
POLITECNICO DI MILANO
Master Degree in Computer Science Engineering

School of Industrial and information engineering

INCREMENTAL QUANTTREE

Relatore: Prof. Giacomo Boracchi

Correlatore: Luca Frittoli

Candidato:

Daniele Lunghi

Anno Accademico 2019-2020

Ai miei genitori

2

Ringraziamenti

Non capita molte volte di laurearsi, e vorrei approfittare dell’occasione per ringraziare

una serie di persone, che più di tutte mi hanno aiutato durante questo mio percorso.

Innanzi tutto vorrei ringraziare Giacomo per avermi dato l’opportunità di lavo-

rare a un progetto che mi ha dato molte soddisfazioni, per avermi incoraggiato a

continurare con la ricerca e per i mille consigli dati durante la stesura della tesi.

Ringrazio Luca per i suggerimenti e l’aiuto datomi, senza di lui questa tesi sarebbe

decisamente peggiore.

Vorrei ringraziare Erika, Andrea, Seba e Ilan per essere stati miei amici dall’inizio

alla fine, ciò che è importante dura a lungo, Un grazie a Giulia, come amica e per

avermi dato suggermimeti e aiuto per la tesi. Vale doppio. Grazie a Emanuele,

per anni di consigli e piani sul percorso universitario, pare abbiano funzionato. E

soprattutto grazie a Sara. Sono una persona migliore da che ti conosco, e gran parte

dei traguardi che ho raggiunto negli ultimi anni portano anche tua sua firma. Grazie

di essermi vicina. Sono felice di averti incontrata.

Grazie ai miei nonni, tutti e quattro. Ringrazio nonna Egle, che penso più di tutti

avrebbe voluto vedere questo momento, nonno Roberto, che è un po’ l’ingegnere che

vorrei diventare, nonna Vanna, che è capace di rendermi sempre di buon umore e

nonno Mario, che avrei voluto conoscere meglio.

Grazie mamma, per essere un esempio di vita e la persona che più ammiro.

Infine più di tutti vorrei ringraziare Anna. Le parole non rendono sempre l’idea, ma

sono davvero molto fortunato ad essere tuo fratello. Ti voglio bene.

3

Abstract

Change Detection on data streams, defined as the problem of monitoring a stream

of data to detect whether a distribution change has occurred, is a relevant topic

in machine learning, with applications ranging from wildfires monitoring to quality

control. In this thesis we address the problem by proposing a novel non parametric

algorithm for change detection on data streams.

We begin by analyzing literature on this problem, discussing the change detec-

tion algorithms proposed over the years, with a focus on those capable of monitor-

ing multivariate data streams. We then start from QuantTree, a non parametric,

histograms-based algorithm for multivariate data streams to build our contribu-

tions to the problem, consisting of a novel change detection algorithm, Incremental

QuantTree (IQT). IQT requires a very small training set to begin monitoring a data

stream, continuously increasing its detection accuracy over time. Furthermore it

can be combined with of an Exponentially Weighted Moving Average chart, which

controls the false alarms of the algorithm over time, detecting if a change occurred.

Our experiments show that Incremental QuantTree is able to obtain a perfor-

mance comparable to that of QuantTree when having access to a much smaller

training set, and is also in line with Hotelling - Change Point Methods.

Abstract

La rilevazione dei cambiamenti (Change detection) su flussi di dati, fefinito come il

problema di monitorare un flusso di dati per stabilire se è avenuto un cambiamento

nella distribuzione che genera quei dati, è un problema rilevante di Machine Learn-

ing, con applicazioni in campi come il monitoraggio degli incendi, il controllo del

traffico e il controllo di qualità. In questa tesi proponiamo un nuovo algoritmo non

parametrico per Change Detection su stream di dati.

Prima di tutto analizziamo la letteratura sul tema, discutendo le tecniche prin-

cipali proposte nel corso degli anni. Partendo poi da QuantTree, un algoritmo non

parametrico per change detection basato su istogrammi, abbiamo creato un nuovo

algoritmo per fare change detection, Incremental QuantTree (IQT). IQT è un al-

goritmo in grado di iniziare a monitorare un flusso di dati partendo da un training

set di dimensioni estremamente ridotte, migliorando progressivamente la propria ca-

pacità di individuare cambiamenti. Inoltre può essere esteso con un controllo con un

diagramma di Exponentially Weighted Moving Average, che controlla i falsi allarmi

dell’algoritmo nel tempo, individuando in questo modo dei cambiamenti.

I nostri esperimenti mostrano che Incremental QuantTree è in grado di ottenere

una performance comparabile a QuantTree, avendo accesso a un training set molto

più ridotto. Inoltre ha una performance in linea con il Change Point Method che fa

uso della statistica Hotelling.

II

List of Figures

3.1 QuantTree cuts. K = 5. The target probabilities {πk}k are {1
3
, 1

12
, 7

24
, 1

12
, 5

24
}.

The first bin computed is S1, where the cut is made along the x-axis.

