due to the change from a open-loop to a closed-loop speed control. Furthermore, the FOC
is able to match the speed reference in 220ms after the ramp starts affecting the motor and the system is
able to follow the speed reference without problem. Figure 14 shows a different test case scenario, where
a step takes place before the ramp in order to first bring the motor to a closed-loop control, and the result
is that the undershoot is removed, but an overshoot value of (4.4%) appears due to the presence of the
step input and a settling time of 370 ms.

Figure 14: Motor response to a step of 3000 rpm followed by a ramp input.

• Test case: Speed profile
This test case is a combination of various speed changes that will affect the motor during a specified
simulation, the aim of this test is to verify how the control scheme will behave when multiple speed
changes are affecting the motor reference, similar to a real-life scenario. Figure 15 shows a simulation
where the motor is subject during 50 seconds to 12 speed changes, all of them with different magnitude.
The objective of this test was verify how the overshoot percentage depends on the magnitude of the
speed change, resulting in a maximum of a 10% overshot while being able to quickly stabilize the system
(300-400 ms) and accurately following the reference.

9



Figure 15: Motor response to a certain speed profile.

With the presented control tests it can be said that the control scheme is capable of stabilizing the plant and
accurately following the reference. The obtained control is a robust control with very low stabilization time
and overshoot values that fall under the acceptable range (around 10%). The overall control capabilities of the
system are presented in table 2.

PID control parameters

Parameters Value Units

Settling time 0.41 [s]

Overshoot 10.2 [%]

Bandwidth - [rad/s]
Phase margin - [degrees]

Table 2: Control capabilities of the system.

3. Neural Network implementation

After the control of the system is verified, the next step is to develop a Neural Network which can replace
the PID regulator inside the simulated environment, and then run a comparison between the behavior of the
system controlled by regular PID controller vs the system controlled by a neural network. The type of network
required for this task is a regression network, as it will be trained with a string of data gathered from the
motor trying to replicate the job carried out by the PID. Neural networks are particularly effective in situa-
tions where the relationship between the input data and the output is complex and non-linear. The ability of
neural network estimators to learn from and adjust to new data is one of its key features. Additionally, they
can handle vast amounts of data and spot patterns that could be challenging or impossible for a human to notice.

However, neural network estimators can also be costly in terms of computation and training data [14, 15]. When
gathering the data to train the network, the inclusion of non-linear boundary brings the possibility to design
a non-linear control approach such as Machine learning or Neural Network based control, capable of matching
and, if possible, outperforming the behavior of a PID regulator in certain situations [30]. [6]

3.1. Dataset generation

The first step for the neural network development is to gather relevant data to train the model so that the
obtained network is able to learn the most from available data before being tested and therefore obtain better
results when deployed. The dataset was gathered from the Simulink environment where the stored measurements
are the values of the real and reference speed, as well as the reference and measured values of the regulator
currents in the DQ reference frame. Finally, the voltages Vq and Vd, which are the internal loop outputs of the
PID regulators are also stored. To read the simulink data from the matlab script the, the "to workspace" block

10



is used as shown in Figure 16.

Figure 16: "To-workspace" block in simulink.

This dataset was created to mimic the response of a PMSM when subjected to a wide set of input speed shapes
as well as test conditions specifically designed to highlight how the nonlinearities affect the PID controller
present in the FOC scheme, in this way, a physical motor to gather data is no longer needed. To make sure that
the dataset contains enough relevant information a set of input conditions where designed, where the motor
will face a series of speed variations occurring at different magnitudes and frequencies. The first speed profile
included in the dataset was the one presented in the control tests (section 2.3), based on the motor response
when subject to this test, it was decided to generate a new speed profile where the reference step is increasing
until the motor reaches the maximum speed.

This test mimics a Formula 1 car where the driver‘s acceleration pedal is acting as a switch, so the speed is no
longer gradually increasing, but is pumped up from stop to maximum value. To make the test case richer in
matter of data, this speed change is fixed to a change from 0 to 20%, 40%, 60%, 80% and full speed as it is
shown in Figure 17. Then, the speed starts changing in an inverse pattern, where the base speed will be the
maximum value and it will start decreasing by 20%, then 40% and so on.

Figure 17: Test case for the data gathering.

