
Executive Summary of the Thesis

Online Advertising Campaign Management for Hotel Booking

Master of Science in Computer Science and Engineering - Ingegneria Informatica

Author: Luca Alessandrelli

Advisor: Prof. Francesco Trovò

Co-advisors: Ph.D. Alessandro Nuara, Dott. Giulia Romano

Academic year: 2020-2021

1. Introduction
The Online Advertising revenue in the United
States increased from 126.4 billion in 2019 to 139.8
billion U.S. dollars in 2020. A further sign of its
growth is that the worldwide spending in 2020 has
been estimated to be 378 billion U.S. dollars and
is forecast to increase in the following years, reach-
ing 646 billion by 2024. All the opportunities that
Online Advertising has brought for the advertis-
ing market have drawn a lot of attention from the
scientific community. In particular, the Artificial

Intelligence (AI) field played a crucial role in pro-
viding automatic mechanisms to support both the
publishers and advertisers in their tasks. We specif-
ically focus our attention on the advertiser’s task,
consisting in optimizing an online advertising cam-
paign. A campaign is composed of multiple sub-
campaigns, each one potentially having a different
ad and target. The advertiser takes part in an
auction carried out by the publisher, setting a bid
value for each sub-campaign. A bid is the maxi-
mum amount of money the advertiser is willing to
pay for a performed action on her ad, where the
performed action depends on the payment scheme
(e.g., pay-per-click). The goal of this work is to ap-
ply state-of-the-art AI technologies in a real-world
Online Advertising scenario for the company Ad-
sHotel, which is responsible for the optimization

of the advertising campaigns of multiple hotels all
around the world.
We built a real-world system exploiting existing
AI’s methods to perform safe bid optimization (i.e.,
guaranteeing a given return-on-investment (ROI)
constraint) and extending them to adapt their be-
havior as the hotel environment changes. This
is crucial due to the many reasons why it might
present non-stationarity over time (e.g., season-
ality, national holidays, and unpredictable events
like COVID-19). More details are provided in Sec-
tion 2. We also propose aggregation strategies to
dynamically merge data generated by similar sub-
campaigns. The need for such solutions is rooted in
the scarcity of data caused by the traveling restric-
tions imposed for the COVID-19 pandemic. More
details are provided in Section 3. Finally, we in-
tegrate into the system a strategy to provide sug-
gestions on how to expand an ongoing campaign by
selecting the most promising sub-campaigns a hotel
might open. To accomplish this task, we combine
a ranking system and change detection techniques,
to monitor the performance trend of closed sub-
campaigns. More details are provided in Section 4.
By implementing our system in the AdsHotel envi-
ronment, we evaluate its capabilities and measure
its performance over multiple real-world hotel ad-
vertising campaigns.

1

Executive summary Luca Alessandrelli

Related Works The joint bid-budget optimiza-
tion problem has been addressed for the first time
by Zhang et al. [3]. They model it as a constrained
optimization problem, maximizing the expected
revenue while satisfying budget and bid range con-
straints. To solve such problem, the expected rev-
enue as a function of the bid must be estimated for
each sub-campaign. They estimate such functions
by building a probabilistic model for Ad Ranking:
exploiting search advertising log data, they com-
pute the probability for a given item and bid to
be ranked at a given slot position in the auction.
However, this type of data is rarely available to the
advertiser, thus this solution shows limitations in
its applicability.
Nuara et al. [1] propose a different approach for
the joint bid-budget optimization problem that
does not require ad ranking data. They formu-
late the optimization problem as a combinatorial-
bandit problem, in which a superarm corresponds
to a combination of bid/budget pairs for each
sub-campaign satisfying combinatorial budget con-
straints. Eventually, we narrowed our attention
to the few works providing safe bid optimization
methods. Specifically, we adopted the solution de-
signed by Spadaro et al. [2] and built our system
around it. Indeed, they focus on safe bid optimiza-
tion in a scenario very similar to ours, in which
ROI and budget constraints must be satisfied. For
this reason, we implement their solution into our
system and extend it to the specific case of hotel
advertising.

2. Safe Bid Optimization with
Return-on-Investment Con-
straints

We are given an advertising campaign C =
{C1, . . . , CN}, with N 2 N, where Cj is the j-th
subcampaign, and a finite time horizon of T 2 N
days. In this work, as common in the literature
on ad allocation optimization, we refer to a sub-
campaign as a single ad or a group of homogeneous
ads requiring to set the same bid. For each day
t 2 {1, . . . , T} and for every subcampaign Cj , the
advertiser needs to specify the bid xj,t 2 Xj , where
Xj ⇢ R+ is a finite set of bids we can set in subcam-
paign Cj . The goal is, for every day t 2 {1, . . . , T},
to find the values of bids that maximize the over-
all cumulative expected revenue while keeping the
overall ROI above a fixed value �⇤ 2 R+ and the

overall budget below a daily value yt 2 R+. This
setting is modeled as a constrained optimization
problem at a day t, as follows:

max
xj,t2Xj

NX

j=1

vj nj(xj,t) (1a)

s.t.
PN

j=1 vj nj(xj,t)
PN

j=1 cj(xj,t)
� �⇤ (1b)

NX

j=1

cj(xj,t) yt (1c)

where nj(xj,t) and cj(xj,t) are the expected num-
ber of clicks and the expected cost given the bid
xj,t for subcampaign Cj , respectively, and vj is
the value per click for subcampaign Cj . Moreover,
Constraint(1b) is the ROI constraint, forcing the
revenue to be at least �⇤ times the incurred costs,
and Constraint(1c) keeps the daily spend under a
predefined overall budget yt.
The available options consist in the different val-
ues of the bid xj,t 2 Xj satisfying the combinato-
rial constraints of the optimization problem, while
nj(·) and cj(·) are unknown functions, defined on
the feasible region of the variables, that we need to
estimate within the time horizon T .

2.1. Proposed Method
Deploying the solution described above in a real
scenario requires its adaptation to the specific set-
ting. A problem often encountered when deploying
an AI system in a real-world scenario is that the
distribution generating the data changes over time.
To adapt the model to the environment changes, we
use a sliding window approach. It consists in us-
ing only the data that has been collected recently
to build the costs and number of clicks function
estimates. Specifically, we consider only the obser-
vations generated in the last w = 60 days, as sug-
gested by AdsHotel experts. As a matter of fact,
they believe that it is rare for a concept drift to
occur in intervals of less than two months.
AdsHotel requested our bid recommendations not
to deviate too much from their current value so that
they can evaluate them by hand and see whether
or not they are reasonable and coherent. Thus,
based on the performance pj of sub-campaign Cj ,
we define an exploration percentage ✏j determining
how much we can deviate from xj .
Under the hardest periods of the COVID-19 pan-
demic, AdsHotel asked us to solve the problem in

2

Executive summary Luca Alessandrelli

Equations 1 with the highest possible ROI value
�̄ � �⇤. We address this problem through a binary
search approach in the DynamicROIOpt(µ,�⇤) al-
gorithm. It consists in running in a binary search
fashion the optimization procedure, defined by
Spadaro et al. [2], solving the problem in Equations
1 with a different � value each time. Whenever a
feasible solution is found with a given �, we dis-
card all ROI values lower or equal than �. On the
other hand, when no feasible solution is found by,
we discard all ROI values higher or equal than �.

2.2. Experimental Evaluation
The bids suggested by our system are not applied
automatically to the various sub-campaigns. First,
they are proposed to hotel managers through no-
tifications in the AdsHotel platform. After that,
it is up to them to employ such bids or not. Un-
fortunately, no hotel has been applying our sug-
gestions consistently over time yet, and thus we
cannot show and evaluate the performance of our
algorithm. However, we can still show the bid val-
ues that our system would suggest for a real-world
hotel campaign. We run the algorithm on a dataset
composed of the observations generated in the last
w = 60 days, specifically from 19 August 2020 to
19 October 2021. The costs and revenue function
estimates of each sub-campaign are shown in Fig-
ure 1. Note that the revenue function estimate is
obtained by multiplying the number of clicks by
the value-per-click.
We show the results of the experiment in Table 2.

3. Context Aggregation
A campaign C = {C1, . . . , CN} is composed by
N 2 N sub-campaigns. We define the value func-
tion v : 2 C ! {0, 1} that, given a subset of C,
returns either 0 or 1. It returns 1 if, by com-
bining the data of all the sub-campaigns in the
subset, the estimated costs and number of clicks

functions are accurate enough. It returns 0 oth-
erwise. We define a solution S = {A1, . . . , AK}

as a partition of the set C s.t.:
KS
i=1

Ai = C ^

(Ai \Aj = ? 81 i, j K, i 6= j). The goal is to
find the solution S⇤ such that:

S⇤ = argmax
S2P(C)

X

A2S
v (A), (2)

where P (C) is the powerset of C, and
P

A2S v (A)
is the cumulative value of the solution S.

Note that, if the costs and number of clicks func-
tions were known, the solution S⇤ would be the
trivial partition S⇤ = {A1, . . . , AN}, where Ai =
{Ci} 8i 2 {1, . . . , N}. However, in our scenario,
these functions are unknown and must be esti-
mated. Therefore, combining together multiple
sub-campaigns having poor data can actually be
advantageous.

3.1. Proposed Method
First of all, it is important to say that, according
to AdsHotel’s experts, only the sub-campaigns tar-
geting the same customer’s country (user-country)
can be aggregated together. The rationale behind
this claim is that customers from different countries
behave too differently from each other.
To address the problem described in Section 3,
we designed the DynamicCountryAggregation al-
gorithm which finds the best partition of a given
campaign as described in Equation 2. Addition-
ally, the algorithm must be able to divide the ag-
gregations within that partition into two categories:
those that pass the test and those that fail. In fact,
AdsHotel wants us to provide a bid suggestion for
a given sub-campaign only if we can build accurate
function estimates for it.
Therefore, for each user-country of the given cam-
paign, the DynamicCountryAggregation algorithm
individually tests every sub-campaign through the
value function v to see whether or not they have
enough data on their own to accurately estimate
the costs and number of clicks functions. A single-
ton aggregation is assigned to each sub-campaign
passing this test. The ones failing it are aggregated
together instead and then tested again. In the end,
the optimal campaign partition is found, along with
the categorization of its aggregations.
Unfortunately, due to the exploration constraints
described in Subsection 2.1, imposed by AdsHotel
in later stages of the work, the DynamicCountryAg-

gregation algorithm cannot be used in our system.
Indeed, if an aggregation is composed of multiple
sub-campaigns, the defined intervals of allowed bids
may not share elements in common.
For this reason, we designed the SingletonAggre-

gation algorithm, which is the one actually imple-
mented in our system. Given a campaign, the Sin-

gletonAggregation algorithm individually tests ev-
ery sub-campaign and divides them according to
the result into two categories: those passing the test
and those failing. In this way, we can suggest a bid

3

Executive summary Luca Alessandrelli

only for sub-campaigns have enough data on their
own to accurately estimate the costs and number

of clicks functions. Note that, since we only allow
singleton aggregations, the best partition is always
the trivial one.
Now, we describe the tests we designed to check
whether or not an aggregation has enough data
to compute good estimates. The Data-Driven test
consists of directly evaluating the data before actu-
ally performing any estimation. Specifically, given
an aggregation, we check its observations to see
whether or not there are at least two unique bid
values, each one with at least seven non-zero costs

and number of clicks samples. The idea is that, to
have the most simple form of estimation of a func-
tion f (x) (i.e., a line), we need at least two points,
each related to a different x value. Moreover, we
required to have a minimum of 7 non-zero samples
corresponding to the same x, meaning that the bid
has been tested at least for a week.

3.2. Experimental Evaluation
In this Subsection, we compare the results ob-
tained by the DynamicCountryAggregation algo-
rithm with those obtained by SingletonAggregation.
We consider a dataset composed of observations
generated in the last w = 60 days, specifically from
19 August 2020 to 19 October 2021. Of course, w
is the sliding window presented in Subsection 2.1.
Last but not least, the day we ran the experiments,
20 October 2021, there were 535 active campaigns
with an overall number of sub-campaigns equal to
18, 781.
The results of the experiments are reported in Ta-
ble 1. In the experiment run with the Singleton-

Aggregation algorithm, 163 sub-campaigns passed
the test, while 18, 618 did not. Thus, approxi-
mately 0.867% of the total sub-campaigns passed
the test. On the other hand, the DynamicCoun-

tryAggregation algorithm got the following results:
297 sub-campaigns passed the test, while 18, 484
did not. Therefore, out of the total number of sub-
campaigns, 1.58% passed the test. This quantity
increased by 82.2% compared to the first exper-
iment, showing that DynamicCountryAggregation

would have been a much better alternative to Sin-

gletonAggregation.

4. Country Exploration
AdsHotel’s platform does not allow us to expand
campaigns by adding one sub-campaign at a time.

Singleton
Aggregation

Dynamic
Country

Aggregation

Accepted 163 297
Rejected 18618 18484
Acceptance % 0.867% 1.58%

Table 1: Performance comparison between Single-

tonAggregation and DynamicCountryAggregation

algorithms using the Data-Driven test.

It only allows us to add all sub-campaigns targeting
a particular customer’s country (user-country) at
once. For this reason, we suggest the opening of a
user-country rather than of a sub-campaign.
Country exploration consists into expanding a run-
ning campaign by opening promising user-countries
that are not included in the campaign yet.

4.1. Problem Formulation
Given a finite time horizon of T 2 N days, we define
an advertising campaign Ct = {At, Bt} at day t 2
{1, . . . , T}, where At and Bt are the set of its open
and closed user-countries, respectively.
For each day t 2 {1, . . . , T}, our goal is to specify
the closed user-country b 2 Bt�1 to be opened, such
that the overall cumulative revenue of the expanded
campaign Ct is maximized, while keeping the overall
ROI above a fixed value �⇤ 2 R+.
At a given day t, the problem is modeled as follows:

argmax
b2Bt�1

r (b) +
X

a2At�1

r (a) (3a)

s.t.
r (b) +

P
a2At�1

r (a)

c (b) +
P

a2At�1
c (a)

� �⇤ (3b)

where r (a) and c (a) are the expected revenue and
the expected cost given the open user-country a,
respectively. Moreover, Constraint (3b) is the ROI
constraint, forcing the revenue to be at least �⇤

times the incurred costs.

4.2. Proposed Method
As already outlined in Section 1, we propose two
methods for opening a user-country: Global Rank-

ings and Performance Trend Monitoring. The for-
mer is based on a ranking system, while the latter
is based on change detection techniques.
The challenge here is again the lack of information.
As a matter of fact, sub-campaigns belonging to

4

Executive summary Luca Alessandrelli

closed countries certainly do not generate samples,
thus we cannot directly evaluate their performances
to understand which one is the most promising.
However, we can use the observations produced by
other hotels in which those user-countries are open
instead. More specifically, we use observations gen-
erated by hotels situated in the same country (hote-
country) of the hotel for which we need to sug-
gest the opening. However, this approach needs a
strong assumption: all hotels located in the same
hote-country have a similar influence over the cus-
tomers.
For both methods, the performance measure is
based on impressions (i.e., the number of times the
ad is viewed by customers). The reason behind this
decision is that, under COVID-19 restrictions, con-
versions are extremely rare, thus very unreliable.
Clicks are not rare as conversions but they are still
uncommon. Therefore, we narrow our attention to
the impressions.
The Global Rankings algorithm first builds one
global ranking for each existing hotel country. Each
global ranking contains a descending ordering of
user-countries in terms of total impressions received
over the last w days by all hotels located in the
given hote-country. Of course, w is the sliding win-
dow presented in Section 2.1. The impressions used
to build the global rankings are normalized over
the number of hotels generating those impressions.
Furthermore, as suggested by the experts in this
field, the ranking is weighted according to the con-
tinent of the user-countries. Then, given the set of
hotels with at least one active campaign, the algo-
rithm proposes, for each campaign of every hotel,
the first closed user-country in the ranking.
To present the Performance Trend Monitoring, we
first need to clarify what it is going to monitor.
Given a pair (hote-country, user-country), we mon-
itor the time series of daily total impressions gen-
erated, over the last 6 months and for the given
user-country, by all the hotels located in that hote-
country. Also here, the monitored impressions are
normalized over the number of hotels generating
those impressions. Given the set of hotels with at
least one active campaign, the Performance Trend

Monitoring algorithm monitors, for each hotel, the
performance trend of every user-country through a
change detection procedure (i.e., CUSUM or AD-
WIN) and reports, for each campaign, the latest
concept drift type of each closed user-country.

4.3. Experimental Evaluation
Unfortunately, we cannot evaluate the performance
of any user-country that we suggested to open be-
cause our opening recommendations have not been
applied by AdsHotel yet. Indeed, opening a user-
country is a very delicate action to make, as Ad-
sHotel’s contract bindings with Hotels do not allow
them to expand a campaign at their will. The Hotel
Manager’s authorization is needed to perform such
action. For these reasons, the following experimen-
tal evaluations just show the global rankings built
by our algorithm to suggest user-country openings.
Regarding the Global Rankings algorithm, we show
in Figure 2 the three phases undergone by the Ital-
ian Global Ranking, built using the total impres-
sions generated over the last w days by every Ital-
ian hotel on each possible user-country. More pre-
cisely, the rankings are built with data generated
between 19 August 2021 and 19 October 2021. In
the first phase, the global ranking is dictated by
just the total impressions collected by each user-
country. Then, in the second phase, each of them
is normalized by the number of hotels contributing
to the given user-country. Finally, the normalized
total impressions are weighted according to the con-
tinent of the user-country. The latter is the global
ranking that, given an Italian hotel, will be used to
suggest the most promising closed user-country.
Regarding the Performance Trend Monitoring, we
show in Figure 3 the results of the CUSUM and
ADWIN tests on the same data stream, composed
of the whole history of normalized daily total im-
pressions, generated by Italian hotels on Italian
customers. The whole data stream spans from 1
May 2020 to 19 October 2021. We performed the
test on the whole history of data just for display
purposes. As you can see, CUSUM seems to be
more reactive to changes, detecting them a little bit
earlier. Moreover, CUSUM has significantly lower
computational complexity compared to ADWIN.
For these reasons, we decided to adopt the CUSUM
test as change detection test for our Performance

Trend Monitoring algorithm. Unfortunately, we do
not receive any feedback on our change detections.
Thus, we have no way of evaluating the perfor-
mance in a sound way. However, almost all the
drifts detected by our algorithm can be explained
by real-world environment changes, like COVID-19
restrictions and national holidays.

5

Executive summary Luca Alessandrelli

5. Conclusions
In this work, we applied state-of-the-art AI tech-
nologies in a real-world online advertising scenario
for the company AdsHotel, which is responsible for
the optimization of the advertising campaigns of
multiple hotels all around the world.
We designed a real-world system built on top of
the algorithm proposed by Spadaro et al. [2] to
perform safe bid optimization for online hotel cam-
paigns. The system we built is in charge of in-
terfacing the before-mentioned algorithm with Ad-
sHotel’s real-world environment and implementing
all the specific features required by such an envi-
ronment. Specifically, we adopted a sliding window
approach to deal with the non-stationary nature of
the environment. Moreover, at the request of Ad-
sHotel, we defined some policies, limiting our algo-
rithm to suggest bid values not differing too much
from the current ones. Then, we designed the Dy-

namicROIOpt algorithm, which solves the bid opti-
mization problem while satisfying the highest pos-
sible ROI value constraint, exploiting the optimiza-
tion algorithm introduced by Spadaro et al. [2] in
a binary search fashion. A very important block of
our system is in charge of evaluating whether or not
the observations generated by sub-campaigns are
good enough to build accurate model estimates. To
solve the task, we defined two different algorithms,
namely DynamicCountryAggregation and Singlet-

onAggregation. We compared their performance on
real-world data, showing that DynamicCountryAg-

gregation is the best alternative. At last, we defined
the Global Rankings and Performance Trend Mon-

itoring algorithms, providing suggestions on how
to expand an ongoing campaign by selecting the
most promising user-countries a hotel might open.
Then, we display the results of both algorithms run
on multiple real-world hotel advertising campaign
data.
Our work opens up several interesting directions.
First of all, a brand new CDT algorithm could be
designed to actively detect concept drifts and adapt
the model to the non-stationary environment. This
task could be tackled by defining strategies to mon-
itor the distributions of the GPs. Moreover, our
system could be expanded, considering the Google
sub-campaigns at their finest granularity during the
optimization procedure. To do so, a new safe Gaus-
sian Combinatorial Multi-Armed Bandit could be
designed, having the various multipliers as arms in-
stead of the bid values.

0 0.5 1 1.5

bid

co
st

mean
mean± std
observations

0 0.5 1 1.5

bid

re
ve
nu

e

mean
mean± std
observations

0 0.5 1 1.5

bid

co
st

mean
mean± std
observations

0 0.5 1 1.5

bid

re
ve
nu

e

mean
mean± std
observations

Figure 1: Cost and Revenue GPs of each sub-
campaign in the given campaign. Due to NDAs
with hotels, the actual cost and revenue values are
not displayed. (top left) Cost GP of the (mex-
ico, mobile) sub-campaign. (top right) Revenue
GP of the (mexico, mobile) sub-campaign. (bot-
tom left) Cost GP of the (united states, desktop)
sub-campaign. (bottom right) Revenue GP of the
(united states, desktop) sub-campaign.

IT D
E

F
R

U
S

G
B E
S

C
H

A
T

N
L IL B
E IE C
A

D
K S
E

N
O

G
R

B
R

P
T

A
U

User Country

T
ot
al

Im
p
re
ss
io
n
s

IT D
E

F
R

U
S

G
B E
S

C
H

A
T IL N
L IE B
E

C
A

B
R

D
K

G
R S
E

N
O

A
U

P
T

User Country

T
ot
al

Im
p
re
ss
io
n
s

IT D
E

F
R

G
B

U
S

E
S

C
H

A
T

N
L IE B
E IL

D
K

G
R

C
A S
E

N
O

P
T F
I

R
U

User Country

T
ot
al

Im
p
re
ss
io
n
s

Figure 2: The three phases of Italian global rank-
ing built with the total impressions of every user-
country. Due to NDAs with hotels, the actual im-
pression amounts are not displayed. (left) Not yet
normalized total impressions. (center) Normalized
total impressions. (right) Normalized and weighted
total impressions.

References
[1] Alessandro Nuara, Francesco Trovo, Nicola

Gatti, and Marcello Restelli. A combinatorial-
bandit algorithm for the online joint bid/budget
optimization of pay-per-click advertising cam-
paigns. In Thirty-Second AAAI Conference on

Artificial Intelligence, 2018.

[2] Giorgio Spadaro. Online bid optimization with
return-on-investment constraints. http://hdl.
handle.net/10589/170793.

6

http://hdl.handle.net/10589/170793
http://hdl.handle.net/10589/170793

Executive summary Luca Alessandrelli

Table 2: Details of the experiment run with our algorithm on a real campaign. In the first column we
identify the two sub-campaigns by specifying the country and the device of the targeted customer. mx
stands for Mexico, while us stands for United States. Moreover, Xj is the initial set Xj of allowed bid
values, xj is the current bid value, pj is the performance, ✏j is the exploration percentage, X̄j identifies
the new set of allowed bid values, x̂j is the suggested bid, and finally, �̄ is the satisfied ROI value.

Xj xj pj ✏j X̄j x̂j �̄

(mx, mobile) [0.00, 2.21] 1.19 53.6% 5% [1.13, 1.25] 1.13
4.01(us, desktop) [0.00, 2.21] 1.47 7% 14.5% [1.25, 1.69] 1.69

20
20
-0
5-
01

20
20
-0
8-
09

20
20
-1
1-
17

20
21
-0
2-
25

20
21
-0
6-
05

20
21
-0
9-
13

date

n
or
m
al
iz
ed

d
ai
ly

to
ta
l
im

p
re
ss
io
n
s

daily impressions
positive drift
negative drift

20
20
-0
5-
01

20
20
-0
8-
09

20
20
-1
1-
17

20
21
-0
2-
25

20
21
-0
6-
05

20
21
-0
9-
13

date

n
or
m
al
iz
ed

d
ai
ly

to
ta
l
im

p
re
ss
io
n
s

daily impressions
positive drift
negative drift

Figure 3: Comparing the performance of CUSUM
and ADWIN tests, both executed on the whole his-
tory of normalized daily total impressions gener-
ated by Italian hotels on Italian customers. Due to
NDAs with hotels, the actual impression amounts
are not displayed. (left) CUSUM test. (right) AD-
WIN test.