The other bins are then iteratively created by partitioning the space

over a random axis and assigning nk points to each bin Sk, according

to algorithm 1 . 12

3.2 EWMA table: λ = 0.2. The values of L for different values of the

desired ARL0 are expressed as a polynomial function of p̂0, i.e. of

the estimated value of the parameter p of the monitored Bernoulli

distribution.. 15

4.1 Initial situation, a QuantTree histogram of four bins has been created.

π̂1 = 1
2

. 20

4.2 As two new points arrive, it is necessary to move the boundary be-

tween S1 and the adjacent bins to maintain π̂1 constant. 21

4.3 The value of π̂3 has changed, therefore the boundary between S2 and

S3 must be moved to maintain the empirical probabilities constant. . 21

4.4 The plot represents the dependency of the thresholds computed with

QuantTree threshold procedure with respect to the size N of the

training set. For each value N , multiple random combinations of

target probabilities {πk}k . 26

4.5 Monitorig a QuantTree with an EWMA chart, it is possible to see

that, if the QuantTree has been built with uniform target probabilities

{πk}k, the effective FPR when using the Total Variation statistic is

smaller than the one obtained using Pearson, although they have been

set to yield to the same desired FPR α = 0.5 32

4.6 When the probabilities {π̂}k are iteratively built by modifying an

Incremental QuantTree built on a sufficiently large training set, the

probabilities {πk}k are generally not symmetric, ant the performance

of the Total Variation improves as a consequence. 32

III

LIST OF FIGURES LIST OF FIGURES

4.7 The points drawn from φ0 (figure on the left) are used to build a

QuantTree histogram h = {Sk, π̂k}k. The points drawn from φ1 (fig-

ure on the right) have a different distribution in the space of the data,

but tend towards the center of the bins {Sk}k 37

5.1 False Positive Rate . 45

5.2 Detection Power . 46

5.3 Average Run Lenght before a false alarm, QuantTree and Incremental

QuantTree. N = 3200, D = 8, M = 128, the desired value for the

ARL0 is 1800.. The green triangle represents the empirical mean of

the two distributions, while the yellow line represents the median. . . 47

5.4 Average Run Lenght: Incremental QuantTree and H-CPM. Incre-

mental QuantTree controls better the Average Run lenght. 47

5.5 Detection Delay: Incremental QuantTree and QuantTree. The green

triangle represents the empirical mean of the two distributions, while

the yellow line represents the median. 48

IV

Contents

1 Introduction 1

1.1 Problem formulation . 3

1.2 Structure of the Thesis . 4

2 State of the art 5

2.1 Parametric methods . 6

2.2 Non parametric methods . 8

3 Background 10

3.1 QuantTree . 10

3.1.1 Algorithm overview . 10

3.1.2 Implementation details . 11

3.2 EWMA . 14

3.2.1 EWMA charts . 14

3.2.2 Bernoulli monitoring . 14

3.2.3 Unknown parameter case . 15

4 Incremental QuantTree 17

4.1 Introduction . 17

4.2 Histograms . 19

4.2.1 Update procedure chosen: modify the probabilities 19

4.2.2 Comments on the alternative 20

4.3 Thresholds . 22

4.3.1 Implementation details . 22

4.4 Online monitoring . 23

4.5 Asymptotic analysis . 25

4.5.1 cut on space . 25

4.5.2 Comment on the results . 28

4.6 Statistics . 29

4.6.1 Pearson . 29

V

CONTENTS CONTENTS

4.6.2 Total Variation . 31

4.7 EWMA-IQT . 34

4.7.1 Algorithm overview . 34

4.7.2 Implementation . 34

4.7.3 Comments on the results . 37

4.7.4 Paired learners . 38

5 Experiments 39

5.1 Instruments used . 39

5.1.1 The Hotelling test statistic . 39

5.1.2 Controlling the Change Magnitude 41

5.2 Figures of merit . 42

5.3 Design of the experiments . 44

5.4 Comments on the results . 45

6 Conclusions 49

VI

Chapter 1

Introduction

Change Detection is a relevant topic in machine learning, and it can be defined as

the problem of identifying differences in the state of an object or phenomenon by

observing it at different times [1]. We focus on change detection of data stream,

which can be formulated as determining as quickly as possible if a monitored data

stream encounters a distribution change [2]. The underlying assumption is that data

can be modeled as generated by a stationary distribution φ0 until a certain time τ ,

typically referred to as the change point, and as generate by a different distribution

φ1 afterwards.

In supervised learning change detection is closely related to the problem of con-

cept drift detection, i.e. determining whether the statistical properties of an ob-

served process vary over time, possibly reducing the performance of learners trained

on past data [3]. Concept drift is a common problem in online machine learning,

concerning applications such as fraud detection [4] [5], financial time series analysis

[6] and predictive maintenance [7].

In recent years an increasing number of applications rely on data streams moni-

toring, some examples being wildfires monitoring [8], security [9] and quality control

[10]. In doing so it is important to properly control the False Alarms Rate, be-

cause any detection might trigger possibly time-consuming and costly interventions,

including the re-training of the change-detection algorithm.

Usually, change detection must be done in a semi-supervised manner. In fact

it is common to have access to a relatively small training set TRsmall of points

from φ0, while having access to data drawn from the post change distribution is

often impossible [11]. Another challenge is that the potentially infinite lenght of the

data stream does not allow to store the observations and process them all together.

Moreover, changes in data streams must be found at run time, which is particularly

important for high frequency streams.

1

CHAPTER 1. INTRODUCTION

A large number of change detection techniques in the literature are parametric

and require the distribution φ0 to belong to a known family, which is not always

the case. Non parametric techniques based on ranks [12] or on the cumulative func-

tion [13] are not applicable to multivariate data. Kernel methods [14] can process

multivariate data and control the False Alarms , but require a large training set.

This, depending on the situation, can become a severe limitation when the size of

the available training set is not large enough.

Histograms are non parametric models, often used to describe and compare mul-

tivariate probability distributions. However, they are often implemented over regular

grids and require a number of bins that grows exponentially with the data dimen-

sion. A histogram-based methods that allows to control the number of bins for

highly multi-dimensional data is QuantTree, which builds its histogram via binary

splits on a single covariate, where the cutting points are defined by the quantiles of

the marginal distributions [11]. However, a large training set is required to build

the histogram, leading to the same drawbacks discussed for [14].

Our contribution is Incremental QuantTree (IQT), a non parametric change de-

tection algorithm for multivariate data streams, which requires solely a very small

training set. IQT is able to learn from the data stream, increasing the detection

power over time, controlling meanwhile the False Positives. The components of IQT

are:

• A technique to continuously update a QuantTree (QT) histogram whenever

new data drawn from the stationary distribution φ0 are received, maintaining

the control over the False Alarms, proper of QuantTree [11].

