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Abstract

In every drive-train, in which two or multiple rotating masses are mounted on the
same shaft, torsional vibrations arise, due to the shaft’s finite stiffness. The amplitude
of the oscillations depends on the torque components acting on the system: if the lat-
ter ones have a frequency close to one of the system’s torsional natural frequencies, a
mechanical resonance condition is reached, which causes fatigue stress and decreases
the system’s reliability. A way to suppress torsional vibrations in a drive train is repre-
sented by the design of a PI-based State Space (SS) control scheme. This control needs
a state observer for its operation, which is a mathematical tool that estimates all the
system’s state variables based on the available measurements.
In this thesis, the design of a state observer for a two Degree-of-Freedom (DOF) Wind
Energy Conversion Systems (WECS), comprising a wind turbine directly connected to
a Permanent Magnet Synchronous Generator (PMSG), is carried out. The aim is to
reconstruct the state variables based on the information of the PMSG rotor’s angular
position and the direct and quadrature stator current components.
The mechanical and electrical models are derived first and an analysis of the torque
harmonics produced by a Variable Frequency Drive (VFD) consisting of a Voltage
Source Converter (VSC) with Pulse Width Modulation (PWM) is provided.
Then, the design of two different typologies of state observer is presented and a method-
ology to deal with the system’s nonlinearities is proposed.
The first observer is represented by a Non-Linear Extended State Observer (NLESO):
in this case, the system is linearized around the nominal operating point. After a sub-
system decomposition, needed to transform the Multi-Input Multi-Output (MIMO)
system into different Multi-Input Single-Output (MISO) ones, a procedure for state
variables’ estimates reconstruction based on a relative-degree analysis is defined. Also,
a method to prove the convergence of the estimation error is provided. The observer’s
performance is evaluated based on computer simulation results from a Matlab Simulink
model of the system.
The second type of observer consists of a Luenberger-based Lipschitz Observer. Its
formulation is less cumbersome compared to the Non-Linear Extended State Observer
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(NLESO) and deals directly with the nonlinear system, without any linearization. Also
in this case, the observer is tested through computer simulations; the observers are
compared based on simulation results and design complexity.

Keywords: Nonlinear, State Observer, Permanent Magnet Synchronous Generator,
Wind Energy Conversion System
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Abstract in lingua italiana

In ogni trasmissione, dove due o più masse rotanti sono calettate sullo stesso albero, le
vibrazioni torsionali entrano in gioco a causa della finita rigidezza dell’albero. L’intensità
di queste oscillazioni dipende dalle coppie meccaniche a cui il sistema è sottoposto: se
queste hanno una frequenza vicina ad una delle frequenze naturali torsionali del sis-
tema, una condizione di risonanza meccanica è raggiunta e ciò causa sforzi di fatica
nell’albero e diminuisce la affidabilità del sistema. Un metodo per eliminare le vi-
brazioni torsionali in una trasmissione è rappresentato da un controllore Proporzionale-
Integrativo (PI) in Spazio di Stato (SS). Questo tipo di controllore ha bisogno di un
osservatore dello stato per il suo corretto funzionamento, ossia di un modello matem-
atico che stima le variabili di stato basandosi sulle misure disponibili.
In questa tesi è effettuata la progettazione di un osservatore dello stato, per un sistema
di conversione dell’energia eolica a due gradi di libertà, formato da una turbina eolica
in collegamento diretto ad un generatore sincrono a magneti permanenti. L’obiettivo
è quello di ricostruire le variabili di stato attraverso le misure di posizione angolare
del rotore del generatore e delle componenti diretta e in quadratura delle correnti sta-
toriche.
In primo luogo sono definiti il modello elettrico e meccanico ed è fornita un’analisi
delle armoniche di coppia generate da un variatore di frequenza, formato da un in-
verter con modulazione PWM. Dopodichè è presentata la progettazione di due diverse
tipologie di osservatore dello stato con una metodologia per gestire le nonlinearità pre-
senti nel sistema.
Il primo è un Non-Linear Extended State Observer (NLESO): in questo caso, il sis-
tema è linearizzato attorno al punto di lavoro nominale. Dopo una decomposizione in
sottosistemi, necessaria per portare il sistema da una forma Multi-Input Multi-Output
(MIMO) ad una Multi-Input Single-Output (MISO), è proposta una procedura per la ri-
costruzione delle stime delle variabili di stato basato sul cosiddetto grado relativo, così
come un metodo per dimostrare la convergenza dell’errore di stima. Le prestazioni
dell’osservatore sono valutate attraverso i risultati delle simulazioni a computer ese-
guite su un modello del sistema nell’ambiente Matlab Simulink.



Il secondo consiste in un osservatore Lipschitz basato sul modello di Luenberger. La
sua formulazione è meno complessa rispetto a quella del Non-Linear Extended State
Observer (NLESO) e opera direttamente con il sistema in forma nonlineare, quindi
senza bisogno di una linearizzazione. Anche in questo caso le prestazioni dell’osservatore
sono testate attraverso simulazioni a computer; viene poi fatto un confronto tra le due
tipologie proposte, valutando i risultati ottenuti e la complessità di progettazione.

Parole chiave: Osservatore dello stato, Nonlineare, Generatore sincrono a magneti per-
manenti, Sistemi di conversione dell’energia eolica
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Introduction

In recent years, renewable energy sources have come under increasing attention, mainly
due to environmental concerns about global warming and de-carbonization policies.
Among them, wind energy is becoming competitive with conventional sources of en-
ergy, with a cumulative installed capacity continuously increasing worldwide. In Wind
Energy Conversion Systems (WECS), Permanent Magnet Synchronous Generators (PMSGs)
are usually implemented in the so-called Type 4 configuration, where the generator
is connected to the grid via a fully-rated power converter, constituting a Variable Fre-
quency Drive (VFD). Regarding the PMSG topology, Multi-Modular Axial-Flux Perma-
nent Magnet Synchronous Generators (MMAFPMSGs) are gaining attention for wind
applications due to their relatively low aspect ratio (ratio between machine length and
diameter) and high power densities, compared to the conventional Radial Flux Perma-
nent Magnet (RFPM) machines.
In a multi-mass drive system, as in the case of an MMAFPMSG, the shaft’s finite stiff-
ness allows torsional oscillation between each rotating mass: if a torsional natural fre-
quency is excited, a mechanical resonance condition occurs. Without a proper mitiga-
tion technique, torsional vibrations cause fatigue stress in the drive train and reliability
issues.
Several methods to detect and mitigate torsional vibrations can be found in the liter-
ature and will be briefly introduced in the thesis. Among them, PI-based State Space
control enhances the capability of a PI control implementing a state observer, which is
a mathematical model that, based on the available system measurements, provides an
estimate of the system’s state variables. Beyond the implementation in a PI-based State
Space control, a state observer allows estimating the variables that are physically dif-
ficult to measure, avoiding potentially complex and expensive measurement systems.
This can be the case of a Multi-Modular Axial-Flux Permanent Magnet Synchronous
Generator (MMAFPMSG), in which the measure of the inner rotors’ angular positions
represents a challenge: the little space available between the stator and rotor’s disks,
needed to keep a small air-gap, results in an unfeasible sensor implementation. It also
increases the system’s reliability: in fact, if designed properly, by comparing the esti-



2 | Introduction

mated values with the measured ones, sensors’ faults can be detected.

Aim of the thesis

This thesis aims at designing a state observer for a two Degree-of-Freedom (DOF) drive
system comprising a PMSG directly connected to a wind turbine. The mechanical and
electrical models of the system are derived first. Two state observers will be proposed,
each with its own formulation and performance analysis.

Structure of the thesis

The work will be divided into the following chapters:

1. State of the art: a brief overview of the thesis’ main topics is proposed. First an
introduction to Multi-Modular Axial-Flux Permanent Magnet (MMAFPM) ma-
chines is given, followed by the definition of the electrical model of a generic
PMSG. Then, the torsional vibration concept from a theoretical point of view is
introduced, together with the main methods for torsional vibration suppression
present in the literature. Finally, a brief overview of the state observers is given.

2. Two Degree-of-Freedom System Definition: first, the overall system setup is pre-
sented. Then, the free vibration analysis of the mechanical system is carried out
and the torsional natural frequencies are calculated. Moreover, the overall sys-
tem is transformed into a per unit equivalent. A torque harmonic analysis is also
provided.

3. Non-Linear Extended-State Observer: a Non-Linear Extended State Observer
(NLESO) is designed for the system. To deal with the nonlinearities, a lineariza-
tion around the nominal working point of the system is proposed, through a
small perturbation analysis. After a complete observer design, its performance
and observation accuracy are evaluated through simulation results.

4. Luenberger-based Lipschitz Observer: the design of a Lipschitz Observer is car-
ried out in this chapter. Its stability properties are discussed and the performance
is evaluated and compared to the NLESO, based on simulation results.
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1| State of the art

In this chapter, a brief overview of the main topics of this work is provided: first,
an overall description of the Axial Flux Permanent Magnet Synchronous Generator
(AFPMSG) is given, followed by an introduction to the problem of torsional vibrations.
Finally, the concept of State Observer (SO) is summarized with a description of the
most common observers.

1.1. Axial Flux Permanent Magnet Synchronous Genera-

tors

1.1.1. Machine Description

In recent years, Permanent Magnet Synchronous Generators (PMSGs) have received
more attention in Wind Energy Conversion Systems (WECS), which play a key role in
renewable power generation worldwide. The greater availability and decreasing cost
of high-energy permanent-magnet materials, such as NdFeB magnets, have pushed the
development and employment of these types of machines. PM machines feature higher
efficiencies than machines with excitation windings due to the absence of field winding
losses, also leading to less weight and a higher power factor. The use of PMs avoids
the necessity to supply the magnetizing current to the rotor for constant air-gap flux.
Moreover, the use of PMSG allows obtaining a direct-drive variable-speed WECS that
does not require a gearbox, which implies a less efficient and less reliable system [9].
Completing the system, the power generated is then fed to the grid through a converter
with an intermediate DC bus, which permits the generation at different speed levels
separating the machine frequency from the grid one. It must be noted that directly
driven Synchronous Generators (SGs) imply the presence of a larger number of pole
pairs if compared to a mechanical transmission system configuration. An example of
direct drive PMSG WECS design can be found in [23]: Figure 1.1 shows the schematic
working principle.
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Figure 1.1: Electric scheme of a variable speed direct-drive PMSG WECS design.

The Axial Flux Permanent Magnet (AFPM) machine represents an attractive alterna-
tive to the classical Radial Flux Permanent Magnet (RFPM) one: in papers from the
recent years, apart from the structural analyses of AFPM generators used in WECS,
it is shown how this technology is used in several sectors [16]. Since a large number
of poles can be accommodated on the rotor, these machines are ideal for low-speed
applications [10].

Figure 1.2: Simple scheme of an RFPM machine (left) and an AFPM machine (right)

Differently from the conventional radial flux machine in which the magnetic field is
directed radially to the shaft axis, in an axial flux machine the field is parallel to it,
as shown in Figure 1.2. In practice, axial flux machines are limited to three types:
induction machines, PM DC commutator machines, and PM brushless DC and AC
machines [10].
Brushless AFPM machines can be designed in different ways from a construction point
of view, as it is well explained in [10]: they can be single-sided or double-sided, with
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and without armature slots and armature cores, with internal or external PM rotors,
with surface mounted or interior PMs, single stage or multi-stage machines.

Figure 1.3: different types of AFPM machines: (a) 1-stator-1-rotor, (b) 1-stator-2-rotor
(also called slotted TORUS type), (c) coreless 1-stator-2-rotor, (d) slotless TORUS and
(e) 2-stator-1-rotor (also called AFIR type)

The different types of stators, rotors, and winding arrangements can be seen in Fig-
ure 1.3. The slotless winding configuration shows a much larger air gap; moreover,
compared to a slotted winding one, it has the advantages of being simpler to assem-
ble, it eliminates the problem of the cogging torque and it reduces rotor surface losses,
magnetic saturation, and acoustic noises. The disadvantages are the need for more
PM material and significant eddy current losses. Slotless AFPM machines are often
classified to their winding arrangement and coil shapes: toroidal, trapezoidal, and
rhomboidal forms. For what concerns the coreless configuration, it has the pro of elim-
inating eddy current and hysteresis core losses, also resulting in no magnetic attraction
forces between the stator and rotor [10]. In [19], a performance comparison between
traditional RFPM and different AFPM brushless machines is carried out, showing how
the latter architecture provides a higher power density, thanks to the design which
requires a lower volume, a lower rotor moment of inertia, mainly due to the shorter
shaft needed, and less mass of iron. Moreover, in [3] a conventional RFPM and a two-
stator-one-rotor AFPM synchronous motors for low-speed direct drive applications are
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compared, concluding that the axial flux machine is an attractive solution for designs
that require a high number of poles and short machine axial length.

1.1.2. Electrical Model

A brief introduction to the electrical model of a generic PMSG is here reported. For a
three-phase PMSG, generic phase i stator line voltage equation is defined as:

vs,i = Rsis,i +
dψs,i
dt

| i = a, b, c (1.1)

where vs,i represents the stator phase voltage, is,i the stator current, ψs,i the stator flux
linkage, and Rs the stator resistance. The flux linkage component can be defined as the
sum of a leakage flux and a mutual flux:

ψs,i = Lσis,i + ψm,i | i = a, b, c (1.2)

assuming that:

• Lσ = Lσ,i | i = a, b, c;

• leakage flux links to only one winding at a time.

Thus, replacing (1.2) in (1.1):

vs,i = Rsis,i + Lσ
dis,i
dt

+
dψm,i
dt

| i = a, b, c (1.3)

The mutual flux ψm,i term could be derived considering the expression of the flux den-
sity in the air-gap, which is the sum of the flux density produced by the stator currents
is,i and the flux density produced by the Permanent Magnets (PMs) installed on the
rotor. However, the latter analysis will not be reported here since it is out of the scope
of this thesis: for a deeper examination please refer to [14]. For a generic three-phase
electrical variable fi | i = 1, 2, 3, its space vector is defined as:

f = k
(
f1 + f2e

j 2π
3 + f3e

−j 2π
3

)
(1.4)

where k is an arbitrary constant and:fα = Re{f}

fβ = Im{f}
(1.5)
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This change of coordinate is also known as αβ or Clarke transformation. In this thesis,

k =
√

2
3

is selected, which defines a power invariant transformation. Considering an
isotropic machine, where the air gap is constant along the rotor, the expression of the
stator voltage in space vector components is:

vs = Rsis + Ls
dis
dt

+
dψPM

dt
= Rsis + Ls

dis
dt

+ jnpωm ψPMe
jnpθm (1.6)

where:

• Ls = Lσ + Lm | Lm: stator winding mutual inductance ;

• θm: rotor mechanical angular position;

• np =
p
2
: machine number of pole pairs, where p is the number of poles;

• ψPM: space vector of the flux linkage due to the rotor PMs.

At the same time, the torque expression could be derived based on the Lorentz force
that arises from the interaction between the stator current distribution and the flux
density distribution inside the air gap: again, the complete derivation can be found in
[14]. The electromagnetic torque produced by the machine is given by:

T = npIm{is ψPM
∗} (1.7)

Eventually, starting from (1.6) and multiplying both sides by e−jpθm the space vector
model can be referred to a coordinate system that rotates at the rotor speed, with the
horizontal axis, namely the d-axis, parallel with the rotor flux vector ψPM and the
vertical axis, or q-axis, perpendicular to it. Equation 1.6 can be split into the projections
on the d-q axis, obtaining the so-called d-q stator voltage equations:vsd = Rsisd + Ls

disd
dt

− npωmLsisq

vsq = Rsisq + Ls
disq
dt

+ npωmLsisd + npωmψPM
(1.8)

This latter change of coordinate is called dq or Park transformation.
Analogously, the torque expression in dq components is given by:

T = npIm{isdq ψPM
∗} = npIm{isdq ψPM e−jnpθm} = npisqψPM (1.9)

This last relation leads to the conclusion that, for an isotropic PM machine, the torque
is maximized when the stator current magnetic axis is perpendicular to the rotor PMs’
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magnetic axis: for this reason, in Maximum Torque per Ampere (MTPA) control tech-
nique, the direct current isd reference value is kept equal to zero.
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1.2. Torsional vibrations: problem definition and suppress-

ing methods

1.2.1. Torsional vibrations fundamentals

Torsional vibration is a relative angular motion around the rotating axis between dif-
ferent points of a shaft. This deformation phenomenon is due to the shaft’s finite stiff-
ness: taking into consideration the simple example of a uniform beam, fixed on one
end, subject to an external torque T , as shown in Figure 1.4, the angular displacement
θ in [rad] on the free end will be given by:

θ = T
L

G Ip
(1.10)

where G is the material shear modulus, Ip is the polar moment of inertia and L is the
length of the shaft.

Figure 1.4: Torsional deformation of a beam subject to an external torque

Moreover, studying the free torsional vibration of the one Degree-of-Freedom (DOF)
system above, which is described by the homogeneous second-order linear differential
equation, called equation of motion, in the absence of the external torque and neglect-
ing damping:

Jθ̈ + Kθ = 0 (1.11)

where J is the moment of inertia of the shaft and K its stiffness. The natural angular
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frequency of the system is defined as:

ωn =

√
K

J
(1.12)

which is the angular frequency at which the undamped free response of the system oc-
curs. The free vibration analysis for a one-degree of freedom system is well explained
in [17]. The natural angular frequency concept is of utmost importance in the study
of forced vibrations, so in the presence of an external forcing term acting on the sys-
tem: in fact, a time-varying forcing term with a frequency equal to the system’s natural
one will lead to strong mechanical vibrations. A resonant condition happens when
the forcing term frequency matches the natural frequency of the system: the harmonic
response in this condition is only limited by the damping coefficient, and it tends to
infinite for undamped systems.
These concepts can be extended to the analysis of an n-degrees-of-freedom system. A
dynamic system has as many natural frequencies and modes of vibration as the num-
ber of degrees of freedom [17]. In each mode of vibration, the different system motions
oscillate with their relative amplitude depending on the system properties.
Let us consider a direct drive WECS composed by a wind turbine and an AFPMSG,
where the turbine and the different rotors are mounted onto the same shaft: this sys-
tem can be modeled with a series of lumped torsional inertias, the rotating masses,
connected by torsional springs and dissipative components which represent the shaft
stiffness and damping coefficient, as it can be seen in Figure 1.5.