[3] Weinan Zhang, Ying Zhang, Bin Gao, Yong
Yu, Xiaojie Yuan, and Tie-Yan Liu. Joint opti-
mization of bid and budget allocation in spon-
sored search. In Proceedings of the 18th ACM

SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, pages 1177–
1185, 2012.

7

POLITECNICO DI MILANO
Dipartimento di Elettronica e Informazione

Master of Science in Computer Science and Engineering

Online Advertising Campaign Management
for Hotel Booking

AI & R Lab
Laboratorio di Intelligenza Artificiale
e Robotica del Politecnico di Milano

Advisor: Prof. Francesco Trovò
Co-advisor: Ph.D. Alessandro Nuara
Co-advisor: Dott. Giulia Romano

Master Graduation Thesis by:
Luca Alessandrelli, matricola 928231

Academic Year 2020-2021

Abstract

The Online Advertising revenue in the United States increased from 126.4 billion
in 2019 to 139.8 billion U.S. dollars in 2020. A further sign of its growth is that
the worldwide spending in 2020 has been estimated to be 378 billion U.S. dollars
and is forecast to increase in the following years, reaching 646 billion by 2024. All
the opportunities that Online Advertising has brought for the advertising market
have drawn a lot of attention from the scientific community. In particular, the
Artificial Intelligence (AI) field played a crucial role in providing automatic
mechanisms to support both the publishers and advertisers in their tasks. We
specifically focus our attention on the advertiser’s task, consisting in optimizing
an online advertising campaign.

The goal of this work is to apply state-of-the-art AI technologies in a real-
world Online Advertising scenario for the company AdsHotel, which is respon-
sible for the optimization of the advertising campaigns of multiple hotels all
around the world. We built a real-world system exploiting existing AI’s methods
to perform safe bid optimization (i.e., guaranteeing a given return-on-investment
(ROI) constraint) and extending them to adapt their behavior as the hotel envi-
ronment changes. This is crucial due to the many reasons why it might present
non-stationarity over time (e.g., seasonality, national holidays, and unpredictable
events like COVID-19). Finally, we integrate into the system a strategy to pro-
vide suggestions on how to expand an ongoing campaign by selecting the most
promising sub-campaigns a hotel might open. By implementing our system in
the AdsHotel environment, we evaluate its capabilities and measure its perfor-
mance over multiple real-world hotel advertising campaigns.

I

Sommario

Il mercato pubblicitario online statunitense ha registrato entrate pari a 126.4
miliardi di dollari a fine 2019, per poi raggiungerne 139.8 l’anno seguente. In-
oltre, il valore di mercato mondiale è attualmente pari a 378 miliardi di dollari
ed si stima che possa raggiungere i 646 miliardi nel 2024, a ulteriore prova della
costante crescita di questo settore. Nel corso dell’ultimo decennio, le numerose
opportunità introdotte da tale mercato hanno alimentato l’interesse della co-
munità scientifica. In particolare, il campo della Intelligenza Artificiale (IA)
ha avuto un ruolo fondamentale nel fornire meccanismi automatici a supporto
sia degli inserzionisti, sia di coloro che forniscono spazi per annunci online. In
quanto segue, il nostro focus è rivolto agli inserzionisti, i quali hanno il compito
di ottimizzare le proprie campagne pubblicitarie online.

L’obiettivo di questo lavoro consiste nell’applicare tecnologie appartenenti
allo stato dell’arte della IA per dare supporto all’azienda AdsHotel, la quale si
occupa della gestione di campagne pubblicitarie online per molteplici hotel in
tutto il mondo. Sfruttando alcune delle metodologie esistenti nel campo dell’IA,
abbiamo realizzato un sistema in grado di eseguire una ottimizzazione sicura
delle bid, garantendo quindi di superare una determinata soglia minima di ri-
torno sugli investimenti (ROI) all’azienda. Inoltre, abbiamo esteso tali metodi
per adattare il sistema ai cambiamenti dell’ambiente a esso circostante; questo è
infatti di estrema importanza date le svariate ragioni per cui esso può risultare
non stazionario nel tempo, tra cui: stagionalità, festività nazionali ed eventi im-
prevedibili come la di↵usione del COVID-19. In aggiunta, abbiamo integrato in
tale sistema una strategia per espandere le attuali campagne pubblicitarie. Nello
specifico, essa consiste nel suggerire a un hotel l’apertura delle sotto-campagne
attualmente non attive che però risultano essere le più promettenti. Infine, imple-
mentando il nostro sistema all’interno dell’ambiente di AdsHotel, ne valutiamo
le capacità e le prestazioni su reali campagne pubblicitarie relative ad hotel.

III

Contents

Abstract I

Sommario III

1 Introduction 1
1.1 Problem description . 1
1.2 Goal . 2
1.3 Contribution . 2
1.4 Document Outline . 3

2 Hotel Advertising Background 4
2.1 Online Advertising . 4

2.1.1 Performance Indices, Formats, and Payment Schemes . . 5
2.1.2 Advertising Campaign . 7
2.1.3 Publisher’s Optimization Problem 7
2.1.4 Auction Mechanism . 9
2.1.5 Advertiser’s Optimization Problem 10

2.2 Hotel Online Advertising . 12
2.2.1 Google Hotel Ads . 12
2.2.2 Tripadvisor . 13

2.3 AdsHotel’s Platform . 14
2.3.1 Google Campaigns in AdsHotel’s Platform 14
2.3.2 Tripadvisor Campaigns in AdsHotel’s Platform 15
2.3.3 Campaign Definition in our Algorithm 16
2.3.4 Dataset . 16

3 Online Learning and Monitoring Background 18
3.1 Online Learning . 18

3.1.1 Multi-Armed Bandit . 18
3.1.2 MAB: stochastic and stationary setting 19
3.1.3 UCB1 . 19
3.1.4 Thompson Sampling . 20
3.1.5 Combinatorial Multi-Armed Bandit 21

3.2 Online Monitoring . 21
3.2.1 Problem Statement . 22
3.2.2 Concept Drift Taxonomy 22

V

3.2.3 Adaptation . 23
3.2.4 Change Detection . 24
3.2.5 Performance Measures . 25

4 Related Works 27
4.1 Online Advertising . 27

4.1.1 Joint bid-budget Optimization 27
4.1.2 Bid Optimization . 28
4.1.3 Safe Bid Optimization . 28

4.2 Monitoring . 29
4.2.1 Active approaches . 29
4.2.2 Passive approaches . 31

5 Safe Bid Optimization with Return-on-Investment
Constraints 32
5.1 Problem Formulation . 32
5.2 Proposed Method . 33

5.2.1 Data Cleaning . 35
5.2.2 Observation Preprocessing 36
5.2.3 Non-Stationarity . 37
5.2.4 Constrained Bid Exploration 38
5.2.5 Dynamic ROI Constraint 40

5.3 Experimental Evaluation . 42

6 Context Aggregation 45
6.1 Problem Formulation . 45
6.2 Proposed Method . 46

6.2.1 Dynamic Country Aggregation 47
6.2.2 Singleton Aggregation . 48
6.2.3 Testing Aggregations . 50

6.3 Experimental Evaluation . 50

7 Country Exploration 55
7.1 Problem Formulation . 55
7.2 Proposed Method . 56

7.2.1 Global Rankings . 57
7.2.2 Performance Trend Monitoring 58

7.3 Experimental Evaluation . 65
7.3.1 Global Rankings . 65
7.3.2 Performance Trend Monitoring 68

8 Conclusion and Future Directions 72

Bibliography 74

List of Figures

2.1 Marketing funnel model. 6
2.2 Example of a publisher’s web page containing ads. 8
2.3 Tree-structured campaigns example. 16

3.1 Classification error and non-stationary environments. 23
3.2 FPR vs DD curve example. 26

5.1 Constrained bid exploration functions 'm (pj) and 'n (pj). 40
5.2 Campaign GP plots obtained by the Meta-Algorithm. 44

6.1 Possible DynamicCountryAggregation instances. 49
6.2 Real aggregation example: GPs of each sub-campaign. 53
6.3 Real aggregation example: GPs of the aggregated sub-campaigns. 54

7.1 Italian Global Ranking: impressions. 66
7.2 Italian Global Ranking: clicks. 67
7.3 Italian Global Ranking: impressions vs clicks vs conversions vs ROI. 68
7.4 Honduran Global Ranking: impressions. 69
7.5 CUSUM vs ADWIN IT-on-IT. 70
7.6 CUSUM IT-on-IT. 71

VII

List of Tables

5.1 Meta-Algorithm experiment details on a real campaign. 43

6.1 SingletonAggregation vs DynamicCountryAggregation. 50
6.2 Real aggregation example: Data-Driven test on sub-campaigns. . 51
6.3 Real aggregation example: Data-Driven test on the aggregated

sub-campaigns. 52

7.1 Global Rankings: continent weights. 58

VIII

List of Algorithms

1 Meta-algorithm . 34
2 DynamicROIOpt

�
µ,�⇤, S̄

�
. 41

3 DynamicCountryAggregation(C) . 47
4 SingletonAggregation(C) . 49
5 Global Rankings . 57
6 Performance Trend Monitoring . 58
7 CDT -CUSUM (ch, Sch) subroutine 60
8 CDT -ADWIN (ch, Sch) subroutine 61
9 CUSUM (Ocu , scu) procedure . 62
10 ADWIN (Ocu , scu) procedure . 64

IX

Chapter 1

Introduction

Advertising is all about promoting the sale of a product or service to customers.
It has been around since ancient civilizations and has evolved in various ways
through time. In the nineties, a new form of advertising called Online Advertising
(OA) emerged, exploiting the Internet as its marketing channel. Since then, this
Industry has been continuously growing year by year to the point in which it took
over the TV Advertisement market in 2016. The Online Advertising revenue in
the United States increased from 126.4 billion in 2019 to 139.8 billion U.S. dollars
in 2020 [14]. The yearly revenue increase in U.S. has been on average 18.65% over
the last 5 years. A further sign of its growth is that the worldwide spending in
2020 has been estimated to be 378 billion U.S. dollars and is forecast to increase
in the next years reaching 646 billions by 2024 [13]. All the opportunities that
OA has brought for the advertising market in recent years have drawn a lot of
attention from the scientific community. In particular, the Artificial Intelligence
(AI) field played a crucial role in providing automatic mechanisms to support
both the publishers and advertisers in their tasks.

1.1 Problem description

In this work, we focus our attention on the advertiser’s task, which consists in
optimizing an online advertising campaign. Performing such optimization is very
complex and it involves several minor sub-problems. First of all, a campaign is
composed of multiple sub-campaigns, each one designed to target a specific type
of audience. Indeed, due to the number of information people disclose when
navigating the internet, it is possible to match a visiting customer to a specific
audience type. Thus, the first task of the advertiser is to identify the typology
of customers that are more likely to be interested in their product or service.
After that, the advertiser should pick the most suitable advertising channel (e.g.,
display, search, social) for their product or service. The next step is to assign a
sub-campaign, along with a specifically tailored ad, to each audience type. The
goal of every sub-campaign is to gain the highest possible customer engagement
to maximize the total advertiser revenue.

The creative part of the task ends here, leaving space for the technical sub-

problems that are going to be tackled by AI methods. To get an ad shown
to customers, the advertisers must take part in an auction carried out by the
publisher. Here, the advertiser places a bid and a daily budget to win the high-
est visibility spot for each of her sub-campaigns. More specifically, a bid is the
maximum amount of money the advertiser is willing to pay for a performed ac-
tion on her ad, where the action depends on the adopted payment scheme (e.g.,
pay-per-click), and the daily budget is the maximum amount of money that
can be spent in a day for the given sub-campaign. This means that, given a
campaign, the advertiser must decide each day the bid and daily budget values
for each sub-campaign. In the scientific literature this problem is called joint
bid-budget optimization [38]. However, in some online advertising scenarios, it is
also very important to satisfy return-on-investment (ROI) constraints during the
campaign optimization, thus introducing a further degree of complexity to the
problem. Moreover, there are also other crucial aspects to include in the opti-
mization process, e.g., seasonality, unpredictable changes in the market economy,
and competition with other advertisers.

If we consider that an advertiser usually takes care of multiple campaigns,
each made by several sub-campaigns, the number of variables that need to be
set during the optimization process becomes incredibly large. For this reason,
the task is almost impossible to be carried out by humans and an automatic
mechanism is needed to deal with its massive complexity. This is where the
Artificial Intelligence field comes into help.

1.2 Goal

This work aims at applying state-of-the-art AI technologies in a real-world On-
line Advertising scenario for the company AdsHotel [2], which is responsible for
the optimization of the advertising campaigns of a multitude of hotels all around
the world. The main goal is to develop an AI method that obtains good perfor-
mances while still satisfying the several constraints imposed by the hotel indus-
try. However, we are also interested in understanding the eventual limitations
of modern technologies regarding this specific setting, and ultimately propose
interesting future directions that could lead to performance improvements.

1.3 Contribution

As already outlined, the contribution of this work consists of applying state-of-
the-art AI technologies to provide AdsHotel with a tool capable of performing
automatic online campaign optimization for hotels.

In doing so, we had to deal with some constraints imposed by AdsHotel’s
contract bindings. Indeed, the hotel industry is constantly seeking immediate
results. This translates into minimum ROI constraints that must be satisfied
during the whole advertising process. However, the vast majority of state-of-the-
art methods for campaign optimization focus on maximizing the revenue while
satisfying budget constraints only. Eventually, we narrowed our attention to the

2

few works providing safe bid optimization methods. Specifically, we adopted
the solution designed by Spadaro et al. [45] in which the ROI constraints are
satisfied with high probability during the campaign optimization routine. Thus,
one of our contributions consists of making some minor tweaks to their algorithm
to adapt it to our specific scenario, wrapping it around a system that is in
charge of interfacing with the already existing AdsHotel’s Platform, and, finally,
performing safe bid optimization with return-on-investment constraints.

Moreover, a particular aspect of our scenario is that the environment changes
over time due to multiple reasons like seasonality, festivities, unpredictable events
(e.g., COVID-19), and many others. Thus, we are interested in techniques that
do not just learn the model, but they also need to adapt it to the changing
environment. Indeed, it is critical to take into account the non-stationarity of
the environment to maintain good performances over time.

Another problem we had to deal with was the scarcity of data due to travel
restrictions imposed for the COVID-19 pandemic [54, 56]. Indeed, a fundamental
preliminary step for performing campaign optimization in our setting consists
of estimating a model for each sub-campaign. Moreover, the performance of the
campaign highly depends on the accuracy of these estimations as they guide the
bid optimization phase. Thus, it is crucial to have accurate models and, for
that to happen, not only do we need clean data but we need plenty of them
as well. To overcome the data scarcity problem, we had to define context ag-
gregation strategies to group up the little data available in each sub-campaign.
By doing so, we managed to feed our model with enough generalized, but still
meaningful, information to be able to build good models for a higher number
of sub-campaigns. A further contribution regards the possibility of expanding
an ongoing campaign by adding promising sub-campaigns that are not included
in the campaign yet. Given a hotel, we estimate the performance of its closed
sub-campaigns exploiting the data generated by similar hotels. Through Online
Monitoring techniques we are then able to understand which sub-campaigns are
promising and, if so, suggest their opening to the hotel manager.

1.4 Document Outline

The document is structured as follows. Chapter 2 introduces the relevant back-
ground theory and notions frequently used in the document about Hotel Online
Advertising and then describes some crucial aspects of AdsHotel’s Platform.
Chapter 3 presents the relevant background theory and notions frequently used
in the document about Online Learning and Monitoring. Chapter 4 discusses
state-of-the-art methods that have been proven useful to achieve the goals of
this thesis. Chapters 5, 6, and 7 are dedicated to the three contributions of this
work, respectively: safe bid optimization with return-on-investment constraints,
context aggregation, and country exploration. A problem formulation, a detailed
description of our solution approaches, and experimental results can be found in
each of these chapters. Finally, Chapter 8 draws conclusions on this work and
opens new directions for further projects.

3

Chapter 2

Hotel Advertising Background

This Chapter provides necessary concepts and notations to let the reader un-
derstand and familiarize with the topics covered in the rest of the document.
Section 2.1 further explores the Online Advertising concepts presented in the
Introduction. Section 2.2 describes the Hotel Online Advertising setting, the
di↵erences with respect to classical OA, and, finally, the main hotel advertising
channels. Finally, section 2.3 discusses some details of AdsHotel’s Platform that
have been key factors for our algorithm design during the project.

2.1 Online Advertising

In Section 1, we introduced Online Advertising by showing the growth of its
economy. Indeed, OA has become the first choice when it comes to advertise
products or services online. This is due to the fact that it comes with a lot of
advantages. First of all, compared to other form of advertising, it is known to
cover a massive amount of audience. Indeed, nowadays most people navigate the
Internet daily, be it with desktop or mobile devices, leading to high exposure to
online ads. If reaching to a huge audience is important, having the possibility
to display tailored advertisements based on the characteristics of the visiting
customers is even more important. The targeting possibilities are nearly end-
less over the Internet due to the amount of information people disclose, such as
economic status, age, personality traits, lifestyle, and hobbies. A crucial advan-
tage is that it is very easy to track the performance of an online campaign. In
this way, advertisers can easily understand which sub-campaign is profitable and
which is not. Moreover, advertising on the Internet is also cost-e↵ective: there is
no need to massively invest on a campaign, as opposed to what happens in other
forms of advertising. Depending on the payment scheme, you only pay when a
precise action is performed by the user, e.g., when the customer clicks on the ad.
Moreover, most publishers allow the advertisers to modify their bid and budget
as the campaign is running. Thus, an advertiser has a complete control over the
amount of money invested in the campaign.

Let we introduce the di↵erent roles in an Online Advertising scenario. Typ-
ically, three figures are involved:

• Advertisers aim at selling their product or service to customers. To
do that, they perform multiple tasks. First, they identify the di↵erent
types of audience that might be interested to their product or service.
They provide tailored ads for each audience group, defining in this way the
various sub-campaigns. Then, they take part to the publisher’s auction to
win the best visibility spot. In doing so, they need to set a bid and a daily
budget value for each sub-campaign. The way in which those values are
assigned (i.e., joint bid-budget optimization) depends on the specific goal
of the advertiser. Some typical goals are: (1) to maximize the revenue over
the costs (i.e., maximizing the ROI), (2) to maximize the sales (i.e., the
amount of product or services sold), or finally (3) to maximize sales under
ROI constraints;

• Customers are people navigating the Internet that are exposed to the
advertisers’ ads and that can potentially buy their products or services;

• Publishers are the middle-man. They make money by showing the adver-
tisers’ ads to customers visiting their online content or websites. Their role
is to maximize their revenue, thus they will show the ads that are going to
pay more on average [20]. To do so, publishers run auctions in which the
advertisers compete for the highest visibility.

Due to the numerous tasks advertisers must perform, nowadays it is common to
see a fourth figure: media agencies. They are commissioned by advertisers to
fulfill part of their tasks, like running the joint bid-budget optimization for their
campaigns.

2.1.1 Performance Indices, Formats, and Payment Schemes

Online Advertising has four main performance indices:

1. impressions represent the number of times the ad has been viewed by
customers;

2. clicks represents the number of times customers clicked on the ad to visit
the advertiser’s website;

3. leads show the number of potential sales (i.e., registration form filled by
the user);

4. conversions express the number of sales for the advertised product or ser-
vice.

These indices clearly recall the funnel model defined in [47] and displayed in
Figure 2.1. The idea behind the model is that the advertiser should guide the
customers through all the following layers: awareness is the first, interest is the
second, decision is the third and at last there is the action layer. The customer
starts from the first layer and can either move towards the next one or leave.
This means that only a small portion of the customers will actually reach the

5

AWARENESS

INTEREST

DECISION

ACTION

Figure 2.1: Marketing funnel model.

action layer. The main goal of an advertiser, or media agencies, is to maximize
the amount of customers reaching the last layer (i.e., maximize conversions).
However, every other layer plays an crucial role in reaching the final task.

Formats specify the channel over which the advertisement occurs. They
di↵er according to the available users’ information and the layer of the funnel
model in which they operate. We can distinguish three main formats:

1. Search. The customer types a query on a search engine (e.g., Google)
utilizing some keywords. Consequently, the publisher generates a web page
containing the organic content along with advertisements. This allows
the advertiser to target their ads to customers who are already willing to
purchase through their search query. Therefore, there is a high chance to
lead the user to generate a conversion. For this reason, search advertising
stands at the last layer of the funnel model;

2. Social. The ads get displayed to the customer on social network pages
or apps. The advertisement messages include posts, videos, and banners.
This channel provides the advertisers with specific information about the
user’s interests and behaviors, allowing them to target their ads to very
specific audiences. For this reason, social advertising stands at the mid-
levels of the funnel model;

3. Display. The ads get displayed to the customer on web pages as banners,
images, videos, etc. The main goal of the advertiser is to increase the
awareness of their brand as much as possible. For this reason, display
advertising usually stands at the first level of the funnel model.

In OA there are three commonly used payment schemes, each specifying
when the advertiser should pay the publisher:

1. Pay-per-impression. The advertiser pays each time the ad registers a new
impression. It is commonly used in social and display advertising, where
the goal is to accumulate impressions;

2. Pay-per-click. The advertiser pays each time a customer clicks on the ad.
This payment scheme is suited for search and social advertising, where the
main goal is to accumulate clicks;

6

3. Pay-per-conversion. The advertiser pays every time a user generates a
conversion through one of their ads. This scheme is suited for search ad-
vertising, where the goal is to accumulate conversions.

Relations exist between performance indices, formats, and payment schemes. In-
deed, not all the performances indices are used for all the formats, and the same
holds for the payment schemes. For instance, search advertising is mainly run on
a pay-per-click scheme. In what follows, we will assume that the underlying for-
mat and payment scheme are search advertising and pay-per-click, respectively,
since our project with is placed mainly in this setting.

2.1.2 Advertising Campaign

An advertising campaign is usually run on a single channel (e.g., search) to
advertise a specific product or service. The campaign is composed of multiple
sub-campaigns, each one specifying:

1. the target audience, i.e., geographic area, the age, the interests, customer
information;

2. the bid, i.e., the maximum amount of money that the advertiser is willing
to pay for each single impression, click or conversion, depending on the
payment scheme;

3. the daily budget which specifies the total amount of money the advertiser
is comfortable spending each day for the given sub-campaign.

Usually, a campaign also has a total daily budget constraint, that is equal to the
sum of the daily budget for each sub-campaign.

Depending on the specific advertising channels, di↵erent user information
are available. Unfortunately, the available information in search advertising is
very little because it is directly derived from the customer’s query. Usually, it
includes the customer’s IP address, the device she/he is using, its language and
other information that is application dependent.

The campaign optimization process is a fundamental task for the advertiser.
Indeed, a proper setting of the bid values for each sub-campaign is crucial to
balance the trade-o↵ between high volumes (i.e., sales) and high profitability
(i.e., ROI). More specifically, a high bid will lead into winning most auctions,
increasing the volume, while a low bid will lead to higher return over the costs
(i.e., ROI). On the other hand, a proper assignment of the daily budget values
is crucial to satisfy the budget constraints of the campaign.

2.1.3 Publisher’s Optimization Problem

In this section, we focus on the optimization problem from the publisher’s point
of view. Her/His role is to produce the web page containing the organic content,
queried by the customer, along with the advertisers’ ads. We show an example
of such web page in Figure 2.2. The publisher can assign ads to several positions
divided in slates. Every slate is further split in one or more slots in which a single

7

Figure 2.2: Example of a web page created by the publisher Google Hotel Ads containing
multipl advertiser’s ads.

ad is displayed. In some cases, a single ad is allowed to appear over multiple
slots, however we do not consider this case in our work. The goal of the publisher
is to find the ad allocation over the available slots that maximizes his revenue.

The formalization of the problem is centered around the estimated value
of allocating an ad to a slot. In particular, the advertiser’s expected value
of displaying ad a on slot s is: ⇤Sqava, where ⇤S is the probability that the
customer observes the slot S (i.e., slot prominence), qa is the click probability
on ad a given that it has been observed by the user (i.e., ad quality), and va is
the advertiser’s value-per-click (vpc) (i.e. ad value) for ad a. ⇤Sqa is commonly
called click through rate (CTR) and it is the click probability of ad a placed on
slot ⇤S . The value provided by an allocation is given by:

X

a

⇤S(a)qava,

where S (a) is the slot in which ad a is allocated. If an ad a is not allocated,
then we have ⇤S(a) = 0.