• A statistical test that is performed iteratively on the incoming data to assess

the goodness-of-fit with respect to the model. The monitored data stream is

divided into batches of fixed size ν, and analyzed batch-wise.

• A procedure to compute the threshold for the described statistic in O(1), to al-

low a proper functioning of the algorithm for high frequency data streams. To

this end, a Neural Network is trained using Monte Carlo Simulations, leverag-

ing the fact that the distribution of any statistic defined over a QT histogram

does not depend on φ0 [11].

Furthermore, we discuss the possibility of using an Exponentially Weighted Moving

Average (EWMA) chart to monitor the Alarms raised by an Incremental QuantTree.

Here change detection boils to the monitoring of a binary classifier whose behaviour

in stationary condition is known, an Incremental QuantTree, and this task can be

effectively performed by an EWMA [15] [12].

2

1.1. PROBLEM FORMULATION CHAPTER 1. INTRODUCTION

Our experiments (Chapter 5) show that Incremental QuantTree achieves detec-

tion performance comparable with QuantTree starting with a significantly smaller

training set, while maintaining the control over the False Alarms. Furthermore, we

show that IQT has good detection performance for high dimensional data streams.

1.1 Problem formulation

We consider a possibly infinitely long data stream x1, x2, ... ∈ Rd, where data be-

come available one at time. We assume data in stationary conditions to follow a

distribution φ0, and we define the change point τ as the unknown time when the

distribution changes, i.e.:

xt ∼

φ0 t < τ

φ1 t ≥ τ
(1.1)

We consider a batch-wise analysis, where the data stream is divided into batches

of fixed size. Each batch is analysed by means of statistical tests as soon as it is

available, to tell whether its observations are generated from the same distribution

φ0 as the training set.

We assume a small training set TRsmall = {w1, w2, .., wM} to be provided at

time t = 0, and to receive successive data as a continuous stream x1, x2.... When

all the observations in the training set follow φ0, i.e. if w1, w2, .., wM ∼ φ0, the

problem is semi-supervised, while when there is no guarantee that all the points

have been generated by φ0, the problem is unsupervised. This work focuses on the

semi-supervised scenario, where the algorithm can model the distribution φ0 using

the training set.

For change detection on data streams, the performance of our algorithm is mea-

sured in terms of the Average Run Lenght before a False Alarm (ARL0) and the

Average Run Lenght before detecting a change, after it has happened (ARL1). The

goal of change detection algorithms on data streams is to minimize the ARL1, while

controlling the ARL0.

Our intuition is that, when having initially access to a small training set TRsmall,

the model of φ0 fitted on TRsmall is imprecise, thus the detection power is low.

Therefore, it is important to improve the quality of the model upon the arrival of

new observations, providing a better model of φ0 and thus improving the ability of

the algorithm to detect changes. As we are considering change detection by means

of one-shot statistics, this translates into increasing the detection power, expressed

as the probability of detecting as different from the stationary data a batch of points

3

1.2. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

drawn from a different distribution φ1, controlling meanwhile the False Positive Rate

(FPR). It should be noted that a change could potentially happen at any time,

hence the algorithm used must be able to analyse data before using them to update

the model.

1.2 Structure of the Thesis

This thesis is structured as follows:

• In Chapter 2 we review the literature on change detection and we discuss the

challenges faced when performing it on data streams

• In Chapter 3 we give a detailed explanation of QuantTree, the building block

of our research work.

• In Chapter 4 we present Incremental QuantTree algorithm, its properties and

the implementation of a minor threshold computation algorithm to ease the

training of its neural network.

• In Chapter 5 we test the performance of the algorithm, introducing the datasets

used and the methodology; we also discuss the obtained results.

• In Chapter 6, we summarize the contributions of our work, pointing out pos-

sible improvements and presenting our conclusions.

4

Chapter 2

State of the art

During time, multiple approaches for change detection have been developed. This

is caused both by the large amount of research on the topic and the variety of forms

in which data are available, which influences the monitoring approaches. Typically

most techniques are characterized by the following structure[11]:

• A model for the observed process, typically extracted from the training set

• A test statistic T used to assess the difference between the monitored data

and the training set.

• A decision rule T → Decision, which monitors the test statistic in order to

detect a change.

In particular, [16] points two main approaches: batch-wise and continuous mon-

itoring. The first group consists of those algorithms which group incoming data in

fixed lenght intervals called batches,which are analysed independently by means of

a one-shot statistical test. Continuous algorithms instead incrementally build the

value of the statistic, updating it whenever new observations are available. The

value of the statistic used at time t depends therefore on its value at time t− 1, and

the detection is based on all data received up to the current moment.

Given the vast amount of researches published and solutions proposed, we give

an overview of the main families change detection algorithms can be split into, and

explain where our work fits in the current state of the art. It must be noted that they

are all built on statistical tests, as they are built on the assumption of monitoring

the realization of a random variable, possibly unknown. The first major split can be

made between supervised settings, in which the algorithm receives labelled samples

from both stationary and non stationary data, and semi-supervised ones, where only

stationary data are used. Most techniques operate in a semi-supervised manner

5

2.1. PARAMETRIC METHODS CHAPTER 2. STATE OF THE ART

[16], as non stationary samples are often not available during the training phase

[11], because they often represent an anomalous and out of control situation In fact

it is not known which change might happen, and the change detection algorithm

should in principle be able to detect any possible change, even those that have never

occurred in the past.

A second notable division splits the techniques between those that require the

data to be univariate and those which don’t need this assumption. We discuss the

most important families of algorithms used, starting from the division between those

that can only operate on univariate data streams and those that don’t require this

situation.

