
Executive Summary of the Thesis

Planning and trajectory generation methods for aggressive
maneuvering of UAVs in the presence of obstacles

Laurea Magistrale in Aeronautical Engineering - Ingegneria Aeronautica

Author: Marta Manzoni

Advisor: Prof. Davide Invernizzi

Co-advisor: Eng. Roberto Rubinacci

Academic year: 2023-2024

1. Introduction
Unmanned Aerial Vehicles (UAVs) showcase
innovative engineering, enabling autonomous
flight without human pilots. Their versatility
manifests in autonomous navigation and task
execution, spanning applications across civilian
and military domains. As UAVs’ roles evolve,
navigating complex environments with agility
becomes crucial. Consequently, path planning
in obstacle-cluttered environments has attracted
attention in recent years. While kinematic mo-
tion planning ensures collision-free paths, their
execution by the actual system may not be fea-
sible. This is especially evident in agile vehi-
cles, where additional limitations from dynam-
ics or nonholonomic constraints must be consid-
ered. Kinodynamic motion planning addresses
this issue, considering vehicle dynamics, input
constraints, and state constraints.

2. Quadrotor model
Following [2], the quadcopter is modeled as a
rigid body with six degrees of freedom, includ-
ing linear translation along the inertial axes and
rotation of the body frame relative to the inertial
frame, defined by the proper orthogonal matrix

R. Euler angles Φ = [ϕ, θ, ψ] are employed to
define the roll, pitch, and yaw angles. ω denotes
the angular velocity of the body frame with re-
spect to the inertial frame. Thus, the quadro-
tor state vector x comprises the center of mass
position and velocity, the Euler angles, and the
angular velocity:

x = [p, v,Φ, ω]T .

The control input is taken as u = [f,m]T , where
f is the mass-normalized net body force, and m
represents the three body torques. The differen-
tial equations governing the flight are

ẍ = Re3f + g,

Ṙ = RJω×K,

where g = [0, 0,−g]T is the gravity acceleration,
e3 = [0, 0, 1]T and Jω×K is the skew-symmetric
matrix form of the vector cross product.
The quadrotor is a differentially flat system.
State x and input u can be expressed as func-
tions of the flat output σ = [p, ψ]T , and its
derivatives. Differential flatness is a valuable
property that can greatly simplify the planning
problem.

1

Executive summary Marta Manzoni

3. Kinodynamic motion
planning

Kinodynamic motion planning optimizes vehi-
cle trajectories considering dynamics, ensuring
collision avoidance, feasibility, and adherence to
input constraints.

3.1. Problem formulation
The kinodynamic motion planning problem can
be formulated as an optimization problem with
the objective of finding input functions u(t) and
state trajectories x(t) that minimize a cost func-
tion while adhering to state and input con-
straints:

min
x(t),u(t)

J =

∫ T

0
g(x(t), u(t))dt

s.t. ẋ = f(x(t), u(t)), t ∈ [0, T]

x(t) ∈ Sfree, t ∈ [0, T]

u(t) ∈ U , t ∈ [0, T]

x(0) = xi, x(T) = xf .

(1)

Let Sfree ⊂ S denote the free region of the
state space, including obstacle-free configura-
tions Cfree and dynamical constraints Dfree.
Thus, Sfree = Cfree ×Dfree.
This thesis aims to compute a trajectory balanc-
ing total time and trajectory effort, represented
by the cost function:

J = Je + JT =

∫ T

0
∥u(t)∥2 dt+ ρT, (2)

where ρ is the weight governing the trade-off be-
tween effort and time.
For differentially flat systems, system dynam-
ics need not be enforced as constraints. More-
over, the objective function can be expressed as
a function of the flat outputs J(σ, σ̇, σ̈, . . .) and
the inputs are represented in terms of the qth

derivative of the position. Therefore, the con-
trol effort term Je in Eq.(2) is reformulated to
minimize the qth derivative of the first three en-
tries of the flat output:

Je =

∫ T

0
(x(q))2 dt+

∫ T

0
(y(q))2 dt+

∫ T

0
(z(q))2 dt.