The idea behind the definition of slot prominence is that costumers follow a
cascade model, i.e., they start observing the first slot, then with a given prob-
ability they move to the second one, and so on. Thus, if there are k slots in
total, they can be sequentially ordered from 0 to k. Moreover, if the customer

8

is viewing slot Si her/his probability of observing also slot Si+1 is given by:

⇤Si+1

⇤Si

,

where i 2 {1, . . . , k}. Finally, the solution for the optimization problem (i.e., the
best allocation) is:

argmax
a

X

a

⇤S(a)qava.

The optimization procedure of the allocation turns out to be computationally
easy: first, sort the the ads in decreasing order of qava, then allocate ads to slots
according to such order. The computational complexity is linear in the number
of ads n, and logarithmic in the number of slots k, i.e., O(n log k).

The values of the parameters used in the problem formulation are crucial to
find the best allocation. However, the publisher usually does not know them,
and, thus, needs to estimate them. In particular:

– ⇤S and qa are estimated by the publisher by using data coming from all
the allocated ads;

– va is a private information of the advertiser which is sent to the publisher in
the form of a bid. Note that, in principle, the advertiser may communicate
a false value to get advantages. Moreover, a large number of samples is
needed to estimate va, thus most of the times the advertiser cannot perform
an accurate estimation.

2.1.4 Auction Mechanism

Whenever the publisher generates a web page it runs an auction, which is very
important as it defines the ads allocation and the pay-per-click payments of
the advertisers. For simplicity we assume that each ad comes from a di↵erent
advertiser. Each time an auction is run, advertiser reports a bid that represents
the maximum amount of money they will pay for a click. Given the bids, the
auctioneer chooses the allocation and the payments. The allocation is performed
as explained in Section 2.1.3, while the payments are typically decided through
a Generalized Second Price auction (GSP) [16]. Formally, the payment p for ad
a is given by:

pa =
qa+1

qa
va+1

✓
 qa

qa
va = va

◆
, (2.1)

where the ads are sorted in decreasing order by vaqa. Since the publisher usually
does not know the values va the bid communicated by the advertiser will be
used instead. However, such a mechanism does not enforce a true-telling optimal
strategy for the advertiser, thus bidding the true value may not be the optimal
strategy for every advertiser taking part to the auction.

9

Another commonly used auction is called the Vickrey-Clarke-Groves auction
(VCG) [32]. The payment p for ad a is given by:

pa =
1

⇤S(a)qa
(Xa � Ya) , (2.2)

Xa = max
S(a0)

X

a0 6=a

⇤S(a0)qa0va0 , (2.3)

Ya =
X

a0 6=a

⇤S̄(a0)qa0va0 , (2.4)

S̄
�
a0
�
= argmax

S(a0)

X

a0

⇤S(a0)qa0va0 . (2.5)

Recall that unlike GSP, the Vickrey-Clarke-Groves auction admits only an opti-
mal true-telling strategy for the advertisers.

In practice, publishers run multiple auctions throughout the day, either GSP,
or VCG. Every advertiser has a daily budget and takes part in the auction if
her remaining daily budget is not expired. During the day, the publisher may
allow the advertisers to change their bid, however the delay with which this
modification is applied is not known. On the other hand, the daily budget can
be set only once per day. As a final remark, we recall that VCG is truthful, but
only if run once. In a repeated scenario where we have budget constraints, VCG
is not truthful anymore. Moreover, GSP allows non-truthful optimal strategies
even in its single auction formulation. This implies that advertisers need systems
to determine the best bid to be communicated to the platform. This is the reason
why an automatic method able to learn the optimal bid is crucial to optimize
an online advertising campaign.

2.1.5 Advertiser’s Optimization Problem

In this section, we focus on the optimization problem from the advertiser’s point
of view. At day t, given the daily budget of the campaign, we need to find the
best bid and daily budget values for each of its sub-campaigns.

Before we formalize the problem we need to make two assumptions. First,
we assume that the performance of every sub-campaign is independent from
each others. For details to include campaign dependencies, please refer to [35].
Second, the bid and daily budget values are finite and constrained to some given
intervals. This is not true in general but, in practice, it is reasonable since
experts of the domain usually fixed these interval values before the start of the
campaign.

In what follows we used the formalization of the optimization problem pro-
vided by [37], which is an extended version of the Knapsack Problem. Formally:

10

max
xj,t,yj,t

NX

j=1

vjnj (xj,t, yj,t) (2.6a)

s.t.
NX

j=1

yj,t ȳt (2.6b)

xj,t xj,t x̄j,t 8j (2.6c)

y
j,t

 yj,t ȳj,t 8j (2.6d)

where:

– j denotes the index of a sub-campaign;

– N is the number of sub-campaigns of our problem;

– xj,t is the bid of sub-campaign j at time t, usually expressed in days;

– yj,t is the daily budget of sub-campaign j at day t;

– vj is the estimated value per click of sub-campaign j;

– nj is the expected number of clicks of sub-campaign j, given the budget
and the bid of of sub-campaign j;

– ȳt is the daily budget for the campaign at day t;

– xj,t and x̄j,t are the lower bound and upper bound on the bid for sub-
campaign j at day t;

– y
j,t

and ȳj,t are the lower bound and upper bound on the daily budget for

sub-campaign j at day t.

The objective function stated in Equation (2.6a) is the sum of the expected
revenue generated by each sub-campaign j. The constraint in Equation (2.6b)
is a budget constraint, forcing the sum of sub-campaigns’ daily budgets not
to exceed the daily campaign budget. Instead, constraints in Equations (2.6c)
and (2.6d) force the bid and daily budget variables to assume values in their
respective ranges. In the literature, this problem has been tackled in various
ways. Some works [60, 37] address bid and budget optimization at the same
time (i.e., joint bid-budget optimization), while others [15, 58, 50, 45] address
them separately. However, these methods cannot be applied directly to the
setting of Hotel Online Advertising. In what follows, we will describe such a
setting and highlight why we need a more refined method specifically crafted for
this application.

11

2.2 Hotel Online Advertising

In Chapter 1, we outlined the specific setting of our work: Online Advertising for
Hotels. Here, the services to be advertised are hotel rooms. Even if everything
we explained for the general OA setting is still valid for the Hotel industry, some
characteristics are present only in this specific setting. For instance, a pecu-
liar aspect of this business is that advertisers are performance advertisers: they
mainly focus on short-term returns. Indeed, the goal of an hotel manager is hav-
ing their rooms fully booked. The only exception to this behavior may be that of
Hotel Chains, who may care more about long-term visibility. In the literature, it
has been observed that, in a display advertising scenario with performance ad-
vertisers and second price auctions, a consistent slice of the advertisers behave
as they had minimum ROI constraints [21]. Even though our work does not take
place in display advertising, the previous observation turned out to be true in
our scenario as well. Indeed, AdsHotel specifically demanded our optimization
algorithm to guarantee a minimum ROI value. This means that the goal of the
optimization is to achieve a good trade-o↵ between high volumes (i.e., conver-
sions) and high profitability (i.e., ROI). Moreover, these ROI constraints should
be satisfied during the entire advertising period. Another interesting aspect,
that proved to be true during our experience, is that most advertisers prefer to
adopt safe bidding strategies that satisfy the ROI constraints even during the
initial phase of the learning process, whose nature is almost purely exploratory.

2.2.1 Google Hotel Ads

One of the advertising channels used in our work is Google Hotel Ads [24]. Its
role is to be the publisher and it does so in the following way: a customer searches
for some hotel similar to the ones advertised in the campaign and our ad has a
chance of being displayed to her. The search can be performed both in Google
Search and Google Maps.

In Google Hotel Ads a campaign is defined by [22]:

• The campaign start and end dates, along with the total budget;

• The preferred payment scheme;

• The countries of the targeted customer, in this way the ads are shown only
in specific user countries;

• The customer’s devices over which ads will be shown. The possible devices
are: desktop, mobile, and tablet.

The payment scheme of choice is defined at campaign level and can be one
among the followings [23]:

• Manual cost-per-click (CPC): pay a fixed amount of money each time
a customer clicks on the ad;

• % CPC: pay a percentage of the hotel’s room booking price each time a
customer clicks on the ad;

12

• Optimized CPC: the pay-per-click payment may vary because the bid is
automatically adjusted to maximize the number of conversions;

• Commissions (pay-per-conversion): pay a fixed percentage of the ho-
tel’s room booking price each time a customer performs a booking;

• Commissions (pay-per-stay): pay a fixed percentage of the hotel’s room
booking price each time a customer reaches to the hotel. This removes
cancellation costs.

Bids are defined at sub-campaign level, according to the chosen payment
scheme. Up until now, one could figure out that a sub-campaign is identified
by the tuple (hotel, user-country, device). However, Google’s sub-campaigns go
far beyond that targeting level. More specifically, there are three more booking
parameters that one might take into account:

• Length of Stay (los): it indicates the number of days for which the
customer would like to book the hotel room;

• Check-In Day: it is the hypothetical booking check-in day;

• Booking Window Days: it indicates the number of days between the
hypothetical booking and the check-in.

To summarize, a Google sub-campaign is identified by the tuple (hotel, user-
country, device, los, check-in day, booking window days). Thus, a di↵erent bid
can be set for each combination of those parameters.

2.2.2 Tripadvisor

The other publisher targeted by the thesis project is Tripadvisor [49]. Running
an advertisement campaign in this setting is similar to what has been described
for Google Hotel Ads. Indeed, a customer visiting Tripadvisor’s website searches
for a travel destination or directly the hotel’s name. Then, a list of hotel ads will
be shown to the user. Tripadvisor’s campaigns are defined in the same way they
are defined in Google Hotel Ads. Also the payment scheme and total budget
are still defined at campaign level. The available payment schemes are pay-per-
impression and pay-per-click. Bids are defined at sub-campaign level, according
to the chosen payment scheme.

Di↵erently from what has been presented for Google Hotel Ads, Tripadvisor
does not allow the advertiser to specify some of the booking parameters. In-
deed, a Tripadvisor sub-campaign is identified by the tuple (hotel, user-country,
device), and a di↵erent bid can be set for each combination of those parameters.

Notice that the system we are going to describe in what follows can be applied
to any metasearch, as long as it allows to partition the advertising campaign as
described above and that the data corresponding to day-by-day bid, impression,
click, and impressions are available.

Finally, we remark that the optimization of the above described problem
is not trivially solved by dynamic programming techniques since some of the

13

elements in it are unknown to the advertiser, e.g., the number of clicks given a
bid nj(xj,t, yj,t) for each sub-campaign. This requires the design of specifically
crafted algorithms able to learn such quantities while minimizing the loss due to
the learning process. This thesis builds on existing online learning techniques
to this setting and adapt them w.r.t. the additional constraints required by the
Hotel Advertising setting.

2.3 AdsHotel’s Platform

To fully understand the remainder of the document, we present some aspects
regarding the Platform of AdsHotel. Specifically, we describe the way in which
campaigns have been set up in both advertising channels (i.e., GoogleAds and
Tripadvisor), the way in which bid values are assigned in the Platform, and,
finally, the Dataset provided by AdsHotel.

2.3.1 Google Campaigns in AdsHotel’s Platform

Following the structure described in Section 2.2.1, every Google campaign is
defined by AdsHotel in the following way:

• The start and end dates, along with the total budget are decided by the
specific hotel;

• The payment scheme is % CPC : pay a percentage of the hotel’s room
booking price each time a customer clicks on the ad;

• The countries of the targeted customer can be modified during the cam-
paign by AdsHotel. From now on those countries will be called user-
countries;

• All devices are always included (i.e., desktop, mobile, and tablet).

We know that a Google sub-campaign is identified by the tuple (hotel, user-
country, device, los, check-in day, booking window days). This means that, the
AdsHotel’s Platform should allow a bid to be defined for each possible combina-
tion of those parameters. However, AdsHotel decided to go through a di↵erent
route: those bids are indirectly defined by a set of multipliers. First of all,
AdsHotel allows to specify a bid at user-country level called Base Bid. The
so-called multipliers are used to enable bidding at a finer granularity. There
are four multiplier archetypes: (1) Device Type, (2) Length of Stay, (3) Check-In
Day, and (4) Booking Window Days. Each of these archetypes has several prede-
fined sub-levels. For instance, Device Type has three of them: desktop, mobile
and tablet. Check-In Day trivially has seven sub-levels (i.e., the week days).
Booking Window Days has several predefined sub-levels, e.g., than 15 days,
 than 30 days. Finally, Length of Stay has predefined sub-levels like � 1 day,
� 2 days, � 3 days. Each sub-level is a multiplier and its value can be assigned
on the Platform. They are in the form of percentages and can be either positive
or negative (e.g., +25% or �25%). Note that, the sub-levels are constructed in

14

such a way that, for each archetype, only one multiplier is going to be applied
for a specific display of the ad. Then, given a specific sub-campaign, the four
multipliers of interest are taken into account along with the Base Bid to compute
the final bid, that will be used in the auction. Formally, given sub-campaign Cj ,
the set M = {mdevicetype,mlos,mdaysofweek,madvancebooking} of the four multipli-
ers corresponding to Cj and the Base Bid bj , we compute the final bid xj in the
following way:

xj = bj
Y

m2M

✓
1 +

m

100

◆
. (2.7)

Note that, in this scenario, the Base Bid is a percentage and, thus, the final bid
will be a percentage as well, in line with the % CPC payment scheme.

Regarding the opening and closing of sub-campaigns, AdsHotel’s Platform
allows such actions only at user-country level. This means that, when we open
a country, all sub-campaigns associated to that user-country will open as well.
On the other hand, when we close a country, all its associated sub-campaigns
will close too.

2.3.2 Tripadvisor Campaigns in AdsHotel’s Platform

Following the structure described in Section 2.2.2, every Tripadvisor campaign
is defined by AdsHotel in the following way:

• The start and end dates, along with the total budget are decided by the
specific hotel;

• The payment scheme is Manual CPC : pay a fixed amount of money each
time a customer clicks on the ad;

• The user-countries can be modified during the campaign by AdsHotel;

• All devices are always included (i.e., desktop, mobile, and tablet).

We know that a Tripadvisor sub-campaign is identified by the tuple (hotel,
user-country, device). This means that, AdsHotel’s Platform should allow a bid
to be defined for each possible combination of those parameters. However, as
already explained in details in Section 2.3.1, bids are indirectly defined by a set
of multipliers. Fortunately, that is much easier for Tripadvisor. Indeed, we only
have the Base Bid and one archetype, namely the Device Type. Its sub-levels are
three, i.e., desktop, mobile, and tablet. This means that, given a specific sub-
campaign Cj , we retrieve the associated Base Bid bj and the device multiplier
m, then we compute the final bid xj by:

xj = bj

✓
1 +

m

100

◆
. (2.8)

Note that, in this scenario the Base Bid is a fixed amount of money that will be
modified by the device multiplier, thus, the final bid will still be a fixed amount
of money, in line with the Manual CPC payment scheme.

The opening and closing of Tripadvisor sub-campaigns work as previously
described for Google.

15

HOTEL 1234

TRIPADVISOR

ITALY

DESKTOP MOBILE TABLET

U.S.

DESKTOP MOBILE TABLET

ITALY

DESKTOP MOBILE TABLET

GOOGLEMETASEARCH

USER-COUNTRY

DEVICE

HOTEL

Figure 2.3: Simple example of the tree-structured campaigns for a specific hotel.

2.3.3 Campaign Definition in our Algorithm

Our algorithm defines a campaign di↵erently from what have explained in Sec-
tions 2.3.1 and 2.3.2. Indeed, our AI model needs to optimize a given campaign,
regardless of the advertising channel. For this reason, in our algorithm a cam-
paign is identified by the tuple (hotel, metasearch), where metasearch stands for
the advertising channel (i.e., Google or Tripadvisor).

We also consider sub-campaigns in a di↵erent way. Specifically, our algorithm
identifies a sub-campaign by the tuple (hotel, metasearch, user-country, device)
for both publishers. This comes to no surprise for Tripadvisor sub-campaigns.
However, it may seem strange that, for Google, we do not take into consideration
the archetypes Length of Stay, Check-In Day and Booking Window Days. The
motivation behind this choice are explained in detail in Chapter 5.

The way in which we identify campaigns and sub-campaigns can be better
understood if seen in a tree-structured scheme. In Figure 2.3, we show an exam-
ple of the tree structure that can be used to represent the campaigns belonging
to the fictitious Hotel 1234. In this tree, each campaign can be identified as
a sub-tree rooted at the metasearch layer. Moreover, each root-to-leaf path of
those sub-trees identifies a sub-campaign. Thus, by looking at the example, we
can easily say that Hotel 1234 has two campaigns. The Google campaign has
six sub-campaigns, while Tripadvisor has three.

2.3.4 Dataset

In what follows we will describe how the Dataset used to feed the following AI
algorithm is stored, its structure, how it is generated, and, finally, the way in
which our algorithm retrieves it.

AdsHotel provides us the data in the form of a MariaDB Database (DB).
This means that our system will need to access the database to import, clean,
and exploit the dataset.

MariaDB is a relational database management system, thus the database is
structured into multiple tables. The most important ones are:

• Observations: this table contains the the full history of observations gen-
erated by all hotels. The table contains the following records: date, hotel-

16

id, metasearch-id, user-country, device, check-in day, los, booking window
days, eligible impressions, impressions, clicks, costs, conversions, bid and
bid-device. The record eligible-impressions field is estimated by the pub-
lisher and it indicates the number of impressions we would have received
by winning the auction (i.e., ad displayed in the highest visibility slot).
The record bid contains the value of the final bid, which is obtained by ap-
plying all the multipliers to the base bid. The record bid-device is instead
the value obtained by applying only the device multiplier to the base bid.

• Constraints: this table contains the budget and minimum ROI constraints
belonging to each campaign. It contains also the min-bid and max-bid
constraints corresponding to each at sub-campaign.

• Hotels: useful information regarding the hotels can be found here. The
most important one is the country in which the hotel resides, that we will
denote as hotel-country in the rest of the document.

• MetasearchesCountries: this table is very important as it discloses, each
day and for each campaign, which countries are open and which are closed.
This distinction is fundamental for two reasons. First, this gives our algo-
rithm a way to understand which sub-campaigns are currently open, and
thus which ones to include in the campaign optimization. Second, exploit-
ing this information our algorithm knows which countries are currently
closed in a given campaign, and thus it can propose opening suggestions.

• OpportunitySuggestions: this is the table in which we provide our opening
suggestions, so that we can expand already running campaigns.

The multiple running campaigns generate new data each day on the publish-
ers’ platforms. Google and Tripadvisor are able to communicate an observation
to AdsHotel two days later from the day the observation actually occurred. As
soon as the new observations are received from the publishers, AdsHotel writes
them on the Observation table. For this reason, the DB is updated up to the last
two days. Note that, all the observations generated in a given day are uploaded
on the DB by AdsHotel, as one chunk, at a precise time of the day. In this
way, by executing our algorithm after that time, we are sure that the new daily
observations have already been uploaded in the DB.

17

Chapter 3

Online Learning and
Monitoring Background

This Chapter provides necessary concepts and notations to let the reader un-
derstand and familiarize with the topics covered in the rest of the document.
Section 3.1 introduces the Online Learning setting and its main techniques. Sec-
tion 3.2 presents the field of Online Monitoring, explains why it is fundamental
for our work and introduces some of its techniques.

3.1 Online Learning

Online Learning is the sub-field of ML tackling the problem of automatic learning
in a setting in which the agent continuously receives new data in sequential order
and updates itself at each step to improve its performance. This is di↵erent from
the classical ML setting, in which the entire training dataset can be accessed to
adjust the model at once. Since the model potentially needs to be updated every
time new data is received, online learning algorithms need to be fast and e�cient
both in the updating and predicting phase.

3.1.1 Multi-Armed Bandit

Multi-Armed Bandit (MAB) techniques model a setting in which the agent has a
finite set of actions at her disposal and, at each step, she needs to perform one of
those actions. Each time the agent performs an action, a random reward, drawn
from a distribution specific to that action, is received. These distributions are
not known beforehand by the agent. Thus, her goal is to balance the trade-o↵
between exploitation (i.e., perform the action that is believed to yield the highest
reward) and exploration (i.e., acquiring more information about the probability
distribution of the other actions). MABs are named after slot machine gamblers.
Indeed, they have to decide which slot machine to play (i.e., also called one-armed
bandit), each one having its reward probability distribution that is unknown by
the gambler.

Multi-Armed Bandit techniques are used to address a multitude of real-world

18

problems like clinical trials, finance [55], recommender systems, budget optimiza-
tion [36], pricing [51, 39].

3.1.2 MAB: stochastic and stationary setting

We formally present the MAB setting within a stochastic and stationary envi-
ronment. Given a set of K 2 N arms, at each round t 2 {1, . . . , N}, with N 2 N,
the agent pulls an arm It 2 {1, . . . ,K} and gets a reward gIt,t ⇠ DIt , drawn
from the distribution of the arm It.

The agent’s goal is to maximize the cumulative reward over a given time
horizon, equivalently, to minimize the regret. The regret is the di↵erence between
the optimal reward obtained by always pulling the best arm in every round and
the reward of the agent policy, which tries to balance the trade-o↵ between
exploration and exploitation.

Given the optimal arm i⇤ = argmaxiE [gi], the expected reward µi = E [gi]
and the optimal expected reward µ⇤ = µi⇤ , we define the regret of the agent A
over N rounds as:

RN (A) =
NX

t=1

µ⇤ � E [µIt], (3.1)

where the expectation is with respect to the agent only. By defining �i = µ⇤�µi

as the expected di↵erence between the reward of the optimal arm and the i-th
arm, and Pi,n as the number of times arm i is selected after n rounds, we can
define the regret as:

RN (A) =
NX

t=1

µ⇤ � E [µIt] =
NX

t=1

E [µ⇤ � µIt] =
KX

i=1

�iE [Pi,N]. (3.2)

This definition of regret highlights the fact that, in order to minimize it, we need
to limit the number of pulls on sub-optimal arms.

Lai et al. [30] proved in their work that it is impossible to obtain a null regret.
Moreover, the lower bound for the regret is asymptotically in the order of log(n):
a sub-linear regret.

3.1.3 UCB1

The Upper Confidence Bound (UCB1) [5] is a deterministic algorithm based on
the frequentist approach. It manages to achieve a sub-linear regret by taking
into consideration the uncertainty of the arms’ reward estimation. In fact, UCB1
resorts to the so-called optimism in the face of the uncertainty. The main idea
is the following: arms that have been pulled a small number of times have
large uncertainty in their reward estimate. On the other hand, arms that have
been pulled a high amount of times have small uncertainty in their rewards.
In this way, UCB1 tackles the trade-o↵ between exploitation and exploration.
The expected reward of each arm is paired with a bound, which takes into
consideration its uncertainty. Then, at a generic step n, instead of selecting the

19

arm having the largest sample mean ḡi,n, we pull the arm having the highest
confidence bound, which is an optimistic estimate of the real mean µi:

Un (i) = ḡi,n +Bn (i) , (3.3)

where Bn (i) is the beforementioned bound.
These bounds are computed exploiting the Hoe↵ding inequality:

Definition 3.1.1 (Hoe↵ding Bound). Given a set of rewards, their expected
value E[Xi] = µi, and their sample mean x̄i, we can state that:

P {µi > x̄i + ✏} exp
�
�2t✏2

�
. (3.4)

Now, by substituting ✏ with Bn (i), t with the number of pulls Pi,n, and by
assuming that the probability in Equation 3.4 decreases with time as p(n) =
exp(�4n), we can derive the following bound values for UCB1:

Bn (i) =

s
2log(n)

Pi,n
. (3.5)

The asymptotic regret upper bound for the UCB1 algorithm is provided by
Auer et al. [5]:

Theorem 3.1.1 (UCB1 Regret Upper bound). Given a MAB solved by using
the UCB1 policy, the expected regret is bounded by:

RN (UCB1) 8 log (N)
X

i,�i>0

1

�i
+

✓
⇡2

3
+ 1

◆ X

i,�i>0

�i. (3.6)

3.1.4 Thompson Sampling

The Thompson Sampling (TS) [48] algorithm is based on a Bayesian approach:
the arm is not pulled in a deterministic way as it happened for UCB1. Each
expected reward is associated with a distribution that we update when we get
new rewards. This requires using conjugate prior and posterior distributions so
that, using the likelihood of the reward, we can obtain a posterior that can be
used as prior in the next iteration. For instance, if the rewards follow a Bernoulli
distribution, we use a Beta distribution as prior for the expected value of the
arm.