2.1 Parametric methods

Most change detection methods in history are parametric, and use a set of parame-

ters to model the observed distribution φ0. They are built on the assumption that

φ0 belongs to a known family of distributions, and they use the training phase to

set the parameters. Parametric change detection methods often use graphs called

control charts to study how a process changes over time. Control charts were first

introduced by Shewart (1926-1927) and were used to monitor the fraction of non

conformities. [17]. Shewart charts monitor that all single observations remain inside

a given interval. It is a model based on a zero order polynomial, which is constructed

on the assumption that the variations lying inside the control limits are the results

of random causes and the variations lying outside the control limits are the results

of assignable causes[18]. The main limitation lies in the fact that each observation

is evaluated independently from the others, which makes Shewart charts not very

effective on small sustained changes [19].

To address this problem, concept drift methods based on the contemporary eval-

uation of multiple observations have been created. The CUSUM chart was first

introduced by Page [20]. It assumes that the change in the distribution can be mod-

eled as an instantaneous change of a single parameter θ [21], whose values before

and after the change are known. We call θ0 the value of the parameter prior to the

change, and θ1 the value after. CUSUM chart sequentially monitors the log-likehood

ratio st, expressed as:

st = ln Λ(x) = ln
p(xt, θ1)

p(xt, θ0)
. (2.1)

The CUSUM statistic S(t) consists of the cumulative sum of the log likehood ratio

st, and is characterized by the formula:

S(t) = max(0, S(t− 1) + st) (2.2)

6

2.1. PARAMETRIC METHODS CHAPTER 2. STATE OF THE ART

The decision rule is given by confronting the statistic S with a threshold γ, according

to the rule S(t) > γ. In order to guarantee a desired ARL0, the threshold γ can

be computed analytically [20], by means of an approximation or using the Markov

Chain Approach [21]. The CUSUM methods are proved to have lower detection

times than the corresponding Shewhart-type charts in presence of small changes

[22].

A third method is the Exponentially Weighted Moving Average (EWMA) chart,

which computes a weighted average of the observed data, where the weights decrease

geometrically with time [23]. The EWMA chart was introduced in 1959 as a memory-

based tool to detect small changes [24]. The formula for the EWMA is the following,

Zt = (1− λ) · Zt−1 + λ ·Xt (2.3)

where the parameter λ is called the smoothing factor, and determines the influence

over the model of old observations.

Multivariate data Not all methods that work well on univariate problems can

be transposed to the multivariate situation, as some of them explicitly require the

observations to be scalar. The first multivariate control chart was introduced by

Hotelling in 1947 as the direct multivariate equivalent of a Shewart chart. It assumes

that sample data follow a p-variate normal distribution with known mean µ and

known covariance matrix Σ. We discuss an algorithm based on the Hotelling statistic

in 5.1.

An other common parametric change detection method consists of iteratively

monitoring the log likehood of the observed data with respect to the distribution

φ0. They are based on the assumption that the family to which the distribution φo

belongs is known a priori, and that it can be modeled by means of tuning the value

of one or more parameters θ1, θ2.. = Θ. A training phase is used to estimate the

true value of the parameters and, consequently, the distribution φ0. We call φ̂0 the

estimation built on Θ.

The log likehood of the observed data x(t) is given by [25]

L(x(t)) = log(ˆφ0(x(t)) (2.4)

Denoting with L the sequence of log likehood observations, we observe that in sta-

tionary conditions L contains i.i.d data drawn from a random scalar variable. When

X is subject to a change, we expect L to change itself, and a change is detected by

continuously monitoring L. However, the detectability of a change worsens signi-

ficatively when the dimension increases, because of the linear relationship between

the variance of the log likehood and the dimension of the data space [26].

7

2.2. NON PARAMETRIC METHODS CHAPTER 2. STATE OF THE ART

2.2 Non parametric methods

It is not always possible to make assumptions about the data distribution, or the

assumptions made might be incorrect, therefore in some situations a model which

does not require them is necessary. As changes can happen both in the location and

the scale of the observed variable, different techniques have been developed during

the years to identify one or both.

Pettitt [27] implements a statistic based on the maximization over multiple

Mann-Witney statistics, which allows to detect changes in the location of the ob-

served parameter for fixed sized batches. It is important to notice that the choice

of the thresholds is built on top of an asymptotic reasoning, which limits the effec-

tiveness of the algorithm when multiple changes happen.

An extension of the same method has been proposed by [19], based on the Change

Point Formulation. It recursively applies the T-test between left and right sections

of the sequence, maximized across all possible change points. Common choices for

the threshold in this case comes from the Bonferroni inequality and the Monte Carlo

sampling. In [28] the authors propose a Ranks-based method for finding changes

in both location and scale for univariate data streams, without assuming any prior

knowledge about the distribution observe.

Multivariate data The non parametric algorithms described so far are designed

for change detection on univariate data. We present here the main techniques for

multivariate data. Principal Component Analyisis(PCA) [29] projects the data on

a smaller set of dimensions (like the ones associated to the maximum variance), and

features like the proximity of the points in the subspace or the reconstruction error

when bringing data back to the original features are monitored. A major issue is

that the results are often hard to interpret and much depends on the analyst’s skills

to identify the key components to represent changes and select the thresholds.

Kernel methods are a strong candidate to detect in highly multidimensional data.

Naming x1, x2.., xτ the set of observations of the data stream prior of the change

point τ , and y1, y2... the observations xτ+1, xτ+2 after the change, such that yi = xτ+i,

we define the Maximum Mean Discrepancy as MMD = supfinFEx[f(x)]− Ey[f(y)],

which represents the squared distance between the embeddings of the two distribu-

tions φ0 and φ1 on a reproducing kernel Hilert Space (RKHS). A common approach

is to estimate the Maximum Mean Discrepancy by means of the U-statistic, an

unbiased estimator built using kernels [30]. However, the computational cost of

computing the U-statistic is O(T 2), which for data streams can become a severe

limitation. To address the performance problems given by this statistics a test with

8

2.2. NON PARAMETRIC METHODS CHAPTER 2. STATE OF THE ART

complexity O(N), called B-test, was proposed in [14]. However, kernel methods

require a large training set to obtain a good performance, which, depending on the

situation, can become a severe limitation to the applicability of these methods.