Figure 1.5: schematic representation of a multi-mass torsional system, where the shaft
is represented by an equivalent torsional spring and dissipative component

By writing the equation of motion for each mass, neglecting damping and external
forcing terms, a system of homogeneous second-order linear differential equations can
be written. From this system, the characteristic equation can be obtained, which gives
as solutions the natural angular frequencies of the system. The mathematical proce-
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dure to find these last quantities is explained in detail in [17]. As in the case of the one
DOF case, resonance occurs when the system is perturbed by a forcing term whose
frequency corresponds to a natural angular frequency of the system. The presence of
a torsional resonant vibration can lead to a shaft fault or to a fatigue failure if per-
sistent in time, certainly depending on the mechanical stress intensity caused by the
vibration.

1.2.2. Source of resonance in an electric machine system

In [21], different sources of resonance in a train traction system are discussed: in ad-
dition to mechanical vibrations caused by several mechanical components present in
the system, the attention is brought to torque harmonics produced by the Variable Fre-
quency Drive (VFD) of the motor. The rotational speed of an AC motor is dependent on
the frequency of the electrical power supplied, which is controlled by the VFD. Thus,
it is highlighted how pulsating torque components are caused by voltage and current
harmonics and inter-harmonics coming from the VFD. If the pulsating torque frequen-
cies coincide with the mechanical system’s torsional natural frequencies, mechanical
resonance occurs. Torsional vibration can also be intensified by cutting-load excitation
with violent grid perturbations [11], in case generators connected to the transmission
system. Considering the wind power generation sector, nowadays wind farms are
asked to provide ancillary services such as voltage and frequency control, in order to
improve the voltage and rotor angle stability of the system. In this situation, distur-
bances of the grid frequency can be a source of torsional vibrations, which can excite
some resonant frequency [25].

1.2.3. Methods to suppress torsional vibrations

In the literature, several papers propose different methods to suppress torsional vibra-
tions in a drive train.
A common solution in mitigating torsional oscillations is the use of a Band-pass Filter
(BP): the generator speed value is fed to a BP to generate a torque ripple with appro-
priate frequency and phase. This ripple is then added to the torque reference and the
vibration can be compensated [4].
Another way to damp torsional vibrations can be obtained using a Static Synchronous
Compensator (STATCOM), particularly those due to grid voltage disturbances: in [28],
a solution comprising a STATCOM and an Energy Storage System (ESS) is studied,
to deal with torsional vibrations caused both by voltage sags and frequency devia-
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tions. In [4], a Linear Quadratic Gaussian (LQG) control algorithm controller is used
to suppress torsional vibrations: the controller modifies the generator torque reference
inserting a specific damping torque. This latter one is derived by combining a Linear
Quadratic Regulator (LQR) and a Kalman Filter (KF) for state estimation, working on
the angular displacement and velocity differences between the rotating masses.
In [22], different control methods for damping torsional vibrations are briefly intro-
duced, such as Sliding Mode Control (SMC),H∞ control, Flatness-based Control (FBC)
and Model Predictive-based Control (MPBC). Moreover, PI controllers, which are com-
monly used for the speed or position control of the drive system, can be tuned to reduce
mechanical oscillations. However, the pole placement of the closed-loop system is very
limited, resulting in not effective damping of torsional vibrations [22]. This is no more
true if the control system is provided with complete information on the system state
variables: indeed, in this case, the controller designer can set freely the poles of the
system, as it is explained in [1]. This type of control is called State Space (SS) control.
In SS control, the complete information on the state variables of the system is needed:
however, the measurement of all the system states is not always possible in practical
applications. For this reason, SOs are used, that is mathematical models that, taking as
input the few measurements available from the system, give as output the estimate of
each system’s state variable.
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1.3. State Observers

Considering a generic linear system of n states x(t) ∈ Rn, p inputs u(t) ∈ Rp and q

outputs y(t) ∈ Rq, its state space representation will be:

ẋ = Ax+Bu

y = Cx+Du
(1.13)

where A ∈ Rnxn, B ∈ Rnxp, C ∈ Rqxn and D ∈ Rqxp.

Figure 1.6: Simple block scheme of a SO

The SO is a system which, having as inputs u(t) and y(t), gives as output an estima-
tion of the state variables x̂(t), as shown in Figure 1.6; the quality of the estimation is
measured through the observation error given by:

e = x̂− x (1.14)

Different types of state observers exist, each of them with different robustness and
mathematical model: in the following some typologies will be briefly introduced.

1.3.1. Trivial Observer

To understand better how a state observer works it is useful to start introducing the
most trivial observer type, hence the copy of the State Space (SS) model of the system:

˙̂x = Ax̂+Bu | x̂(0) = x̂0 (1.15)

where the value x̂0 is the a priori estimate of the initial state; it must be noticed how
this observer does not need the output information y(t).
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If the initial state was exactly known, such that:

x̂0 = x0 (1.16)

and if there was no uncertainty on the system matrices’ parameters, this observer
would be able to estimate the state variables’ evolution. If (1.16) is not satisfied, then
the estimation error defined in (1.14) would evolve according to the following differ-
ential equation:

ė = Ae | e(0) = x̂0 − x0 (1.17)

It is clear how the control design does not affect on the estimation error dynamics,
which only depends on matrix A, thus merely on the system properties: this is the
main disadvantage that makes this type of observer unfeasible in practical application
[1].

1.3.2. Luenberger Observer

The Luenberger observer formulation is given by:

˙̂x = Ax̂+Bu+H (ŷ − y) | x̂(0) = x̂0

ŷ = Cx̂+Du
(1.18)

where the matrix H ∈ Rnxq is called the observer gain matrix and it represents a set of
free parameters.
Now, following the observation error definition expressed in (1.14), subtracting (1.13)
from (1.18) the observation error dynamic is obtained:

ė = ˙̂x− ẋ

= Ax̂+Bu+H (ŷ − y)−Ax−Bu

= Ax̂+Bu+H (Cx̂−Cx)−Ax−Bu

= (A+HC) e

(1.19)

It is clear how, choosing a correct gain matrix it is possible to select the correct pole
placement working on the eigenvalues of matrix N = (A+HC) ∈ Rnxn. If all the
eigenvalues of N have a negative real part then the observation error tends to zero in
a finite time. A necessary and sufficient condition for this observer is for the couple
(AC) to be completely observable. This observer design is heavily dependent on the
accuracy of the initial guess x̂0 and of the mathematical model of the system, thus
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of matrix A, B, C and, when present, D. This makes the Luenberger Observer not
effective in system with high level of noise and uncertainty. [24]

1.3.3. Extended State Observer

In [8], a state observer for a Single-Input Single-Output (SISO) system in integral chain
form with large uncertainty is defined, hence for a system of the kind:

ẋ1(t) = x2(t);

ẋ2(t) = x3(t);

...

ẋn(t) = f(t, x1(t), x2(t), ..., xn(t)) + w(t) + u(t);

y = x1

(1.20)

where w(t) ∈ R is an external disturbance and f : Rn+1 → R a possibly unknown
system function. Defining the extended state and its derivative as: xn+1(t) = f(t, x1(t), x2(t), ..., xn(t)) + w(t);

ẋn+1 = h(t)
(1.21)

and substituting (1.21) in (1.20), the following extended state system is obtained:

ẋ1(t) = x2(t);

ẋ2(t) = x3(t);

...

ẋn(t) = xn+1(t) + u(t);

ẋn+1 = h(t)

y = x1

(1.22)
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Finally, the Extended State Observer (ESO) takes the form:

˙̂x1(t) = x̂2(t)− α1g1 (ŷ1 − y1) ;

˙̂x2(t) = x̂3(t)− α2g2 (ŷ1 − y1) ;

...

˙̂xn(t) = x̂n+1(t)− αngn (ŷ1 − y1) + u(t);

˙̂xn+1 = −αn+1gn+1 (ŷ1 − y1)

ŷ1 = x̂1

(1.23)

where αi i = 1, ..., n, n + 1 are the observer gain coefficients and g(.) : R → R is a
function that can be chosen linear or nonlinear: in the first case, the observer is called
Linear Extended State Observer (LESO), while in the second case NLESO.
In the literature, several studies show that, for some nonlinear functions g(.) and gains
αi, the ESO performs well in terms of adaptability, robustness, and anti-chattering.
However, the estimation error system stability proof for the ESO is not an easy task: as
an example, in [7] this last problem is addressed.

1.3.4. Other State Observers

In addition to the previously introduced observers, there are many other types of ob-
servers that can be found in the literature.
In [5], an Extended Kalman Filter (EKF) is used as a state observer in the control of
a Permanent Magnet Synchronous Motor (PMSM). The EKF is an optimal algorithm
which minimizes the mean square error of the estimated variables, considering the
model inaccuracies and measurement noises. Although it guarantees good results,
complex online computations performed on matrices makes this algorithm a time con-
suming process.
In [13], a Sliding Mode Observer (SMO) for the sensorless speed control of a PMSM
is implemented. A good advantage of this state observer is that it is low affected by
disturbances, under the assumption that the latter ones are bounded. Anyway, the
observer does not provide a global state estimation convergence. Further information
and details about this state observer can be found in [18].
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2| Two-Degree of Freedom System
Definition

In this chapter, the system’s setup and its mechanical and electrical model are defined.
First, the overall system is shown, defining the main components composing it and
the control scheme. Then, the system will be defined and analyzed from a mechanical
point of view, through a free-vibration analysis to find its mechanical natural frequen-
cies. To get all the state variables of the same order of magnitude, the model will be
transformed into a per unit (p.u.) equivalent. Eventually, a torque harmonic analysis
will be performed, considering that the PMSG is fed by a Voltage Source Converter
(VSC) with Pulse Width Modulation (PWM).

2.1. System Setup

The overall system setup is shown in Figure 2.1. The PMSG, which produces an elec-
tromagnetic torque Telm, is directly connected to the wind turbine, responsible for Tt.
The generator feeds a Voltage Source Converter (VSC) with Pulse Width Modulation
(PWM): the DC-bus voltage VDC is controlled by a Grid Side Converter that keeps it
at a constant value; its control and configuration are not considered in this work. The
system control is made by an inner current control loop and an outer speed control
loop:

• the current control loop comprises two current PI regulators, operating in the dq
frame:

– the stator current direct component’s reference irefsd is set to 0 based on a
Maximum Torque per Ampere (MTPA) control;

– the stator current quadrature component’s reference irefsd is given by the elec-
tromagnetic torque reference T refelm , following the relation given in (1.9).

The current loop cut-off frequency is set to ωcI = 30 [ rad
s
];
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• the speed control loop follows a prescribed reference ωref1 . In this case, the cut-off
frequency is set to ωcΩ = 3 [ rad

s
]

The control loops cut-off frequencies are chosen so that the control response in me-
chanical resonance condition is limited: in this way, the torsional vibrations are not
damped by the control and the observers’ performance can be properly evaluated in
this condition, as it will be shown in the next chapters.
It is assumed that the 3-phase stator currents iabc and the PMSG angular position θ1

and velocity ω1 are measured through specific sensors, without any noise and errors in
the measurements.

Figure 2.1: system setup comprising the control scheme with the speed and current
control loops, electronic converter, PMSG directly connected to the wind turbine.
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2.2. System mechanical and electrical model

2.2.1. Free Vibration analysis

Figure 2.2: 2DOF system sketch; subscript t stands for turbine, while 1 refers to the
rotor of the PMSG

The system comprises a wind turbine, working as a motor and producing a torque Tt,
and a PMSG mounted on the same shaft, responsible for the electromagnetic torque
Telm: the system sketch can be seen in Figure 2.2. In particular, the shaft torque Tsh,
defined as:

Tsh = K1(θt − θ1)

represent the torque that arises from the relative torsional motion between the two
rotating masses. Its evaluation is important to assess the shaft’s torsional stress, espe-
cially during mechanical resonance conditions, in which the difference θt − θ1 reaches
high values.
The system’s mechanical and electrical parameters are listed in Table 2.1.
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Table 2.1: PMSG and turbine parameters

PMSG and turbine parameters

Pn [MW ] 1.0
Tn [Nm] 561∗103

In [A] 713
Vn,ph [V ] 435
fn [Hz] 14.73
ΨPM [Wb] 8.147
poles (p) ; np =

p
2

104 ; 52
Rs [mΩ] 14.59
Ls [mH] 4.321
Dout,stator [mm] 5586
Dout,rotor [mm] 5262
Kshaft = K1 [

Nm
rad

] 1.2∗1011

Jturbine = Jt [kg m
2] 3∗106

Jrotor = J1 [kg m
2] 3.36∗106

Let us first analyze the mechanical behavior of the system; in the following, the damp-
ing torque term in the dynamic equations will be neglected, its value being negligible
compared to the others in the equation.
The equations of motion of the unforced 2DOF mechanical system are:Jtω̇t +K1(θt − θ1) = 0

J1ω̇1 −K1(θt − θ1) = 0
(2.1)

which, in matrix form can be expressed as:

[J ][θ̈] + [K][θ] = 0 (2.2)

where:

[θ] =

[
θt

θ1

]
; [J ] =

[
Jt 0

0 J1

]
; [K] =

[
K1 −K1

−K1 K1

]
Considering a simple harmonic motion as the solution of (2.1) [17], hence:

[θ] =

[
θt

θ1

]
=

[
θ̂t cos(ωt+ φ)

θ̂1 cos(ωt+ φ)

]
(2.3)
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Now, substituting (2.3) in (2.2):[
−Jtω2 +K1 −K1

−K1 −J1ω2 +K1

][
θ̂t cos(ωt+ φ)

θ̂1 cos(ωt+ φ)

]
= 0 (2.4)

Simplifying the cos() term of both rows, the natural frequencies of the system will be
the solution of the characteristic equation, i.e.:

det

[
−Jtω2 +K1 −K1

−K1 −J1ω2 +K1

]
= 0 (2.5)

Solving (2.5), the natural frequencies of the system are:

|fres| =
∣∣∣ωres
2π

∣∣∣ = [ 0

302.45

]
[Hz] (2.6)

2.2.2. Electrical and Mechanical model per unit transformation

In order to deal with mechanical and electrical state variables of similar order of mag-
nitude, the entire system model is transformed into a p.u. equivalent model.
In the following, first both system models will be introduced denoting with superscript
∗ the variable original value, i.e. with dimensions. Then, once the p.u. transformation
is fully defined, the superscript pu, firstly used to name the homonymous variables,
will be neglected.
Starting from the mechanical model part, the base parameter for the transformation
are:

• ωb,el = 2πfn = 92.55
[
rad
s

]
;

• ωb,mech =
ωb,el

np
= 1.78

[
rad
s

]
;

• Tb = Tn = 561 ∗ 103 [Nm] .

The mechanical system is given by the following equations of motion:Jtω̇∗
t = −B1(ω

∗
t − ω∗

1)−K1(θt − θ1) + Tt

J1ω̇∗
1 = B1(ω

∗
t − ω∗

1) +K1(θt − θ1)− Telm
(2.7)
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The angular variables are not denoted with a superscript since they are already dimen-
sionless.
Now, dividing all terms of (2.7) by Tb = Tn: Jt

Tn
ω̇∗
t = −B1

Tn
(ω∗

t − ω∗
1)− K1

Tn
(θt − θ1) +

Tt
Tn

J1
Tn
ω̇∗
t =

B1

Tn
(ω∗

t − ω∗
1) +

K1

Tn
(θt − θ1)− Telm

Tn

(2.8)

and defining the inertia constant Hi as:

Hi =
1

2

Jiω
2
b,mech

Tnωb,mech
| i = 1, t; →

 Ht =
1
2

Jtω2
b,mech

Tnωb,mech
= 4.76 [s]

H1 =
1
2

J1ω2
b,mech

Tnωb,mech
= 0.053 [s]

(2.9)

the following system is obtained:{
2Ht

ωb,mech
ω̇∗
t = −B1

Tn
(ω∗

t − ω∗
1)− K1

Tn
(θt − θ1) +

Tt
Tn

2H1

ωb,mech
ω̇∗
1 = B1

Tn
(ω∗

t − ω∗
1) +

K1

Tn
(θt − θ1)− Telm

Tn

(2.10)

Considering:

ωpui =
ω∗
i

ωb,mech
| i = 1, t; (2.11)

and substituting (2.11) in system (2.10) it becomes:{
2Htω̇

pu
t = −B1ωb,mech

Tn
(ωput − ωpu1 )− K1

Tn
(θt − θ1) +

Tt
Tn

2H1ω̇
pu
1 =

B1ωb,mech

Tn
(ωput − ωpu1 ) + K1

Tn
(θt − θ1)− Telm

Tn{
ω̇put = −B1ωb,mech

2HtTn
(ωput − ωpu1 )− K1

2HtTn
(θt − θ1) +

Tt
2HtTn

ω̇pu1 =
B1ωb,mech

2H1Tn
(ωput − ωpu1 ) + K1

2H1Tn
(θt − θ1)− Telm

2H1Tn

(2.12)

As it was explained before, to simplify the writing the apex p.u. will not be shown in
the following; hence, the mechanical p.u. system is defined as:{

ω̇t = −B1ωb,mech

2HtTn
(ωt − ω1)− K1

2HtTn
(θt − θ1) +

Tt
2HtTn

ω̇1 =
B1ωb,mech

2H1Tn
(ωt − ω1) +

K1

2H1Tn
(θt − θ1)− Telm

2H1Tn

(2.13)

The base parameters for the electrical model p.u. transformation are:

• V dq
b = 2

√
3V abc

n,phase = 753.44 [V ]

• Idqb = 2
√
3Iabcn = 1.23 ∗ 103 [A]

• Zb =
V dq
b

Idqb
= 0.61 [Ω]
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• ωb = ωb,el

• Lb =
Zb

ωb
= 6.6 ∗ 10−3 [H]

• ψb =
V dq
b

ωb
= 8.14 [Wb]

The electrical model comprises the d-q stator voltage equations of the PMSG, as found
in Section 1.1.2. Thus, rewriting (1.8) denoting the state variables with apex ∗ and
referring the mechanical quantities to the rotor of the PMSG, the original electrical
model is: {

v∗sd = Rsi
∗
sd + Ls

di∗sd
dt

− npω
∗
1Lsi

∗
sq

v∗sq = Rsi
∗
sq + Ls

di∗sq
dt

+ npω
∗
1Lsisd + npω

∗
1ψ

∗
PM

(2.14)