The rationale of the TS algorithm is the following. At each round n, it
samples the expected reward from the beta distribution of each arm and pulls
the arm In having the highest one. Then, it observes the actual reward of the arm
and updates the parameters of the prior corresponding to arm In. If the observed
reward is 1, the ↵ parameter is incremented by one. Otherwise, it increments by
one the � parameter. Indeed, given the Bernoulli and Beta conjugate prior and
posterior distributions, the update formula is:

P (µ|xi,n) / Be (xi,n|µ)Beta↵+1,�+1 (µ)

/ µxi,n (1� µ)1�xi · µ↵ (1� µ)�

= µ↵+xi,n (1� µ)�+(1�xi,n) .

(3.7)

20

The asymptotic regret upper bound for the TS algorithm is provided by
Kaufmann et al. [28]:

Theorem 3.1.2 (TS Regret Upper bound). For every ✏ > 0, there exists a
problem-dependent constant c(✏, µ1, . . . , µk) such that the expected regret by using
Thompson Sampling satisfies:

RN (TS) (1 + ✏)
X

i,�i>0

�i (log (N) + log (log (N)))

KL (µi, µ⇤)
+ C (✏, µ1, . . . , µK). (3.8)

3.1.5 Combinatorial Multi-Armed Bandit

The Combinatorial Multi-Armed Bandit (CMAB) [10, 1] di↵ers from a standard
MAB given that, at each round, it can pull a subset of the finite arms, called
super-arm. Specifically, the chosen arms must satisfy some combinatorial con-
straints, hence the name. To pull the best possible super-arm, an optimization
procedure is run, returning the best subset of arms satisfying the given con-
straints. In this setting, two approaches are possible: we can observe the reward
of the pulled super-arm or the reward of each single pulled arm. Both instances
can be solved with upper bound approaches. However, the latter approach is
preferred, as the number of possible super-arms satisfying the combinatorial
constraint may be exponentially large.

CUCB

The CUCB algorithm is the extension of the Upper Confidence Bound (UCB),
adapted to the CMAB setting. The construction of the upper confidence bound
is similar to UCB one, specifically:

Un (i) = ḡi,n +Bn (i) , (3.9)

Bn (i) =

s
3 log (n)

2Pi,n
. (3.10)

3.2 Online Monitoring

Machine learning (ML) is a subfield of AI whose aim is the design of algorithms
able to learn from data exploiting statistical tools. Typically, in ML, the data
are assumed to be independent and identically distributed (i.i.d.) realizations
of an unknown process. Therefore, the only focus is centered around how to let
data-driven models extract information out of the training data. However, in
our scenario we cannot make that assumption because the environment changes
through time due to reasons like seasonality, festivities, and unpredictable events
(e.g., COVID-19). Thus, we are interested in techniques that do not only learn
the model, but also adapt it to changes. In the literature, this environment is
commonly called non-stationary : at each time instant t we receive an input xt
from a potentially infinite stream X = {x0, x1, . . .}, we generate a prediction ŷt,
then we may retrieve a feedback y⌧ (⌧ < t), and at last we update the model.
Therefore, the order of the samples x 2 X is relevant and cannot be disregarded.

21

3.2.1 Problem Statement

The problem of classification over a datastream can be formalized in the following
way. X = {x0, x1, . . .} is a potentially infinite stream of data derived from the
process X , which generates tuples

(xt, yt) ⇠ � (X,Y) ,

where � (X,Y) is the joint probability distribution and Y is the set of true labels.
The typical assumption is that data are i.i.d. and that an initial training set R
is provided to train a classifier K. Then, at each time instant t, K predicts the
label ŷt given the sample xt in input. Finally, a classification error et is taken
into account to measure how good the trained model K matches the distribution
� (X,Y), formally:

et =

(
1, if ŷt 6= yt

0, otherwise
.

In real world scenarios, the process X may change unpredictably, and, thus,
the process is modeled such that each sample comes from its own distribution
(xt, yt) ⇠ �t (X,Y). Note that, during some time intervals, the distributions
may not change or have small changes over time. When this happens we can
assume stationary conditions (i.e., also called concept) and a traditional classifier
K can be reasonably trained over such interval. Instead, we say that a concept
drift occurs, or equivalently that X becomes non-stationary, if:

�t (X,Y) 6= �t+1 (X,Y) .

The task is to learn and adapt a classifier Kt to predict labels ŷt = Kt (xt) in an

online manner, having a small classification error 1
T

PT
t=1 et over a given time

interval T . Thus, it is key to determine when a concept drift happens and adapt
the classifier accordingly, otherwise the classification error will gradually increase
over time. An example is shown in Figure 3.1

3.2.2 Concept Drift Taxonomy

We defined what a concept drift is in Section 3.2.1, however we did not explain
the various drift types yet. Let us recall that, using the Kolmogorov’s conditional
probability, the join probability distribution � (X,Y) can be written as:

� (X,Y) = � (Y |X)� (X) .

A real concept drift happens when the conditional probability � (Y |X) is a↵ected,
while � (X) might be a↵ected or not. Instead, a virtual concept drift occurs if
only the input distribution � (X) is a↵ected.

Note that there can be also multiple ways in which the underlying process
changes during a drift:

• Abrupt changes lead into a permanent shift in the state of the process X :

�t (X,Y) =

(
�0 (X,Y) , if t < ⌧

�1 (X,Y) , if t � ⌧
;

22

Figure 3.1: Example showing the increase in the classification error right after a concept
drift occurring at round 1000.

• a continuous shift condition is called an incremental change:

�t (X,Y) =

(
�0 (X,Y) , if t < ⌧

�t (X,Y) , if t � ⌧
.

Note that the continuous shift might reach an end, after which there is
another stationary state such as �1 (X,Y).

• a recurring change happens if, after a concept drift, it is possible for X
to go back to the previous concept. It is a sort of alternation between
di↵erent states, for instance between �0, and �1.

• a gradual change happens when the process definitively switches to a new
state after having anticipated some short drifts:

�t (X,Y) =

(
�0 (X,Y) or �1 (X,Y) , if t < ⌧

�1 (X,Y) , if t � ⌧
.

3.2.3 Adaptation

We already stated in Section 3.2.1 that, if some precautions are not taken into
account, the classification error is going to increase over time after a concept drift
happens. One of the crucial contributions for preserving the performances is due
to Adaptation. Indeed, applying a trivial solution such as continuously updating
the model K with new data is not enough: samples belonging to the old concept
are still going to be taken into account, thus the classification error will decay
too slowly. At the same time, applying a sliding window solution such as training
the model using only the last N samples, still leads into some problems: during
long concepts the classifier is not able to learn anything it could, since it limits

23

itself by using only N samples for training. Therefore, more elaborated solution
must be taken into account to maintain good performances in non-stationary
settings.

Two main adaptation strategies have been presented in the literature, which
one is best depends on the problem at hand and on the memory and computa-
tional availability. These are:

• Active Approaches: the classifier Kt is combined with statistical tools
to detect concept drifts and pilot the adaptation. To be coherent with the
new concept, they rely on what is called Change Detection Test (CDT),
and they specify post-adaptation strategies to isolate recent data generated
after the change. Note that these approaches also provide the information
that the concept drift has occurred, and they can improve their perfor-
mances in stationary conditions, since the classifier adapts only after the
detection. A downside of active approaches is that incremental and grad-
ual changes are very di�cult to detect. The simplest approach consists in
monitoring the classification error or similar performance measures. Once
a change has been detected, we adapt and update the model by providing
a new training set. Note that, in this way, the model is updated only when
the performance is a↵ected, which is a very good property. On the other
hand, the availability of supervised samples is needed to perform CDT and,
in a real world scenarios, they are usually provided with significant delays
or not provided at all.

An alternative to the classification error is the one of monitoring the input
distribution: the input stream goes directly into the CDT to see if it is
consistent with the current concept’s � (X). If a change is detected then
you might invoke adaptation and update the model. Monitoring the input
distribution does not require supervised samples and enables the detection
of both real and virtual concept drifts. However, note that real drifts not
a↵ecting � (X) cannot be discovered. Moreover, we could be considering
changes that do not require adaptation because � (Y |X) might not be
a↵ected. The biggest downside however, is that it is di�cult to design a
CDT when the monitored distribution is unknown.

• Passive Approaches: the classifier Kt undergoes continuous adaptation
determining at each new sample which supervised information to preserve.
They do not include a CDT mechanism, thus concept drifts are not de-
tected at all. These approaches are preferred when the changes are of
incremental or gradual nature.

3.2.4 Change Detection

In a change detection problem it is usually assumed that data are initially gen-
erated under stationary conditions by a process PA. Then, after a concept drift
data are going to be generated by a di↵erent process PB 6= PA. The goal is to
monitor a stream X = {xt}t2N of realizations and to detect the change point ⌧

24

such that:

xt ⇠
(
�0, if t < ⌧ (in control state)

�1, if t � ⌧ (out of control state)
,

where for t < ⌧ data are i.i.d. , and �0 6= �1. In other words, we would like
to answer the following question: given the previously estimated model and the
arrival of new data, is it able to explain those samples? If it is not, a concept
drift may have happened [11].

Most of the algorithms to perform CDT are composed of two elements:

1. a statistic S that has a known response to normal data (e.g., sample mean,
sample variance, log-likelihood);

2. a decision rule to analyze S (e.g., a threshold).

Statistics and decision rules are both sequential in the sense that they take into
account, in principle, all the data received so far. Integrating information over
time makes these algorithms able to detect subtle changes as well. The typical
solution consists in refining the raw input stream into a statistic over which
decision rules are applied. Decision rules such as thresholds are very simple
and they a↵ect performances in terms of having more true positives (TP) or
more false positives (FP). For this reason, they should be defined with a sound
statistical criteria.

In this work, two state-of-the-art algorithms are used, i.e., CUSUM [26] and
ADWIN [9]. We opted to define them in detail further on in the thesis, since
their application in our setting requires the definition of quantities which will be
presented later on in the thesis.

3.2.5 Performance Measures

Controlling the false positive rate in a CDT is very important as it is a per-
formance measure of the algorithm itself. False positives are controlled by the
Average Run Length, formally defined as:

ARL0 = Ex

h
T̂ |x ⇠ �0

i
,

where T̂ is the detection time. The ARL0 denotes the expected amount of time
between multiple false positives under stationary conditions (i.e., the expected
number of samples, generated under �0, for your algorithm to give you a detec-
tion). Indeed, keep in mind that in this setting we are almost sure to face some
FP sooner or later, therefore we want to control the number of times that hap-
pens. Note that, if a detection happens more frequently than the ARL0 quantity,
which is defined in stationary conditions, then we might be in the situation in
which the process is changing or has already changed. Therefore, a good CDT
algorithm should always be paired with a table that, given the needed value
of ARL0, produces the related threshold value �. Notice that in general it is
hard to find the proper value for the threshold � since it depends both on the
distribution of the statistic S and on the data distribution �(X).

25

Figure 3.2: FPR vs DD curve example. Figure from [4].

Another performance measure for CDT is the is the expected time delay for
detecting the change �0 ! �1, or formally:

ARL1 = Ex

h
T̂ |x ⇠ �1

i
.

Unfortunately, computing ARL0 and ARL1 is not always possible. In such cases,
one resorts to performing several simulations on finite sequences containing a
change at a known location ⌧ to compute:

1. the detection delay DD = Ex

h
T̂ � ⌧ |T̂ � ⌧, x ⇠ �1

i
;

2. the false positive rate FPR (i.e., the amount of sequences not containing
a drift where a change was detected, divided by the number of sequences
not containing a drift);

3. the false negative rate FNR (i.e., the amount of sequences containing
a drift that has not been detected, divided by the number of sequences
containing a drift).

After computing these quantities for multiple threshold � values, FPR-DD curves
are usually drawn. The FPR values are plotted on the x-axis, while DD ones on
the y-axis. This plot is useful due to the fact that these two quantities are in a
trade-o↵: the lower the DD the higher the FPR, the higher the DD the lower
the FPR. Therefore, the best solution is to choose the threshold � leading to
the best DD-FPR trade-o↵ for the application at hand. Further information can
be found in Alippi et al. [4] work. They present Hierarchical Change-Detection
Tests (HCDTs), coupling a validation layer to CDTs. HCDTs achieve a far more
advantageous trade-o↵ between false-positive rate and detection delay than their
single-layered, more traditional counterpart. An example of the FPR vs DD
curve taken from their work is reported in Figure 3.2.

26

Chapter 4

Related Works

In Chapter 2 and 3, we presented useful background information about the
Online Advertising and the Online Learning and Monitoring fields. We also
described the real-world scenario that we face in this work. In this chapter, we
present a review of the literature related to the problem we will address in the
rest of the document.

4.1 Online Advertising

A core part of an online advertising campaign optimization is the bid-budget
optimization problem. In this problem, the advertiser must decide each day the
bid and daily budget values for each of her sub-campaigns. This is a crucial
part of an online advertising campaign optimization process, for this reason it
has be been widely studied by the scientific community. However, most of the
state-of-the-art works are general purpose, and do not translate very well in our
scenario. The description of the systems currently used by large media agencies,
for generic marketing or hotel advertising, are not publicly available. We think
this is due to contracts binding research groups with companies, i.e., NDAs, not
allowing these works to be published.

4.1.1 Joint bid-budget Optimization

The joint bid-budget optimization problem is addressed for the first time by
Zhang et al. [60]. They model the problem as a constrained optimization prob-
lem, maximizing the expected revenue subject to the constraints of the budget
and of the bid ranges. To solve such problem, the expected revenue as a func-
tion of the bid must be estimated for each sub-campaign. They estimate such
functions by building a probabilistic model for Ad Ranking: through search ad-
vertising log data, they compute the probability for a given item and bid to
be ranked at a given slot position in the auction. However, this type of data
is rarely available to the advertiser, thus this solution shows limitations in its
applicability.

Nuara et al. [37] propose a di↵erent approach for the joint bid-budget opti-
mization problem that does not require ad ranking data. They formulate the op-

timization problem as a combinatorial-bandit problem [10], in which a superarm
corresponds to a combination of bid/budget pairs for each sub-campaign satisfy-
ing combinatorial budget constraints. In order to estimate the expected revenue,
they use Gaussian Processes (GPs) [57] to estimate, for each sub-campaign, the
expected daily number of clicks for each bid/budget pair and the value-per-
click. Then, they balance exploration and exploitation through Bayesian Bandit
techniques returning samples of the stochastic variables estimated by the GPs.
These samples are used to feed a special case of the Multiple-Choice Knapsack
problem [44], solved in polynomial time by dynamic programming, returning
the superarm maximizing the cumulative expected revenue. However, we can-
not adopt this solution for our specific scenario. Indeed, our setting requires
additional constraints, e.g., that the bid does not vary too much between con-
secutive days, and the highly non-stationary environment is in contrast with the
assumptions required by this method.

4.1.2 Bid Optimization

Ding et al. [15] addressed the bid optimization problem as a Budgeted Multi-
Armed Bandit (BMAB) problem. In this setting, there is a finite set of arms.
Each arm corresponds to a bid value and, if pulled, incurs a cost. Moreover, the
learning process is constrained by a fixed overall budget. Arms are pulled accord-
ing to an Upper Confidence Bound (UCB) approach. Xia et al. [58] addressed
the problem as a BMAB as well. However, instead of using a UCB approach,
they exploited Thompson Sampling to select which arm to pull. Both [15] and
[58] solutions have a regret bound of O(lnB), where B is the overall budget.
Trovò et al. [50] proposed, for the first time, to solve the problem as a Budgeted
Continuous-Armed Bandit (BCAB), where the set of arms is a continuous set
over the range of prices. This algorithm su↵ers a higher regret compared to the
BMAB ones but is more robust to adverse settings.

4.1.3 Safe Bid Optimization

In our scenario the advertisers are performance advertisers: they focus on short-
term returns. This can be modeled by adding minimum ROI constraints in the
campaign optimization problem. Spadaro et al. [45] focus on safe bid optimiza-
tion in a scenario very similar to ours, in which ROI and budget constraints
must be satisfied. They use Gaussian Processes (GPs) to estimate, for each sub-
campaign, the expected daily number of clicks and costs for each bid value. The
value-per-click is assumed to be known instead. Then, they propose a variant
of the GCB algorithm called GCBsafe. It exploits the GPs to return optimistic
estimates for the parameters used in the objective function, and to return pes-
simistic ones for the parameters used in the constraints. More specifically, the
lower bounds of the number of clicks and the upper bounds of the costs are
used in the ROI and budget constraints, while the upper bounds of the num-
ber of clicks are used in the objective function. Then, these estimates are fed
into a special case of the Multiple-Choice Knapsack problem, solved by dynamic

28

programming, returning the superarm maximizing the cumulative expected rev-
enue, while satisfying ROI and budget constraints with high probability. Given
the similarities between our scenario and the one for which this algorithm was
conceived, we decided to adopt this solution within our system and extend it to
match the requirements of the specific application we faced.

Finally, we remark that the concept of safety here used is di↵erent from the
one commonly used in the online learning literature, e.g., [8], due to the specific
nature of the problem we are addressing.

4.2 Monitoring

Most Machine Learning techniques assume the environment to be stationary.
However, in most real applications, it is likely that the distribution generating
the data changes over time. This happens for various reasons, e.g., seasonality
and festivities. Thus, under these circumstances it is critical to take into ac-
count the non-stationarity of the environment to maintain good performances
over time. For this reason, adaptation and monitoring techniques have been ex-
tensively addressed in the scientific literature. Adaptation strategies are divided
into two categories (i.e., active and passive), each with its own advantages and
disadvantages.

4.2.1 Active approaches

Active approaches combine the underlying predictive model with statistical tools
to detect concept drift and pilot the adaptation. They rely on outlier detection
or change detection test (CDT), and they specify post-adaptation strategies to
isolate recent data generated after the change, in order to be coherent with
the new concept. Some active approaches consist in monitoring the stream of
classification errors, or similar performance measures, of the predictive model.
Other approaches monitor the input distribution instead.

Gama et al. [18] propose the Drift Detection Method (DDM) which consists
in detecting a concept drift as an outlier in the classification error. They assume
that in stationary conditions the classification error reduces as the predictive
model gets trained with more and more samples. On the other hand, they
assume that when a drift occurs the classification error increases. A binomial
distribution is used to keep up to date the probability of misclassifying a new
sample and its standard deviation. Then, they compare these values with the
minimum ones registered in the current concept. Then a warning level and a
drift level are defined based on this comparison. The warning level is used to
identify a reasonable training set for the new concept. When the drift level is
reached, a new classifier is trained using the previously identified training set.
Baena-Garcıa et al. [7] propose a slightly di↵erent version of DDM called Early
DDM (EDDM), which improves the detection in presence of gradual drifts while
keeping good performance with abrupt drifts. They perform a similar monitoring
on the average distance between misclassified samples instead of considering only
the number of errors. A big downside of both DDM and EDDM is heuristic

29

nature of their monitoring scheme, i.e., they have no control over the FPR.
Ross et al. [41] propose a method for detecting concept drifts which uses the
exponentially weighted moving average (EWMA) as test statistic to monitor the
classification error. Unlike DDM and EDDM, the EWMA method allows the
rate of false positive detections to be controlled and kept constant over time.
Hinkley in [26] uses the cumulative sum (CUSUM) scheme to detect the point
in time in which the mean of the data stream changes. This method can be
used both to monitor the classification error and the input. Moreover, it is a
two-sided test as it detects both increases and decreases in the mean. However,
CUSUM can only detect concept drifts caused by a change in the mean and it
cannot detect the ones caused by a change in the variance, for instance.

The classification error can be monitored also by comparing windows. The
main idea of this approach is to compare a reference window, ideally containing
stationary data, with a window containing recent data. Nishida et al. [34] pro-
pose the STEPD method, in which they compare two windows: one containing
recent samples, and one containing every past data after the last detection. Bifet
et al. [9] presented ADWIN. This method analyzes the whole stream of scalar
samples and automatically grows or shrinks the window depending on whether or
not a change has been detected. It can be used both to monitor the classification
error and the input. Their idea is that whenever two large enough sub-windows
of the monitored stream exhibit distinct enough averages, a change is detected
and the samples belonging to the old window are dropped. Bach et al. [6] deal
with concept drifts by pairing a stable learner with a reactive one. The stable
learner is trained over the whole stream, while the reactive one is trained only
over a window of recent samples. When the reactive learner outperforms the
stable one over recent test samples, a drift is detected. The adaptation is car-
ried out by replacing the stable learner with the reactive one. The underlying
idea is that, after a concept drift happens, the stable learner has poor perfor-
mances while the reactive one adapts very fast to the new concept. The main
disadvantage of comparing window techniques is that it is di�cult to control the
FPR since often they consist of iterating hypothesis tests over non-independent
samples (i.e., overlapping windows).

Change-Point Methods (CPMs) are sequential monitoring schemes that can
be used both in parametric and non-parametric settings. They do not require
training samples and they provide ARL0 guarantees. These techniques intro-
duced by Hawkins et al. [25] verify whether or not a stream contains a change-
point (i.e., the time instant a concept drift happens) by analyzing all possible
partitions of the data sequence into two adjacent sub-sequences. These tech-
niques have very good performances, however they require high computational
complexity, which makes their use in an online scenario costly. Ross et al. [42]
present an approximated formulation of CPMs to allow their use in online set-
tings as well, however the complexity of these solutions is still critical. Alippi
et al. [3] address adaptation in non-stationary environments by proposing Just-
in-time classifiers. They detect abrupt changes, both real and virtual, and to
identify a new training set for the new concept. Moreover, by exploiting prac-
tical formalization of the concept representation and the definition of a set of

30

operators working on such representations, they can identify recurrent concepts
and in such a case exploit also past samples, achieving very high performances
even right after a drift occurs.

We remark that change point methods have also been applied to the MAB
problem to tackle non-stationary environments. See [40, 31] for more details.

4.2.2 Passive approaches

In passive approaches the classifier undergoes continuous adaptation determining
at each new sample which supervised information to preserve. There are two
main categories of passive approaches, those based on single classifier models
and those based on ensemble models. Single classifiers usually provide lower
computational cost with respect to ensembles. Many single classifier methods
have been presented in the literature [27, 12, 59].

Ensemble methods are composed of multiple models, each typically trained
on a di↵erent training set. The final prediction is given by a weighted aggregation
of the individual predictions. Many ensemble methods have been presented in
the literature [46, 29, 17, 33]. They di↵er in the way new data is incorporated into
the ensemble, for instance by updating the already existing ones or by adding
new individuals, by the way old data is discarded from the ensemble, or by the
way in which the individual predictions are taken into consideration to form the
final prediction. Finally, also passive approaches have been used in the classical
MAB setting. See [52, 19] for details.

31

Chapter 5

Safe Bid Optimization with
Return-on-Investment
Constraints

Bid optimization is one of the main tasks composing an online campaign opti-
mization. The bid value must be assigned to each sub-campaign and it is the
main responsible for the performance of the campaign. Usually, the bid must be
set to balance the trade-o↵ between achieving high volumes (i.e., maximizing the
sales of the advertised product or service) and achieving high profitability (i.e.,
maximizing the return-on-investment (ROI)). However, we take a particular ap-
proach to tackle this trade-o↵. As a matter of fact, our scenario is di↵erent from
the usual one. Hotel advertisers are performance advertisers: they mainly focus
on short-term returns. Indeed, their goal is to have all their rooms fully booked.
This translates into having to satisfy minimum ROI constraints not only at the
end but for the whole advertising period. Thus, safe strategies are needed to
satisfy these constraints with high probability. In this chapter, we address the
safe bid optimization problem in the real-world scenario of hotel advertising.
We adopt the solution proposed by Spadaro et al. [45] and develop a system on
top of it to interface with the already existing AdsHotel’s Platform. Moreover,
our system tackles the multiple requirements derived by a deployment in a real
setting, which were not considered in the theoretical work by Spadaro et al. [45].

This chapter is structured as follows. In Section 5.1 we report the formal
description of the problem, provided by Spadaro et al. [45] for the sake of com-
pleteness. In Section 5.2, we describe the numerous problems of the deployment
in a real-world hotel advertising scenario, and we provide the approaches and
algorithms we exploit to solve them. Finally, in Section 5.3, we show the exper-
imental results.

5.1 Problem Formulation

We are given an advertising campaign C = {C1, . . . , CN}, with N 2 N, where
Cj is the j-th subcampaign, and a finite time horizon of T 2 N days. In this

work, as common in the literature on ad allocation optimization, we refer to
a subcampaign as a single ad or a group of homogeneous ads requiring to set
the same bid. For each day t 2 {1, . . . , T} and for every subcampaign Cj , the
advertiser needs to specify the bid xj,t 2 Xj , where Xj ⇢ R+ is a finite set of
bids we can set in subcampaign Cj . The goal is, for every day t 2 {1, . . . , T}, to
find the values of bids that maximize the overall cumulative expected revenue
while keeping the overall ROI above a fixed value �⇤ 2 R+ and the overall
budget below a daily value yt 2 R+. This setting is modeled as a constrained
optimization problem at a day t, as follows:

max
xj,t2Xj

NX

j=1

vj nj(xj,t) (5.1a)

s.t.