Histograms represent a common and strong method to find changes in multivari-

ate data streams. However their common implementation over regular grids scales

badly when dimensionality grows, as the number of bins grows exponentially with

the dimension, which makes them a problematic choices when dealing with highly

multivariate data [11]. Among the histogram-based algorithms, QuantTree [11] al-

lows to control the number of bins regardless of the dimensionality of the data and

provides a False Positive Rate which is independent from the underlying distribu-

tion. The next chapter of our work is dedicated to the description and analysis of

QuantTree.

9

Chapter 3

Background

We present here the main instruments that have been used for our research. The first

algorithm discussed is QuantTree. This is particularly important, as Incremental

QuantTree is built on top of QuantTree [11], therefore a detailed explanation of its

structure and properties is provided to illustrate our contributions.

The Exponentially Weighted Moving Average (EWMA) [12], is the main com-

ponent of our second contribution, IQT-EWMA. We discuss the EWMA charts as a

general change detection tool. We then proceed to go into the details of the settings

that are useful for our work, in particular the case where the monitored random

variable follows the Bernoulli distribution.

3.1 QuantTree

3.1.1 Algorithm overview

QuantTree is a non parametric change detection algorithm for multivariate data,

which relies on a histogram h, called QuantTree histogram, to model the initial

distribution φ0 from a training set TR. It detects changes by means of a test statistic

T , applied on batches W1,W2... of data to tell whether they follow the distribution

φ0. In particular, the batch Wi is considered as following a different distribution

when

T (Wi) > Thr i ∈ 1, 2, ... (3.1)

where the threshold Thr for the statistic T is computed via Monte Carlo Simulations,

thanks to the fact that the distribution of T is independent from φ0, as shown in

[11].

As a consequence, QuantTree can control the False Positive rate, which is achieved

regardless of the family to which φ0 belongs. Furthermore, the procedure adopted

10

3.1. QUANTTREE CHAPTER 3. BACKGROUND

to create h allows to select the number of bins for the histogram a priori, which

is important as it avoid the exponential growth of the number of bins with the

dimensions of the data.

3.1.2 Implementation details

Histogram Construction

π̂k =
nk
N

(3.2)

where nk are the points of the training set TR falling inside Sk.

Algorithm 1 Histogram Construction

Require: TR, {πk}k
return {Sk, π̂k}k
t← 0

Lt ← TR

L̄t ← size(Lt)

for k ∈ 1, 2..K do

Choose a random component j ∈ {1, 2, ...d}
nk ← round(πk ·N)

Draw γ ∈ {0, 1} from a Bernoulli(0.5)

Define zj = [xi]j∀xi ∈ TR
Sort {zj} : z(1) ≤ z(2)... ≤ z(L̄t)

if γ = 0 then

Define Sk = {x ∈ Lt : [x]j < z(nk)}
else

Define Sk = {x ∈ Lt : [x]j > z(Lk − nk + 1)}
end if

Remove the points assigned to SK from Lt: Lt ← Lt − Sk
set π̂k = nk/N

end for

The procedure to compute the histogram is the following. First of all a new subset

of the training set, called L is created, containing all the points not yet assigned

to any bin Sk for k ∈ K. At the beginning it coincides with the full training set,

i.e. L = TR and we call the size of this set at time t as L̄t. Iteratively, a random

dimension j ∈ d is chosen with uniform probability. All data y1, t2.. ∈ L are then

sorted over their jth dimension. We denote as zj = [xi]j the value of the point

xi ∈ TR on its d-th dimension. A value y is drawn from a Bernoulli distribution.

11

3.1. QUANTTREE CHAPTER 3. BACKGROUND

Figure 3.1: QuantTree cuts. K = 5. The target probabilities {πk}k are

{1
3
, 1

12
, 7

24
, 1

12
, 5

24
}. The first bin computed is S1, where the cut is made along the

x-axis. The other bins are then iteratively created by partitioning the space over a

random axis and assigning nk points to each bin Sk, according to algorithm 1

Depending on the value y the first or last nk points are selected to belong to the bin

Sk, where nk = round(πk ∗N), and a cut xj = s[n] or xj = s[L̄t − n] is selected as

the limit for the bin. The assigned points are then removed from L. The procedure

is repeated for each bin of the histogram.

An example of the results is shown in figure 3.1 where d = 2 and the number of

bins is 5. The number of the training set is N = 24, and the probability πk assigned

to each bin can be computed from the image as nk/N . In this case the first bin to

be assigned is S1, where the dimension used to cut is the horizontal one, and the

first nk points have been selected. The procedure has then iteratively assigned all

the other points, reaching the final configuration in figure.

Threshold computation

QuantTree has a fundamental property: “the distribution of any statistic defined

over the resulting histograms does not depend on the data generating distribution”

[11]. This means that we can numerically compute the thresholds Th for any statistic

T defined on the histogram h, provided the size N on the training set used to create

it, the size ν of each batch, and the target probabilities {π1, π2..πK} associated to

each bin. Remarkably, knowing the distribution φ0 and the number of dimensions

d is not required to set the threshold.