To perform the p.u. transformation, first of all both equations of (2.14) are divided by
V dq
b , getting: 

v∗sd
V dq
b

=
Rsi∗sd
V dq
b

+ Ls
di∗sd
dt

1

V dq
b

− npω∗
1Lsi∗sq

V dq
b

v∗sq

V dq
b

=
Rsi∗sq

V dq
b

+ Ls
di∗sq
dt

1

V dq
b

+
npω∗

1Lsisd

V dq
b

+
npω∗

1ψ
∗
PM

V dq
b

(2.15)

Then, considering that:

•
v∗sdq

V dq
b

= vpusdq;

•
Rsi∗sdq

V dq
b

=
Rsi∗sdq

V dq
b

Idqb
Idqb

= Rs

Zb

i∗sdq

Idqb
= rpus i

pu
sdq;

• Ls
di∗sdq
dt

1

V dq
b

= Ls
di∗sdq
dt

1

V dq
b

Idqb
Idqb

ωb

ωb
= Ls

Lb

di∗sdq
dt

1

Idqb

1
ωb

= lpus
ωb

dipusdq
dt

;

•
npω∗

1Lsi∗sdq

V dq
b

=
npω∗

1Lsi∗sdq

V dq
b

Idqb
Idqb

ωb

ωb
=

npω∗
1

ωb

Ls

Lb

i∗sdq

Idqb
= ωpu1 l

pu
s i

pu
sdq;

• npω∗
1ψ

∗
PM

V dq
b

=
npω∗

1ψ
∗
PM

V dq
b

ωb

ωb
=

npω∗
1

ωb

ψ∗
PM

ψb
= ωpu1 ψ

pu
PM ;

it follows that system (2.15) becomes:{
vpusd = rpus i

pu
sd +

lpus
ωb

dipusd
dt

− ωpu1 l
pu
s i

pu
sq

vpusq = rpus i
pu
sq +

lpus
ωb

dipusq
dt

+ ωpu1 l
pu
s i

pu
sd + ωpu1 ψ

pu
PM

(2.16)

Considering that to simplify the writing the apex p.u. will not be shown in the fol-
lowing and rearranging the terms to make disdq

dt
= ˙isdq explicit, the following system is

obtained: {
˙isd = −rs ωb

ls
isd + ωbisqω1 +

ωb

ls
vsd

˙isq = −rs ωb

ls
isq − ωbisdω1 − ωb

ls
ψPMω1 +

ωb

ls
vsq

(2.17)
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Eventually, the complete system of differential equations, comprising the mechanical
and electrical p.u. models, is:

ω̇t = −B1ωb,mech

2HtTn
(ωt − ω1)− K1

2HtTn
(θt − θ1) +

Tt
2HtTn

ω̇1 =
B1ωb,mech

2H1Tn
(ωt − ω1) +

K1

2H1Tn
(θt − θ1)− Telm

2H1Tn

˙isd = −rs ωb

ls
isd + ωbisqω1 +

ωb

ls
vsd

˙isq = −rs ωb

ls
isq − ωbisdω1 − ωb

ls
ψPMω1 +

ωb

ls
vsq

(2.18)

Taking into consideration that:

• θ̇t = ωb,mechωt ;

• θ̇1 = ωb,mechω1 ;

• the measurements of θ1, isd and isq are available from the system;

system (2.18) can be updated, denoting with y the measured state variables:

θ̇t = ωb,mechωt

θ̇1 = ωb,mechω1

ω̇t = −B1ωb,mech

2HtTn
(ωt − ω1)− K1

2HtTn
(θt − θ1) +

Tt
2HtTn

ω̇1 =
B1ωb,mech

2H1Tn
(ωt − ω1) +

K1

2H1Tn
(θt − θ1)− Telm

2H1Tn

˙isd = −rs ωb

ls
isd + ωbisqω1 +

ωb

ls
vsd

˙isq = −rs ωb

ls
isq − ωbisdω1 − ωb

ls
ψPMω1 +

ωb

ls
vsq

y1 = θ1

y2 = isd

y3 = isq

(2.19)

2.2.3. Torque harmonics analysis

As already discussed in Section 1.2.2, pulsating torque components are caused by har-
monics and inter-harmonics coming from the VFD which supplies the machine. The
analytical derivation of harmonic torque components generated by the interaction be-
tween stator voltage and current harmonics is provided in Appendix A.1.
In the case under analysis, the following hypotheses are made:

• the PMSG stator is supplied with a 3-phase VSC with PWM;

• modulation frequency ratio: mf =
fsw
fc

= 33 where:

– fsw is the switching frequency;
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– fc is the carrier signal frequency;

• the VSC operates in linear modulation and produces only voltage harmonics of
order:

hv = m mf + n |m ∈ N, n ∈ Z

where:

– if m is even then n is odd;

– if m is odd then n is even;

• since the machine is a synchronous generator, the fundamental angular frequency
of the stator voltage ωfund corresponds to the rotor electrical angular frequency
ωr,el:

ωfund = ωr,el =
p

2
ωr,mech | ωr,mech = rotor mechanical angular frequency

– in this analysis: ωr,mech = ω1 ;

• the machine operates in the range: ωr,el ∈ [0.3ωn ; ωn].

The voltage harmonics spectrum of a PWM VSC for hv > 1 is characterized by higher
order harmonics divided into m groups each one composed of n components that
rapidly decay in magnitude as |n| increases. Being the torque harmonic’s amplitude
directly related to the voltage harmonic’s one, just the following indices were consid-
ered:

• m = 1, 2, 3, 4 ;

• n = 0,±1,±2,±3,±4

Based on the previous assumptions, the harmonic indexes hv present in the stator volt-
age are listed in Table 2.2.
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Table 2.2: Stator voltage harmonic indexes hv for the consideredm and nwhenmf = 33

Stator voltage harmonic indexes

n
hv

0 ±1 ±2 ±3 ±4

1 33 0 0 35 31 0 0 37 29

2 0 67 65 0 0 69 63 0 0

3 99 0 0 101 97 0 0 103 95m

4 0 133 131 0 0 135 129 0 0

Now, the voltage harmonic of index hv generates a torque harmonic component of
index hT given by the following relation:

hT = hv − 1 if the stator voltage harmonic of order hv is a positive sequence harmonic
hT = hv + 1 if the stator voltage harmonic of order hv is a negative sequence harmonic
Null torque if the stator voltage harmonic of order hv is a zero sequence harmonic

Therefore, by identifying the harmonic sequence typology through the following rules:

• hv represents a positive sequence harmonic if: hv = 6k + 1 | k ∈ N;

• hv represents a negative sequence harmonic if: hv = 6k − 1 | k ∈ N;

• hv represents a zero sequence harmonic if: hv = 3k | k ∈ N;

the torque harmonic indexes given by a hv voltage component defined by a specific m
and n are listed in Table 2.3
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Table 2.3: Torque harmonic indexes hT produced by a specific hv, defined by specific
values of m and n when mf = 33

Stator voltage harmonic indexes

n
hT

0 ±1 ±2 ±3 ±4

1 0 0 0 36 30 0 0 36 30

2 0 66 66 0 0 0 0 0 0

3 0 0 0 102 96 0 0 102 96m

4 0 132 132 0 0 0 0 0 0

Recalling that this analysis aims to detect the torque harmonic components that ex-
cite the resonance frequency of the system, a useful tool to be used is the Campbell
diagram, in which the forcing terms’ frequencies acting on the system are plotted to-
gether with the natural frequencies of the system, in [Hz], as a function of the machine
rotating speed, usually in [rpm].
In this case, the forcing terms are represented by the torque harmonic components pre-
viously described. Defining with fexc,hT the excitation frequency component related
to the torque harmonic of order hT , and reminding that, for a synchronous machine,
the stator voltage fundamental frequency ffund is related to the rotor angular speed
through:

ffund =
ωr,el
2π

fexc,hT can be calculated as:

fexc,hT = hTffund = hT
ωr,el
2π

= hT
pωr,mech

4π
= hT

pω1

4π

which puts in evidence the relation between the fexc,hT and the rotor angular speed.
Concerning the system’s natural frequencies, they are depicted by horizontal lines in
the diagram, being independent of the machine speed; in this case, the natural frequen-
cies of the system were found in Section 2.2.1:

|fres| =
∣∣∣ωres
2π

∣∣∣ = [ 0

302.45

]
[Hz]
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Typically, in the Campbell diagram, the operating region of the machine is defined
drawing two vertical lines, which represent the speed range of the machine; in this
case it was assumed that the machine operates within 30% and 100% of the nominal
speed ωn,mech:

ωn,mech =
2

p
ωn,el =

4πfn
p

=
4π14.73

104
= 1.78

[
rad

s

]
≈ 17 [rpm]

The Campbell diagram of the system under analysis is shown in Figure 2.3.

Figure 2.3: Campbell diagram showing the VSC produced torque harmonics which
excite the resonance frequency of the system

Based on what is shown in the diagram, the torque harmonics’ components hT exciting
the resonance frequency in the operating region are:

• hT = 30 when the rotor spins at: ωr,mech = ω1 =
4π
p
fres
hT

= 1.22
[
rad
s

]
= 11.6 [rpm];

• hT = 36 when the rotor spins at: ωr,mech = ω1 =
4π
p
fres
hT

= 1.01
[
rad
s

]
= 9.69 [rpm];

• hT = 66 when the rotor spins at: ωr,mech = ω1 =
4π
p
fres
hT

= 0.55
[
rad
s

]
= 5.29 [rpm];
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3| Non-Linear Extended State
Observer

In this chapter, the design of a Non-Linear Extended State Observer (NLESO) for the
system is carried out. To deal with the system’s nonlinearities and to properly design
the observer, the model is linearized around the nominal working point. Then, the
system is divided into three different Multi-Input Single-Output (MISO) subsystems,
each one with a dedicated state observer: the different estimates are then processed
to extract the best state estimations. The design of a NLESO is important to estimate
all the linearized system’s state variables, including the non-measured ones, and to
evaluate the shaft torque Tsh component during mechanical resonance conditions. The
observer’s performance is evaluated through a computer simulation by examining the
estimates’ accuracy.

3.1. Non-Linear Extended State Observer design

3.1.1. System Linearization

As it can be seen from (2.19), the system is nonlinear due to the following terms:

• isd equation: ωbisqω1;

• isq equation: ωbisdω1.

The first strategy adopted, accordant to what is usually done when dealing with non-
linear systems, is to linearize the system around a working point, thus working with a
linear system instead.
Therefore, the idea is to start linearizing the system around a specific working point
and then transform it into an integral-chain form through a state variable transforma-
tion, needed for the design of NLESO (see Section 1.3.3).
The linearization follows a small perturbation analysis concept: in fact, as already dis-
cussed in Section 1.2.3, the state observer implementation aims to estimate the tor-
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sional vibrations occurring on the shaft, which consist of oscillating phenomena. This
last concept permits to split a generic state variable x(t) into the sum of a continuous
steady state term x0 and an oscillating one (small perturbation) ∆x(t):

x(t) = x0 +∆x(t) (3.1)

Following this concept, system (2.19) can be seen as:

˙θt0 +∆θ̇t = (ωt0 +∆ωt)ωb,mech

θ̇10 +∆θ̇1 = (ω10 +∆ω1)ωb,mech

(ω̇t0 +∆ω̇t) = − K1

2HtTn
(θt0 +∆θt − θ10 −∆θ1) +

1
2HtTn

(Tt0 +∆Tt)

( ˙ω10 +∆ω̇1) =
K1

2H1Tn
(θt0 +∆θt − θ10 −∆θ1)− np(Ibψb)ψPM

2H1Tn
(isq0 +∆isq)(

i̇sd0 +∆i̇sd
)
= −rs ωb

ls
(isd0 +∆isd) + ωb (isq0 +∆isq) (ω10 +∆ω1)+

+ωb

ls
(vsd0 +∆vsd)(

˙isq0 + ˙∆isq

)
= −rs ωb

ls
(isq0 +∆isq)− ωb (isd0 +∆isd) (ω10 +∆ω1)−

−ωb

ls
ψPM (ω10 +∆ω1) +

ωb

ls
(vsq0 +∆vsq)

y1 = y10 +∆y1 = θ1 = θ10 +∆θ1

y2 = y20 +∆y2 = isd = isd0 +∆isd

y3 = y30 +∆y3 = isq = isq0 +∆isq

(3.2)

Now, splitting (3.2) with respect to the continuous and oscillating terms, two subsys-
tems can be obtained:

Steady State



˙θt0 = ωb,mechωt0

˙θ10 = ωb,mechω10

ω̇t0 = − K1

2HtTn
(θt0 − θ10) +

Tt0
2HtTn

˙ω10 =
K1

2H1Tn
(θt0 − θ10)− np(Ibψb)ψPM

2H1Tn
isq0

˙isd0 = −rs ωb

ls
isd0 + ωbω10isq0 +

ωb

ls
vsd0

˙isq0 = −rs ωb

ls
isq0 − ωbω10isd0 − ωb

ls
ψPMω10 +

ωb

ls
vsq0

y10 = θ10

y20 = isd0

y30 = isq0

(3.3)
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Small Perurbations (∆)



∆̇θt = ωb,mech∆ωt

˙∆θ1 = ωb,mech∆ω1

˙∆ωt = − K1

2HtTn
(∆θt −∆θ1) +

∆Tt
2HtTn

˙∆ω1 =
K1

2H1Tn
(∆θt −∆θ1)− np(Ibψb)ψPM

2H1Tn
∆isq

˙∆isd = −rs ωb

ls
∆isd + ωbω10∆isq + ωbisq0∆ω1+

+ωb∆isq∆ω1 +
ωb

ls
∆vsd

˙∆isq = −rs ωb

ls
∆isq − ωbω10∆isd − ωbisd0∆ω1−

−ωb∆ω1∆isd − ωb

ls
ψPM∆ω1 +

ωb

ls
∆vsq

∆y1 = ∆θ1

∆y2 = ∆isd

∆y3 = ∆isq

(3.4)

Assuming that:

1. at steady state:

(a) ˙ω10 = ω̇t0 = 0 with ωt0 = ω10 = ωref,SS ;

(b) ˙isd0 = 0 with isd0 = 0 (MTPA);

(c) ˙isq0 = 0 with isq0 =
Telm,0

np(Ibψb)ψPM
;

2. for generic state variables xi and xj : |∆xi∆xj| << |xi0∆xj| | ∀i, j;

3. ∆Tt ≈ 0 ↔ Tt0 = Tt: no oscillating torque acting on the turbine;

the two systems in (3.4) become:

Steady State



˙θt0 = ωb,mechωt0

˙θ10 = ωb,mechω10

0 = − K1

2HtTn
(θt0 − θ10) +

Tt0
2HtTn

0 = K1

2H1Tn
(θt0 − θ10)− Telm,0

2H1Tn

0 = ωbω10isq0 +
ωb

ls
vsd0

0 = −rs ωb

ls
isq0 − ωb

ls
ψPMω10 +

ωb

ls
vsq0

y10 = θ10

y20 = isd0

y30 = isq0

(3.5)
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Small pert. (∆)



∆̇θt = ωb,mech∆ωt

˙∆θ1 = ωb,mech∆ω1

˙∆ωt = − K1

2HtTn
(∆θt −∆θ1)

˙∆ω1 =
K1

2H1Tn
(∆θt −∆θ1)− np(Ibψb)ψPM

2H1Tn
∆isq

˙∆isd = −rs ωb

ls
∆isd + ωbω10∆isq + ωbisq0∆ω1 +

ωb

ls
∆vsd

˙∆isq = −rs ωb

ls
∆isq − ωbω10∆isd − ωb

ls
ψPM∆ω1 +

ωb

ls
∆vsq

∆y1 = ∆θ1

∆y2 = ∆isd

∆y3 = ∆isq

(3.6)

From the equations of (3.5) it can be found that:

• Tt0 = Tt = K1 (θt0 − θ10) = Telm,0;

• vsd0 = −lsω10isq0;

• vsq0 = rsisq0 + ψPMω10.

From now on in this section, the focus will be entirely on (3.6), the oscillating (or ∆)
system that, as expected, is linear. Therefore, the observer designed for this system
will aim at estimating the oscillating terms of the state variables, which contain the
evolution of the resonant phenomenon of interest.
The linearization should be performed around the working point of the system; how-
ever, this would mean calculating each time a linearized model based on the operating
condition under analysis. For this reason, a single linearization is considered and per-
formed once around the nominal working point of the system, i.e. when:

ωn,mech =
2

p
ωn,el =

4πfn
p

=
4π14.73

104
= 1.78

[
rad

s

]
≈ 17 [rpm]

A wind turbine, rotating at Ω and operating under a wind speed vwind, produces a
torque given by:

Tt =
1

2
ρ
Cp(λtip−speed)

2
Dt
λtip−speed

πD2
t

4
v2wind

where ρ is the air density, Dt is the turbine diameter, λtip−speed =
D
2
Ω

vwind
is the tip-speed

ratio and Cp(λ) is the power coefficient as a function of λtip−speed.
At ωn,mech, the wind turbine torque is assumed to be:

Tt0 = Telm,0 = 7.87 ∗ 105 [Nm]
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Hence, the following variables can be calculated:

• ω10 =
ωn,mech

ωb,mech
= 1 [p.u.];

• isd0 = 0 (MTPA operation);

• isq0 =
Telm,0

np(Ibψb)ψPM
= 1.5 [p.u.]

System (3.6) can be represented in matrix form:

∆̇θt
˙∆θ1
˙∆ωt
˙∆ω1

˙∆isd
˙∆isq


︸ ︷︷ ︸

∆̇x

=



0 0 ωb,mech 0 0 0

0 0 0 ωb,mech 0 0

− K1

2HtTn
K1

2HtTn
0 0 0 0

K1

2H1Tn
− K1

2H1Tn
0 0 0 −np(Ib∗ψb)ψPM

2H1Tn

0 0 0 ωbisq0 −rs ωb

ls
ωbω10

0 0 0 −ωb

ls
ψPM −ωbω10 −rs ωb

ls


︸ ︷︷ ︸

∆A



∆θt

∆θ1

∆ωt

∆ω1

∆isd

∆isq


︸ ︷︷ ︸

∆x

+

+



0 0

0 0

0 0

0 0
ωb

ls
0

0 ωb

ls


︸ ︷︷ ︸

∆B

[
∆vsd

∆vsq

]
︸ ︷︷ ︸

∆u

 ∆y1

∆y2

∆y3


︸ ︷︷ ︸

∆y

=

 0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


︸ ︷︷ ︸

∆C



∆θt

∆θ1

∆ωt

∆ω1

∆isd

∆isq


︸ ︷︷ ︸

∆x

=

 ∆θ1

∆isd

∆isq



where ∆x ∈ Rn, ∆y ∈ Rq, ∆A ∈ Rnxn, ∆B ∈ Rnxp and ∆C ∈ Rqxn, with n = 6, p = 2

and q = 3.
If the system is completely observable with a given set of outputs then it is possible
to estimate the state variables through a state observer. Following [1], considering the
generic system in state space form defined in Section 1.3:

ẋ = Ax+Bu

y = Cx+Du
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it is completely observable if the pair (C,A) is completely observable, so if the observ-
ability matrix MO defined as:

MO =


C

CA

CA2

...