PN
j=1 vj nj(xj,t)
PN

j=1 cj(xj,t)
� �⇤ (5.1b)

NX

j=1

cj(xj,t) yt (5.1c)

where nj(xj,t) and cj(xj,t) are the expected number of clicks and the expected
cost given the bid xj,t for subcampaign Cj , respectively, and vj is the value
per click for subcampaign Cj . Moreover, Constraint(5.1b) is the ROI con-
straint, forcing the revenue to be at least �⇤ times the incurred costs, and Con-
straint(5.1c) keeps the daily spend under a predefined overall budget yt.

The available options consist in the di↵erent values of the bid xj,t 2 Xj

satisfying the combinatorial constraints of the optimization problem, while nj(·)
and cj(·) are unknown functions, defined on the feasible region of the variables,
that we need to estimate within the time horizon T . Here the value-per-click vj
is assumed to be known.

A learning policy U solving such a problem is an algorithm returning, for each
day t, a set of bids {x̂j,t}Nj=1. The policy U can only use estimates of the unknown
number-of-click and cost functions built during the learning process. Therefore,
the returned solutions may not be optimal and/or violate Constraints (5.1b) and
(5.1c) computed on the true functions. Some platforms allow the advertisers to
set a daily budget constraint. If this feature is allowed, Constraint (5.1c) is
always satisfied, and no safety requirement for that constraint is necessary.

5.2 Proposed Method

In Section 5.1, we reported the safe bid optimization problem formulation under
ideal theoretical conditions. However, as one can expect, deploying a solution
in a real scenario requires its adaptation to the specific setting. In this section,
we give a general overview of our system Meta-Algorithm. In what follows, we
expand some of its details, each of which concerning a key problem encountered
during the system deployment, and provide a solution for each one of them.

The Meta-Algorithm pseudo-code is provided in Algorithm 1. We remind the
reader that, as we previously stated, our system is wrapped around Spadaro et

33

Algorithm 1 Meta-algorithm

Require: set H of active hotels

1: set sliding window size w
2: for h 2 H do
3: retrieve cleaned set Oh of observations
4: for each C do
5: retrieve OC
6: estimate vC
7: preprocess OC
8: SP = SingletonAggregation(C)
9: retrieve �⇤, yt and Xj 8Cj 2 SP

10: define new exploration constraints X̄j 8Cj 2 SP

11: initialize the GCBsafe agent
12: {x̂j,t , 8Cj 2 SP } = DynamicROIOpt(µ,�⇤)
13: write {x̂j,t , 8Cj 2 SP } on DB
14: end for
15: end for

al. [45] solution, thus Algorithm 1 will contain and refer to some of the procedures
presented in their work. Given the set H of hotels with at least one active
campaign on the current day t, the algorithm assigns, for each campaign of hotel
h 2 H, the bid value of every sub-campaign Cj 2 SP such that Constrains 5.1b
and 5.1c are satisfied with high probability.

At the beginning, we initialize the sliding window size w, that will be used
later to cope with the non-stationarity of the environment (Line 1). More infor-
mation about it will be provided in Section 5.2.3. Then, we cycle through every
hotel h having at least one active campaign (Lines 2-15). We retrieve all the
observations Oh, generated by hotel h in the last w days, by querying the DB
(Line 3). During the query, we discard incomplete and/or erroneous tuples that
would otherwise a↵ect the following GPs estimations procedure. This process is
detailed in Section 5.2.1. After that, we loop through every active campaign C
of hotel h (Lines 4-14). At Line 5, we retrieve from Oh only the observations OC
corresponding to the current campaign C. Next, we estimate the value-per-click
vC for campaign C (Line 6). Note that di↵erently from what specified in Equa-
tions 5.1, the value-per-click in the original definition of the problem by Spadaro
et al. [45] is defined at a campaign level, and it was assumed to be known. In-
stead, in this thesis we are dealing with a real-world setting in which we do not
know the value-per-click, thus we need to estimate it. Moreover, from expert
advice and from a preliminary analysis of the available data, we encountered a
serious scarcity of data, which has been caused by traveling restrictions imposed
for the COVID-19 pandemic. Thus, taking into account singularly the conver-
sions of each sub-campaign would have led to noisy and unreliable value-per-click
estimations. For this reason, we estimate the value-per-click at a campaign level,
formally:

vC =
k

c
,

where k and c are the total amount of conversions and clicks generated in the

34

last w days by campaign C, respectively. In Line 7, we prepare the raw obser-
vations to be handled by the GP estimation routine. This process is detailed in
Section 5.2.2. Next, we run the SingletonAggregation(C) procedure, described
in Chapter 6 in Algorithm 4 (Line 8). The goal of this procedure is to identify
the set SP of sub-campaigns having enough data on their own to compute good
clicks and number of clicks function estimates through GPs. Moreover, we will
provide bid suggestions only for these sub-campaigns. In Line 9, we retrieve the
constraints from the DB table Constraints. Specifically we get the minimum
ROI value �⇤, the campaign daily budget yt, and the set Xj of allowed bids for
each sub-campaign Cj 2 SP . Note that, neither Google nor Tripadvisor allow
the specification of the campaign daily budget yt, they only allow to set the total
campaign budget. However, a fictitious yt is set by AdsHotel so that we still are
able to use Spadaro et al. [45] solution. Moreover, this does not in any way
alter the performance of our algorithm since the provided yt is much larger than
the real daily budget expenditure. Next, following the request of AdsHotel, we
restrict the set Xj of each selected sub-campaign Cj 2 SP depending on their
recent performance (Line 10), obtaining a new set X̄j for each of them. The
motivations and the details behind this step are explained in Section 5.2.4.

The Safe Gaussian Combinatorial multi-armed Bandit (GCBsafe) proposed
by Spadaro et al. [45] is applied in Line 11. Here, GPs are used to model the costs
and number of clicks functions, as they provide several advantages compared to
other regression techniques. Indeed, exploiting arm correlation they are able to
provide an estimate on the entire domain by just using a finite amount of samples.
Moreover, we use a combinatorial bandit because we need to select more than
a single arm. As a matter of fact, we run an optimization procedure to identify
the best arm to be pulled while still satisfying the constraints. We assign and
train two GPs for each sub-campaign Cj 2 SP by using their corresponding
observations. We used a GP to estimate the costs function, and one to estimate
the number of clicks function. For each sub-campaign Cj 2 SP and for every bid
value x 2 X̄j , we sample the mean and standard deviation estimations for both
costs number of clicks functions. Finally, we run our optimization algorithm
DynamicROIOpt(µ,�⇤) to get the set of bids to suggest {x̂j,t , 8Cj 2 SP } (Line
12) and we write them on the DB (Line 13).

In what follows, we detail the subroutine used in the definition of the high-
level algorithms described above.

5.2.1 Data Cleaning

The data cleaning process is crucial for any successful application of the auto-
matic techniques described in this thesis. Indeed, we need to feed our model
with meaningful data, discarding the misleading ones. Some of the data which
should not be processed by our algorithms are since they are inconsistent:

• Tuples with bid = 0 and costs, clicksorimpressions > 0.

• Tuples with costs > 0 and clicks = 0.

• Tuples with clicks > impressions.

35

Thus, the cleaning procedure consists into accepting only the tuples satisfying
any of the following three constraints:

• bid > 0 ^ (costs = 0 ^ clicks = 0 ^ impressions � 0);

• bid > 0 ^ (costs > 0 ^ clicks > 0 ^ impressions � clicks);

• bid = 0 ^ (costs = 0 ^ clicks = 0 ^ impressions = 0).

5.2.2 Observation Preprocessing

One of the first problem we encountered while interfacing our system with Ad-
sHotel’s Platform was the need of data preprocessing. We already described
how the Dataset is structured in Section 2.3.4. Convdersely, in this section we
describe how we handle raw data to make it ready for the GP estimation. Each
day, we receive one observation for each sub-campaign. However, as already de-
scribed in Section 2.3.3, there is a discrepancy between how our algorithm and
AdsHotel’s Platform define a sub-campaign. Specifically, we recall that our algo-
rithm identifies both Google and Tripadvisor sub-campaigns by the tuple (hotel,
metasearch, user-country, device). On the other hand, AdsHotel’s Platform iden-
tifies Tripadvisor sub-campaigns by the tuple (hotel, metasearch, user-country,
device) and Google sub-campaigns by the tuple (hotel, user-country, device, los,
check-in day, booking window days).

Now we will explain the reason behind this mismatch. Given a campaign,
our algorithm assigns a bid value for each sub-campaign Cj 2 SP . However,
the AdsHotel’s Platform does not allow to set a bid for each sub-campaign:
the bid is indirectly defined by the Base Bid and a combination of multipliers.
Therefore, we need to blend the definitions of bids in our algorithm and those
of the platform. More specifically, we need to convert the platform Base Bid
plus a combination of multipliers into the bid chosen by the algorithm, and vice
versa. Obtaining the bid value starting from the Base Bid and the multipliers
is always possible and trivial, and is explained in Equations (2.7) and (2.8) for
Google and Tripadvisor, respectively. On the other hand, obtaining the Base
Bid and the multipliers starting from the bid value is not always possible. For
Tripadvisor sub-campaigns, given the bid value xj that we would like to suggest
for sub-campaign Cj , we set the Base Bid bj = 1 and then solve Equation (2.8)
for variable m in the following way:

xj = bj
⇣
1 +

m

100

⌘
,

m = 100xj � 1.
(5.2)

Instead, performing such an action for a Google sub-campaign might be impos-
sible due to the fact that multipliers m change the bid set for di↵erent kind of
searches at the same time, i.e., changing the los multiplier influence the researches
for any check-in date. This is exactly the reason why we must identify a Google
sub-camapaign as (hotel, metasearch, user-country, device). By doing this, we
can use the Equation (5.2) also for setting a bid for Google sub-campaigns.

36

Therefore, our algorithm receives each day multiple samples corresponding
to the same Google sub-campaign (hotel, metasearch, user-country, device): po-
tentially one for each value of the three multipliers los, check-in day, and booking
window days. This is where the preprocessing task gets crucial. Given a sub-
campaign (hotel, metasearch, user-country, device), we take all the received new
samples and we merge them, creating a single observation. More specifically,
the impressions of the resulting observation will be equal to the total amount of
impressions generated by all those samples. The same happens for clicks, costs
and conversions. Instead, the bid device is trivially the same for all the samples,
so we just replicate that value and place it into the resulting observation.

Notice that what we described above relies on the assumption that all the
other multipliers (i.e., los, check-in day and booking window days) must remain
untouched during the learning process. As a matter of fact, given a campaign
Cj , we estimate the costs and number of clicks functions, both depending on
the bid value. We estimate those functions through GPs by feeding them with
the costs and clicks values of the received observations, each linked to a certain
bid value that we suggested to AdsHotel. Thus, it is utterly important that
the other multipliers remain constant, so that we have a correlation between
our suggestions and the received observations, without introducing any latent
variable changing the state of the problem. Otherwise, the observations we
receive would depend also on external factors, i.e., how the other three multipliers
have been changed, and not by our suggested bid. However, experts in the field
reported that hotel managers rarely change the multipliers of their campaigns,
thus we can make the above assumption.

5.2.3 Non-Stationarity

A problem often encountered when deploying an AI system in a real-world sce-
nario is that the distribution generating the data changes over time. Our case
is no exception to this problem due to reasons like seasonality, national holidays
and unpredictable events like COVID-19. Thus, under these circumstances, tak-
ing into account the non-stationarity of the environment is critical to maintain
good performances over time.

To adapt the model to the environment changes, we use a sliding window
approach. This adaptation method is simple and e↵ective, and only requires to
set one hyperparameter: the size w of the sliding window. It consists in using
only the data that has been collected recently to build the costs and number of
clicks function estimates. Specifically, we take into account only the observations
generated in the last w days. Noitce that by choosing a value of w that is too
small, we are not able to learn accurate function estimates, as the noise in the
data may be too high. This means that we would feed inaccurate estimations
into the optimization procedure, which in its turn would provide us non-optimal
bid values. Instead, assigning a value for w that is too large might include data
coming from a di↵erent concept, with respect to the current one, into the model
estimation.

Therefore, choosing the right sliding window size w is crucial to obtain good

37

performances. In this setting we rely on the help of AdsHotel field experts, that
suggested that a proper sliding window size would be w = 60, i.e., approximately
two months. As a matter of fact, they believe that it is rare for a concept drift
to occur in intervals of less than two months.

5.2.4 Constrained Bid Exploration

A crucial problem of working in a real-world online advertising scenario is that
we cannot provide bid suggestions that might alert the advertiser, even if our
algorithm would just use them to temporarily explore the bid space Xj to build
more accurate estimates and perform better at a later stage. This problem is
already tackled by the safe nature of our algorithm, which limits the exploration
by providing only bid suggestions satisfying ROI and budget constraints with
high probability. However, AdsHotel experts would also like our bid recommen-
dations not to deviate too much from their current value. In this way, at least
in the initial stages of testing, they can evaluate our suggestions by hand and
see whether or not they are reasonable and coherent.

For this reason, for each sub-campaign Cj 2 SP , we decided to further restrict
the set Xj of possible bid values, obtaining the new set X̄j . More precisely, X̄j

is defined by taking into account the set Xj , the current bid value xj and an
exploration percentage ✏j 2 [0, 1] defining how much we can deviate at most
from xj . As an example, imagine that the interval of possible bid values is Xj =
[0.10, 1.50], that the last bid is xj = 1.00 and that the exploration percentage is
✏j = 20%. Our suggestion can be only inside the interval X̄j = [0.80, 1.20]. Note
that, the exploration percentage is defined at sub-campaign level. Indeed, using
the same ✏ for every sub-campaign is not a viable solution since they can be very
di↵erent from one another. Therefore, we would like to be much more cautious
with our bid suggestion whenever the sub-campaign’s performance has been very
good recently and to be more flexible if the sub-campaign is not performing well.
AdsHotel’s experts want the maximum allowed exploration percentage to be 30%
and the allowed minimum to be 5%. In this way our recommendation can never
be much far from the last bid value. At the same time, even if the sub-campaign
at hand is performing very well, we always have some room to explore and, thus,
a chance to further increase its performance.

Now, we describe the first approach we took to define the exploration percent-
age ✏j . The first step consists into evaluating the performance of sub-campaign
Cj , since ✏j depends on it. Here we decided to use the return-on-investment
(ROI) as performance measure. We estimate the ROIj of the current sub-
campaing Cj and we compare it to the global ROIg value of the market (i.e., the
ROI over all active campaigns). Specifically, the performance pj of sub-campaign
Cj is computed in the following way:

pj =
ROIg �ROIj

ROIg
,

where ROIj and ROIg are estimated using the observations received in the last
w days (i.e., sliding window w = 60 defined in Sectiont 5.2.3). Precisely, we

38

estimate ROIj =
kj
yj

, where kj and yj are the total amount of conversions and

costs generated in the last w days by sub-campaign Cj , respectively. On the

other hand, ROIg =
kg
yg

, where kg and yg are the total amount of conversions

and costs generated in the last w days by all active campaigns, respectively. At
this point we need to define a function ' (pj) that, providing a sub-campaign’s
performance pj , returns the allowed exploration percentage ✏j to be applied over
the current bid value xj . We define such function ' (pj) as follows:

' (pj) = e+ (e� e)max {0, pj}, (5.3)

where e = 5 and e = 30 are the previously introduced minimum and maximum
allowed exploration percentages, respectively. Thus, given a campaign Cj , our
algorithm computes the exploration percentage ✏j = ' (pj) and, finally, defines
the bid suggestion interval:

X̄j =
h
xj
⇣
1� ✏j

100

⌘
, xj

⇣
1 +

✏j
100

⌘i
. (5.4)

Note that, while defining the new set of allowed bid values X̄j , the following
statement X̄j ✓ Xj must be satisfied. Indeed, we cannot include bid values
in X̄j that were not allowed in the first place. This approach, however, did
not provide good ✏j values due to multiple reasons. First, as already stated,
using conversions in a period full of traveling restrictions can lead to inaccurate
and unreliable estimates. Moreover, comparing the sub-campaign ROIj to the
global one ROIg is not ideal: if the vast majority of campaigns have low ROI
values while the current one has a high one, we are comparing against a very
low bar. Another reason is that the ' (pj) function is linear and, according to
field experts, a non-linear one may be preferred.

To get rid of these problems we design a second approach. First, rather than
using the return-on-investment as performance measure, we use impressions.
Then, we evaluate the performance pj of sub-campaign Cj in the context of its
campaign C, rather than in a global one:

pj = 100
ij
ic
,

where, ij and ic are the total impressions collected by sub-campaign Cj and
campaign C in the last n days, respectively. Thus, pj stands for the impressions
percentage of sub-campaign Cj over the ones of campaign C. AdsHotel’s experts
suggested that the current performance of a sub-campaign can be inferred by
looking at the last two weeks, thus we set n = 14 days.

Note that, through performance analysis, we have seen a recurrent behavior
in the performance of sub-campaigns: mobile ones generally yield larger portions
of the total impressions of their campaign. This is due to the fact that it is by
far the most used device to search for Hotels on the Internet. Specifically, we
have seen that important mobile sub-campaigns yield at least pm = 30% of the
total impressions. Instead, important non-mobile sub-campaigns yield at least

39

p m

=
10

p m
=
30 10

0
0

e = 5

e = 30

40

pj

✏ j

'm (pj)

p n
=
5

p n
=
20 10

0
0

e = 5

e = 30

40

pj

✏ j

'n (pj)

Figure 5.1: Constrained bid exploration functions. (left) Mobile function 'm (pj). (right)
Non-mobile function 'n (pj).

pn = 20% of the total impressions. For this reason, we decided to define two
di↵erent functions: one for mobile sub-campaigns 'm (pj) and one for non-mobile
sub-campaigns 'n (pj). Both functions, given a sub-campaign performance pj ,
return the allowed exploration percentage ✏j to be applied over the current bid
value xj . Function 'm (pj) is defined such that: (1) ✏j = e 8pj � pm, (2) ✏j
varies in a non-linear fashion in the interval p

m
 pj pm, and finally (3) ✏j = e

8pj p
m
, where p

m
= 10%. On the other hand, function 'n (pj) is defined such

that: (1) ✏j = e 8pj � pn, (2) ✏j varies in a non-linear fashion in the interval
p
n
 pj pn, and finally (3) ✏j = e 8pj p

n
, where p

n
= 5%. Formally, we

define 'm (pj) and 'n (pj) as:

'm (pj) = max

⇢
e, e� ↵mmax

n
0, pj � p

m

o�
�
, (5.5)

'n (pj) = max

⇢
e, e� ↵nmax

n
0, pj � p

n

o�
�
, (5.6)

where e = 5 and e = 30 are the previously introduced minimum and maximum

allowed exploration percentages, respectively. Instead, ↵m = 27
2018

3
4 , ↵n = 27

2020
3
4

and � = 1
4 are used to define the non-linear behaviour of 'm (pj) and 'n (pj)

in intervals p
m

 pj pm and p
n
 pj pn, respectively. The trend of both

functions can be seen in Figure 5.1.
Moving on, given a campaign Cj , our algorithm computes the exploration

percentage using ✏j = 'm (pj) or ✏j = 'n (pj), depending on the device, and,
finally, defines the bid suggestion interval X̄j as described in Equation (5.4).
Note that, also here, while defining the new set of allowed bid values X̄j , the
following statement X̄j ✓ Xj must be satisfied. Indeed, we cannot include bid
values in X̄j that were not allowed in the first place.

5.2.5 Dynamic ROI Constraint

Given a campaign C, the optimization algorithm Opt(µ,�⇤), defined by Spadaro
et al. [45], solves the problem in Equations (5.1). It finds a set of bids, one

40

Algorithm 2 DynamicROIOpt
�
µ,�⇤, S̄

�

Require: vector of GPs’ samples µ, minimum ROI value �⇤, set S̄ of latest observed
bids

1: S = Opt(µ,�⇤)
2: if S not feasible then
3: return S̄
4: else
5: while S feasible do
6: S̄ = S
7: �⇤ = 2�⇤

8: S = Opt(µ,�⇤)
9: end while

10: I = [�⇤, 2�⇤]
11: repeat
12: select � in the middle of interval I
13: S = Opt(µ,�)
14: if S feasible then
15: S̄ = S
16: I = I \ {x 2 I : x < �}
17: else
18: I = I \ {x 2 I : x > �}
19: end if
20: until I 6= ?
21: end if
22: return S̄

for each sub-campaign, maximizing the revenue while satisfying the ROI and
budget constraints. The minimum ROI value �⇤, that needs to be satisfied, is
communicated to us through the Constraints table of the DB. However, under
the periods of the COVID-19 pandemic, AdsHotel asked us to solve the problem
in Equations (5.1) with the highest possible ROI value �̄ � �⇤ since some of the
ROI set might not be feasible.

We solve this problem through a binary search approach in the Dynami-
cROIOpt(µ,�⇤) procedure, whose pseudo-code is provided in Algorithm 2. Given
the vector µ containing samples from the GPs, the minimum ROI value �⇤ to
be satisfied, and given the set S̄ of latest observed bids, our task is to find the
highest possible ROI value �̄ � �⇤ such that Opt

�
µ, �̄

�
is able to find a feasible

solution S̄ (i.e., set of bids satisfying the ROI and budget constraints) and return
S̄. If there is no such solution for any �̄ � �⇤, then we return the set of latest
observed bid.

In the first steps, we see whether or not the Opt(µ,�⇤) procedure returns
a feasible solution S. Indeed, if it does not, we can stop the algorithm right
away and return the latest observed bids (Lines 1-3). Instead, if S is feasible, we
may find out �̄ > �⇤ leading to a further feasible solution, thus we go on with
the algorithm (Line 4-22). The next goal is to find out the interval I of ROI
values in which �̄ > �⇤ may be placed. We do that by running multiple times
the Opt(µ,�⇤) procedure (Lines 5-9), each time using a higher �⇤ value (Line 7),

41

until the returned solution S is not feasible anymore. As soon as this happens,
we define the interval I = [�⇤, 2�⇤] (Line 10). After that, until the interval I is
not empty, we select � equal to the middle element of I, we run the Opt(µ,�)
procedure and based on the result we update I (Lines 11-20). Specifically, each
time a feasible solution S is found with the given �, we discard from I all ROI
values lower or equal than � (Line 16). On the other hand, when no feasible
solution is found by Opt(µ,�), we discard all ROI values higher or equal than
� (Line 18). At last, when the interval I becomes empty, we return the latest
feasible solution we found S̄ (line 22).

5.3 Experimental Evaluation

The bids suggested by our Meta-Algorithm are not applied automatically to the
various sub-campaigns. First, they are proposed to hotel managers through no-
tifications in the AdsHotel platform. After that, it is up to them to employ such
bids or not. Unfortunately, no hotel has been applying our suggestions consis-
tently over time yet, and thus we cannot show and evaluate the performance of
our algorithm.

Anyhow, evaluating the performance of our Meta-Algorithm in a real-world
scenario would be challenging for multiple reasons. First of all, A/B testing
strategies cannot be applied in our setting. For obvious reasons, we cannot du-
plicate a running campaign and apply our suggestion to only one of the two
to compare the results. As an alternative, we could look for two active cam-
paigns that have achieved very similar performance over a sustained period of
time, then apply our suggestions to just one of them and compare the results.
However, finding such campaigns, even relying on expert advice, is not possi-
ble in our setting due to the specific characteristics of the di↵erent hotels. For
these reasons, di↵erent campaigns cannot be compared, leaving us with the only
option consisting of evaluating the performance of a campaign over time. For
instance, we could compare the before/after performance with respect to the
adoption of our bid suggestions. However, complications a↵ect this idea as well.
Specifically, the non-stationary nature of the environment may invalidate our
performance comparison if a concept drift happens close to the adoption of our
bid suggestions.

Even if we cannot evaluate the performance of the Meta-Algorithm, we can
still show the bid values it would suggest for a real-world hotel campaign. We run
the algorithm on the dataset previously described in Chapter 2. Precisely, the
dataset is composed of the observations generated in the last w = 60 days, specif-
ically from 19 August 2020 to 19 October 2021. Given the campaign C = (hotel,
google)1, the SingletonAggregation(C) procedure selects a set SP composed of
the following sub-campaigns:

• (hotel, google, mexico, mobile);

• (hotel, google, united states, desktop).