The thresholds are computed using Monte Carlo simulations on a conveniently

chosen 1-dimensional distribution ψ0, exploiting the fact that a threshold valid for ψ0

is valid for any distribution, including φ0. The procedure, implemented in algorithm

12

3.1. QUANTTREE CHAPTER 3. BACKGROUND

Algorithm 2 Computation of thresholds

Require: Test statistic T , arbitrarily chosen ψ0, number B of datasets and batches

to compute the thresholds, number of points ν for every batch, N , K, π̂k, the

desired α

return The value Th of the threshold

for b = 1, 2, ..B do

Draw from ψ0 a training set TRb of N samples

Use QuantTree to compute the histogram hb with K bins and target probabil-

ities {πk}k over TR

Draw a batch Wb containing ν points from ψ0

Compute the value tb = T (W)

end for

Compute the threshold Thr as in (3.3)

2, is the following. At first B training sets {TRb}b=1,..B are generating by drawing

N points from ψ0. For each training set, a histogram hb is built using algorithm 1.

For each hb a batch Wb of ν points is drawn from ψ0, and the result of the statistic

Tb = T (hb,Wb) is stored. Finally, the threshold Thr is estimated from the results

of the statistics, i.e from the set G = {T1, T2...TB}, as the 1 − α quantile of the

empirical distribution of Thr over the generated batches, i.e:

Thr = min {Ti ∈ G : #{Tj ∈ G : Tj > Ti} ≤ αB} (3.3)

To take full advantage of the distribution-free nature of the procedure, we use

an univariate uniform distribution as ψ0. This allows to obtain high accuracy on

the estimation of the thresholds, since the low computational cost allows to use a

very large number B of batches for the simulation.

13

3.2. EWMA CHAPTER 3. BACKGROUND

3.2 EWMA and Bernoulli monitoring

3.2.1 EWMA charts

We provide here a more detailed analysis on Exponentially Weighted Moving Aver-

age charts, with a particular their use to monitor Bernoulli variables. As stated in

Chapter 2, Exponentially Weighted Moving Average is one of the oldest methods in

the Change detection literature, having been proposed in 1959.

It is based on an estimator Z, called EWMA estimator, built to monitor a

sequence of independent random variables X1, X2, ... Assuming the mean µ0 and

the variance σ0 an to be known, Z is defined as:

Z0 = µ0 (3.4)

Zt = (1− λ) · Zt−1 + λ ·Xt, ∀t > 0 (3.5)

where the parameter λ control the weight assigned to new observations compared

to the previous ones. This EWMA estimator allows to form a ”recent” estimate for

the mean µt of the observed distribution [12], aiming at detect when this diverges

from the initial mean µ0. It can be proved [24] that, independently from the distri-

bution φ0, the mean and standard deviation of the estimator Zt are give by:

µz = µt (3.6)

σz =

√
λ

2− λ
· (1− (1− λ)2·t) · σ0 (3.7)

The value of Zt starts from µ0 and goes towards µ1 6= µ0, when a change occurs.

This can be used to set a control limit L to flag a change, which is detected when:

Zt > µ0 + L · σZt (3.8)

3.2.2 Bernoulli monitoring

A common problem in online classification happens when a change in the data

happens, and the error rate X = {X1, X2...} of the classifier increases accordingly.

In this case change detection boils down to the monitoring of a Bernoulli, and

in particular of the parameter p regulating the behaviour of the distribution. In

this case, expressing the initial value of the parameter p as p0 ,the variance of the

estimator Zt previously defined can be rewritten as:

σzt = p0 · (1− p0)

√
λ

2− λ
· (1− (1− λ)2·t) (3.9)

14

3.2. EWMA CHAPTER 3. BACKGROUND

Figure 3.2: EWMA table: λ = 0.2. The values of L for different values of the desired

ARL0 are expressed as a polynomial function of p̂0, i.e. of the estimated value of

the parameter p of the monitored Bernoulli distribution..

3.2.3 Unknown parameter case

When the value of the parameter p is not known, it must be estimated from the

stream along with σ0. To this end [12] proposes the use of a second estimator of p0,

denoted as p̂0,t, defined as:

p̂0,t =
1

t

t∑
i=1

Xi =
t− 1

t
· p̂0,t−1 +

1

t
Xt (3.10)

Unlike Zt, the p̂0,t estimator gives the same weight to all the observations, and is

therefore less reactive to the new ones. This means that, when a change occurs, Zt

tends towards the new value of the parameter p faster than the less reactive p̂0,t, and

a change can be detected by measuring the difference between the two statistics. A

change is therefore detected when the difference between the estimators exceeds a

certain threshold, i.e. when

Zt > p0,t + L · σz (3.11)

The pre-change standard deviation can be estimated using:

σ̂0,t · (1− p̂0,t) (3.12)

The new formula for the EWMA estimator’s standard deviation becomes there-

fore:

σ2
Xt

= p̂0,t · (1− p̂0,t) ·
√

λ

2− λ
· (1− (1− λ)2·t) (3.13)

The choice of the threshold is important and they must be carefully set to guarantee

the desired ARL0. The determination of the value L depends on the standard

deviation σx, which must be estimated, when the probability p for the Bernoulli is

not known. In this case it is necessary to rely on the estimate p̂0,t, which can however

vary in time. Therefore, in order to keep the expected rate of false positives constant,

the control limit must be recomputed every time p̂0,t.

A possible solution for this problem is to use Monte Carlo simulations, as follows.

Naming f(p0, ARL0) the function that returns the value of L corresponding to a

15

3.2. EWMA CHAPTER 3. BACKGROUND

desired ARL0 for some value p0, it is possible to approximate this function by a

polinomial, using regression techniques to approximate the polynomial. This process

generates a look-up table, containing the values of Lt for the current estimate p0,t.

The polynomial for this procedure can be generated as follows. For a given value of

the ARL0, the values of L corresponding to various values of p0 can be estimated

by fitting a degree m polinomial, of the form: L = c0 + x1 · p0 + ...+ cm · pmp .

The results obtained fitting a degree 7 polynomial, with λ = 0.2 are available

on the original paper [15],. As they are needed to compare the performance of

Incremental QuantTree during the experiments,they are reported in table 3.2.