CAn−1

 (3.7)

is full rank, so if:

ρ = rank (MO) = n (3.8)

In this case, the observability matrix is:

∆MO =


∆C

∆C ∗∆A

∆C ∗∆A2

...

∆C ∗∆An−1

 (3.9)

and applying (3.8):

ρ = rank (∆MO) = 6 (3.10)

hence the system (3.6) is completely observable. All the observability matrices that are
defined in the thesis can be found in Appendix A.2 and A.4.

3.1.2. Subsystem Decomposition

Referring to Section 1.3.3, the NLESO is defined for a single output system. To imple-
ment an observer of this type for the Multi-Input Multi-Output (MIMO) system de-
fined in the previous section, a MISO subsystem decomposition is performed. In other
words, q MISO subsystems are created starting from the original MIMO one, each of
them referring to a specific output. At this point, a NLESO will be designed for each
subsystem and all the estimates collected will be processed together to obtain the best
one.
While matrices ∆A and ∆B remain the same, as the MIMO system is just divided ac-
cording to the outputs ∆y, matrix ∆C changes for each subsystem, becoming a single
row vector; hence:
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• Subsystem 1: ∆y = ∆y1 = ∆θ1

∆C1 =
[
0 1 0 0 0 0

]

while: ∆A1 = ∆A, ∆B1 = ∆B, ∆u1 = ∆u, ∆x1 = ∆x

• Subsystem 2: ∆y = ∆y2 = ∆isd

∆C2 =
[
0 0 0 0 1 0

]

while: ∆A2 = ∆A, ∆B2 = ∆B, ∆u2 = ∆u, ∆x2 = ∆x

• Subsystem 3: ∆y = ∆y3 = ∆isq

∆C3 =
[
0 0 0 0 0 1

]

while: ∆A3 = ∆A, ∆B3 = ∆B, ∆u3 = ∆u, ∆x3 = ∆x

Before moving on, the observability of each subsystem, i.e. of each pair (∆Ci,∆A) |i =
1, 2, 3 , must be assessed, being a necessary condition for the implementation of a state
observer. Following the definition of observability matrix defined in (3.7), the observ-
ability matrix subsystem i∆MOi is defined as:

∆MOi =


∆Ci

∆Ci ∗∆A

∆Ci ∗∆A2

...

∆Ci ∗∆An−1

 | i = 1, 2, 3 (3.11)

All the observability matrices can be found in Appendix A.2; the following results are
obtained:

• Subsystem 1: rank (∆MO1) = 6 = n → Subsystem 1 is completely observable;

• Subsystem 2: rank (∆MO2) = 5 ̸= n → Subsystem 2 is not completely observ-
able;

• Subsystem 3: rank (∆MO3) = 5 ̸= n → Subsystem 3 is not completely observ-
able.
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It is clear how, in the actual form, a state observer cannot be applied to subsystem 2
and 3.
Based on [6], for a generic state space system with observability matrix MO, the non-
observable states subspace xnull is defined as the kernel of MO, that is:

xnull = ker(MO) (3.12)

Before moving on, let us revise the concept of the kernel of a matrix and how it is
calculated. By the definition from [2], the kernel of a linear map L(x) : Rn′ → Rm′ is
the set of vectors x ∈ Rn′ which have as image the null vector of Rm′ , i.e.:

ker(L) =
{
x ∈ Rn′ | L(x) = 0 ∈ Rm′

}
(3.13)

An example of kernel calculation is provided for completeness in Appendix B.1.
Now, calculating the kernel of the observability matrices related to the non-observable
subsystems, through a Matlab script using function null(), the following result is ob-
tained:

• Subsystem 2:

ker (∆M02) =



∆θt

∆θ1

0

0

0

0


• Subsystem 3:

ker (∆M03) =



∆θt

∆θ1

0

0

0

0


Apparently, the non-observability property of subsystems 2 and 3 is related to ∆θt and
∆θ1. These last two state variables can be merged to form a single state variable, that
is:

∆θt and ∆θ1 → ∆θt −∆θ1 (3.14)
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Redefining subsystems 2 and 3 with (3.14), the new system matrices become:

∆x2 = ∆x3 =


∆θt −∆θ1

∆ωt

∆ω1

∆isd

∆isq

 ;

∆A2 = ∆A3 =


0 ωb,mech −ωb,mech 0 0

− K1

2HtTn
0 0 0 0

K1

2H1Tn
0 0 0 −np(Ib∗ψb)ψPM

2H1Tn

0 0 ωbisq0 − rωb

ls
ωbω10

0 0 −ωb

ls
ψPM −ωbω10 − rωb

ls

 ;

∆B2 = ∆B3 =


0 0

0 0

0 0
ωb

ls
0

0 ωb

ls

 ;

∆C2 =
[
0 0 0 1 0

]
; ∆C3 =

[
0 0 0 0 1

]
.

It must be noticed that now ∆x2 ∈ Rn2 , ∆x3 ∈ Rn3 with n2 = n3 = 5. If now the
observability of the two latter subsystems is re-addressed, it can be found that:

• Subsystem 2:

∆M1
O2 =


∆C2

∆C2 ∗∆A2

∆C2 ∗∆A2
2

...

∆C2 ∗∆A2
n2−1

→ rank
(
∆M1

O2

)
= 5 = n2 ;

• Subsystem 3:

∆M1
O3 =


∆C3

∆C3 ∗∆A3

∆C3 ∗∆A3
2

...

∆C3 ∗∆A3
n3−1

→ rank
(
∆M1

O3

)
= 5 = n3 .
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Eventually, the original MIMO system is decomposed into q = 3 observable MISO sub-
systems defined as:

Subsystem 1

∆̇θt
˙∆θ1
˙∆ωt
˙∆ω1

˙∆isd
˙∆isq


︸ ︷︷ ︸

˙∆x1

=



0 0 ωb,mech 0 0 0

0 0 0 ωb,mech 0 0

− K1

2HtTn
K1

2HtTn
0 0 0 0

K1

2H1Tn
− K1

2H1Tn
0 0 0 −np(Ib∗ψb)ψPM

2H1Tn

0 0 0 ωbisq0 − rωb

ls
ωbω10

0 0 0 −ωb

ls
ψPM −ωbω10 − rωb

ls


︸ ︷︷ ︸

∆A1



∆θt

∆θ1

∆ωt

∆ω1

∆isd

∆isq


︸ ︷︷ ︸

∆x1

+



0 0

0 0

0 0

0 0
ωb

ls
0

0 ωb

ls


︸ ︷︷ ︸

∆B1

[
∆vsd

∆vsq

]
︸ ︷︷ ︸

∆u1

∆y1 =
[
0 1 0 0 0 0

]
︸ ︷︷ ︸

∆C1



∆θt

∆θ1

∆ωt

∆ω1

∆isd

∆isq


︸ ︷︷ ︸

∆x1

= ∆θ1 (3.15)
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Subsystem 2


∆̇θt − ˙∆θ1

˙∆ωt
˙∆ω1

˙∆isd
˙∆isq


︸ ︷︷ ︸

˙∆x2

=


0 ωb,mech −ωb,mech 0 0

− K1

2HtTn
0 0 0 0

K1

2H1Tn
0 0 0 −np(Ib∗ψb)ψPM

2H1Tn

0 0 ωbisq0 − rωb

ls
ωbω10

0 0 −ωb

ls
ψPM −ωbω10 − rωb

ls


︸ ︷︷ ︸

∆A2


∆θt −∆θ1

∆ωt

∆ω1

∆isd

∆isq


︸ ︷︷ ︸

∆x2

+

+


0 0

0 0

0 0
ωb

ls
0

0 ωb

ls


︸ ︷︷ ︸

∆B2

[
∆vsd

∆vsq

]
︸ ︷︷ ︸

∆u2

∆y2 =
[
0 0 0 1 0

]
︸ ︷︷ ︸

∆C2


∆θt −∆θ1

∆ωt

∆ω1

∆isd

∆isq


︸ ︷︷ ︸

∆x2

= ∆isd (3.16)

Subsystem 3


∆̇θt − ˙∆θ1

˙∆ωt
˙∆ω1

˙∆isd
˙∆isq


︸ ︷︷ ︸

˙∆x3

=


0 ωb,mech −ωb,mech 0 0

− K1

2HtTn
0 0 0 0

K1

2H1Tn
0 0 0 −np(Ib∗ψb)ψPM

2H1Tn

0 0 ωbisq0 − rωb

ls
ωbω10

0 0 −ωb

ls
ψPM −ωbω10 − rωb

ls


︸ ︷︷ ︸

∆A3


∆θt −∆θ1

∆ωt

∆ω1

∆isd

∆isq


︸ ︷︷ ︸

∆x3

+

+


0 0

0 0

0 0
ωb

ls
0

0 ωb

ls


︸ ︷︷ ︸

∆B3

[
∆vsd

∆vsq

]
︸ ︷︷ ︸

∆u3
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∆y3 =
[
0 0 0 0 1

]
︸ ︷︷ ︸

∆C3


∆θt −∆θ1

∆ωt

∆ω1

∆isd

∆isq


︸ ︷︷ ︸

∆x3

= ∆isq (3.17)

3.1.3. Relative-Degree based estimate selection

In [26], a systematic procedure for distributed state estimation in nonlinear systems is
presented. Particularly, a relative degree analysis, with which the closeness between
states and outputs can be evaluated, is provided. Based on this analysis, it is assumed
that the closer the state to the output used as the observer input, the more accurate the
estimation of the state variable.
A generic MISO system can be expressed in the form:{

ẋ = f(x) + g(u)

y = h(x)
(3.18)

where x ∈ Rn, u ∈ Rp, y ∈ R state variables.
Let us start defining matrix F as:

F =
∂f

∂x
=
[
F1 F2 ... Fn

]
(3.19)

where Fi | i = 1, ..., n are column vectors.
Another useful concept to be introduced is the Lie derivative [12] of h(x) along Fi | i =
1, ..., n, defined as:

LFi
h(x) ≜

∂h(x)

∂x
∗ Fi(x) (3.20)

The closeness between the output y and the generic subsystem variable xi ∈ x | i =
1, ..., n is evaluated calculating Di:

Di =



0 if ∂h
∂xi

̸= 0

1 if ∂h
∂xi

= 0 & LFi
h(x) ̸= 0

di if ∂h
∂xi

= 0 & LFi
Lk−1
f h(x) = 0 &

LFi
Ldi−1
f h(x) ̸= 0 | k = 0, 1, ..., di − 1

∞ if di → ∞

(3.21)
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The lower Di the closer is the state variable xi | i = 1, ..., n to the output y. However,
calculations get a little simpler if a generic linear system is considered, that is again the
one defined in (1.13):

ẋ = Ax+Bu

y = Cx+Du

Indeed, in this case, assuming D = 0 and a MISO system with C ∈ Rqxn | q = 1:

• ∂h
∂x

= ∂(Cx)
∂x

= C;

• ∂h
∂xi

= ∂(Cx)
∂xi

= Ci ∈ R: element i of matrix C;

• F = ∂f
∂x

= ∂Ax
∂x

= A =
[
A1 A2 ... An

]
– Ai | i = 1, ..., n is the column vector i of matrix A;

• LFi
h(x) = ∂h

∂x
∗ Fi = CAi | i = 1, ..., n;

• LFi
Lk−1
f h(x) = CAk−1Ai | i = 1, ..., n; k ∈ R.

The above procedure must be applied to each subsystem; for a better understanding,
let us carry out for subsystem 1 the closeness between the output ∆y1 = ∆θ1 and some
of the state variables of ∆x1:

1. ∆θt :

(a) ∂h
∂x1

=

=
∂ (∆C1∆x1)

∂∆θt
=

∂


[
0 1 0 0 0 0

]


∆θt

∆θ1

∆ωt

∆ω1

∆isd

∆isq




∂∆θt

= 0;
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(b) LF1h(x) =

=
∂h

∂x
∗ F1 =

∂


[
0 1 0 0 0 0

]


∆θt

∆θ1

∆ωt

∆ω1

∆isd

∆isq





∂





∆θt

∆θ1

∆ωt

∆ω1

∆isd

∆isq





∆A11 =

= ∆C1∆A1 =
[
0 1 0 0 0 0

]


0

0

− K1

2HtTn
K1

2H1Tn

0

0


= 0;

(c) LF1L
2−1
f h(x) =

∂( ∂h
∂x)∗f
∂x

∗ F1

i.
(
∂h
∂x

)
∗f =

(
∂(C∆x)
∂∆x

)
∆A1∆x1 = ∆C1∆A1∆x1 =

[
0 0 0 ωb,mech 0 0

]
∆x1;

ii.
∂( ∂h

∂x)∗f
∂x

∗ F1 =
∂

{[
0 0 0 ωb,mech 0 0

]
∆x1

}
∂∆x1

∆A11 =

=
[
0 0 0 ωb,mech 0 0

]


0

0

− K1

2HtTn
K1

2H1Tn

0

0


̸= 0;

Thus: D11 = 2.
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2. ∆θ1 :

(a) ∂h
∂x2

= ∂(∆C1∆x1)
∂∆θ1

=

∂



[
0 1 0 0 0 0

]



∆θt

∆θ1

∆ωt

∆ω1

∆isd

∆isq




∂∆θ1

̸= 0

Thus: D12 = 0.

3. ∆x13 = ∆ωt :

(a) ...

... and so on and so forth for each state variable, for each subsystem.
In Table 3.1 the results of this analysis are listed.

Table 3.1: Relative degrees between the state variables and each subsystem’s output.
Dji is the relative degree between the MISO Subsystem j’s output and the state variable
i of state vector ∆xj , with j = 1, 2, 3 (subsystem number)

Relative Degrees

Subsystem 1 Subsystem 2 Subsystem 3

i = 1, ..., n1 i = 1, ..., n2 i = 1, ..., n3

∆x1 D1i ∆x2 D2i ∆x3 D3i

∆θt 2 ∆θt −∆θ1 2 ∆θt −∆θ1 2

∆θ1 0

∆ωt 3 ∆ωt 3 ∆ωt 3

∆ω1 1 ∆ω1 1 ∆ω1 1

∆isd 3 ∆isd 0 ∆isd 1

∆isq 2 ∆isq 1 ∆isq 0

As already mentioned, the estimates of the state variables showing the lowest relative
degree between each subsystem will be kept.
By looking at Table 3.1 the choice for some variables appears straightforward, that is:
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• D12 = 0 : the estimate of ∆θ1 will be taken from subsystem 1 observer;

• D24 = 0 : the estimate of ∆isd will be taken from subsystem 2 observer;

• D35 = 0 : the estimate of ∆isq will be taken from subsystem 3 observer;

For what concerns the other state variables:

• ∆ωt and ∆ω1 show the same relative degree in each subsystem: in this case, the
average of the three estimates is taken for each variable;

• ∆θt for subsystem 1 and (∆θt −∆θ1) for subsystems 2 and 3 show the same rel-
ative degree: in this case, ∆θ1 estimate, taken from subsystem 1, is summed to
(∆θt −∆θ1) expression to find two distinct estimates of ∆θt from subsystem 2
and 3; then, the average of the three estimates of ∆θt is taken.

Summarizing, a simple block scheme of the steps from the MISO subsystem decompo-
sition to the estimate reconstruction is provided in Figure 3.1.

Figure 3.1: simple block scheme of the steps taken from subsystem decomposition to
estimates reconstruction.
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The vector: [
∆̂θt ∆̂θ1 ∆̂ωt ∆̂ω1 ∆̂isd ∆̂isq

]
(3.22)

represent the final estimations of the linearized system’s state variables. Therefore,
each MISO subsystem’s observer, the design of which is carried out in the next chap-
ter, provides a set of estimates that contributes to getting the final state variables’ esti-
mations, which are obtained by processing all the subsystems’ estimates based on the
above analysis.

3.1.4. NLESO Definition

Subsystems transformation

In this section a NLESO is designed for each of the subsystems defined in Section 3.1.2.
As discussed in Section 1.3.3, in order to apply an ESO the system must be in integral
chain form: to do this, a state variable transformation must be performed for each
subsystem. However, the transformation follows several steps that remain the same in
each case: for this reason, first the procedure is presented for a general MISO system
and then the resultant subsystems are shown.
Let us introduce again the general linear system (1.13), considering in this case D = 0

and q = 1, that is:
ẋ = Ax+Bu

y = Cx

where A ∈ Rnxn, B ∈ Rnxp, C ∈ R1xn.
For this system, a transformation matrix T ∈ Rnxn can be defined [6] such that:

z = Tx (3.23)

where z ∈ Rn is the vector of the new state variables and provided that T is invertible.
The new (or transformed) system will have the form:

ż = Azz+Bzu

y = Czz
(3.24)

with:

Az = TAT−1 ; Bz = TB ; Cz = CT−1 .

The following steps to build T are made:
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1. find the system transfer function matrix between the p inputs and the q = 1 out-
put:

• W(s) = C (sI−A)−1B ;

• W(s) ∈ Rqxp ;

2. find the minimum polynomial qW (s) of W(s) [6]:

• first verify that W(s) is a proper rational matrix, so that each element of
W(s) is a rational function of s, where the degree of the numerator is lower
than the degree of the denominator;

• the minimum polynomial qW (s) is defined as the least common multiple of
the denominators of the elements of W(s);

– Example:

Wexample(s) =

[
1
s+1
s+2

(s+1)(s+5)

]
→ qWexample(s) = s+ 1

• qW (s) will be in the form: qW (s) = sm̄ +
m̄−1∑
i=0

γis
i

3. find Az, the realization of the observable canonical form [6]:

• in this case m̄ = n, being q = 1;

• qW (s) = sn +
n−1∑
i=0

γis
i;

•

Az =



0 1 0 0 ... 0

0 0 1 0 ... 0

... .... ... ... ... ...