Different q values yield different trajectories: for
q = 1, minimum velocity trajectory; for q = 2,
acceleration; for q = 3, jerk; and for q = 4, snap.

3.2. Kinodynamic planning with
motion primitives

Explicitly solving Problem 1 is hard due to
states and input constraints, as well as the non-
convex nature of obstacle avoidance. However,
testing feasibility for a candidate solution is
straightforward. This paradigm shift is the ba-
sis for many motion planning algorithms. The
building blocks of these candidate solutions are
called motion primitives.

4. Search-based planning with
online motion primitives

This section introduces a quadrotor-tailored
search-based planner using motion primitives
computed via a forward propagation method, in-
spired by the work proposed in [1].

4.1. Motion primitives generation
Leveraging differential flatness, position can be
expressed as a polynomial:

p(t) = ck
tk

k!
+ ...+ c1t+ c0 ∈ R3, (3)

where C = [c0, . . . , ck] ∈ R3×(k+1). Polynomial
trajectories of the form Eq.(3) can be generated
by considering a linear time-invariant system:

ẋ = Ax+Bu,

ẋ =

0 I3 0 . . . 0
0 0 I3 . . . 0
...

.
...

0 0 I3
0 0 0

x+

0
0
...
0
I3

u. (4)

Following [1], a discretization UL = {u1, . . . , uL}
of the control input set U = [−umax, umax] is
considered, where each control ul ∈ R3 defines
a short-duration motion. Then, a motion prim-
itive for system in Eq.(4) is generated by apply-
ing a constant control input ul ∈ UL to an ini-
tial state xi = [pTi , v

T
i , a

T
i , . . .]

T , for a duration
τ . Integration of the control ul from an initial
condition xi results in:

p(t) = ul
tn

n!
+ . . .+ ai

t2

2
+ vit+ pi.

Equivalently, the resulting trajectory of the lin-
ear time-invariant system in Eq.(4) is:

2

Executive summary Marta Manzoni

x(t) = eAtxi +

[∫ t

0
eA(t−β)B dβ

]
ul

= F (t)xi +G(t)ul.

Motion primitives generation occurs indepen-
dently for each of the three spatial axes. Input
and state constraints are excluded initially; com-
pliance must be assessed after the motion prim-
itive computation. The total cost of the motion
primitive is J = (∥ul∥2 + ρ)τ .
Fig. 1 shows an example of motion primitives
generated through this approach.

Figure 1: 2D motion primitives for a jerk-
controlled system from an initial state (red dot).

4.2. Graph construction
Motion primitives discretize the state space, en-
abling the construction of a graph representation
G(V, E). Here, V is the set of states and E is the
set of edges, each defined by a motion primitive.
The states in V are generated by iterative ap-
plication of each control input u(t) ∈ UL for a
duration τ to each state.

4.3. Kinodynamic motion planning
For quadrotors, trajectory effort is expressed as:

J(C) =

∫ T

0
∥u(t)∥2 dt =

∫ T

0
∥p(q)(t)∥2 dt.

Thus, the motion planning problem arises from
the reformulation of Problem 1 and the incorpo-
ration of the dynamics in Eq.(4):

min
C,T

J(C) + ρT

s.t. ẋ(t) = Ax(t) +Bu(t), t ∈ [0, T]

x(t) ∈ Sfree, u(t) ∈ U , t ∈ [0, T]

x(0) = xi, x(τ) ∈ Sgoal.