1Due to NDAs, we cannot disclose the actual name of the hotel.

42

Xj xj pj ✏j X̄j x̂j �̄

(mx, mobile) [0.00, 2.21] 1.19 53.6% 5% [1.13, 1.25] 1.13
4.01

(us, desktop) [0.00, 2.21] 1.47 7% 14.5% [1.25, 1.69] 1.69

Table 5.1: Details on the experiment run with our Meta-Algorithm on the real campaign
(hotel, google). In the sub-campaign definition, mx stands for Mexico, while us stands for
United States.

The costs and revenue function estimates of each sub-campaign are shown in
Figure 5.2. Note that the revenue function estimate is obtained by multiplying
the number of clicks by the value-per-click vC .2 As expected, GPs are more
accurate in the vicinity of the observations. Specifically, the higher the number
of observations, the lower the uncertainty of the estimates. The shape of the
(united states, desktop) GPs are as expected: almost a linear function with a
positive slope and passing from the origin. Instead, the shapes of GPs for sub-
campaign (mexico, mobile) deviate a little from the beforementioned ideal shape.
Thus, ideally, we should explore other bid values to gather information on the
most uncertain regions of the estimates. We show the results of the experiment in
Table 5.1. Specifically, for each sub-campaign Cj 2 SP , we display the initial set
Xj of allowed bid values, the current bid value xj , the impression performance
pj , the exploration percentage ✏j , the new set X̄j of allowed bid values, the
suggested bid x̂j , and finally, the satisfied ROI value �̄. The performance pj
of sub-campaign (mexico, mobile) is quite high as it accounts for 53.6% of the
campaign impressions. For this reason, the exploration percentage ✏j defined
by Equation 5.5 is very low, and the suggested bid cannot di↵er much from the
current value. As a result, we will not be able to explore as we would like. On
the other hand, (united states, desktop) is not performing well as it account for
only 7% of the campaign impressions. As a result, we can explore more with
respect to the other sub-campaign.

2Due to NDA reasons, we cannot disclose the actual cost and revenue values of the GPs,
therefore we opt not to explicit the values on the y axes.

43

0 0.5 1 1.5

bid

co
st

mean
mean± std
observations

0 0.5 1 1.5

bid

re
ve
nu

e

mean
mean± std
observations

0 0.5 1 1.5

bid

co
st

mean
mean± std
observations

0 0.5 1 1.5

bid

re
ve
nu

e

mean
mean± std
observations

Figure 5.2: Cost and Revenue GPs of each sub-campaign Cj 2 SP . (top left) Cost GP of
the (mexico, mobile) sub-campaign. (top right) Revenue GP of the (mexico, mobile) sub-
campaign. (bottom left) Cost GP of the (united states, desktop) sub-campaign. (bottom
right) Revenue GP of the (united states, desktop) sub-campaign.

44

Chapter 6

Context Aggregation

A fundamental part of the algorithm described in Chapter 5 consists of esti-
mating the following unknown stochastic functions through Gaussian Processes
(GPs): the costs and the number of clicks as functions of the bid. The estimated
number of clicks will be then combined with the value-per-click (vpc), to obtain
an estimation of the revenue as a function of the bid. Then, we feed the campaign
optimization routine with the estimated lower and upper bounds on the revenue
and cost functions. For this reason, it is crucial to have accurate estimates and
have a reasonably large amount of clean data as well. Unfortunately, for almost
the entire duration of the project, we encountered a serious lack of data due
to travel restrictions imposed for the COVID-19 pandemic. To overcome this
problem, we define context aggregation strategies to group up the data available
in each sub-campaign. By doing so, we manage to feed our GPs with enough
information to build accurate estimates for a larger number of sub-campaigns,
even for those with little to no data.

This chapter is structured as follows. In Section 6.1 we provide a formal de-
scription of the problem. In Section 6.2 we describe our approach and algorithms.
Finally, in Section 6.3 we present the experimental results.

6.1 Problem Formulation

A campaign C = {C1, . . . , CN} is composed by N 2 N sub-campaigns. We define
the value function v : 2 C ! {0, 1} that, given a subset of C, returns either 0 or 1.
It returns 1 if, by combining the data of all the sub-campaigns in the subset, the
estimated costs and number of clicks functions are accurate enough. It returns
0 otherwise.1 We define a solution S = {A1, . . . , AK} as a partition of the set

C s.t.:
KS
i=1

Ai = C ^ (Ai \Aj = ? 81 i, j K, i 6= j). The goal is to find the

solution S⇤ such that:

S⇤ = argmax
S22 C

X

A2S
v (A), (6.1)

1With 2 C we denote the power-set of the set C.

where
P

A2S v (A) is the cumulative value of the solution S.
Note that, if the costs and number of clicks functions were known, the solu-

tion S⇤ would be the trivial partition S⇤ = {A1, . . . , AN}, where Ai = {Ci} 8i 2
{1, . . . , N}. However, in our scenario, these functions are unknown and must be
estimated. Therefore, combining together multiple sub-campaigns having poor
data can be advantageous.

6.2 Proposed Method

The aggregation problem described above is known to be NP-complete [43, 53].
However, it can be simplified by defining in a certain way the granularity level of
the aggregations Ai composing the solution S. We recall that the a campaign is
identified by the tuple (hotel, metasearch); instead we identify a sub-campaign
by (hotel, metasearch, user-country, device). Therefore, given a campaign, its
sub-campaigns di↵er from each other based on the user-country and device.
Moreover, there are three types of device in total: desktop, mobile and tablet.

In the early phases of this work, we designed static aggregations. As a
matter of fact, the number of campaigns we were optimizing at that time was
manageable enough to define ad hoc aggregation strategies for each campaign.
More specifically, we designed the following aggregation granularity levels, from
best (i.e., finer) to worst (i.e., coarser):

• Sub-campaign level: each sub-campaign is considered alone, thus each
aggregation is composed by a single sub-campaign (i.e., singleton aggrega-
tion). This is applied whenever there are enough observations generated
by each sub-campaign. This is the ideal aggregation granularity, as we are
able to accurately estimate the costs and number of clicks functions for
each sub-campaign.

• User-country level: all sub-campaigns sharing the same user-country
are aggregated together. Note that, there are always three sub-campaigns
sharing the same user-country, one for each device.

• Foreign and device level: each sub-campaign having the user-country
equal to the hote-country (i.e., inhouse) is considered alone; on the other
hand, all sub-campaigns having a user-country di↵erent from the hote-
country (i.e, foreign) and the same device are aggregated together.

• Foreign/inhouse level: all inhouse and foreign sub-campaigns are ag-
gregated together, respectively.

However, based on the experience of AdsHotel, we came to the conclusion
that the only acceptable aggregation granularity levels were the first two: sub-
campaign level and user-country level. The rationale behind this decision is
that customers from di↵erent countries behave too di↵erently from each other.
Therefore, joining data at a coarser grain would not have led to good function
estimates anyway. Furthermore, the static approach became prohibitive as soon

46

Algorithm 3 DynamicCountryAggregation(C)
Require: Campaign C = {C1, . . . , CN}
1: SP = ?, SN = ?
2: for Ccu 2 C do
3: A = ?
4: for C 2 Ccu do
5: if v ({C}) = 1 then
6: SP = SP [{C}
7: else
8: A = A [{C}
9: end if

10: end for
11: if v (A) = 1 then
12: SP = SP [A
13: else
14: SN = SN [A
15: end if
16: end for
17: S = {SP , SN}
18: return S, SP , SN

as the number of campaigns increased. Indeed, manually deciding the aggre-
gation granularity of every campaign does not scale easily w.r.t. the number of
campaign.

6.2.1 Dynamic Country Aggregation

To address the issues explained above, we designed an algorithm able to per-
form aggregations at a dynamic granularity level. The idea is that, given a
user-country, we individually check each of its sub-campaigns through the value
function v to see whether or not they have enough data on their own to accurately
estimate the costs and number of clicks functions. A singleton aggregation is as-
signed to each sub-campaign passing this test. The ones failing it are aggregated
together instead. Note that, it is possible to find the optimal aggregation in those
few steps only because we only have three sub-campaigns for each user-country:
one for each device type.

Here, we present theDynamicCountryAggregation(C) algorithm, whose pseudo-
code is provided in Algorithm 3. Given a campaign C, this algorithm is in charge
of returning the best partition S of its sub-campaigns. The algorithm divides
the aggregations within that partition into two categories: those that pass the
test and those that fail. The reason behind this further task is the following:
AdsHotel wants us to provide a bid suggestion for a given sub-campaign only if
we are able to build good function estimates for it.

The first step of the algorithm is to initialize SP and SN as empty sets (Line
1). These two sets, SP and SN , contain the partition’s aggregations passing the
test and the ones that do not, respectively. SP and SN compose a partition of
S. During the execution of the algorithm, SP and SN will be expanded with

47

the various optimal aggregations. Now, we need to consider one user-country
at a time, as aggregations are allowed only between sub-campaigns belonging to
the same user-country. Thus, we loop through each subset Ccu of sub-campaigns
having user-country cu (Lines 2-16). Note that, given a user-country, there
can be only one non-singleton aggregation. This is due to the fact that there are
only three sub-campaigns sharing the same user-country (i.e., one for each device
type). Therefore, we initialize only one non-singleton aggregation set A as the
empty set (Line 3). Now, for each sub-campaign C 2 Ccu , we perform the test
v ({C}) for the singleton aggregation {C}. Then, if the test indicates that {C}
has enough data to be able to estimate good costs and number of clicks functions,
{C} is added to SP ; otherwise, {C} is added to A (Lines 4-10). After testing
each sub-campaign singularly, aggregation A will contain all sub-campaigns that
did not pass the test. Thus, the next step is to test the aggregation A. If the
test is successful, A is added to SP ; otherwise, A is added to SN (Lines 11-15).
Next, we define the best partition S composed by all the aggregations contained
in SP and SN (Line 17). At last, we return S, SP and SN (Line 18).

In Figure 6.1, we show all the possible aggregation instances that can hap-
pen during the DynamicCountryAggregation algorithm. As we know, given a
user-country, we only have three sub-campaigns, one for each device type. We
represent in green all sub-campaigns passing the test and in red all the failing
ones. In instance 1, all sub-campaigns pass the test, and thus we add each sin-
gleton aggregation to SP . As a result, in the optimization algorithm we are
able to suggest three di↵erent bids. In instance 2, the tablet sub-campaign is
the only one not passing the test, and thus we cannot merge it with any other
sub-campaign belonging to the same user country. Only the desktop and mobile
singleton aggregations will be added to SP . In instance 3.1, only the desktop
sub-campaign passes the test. Thus, we aggregate the mobile and tablet sub-
campaigns. The resulting aggregation mobile,tablet passes the test. Hence, we
add desktop and mobile,tablet to SP . As a result, we will be able to suggest two
bid values: one for the singleton aggregation desktop and one for (mobile, tablet).
Instead, in instance 3.2, the aggregation mobile,desktop fails the test. Thus, only
the singleton aggregation desktop will be added to SP , and only one bid will be
suggested. In instance 4.1, every sub-campaign fails the test. The formed ag-
gregation (desktop,mobile,tablet) passes the test, and thus will be added to SP .
As a result, the same bid will be suggested for all sub-campaigns. On the other
hand, in instance 4.2, the resulting aggregation fails the test. Unfortunately,
no aggregation will be added to SP , and no bid will be suggested. Note that,
in each instance, the device types are specified just for clarity, but they can be
interchanged freely. For example, take instance 2: the sub-campaign failing the
test can be any among the three, but we chose tablet just for clarity.

6.2.2 Singleton Aggregation

Unfortunately, due to requirements imposed by AdsHotel in later stages of
the work, DynamicCountryAggregation(C) could not be used on the real system.
These requirements regard the exploration constraints described in Section 5.2.4.

48

DESKTOP

MOBILE

TABLET

Instance 1

DESKTOP

MOBILE

TABLET

Instance 2

DESKTOP

TABLET

Instance 3.1 MOBILE
MOBILE + TABLET

DESKTOP

TABLET

Instance 3.2 MOBILE

DESKTOP

MOBILE + TABLET

DESKTOP

TABLET

Instance 4.1 MOBILE DESKTOP + MOBILE + TABLET

DESKTOP

TABLET

Instance 4.2 MOBILE DESKTOP + MOBILE + TABLET

DESKTOP

Figure 6.1: Possible DynamicCountryAggregation instances.

Algorithm 4 SingletonAggregation(C)
Require: Campaign C = {C1, . . . , CN}
1: SP = ?, SN = ?
2: for C 2 C do
3: if v ({C}) = 1 then
4: SP = SP [{C}
5: else
6: SN = SN [{C}
7: end if
8: end for
9: S = {SP , SN}

10: return S, SP , SN

Conversely, we present the SingletonAggregation(C) algorithm, whose pseudo-
code is provided in Algorithm 4 which was applied instead. Given a campaign
C, this algorithm performs the test on every sub-campaign and, based on the
results, assigns them to one of the two sets SP , and SN . In this way, we are able
to deliver a bid suggestion just for sub-campaigns passing the test. Note that,
due to the fact that we only allow singleton aggregations, the best partition S
is always the trivial partition.

The first step of the algorithm is to initialize SP and SN as empty sets (Line
1). These two sets, SP and SN , contain the singleton aggregations passing the
test and the ones that do not, respectively. SP and SN compose the trivial
partition of S. Now, for each sub-campaign C 2 C, we perform the test v ({C})
for the singleton aggregation {C}. Then, if the test indicates that {C} has
enough data to be able to estimate good costs and number of clicks functions,
{C} is added to SP ; otherwise, {C} is added to SN (Lines 2-8). Next, we define
the best partition S composed by all the aggregations contained in SP and SN

49

SingletonAggregation(C) DynamicCountryAggregation(C)
Accepted 163 297
Rejected 18618 18484
Acceptance % 0.867% 1.58%

Table 6.1: Performance comparison between SingletonAggregation(C) and
DynamicCountryAggregation(C) algorithms using the Data-Driven test.

(Line 9). At last, we return S, SP and SN (Line 10).

6.2.3 Testing Aggregations

In this section, we present the Data-Driven test which checks whether or not
an aggregation has enough data to compute accurate estimates. It consists of
directly evaluating the data before actually performing any estimation. Specifi-
cally, given an aggregation, we check its observations to see whether or not there
are at least two unique bid values, each one with at least seven non-zero costs
and number of clicks samples. The idea is that, to have the most simple form
of estimation of a function f (x) (i.e., a line), we need at least two points, each
related to a di↵erent x value. Moreover, we required to have a minimum of 7
non-zero samples corresponding to the same x, meaning that the bid has been
tested at least for a week.

6.3 Experimental Evaluation

We run the proposed DynamicCountryAggregation(C) and SingletonAggrega-
tion(C) algorithms on the dataset previously described in Chapter 2 and compare
their results. Precisely, we consider a dataset composed of observations gener-
ated in the last w = 60 days, specifically from 19 August 2020 to 19 October
2021. The day we ran the experiments, 20 October 2021, there were 535 active
campaigns with an overall number of sub-campaigns equal to 18, 781.

The results of the experiments are reported in Table 6.1. In the experi-
ment run with the SingletonAggregation(C) algorithm, 163 sub-campaigns passed
the test, while 18, 618 did not. Thus, approximately 0.867% of the total sub-
campaigns passed the test. Conversely, the DynamicCountryAggregation(C) al-
gorithm got the following results: 297 sub-campaigns passed the test, while
18, 484 did not. Therefore, out of the total number of sub-campaigns, 1.58%
passed the test. This quantity increased by 82.2% compared to the first experi-
ment. Given these results, we can say that the DynamicCountryAggregation(C)
algorithm would have been a much better alternative to the SingletonAggrega-
tion(C).

Now we show a real aggregation example that took place in the second ex-
periment run with the DynamicCountryAggregation(C) algorithm. Precisely, we
display the details of the Data-Driven test performed on each aggregation and
the corresponding GP estimations. The aggregation instance happens within

50

Unique Bid Costs 6= 0 Clicks 6= 0 Test Result

desktop
0.60 0 0

failed0.61 0 0
0.65 0 0

mobile
0.42 23 23

failed
0.56 4 4

tablet
0.48 5 5

failed
0.64 1 1

Table 6.2: Details about the Data-Driven test run on each singular sub-campaign. Values
inside the Costs 6= 0 and Clicks 6= 0 columns refer to the number of non-zero costs and
clicks observations, respectively.

campaign (hotel, google), over the three sub-campaigns targeting British cus-
tomers.2 Specifically, the campaigns are:

• (hotel, google, united kingdom, desktop);

• (hotel, google, united kingdom, mobile);

• (hotel, google, united kingdom, tablet).

First, we perform the Data-Driven test on every sub-campaign. However, none
of these exceed the thresholds defined by the test. Details are shown in Table 6.2.
We show the GPs of each sub-campaign in Figure 6.2. Next, we aggregate the
failed sub-campaigns and perform the test again. This time the test passes.
Details are displayed in Table 6.3. We show the GPs of the aggregated sub-
campaigns in Figure 6.3. This example clearly shows the advantages of the Dy-
namicCountryAggregation algorithm compared to SingletonAggregation. Indeed,
by using SingletonAggregation, we would have discarded every sub-campaign,
providing zero bid suggestions. Instead, through DynamicCountryAggregation,
we managed to obtain better GP estimates both from the point of view of the ac-
curacy and of shape. Moreover, we managed to provide a unique bid suggestion
for all these sub-campaigns, rather than none at all.

2Due to NDAs, we cannot disclose the actual name of the hotel as well as the actual cost
and click values of the GPs. Instead we opted to display vaules which are proportional to the
real numbers.

51

Unique Bid Costs 6= 0 Clicks 6= 0 Test result

desktop-mobile-tablet

0.42 1 1

passed

0.48 14 14
0.60 10 10
0.61 1 1
0.64 4 4
0.65 1 1

Table 6.3: Details about the Data-Driven test run on the aggregated sub-campaigns. Values
inside the Costs 6= 0 and Clicks 6= 0 columns refer to the number of non-zero costs and
clicks observations, respectively.

52

0 0.2 0.4 0.6 0.8

bid

co
st

mean
mean± std
observations

0 0.2 0.4 0.6 0.8

bid
cl
ic
k

mean
mean± std
observations

0 0.2 0.4 0.6 0.8

bid

co
st

mean
mean± std
observations

0 0.2 0.4 0.6 0.8

bid

cl
ic
k

mean
mean± std
observations

0 0.2 0.4 0.6 0.8

bid

co
st

mean
mean± std
observations

0 0.2 0.4 0.6 0.8

bid

cl
ic
k

mean
mean± std
observations

Figure 6.2: Cost and Click GPs of each sub-campaign in (hotel, google, united kingdom).
(top left) Cost GP of the desktop sub-campaign. (top right) Click GP of the desktop sub-
campaign. (center left) Cost GP of the mobile sub-campaign. (center right) Click GP of the
mobile sub-campaign. (bottom left) Cost GP of the tablet sub-campaign. (bottom right)
Click GP of the tablet sub-campaign.

53

0 0.2 0.4 0.6 0.8

bid

co
st

mean
mean± std
observations

0 0.2 0.4 0.6 0.8

bid

cl
ic
k

mean
mean± std
observations

Figure 6.3: Cost and Click GPs of the aggregated sub-campaigns in (hotel, google, united
kingdom). (left) Cost GP of the aggregated sub-campaigns. (right) Click GP of the aggre-
gated sub-campaigns.

54

Chapter 7

Country Exploration

Country exploration consists of expanding a running campaign by opening promis-
ing user-countries that are not included in the campaign yet. Indeed, even though
we would like to expand a campaign at a finer level (i.e., sub-campaigns), Ad-
sHotel’s Platform allows such action only at user-country level, meaning that
when we open a country all sub-campaigns associated with that user-country
are added to the campaign. This applies both to Google and Tripadvisor cam-
paigns, as explained in Sections 2.3.1 and 2.3.2, respectively. The goal of this
task is to not let hotels miss out on any good opportunity that might generate
important revenue. The challenge is given by the lack of information. As a
matter of fact, the sub-campaigns belonging to closed countries do not generate
samples. This means that we do not have a direct way of evaluating how good
the performance of a closed country could be once we open it. The first solu-
tion that comes to mind is to blindly open every possible country and collect
observations. However, due to economical reasons, this cannot be applied in a
real-world scenario. Thus, we first need to collect information about a given
country and then decide if it is worth opening. To overcome the lack of informa-
tion, we evaluate how the sub-campaigns of a closed country are performing on
other similar hotels. Then, we use two di↵erent, but complementing, approaches
to provide opening suggestions:

1. we use a ranking system to identify the most promising country to open
among the currently closed ones;

2. we study their performance trend through change detection methods.

This chapter is structured as follows. In Section 7.1 we provide a formal de-
scription of the problem. In Section 7.2 we describe our approach and algorithms.
Finally, in Section 7.3 we present the experimental results.

7.1 Problem Formulation

Given a finite time horizon of T 2 N days, we define an advertising campaign
Ct = {At, Bt} at day t 2 {1, . . . , T}, where At and Bt are the set of its open
and closed user-countries, respectively. For each day t 2 {1, . . . , T}, our goal is

to specify the closed user-country b 2 Bt�1 to be opened, such that the overall
cumulative revenue of the expanded campaign Ct is maximized, while keeping
the overall ROI above a fixed value �⇤ 2 R+. At a given day t, the problem is
modeled as follows:

argmax
b2Bt�1

r (b) +
X

a2At�1

r (a), (7.1a)

s.t.
r (b) +

P
a2At�1

r (a)

c (b) +
P

a2At�1
c (a)

� �⇤, (7.1b)

where r (a) and c (a) are the expected revenue and the expected cost given the
open user-country a, respectively. Moreover, Constraint (7.1b) is the ROI con-
straint, forcing the revenue to be at least �⇤ times the incurred costs. Note that
if the expected revenue and cost functions were known, the optimal user-country
b 2 Bt�1 to be opened could be found by solving the Equations 7.1 in closed
form. However, r(b) is unknown to the advertiser, therefore we need to define a
proxy to understand which countries are the most promising ones to be added
to the advertising campaign.

From now on, we assume that the an action to expand a running advertising
campaign consists in the addition of a sub-campaigns targeting a previously
closed user-country.

7.2 Proposed Method

As already outlined, we propose two methods for opening a user-country: Global
Rankings and Performance Trend Monitoring. The former is based on a ranking
system, while the latter is based on change detection techniques. In principle,
these two methods could be used separately since they serve two di↵erent pur-
poses. Indeed, while the role of the ranking is to find out the most promising
user-country from the point of view of the performance, the role of the second one
is to give further information on the performance trend. In this way, AdsHotel
has more information to analyze our suggestions. After our algorithm proposes
the opening of a user-country, for a certain campaign (hotel,metasearch), Ad-
sHotel is in charge of opening that country for that specific campaign. However,
due to contract bindings, this can be done only with the authorization of the
Hotel Manager. Anyway, supposing AdsHotel opens the suggested user-country,
the multipliers of those sub-campaigns are set to to a default setting (the so
called low visibility). The idea is that, as always, if we are not sure to satisfy
minimum ROI constraints, we do not want to risk spending too much campaign
budget. Our safe bid optimization algorithm, explained in Chapter 5, cannot
provide bid suggestions for such sub-campaigns as there are no observations
available yet. Therefore, by setting the sub-campaign multipliers to the default
strategy, we collect useful observations with the goal to include the campaign in
the optimization procedure.

Note that an hotel does not generate observations regarding its closed user-
countries, thus we cannot directly evaluate their performances to understand

56

Algorithm 5 Global Rankings

Require: H set of hotels with at least one active campaign

1: query the DB to get the global rankings R
2: normalize R
3: apply continent weighting to R
4: for h 2 H do
5: get hotel-country ch and set Mh of metasearches for hotel h
6: get ranking Rch of the hotel-country ch
7: sort Rch by descending order
8: for m 2 Mh do
9: retrieve set Om of open user-countries for metasearch m

10: select the first user-country cu in the global ranking Rch s.t. cu 62 Om

11: insert opening suggestion for cu on the DB
12: end for
13: end for

which one is the most promising. We circumvent this problem using the obser-
vations produced by other hotels in which those user-countries are open. More
specifically, we use observations generated by hotels situated in the same country
of the hotel for which we need to suggest the opening. This approach requires
to hold the assumption that all hotels located in the same hote-country have a
similar influence over the customers.