0 0 0 0 ... 1

−γ0 −γ1 −γ2 −γ3 ... −γn−1


4. find Bz:

• define:

– W0(s) = W(s);

– W0 = lim
s→+∞

W0(s);
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• define, for 1 ≤ h ≤ n:

– Wh(s) = s
(
Wh−1(s)−Wh−1

)
;

– Wh = lim
s→+∞

Wh(s);

• Bz can be built:

Bz =


W1

W2

...

Wn

 ∈ Rnxp

5. build matrix T starting from the controllability matrices of the original and of the
transformed systems, using only one column of B and Bz respectively:

• build controllability matrix P for the original system using only one column
of B;

– B =
[
B1 B2 ... Bp

]
;

– P =
[
B1 AB1 A2B1 ... An−1B1

]
;

• build controllability matrix Pz for the transformed system using only one
column of Bz;

– Bz =
[
Bz1 Bz2 ... Bzp

]
;

– Pz =
[
Bz1 AzBz1 Az

2Bz1 ... An−1Bz1

]
;

• T = PzP
−1;

• check that: detT ̸= 0:

– if detT = 0, change B and Bz column selection.

6. calculate: Cz = CT−1;

For a tidier representation, the three subsystems’ matrices are listed in A.3. The three
transformed MISO subsystems take the form:

zi = Azizi +Bzi∆u

yi = Czizi
| i = 1, 2, 3

NLESO Design

After the transformation performed in the previous section, considering:



48 3| Non-Linear Extended State Observer

• number of inputs: p = 2;

• Bz =


Bz11 Bz12

Bz21 Bz22

... ...

Bzn1 Bzn2

;

each MISO subsystem has now the form:

ż1 = z2 +Bz11u1 +Bz12u2;

ż2 = z3 +Bz21u1 +Bz22u2;

...

żn = f (z1, z2, ..., zn) +Bzn1u1 +Bzn2u2;

y = z1

(3.25)

where n = n1 = 6 for subsystem 1 and n = n2 = n3 = 5 for subsystem 2 and 3. Defining
the extended state:

f(z1, z2, ..., zn) = zn+1

the extended-state system takes the following form:

ż1 = z2 +Bz11u1 +Bz12u2;

ż2 = z3 +Bz21u1 +Bz22u2;

...

żn = zn+1 +Bzn1u1 +Bzn2u2;

˙zn+1 = h;

y = z1

(3.26)

For this type of system, the NLESO is defined as:

˙̂z1 = ẑ2 +Bz11u1 +Bz12u2 − β1g(ŷ − y);
˙̂z2 = ẑ3 +Bz11u1 +Bz12u2 − β2g(ŷ − y);

...
˙̂zn = ẑn+1 +Bz11u1 +Bz12u2 − βng(ŷ − y);

˙̂zn+1 = ĥ− g(ŷ − y);

ŷ = ẑ1

(3.27)

where the ẑi represent the state estimations and βi are the observer gain coefficients,
with i = 1, ..., n, n+ 1.
Following the definition of observation error from (1.14), the observer correction term
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is chosen as the product between the β coefficients and the nonlinear function g():

g (ŷ − y) = g (ẑ1 − z1) = g (e1) = fal(α, δ, e1) =

{
e1
δ1−α for |e1| ≤ δ

|e1|α sign(e1) for |e1| > δ
| α, δ ∈ R+

(3.28)

The choice of α and δ is completely arbitrary: since good NLESO performances were
found in [27] choosing:

• α = 0.65;

• δ = 0.9;

these values are kept; the fal-function plot can be seen in Figure 3.2.

Figure 3.2: Plot of the fal-function, with α = 0.65 and δ = 0.9

The observation error dynamic is represented by:

ė1 = e2 − β1g (e1)

ė2 = e3 − β2g (e1)

ėn = en+1 − βng (e1)

˙en+1 = (ĥ− h)− βn+1g (e1)

ŷ − y = e1

(3.29)

Clearly, all the βi | i = 1, ..., n, n+1 coefficients must be identified in order to get a sta-
ble observer, which guarantees an asymptotic decay of the observation error towards
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zero. In order to accomplish this, let us start by introducing:

Γ(e1) = g(e1)− e1 (3.30)

whose trend can be seen in Figure 3.3.

Figure 3.3: Plot of Γ(e1) = g(e1)− e1

Adding and subtracting βie1 accordingly in each equation of (3.29), the following sys-
tem can be found: 

ė1 = e2 − β1e1 + β1 (−Γ (e1))

ė2 = e3 − β2e1 + β2 (−Γ (e1))

. . .

ėn = en+1 − βne1 + βn (−Γ (e1))

en+1 = (ĥ− h)− βn+1e1 + βn+1 (−Γ (e1))

ŷ − y = e1

(3.31)

Considering now:
ue = −Γ(e1)
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and substituting it in (3.31), the system in matrix form can be seen as1:


ė1

ė2

. . .

ėn

˙en+1

 =


−β1 1 · 0 0

−β2 0 · 0 0

− · · · ·
−βn 0 · 1 0

−βn+1 0 · 0 0


︸ ︷︷ ︸

[Ae]


e1

e2

. . .

en

en+1

+


β1

β2

. . .

βn

βn+1


︸ ︷︷ ︸

[Be]

ue

[ŷ − y] =
[
1 0 . . . 0 0

]
︸ ︷︷ ︸

[Ce]


e1

e2

· · ·
en

en+1



(3.32)

Before moving on, let us introduce some new concept.
Considering the generic linear system of the form:

ẋ = Ax+Bu

y = Cx+Du

where A ∈ Rnxn, B ∈ Rnxp, C ∈ Rqxn and D ∈ Rqxp, the pair (A,B) is said to be
controllable if [1]:

rank (Mc) = n (3.33)

where Mc is the controllability matrix defined as:

MC =
[
B AB A2B . . . An−1B

]
(3.34)

A generic function f : R → R is said to satisfy a Lipschitz condition if there exist a
scalar γ ∈ R such that:

|f(x1)−f(x2)|
|x1−x2| ≤ γ ∀x1, x2 ∈ R , x1 ̸= x2 (3.35)

1we assume that the extended state zn+1 rate of change h is bounded, and so its observation error
ĥ−h: hence, its contribute does not affect the system’s stability and it will be neglected in the following.
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Moreover, function f satisfies a sector condition [a, b] for a finite domain X ⊂ R if there
exist a, b ∈ R | a < b such that:

[f(x)− a ∗ x] [b ∗ x− f(x)] ≥ 0 ∀x ∈ X (3.36)

Now, if:

• Γ(e1) is a Lipschitz nonlinearity that satisfies a sector condition;

• the β-coefficients for each MISO subsystem’s observer (see (3.32)) are chosen such
that:

– (Ae,Be) controllable:

– (Ce,Ae) observable;

the observation error system is a Lur’e problem and then the absolute stability can be
guaranteed applying the Circle Criterion2 [12].
The choice of the β-coefficients can be done by following the next steps (please refer to
Appendix A.4 for each observation error system’s matrices):

1. find the β-coefficients such that Ae is a Hurwitz matrix3, thus solving:

• det (sI− Ae) = (s+ α0)
n+1;

• α0 = 10 ∗ ωcI | ωcI = control current loop cut-off angular frequency =

30
[
rad
s

]
;

– the poles of each observation error system can be chosen ten times faster
than the current loop cut-off frequency (see Section 2.1): in this way, the
design of the observer would be suitable for future implementation in
the system control loop 4.

2see more in Appendix B.2
3a matrix is said to be Hurwitz if all its eigenvalues have negative real part.
4it must be noticed how, following all the design steps, the choice of β-coefficients does not depend

on the specific subsystem’s matrices’ values; this is a peculiarity of this observer.
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• Subsystem 1 : det (sI− Ae) = (s+ α0)
n+1 | n = n1 = 6:



β1

β2

β3

β4

β5

β6

β7


=



2, 10 ∗ 103

1, 89 ∗ 106

9, 45 ∗ 108

2, 83 ∗ 1011

5, 10 ∗ 1013

5, 10 ∗ 1015

2, 19 ∗ 1017


(3.37)

• Subsystem 2 and 3 : det (sI− Ae) = (s+ α0)
n+1 | n = n2 = n3 = 5:

β1

β2

β3

β4

β5

β6


=



1, 80 ∗ 103

1, 35 ∗ 106

5, 40 ∗ 108

1, 21 ∗ 1011

1, 46 ∗ 1013

7, 29 ∗ 1014


(3.38)

2. for each subsystem, check that:

• (Ae, Be) controllable:

– Subsystem 1:

MCe1 =
[
Be1 Ae1Be1 Ae1

2Be1 . . . Ae1
(n1+1)−1Be1

]
→ rank(MCe1) = 7 = n1 + 1

– Subsystem 2 and 3:

MCe2 =
[
Be2 Ae2Be2 Ae2

2Be2 . . . Ae2
(n2+1)−1Be2

]
= MCe3

→ rank(MCe2) = rank(MCe3) = 6 = n2 + 1 = n3 + 1

• (Ce, Ae) observable:
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– Subsystem 1:

MOe1 =


Ce1

Ce1Ae1

Ce1Ae1
2

...

Ce1Ae1
(n1+1)−1


→ rank(MOe1) = 7 = n1 + 1

– Subsystem 2 and 3:

MOe2 =


Ce1

Ce1Ae1

Ce1Ae1
2

...

Ce1Ae1
(n2+1)−1

 = MOe3

→ rank(MOe2) = rank(MOe3) = 6 = n2 + 1 = n3 + 1;

3. Γ (e1) is defined as:

Γ (e1) =

{
e1
δ1−α − e1 for |e1| ≤ δ

|e1|α sign(e1)− e1 for |e1| > δ

Its derivative can be defined as:

dΓ (e1)

d e1
=


1

δ1−α − 1 for |e1| ≤ δ

αeα−1
1 − 1 for |e1| > δ and e1 > 0

α|e1|α−1 sign(e1)− 1 for |e1| > δ and e1 < 0

Hence, its derivative is always bounded with α = 0.65 and δ = 0.9; a constant γ
satisfying the Lipschitz condition can always be found.

4. find a, b ∈ R such that: Γ (e1) satisfies the sector condition [a, b] | ∀e1 ∈ E ⊂ R
(finite domain) [12]:

• based on the Γ-function: Γ(e1) = g(e1)−e1 (see Figure 3.3), with g(e1) defined
in (3.28), the upper bound b of the sector condition can be chosen through
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the following:

b =
dΓ (e1)

de1

∣∣∣∣
e1=0

=
1

δ1−α

∣∣∣∣
e1=0

= 0.038 ;

In fact, Γ (e1) crosses the line b ∗ e1 only in the origin, and it lies below the
latter one for e1 > 0 and above it for e1 < 0.

• a chosen such that the circle criterion is satisfied (for a finite domain):

– the circle defined as the disk D whose diameter is the segment connect-
ing the real points

(
− 1
a
;−1

b

)
must contain the transfer function of system

(3.31) |Gei(jω)| with i = 1, 2, 3 , in the Nyquist plane;

* |Gei(jω)| = |Cei (sI−Aei)
−1Bei|

– a found through a graphical trial and error approach, in this case valid
for all the subsystems: a = −0.65;

Figure 3.4: Sector condition for Γ(e1): as it can be seen, the function lies inside the
region defined by ae1 and be1 curves.
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Figure 3.5: Circle criterion applied to subsystem 1, for which, based on the previous
selection of the β coefficients, a and b parameters, it results satisfied.

Figure 3.6: Circle criterion applied to subsystem 2 and 3, for which, based on the pre-
vious selection of the β coefficients, a and b parameters, it results satisfied.

5. the absolute stability is guaranteed only for e1 ∈ E (finite domain), indeed the
sector condition [−0.65, 0.038] for the nonlinear function Γ (e1) is satisfied only
locally:

• Γ(e1) lies inside the sector defined by the two lines a ∗ e1 and b ∗ e1 only for
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a limited value of e1;

• E = [−emax ; emax];

• emax is the maximum value of e1 > 0 for which Γ(e1) > a ∗ e1:

– a ∗ emax = Γ(emax) = g(emax)− emax → emax = 20.07

– E = [−20.07 ; 20.07]

Figure 3.7: Sector condition for Γ(e1): emax is highlighted.

From these last steps, it is clear that the absolute stability depends mainly on the choice
of the β-coefficients and it is guaranteed only for a limited magnitude of e1: thus, the
p.u. transformation performed in Section 2.2.2 is beneficial also for the observer stabil-
ity, keeping a low magnitude value of the state variables and so of the related observa-
tion errors.
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3.2. NLESO Simulation

3.2.1. Simulation setup

The main objective of the simulation is to assess the estimation performance of the state
observer when the mechanical system is subject to torsional vibrations.
The simulation model is divided into several blocks and replicates the control system
of a WECS; the model is implemented in a Simulink environment.
Being the aim mainly to validate the state observer’s performance, several simplifi-
cations are adopted. Starting from the converter’s model, it is represented with a
unitary gain time delay block assuming a converter operation at a constant switch-
ing frequency of fsw = 1000 [Hz]: therefore, the stator voltage output coming from
the control system is assumed to be equal to the actual stator voltage applied to the
machine, shifted by a small time delay. This simplification represents an ideal condi-
tion where no undesirable harmonics are injected by the converter. Hence, the stator
voltage harmonics have to be added manually to the control output, through a volt-
age harmonic injection, in order to induce a resonant condition and properly test the
observer’s performance; a simple block scheme of this action can be seen in Figure 3.8.

Figure 3.8: simple block scheme of the voltage harmonic ∆vh added to the output of
the ideal inverter vs.

For this reason, the simulation analysis is divided into three steps:

1. operation in ideal conditions, i.e. no voltage harmonic injection;

2. operation in perturbed conditions through the injection of a voltage harmonic at
a frequency fdist far from the system’s natural frequency;

3. operation in perturbed conditions through the injection of a voltage harmonic at
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a frequency fres that excites the system’s natural frequency;

In this way, it is possible to evaluate the accuracy of the state estimation and analyze
the influence of the resonant condition on the observer operation at steady state.
Recalling the analysis carried out in Section 2.2.3, considering a PWM VSC with mf =

33, the following voltage harmonic orders are able to generate a torque harmonic ex-
citing the resonance frequency in the operating region of the system:

• hv = 31, 29 → hT = 30;

• hv = 37, 35 → hT = 36;

• hv = 67, 65 → hT = 66.

Based on these results, it was decided to inject one voltage component of order hv =

35 and evaluate the system behavior at steady state with a rotor mechanical angular
speed:

ω∗
1 = ωref = 9.69 [rpm]

In this way, a torque harmonic component exciting the system’s natural frequency is
induced and the observer’s performance in this condition can be evaluated.
Regarding the voltage harmonic at a frequency fdist far from the system’s natural fre-
quency, the voltage harmonic of order hv = 65 that creates a torque component of order
hT = 66 was injected, which at the simulation reference angular speed ωref correspond
to a frequency of:

fdist = hT
p ωref
4π

= 551.7 [Hz] > fres = 302.45 [Hz]

Considering that Vn,phase = 435[V ] for the PMSG under consideration, to properly ex-
cite the system a magnitude V35 = V65 = 300 [V ] was selected. This choice is arbi-
trary and it provides a good mechanical vibrations’ excitation to the system, needed to
properly assess the observer dynamics. Finally, it must be noticed that the direct and
quadrature component of the voltage harmonic injected represent respectively inputs
∆vsd and ∆vsq of each subsystem.
Each NLESO needs for its operation the related output ∆y, which are:

• ∆θ1 for Subsystem 1;

• ∆isd for Subsystem 2;

• ∆isq for Subsystem 3.

These last quantities are the oscillating term of the homonymous measured state vari-
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ables. In order to extract their values during the simulation, an High-Pass (HP) Filter
is designed and applied to the measured quantities, so to:

• θ1;

• isd;

• isq.

A simple block scheme of the filter can be seen in Figure 3.9; the design of the filter can
be found in Appendix A.5.

Figure 3.9: simple block scheme of the High-Pass (HP) Filter applied to each measured
state variables in order to extract their oscillating term information.

The simulation is initialized with the system rotating at ωref , providing all the initial
values to the system state variables and Proportional-Integral (PI) regulator integral
blocks to guarantee a steady state operation from the beginning.

3.2.2. Simulation Results

The scheme comprising the ideal inverter, the voltage harmonic injection, the PMSG
and the wind turbine is shown in Figure 3.10.
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Figure 3.10: overall setup; starting from the left: ideal converter, voltage harmonic
injection, PMSG directly coupled with the wind turbine.

The turbine and PMSG rotor angular speed trends and the reference ωref are displayed
in Figure 3.11.

Figure 3.11: Simulation speeds’ trends

As can be seen, the simulation is divided into three parts (1), (2), (3) characterized by
three different voltage harmonic injections: the voltage harmonic at fdist is injected
between seconds 4 and 8 of the simulation, while the voltage harmonic leading to
the mechanical resonant condition is present between seconds 8 and 12. The 3-phase
stator voltage waveforms in each simulation part before and after the voltage harmonic
injection can be seen in Figure 3.12.
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Figure 3.12: stator voltage waveforms before and after the voltage harmonic injection
in simulation part (1) (top), (2) (middle), and (3) (bottom)

The distortion in the 3-phase voltage waveforms vabc at the output of the ideal inverter
that can be seen in (3) and little in (2) are due to the action of the current control loop.
In fact, the current PI regulators’ cut-off frequency is set at ωcI = 30[ rad

s
], which is much

lower than the harmonic injections’ angular frequencies, located at:

• (2): fdist = 551.70 [Hz] → ωdist = 2πfdist = 3466.4 [ rad
s
];

• (3): fres = 302.45 [Hz] → ωres = 2πfres = 1900.3 [ rad
s
].