(5)

Here, the objective is to find a polynomial tra-
jectory parametrization D and a time T .
Motion primitives allow to convert Problem 5 to
a graph-search problem. This can be done by

treating the control as a piecewise constant over
intervals of duration τ : u(t) =

∑N−1
k=0 uk. Thus,

the graph-search problem is formulated as:

min
uk

(
N−1∑
k=0

∥uk∥2 + ρN

)
τ

s.t. xk+1(t) = F (t)xk(t) +G(t)uk, ∀ k, t ∈ [0, τ]

xk+1(t) ∈ Sfree, ∀ k, t ∈ [0, τ]

uk ∈ UL, ∀ k
xk+1(0) = xk(τ), ∀ k
x0(0) = xi, xN (τ) ∈ Sgoal,

where k = 0, . . . , N−1.
The A* algorithm is used to solve the graph
search problem. A* employs the GetSuccessors
procedure in Algorithm 1 to explore the free
state space and construct the graph. In essence,
for each control ul ∈ UL, a motion primitive is
computed by applying ul to the current node v
for a duration τ . The dynamic feasibility of the
trajectory is assessed and, if feasible, the succes-
sor node is added to the list along with the cost.

Algorithm 1 Given node v and the discretized
control set UL, find the successors of v Succ(v)
and their cost Cost(v).

1: function GetSuccessors(v, UL,τ)
2: Succ(v) ← ∅, Cost(v) ← ∅;
3: for all ul ∈ UL do
4: pr ← GeneratePrimitive(v,ul,τ);
5: if isDynamicallyFeasible(pr) then
6: sf ← pr(τ);
7: Succ(v) ← Succ(v) ∪ {sf};
8: Cost(v) ← Cost(v) ∪ {(∥ul∥2 + ρ)τ};
9: end if

10: end for

4.4. Numerical example
Consider a double integrator-modeled quadro-
tor tasked with navigating from the initial state
(x, y, vx, vy) = (2, 1, 0, 0) to the final state
(x, y, vx, vy) = (38, 7, 0, 0) in a 2D 40m × 10m
virtual environment. Velocity is constrained to
vx, vy ∈ [−2, 2]m/s, while the set of control in-
puts is discretized with nine options within the
allowable range of ux, uy ∈ [−2, 2]m/s2.
In Fig. 2, the red trajectory represents the opti-
mal collision-free trajectory guiding the vehicle
to the target state. Fig. 3 shows the velocity

3

Executive summary Marta Manzoni

profile for the optimal trajectory, demonstrating
adherence to velocity constraints.

Figure 2: Simulation for the acceleration-
controlled system. Blue dots: initial and final
positions. Red curve: optimal trajectory. Green
dots: expanded nodes.

Figure 3: Velocity profile for the optimal trajec-
tory in Fig.2.

5. Search-based planning with
motion primitives library

In Section 4, motion primitives result from dis-
cretization of the control input. Here, a state
space discretization is exploited to create a mo-
tion primitive library, as proposed in [3].

5.1. Motion primitives library
Given an initial state xi and a final state xf , a
motion primitive is the solution to Two-Point-
Boundary-Value-Problem (TPBVP) in Eq.(1).
Solving this problem for a nonlinear system of
form ẋ(t) = f(x(t), u(t)) is computationally
challenging, requiring nonlinear solvers. To re-
duce the online computational load, a motion
primitives library is introduced, moving compu-
tational challenges to the offline phase.
Following [3], the database of motion primi-
tives is generated offline by solving Problem 1
for a suitable number of boundary conditions
(xki , x

k
f), k = 1, . . . , N , obtained by uniformly

gridding the continuous state space. The re-
sulting optimal trajectories x∗k(t), control inputs
u∗k(t), durations τ∗k , and costs C∗

k are stored

in a Look-Up Table (LUT). Subsequently, the
database is repeatedly used online by the plan-
ner. When the planner requires a trajectory con-
necting two nodes, it selects a suitable motion
primitive from the library.
Motion primitives create a finite lattice dis-
cretization within the state space, representing
precomputed feasible maneuvers for the system.
To optimize planning, the planner’s search space
is uniformly gridded as the region where motion
primitives are built.

Invariance properties

Dynamic systems, featuring translation invari-
ance, maintain consistent behavior under coor-
dinate translations. This implies that optimal
primitives remain the same regardless of the co-
ordinate frame.
Certain systems, like quadrotors, exhibit robust
invariance properties, being invariant to hori-
zontal plane translations and rotations about
the vertical axis. Additionally, quadrotor mo-
tion primitives are symmetric with respect to
both the x- and y-axes. Leveraging these prop-
erties enables the reduction of the memory re-
quired to store the database.