As a final remark, we highlight that in both Global Rankings and Perfor-
mance Trend Monitoring, the performance measure is based on impressions.
The reason behind this decision is that, under COVID-19 restrictions, conver-
sions are extremely rare, thus very unreliable. Therefore, also consulting with
the expert of the field, we narrow our attention on the first layer of the funnel
model (i.e., impressions).

7.2.1 Global Rankings

In this section we present the Global Rankings algorithm, whose pseudo-code
is provided in Algorithm 5. Given the set H of hotels with at least one active
campaign, the algorithm proposes, for each campaign of every hotel h 2 H, the
first closed user-country cu in the ranking Rch .

At the beginning (Lines 1-3), we build one global ranking for each existing
hotel-country. Initially, each global ranking contains a descending ordering of
user-countries in terms of total impressions received over the last w days by all
hotels located in the given hotel-country, where w is the sliding window presented
in Section 5.2.3. This is done in a one-shot manner by performing one query
on the DB (Line 1). Such rankings are built using only cleaned observations,
as explained in Section 5.2.1. We normalize every ranking by dividing the total
impressions by the number of hotels that contributed those impressions (Line
2) to take into account the di↵erent level of adoption of the Adshotel system
in di↵erent countries. It is important to note that not all user-countries should
have the same importance in a global ranking. This is due to the fact that some
impressions may be more important than others by leading to more conversions

57

Continent Weight
Europe 0.7
North America 0.7
Asia 0.4
Australia 0.4
South America 0.25
Africa 0.25
Antarctica 0.0

Table 7.1: Continent weights.

Algorithm 6 Performance Trend Monitoring

Require: set H of hotels with at least one active campaign

1: for h 2 H do
2: get hotel-country ch and set Mh of metasearches for hotel h
3: retrieve from memory the set of statistics Sch

4: S⇤
ch = CDT (ch, Sch)

5: store S⇤
ch on memory

6: retrieve the set Y of last drift types from S⇤
ch

7: for m 2 Mh do
8: retrieve set Cm of closed user-countries for metasearch m
9: insert YCm on the DB

10: end for
11: end for

(i.e., di↵erent conversion rates). With the help of AdsHotel we empirically set
a weight scheme for the impressions coming from di↵erent continents (Line 3).
First, user-countries in the same continent of the hotel weight more than all the
others. For this reason, the weight of the hotel’s continent is always set to 1.0.
Instead, the other continents are weighted according to Table 7.1.

The remaining steps of the algorithm (Lines 4-13) consist in selecting the sin-
gle county on which suggest an opening based on the previously defined ranking.
For each hotel having at least one active campaign, we retrieve its hotel-country
and its set of metasearches (Line 5). Next, we get the global ranking correspond-
ing to that hotel-country (Line 6-7). We would like to suggest one user-country
to each currently ongoing campaign that, as we know, is identified by the tu-
ple (hotel,metasearch). Thus, for each hotel and for each one of his running
campaign (i.e., metasearch), we retrieve the set of currently open user-countries
(Line 9). Then, we select the first user-country in the ranking that is not open
yet for that particular campaign (Line 10). Finally, we write on the DB our
opening suggestion (Line 11).

7.2.2 Performance Trend Monitoring

In this section we present the Performance Trend Monitoring algorithm,
whose pseudo-code is provided in Algorithm 6. Given the set H of hotels with
at least one active campaign, the algorithm monitors, for each hotel h 2 H,

58

the performance trend of every user-country through a CDT procedure and
reports, for each campaign of hotel h, the latest concept drift type of each closed
user-country. Given a pair (hote-country, user-country), we monitor the time
series of daily total impressions generated, over the last 6 months and for the
given user-country, by all the hotels located in that hotel-country. However,
as in the ranking case, considering only the total daily impressions is not a
good idea. Indeed, by not taking into account also the number of hotels that
generated those daily impressions, we might detect concept drifts caused by a
sudden change in the number of contributing hotels. For this reason, the time
series of daily total impressions are normalized by the number of daily hotels
generating the impressions. Another important aspect of the algorithm is that
it must be executed every time we receive new observations. Indeed, adding the
new data to the old one can lead to a new concept drift detection. In our scenario
we receive new samples every day, thus the algorithm must be executed daily
after we receive all the new observations. However, running a CDT procedure
every day for each pair (hotel-country, user-country) is computationally intensive
if we take into account the whole history of data. To lighten this complexity,
at the end of each execution, we store into a memory file the progress of the
monitoring procedure (i.e., statistics) for each pair (hotel-country, user-country).
In this way, only the minimum amount of observations are taken into account
by the monitoring procedure. .

At first, the steps in Lines 2-10 are repeated for each hotel with at least one ac-
tive campaign. First, we retrieve the hotel-country ch and the set of metasearches
Mh for the current hotel h (Line 2). Then, we access the the set Sch of statis-
tics corresponding to each user-country for the current hotel-country (Line 3).1

Next, we execute the CDT (ch, Sch) subroutine to update the set Sch with the
new daily observations; after that, we delete the old statistics Sch and insert the
new ones S⇤

ch in the statistic file (Lines 4-5). Depending on whether we want
to perform a CUSUM or an ADWIN test, the CDT (ch, Sch) subroutine can by
any of the following two: CDT -CUSUM (ch, Sch) or CDT -ADWIN (ch, Sch).
The remaining steps of the algorithm (lines 6-10) are dedicated to the commu-
nication of the performance trend of each user-country. Specifically, AdsHotel
is interested in the latest drift detected: they want to know whether the recent
performance is increasing or decreasing, with respect to the past. For this rea-
son, we characterize each drift in one of the following two categories: a positive
drift occurs when a performance increase is detected, while a negative drift oc-
curs when a performance decrease is detected. In line 6, we retrieve from S⇤

ch
the set Y of last drift types of each user-country. Then, for each running cam-
paign (i.e., metasearch m) of hotel h, we retrieve the set Cm of currently closed
user-countries and write their last drift types YCm on the DB (lines 7-10). Of
course, if no drift has been detected yet, for a given closed user-country, we do
not provide any information relative to that user-country.

CDT-CUSUM Subroutine

1We will specify the nature of the statistics used by each algorithm later on in the discussion.

59

Algorithm 7 CDT -CUSUM (ch, Sch) subroutine

Require: the hotel-country ch, current set Sch of statistics, default start date dstart,
current date dtoday

1: if Sch not empty then
2: retrieve the last update date dupdate for Sch

3: dstart = dupdate
4: end if
5: query the DB to get observations O occurred in [dstart, dtoday]
6: normalize O
7: retrieve the set Cu of user-countries contained in O
8: for cu 2 Cu do
9: retrieve the statistic scu 2 Sch and the observations Ocu 2 O

10: perform CUSUM (Ocu , scu) test to get the updated statistic s⇤cu
11: end for
12: define the set S⇤

ch by updating the old Sch with the new s⇤cu
13: set dupdate = dtoday for set S⇤

ch
14: return S⇤

ch

In this Section we present the CDT -CUSUM (ch, Sch) subroutine, whose
pseudo-code is provided in Algorithm 7. This subroutine is in charge of retrieving
the new daily observations and returning the updated statistics of every user-
country. The default start date dstart indicates the day from which we start
collecting observations, if no statistics have been saved on file yet (i.e., empty
statistics). As already introduced, this default date is set to 6 months before the
current day.

The first step of the subroutine should be querying the DB to retrieve the
new observations. However, the interval [dstart, dtoday] for the retrieval must be
set beforehand. In fact, if the statistics Sch have not been computed yet, the
dstart date should be the default one; instead, if the statistics have already been
computed in the past, the dstart date should be the one related to the last update
of the statistics. Of course, the queries observations are first cleaned as explained
in Subsection 5.2.1. All these steps are performed at Lines 1-5 of the algorithm.
In line 6, we perform the normalization, dividing each daily total impressions by
the number of daily hotels that generated those impressions. Then, we retrieve
the set Cu containing every user-country from which we received observations in
the interval [dstart, dtoday] (Line 7). The statistics of these user-countries are the
ones that need to be updated. Thus, for each user-country cu 2 Cu, we perform
the following steps: retrieve its statistic scu , retrieve its observations Ocu , and
finally perform the CUSUM (Ocu , scu) test to get its updated statistic s⇤cu (Lines
8-11). Then, we define the set S⇤

ch of updated statistics by combining the old
ones, for which we did not receive any new observation, with the new ones that
have been just updated by the CUSUM (Ocu , scu) test (Line 12). Next, the date
of the last update dupdate for S⇤

ch is set to the current date (Line 13). At last, we
return the set of updated statistics S⇤

ch (Line 14).

CDT-ADWIN Procedure

60

Algorithm 8 CDT -ADWIN (ch, Sch) subroutine

Require: the hotel-country ch, current set Sch of statistics, default start date dstart,
current date dtoday

1: if Sch not empty then
2: retrieve the last update date dupdate for Sch

3: dstart = dupdate
4: end if
5: query the DB to get the set Cu of user-countries for which some observations oc-

curred in [dstart, dtoday]
6: for cu 2 Cu do
7: retrieve the statistic scu 2 Sch

8: if scu not empty then
9: retrieve the date of the last detection ddetection from from scu

10: else
11: ddetection = dstart
12: end if
13: query the DB to get observations Ocu occurred in [ddetection, dtoday]
14: normalize Ocu

15: perform ADWIN (Ocu , scu) test to get the updated statistic s⇤cu
16: end for
17: define the set S⇤

ch by updating the old Sch with the new s⇤cu
18: set dupdate = dtoday for set S⇤

ch
19: return S⇤

ch

In this Section we present the CDT -ADWIN (ch, Sch) subroutine, whose
pseudo-code is provided in Algorithm 8. This subroutine is in charge of retrieving
the new daily observations and returning the updated statistics of every user-
country. The default start date dstart indicates the day from which we start
collecting observations, if no statistics have been saved on file yet (i.e., empty
statistics). As already introduced, this default date is set to 6 months before the
current day.

The first steps are dedicated to the retrieval of the set Cu of user-countries,
from which we received new observations in the interval [dstart, dtoday] (Lines 1-
5). If the statistics Sch have not been computed yet, the dstart date should be the
default one; instead, if the statistics have already been computed in the past,
the dstart date should be the one related to the last update of the statistics.
Now, for each user-country cu 2 Cu, we do the following steps to update its
statistic scu (Lines 7-15). First, we retrieve the current statistic scu 2 Sch for
the given user-country (Line 7). If scu is not empty (i.e., the statistic is stored in
memory for that specific user-country), we retrieve the date of the last detection
ddetection for that user-country. On the other hand, if scu is empty (i.e., the
statistic is not stored in memory yet for that specific user-country), the date of
the last detection ddetection for that user-country is set to the default one (i.e.,
dstart) (Lines 8-12). Now that we have the interval [ddetection, dtoday], we query
the DB to get the observations Ocu occurred in that time interval for that user-
country (Line 13). In line 14, we perform the normalization, dividing each daily
total impressions by the number of daily hotels that generated those impressions.

61

Algorithm 9 CUSUM (Ocu , scu) procedure

Require: observations Ocu , current statistic scu , days m

1: retrieve µ̄0, µ̄, g
+
t�1, g

�
t�1, n and y from scu

2: retrieve T and r from Ocu

3: for t 2 {1, . . . , T} do
4: n = n+ 1
5: µ̄ = µ̄(n�1)+rt

n
6: if n m then
7: µ̄0 = µ̄
8: else
9: h = ↵ µ̄0

10: ✏ = � µ̄0

11: g+t = max
�
0, g+t�1 + rt � µ̄0 � ✏

12: g�t = max
�
0, g�t�1 + µ̄0 � rt � ✏

13: if g+t > h then
14: y = +1
15: n = 0, µ̄ = 0, g+t = 0, g�t = 0
16: else if g�t > h then
17: y = �1
18: n = 0, µ̄ = 0, g+t = 0, g�t = 0
19: end if
20: end if
21: end for
22: update statistic s⇤cu
23: return s⇤cu

Next, we perform the ADWIN (Ocu , scu) test to get the updated statistic s⇤cu
(Line 15). Then, we define the set S⇤

ch of updated statistics by combining the
old ones, for which we did not receive any new observation, with the new ones,
that have been just updated by the ADWIN (Ocu , scu) test (Line 17). Next, the
date of the last update dupdate for S⇤

ch is set to the current date (Line 18). At
last, we return the set of updated statistics S⇤

ch (Line 19).

CUSUM Algorithm

Here, we present the CUSUM (Ocu , scu) procedure, whose pseudo-code is
provided in Algorithm 9. It is a version of the CUSUM algorithm, introduced
by Hinkley in his work [26], tailored to our specific needs and presented here
to the convenience of the reader. The goal of this algorithm is to update the
statistic of a given user-country by using its new observations. A statistic of a
given user-country scu is composed by:

• ch: the current hotel-country;

• cu: the current user-country;

• n: the number of observations received since the last detection. Note that,
each day we may receive zero or one observation;

• µ̄0: the impression mean for the current concept;

62

• µ̄: the impression mean of the latest n observations;

• g+: the positive CUSUM statistic. When the value of g+ exceeds a certain
threshold value h, a positive drift is detected;

• g�: the negative CUSUM statistic. When the value of g� exceeds a certain
threshold value h, a negative drift is detected;

• y: the drift type of the latest detection;

• dupdate: the date in which the statistic has been last updated. This date
is equal for every statistic belonging to the same hote-country (i.e., suc 2
Sch).

By storing these values in memory, we completely avoid monitoring the whole
history of observations: we just need to run the CUSUM procedure on the new
samples.

The first step consists into retrieving the most important parameters from
statistic scu and from observations Ocu (Lines 1-2). We retrieve µ̄0, µ̄, g+t�1,
g�t�1, n and y from the statistic scu . If the statistic scu is empty (i.e., no statistic
relative to the pair (ch, cu) has been stored on file yet), each parameter is set
with default value 0. Then, we retrieve the number of observations T and the
vector r of normalized total daily impressions, from the observations Ocu . Now
that all the parameters have been retrieved, the heart of the CUSUM algorithm
updates them by using the new samples (Lines 3-21). The following steps (4-21)
are executed for each new sample rt. First, we take into account that we have
a new sample by updating n and the current impression mean µ̄ (Lines 4-5).
Then, we check if n m, where m indicates the number of observations, under
stationary conditions, needed to have a good estimate of the concept mean µ̄0.
If the condition is false, it means our model µ̄0 is not ready yet to be used for
drift detection: it needs more samples to estimate accurately the concept mean.
Thus we update µ̄0 and we skip to the next iteration of the for loop (Line 7).
On the other hand, if the conditions is true, it means our model µ̄0 is a good
estimate of the concept mean. Thus, we can go on with the drift detection
steps (Lines 9-19). We define the threshold h and the parameter ✏ (Lines 9-
10). The parameter ✏ should be set such that the minimum gap, provided by a
change, is 3✏. The positive and negative CUSUM statistics are updated taking
into account their previous values ✏, µ̄0 and rt (Lines 11-12). More precisely:
g+t = max

�
0, g+t�1 + rt � µ̄0 � ✏

and g�t = max

�
0, g�t�1 + µ̄0 � rt � ✏

. The

idea behind the g+t update is that its value increases if the observed sample rt is
greater than its expected value µ̄0 plus an oscillation value ✏, which is considered
a normal oscillation for the current concept. The reversed idea is applied to the
g�t update. Next, we check if the CUSUM statistics exceed the threshold h
(Lines 13-19). Note that, by construction, they can only exceed h one at a time.
If h is exceeded by g+t a positive drift is detected, we set the drift type y = +1,
and we reset to 0 the remaining statistic parameters. On the other hand, if h is
exceeded by g�t a negative drift is detected, we set the drift type y = �1, and we
reset to 0 the remaining statistic parameters. After looping through all the new

63

Algorithm 10 ADWIN (Ocu , scu) procedure

Require: observations Ocu , current statistic scu
1: retrieve y from scu
2: retrieve T and r from Ocu

3: for t 2 {1, . . . , T} do
4: append rt to W
5: for each split of W into W = [W0,W1] do
6: compute µ̄W0 mean of W0

7: compute µ̄W1 mean of W1

8: ✏ = ⌘ µ̄W0

9: if (µ̄W1 � µ̄W0) � ✏ then
10: candidate positive drift detected
11: else if (µ̄W0 � µ̄W1) � ✏ then
12: candidate negative drift detected
13: end if
14: end for
15: if drift detected then
16: select the drift with maximum mean di↵erence among the candidates
17: set drift type y = +1 or y = �1 accordingly
18: end if
19: end for
20: update statistics s⇤cu
21: return s⇤cu

samples, we update the old statistic scu with the new parameters, obtaining s⇤cu
(Line 22). At last, we return the updated statistic s⇤cu (Line 23).

ADWIN Algorithm

Here, we present the ADWIN (Ocu , scu) procedure, whose pseudo-code is
provided in Algorithm 10. It is a version of the ADWIN algorithm, introduced
by Bifet et al. [9], tailored to our specific needs and presented here to the
convenience of the reader. The goal of this algorithm is to update the statistic
of a given user-country by using its new observations. A statistic of a given
user-country scu is composed by:

• ch: the current hotel-country;

• cu: the current user-country;

• ddetection: refers to the date of the last drift detection for the current user-
country.

• y: the drift type of the latest detection;

• dupdate: the date in which the statistic has been last updated. This date
is equal for every statistic belonging to the same hote-country (i.e., suc 2
Sch).

64

By storing these values in memory, we completely avoid monitoring the whole
history of observations: we just need to run the ADWIN procedure for the
samples generated after the last drift detection.

The first step consists into retrieving the last drift type y from statistic scu
(line 1). If the statistic scu is empty (i.e., no statistic relative to the pair (ch, cu)
has been stored on file yet), y is set to 0 by default. Then, we retrieve the number
of observations T and the vector r of normalized total daily impressions, from
the observations Ocu (Line 2). Now, the ADWIN algorithm will find out whether
or not a concept drift happened, and set y accordingly (Lines 3-19). First, we
append the normalized daily total impressions rt to the window W (Line 4).
Then, for each possible split of W into two adjacent sub-windows W0 and W1,
we compare the mean of each sub-window to see if there is enough evidence of a
concept drift (Lines 5-14). In lines 6-7 we compute the means µ̄W0 and µ̄W1 of
the two sub-windows. Next, we define the threshold ✏ (Line 8). If the mean of
the second window is considerably higher than the mean of the first window (i.e.,
(µ̄W1 � µ̄W0) � ✏), we detect a candidate positive drift. On the other hand, if
the mean of the first window is considerably higher than the mean of the second
window (i.e., (µ̄W0 � µ̄W1) � ✏), we detect a candidate negative drift (Lines 9-
13). Thus, after we tried every possible split, we have a set of drift candidates
and we must choose one of them. If the candidate set is not empty, we select
the drift having the highest mean di↵erence among the candidates. Then, if the
selected drift is positive we set y = +1, otherwise we set y = �1 (Lines 15-18).
After looping through all the new samples, we update the old statistic scu with
the new parameters, obtaining s⇤cu (Line 20). At last, we return the updated
statistic s⇤cu (Line 21).

7.3 Experimental Evaluation

In this chapter, we presented two country exploration methods, namely Global
Rankings and Performance Trend Monitoring. Both approaches have been tested
on active hotel advertising campaigns and, in this section, we show the obtained
results for each of them.

7.3.1 Global Rankings

To understand how correct the opening suggestions provided by the Global Rank-
ings are, we need to do the following steps. First, we should identify the user-
countries that have been opened due to our suggestions. Then, for each of those
user-country, we should evaluate the performance in terms of impressions, clicks,
costs, conversions, and ROI. Unfortunately, we cannot evaluate the performance
of any user-country that we suggested to open because our opening recommen-
dations have not been applied by AdsHotel yet. Indeed, opening a user-country
is a very delicate action to make, as AdsHotel’s contract bindings with Hotels
do not allow them to expand a campaign at their will. The Hotel Manager’s
authorization is needed to perform such action.

65

IT D
E

F
R

U
S

G
B E
S

C
H

A
T

N
L IL B
E IE C
A

D
K S
E

N
O

G
R

B
R

P
T

A
U

User Country

T
ot
al

Im
p
re
ss
io
n
s

IT D
E

F
R

U
S

G
B E
S

C
H

A
T IL N
L IE B
E

C
A

B
R

D
K

G
R S
E

N
O

A
U

P
T

User Country

T
ot
al

Im
p
re
ss
io
n
s

IT D
E

F
R

G
B

U
S

E
S

C
H

A
T

N
L IE B
E IL

D
K

G
R

C
A S
E

N
O

P
T F
I

R
U

User Country

T
ot
al

Im
p
re
ss
io
n
s

Figure 7.1: The three phases of Italian global ranking built with the total impressions of
every user-country. (top left) Not yet normalized total impressions. (top right) Normalized
total impressions. (bottom) Normalized and weighted total impressions.

For these reasons, the following experimental evaluations will consist of show-
ing some of the rankings built by our algorithm to suggest user-country openings.
As we previously explained, each time we need to suggest an opening, the rank-
ings are built with observations generated over the last w days. More precisely,
all the rankings shown in this Subsection are built with data generated between
19 August 2021 and 19 October 2021. Note that, for visibility reasons, only the
top 20 user-countries of the ranking are shown in the plots. Moreover, due to
NDAs with hotels, we are not allowed to disclose the actual impression amounts
in the rankings.

In Figure 7.1, we show the three phases undergone by a global ranking in
our algorithm. Specifically, we show the Italian global ranking, which is built
using the total impressions generated by every Italian hotel, on each possible
user-country. In the first phase, the global ranking is dictated by just the total
impressions collected by each user-country. Then, in the second phase, each
of them is normalized by the number of hotels contributing to the given user-
country. Finally, the normalized total impressions are weighted according to the
continent of the user-country. The latter is the global ranking that, given an
Italian hotel, will be used to suggest the most promising closed user-country.

Instead, in Figure 7.2, we show the three phases undergone by the Italian
global ranking, built with the total clicks generated by every Italian hotel on each

66

IT D
E

F
R

U
S

G
B E
S

C
H

A
T IL N
L

B
E IE C
A

D
K

N
O S
E

P
T

B
R F
I

A
U

User Country

T
ot
al

C
li
ck
s

IT D
E

F
R

U
S

G
B E
S

C
H

A
T IL N
L

B
E IE C
A

D
K

B
R

P
T

N
O S
E

A
U F
I

User Country

T
ot
al

C
li
ck
s

IT D
E

F
R

G
B E
S

U
S

C
H

A
T

N
L

B
E IE IL C
A

D
K

P
T

N
O S
E F
I

U
A

G
R

User Country

T
ot
al

C
li
ck
s

Figure 7.2: The three phases of Italian global ranking built with total clicks of every user-
country. (top left) Not yet normalized total clicks. (top right) Normalized total clicks.
(bottom) Normalized and weighted daily clicks.

possible user-country. The three phases are exactly the same as in the previous
case. Italy is one of the few hotel-country for which we are able to build a global
ranking based on clicks. In fact, AdsHotel works for a vast portion of Italian
hotels, thus the amount of generated clicks is high enough to build the ranking.

In Figure 7.3, we show and compare the final phases of the Italian global
ranking build with total impressions, total clicks, total conversions and total ROI.
Specifically, we show that the top 20 user-countries are almost the same for the
impressions and clicks rankings. This indicates that the number of impressions
are still a good indicator for the performance of a user-country. On the other
hand, we can see that the conversions and ROI rankings are very di↵erent from
the impressions and clicks ones. This proves that, as soon as conversions are
taken into account, we obtain very inaccurate and unreliable estimates.

In Figure 7.4, we show the global ranking of an American hotel-country.
Specifically, we display the three phases undergone by the Honduran global rank-
ing, built with the total impressions generated by every Honduran hotel on each
possible user-country.

67

IT D
E

F
R

G
B

U
S

E
S

C
H

A
T

N
L IE B
E IL

D
K

G
R

C
A S
E

N
O

P
T F
I

R
U

User Country

T
ot
al

Im
p
re
ss
io
n
s

IT D
E

F
R

G
B E
S

U
S

C
H

A
T

N
L

B
E IE IL C
A

D
K

P
T

N
O S
E F
I

U
A

G
R

User Country

T
ot
al

C
li
ck
s

A
U IT D
E

U
S

F
R

G
B IE F
I

C
H S
E

A
T

N
L

E
S

P
T IL

N
O

B
E

C
A

R
U

R
O

User Country

T
ot
al

C
on

ve
rs
io
n
s

A
U S
E

L
U F
I

S
G

N
L

A
T

R
U

D
E

F
R

C
H IE H
R

U
S

E
S

N
O

B
E

G
B

C
A

P
T

User Country

T
ot
al

R
O
I

Figure 7.3: Comparing all types of global ranking for Italian hotels. (top left) Normalized
and weighted total impressions. (top right) Normalized and weighted total clicks. (bottom
left) Normalized and weighted total conversions. (bottom right) Weighted total ROI.