Therefore, the current control loops’ response to the voltage harmonic injections is lim-
ited in magnitude, i.e. it is not able to damp the action of the disturbance ∆vh,abc, but it
is not null. The voltage distortion is more evident for (3) since ωres is lower than ωdist

and so closer to ωcI .
The state observer’s estimation accuracy for the generic system state variable xi will be
analyzed through the following plots:

• a set of plots showing xi and its estimate x̂i at the beginning of each simulation
phase ((1), (2), and (3));

• a set of plots showing xi, x̂i, and the observation error ei = xi− x̂i 5 at steady-state
operation in each simulation phase ((1), (2), and (3));

5from a results’ analysis point of view, this definition has the same meaning of ei = x̂i − xi used
previously
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These two sets of plots are sufficient to evaluate the state observers’ performance: in
fact, the generic state variable’s estimate x̂i shows an overshoot when facing a change
of operating conditions, which is the case of the simulation beginning or change of
∆vabc , and then it tends to a steady-state observation error xi − x̂i throughout the
simulation.
Starting from the angular position ∆θt and ∆θ1, the plots are shown in Figure 3.13 and
3.14.
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Figure 3.13: ∆θt true value and estimate during the initial overshoot at the beginning
of each simulation phase ((1)-(2)-(3)) (top); ∆θt true value and estimate at steady state
in each simulation phase (middle); observation error e1 = ∆θt − ∆̂θt at steady state in
each simulation phase (bottom)
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Figure 3.14: ∆θ1 true value and estimate during the initial overshoot at the beginning
of each simulation phase ((1)-(2)-(3)) (top); ∆θ1 true value and estimate at steady state
in each simulation phase (middle); observation error e2 = ∆θ1 − ∆̂θ1 at steady state in
each simulation phase (bottom)

The estimation for ∆θt provided by the NLESO is characterized by a relatively big
estimation error: the estimated variable has strong oscillations which are not present
in the real value. On the other hand, the estimation of ∆θ1 appears to be more accurate,
probably because this state variable is Subsystem 1’s observer input. However, during
mechanical resonance condition, so in simulation phase (3), the phase shift between
∆θ1 and its estimate increases, leading to a greater observation error. Both ∆θt and
∆θ1 show a null observation error at simulation phase (1), which is expected since no
voltage harmonic injection is present. Of course, this last statement is valid for the
other state variables too.
The estimation of the angular positions allows calculating the shaft torque’s oscillating
component ∆Tsh, defined as:

∆Tsh = K1(∆θt −∆θ1) (3.39)

This quantity represents the oscillating part of the torque arising between the two ro-
tating masses, i.e. the wind turbine and the PMSG rotor, due to the difference between
θt and θ1, which represents the relative torsional motion, as explained in Section 2.2.1.
By using the angular positions’ estimates, ∆̂Tsh can be defined as:

∆̂Tsh = K1(∆̂θt − ∆̂θ1) (3.40)
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The graphs related to the shaft torque oscillating component and its estimate can be
found in Figure 3.15.
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Figure 3.15: ∆Tsh true value and estimate during the initial overshoot at the beginning
of each simulation phase ((1)-(2)-(3)) (top); ∆Tsh true value and estimate at steady state
in each simulation phase (middle); observation error ∆Tsh−∆̂Tsh at steady state in each
simulation phase (bottom)

As can be seen, the inaccuracy in the estimation of ∆θt and ∆θ1 leads to a big error in
the estimation of the shaft torque. In simulation phase (2), T̂sh shows a big phase shift
with respect to Tsh, qualitatively of 180 [deg], while it does not in (3). Moreover, the
estimation error’s magnitude in both parts of the simulation is very high and entails a
misleading shaft torque estimation.
For what concerns the angular speeds ∆ωt and ∆ω1, their graphs are shown in Fig-
ure 3.16 and 3.17.
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Figure 3.16: ∆ωt true value and estimate during the initial overshoot at the beginning
of each simulation phase ((1)-(2)-(3)) (top); ∆ωt true value and estimate at steady state
in each simulation phase (middle); observation error e3 = ∆ωt − ∆̂ωt at steady state in
each simulation phase (bottom)
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Figure 3.17: ∆ω1 true value and estimate during the initial overshoot at the beginning
of each simulation phase ((1)-(2)-(3)) (top); ∆ω1 true value and estimate at steady state
in each simulation phase (middle); observation error e4 = ∆ω1 − ∆̂ω1 at steady state in
each simulation phase (bottom)

Both estimations are characterized by a high level of inaccuracy. The bad estimation
of ∆θt is reflected in ∆ωt, which is its derivative. Also from a mechanical point of
view, the result is not consistent, since the wind turbine’s torsional vibrations should
be limited by its high inertia. In simulation phase (2), ∆̂ω1 overestimates ∆ω1 and it is
almost out of phase with respect to it; in (3), the phase shift decreases but the difference
in magnitude is still important.
The graphs related to the oscillating term of the stator currents direct and quadrature
components, i.e. ∆isd and ∆isq, are presented in Figures 3.18 and 3.19.
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Figure 3.18: ∆isd true value and estimate during the initial overshoot at the beginning
of each simulation phase ((1)-(2)-(3)) (top); ∆isd true value and estimate at steady state
in each simulation phase (middle); observation error e5 = ∆isd− ∆̂isd at steady state in
each simulation phase (bottom)
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Figure 3.19: ∆isq true value and estimate during the initial overshoot at the beginning
of each simulation phase ((1)-(2)-(3)) (top); ∆isq true value and estimate at steady state
in each simulation phase (middle); observation error e6 = ∆isq − ∆̂isq at steady state in
each simulation phase (bottom)
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In this case, the observer provides accurate estimates, both in terms of observation er-
ror and phase shift between the true value and its estimate: indeed, as in ∆θ1 case, these
two state variables represent Subsystem 2 and 3’s observers’ inputs. In each simulation
phase the initial overshoot is limited for both ∆isd and ∆isq, and the observation error
tends quickly to a steady-state value.
Some final considerations can be made about the NLESO. First of all, the overall state
observer is stable: even under strong perturbations, as in mechanical resonance con-
dition, each observation error reaches a bounded steady state oscillating value around
zero. Moreover, the NLESO provides the most accurate estimates for the state vari-
ables that are also the subsystems’ observers’ inputs, so for ∆θ1, ∆isd and ∆isq. On the
other hand, the NLESO’s estimation performance is highly influenced by the presence
of disturbances, as it is shown by the high observation errors when a voltage harmonic
is injected; the estimation inaccuracy is higher in the case of mechanical resonance con-
dition. From a state observer design point of view, the analytical derivation represents
another disadvantage, being quite cumbersome and working on a linearized model of
the system only. In addition, the computational burden required to estimate several
state variables for three different subsystems can be considered another limiting factor.
Due to the above consideration, in the next chapter another state observer type is ana-
lyzed and its performance is evaluated and compared to the NLESO.
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4| Luenberger-based Lipschitz
Observer

In this chapter, the design of a Luenberger-based state observer for the system already
defined is performed. After an initial definition of the observer’s main characteristics,
the main results from the simulation model will be discussed and compared to the
results obtained with the NLESO in Chapter 3. This observer deals directly with the
nonlinear system, allowing an easier design compared to the NLESO case, where a
small-variation analysis is needed.

4.1. State Observer definition

4.1.1. System definition

Recalling (2.19), the 2-DOF system is represented by:

θ̇t = ωb,mechωt

θ̇1 = ωb,mechω1

ω̇t = −B1ωb,mech

2HtTn
(ωt − ω1)− K1

2HtTn
(θt − θ1) +

Tt
2HtTn

ω̇1 =
B1ωb,mech

2H1Tn
(ωt − ω1) +

K1

2H1Tn
(θt − θ1)− Telm

2H1Tn

˙isd = −rs ωb

ls
isd + ωbisqω1 +

ωb

ls
vsd

˙isq = −rs ωb

ls
isq − ωbisdω1 − ωb

ls
ψPMω1 +

ωb

ls
vsq

y1 = θ1

y2 = isd

y3 = isq

(4.1)
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Neglecting the damping torque contribution and grouping all the non-linear terms
inside a unique vector Φ(x, t) ∈ Rn, the system can be expressed in matrix form as:

θ̇t

θ̇1

ω̇t

ω̇1

˙isd
˙isq


︸ ︷︷ ︸

ẋ

=



0 0 ωb,mech 0 0 0

0 0 0 ωb,mech 0 0

− K1

2HtTn
K1

2HtTn
0 0 0 0

K1

2H1Tn
− K1

2H1Tn
0 0 0 −np(Ibψb)ψPM

2H1Tn

0 0 0 0 −rs ωb

ls
0

0 0 0 −ωb

ls
ψPM 0 −rs ωb

ls


︸ ︷︷ ︸

A



θt

θ1

ωt

ω1

isd

isq


︸ ︷︷ ︸

x

+

+



0

0

0

0

ωbisqω1

−ωbisdω1


︸ ︷︷ ︸

Φ(x,t)

+



0 0 0

0 0 0
1

2HtTn
0 0

0 0 0

0 ωb

ls
0

0 0 ωb

ls


︸ ︷︷ ︸

B

 Tt

vsd

vsq


︸ ︷︷ ︸

u

 y1

y2

y3


︸ ︷︷ ︸

y

=

 0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


︸ ︷︷ ︸

C



θt

θ1

ωt

ω1

isd

isq


︸ ︷︷ ︸

x

(4.2)

where x ∈ Rn, y ∈ Rq, A ∈ Rnxn, B ∈ Rnxp and C ∈ Rqxn, with n = 6, p = 3 and q = 3.
Now, Φ(x, t) : Rn → Rn is a continuous nonlinear function that satisfies the Lipschitz
condition for a given subset X ⊂ Rn:

||Φ(x1, t)−Φ(x2, t)|| ≤ γ ||x1 − x2|| | ∀x1,x2 ∈ X , ∀t ∈ R (4.3)

for some Lipschitz constant γ > 0 |γ ∈ R. Indeed, ω1, isd, and isq are bounded variables,
i.e. their values do not go infinite.
In [15] a method to design a Luenberger-based observer for this type of nonlinear sys-
tem is proposed.
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Let us consider the system defined in (4.2) in the form:

ẋ =Ax+Φ(x, t) +Bu

y =Cx
(4.4)

under the hypothesis that:

• Φ(x, t) Lipschitz function with Lipschitz constant γ;

• the pair (C,A) is observable.

For this system, a Luenberger state observer can be defined as1:

˙̂x = Ax̂+Bu+Φ(x̂, t) + LC (x− x̂)

ŷ = Cx̂
(4.5)

where L ∈ Rnxq is the observer gain matrix. The observation error dynamics can be
defined by:

ė = ẋ− ˙̂x = Ax+Φ(x, t) +Bu− [Ax̂+Bu+Φ(x̂, t) + LC (x− x̂)] (4.6)

that results in:

ė = (A− LC)︸ ︷︷ ︸
Ae

e+ [Φ(x, t)−Φ(x̂, t)]︸ ︷︷ ︸
Φe(x̂,x,t)

= Aee+Φe(x̂,x, t) (4.7)

Based on [15], L can be computed as:

L = P−1CT

where P = PT > 0 |P ∈ Rnxn is obtained solving the following Lyapunov equation:

[
AT + βI

]
P+P

[
AT + βI

]T
= −2CTC

In this way, L assigns all the eigenvalues of Ae = A − LC in the left half plane with
real part equal to −β, where the scalar β satisfies:

β > max

{
|Re [λ (A)]|max , γ

λmax (P)

λmin (P)

}
1the formulation, in this case, involves e = x − x̂, and not e = x̂ − x as it is defined in Section 1.3;

however, this is just an arbitrary choice that has to be set at the beginning and then respected throughout
the analysis. Here, the first definition is used to be consistent with the derivation found in [15]
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where |Re [λ (A)]|max represents the maximum real part of the eigenvalues of A, γ is
the Lipschitz constant, and λmax (P) and λmin (P) refer to the maximum and minimum
eigenvalues of P. However, a remark in [15] claims that for sparse nonlinear functions
the latter inequality is relaxed to β > γ: being Φ(x, t) sparse, this simplified inequality
will be used in the following. Eventually, this calculation of L guarantees that the esti-
mation error e = x− x̂ converges asymptotically to zero [15].
Basically, the method permits the calculation of L such that the linear part of the ob-
server is stable, guaranteed by the direct pole placement through the parameter β that
becomes the magnitude of the negative real part of the eigenvalues of Ae. Thus, ne-
glecting the presence of the nonlinear terms, selecting a high β implies a fast decay of
the observation error e → 0. However, the observer gain matrix L parameters’ magni-
tude increases as β increases, which could lead to a chattering phenomenon at steady
state of the observer estimates.
Summarizing, the following passages are taken to calculate the observer gain matrix L

for (4.5):

1. check that the pair (C,A) is observable:

•

MO =


C

CA

CA2

...

CAn−1

 | n = 6 ;

• ρ = rank (MO) = 6 = n → the pair (C,A) is observable.

2. find the Lipschitz constant γ for the non-linear function Φ(x̂, t) [12]:
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• find the Jacobian J =
[
∂Φ
∂x

]
:

J =

[
∂Φ

∂x

]
=



∂Φ1

∂x1

∂Φ1

∂x2
... ... ... ∂Φ1

∂xn
∂Φ2

∂x1
0 0 0 0 0

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...
∂Φn

∂x1
... ... ... ... ∂Φn

∂xn


=

=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 ωbisq 0 ωbω1

0 0 0 −ωbisd −ωbω1 0



(4.8)

• find the norm of J:

||J|| =
∣∣∣∣∣∣∣∣∂Φ∂x

∣∣∣∣∣∣∣∣ = max
1≤i≤n

n∑
j=1

|Jij| | Jij = element of J in row i and column j

– ||J||∞ =
∣∣∣∣∂Φ
∂x

∣∣∣∣
∞ = max {|ωbisq|+ |ωbω1| , |ωbisd|+ |ωbω1|}

– The state variables can be considered bounded, in fact:

* isq,max =
Tn

npψPM (ψbIb)
= 1.07 [pu];

* isd,max ≈ 1 [pu];

* ω1,max = ωb,mech = 1 [pu]

– ||J||∞ =
∣∣∣∣∂Φ
∂x

∣∣∣∣
∞ =

= max {|ωbisq,max|+ |ωbω1,max| , |ωbisd,max|+ |ωbω1,max|} = 189.80[ rad
s
];

• γ = 189.80.

3. choose β > γ:

• β = 190 [ rad
s
].

4. define the estimation error system e = x− x̂:

• ˙̂x = Ax̂+Bu+Φ(x̂, t) + LC (x− x̂);

• ẋ = Ax+Φ(x, t) +Bu;
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• ė = (A− LC)︸ ︷︷ ︸
Ae

e+ [Φ(x, t)−Φ(x̂, t)]︸ ︷︷ ︸
Φe(x̂,x,t)

= Aee+Φe(x̂,x, t);

5. Φe(x̂,x, t) =



0

0

0

0

ωbisqω1 − ωbîsqω̂1

−ωbisdω1 + ωbîsdω̂1


;

6. solve the Lyapunov
[
AT + βI

]
P+P

[
AT + βI

]T
= −2CTC:

• use the Matlab function lyap();

•

P =



48.91 −48.91 −0.16 −0.0065 0 −0.41

−48.91 48.91 0.16 0.0065 0 0.41

−0.16 0.16 0.0015 0 0 0.0020

−0.0065 0.0065 0 0 0 0.0001

0 0 0 0 0.0054 0

−0.41 0.41 0.0020 0.0001 0 0.0054


7. calculate L = P−1CT .

Eventually, the observer gain matrix L is found to be:

L =



190.03 0 −2.65

190.09 0 −7.01

5.97 0 −488.12

36.85 0 −2990.41

0 186.62 0

−7.01 0 756.54


(4.9)

In this way a Luenberger-based Lipschitz Observer is defined for (4.2). Differently
from the NLESO, in this case the observer deals directly with the nonlinear system,
hence no linearization and small-variations analysis is required: this represents a good
advantage, resulting in a much simpler observer design.
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4.1.2. Observer BIBO stability

Although [15] claims that, to guarantee the observer stability, condition:

β > max

{
|Re [λ (A)]|max , γ

λmax (P)

λmin (P)

}
can be reduced to:

β > γ

in case of sparse nonlinear functions, it does not provide any satisfactory demonstra-
tion to prove it. Moreover, the first condition is not satisfied for β = 190 [ rad

s
], leaving

some space to debate the simpler proposed condition’s effectiveness. For this reason,
a deeper analysis of the observation error dynamics is needed to assess whether the
system is at least Bounded Input Bounded Output (BIBO) stable, so to ensure that the
response of the observation error system to the nonlinear term Φe(x̂,x, t) is limited, i.e.
does not go infinite. In this way, it is possible to check if the observer has an unstable
behavior due to the nonlinear terms impact and, in addition to the claim in [15], to
provide a better overview of the observer dynamics.
Let us consider again the observation error system:

ė = Aee+Φe(x̂,x, t)

By looking at the nonlinear term Φe(x̂,x, t) as an input disturbance, it can be seen as:

Φe(x̂,x, t) =



0

0

0

0

ωbisqω1 − ωbîsqω̂1

−ωbisdω1 + ωbîsdω̂1


= BΦeuΦe =



0 0

0 0

0 0

0 0

ωb 0

0 ωb


[

isqω1 − îsqω̂1

−isdω1 + îsdω̂1

]

(4.10)
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Evaluating the observation error transfer function, defined as:

Ge(s) =
e(s)

uΦe(s)
= (sI−Ae)

−1BΦe =



Ge,11 Ge,12

Ge,21 Ge,22

Ge,31 Ge,32

Ge,41 Ge,42

Ge,51 Ge,52

Ge,61 Ge,62


(4.11)

which results in:

Ge(s) =



Ge,11 Ge,12

Ge,21 Ge,22

Ge,31 Ge,32

Ge,41 Ge,42

Ge,51 Ge,52

Ge,61 Ge,62


=



0 Ge,12

0 Ge,22

0 Ge,32

0 Ge,42

Ge,51 0

0 Ge,62


(4.12)

The complete expression of Ge(s) can be found running the Matlab script in Ap-
pendix A.6. In Figure 4.1, the plot of Ge(s) in the frequency domain is shown.

Figure 4.1: Bode plot (magnitude) of the observation error transfer function Ge(s)

Now, recalling the BIBO stability property of a system [6], the observation error dy-
namics system is BIBO stable if a bounded input uΦe leads to a bounded output ye = e.
Considering that:
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• the input uΦe consists of the subtraction of the same Lipschitz function operating
with two different variables, i.e. x and x̂, which belong to a bounded domain
given by the operating region of the system;

• limx̂→x uΦe = limx̂→x Φe (x, x̂) → 0;

• the magnitude of each element of Ge(s) is bounded in the frequency domain;

the observation error dynamics system can be assumed BIBO stable.
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4.2. Lipschitz system’s state observer simulation

4.2.1. Simulation setup

To properly compare the two state observers defined in this thesis, the two simulation
setups are kept the same: in this way, each observer is tested with the same operating
conditions, allowing an easier analysis and performance comparison. Therefore, the
setup defined in Section 3.2.1 is still valid in this chapter.
Now the state observer operates directly on the state variable and not on its small
perturbation term, so the HP filter is no more needed.