Numerical example

Consider a simplified quadrotor model that in-
cludes position and velocity along with a 2D ac-
tuation space (ax, ay) = (ux, uy) representing
linear acceleration. For this system, a third-
order polynomial representation is considered.
The library of motion primitives is computed by
solving the following TPBVP for every combi-
nation of initial and final states.

minimize
Ci,Bi,i=1:4

∫ τ

0
∥u(t)∥2 dt+ ρτ

s.t. x(t) =
C1

6
t3 +

C2

2
t2 + C3t+ C4,

y(t) =
B1

6
t3 +

B2

2
t2 +B3t+B4,

∥v(t)∥ ∈ [−1.5
√
2, 1.5

√
2], t ∈ [0, τ]

∥a(t)∥ ∈ [−4.5
√
2, 4.5

√
2], t ∈ [0, τ]

x(0) = xi, y(0) = yi,

vx(0) = vxi, vy(0) = vyi,

x(τ) = xf , y(τ) = yf ,

vx(τ) = vxf , vy(τ) = vyf .

(6)

4

Executive summary Marta Manzoni

Here, total velocity and total acceleration (con-
trol input) are defined as ∥v∥ =

√
v2x + v2y and

∥u∥ = ∥a∥ =
√
a2x + a2y, respectively. Veloci-

ties (vx, vy) and accelerations (ax, ay) along each
axis are obtained as the first and second deriva-
tives of the positions (x, y). Finally, Problem 6
is solved using MATLAB’s fmincon function.

Figure 4: Motion primitives subset. Red dot:
initial state. Blue dots: final states. Black lines:
trajectories for various final velocities.

Fig. 4 shows a subset of these motion primi-
tives originating from the steady state xi = yi =
vxi = vyi = 0. Due to symmetry property, only
trajectories in the first quadrant (black curves)
are stored in the database; others (pink curves)
can be generated through mirroring. Further-
more, translation invariance allows maintaining
a small database while covering the entire vehi-
cle operating space. In practice, the initial po-
sition can be set as (x̂i, ŷi) = (0, 0) during the
database construction. Subsequently, the mo-
tion primitives can be translated to match any
other initial position (xi, yi), as shown in Fig. 5.

(a) original nodes. (b) translated nodes.

Figure 5: Steps involved in the translation.

5.2. Kinodynamic motion planning
The A* algorithm is used for planning, employ-
ing the GetSuccessorsLibrary procedure in Al-
gorithm 2 to explore the state space and build
the graph. When provided with an initial state
and a final state, the GetSuccessorsLibrary
procedure is employed to query the database of
motion primitives. This process involves a se-
quence of translations. Moreover, the chosen
primitives must ensure continuity of all state
variables at each node.

Algorithm 2 Given node v and database L, in-
cluding initial states si, final states sf , primi-
tives pr, and effort costs c, find the set of suc-
cessors Succ(v) and their cost Cost(v).

1: function GetSuccessorsLibrary(v, L)
2: Succ(v) ← ∅, Cost(v) ← ∅;
3: for all si, sf ∈ L do
4: L.isContinuous(v,si L);
5: L.Translate(v,si,sf L);
6: end for
7: for all pr ∈ L do
8: if isCollisionFree(pr) then
9: Succ(v) ← Succ(v) ∪ {sf};

10: Cost(v) ← Cost(v) ∪ {c+ ρτ};
11: end if
12: end for

6. Experimental results
This section demonstrates the effectiveness of
the approach introduced in Section 5 for nav-
igating real-world cluttered environments. Ex-
periments are carried out with the ANT-X
quadrotor in the Aerospace Systems and Control
Laboratory at Politecnico di Milano (Fig.6).

Figure 6: Quadrotor and indoor environment
used for the experiments.