7.3.2 Performance Trend Monitoring

In Section 3.2.5, we explained why the ARL0 and ARL1 are two crucial perfor-
mance measures for a Change Detection Test. The ARL0 describes the expected
amount of time between multiple false positives, under stationary conditions. On
the other hand, the ARL1 indicates the expected time delay for detecting an oc-
curred change. In our scenario, there is absolutely zero feedback on our change
detections: we cannot distinguish between false positives and true positives. For
this reason, it is not possible to find a value of a threshold that satisfies a given
ARL0 or ARL1 value. Due to this lack of true labels, we cannot even estimate
the Detection Delay (DD), the False Positive Rate (FPR) and the False Nega-
tive Rate (FNR). Indeed, if we do not know exactly when a change happens, we
cannot perform multiple simulations on finite sequences containing a change at
a known location, in order to compute the DD, the FPR and the FNR.

For these reasons, we decided to use CUSUM and ADIWN as change de-
tection tests for monitoring the performance trend of user-countries. Indeed,
despite the impossibility of setting thresholds in a rigorous way, hyperparameter
tuning turns out to be very easy to perform on these two methods.

Specifically, we had to fine tune four hyperparameters in total: three for
the CUSUM test and one for ADWIN. The CUSUM hyperparameters are m,
↵ and �. First, m indicates the number of observations needed, in stationary

68

U
S

C
A

H
N E
S

G
B

A
R

B
R

M
X

C
O

U
Y

N
L

D
E IT C
H

F
R

G
T

C
R

S
V

N
Z

E
C

User Country

T
ot
al

Im
p
re
ss
io
n
s

U
S

C
A

H
N E
S

G
B

A
R

B
R

M
X

C
O

U
Y

N
L

D
E IT C
H

F
R

G
T

C
R

S
V

N
Z

E
C

User Country

T
ot
al

Im
p
re
ss
io
n
s

U
S

C
A

H
N E
S

G
B

M
X

A
R

N
L

D
E

G
T IT C
R

S
V

B
R

C
H

F
R

C
O

U
Y

U
A

N
Z

User Country

T
ot
al

Im
p
re
ss
io
n
s

Figure 7.4: The three phases of Honduran global ranking built with the total impressions of
every user-country. (top left) Not yet normalized total impressions. (top right) Normalized
total impressions. (bottom) Normalized and weighted total impressions.

conditions, to build a good estimate of the current concept mean, which is a
fundamental component of both CUSUM statistics g+ and g�. Note that, inside
the window of m observations, we cannot detect any change because we are still
trying to estimate the model. If a drift happens inside the window, we end up
with a very bad estimate, which is built with observations coming from both
concepts. Therefore, a crucial aspect is that the number of observations between
any two drift should be higher thanm. With this in mind, we setm = 15 because:
(1) we think it would be incredibly rare to have two drifts happening in less than
15 days, and (2) 15 observations turned out to be enough to estimate the concept
mean. Secondly, ↵ defines the threshold h as a function of the concept mean.
As soon as one of the statistics g+ and g� exceed h, a drift is detected. Over
multiple tests, we found a value of ↵ that satisfies our performance expectations:
↵ = 4. At last, � defines ✏ as a function of the concept mean. As we know, 3✏
should be the minimum gap provided by the a change. We want the value of
this minimum gap to be the same of the concept mean. Thus, we set � = 3�1.

The only ADWIN hyperparameter ⌘, defines the threshold ✏ as a function
of the first window’s mean. Even though, in general, ADWIN has lower perfor-
mances with respect to CUSUM, we managed to reach similar performances by
setting ⌘ = 0.85.

In Figure 7.5, we show the results of the CUSUM and ADWIN tests on

69

20
20
-0
5-
01

20
20
-0
8-
09

20
20
-1
1-
17

20
21
-0
2-
25

20
21
-0
6-
05

20
21
-0
9-
13

date

n
or
m
al
iz
ed

d
ai
ly

to
ta
l
im

p
re
ss
io
n
s

daily impressions
positive drift
negative drift

20
20
-0
5-
01

20
20
-0
8-
09

20
20
-1
1-
17

20
21
-0
2-
25

20
21
-0
6-
05

20
21
-0
9-
13

date

n
or
m
al
iz
ed

d
ai
ly

to
ta
l
im

p
re
ss
io
n
s

daily impressions
positive drift
negative drift

Figure 7.5: Comparing the performance of CUSUM and ADWIN tests, both executed on
the whole history of normalized daily total impressions generated by Italian hotels on Italian
customers. (left) CUSUM test. (right) ADWIN test.

the same datastream, composed of the whole history of normalized daily total
impressions, generated by Italian hotels on Italian customers. The whole datas-
tream spans from 1 May 2020 to 19 October 2021. We performed the test on
the whole history of data just for display purposes. Note that, due to NDAs
with hotels, the actual impression amounts are not displayed. As you can see,
through several trials of hyperparameter tuning, we managed to achieve sim-
ilar performances. However, CUSUM seems to be more reactive to changes,
detecting them a little bit earlier. Moreover, CUSUM has significantly lower
computational complexity compared to ADWIN. For these reasons, we decided
to adopt the CUSUM test as CDT for our Performance Trend Monitoring shown
in Algorithm 6.

Even though we cannot evaluate the performance of our CUSUM in a rig-
orous way, we can still look at the history of detected concept drifts, and see
whether or not there are strong motivations behind them. In Figure 7.6, we
show the complete history of normalized daily total impressions, generated by
Italian hotels on Italian customers. Moreover, black dots represent the moment
in which a positive concept drift has been detected by our algorithm. Instead,
red ones represent the moment of detection for a negative concept drift. A pos-
itive drift indicates an increase in the distribution mean of the new concept,
with respect to the old one. Conversely, a negative drift indicates a decrease
in the distribution mean of the new concept, with respect to the old one. Now
we analyze and explain the sequence of changes detected by our algorithm. The
whole datastream spans from 1 May 2020 to 19 October 2021. As we all know,
due to the COVID-19 pandemic, a traveling ban was introduced in Italy on 9
March 2020. These restrictions remained in force for almost three months, after
which traveling across Italy was allowed again on 3 June 2020. The relaxation
of these restrictions are reflected by our datastream and detections. As a matter
of fact, we can see that the normalized daily total impressions are very low at

70

20
20
-0
5-
01

20
20
-0
8-
09

20
20
-1
1-
17

20
21
-0
2-
25

20
21
-0
6-
05

20
21
-0
9-
13

date

n
or
m
al
iz
ed

d
ai
ly

to
ta
l
im

p
re
ss
io
n
s

daily impressions
positive drift
negative drift

Figure 7.6: CUSUM change detection test on normalized daily total impressions generated
by Italian hotels on Italian customers, over the whole history of available data.

the beginning of the stream, indicating a low interest in traveling, as it was still
not allowed. Then, on 25 May 2020, we detected a positive change. We think
this may be caused by the government’s communication of its intention to allow
traveling again a week later. From this point on, we see an increase in the gen-
erated impressions, as people started booking hotels once more. Moreover, we
detect two positive drifts on 21 June 2020 and 14 July 2020: this is undoubtedly
caused by summer holiday bookings. The first negative change is detected on
2 October 2020, probably caused by the end of the summer holidays. For most
of the period in between 3 November 2020 and 22 April 2021, traveling between
regions was forbidden again. In this interval of time, traveling was allowed only
between regions having low COVID-19 cases. For this reason, impressions fur-
ther decreased and a new negative change was detected on 12 November 2020.
Then, on 12 February 2020, a positive change has been detected. This may have
been cased by the fact that a lot of regions had low COVID-19 cases at the
same time, however this may be a false detection. On 22 April 2021, traveling
across Italy has been allowed again and no further restrictions have been applied
up to today. For this reason, combined with the incumbent summer holidays,
the impressions started increasing in April and continued to do so until August.
This has been captured by our algorithm with three positive drifts on 21 April,
21 May and 21 June. Therefore, we can say that there is a precise reason behind
the detection we provided.

71

Chapter 8

Conclusion and Future
Directions

Online advertising campaign optimization is a challenging problem composed
of multiple tasks that cannot be e�ciently addressed by humans. The aid of
automatic mechanisms is needed to cope with its complexity. In this work,
we applied state-of-the-art AI technologies in a real-world online advertising
scenario for the company AdsHotel, which is responsible for the optimization of
the advertising campaigns of multiple hotels all around the world.

We designed a real-world system built on top of the algorithm proposed by
Spadaro et al. [45] to perform safe bid optimization for online hotel campaigns.
This task consists of choosing the bid values of a set of sub-campaigns to max-
imize, in an online fashion, the revenue while satisfying return-on-investment
(ROI) and daily budget constraints with high probability. Therefore, the sys-
tem we built is in charge of interfacing the before-mentioned algorithm with
AdsHotel’s real-world environment and implementing all the specific features
required by such an environment. Specifically, we adopted a sliding window ap-
proach to deal with the non-stationary nature of the environment. Moreover, at
the request of AdsHotel, we defined some policies, limiting our algorithm to sug-
gest bid values not di↵ering too much from the current ones. Then, we designed
the DynamicROIOpt algorithm, which solves the bid optimization problem while
satisfying the highest possible ROI value constraint, exploiting the optimization
algorithm introduced by Spadaro et al. [45] in a binary search fashion. Unfor-
tunately, no hotel has been applying our suggestions consistently over time yet,
and thus we could not show and evaluate the performance of our algorithm.
However, we still displayed the bid values that our system would suggest for a
real-world hotel campaign.

A very important block of our system is in charge of evaluating whether
or not the observations generated by sub-campaigns are good enough to build
accurate model estimates. To solve the task, we defined two di↵erent algorithms,
namely DynamicCountryAggregation and SingletonAggregation. We compared
their performance on real-world data, showing that DynamicCountryAggregation
is the best alternative.

At last, we defined the Global Rankings and Performance Trend Monitoring

algorithms, providing suggestions on how to expand an ongoing campaign by
selecting the most promising user-countries a hotel might open. Then, we dis-
play the results of both algorithms run on multiple real-world hotel advertising
campaign data. Specifically, we show that the concept drifts detected by the
Performance Trend Monitoring algorithm are well-founded, according to field
experts.

Our work opens up several interesting directions. First of all, a brand new
CDT algorithm could be designed to actively detect concept drifts and adapt the
model to the non-stationary environment. This task could be tackled by defining
strategies to monitor the distributions of the GPs. Moreover, our system could
be expanded, considering the Google sub-campaigns at their finest granularity
during the optimization procedure. To do so, a new safe Gaussian Combinatorial
Multi-Armed Bandit could be designed, having the various multipliers as arms
instead of the bid values. Last but not least, it could be interesting to directly
analyze the functions estimated by the GPs, rather than analyzing raw data, to
check whether or not multiple sub-campaigns can be aggregated.

73

Bibliography

[1] Accabi, G. M., Trovo, F., Nuara, A., Gatti, N., and Restelli, M.
When gaussian processes meet combinatorial bandits: Gcb. In European
Workshop on Reinforcement Learning (EWRL) (2018), pp. 1–11.

[2] AdsHotel. Adshotel’s website. https://www.adshotel.com.

[3] Alippi, C., Boracchi, G., and Roveri, M. Just-in-time classifiers for
recurrent concepts. IEEE transactions on neural networks and learning
systems 24, 4 (2013), 620–634.

[4] Alippi, C., Boracchi, G., and Roveri, M. Hierarchical change-
detection tests. IEEE transactions on neural networks and learning systems
28, 2 (2016), 246–258.

[5] Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47, 2 (2002), 235–256.

[6] Bach, S. H., and Maloof, M. A. Paired learners for concept drift. In
2008 Eighth IEEE International Conference on Data Mining (2008), IEEE,
pp. 23–32.

[7] Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A.,
Gavalda, R., and Morales-Bueno, R. Early drift detection method.
In Fourth international workshop on knowledge discovery from data streams
(2006), vol. 6, pp. 77–86.

[8] Bernasconi de Luca, M., Vittori, E., Trovo, F., and Restelli, M.
Conservative online convex optimization. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases (2021), Springer,
pp. 19–34.

[9] Bifet, A., and Gavalda, R. Learning from time-changing data with
adaptive windowing. In Proceedings of the 2007 SIAM international con-
ference on data mining (2007), SIAM, pp. 443–448.

[10] Chen, W., Wang, Y., and Yuan, Y. Combinatorial multi-armed ban-
dit: General framework and applications. In International Conference on
Machine Learning (2013), PMLR, pp. 151–159.

74

https://www.adshotel.com

[11] Chu, C.-S. J., Stinchcombe, M., and White, H. Monitoring structural
change. Econometrica 64, 5 (1996), 1045–1065.

[12] Cohen, L., Avrahami-Bakish, G., Last, M., Kandel, A., and Kiper-
sztok, O. Real-time data mining of non-stationary data streams from
sensor networks. Information Fusion 9, 3 (2008), 344–353.

[13] Department, S. R. Digital advertising spending worldwide
2018-2023. https://www.statista.com/statistics/237974/

online-advertising-spending-worldwide/, May 2021.

[14] Department, S. R. Online advertising revenue in the u.s.
2000-2020. https://www.statista.com/statistics/183816/

us-online-advertising-revenue-since-2000/, Apr 2021.

[15] Ding, W., Qin, T., Zhang, X.-D., and Liu, T.-Y. Multi-armed ban-
dit with budget constraint and variable costs. In Twenty-Seventh AAAI
Conference on Artificial Intelligence (2013).

[16] Edelman, B., Ostrovsky, M., and Schwarz, M. Internet advertising
and the generalized second-price auction: Selling billions of dollars worth
of keywords. American Economic Review 97, 1 (March 2007), 242–259.

[17] Elwell, R., and Polikar, R. Incremental learning of concept drift in
nonstationary environments. IEEE Transactions on Neural Networks 22,
10 (2011), 1517–1531.

[18] Gama, J., Medas, P., Castillo, G., and Rodrigues, P. Learning with
drift detection. In Brazilian symposium on artificial intelligence (2004),
Springer, pp. 286–295.

[19] Garivier, A., and Moulines, E. On upper-confidence bound policies
for switching bandit problems. In International Conference on Algorithmic
Learning Theory (2011), Springer, pp. 174–188.

[20] Gatti, N., Lazaric, A., Rocco, M., and Trovò, F. Truthful learn-
ing mechanisms for multi-slot sponsored search auctions with externalities.
Artificial Intelligence 227 (2015), 93–139.

[21] Golrezaei, N., Lobel, I., and Paes Leme, R. Auction design for roi-
constrained buyers. In Proceedings of the Web Conference 2021 (2021),
pp. 3941–3952.

[22] Google. Google hotel ads’s campaign. https://support.google.com/

google-ads/answer/9243943.

[23] Google. Google hotel ads’s payment schemes. https://support.google.
com/google-ads/answer/9244120.

[24] Google. Google hotel ads’s website. https://ads.google.com/intl/it_
ALL/hotels/.

75

https://www.statista.com/statistics/237974/online-advertising-spending-worldwide/
https://www.statista.com/statistics/237974/online-advertising-spending-worldwide/
https://www.statista.com/statistics/183816/us-online-advertising-revenue-since-2000/
https://www.statista.com/statistics/183816/us-online-advertising-revenue-since-2000/
https://support.google.com/google-ads/answer/9243943
https://support.google.com/google-ads/answer/9243943
https://support.google.com/google-ads/answer/9244120
https://support.google.com/google-ads/answer/9244120
https://ads.google.com/intl/it_ALL/hotels/
https://ads.google.com/intl/it_ALL/hotels/

[25] Hawkins, D. M., Qiu, P., and Kang, C. W. The changepoint model
for statistical process control. Journal of quality technology 35, 4 (2003),
355–366.

[26] Hinkley, D. V. Inference about the change-point from cumulative sum
tests. Biometrika 58, 3 (1971), 509–523.

[27] Hulten, G., Spencer, L., and Domingos, P. Mining time-changing
data streams. In Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining (2001), pp. 97–106.

[28] Kaufmann, E., Korda, N., and Munos, R. Thompson sampling: An
asymptotically optimal finite-time analysis. In International conference on
algorithmic learning theory (2012), Springer, pp. 199–213.

[29] Kolter, J. Z., and Maloof, M. A. Dynamic weighted majority: An
ensemble method for drifting concepts. The Journal of Machine Learning
Research 8 (2007), 2755–2790.

[30] Lai, T. L., and Robbins, H. Asymptotically e�cient adaptive allocation
rules. Advances in applied mathematics 6, 1 (1985), 4–22.

[31] Liu, F., Lee, J., and Shroff, N. A change-detection based framework
for piecewise-stationary multi-armed bandit problem. In Proceedings of the
AAAI Conference on Artificial Intelligence (2018), vol. 32.

[32] Mas-Colell, A., Whinston, M. D., Green, J. R., et al. Microeco-
nomic theory, vol. 1. Oxford university press New York, 1995.

[33] Minku, L. L., and Yao, X. Ddd: A new ensemble approach for dealing
with concept drift. IEEE transactions on knowledge and data engineering
24, 4 (2011), 619–633.

[34] Nishida, K., and Yamauchi, K. Detecting concept drift using statistical
testing. In International conference on discovery science (2007), Springer,
pp. 264–269.

[35] Nuara, A., Sosio, N., Trovò, F., Zaccardi, M. C., Gatti, N., and
Restelli, M. Dealing with interdependencies and uncertainty in multi-
channel advertising campaigns optimization. In The World Wide Web Con-
ference (2019), pp. 1376–1386.

[36] Nuara, A., Trovò, F., Crippa, D., Gatti, N., and Restelli, M.
Driving exploration by maximum distribution in gaussian process bandits.
In International Conference on Autonomous Agents and MultiAgent Sys-
tems (2020), pp. 948–956.

[37] Nuara, A., Trovo, F., Gatti, N., and Restelli, M. A combinatorial-
bandit algorithm for the online joint bid/budget optimization of pay-per-
click advertising campaigns. In Thirty-Second AAAI Conference on Artifi-
cial Intelligence (2018).

76

[38] Nuara, A., Trovò, F., Gatti, N., and Restelli, M. Online joint
bid/daily budget optimization of internet advertising campaigns. CoRR
abs/2003.01452 (2020).

[39] Paladino, S., Trovo, F., Restelli, M., and Gatti, N. Unimodal
thompson sampling for graph-structured arms. In Proceedings of the AAAI
Conference on Artificial Intelligence (2017), vol. 31.

[40] Re, G., Chiusano, F., Trovò, F., Carrera, D., Boracchi, G., and
Restelli, M. Exploiting history data for nonstationary multi-armed ban-
dit. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (2021), Springer, pp. 51–66.

[41] Ross, G. J., Adams, N. M., Tasoulis, D. K., and Hand, D. J. Expo-
nentially weighted moving average charts for detecting concept drift. Pat-
tern recognition letters 33, 2 (2012), 191–198.

[42] Ross, G. J., Tasoulis, D. K., and Adams, N. M. Nonparametric
monitoring of data streams for changes in location and scale. Technometrics
53, 4 (2011), 379–389.

[43] Sandholm, T., Larson, K., Andersson, M., Shehory, O., and
Tohmé, F. Coalition structure generation with worst case guarantees.
Artificial intelligence 111, 1-2 (1999), 209–238.

[44] Sinha, P., and Zoltners, A. A. The multiple-choice knapsack problem.
Operations Research 27, 3 (1979), 503–515.

[45] Spadaro, G. Online bid optimization with return-on-investment con-
straints. http://hdl.handle.net/10589/170793.

[46] Street, W. N., and Kim, Y. A streaming ensemble algorithm (sea)
for large-scale classification. In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining (2001),
pp. 377–382.

[47] Strong, E. K. The psychology of selling and advertising. McGraw-Hill
book Company, Incorporated, 1925.

[48] Thompson, W. R. On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika 25, 3/4 (1933),
285–294.

[49] Tripadvisor. Tripadvisor’s website. https://

tripadvisormediamanager.com.

[50] Trovò, F., Paladino, S., Restelli, M., and Gatti, N. Bud-
geted multi–armed bandit in continuous action space. In Proceedings of
the Twenty-second European Conference on Artificial Intelligence (2016),
pp. 560–568.

77

http://hdl.handle.net/10589/170793
https://tripadvisormediamanager.com
https://tripadvisormediamanager.com

78

[51] Trovò, F., Paladino, S., Restelli, M., and Gatti, N. Improving
multi-armed bandit algorithms in online pricing settings. International
Journal of Approximate Reasoning 98 (2018), 196–235.

[52] Trovo, F., Paladino, S., Restelli, M., and Gatti, N. Sliding-window
thompson sampling for non-stationary settings. Journal of Artificial Intel-
ligence Research 68 (2020), 311–364.

[53] Trovò, F., Paladino, S., Simone, P., Restelli, M., and Gatti,
N. Risk-averse trees for learning from logged bandit feedback. In 2017
International Joint Conference on Neural Networks (IJCNN) (2017), IEEE,
pp. 976–983.

[54] UNWTO. Tourism and covid-19 – unprece-
dented economic impacts. https://www.unwto.org/

tourism-and-covid-19-unprecedented-economic-impacts.

[55] Vittori, E., de Luca, M. B., Trovò, F., and Restelli, M. Deal-
ing with transaction costs in portfolio optimization: Online gradient de-
scent with momentum. In ACM International Conference on AI in Finance
(2020), pp. 1–8.

[56] Škare, M., Soriano, D. R., and Porada-Rochoń, M. Impact of covid-
19 on the travel and tourism industry. Technological Forecasting and Social
Change 163 (2021), 120469.

[57] Williams, C. K., and Rasmussen, C. E. Gaussian processes for machine
learning, vol. 2. MIT press Cambridge, MA, 2006.

[58] Xia, Y., Li, H., Qin, T., Yu, N., and Liu, T.-Y. Thompson sampling
for budgeted multi-armed bandits. In Twenty-Fourth International Joint
Conference on Artificial Intelligence (2015).

[59] Ye, Y., Squartini, S., and Piazza, F. Online sequential extreme learn-
ing machine in nonstationary environments. Neurocomputing 116 (2013),
94–101.

[60] Zhang, W., Zhang, Y., Gao, B., Yu, Y., Yuan, X., and Liu, T.-Y.
Joint optimization of bid and budget allocation in sponsored search. In Pro-
ceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2012), pp. 1177–1185.

https://www.unwto.org/tourism-and-covid-19-unprecedented-economic-impacts
https://www.unwto.org/tourism-and-covid-19-unprecedented-economic-impacts

	Abstract
	Sommario
	Introduction
	Problem description
	Goal
	Contribution
	Document Outline

	Hotel Advertising Background
	Online Advertising
	Performance Indices, Formats, and Payment Schemes
	Advertising Campaign
	Publisher's Optimization Problem
	Auction Mechanism
	Advertiser's Optimization Problem

	Hotel Online Advertising
	Google Hotel Ads
	Tripadvisor

	AdsHotel's Platform
	Google Campaigns in AdsHotel's Platform
	Tripadvisor Campaigns in AdsHotel's Platform
	Campaign Definition in our Algorithm
	Dataset

	Online Learning and Monitoring Background
	Online Learning
	Multi-Armed Bandit
	MAB: stochastic and stationary setting
	UCB1
	Thompson Sampling
	Combinatorial Multi-Armed Bandit

	Online Monitoring
	Problem Statement
	Concept Drift Taxonomy
	Adaptation
	Change Detection
	Performance Measures

	Related Works
	Online Advertising
	Joint bid-budget Optimization
	Bid Optimization
	Safe Bid Optimization

	Monitoring
	Active approaches
	Passive approaches

	Safe Bid Optimization with Return-on-Investment Constraints
	Problem Formulation
	Proposed Method
	Data Cleaning
	Observation Preprocessing
	Non-Stationarity
	Constrained Bid Exploration
	Dynamic ROI Constraint

	Experimental Evaluation

	Context Aggregation
	Problem Formulation
	Proposed Method
	Dynamic Country Aggregation
	Singleton Aggregation
	Testing Aggregations

	Experimental Evaluation

	Country Exploration
	Problem Formulation
	Proposed Method
	Global Rankings
	Performance Trend Monitoring

	Experimental Evaluation
	Global Rankings
	Performance Trend Monitoring

	Conclusion and Future Directions
	Bibliography