Some variations of the previously explained speed profile are also considered, such as reducing the time between
the speed changes in order to allow less time for the system to stabilize, and even to bring the system out of
control. The next test case for data generation is the "random source generator" which is carried out by a
simulink block with the same name which sets a mean value around which it will start generating a random
signal. The goal of this test is to test the system against rapidly changing speed values and verify if the controller
is able to follow the reference. An example of a generated random signal is presented in Figure 18.

11



Figure 18: Test case of a random signal applied to the motor.

Once all the tests are applied to the control scheme, the resulting data array in the matlab script is brought
to the the python environment. The data was saved as a .mat array which can be read in python so that the
development of the neural network can continue. The obtained dataset is composed of 8 signals with 2.7 million
data points each. A plot of the speed reference signal data is presented in Figure 19.

Figure 19: Dataset gathered from the motor model and simulation.

The full dataset was published with open access at Mendeley Data [3] and each test case is better explained in
the related paper published while working on the thesis [9].

3.2. Neural Network development

Once the dataset has been obtained and brought to the python environment, the neural network architectures
are developed and trained using Keras / TensorFlow. A Multi Layer Perceptron (MLP) architecture is devel-
oped, where the inputs of the network are the speed reference and speed error signal, and the output is the Iq
current reference value that will be fed back to the internal control loop. The MLP is a type of neural network
consisting of multiple layers of interconnected neurons based on feedforward propagation, meaning that data
moves in a single path, without using any feedback loops. An input variable is represented by each node in the
input layer, and a class label is represented by each node in the output layer. One or more layers of neurons in
the hidden layers between the input and output layers alter the input data non-linearly before forwarding it to
the following layer.

In an MLP, the neurons in each layer are fully connected to the neurons in the next layer. Each connection
has a weight associated with it, which is adjusted during the training process to minimize the error between

12



the predicted output and the actual output. MLPs are commonly used in supervised learning tasks, such as
classification and regression, where the goal is to learn a mapping between input features and output labels [5].
Figure 20 shows the mapping of the regression neural network that will replace the PID in the speed control
loop of the FOC scheme.

Figure 20: MLP Neural Network for the speed loop.

The internal neural network structure is presented in Figure 21, where four layers are implemented: the input
layer is composed of two neurons which receive the input signals (Speed reference, and error value), the second
and third layers are the hidden layers of the neural network, this are dense layers composed of 8 and 4 neurons
respectively. Finally, the output layer is defined by a single neuron, which has a linear activation function as is
required for a regression approximation problem.

Figure 21: Internal Neural Network construction.

The Algorithm 1 shows how the network is defined inside the python environment by making use of the Tensor-
Flow library. It is evident that the number of neurons in each hidden layer is larger than the ones presented in
Figure 21, this is due to the fact that including the number of nodes in the figure example is reduced in order
to ease the visual comprehension of the network architecture.

Algorithm 1 Generation of a MLP neural network
1: model = Sequential()
2: model.add(Dense(64, input_dim = 2, activation = ’relu’))
3: model.add(Dense(32, activation = ’relu’))
4: model.add(Dense(1, activation = ’linear’))
5: model.compile(optimizer=’adam’, loss=’mse’, metrics=[’mse’])

Once the network model is defined and compiled, it is now able to be trained with the previously generated
dataset, the data is split between training and validations sets by a 20% factor. The model is trained during 200
epochs while monitoring the mse_loss and accuracy in order to avoid overfitting the model. Figure 22 presents
the learning curve of the network.

13



Figure 22: Learning curve of the neural network during training.

3.3. Network deployment on Simulink

The trained network is saved as an .h5 file, storing its structure and weights, which can then be read by the
matlab script in order to generate a network with the same architecture and weights as the one developed in
python. The "predictor" block is used in simulink to read the imported neural network. The first task is to
include the network inside the simulated control scheme just as a supervisor, while the control is still being
carried out by the PID regulator as it is presented in Figure 23. The Network will produce an output that
should be the same as the one generated by the PID as it was trained to replicate it.

Figure 23: Neural network as a supervisor for the PID controller in the speed loop.

The output generated by the PID and by the neural network are comapred using the scope in Simulink in order
to verify if the network is actually generating a control action when subject to the speed profile. Figure 24
shows that in fact, the NN output (blue), is similar to the output generated by the PID (red), however, it is
not exactly the same and can lead to lack of control when the network is replacing the PID. The blue signal
is replicating the red signal but is evident that some poles are skipped, wich could be corrected with a better
training of the network.