16

Chapter 4

Incremental QuantTree

In this chapter we present Incremental QuantTree (IQT), a novel online change

detection algorithm for multivariate data streams. Section 4.1 is dedicated to an

introduction of the algorithm. We explain the goal of the algorithm and we provide

an overview of its structure. Sections 4.2 and 4.3 are dedicated to the analysis of the

two main components of IQT: the histogram update procedure and the threshold

estimation technique. Each section provides the analysis of the problem addressed

and of the implementation, and a discussion over Section 4.4 analyses the application

to online streaming scenario and discusses the possibility of controlling the ARL0

of the algorithm In section 4.5 we study the properties of the threshold estimation

procedure discussed in 4.3 when the number of observations N grows and we propose

an algorithm to make it more efficient. We than discuss the choice of the statistic to

use in section 4.6, analysing the pro and cons of the main possible choices. Finally,

we discuss in 4.7 a possible combination of Incremental QuantTree with EWMA

charts for change detection on data streams.

4.1 Introduction

As stated in the introduction, we address here the problem of change detection on

data streams. We do so by extending an existing change detection algorithm (Quant-

Tree), to work in a streaming environment. In particular, we aim at maintaining the

FPR control proper of QuantTree while providing it with a much smaller training

set, while improving the capability of the QT histogram to describe φ0, hence the

detection power.

In streaming settings it might not be possible to divide the training phase from

the monitoring one. Most change detection algorithms become more powerful when

they have access to a larger amount of data, and the same holds for Incremen-

17

4.1. INTRODUCTION CHAPTER 4. INCREMENTAL QUANTTREE

tal QuantTree. Fitting a good model for a highly multivariate distribution φ0 can

require a huge amount of data. This may cause problems due to to memory con-

straints. In this case, being able to build a model on a small training set and adapt

it progressively can become a key feature, as it allows to have in memory at any time

only a part of the training set used, thus never exceeding the memory constraints.

Furthermore it is not always possible to predict the size of the available data

for training. In data streams, data arrive continuously, and the size of the stream

is unbounded. In this case, to learn from these data, it is required to continuously

process data, as storing all the observations is infeasible due to memory constraints.

To initialize the Incremental QuantTree algorithm, first a QuantTree histogram

h is built from a small training set, using the procedure described in chapter 3.

The additions brought by Incremental QuantTree can be split in two major parts.

First, a procedure to update the histogram whenever new training data are available

is provided. This allows IQT to begin with an extremely small training set and

continuously learn from incoming data, continuously boosting the detection power

of the algorithm. Meanwhile, a novel threshold computation procedure allows IQT

to have a proper FPR control, regardless of the data generating distribution φ0,

thanks to the QT properties.

18

4.2. HISTOGRAMS CHAPTER 4. INCREMENTAL QUANTTREE

4.2 Histograms update

QuantTree histogram consists of a tuple h = {(Sk, π̂k)}k=1,..,K , associating a prob-

ability π̂k to each bin Sk ∈ Rd. This is the component of QuantTree that is built

during the training phase, to model the distribution φ0. The aim is to improve the

histogram h whenever new data become available, to better model φ0. There are

two natural approaches to modify the histogram upon the arrival of one or multiple

data are the following:

• Keep the bins {Sk}k fixed and modify the probabilities {π̂k}k

• Modify the bins {Sk}k while keeping the probabilities{π̂k}k constant

Incremental QuantTree uses the former, the rest of the section is dedicated to the

analysis of both solution and the explanation for the choice made.

4.2.1 Update procedure chosen: modify the probabilities

The goal is to associate to each bin K a probability πk such that the true probability

π̂k for an observation x to fall inside Sk is πk, i.e π̂k = πk. This would be trivial if

the old points were always available, as it would be enough to recompute the value

associated to each bin as the number of points fallen inside it divided by the total

number of observations. However, due to memory constraints, this is not possible,

and old data must be discarded.

We need therefore to resort to a different method. By construction, when the

first histogram is generated, π is the estimator of the true value of π̂. After that,

whenever a new datum is coming, we sum 1 to the number of points falling into

that bin and re-normalize by dividing each value by N + 1, which is the new value

of N . It is easy to see that also the new histogram keeps the same property, which

makes the algorithm reiterable multiple times. Algorithm 3 illustrates the process

in detail.

Algorithm 3 modify Probabilities

Require: data number, {Sk, πk}k, dataSet

return {Sk, pik}k
for point in dataSet do

index← findBin(point)

πindex ← πindex·dataNumber+1
dataNumber+1

data number ← data number + 1

end for

19

4.2. HISTOGRAMS CHAPTER 4. INCREMENTAL QUANTTREE

Figure 4.1: Initial situation, a QuantTree histogram of four bins has been created.

π̂1 = 1
2

4.2.2 Comments on the alternative

There is a second way to update a QuantTree histogram, which is maintaining the

probabilities fixed and modify the partition. This has a series of advantages. First

of all, the uniform-probabilities tree is the most tested. QuantTree does not require

a precise combination π1, π2, ..πk to be implemented, but in practice it has been

always presented paired with a uniform histogram. This implies that it is by far

the most tested combination so far. Finally, not being obliged to recompute the

threshold at each round means that once the grid is recomputed, the algorithm is

immediately able to start monitoring.

However,it must be noted that modifying the partition of the input space is by

no means trivial, and its complexity grows linearly with the number of bins. This is

properly shown by the following example. Let us imagine that we have three bins

(Figure 4.1) such that the values of the probabilities are: [1/2, 1/4, 1/4]. S2 shows

what happens if two new points arrive (Figure 4.2): the cut between S1 and the

other two bins must be moved to keep π1 constant. This brings to a situation in

which S2 has much more points that S3, which triggers the movement of the line

between S2 and S3, as shown in Figure(4.3). Correcting the boundaries of those

will trigger the same problem for all the adjacent bins. The task must in principle

be repeated for each bin Sk, making it a potentially very expensive solution for

large histograms with many bins. This shows that the reduction of enlargement of a

given bin will automatically modify the boundaries of the bins next to it, thus their

estimated probabilities.