In the experiment, a quadrotor operating in
a 10m × 4m environment featuring two obsta-
cles (Fig.6) is considered. The starting posi-
tion is set at (−3.5, 0.5, 1), and the goal re-

5

Executive summary Marta Manzoni

gion is a square with a side length of 0.5m,
centered at (3,−0.5, 1). The simplified quadro-
tor model considered includes position, veloc-
ity and acceleration along with a 2D actuation
space (jx, jy) = (ux, uy) representing linear jerk.
A fifth-order polynomial representation is em-
ployed for this system, and the database is com-
puted by solving a TPBVP derived from Prob-
lem 6 considering such parametrization. To-
tal velocity, acceleration, and jerk limits are
set at vmax = 1.5

√
2m/s, amax = 4.5

√
2m/s2

and jmax = 15
√
2m/s3. Database construc-

tion starts at (xi, yi) = (0, 0) and is based on
a uniform square grid, with final state coordi-
nates in (xf , yf) = [−2, 0) ∪ (0, 2] × [−2, 0) ∪
(0, 2]. Initial and final velocities and accelera-
tions are chosen from sets {−1.5, 0, 1.5}m/s and
{−4.5, 0, 4.5}m/s, respectively.
Fig. 7 shows the planned trajectory, while Fig. 8
shows the position and velocity profiles with
their setpoints, demonstrating precise tracking.

Figure 7: Planned trajectory.

7. Discussion
The first method computes motion primitives
online, making it suitable only for simple sys-
tems. The second method extends motion plan-
ning to any dynamic system by introducing
a database. The first method employs fixed-
duration primitives, hindering minimum-time
trajectory generation. In contrast, the second
method optimizes the duration of the primi-
tives. Finally, the analytical solutions used by
the first method lack information on dynamic
constraints, requiring a subsequent feasibility
check. The second method integrates dynamic
constraints directly into the database.

Figure 8: Position and velocity setpoints
(dashed) compared to tracked profiles (solid).

8. Conclusions
This thesis addresses UAV trajectory planning
in cluttered environments by implementing two
methods. The first, a quadrotor-tailored search-
based planner, excels in kinodynamic motion
planning for quadrotors. The second method
introduces a database of precomputed solutions,
demonstrating applicability to arbitrary dynam-
ical systems. The experimental results reveal
the success of using this approach as the ba-
sis for safe and fast navigation. In conclu-
sion, both methods demonstrate ability to gener-
ate complete, collision-free, resolution-optimal,
and dynamically feasible trajectories. More-
over, this generic framework can be integrated
with other path-planning techniques, such as
sampling-based methods.

Prospective works
Future work will focus on addressing motion
planning in unknown and dynamic environ-
ments. This involves dynamic re-planning using
real-time data. Additionally, to address model-
ing errors and improve tracking, Iterative Learn-
ing Control (ILC) will be considered. This in-
volves a learning phase in real flights to build
the database.

6

Executive summary Marta Manzoni

References
[1] S. Liu, N. Atanasov, K. Mohta, and V. Ku-

mar. Search-based motion planning for
quadrotors using linear quadratic minimum
time control. In 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and
Systems (IROS), pages 2872–2879, 9 2017.

[2] M. W. Mueller, M. Hehn, and R. D’Andrea.
A computationally efficient motion primi-
tive for quadrocopter trajectory generation.
IEEE Transactions on Robotics, 31(6):1294–
1310, 7 2015.

[3] B. Sakcak, L. Bascetta, G. Ferretti, and
M. Prandini. Sampling-based optimal kin-
odynamic planning with motion primitives.
Autonomous Robots, 43(7):1715–1732, 2019.

7

	Introduction
	Quadrotor model
	Kinodynamic motion planning
	Problem formulation
	Kinodynamic planning with motion primitives

	Search-based planning with online motion primitives
	Motion primitives generation
	Graph construction
	Kinodynamic motion planning
	Numerical example

	Search-based planning with motion primitives library
	Motion primitives library
	Kinodynamic motion planning

	Experimental results
	Discussion
	Conclusions