14



Figure 24: Neural network vs PID control output.

4. Control enhancement

To improve the control capabilities of the overall system, an adaptive neural network is proposed to compen-
sate the overshoot generated by the PID regulator. The network is no longer replacing the PID but instead
they both work to stabilize the system while the network is suppressing the overshoot. To achieve this control
enhancement, the neural network is now defined as an optimization problem based on the results presented in
[12] where the control of an induction motor was improved by the implementation of an "Adaline network". An
ADALINE (Adaptive Linear Neuron) network is a type of artificial neural network that consists of a single layer
of linear neurons. A linear activation function is applied to the weighted sum that results from multiplying the
input values by a set of input weights in ADALINE neurons to produce the output. The weights are changed
during training using the gradient descent-based supervised learning algorithm.

The weights for the ADALINE network are calculated using a recursive least square estimator fed by the motor
speed and torque at 1 previous time instant, and the output signal is the motor speed in the current time instant
as shown in Figure 25.

Figure 25: Recursive least square estimator.

The motor speed ω∗[k] can be obtained by the following weighted sum:

ω∗[k] = α1ω[k − 1] + α2∆t[k − 1], (8)

Where α1 and α2 are the unknown parameters that will be estimated by the RLS. Equation 8 can be re-organized
in terms of torque (which is the output generated by the PID inside the FOC control scheme) as follows:

∆τff =
1

α2
ω[k]− α1

α2
ω[k − 1], (9)

15



The recursive least squares estimator is included in the simulink model simply by calling a pre-defined block,
while the ADALINE network is implemented as a weighted sum following equation 9. In Figure 26 is shown
the PID regulator generating the control output in the speed and the ADALINE network compenasting the
produced torque value.

Figure 26: RLS and ADALINE network compensating the PID regulator.

Two control schemes are implemented in the simulation, one applying the base FOC scheme and another
implementing the enhanced version of the control scheme in order to compare how both perform to the same
input. An input signal is generated where two steps are applied to the motor to increase the speed.

Figure 27: Neural network vs PID control output.

Figure 27 shows the speed comparison between the reference signal (red), the measured motor speed when
controlled via PID (blue), and the motor speed when the FOC is enhanced with a NN (yellow). It is evident
that both systems are able to stabilize the system, but the enhanced FOC scheme presents a better performance
as the overshoot is no longer present.

16



Figure 28: Neural network vs PID control output.

Figure 28 shows with higher detail the controller behavior when subject to a ramp input where it is evident
that the overshoot is completely removed and the settling time is reduced by 170ms which means a 40%
improvement in the stabilization time.

5. Conclusions

The enhanced version of the FOC scheme is able to stabilize the system at the target speed 40% faster than
the classic FOC while also eliminating the overshoot generated by the PID. Further tests with different types
of neural networks can be carried out in order compensate also non-linear operating conditions which are not
supported by the ADALINE network. The simulated control scheme and motor model parameterized according
to the actual motor parameters are of great help to test and verify different control schemes on various PMSM
motors as it is just required to set the motor parameters to match the ones on the desired motor. The gathered
and openly available dataset is of great use for the developing, training and validation of various types of neural
networks as it eliminates the need on gathering data from a physical object while also being very vast as it
includes both real-world and corner cases scenarios for the motor control.

References

[1] P. P. Acarnley and J. F. Watson. Review of position-sensorless operation of brushless permanent-magnet
machines. in IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 352-362, April 2006, doi:
10.1109/TIE.2006.870868.

[2] Korkmaz F. et al. Comparative performance evaluation of FOC and DTC controlled PMSM drives. in: 4th
POWERENG. May 2013, pp. 705–708.

[3] G. Gruosso J. Nustes, D. Pau. PMSM_FOC dataset. in: Mendeley Data, V2, doi: 10.17632/6tjkgtfnky.2,
(2023).

[4] Mathworks. Motor control blockset. url: https://www.mathworks.com/products/motor-control.html.

[5] F. Murtagh. Multilayer perceptrons for classification and regression. in: Neurocomputing, 2(5-6), 183-197,
(1991).