4.2.2. Simulation results

Let us refer to the scheme comprising the ideal converter, the voltage harmonic injec-
tion, the PMSG and the wind turbine in Figure 3.10, defined in Section 3.2.2.
The turbine and PMSG rotor angular speeds’ trends are shown in Figure 4.2, with the
reference speed being constant at ωref = 9.69 [rpm] to represent a steady-state opera-
tion. As was done for the NLESO in Section 3.2.2, the simulation is divided into three
phases: the voltage harmonic at fdist is injected between seconds 4 and 8 of the sim-
ulation, while the voltage harmonic leading to the mechanical resonant condition is
present between seconds 8 and 12.

Figure 4.2: Speeds used in Lipschitz observer’s simulation

The 3-phase stator voltage waveforms in each simulation part before and after the
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voltage harmonic injection can be seen in Figure 4.3.
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Figure 4.3: stator voltage waveforms before and after the voltage harmonic injection in
Lipschitz observer’s simulation part (1) (top), (2) (middle), and (3) (bottom)

As expected, the same trends shown in Section 3.2.2 are obtained here, since the two
simulation setups are kept the same. The same plots used to evaluate the NLESO’s
performance will be used: in this way, the comparison of the two observers’ results is
easier.
Starting from the angular positions θt and θ1, their graphs are shown in Figure 4.4 and
4.5.
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Figure 4.4: θt true value and estimate during the initial overshoot at the beginning of
each simulation phase ((1)-(2)-(3)) (top); θt true value and estimate at steady state in
each simulation phase (middle); observation error e1 = θt − θ̂t at steady state in each
simulation phase (bottom)
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Figure 4.5: θ1 true value and estimate during the initial overshoot at the beginning of
each simulation phase ((1)-(2)-(3)) (top); θ1 true value and estimate at steady state in
each simulation phase (middle); observation error e2 = θ1 − θ̂1 at steady state in each
simulation phase (bottom)

As it is shown in Figures 4.4 and 4.5, the observation error for both the state variables
θt and θ1 tends quickly to a small value that oscillates around zero. The overshoot is
present only in simulation phase (1), while it is not when a voltage harmonic ∆vabc is
injected: this is true also for the other state variables; so, this observer is not affected
by changes in the operating conditions. The worst estimation is given in mechanical
resonance condition, with a small error at steady state. Even if θ1 is one of the state
observer’s inputs, the best estimation performance is provided for θt, which shows
an observation error at steady state of one order of magnitude less compared to θ1

case in mechanical resonance conditions ((3)): this can be due to the relatively low
oscillations occurring on the turbine compared to those of the PMSG rotor. Indeed, the
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wind turbine has a high inertia Jt which naturally limits vibrations.
An important datum that can be derived from these two state variables is the shaft
torque Tsh, defined as:

Tsh = K1(θt − θ1) (4.13)

Let us define the estimate of this last quantity as:

T̂sh = K1(θ̂t − θ̂1) (4.14)

In Figure 4.6 the shaft torque real value and estimates comparison together with the
observation error are shown.
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Figure 4.6: Tsh true value and estimate during the initial overshoot at the beginning
of each simulation phase ((1)-(2)-(3)) (top); Tsh true value and estimate at steady state
in each simulation phase (middle); observation error Tsh − T̂sh at steady state in each
simulation phase (bottom)

As can be seen, the shaft torque can be estimated with good accuracy with θ̂t and
θ̂1, with an observation error during the resonance condition one order of magnitude
smaller than the true value Tsh. Different from the NLESO, it can be concluded that
this observer is able to provide a good estimation of the shaft torque.
The graphs related to the turbine and PMSG rotor angular speeds are shown in Fig-
ure 4.7 and 4.8.
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Figure 4.7: ∆ωt true value and estimate during the initial overshoot at the beginning of
each simulation phase ((1)-(2)-(3)) (top); ∆ωt true value and estimate at steady state in
each simulation phase (middle); observation error e3 = ωt − ω̂t at steady state in each
simulation phase (bottom)
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Figure 4.8: ω1 true value and estimate during the initial overshoot at the beginning of
each simulation phase ((1)-(2)-(3)) (top); ω1 true value and estimate at steady state in
each simulation phase (middle); observation error e4 = ω1 − ω̂1 at steady state in each
simulation phase (bottom)

The estimation of ωt appears to be more accurate than the one of ω1: indeed, the wind
turbine is characterized by smaller torsional vibrations, as it was explained previously.
The last estimated state variables are the direct and quadrature stator currents isd and
isq

2, which are also state observer’s inputs; their trends are presented in Figure 4.9 and
4.10.

2the value of isq in the simulation is negative: this is due to a simulation setup in which the wind
turbine is treated as a load and the PMSG as a motor. Being just a matter of conventions, the observer’s
performance’s evaluation is not affected.
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Figure 4.9: isd true value and estimate during the initial overshoot at the beginning of
each simulation phase ((1)-(2)-(3)) (top); isd true value and estimate at steady state in
each simulation phase (middle); observation error e5 = isd − îsd at steady state in each
simulation phase (bottom)
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Figure 4.10: isq true value and estimate during the initial overshoot at the beginning of
each simulation phase ((1)-(2)-(3)) (top); isq true value and estimate at steady state in
each simulation phase (middle); observation error e6 = isq − îsq at steady state in each
simulation phase (bottom)
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The observation error is very small for isd and isq, which confirms the tendency of the
state observer to provide good estimates for its input state variables.
Based on the simulation results, some final remarks can be made. Also in this case
the state observer is stable, but now more accurate estimates are provided for all the
state variables compared to the NLESO case. The overshoots of the state estimates are
present only in simulation phase (1), in which the steady-state error shows the littlest
value, almost equal to 0. The observer performance decreases during mechanical reso-
nance conditions, while it is less affected by a generic disturbance such as the voltage
harmonic injection at frequency fdist. In this case, the state observer design is much eas-
ier than the NLESO: it deals with the nonlinear MIMO system without any subsystem
decomposition and variable transformation, reducing also the online computational
burden. Moreover, the state observer’s outputs are the complete state variables now,
while in the previous case only the oscillating term was provided.
However, a deeper analysis regarding the observer stability is required, in order to
provide a design that can be reliable for other applications or operating conditions.
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5| Conclusions and future
developments

Multi-Modular Axial-Flux Permanent Magnet (MMAFPM) machines can represent a
good alternative to Radial-Flux ones in Wind Energy Conversion Systems (WECS),
especially for applications that demand high torque densities and low aspect ratios.
However, the interaction of voltage and current harmonics produced by the Variable
Frequency Drive (VFD) creates torque harmonics at different frequencies, which lead
to torsional vibrations inside the machine. A method to damp torsional vibrations is to
design a so-called PI State Space (SS) control, in which the complete information of the
state variables of the system is needed: a state observer can be designed for this task.
A two Degree-of-Freedom (DOF), comprising a Permanent Magnet Synchronous Gen-
erator (PMSG) directly connected to a Wind Turbine, was considered in this thesis. Two
different state observers were presented, considering as measured variables only the
PMSG rotor position and the stator current direct and quadrature components. When
considering the electrical model of the system, some nonlinear terms appear regard-
ing the direct and quadrature stator current’s components and the machine speed: the
system model becomes nonlinear and a state observer design results more complex.
This study provides two state observers for the nonlinear Multi-Input Multi-Output
(MIMO) system.
First, a Non-Linear Extended State Observer (NLESO) working on a linearized model
of the system was proposed. The results can be summarized as follows:

• the design of this observer type, which involves a Multi-Input Single-Output
(MISO) subsystem decomposition and state variables transformation, appears to
be quite complex and cumbersome, although it was possible to prove the abso-
lute stability of the observation error;

• the estimates have a low level of accuracy, especially in highly perturbed operat-
ing condition, such as during torsional vibrations.

Then, a Luenberger-based Lipschitz Observer was proposed:
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• its design is less complex than the previous observer and it deals directly with
the nonlinear system. Further investigation regarding its stability is required;

• the observer can provide accurate estimates of all the state variables and it is more
robust to generic disturbances, while its performance is still affected in mechani-
cal resonance condition.

Starting from this thesis work, further research is required to extend the state observer
design to an MMAFPM machine, still using the available mechanical angular position
and stator currents measurements. Mainly, it will be interesting to:

• test the effectiveness of the proposed observers on a real laboratory setup, start-
ing from a simple two-DOF system, and assess the impact of external distur-
bances on the estimates’ accuracy;

• design a Luenberger-based Lipschitz Observer for a multi-mass system compris-
ing an MMAFPM machine, assessing its stability properties and observation per-
formance;

• analyze and implement a control loop which, based on the system state estimates,
effectively damps torsional oscillations.
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A.1. Torque Harmonics

To understand the relationship between voltage harmonics and torque harmonics in a
VFD an analysis based on [20] is conducted.
For an AC machine it holds:

• Stator voltage equations (abc frame):

vs,k = rsis,k +
dψs,k
dt

| k = 1, 2, 3

• Electromagnetic torque expression (stator αβ frame, magnitude invariant trans-
formation1):

Telm =
3

2
npIm {isΨs∗} =

3

2
np(ψsαis,β − ψs,βis,α) (A.1)

where is and Ψs are the stator current and flux linkage space vectors, np is the number
of pole pairs.
For high power operating regime, resistive losses in the stator can be neglected [20],
therefore:

vs,k ≈
dψs,k
dt

→ ψs,k =

∫
vs,k dt | k = 1, 2, 3

Considering as a fundamental angular frequency ω1 = 2πf1, the stator voltage can be
seen as:

vs,k = V̂1 cos

(
ω1t−

2π

3
(k − 1)

)
+

+∞∑
h=2

V̂h cos

[
h

(
ω1t−

2π

3
(k − 1)

)
+ φh

]
| k = 1, 2, 3

1throughout the work, the power invariant transformation was used; here the magnitude invariant
is chosen just for simplicity: the aim of this analysis is to assess how voltage harmonics lead to torque
harmonics in the machine. However, the results can be referred to different space-vector transformation
just changing the arbitrary transformation constant.
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Applying abc/sαβ, or Clarke, transformation:

vs =
2

3

(
vs1 + vs2e

j 2π
3 + vs3e

j 4π
3

)
= vs,α + jvs,β

where:
vs,α = V̂1 cos (ω1t) +

∑+∞
h=2 V̂h cos (hω1t+ φh)

vs,β = V̂1 sin (ω1t)±
∑+∞

h=2 V̂h sin (hω1t+ φh)

{
+ if hω1 is a positive sequence
− if hω1 is a negative sequence

Notice how zero-sequence terms result in a null space vector.
Now, the flux linkage:

Ψs = ψs,α + jψs,β

with:  ψs,α =
∫ [

V̂1 cos (ω1t) +
∑+∞

h=2 V̂h cos (hω1t+ φh)
]
dt

ψs,β =
∫ [

V̂1 sin (ω1t)±
∑+∞

h=2 V̂h sin (hω1t+ φh)
]
dt

ψs,α = V̂1
ω1

sin (ω1t) +
∑+∞

h=2
V̂h
hω1

sin (hω1t+ φh)

ψs,β = − V̂1
ω1

cos (ω1t)∓
∑+∞

h=2
V̂h
hω1

sin (hω1t+ φh)

{
− if hω1 is a positive sequence
+ if hω1 is a negative sequence

Considering only the fundamental component of the stator current, its space vector is:

is = is,α + jis,β =

{
is,α = Î1 cos (ω1t− φ1)

is,β = Î1 sin (ω1t− φ1)

and recalling the electromagnetic torque Telm expression in Equation A.1:

•

ψsαisβ =

[
V̂1
ω1

sin (ω1t) +
+∞∑
h=2

V̂h
hω1

sin (hω1t+ φh)

](
Î1 sin (ω1t− φ1)

)
=

=
V̂1Î1
ω1

sin (ω1) sin (ω1t− φ1) +
+∞∑
h=2

V̂hÎ1
hω1

sin (hω1t+ φh) sin (ω1t− φ1)
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•

ψsβisα =

[
− V̂1
ω1

cos (ω1t)∓
+∞∑
h=2

V̂h
hω1

cos (hω1t+ φh)

](
Î1 cos (ω1t− φ1)

)
= − V̂1Î1

ω1

cos (ω1) cos (ω1t− φ1)∓
+∞∑
h=2

V̂hÎ1
hω1

cos (hω1t+ φh) cos (ω1t− φ1)

Substituting the previous ones into Telm expression:

Telm =
3

2
np

(
V̂1Î1
ω1

sin (ω1) sin (ω1t− φ1) +
+∞∑
h=2

V̂hÎ1
hω1

sin (hω1t+ φh) sin (ω1t− φ1)

+
V̂1Î1
ω1

cos (ω1t) cos (ω1t− φ1)±
+∞∑
h=2

V̂hÎ1
hω1

cos (hω1t+ φh) cos (ω1t− φ1)

) (A.2)

Now, considering that:

• cos(a) cos(b) + sin(a) sin(b) = cos(a− b);

• cos(a) cos(b)− sin(a) sin(b) = cos(a+ b);

Equation A.2 becomes:

Telm =
3

2
np

[
V̂1Î1
ω1

cos (φ1) +

{ ∑+∞
h=2

V̂hÎ1
hω1

cos ((h− 1)ω1t+ φ1 + φh) if hω1 is a positive seq.∑+∞
h=2

V̂hÎ1
hω1

cos ((h+ 1)ω1t− φ1 + φh) if hω1 is a negative seq.

]

(A.3)

By looking at the expression of Equation A.3, it can be concluded that:

• a DC torque component arises from the interaction between iso-frequencies terms;

• (h − 1)ω1 torque component from the interaction between a positive sequence
voltage harmonic of index h and the fundamental current component;

• (h + 1)ω1 torque component from the interaction between a negative sequence
voltage harmonic of index h and the fundamental current component;

Considering a generic constant l ∈ N, the generic voltage harmonic order can be di-
vided in:

• h = 3l: zero sequence harmonic;

• h = 6l + 1: positive sequence harmonic;
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• h = 6l − 1: negative sequence harmonic.

Then, the following statements hold true:

• zero sequence voltage harmonics result in a null space vector component: the net
flux produced in the machine is null, thus no torque harmonics are produced;

• positive and negative sequence voltage harmonics produce torque harmonics lo-
cated at ωh = 6lω1;

• for a given l∗ ∈ N, the interaction between the stator current fundamental com-
ponent and the two voltage harmonics of order 6l∗ + 1 (positive sequence) and
6l∗− 1 (negative sequence) produce a torque harmonic at the same frequency 6l∗.

A.2. Observability matrices

In this section, the observability matrices of the analyzed systems are listed.

NLESO

∆MO =



0 1.0 0 0 0 0

0 0 0 0 1.0 0

0 0 0 0 0 1.0

0 0 0 1.78 0 0

0 0 0 139.0 −3.38 92.6

0 0 0 −141.0 −92.6 −3.38

3.57 ∗ 106 −3.57 ∗ 106 0 0 0 −15.6

2.8 ∗ 108 −2.8 ∗ 108 0 −1.35 ∗ 104 −8550.0 −1840.0

−2.83 ∗ 108 2.83 ∗ 108 0 −1.24 ∗ 104 625.0 −7320.0

0 0 6.36 ∗ 106 −6.35 ∗ 106 1440.0 52.5

−2.72 ∗ 1010 2.72 ∗ 1010 4.98 ∗ 108 −4.99 ∗ 108 1.99 ∗ 105 −6.67 ∗ 105

−2.49 ∗ 1010 2.49 ∗ 1010 −5.04 ∗ 108 5.05 ∗ 108 6.75 ∗ 105 1.91 ∗ 105

−1.29 ∗ 1013 1.29 ∗ 1013 0 1.93 ∗ 105 −9720.0 5.57 ∗ 107

−1.01 ∗ 1015 1.01 ∗ 1015 −4.84 ∗ 1010 4.85 ∗ 1010 6.11 ∗ 107 4.38 ∗ 109

1.03 ∗ 1015 −1.03 ∗ 1015 −4.44 ∗ 1010 4.44 ∗ 1010 −2.0 ∗ 107 −4.36 ∗ 109

3.88 ∗ 1011 −3.88 ∗ 1011 −2.29 ∗ 1013 2.29 ∗ 1013 −5.15 ∗ 109 −1.91 ∗ 108

9.84 ∗ 1016 −9.84 ∗ 1016 −1.8 ∗ 1015 1.8 ∗ 1015 −4.05 ∗ 1011 −4.33 ∗ 1011

9.01 ∗ 1016 −9.01 ∗ 1016 1.83 ∗ 1015 −1.82 ∗ 1015 4.03 ∗ 1011 −3.75 ∗ 1011
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∆MO1 =