[6] N. Adami S. Benini N. Federici, D. Pau. Tiny Reservoir Computing for Extreme Learning of Motor Control.
in: 2021 International Joint Conference on Neural Networks (IJCNN), 2021, pp. 1–8.

[7] N. Kim Anh H. Than T. That Dong N. Khanh Quang, V. Q. B. Ngo and "Neural Network PID Controller
for PMSM Drives N. Duc Tho. Neural Network PID Controller for PMSM Drives. 2022 7th National
Scientific Conference on Applying New Technology in Green Buildings (ATiGB), Da Nang, Vietnam, 2022,
pp. 146-149, doi: 10.1109/ATiGB56486.2022.9984109.

17



[8] D.O. Neacsu. Space vector modulation - An introduction – Tutorial. at IECON2001. In: (2001).

[9] Juan Camilo Nustes, Danilo Pietro Pau, and Giambattista Gruosso. Field oriented control dataset of a
3-phase permanent magnet synchronous motor. Data in Brief, 47:109002, 2023.

[10] TA Arafah Shawky Ramdan SG. Osman, Gomaa Dakrory. Sensorless Field Oriented Control of Perma-
nent Magnet Synchronous Motor. 1.7. 2015.

[11] P. Pillay and R.Krishnan. Modeling of permanent magnet motor drives, volume 35, chapter 4, pages
537–541. in IEEE Transactions on Industrial Electronics, November 1988.

[12] R. Prasad. Enhancing Speed Loop PI Controllers with Adaptive Feed-forward Neural Networks: Application
to Induction Motor Drives. at: 2022 25th International Conference on Electrical Machines and Systems
(ICEMS), Chiang Mai, Thailand, 2022, pp. 1-6, doi: 10.1109/ICEMS56177.2022.9983335.

[13] S. Sengupta S. Chattopadhyay, M. Mitra. Clarke and Park Transform. In: Electric Power Quality. Power
Systems. Springer, Dordrecht. (2011). https://doi.org/10.1007/978-94-007-0635-4_12.

[14] D. F. Specht. A general regression neural network. in IEEE transactions on neural networks 2.6 (1991):
568-576.

[15] D. F. Specht. Probabilistic neural networks for classification, mapping, or associative memory. in Proc.
IEEE Int. Conf. Neural Nerworks, vol. 1, pp. 525-532, June 1988.

[16] STMicroelectronics. ST Motor Control Workbench. URL: https://www.st.com/en/embeddedsoftware/x-
cube-mcsdk. html.

[17] Karl Johan Åström and Tore Hägglund. Control PID avanzado. Pearson, Madrid, 2009.

18



Abstract in lingua italiana

Questa tesi presenta uno schema di controllo orientato al campo implementato in Matlab/Simulink, nonché
la modellizzazione di un motore sincrono a magneti permanenti che agisce come impianto da controllare.
L’ambiente simulato viene utilizzato per generare dati con grandi capacità per addestrare e convalidare diverse
architetture di reti neurali. Il dataset è raccolto dopo la progettazione di specifici profili di velocità applicati
al motore al fine di verificare come il motore e lo schema di controllo si comportino di fronte alla comparsa
di possibili non linearità che si verificano quando si verificano variazioni di velocità di grande magnitudine.
Utilizzando le librerie TensorFlow in python, diverse reti neurali vengono addestrate e convalidate dal dataset
raccolto, queste reti addestrate vengono quindi riportate nell’ambiente Matlab per completare il regolatore PID
con l’obiettivo di migliorare le capacità di controllo complessive in termini di tempo di stabilizzazione e riduzione
del sovraelongamento.

Viene implementata una versione migliorata dello schema FOC, in cui una rete neurale viene sviluppata per
compensare la coppia generata con il regolatore PID. Questo migliorato schema di controllo è in grado di elim-
inare completamente il sovraelongamento generato dall’azione di controllo pur essendo in grado di stabilizzare
il sistema. Inoltre, il controllo vede un miglioramento del 40% nel tempo di stabilizzazione.

Parole chiave: Controllo motori, Simulink, reti neurali, apprendimento automatico

19


	Introduction
	System description and Control
	Mathematical model of PMSM
	Field Oriented Control Scheme
	Control tests

	Neural Network implementation
	Dataset generation
	Neural Network development
	Network deployment on Simulink

	Control enhancement
	Conclusions