0 1.0 0 0 0 0

0 0 0 1.78 0 0

3.57 ∗ 106 −3.57 ∗ 106 0 0 0 −15.6

0 0 6.36 ∗ 106 −6.35 ∗ 106 1440.0 52.5

−1.29 ∗ 1013 1.29 ∗ 1013 0 1.93 ∗ 105 −9720.0 5.57 ∗ 107

3.88 ∗ 1011 −3.88 ∗ 1011 −2.29 ∗ 1013 2.29 ∗ 1013 −5.15 ∗ 109 −1.91 ∗ 108



∆MO2 =



0 0 0 0 1.0 0

0 0 0 139.0 −3.38 92.6

2.8 ∗ 108 −2.8 ∗ 108 0 −1.35 ∗ 104 −8550.0 −1840.0

−2.72 ∗ 1010 2.72 ∗ 1010 4.98 ∗ 108 −4.99 ∗ 108 1.99 ∗ 105 −6.67 ∗ 105

−1.01 ∗ 1015 1.01 ∗ 1015 −4.84 ∗ 1010 4.85 ∗ 1010 6.11 ∗ 107 4.38 ∗ 109

9.84 ∗ 1016 −9.84 ∗ 1016 −1.8 ∗ 1015 1.8 ∗ 1015 −4.05 ∗ 1011 −4.33 ∗ 1011



∆MO3 =



0 0 0 0 0 1.0

0 0 0 −141.0 −92.6 −3.38

−2.83 ∗ 108 2.83 ∗ 108 0 −1.24 ∗ 104 625.0 −7320.0

−2.49 ∗ 1010 2.49 ∗ 1010 −5.04 ∗ 108 5.05 ∗ 108 6.75 ∗ 105 1.91 ∗ 105

1.03 ∗ 1015 −1.03 ∗ 1015 −4.44 ∗ 1010 4.44 ∗ 1010 −2.0 ∗ 107 −4.36 ∗ 109

9.01 ∗ 1016 −9.01 ∗ 1016 1.83 ∗ 1015 −1.82 ∗ 1015 4.03 ∗ 1011 −3.75 ∗ 1011



∆M1
O2 =


0 0 0 1.0 0

0 0 139.0 −3.38 92.6

2.8 ∗ 108 0 −1.35 ∗ 104 −8550.0 −1840.0

−2.72 ∗ 1010 4.98 ∗ 108 −4.99 ∗ 108 1.99 ∗ 105 −6.67 ∗ 105

−1.01 ∗ 1015 −4.84 ∗ 1010 4.85 ∗ 1010 6.11 ∗ 107 4.38 ∗ 109



∆M1
O3 =


0 0 0 0 1.0

0 0 −141.0 −92.6 −3.38

−2.83 ∗ 108 0 −1.24 ∗ 104 625.0 −7320.0

−2.49 ∗ 1010 −5.04 ∗ 108 5.05 ∗ 108 6.75 ∗ 105 1.91 ∗ 105

1.03 ∗ 1015 −4.44 ∗ 1010 4.44 ∗ 1010 −2.0 ∗ 107 −4.36 ∗ 109



Luenberger-based Lipschitz Observer

MO =



0 1.0 0 0 0 0

0 0 0 0 1.0 0

0 0 0 0 0 1.0

0 0 0 1.78 0 0

0 0 0 0 −3.38 0

0 0 0 −144 0 −3.38

3.57 ∗ 106, −3.57 ∗ 106, 0 0 0 −15.9

0 0 0 0 11.4 0

−2.89 ∗ 108 2.89 ∗ 108 0 487 0 1300

0 0 6.36 ∗ 106 −6.35 ∗ 106 0 53.7

0 0 0 0 −38.5 0

9.77 ∗ 108 −9.77 ∗ 108 −5.15 ∗ 108 5.15 ∗ 108 0 −8730

−1.29 ∗ 1013 1.29 ∗ 1013 0 −7740 0 5.67 ∗ 107

0 0 0 0 130 0

1.04 ∗ 1015 −1.04 ∗ 1015 1.74 ∗ 109 −1.74 ∗ 109 0 −4.6 ∗ 109

−1.55 ∗ 1010 1.55 ∗ 1010 −2.29 ∗ 1013 2.29 ∗ 1013 0 −1.91 ∗ 108

0 0 0 0 −439 0

−3.53 ∗ 1015 3.53 ∗ 1015 1.86 ∗ 1015 −1.86 ∗ 1015 0 3.1 ∗ 1010
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A.3. MISO Subsystems matrices

The MISO subsystems’ transformed matrices are shown in numeric form: indeed, the
algebraic form would involve big expressions containing the parameters that are al-
ready defined in Section 2.2.1 and Section 2.2.2.

Subsystem 1

z1 =



∆θ1

1.78∆ω1

3.57 ∗ 106(∆θt −∆θ1)− 15.6∆isq

1.44 ∗ 103∆isd + 52.5∆isq − 6.35 ∗ 106∆ω1 + 6.36 ∗ 106∆ωt

5.57 ∗ 107∆isq − 9.72 ∗ 103∆isd + 1.29 ∗ 1013(∆θ1 −∆θt) + 1.93 ∗ 105∆ω1

3.88 ∗ 1011(∆θt −∆θ1) + 2.29 ∗ 1013(∆ω1 −∆ωt)− 1.91 ∗ 108∆isq − 5.15 ∗ 109∆isd



Az1 =



0 1.0 0 0 0 0

0 0 1.0 0 0 0

0 0 0 1.0 0 0

0 0 0 0 1.0 0

0 0 0 0 0 1.0

0 4.68 ∗ 109 −3.09 ∗ 1010 −2.43 ∗ 107 −3.62 ∗ 106 −6.75



Bz1 =



0 0

0 0

0 −2200

2.03 ∗ 105 7420

−1.37 ∗ 106 7.86 ∗ 109

−7.28 ∗ 1011 −2.69 ∗ 1010


Cz1 =

[
1 0 0 0 0 0

]
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Subsystem 2

z2 =


∆isd

92.6∆isq − 3.38∆isd + 139∆ω1

2.8 ∗ 108(∆θt −∆θ1)− 1.35 ∗ 104∆ω1 − 1840∆isq − 8.5 ∗ 103∆isd

2.72 ∗ 1010(∆θ1 −∆θt)− 4.98 ∗ 108∆ωt − 4.99 ∗ 108∆ω1 + 1.99 ∗ 105∆isd − 6.67 ∗ 105∆isq

1.01 ∗ 1015(∆θ1 −∆θt) + 4.85 ∗ 1010∆ω1 − 4.84 ∗ 1010∆ωt + 6.11 ∗ 107∆isd + 4.38 ∗ 109∆isq



Az2 =


0 1.0 0 0 0

0 0 1.0 0 0

0 0 0 1.0 0

0 0 0 0 1.0

4.68 ∗ 109 −3.09 ∗ 1010 −2.43 ∗ 107 −3.62 ∗ 106 −6.75



Bz2 =


141 0

−477.0 1.31 ∗ 104

−1.21 ∗ 106 −2.6 ∗ 105

2.82 ∗ 107 −9.42 ∗ 107

8.62 ∗ 109 6.18 ∗ 1011


Cz2 =

[
1 0 0 0 0

]

Subsystem 3

z3 =


∆isq

−92.6∆isd − 3.38∆isq + 141∆ω1

2.83 ∗ 108(∆θ1 −∆θt)− 1.24 ∗ 104∆ω1 − 7.32 ∗ 103∆isq − 625∆isd

2.49 ∗ 1010(∆θ1 −∆θt)− 5.04 ∗ 108∆ωt + 5.05 ∗ 108∆ω1 + 6.75 ∗ 105∆isd + 1.91 ∗ 105∆isq

1.03 ∗ 1015(∆θt −∆θ1) + 4.44 ∗ 1010∆ω1 − 4.44 ∗ 1010∆ωt − 2.0 ∗ 107∆isd − 4.36 ∗ 109∆isq



Az3 =


0 1.0 0 0 0

0 0 1.0 0 0

0 0 0 1.0 0

0 0 0 0 1.0

4.68 ∗ 109 −3.09 ∗ 1010 −2.43 ∗ 107 −3.62 ∗ 106 −6.75



Bz3 =


0 141.0

−1.31 ∗ 104 −477.0

8.82 ∗ 104, −1.03 ∗ 106

9.54 ∗ 107 2.7 ∗ 107

−2.82 ∗ 109 −6.15 ∗ 1011


Cz3 =

[
1 0 0 0 0

]
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A.4. NLESO Observation error systems’ matrices

Subsystem 1:

Ae1 =



−2100.0 1.0 0 0 0 0 0

−1.89 ∗ 106 0 1.0 0 0 0, 0

−9.45 ∗ 108 0 0 1.0 0 0, 0

−2.84 ∗ 1011 0 0 0 1.0 0, 0

−5.1 ∗ 1013 0 0 0 0 1.0 0

−5.1 ∗ 1015 0 0 0 0 0 1.0

−2.19 ∗ 1017 0 0 0 0 0 0


Be1 =



2100.0

1.89 ∗ 106

9.45 ∗ 108

2.84 ∗ 1011

5.1 ∗ 1013

5.1 ∗ 1015

2.19 ∗ 1017


Ce1 =

[
1 0 0 0 0 0 0

]

MCe1 =



2100.0 −2.52 ∗ 106 2.27 ∗ 109 −1.7 ∗ 1012 1.12 ∗ 1015 −6.74 ∗ 1017 3.75 ∗ 1020

1.89 ∗ 106 −3.02 ∗ 109 3.06 ∗ 1012 −2.45 ∗ 1015 1.68 ∗ 1018 −1.04 ∗ 1021 5.91 ∗ 1023

9.45 ∗ 108 −1.7 ∗ 1012 1.84 ∗ 1015 −1.53 ∗ 1018 1.08 ∗ 1021 −6.82 ∗ 1023 3.94 ∗ 1026

2.84 ∗ 1011 −5.44 ∗ 1014 6.12 ∗ 1017 −5.25 ∗ 1020 3.79 ∗ 1023 −2.42 ∗ 1026 1.42 ∗ 1029

5.1 ∗ 1013 −1.02 ∗ 1017 1.18 ∗ 1020 −1.03 ∗ 1023 7.58 ∗ 1025 −4.91 ∗ 1028 2.9 ∗ 1031

5.1 ∗ 1015 −1.05 ∗ 1019 1.24 ∗ 1022 −1.1 ∗ 1025 8.18 ∗ 1027 −5.36 ∗ 1030 3.19 ∗ 1033

2.19 ∗ 1017 −4.59 ∗ 1020 5.51 ∗ 1023 −4.96 ∗ 1026 3.72 ∗ 1029 −2.46 ∗ 1032 1.47 ∗ 1035



MOe1 =



1.0 0 0 0 0 0 0

−2100.0 1.0 0 0 0 0 0

2.52 ∗ 106 −2100.0 1.0 0 0 0 0

−2.27 ∗ 109 2.52 ∗ 106 −2100.0 1.0 0 0 0

1.7 ∗ 1012 −2.27 ∗ 109 2.52 ∗ 106 −2100.0 1.0 0 0

−1.12 ∗ 1015 1.7 ∗ 1012 −2.27 ∗ 109 2.52 ∗ 106 −2100.0 1.0 0

6.74 ∗ 1017 −1.12 ∗ 1015 1.7 ∗ 1012 −2.27 ∗ 109 2.52 ∗ 106 −2100.0 1.0



Subsystem 2 = Subsystem 3:

Ae2 = Ae3 =



−1800 1 0 0 0 0

−1.35 ∗ 106 0 1 0 0 0

−5.4 ∗ 108 0 0 1 0 0

−1.22 ∗ 1011 0 0 0 1 0

−1.46 ∗ 1013 0 0 0 0 1

−7.29 ∗ 1014 0 0 0 0 0


Be2 = Be3 =



1800

1.35 ∗ 106

5.4 ∗ 108

1.22 ∗ 1011

1.46 ∗ 1013

7.29 ∗ 1014


Ce2 = Ce3 =

[
1 0 0 0 0 0

]

MCe2 = MCe3 =



1.8 ∗ 103 −1.89 ∗ 106 1.51 ∗ 109 −1.02 ∗ 1012 6.12 ∗ 1014 −3.37 ∗ 1017

1.35 ∗ 106 −1.89 ∗ 109 1.7 ∗ 1012 −1.22 ∗ 1015 7.65 ∗ 1017 −4.33 ∗ 1020

5.4 ∗ 108 −8.5 ∗ 1011 8.16 ∗ 1014 −6.12 ∗ 1017 3.94 ∗ 1020 −2.27 ∗ 1023

1.22 ∗ 1011 −2.04 ∗ 1014 2.04 ∗ 1017 −1.57 ∗ 1020 1.03 ∗ 1023 −6.06 ∗ 1025

1.46 ∗ 1013 −2.55 ∗ 1016 2.62 ∗ 1019 −2.07 ∗ 1022 1.38 ∗ 1025 −8.18 ∗ 1027

7.29 ∗ 1014 −1.31 ∗ 1018 1.38 ∗ 1021 −1.1 ∗ 1024 7.44 ∗ 1026 −4.46 ∗ 1029



MOe2 = MOe3 =



1.0 0 0 0 0 0

−1800.0 1.0 0 0 0 0

1.89 ∗ 106 −1800.0 1.0 0 0 0

−1.51 ∗ 109 1.89 ∗ 106 −1800.0 1.0 0 0

1.02 ∗ 1012 −1.51 ∗ 109 1.89 ∗ 106 −1800.0 1.0 0

−6.12 ∗ 1014 1.02 ∗ 1012 −1.51 ∗ 109 1.89 ∗ 106 −1800.0 1.0
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A.5. High-Pass (HP) Filter design

Each of the subsystems’ NLESO needs as input:

• the oscillating terms of the vsd and vsq inputs: ∆vsd and ∆vsq;

• each subsystem’s output: ∆yi = ∆xi , with i = 1, 2, 3 (subsystem’s number).

What is available from the real system are the measurements of the states, i.e. control
system’s outputs yi, and the real value of the control variables vsd and vsq. In order to
extract the oscillating term information from each quantity, a High-Pass (HP) Filter is
used: its bandwidth should be chosen such that only the oscillating term is extracted
from the measured and input variables.
Since the aim is to estimate the system state variables during the mechanical resonance
condition, the filter cut-off frequency is chosen such that:

ωHP,cut−off = 2π
fres
10

= 2π
302.45

10
= 190.03

[
rad

s

]
The filter transfer function in Laplace domain HP (s) is defined as:

HP (s) =
τs

1 + τs
(A.4)

where:
τ =

1

ωHP,cut−off

From Equation A.4 it is clear how:

|HP (s)| =

{
τs if |τs| << 1 → |s| << 1

τ
= ωHP,cut−off

1 if |τs| >> 1 → |s| >> 1
τ
= ωHP,cut−off

The magnitude and phase Bode-diagrams of HP (jω) is shown in Figure A.1.
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Figure A.1: magnitude (top) and phase (bottom) Bode-diagrams of HP (s)

A.6. Luenberger-based Lipschitz Observer script

clc

clear all

close all

set(groot,'defaulttextinterpreter','latex');

set(groot, 'defaultAxesTickLabelInterpreter','latex');
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set(groot, 'defaultLegendInterpreter','latex');

%% p.u. base parameters and gamma calculation

Vn = 435; % [V]

Vb = sqrt(3)*Vn;

In = 713; % [A]

Ib = sqrt(3)*In;

fn = 14.73; % [Hz]

wb = 2*pi*fn; % [rad/s]

Zb = Vb/Ib; % [Ohm]

psib = Vb/wb; % [Wb]

Lb = Zb/wb; % [H]

psi_PM = double(8.314/psib); % [pu]

R = double(14.59e-3/Zb);

Ld = double(4.321e-3/Lb);

Lq = Ld;

p = double(104);

np = double(p/2);

jt = double(3e6); % kg*m^2

j1 = double(3.36e4);

k = double(1.2e11); % Nm/rad

wmb = wb/np;

Tn = 561e3; %Nm

Ht = 0.5*(jt*wmb^2)/(Tn*wmb); % [pu]

H1 = 0.5*(j1*wmb^2)/(Tn*wmb);

id_max = 1; % [pu]

iq_max = Tn/(np*Ib*psi_PM*psib);

w_max = 1;

gamma = max([wb*(iq_max+w_max) wb*(id_max+w_max)]);

%% State Space system definition

a13 = wmb;

a24 = wmb;
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a31 = -k/(2*Ht*Tn); a32 = k/(2*Ht*Tn);

a41 = k/(2*H1*Tn); a42 = -k/(2*H1*Tn); a46 = -np*psi_PM*psib*Ib

/(2*H1*Tn);

a55 = -wb*R/Ld;

a64 = -(psi_PM/Lq)*wb; a66 = -wb*R/Lq;

A = [0 0 a13 0 0 0;

0 0 0 a24 0 0;

a31 a32 0 0 0 0;

a41 a42 0 0 0 a46;

0 0 0 0 a55 0;

0 0 0 a64 0 a66];

B = [0 0 0;

0 0 0;

1/(2*Ht*Tn) 0 0;

0 0 0;

0 wb/Ld 0;

0 0 wb/Lq];

C = [0 1 0 0 0 0;

0 0 0 0 1 0;

0 0 0 0 0 1];

p2 = A*A;

p3 = p2*A;

p4 = p3*A;

p5 = p4*A;

Q = [C;

C*A;

C*p2;

C*p3;

C*p4;

C*p5];

rQ = rank(Q,1e-15); % the system is observable
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%% Observer Design Algorithm

% ... = -2CC^T = CtC

C1 = C'*C;

CtC = -2*C1;

% beta = gamma+1;

beta = 190;

% M = A^T+betaI

M = A'+beta*eye(size(A));

% Calculation of P

P = lyap(M,CtC);

P_inv = P\eye(6);

% Calculation of L

L = P_inv*(C');

%% Transfer function of the observation error system

% observation error system definition

Ae = A-L*C;

Be = zeros(6,2);

Be(5,1) = wb;

Be(6,2) = wb;

Ce = eye(6);

D = 0;

Ge = tf(sys); % G_e transfer function
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It may be necessary to include another appendix to better organize the presentation of
supplementary material.

B.1. Kernel Calculation

By the definition from [2], the kernel of a linear map L(x) : Rn′ → Rm′ is the set of
vectors x ∈ Rn′ which have as image the null vector of Rm′ , i.e.:

ker(L) =
{
x ∈ Rn′ | L(x) = 0 ∈ Rm′

}
For example, considering [6]:

L(x) :

 y1

y2

y3

 =

 −1 0 1

0 0 −1

0 0 1


︸ ︷︷ ︸

L

 x1

x2

x3



the kernel of the L can be calculated as:

ker(L) =

 x∗1

x∗2

x∗3

 such that:

 −1 0 1

0 0 −1

0 0 1


 x∗1

x∗2

x∗3

 =

 0

0

0


which results in:  x∗1

x∗2

x∗3

 =

 0

1

0
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B.2. Lur’e Problem and Circle Criterion

Figure B.1: nonlinear feedback system

Considering a generic linear system of n states x(t) ∈ Rn, u,y ∈ Rp:

ẋ = Ax+Bu

y = Cx+Du

u = −Γ(t,y)

(B.1)

where A ∈ Rnxn, B ∈ Rnxp, C ∈ Rpxn, D ∈ Rpxp and Γ(t, .) : Rp → Rp is a Lipschitz non-
linear function, possibly time-varying and piecewise continuous in t. Let us assume
D = 0 and that Γ(t,y) = Γ(y). Let us define the system transfer function:

G(s) = C (sI−A)−1B (B.2)

If:

• Γ(y) satisfies a sector condition (please refer to [12] page 232);

• (A,B) controllable:

• (C,A) observable;

then (B.1) represents a Lur’e problem, the origin represent an equilibrium point for the
system; its absolute stability can be study applying the Circle Criterion if the system is
SISO, thus if p = 1. For the theorem and its prove please refer to [12] page 270.
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