20

4.2. HISTOGRAMS CHAPTER 4. INCREMENTAL QUANTTREE

Figure 4.2: As two new points arrive, it is necessary to move the boundary between

S1 and the adjacent bins to maintain π̂1 constant.

Figure 4.3: The value of π̂3 has changed, therefore the boundary between S2 and S3

must be moved to maintain the empirical probabilities constant.

21

4.3. THRESHOLDS CHAPTER 4. INCREMENTAL QUANTTREE

4.3 Thresholds computation

QuantTree uses Monte Carlo (MC) simulations to compute the threshold for a given

histogram. This procedure does not work well when the probabilities of the his-

togram must be continuously updated, as Monte Carlo simulations require a too

long time. A novel threshold procedure is therefore required, and the speed is an

important property to evaluate it.

To this end we propose the use of Neural Networks to estimate the simulations

performed by QuantTree. The reason is that, once trained, a neural network is much

faster than a simulation, and it is therefore compatible with a high frequency data

streaming scenario.

4.3.1 Implementation details

The threshold procedure of QuantTree shows that, in order to compute the thresh-

old for the monitoring phase, only the following values are required: the vector

of histogram’s probabilities π = {π1, π2, .., πk}k, the number of points observed so

far N , the size of the batches ν, the number of simulations to perform B and the

statistic used. Most of them are parameters that can be fixed in advance, such

as the number of the simulations, the statistic used and the size of the batches.

Therefore we can model the outcome of each simulation i as a function of the only

two remaining variables, i.e Thri = f(π,N), where f is the simulation process and

πi the target probabilities π = {π1, π2, ..πk} used for simulation i. The process of

approximating the function f by means of a faster procedure can be modeled as a

Supervised Learning Problem, which can be solved with standard Machine Learning

Techniques. In particular, we propose to use a regression Neural Network.

We start by generating combinations of Thr = (π,N), we can treat the process

of approximating the simulation with a parametric function as a classic supervised

learning problem of machine learning. The combinations for the training set π can

be generated randomly. It should be noted that any estimate about the value of

the threshold associated to a histogram should not depend on the order of its bins.

In fact each bin indicates the probability of a point drawn from the training set

distribution to fall inside one of the bins generated by the cuts performed by Quant-

Tree. Given the partition and the probabilities associated to each bin, there is no

privileged order to write them in the histogram, as long as we keep the same order

when evaluating new data. We generate multiple random probabilities combina-

tions, associate to each combination a random integer N representing the number of

the observations, and compute the associated threshold by means of the threshold

22

4.4. ONLINE MONITORING CHAPTER 4. INCREMENTAL QUANTTREE

computation algorithm of QuantTree. We than use the data collected this way to

train a neural network to predict the outcome of the simulations given the input,

and used the predictions in place of the simulations outcomes during the life cy-

cle of the algorithm. Given that the input space coincides with the one given to

the thresholds computation algorithm, and that there is no feature influencing the

threshold that is not used to train the Neural Network, the capacity of the network

to properly emulate the algorithm depends only on the size of the training set and

the complexity of the model used.

A second problem is the choice of the features to feed into the Neural Network.

In fact an obvious solution is to use the probabilities π (independently from the

order) and the number of points N. Multiple order-independent statistics might also

be used, such as the variance of π. This has the advantage of potentially reducing

the number of features used to train the model, and therefore the training time

and the quantity of data required. However, the problem lies in the limitations

that it imposes on the creation of the histograms. In fact, when the number of

bins grows, the empirical variance of the distribution converges to the variance of

the distribution from which we created the histogram. Therefore, the values of the

features of different histograms tend to be very similar to each other, making it

impossible to perform an analysis based on them. We opted to a different approach:

sorting the histograms. We sort them in decreasing order of probabilities, making

the analysis order-independent.

To learn the best approximation for the Monte Carlo Simulations we used two

Multi-layer Perceptron regressors. Recalling that N is the number of observations

used to build and update the histogram, we train one regressor with the simula-

tions computed according to the QuantTree algorithm for different values of N such

that N < Nmax, and the other one trained with the simulations performed with

cut o space. The former is used to estimate the probabilities when the total number

of observation N is smaller than Nmax, the latter for larger N .

4.4 Online monitoring

Incremental QuantTree is an algorithm designed to monitor data streams. As such, it

must work in a streaming environment, and its performance is measured in terms of

the ARL0 and the ARL1, i.e the average run lenght before a false alarm and between

the occurrence of a change and its detection. However the technique presented so

far relies on statistical tests, and is in fact measured in terms of the FPR and the

detection power.

In this section we discuss how the threshold Thr can be selected to ensure a

23

4.4. ONLINE MONITORING CHAPTER 4. INCREMENTAL QUANTTREE

controlled ARL0, starting from the results obtained in the previous sections. We

denote as

p(T (Wt) > Thri|T (Wi) ≤ Thr ∀i < t) (4.1)

the probability that a process stops at time t provided that it has not detected it

yet at time t− 1, and we recall that if

p(T (Wt) > Thri|T (Wi) ≤ Thr ∀i < t) = p̄ ∀t > 0 (4.2)

the average time T before the process stops can be computed as

E[T] =
1

p̄
(4.3)

Measuring the time in batches, i.e using a time t′ such that t′ = ν · t, the probability

of Incremental QuantTree to stop at time t′, assuming that the batch analysed at

time t′ is composed of points drawn from φ0, is equal to α. Recalling that the

average run lenght of a change detection algorithm under no change coincides with

the ARL0, and that a batch is analysed every ν observations, we have that:

ARL0 =
1

α
· ν (4.4)

Therefore, controlling the FPR for Incremental QuantTree directly translates into

controlling the ARL0, according to (4.4).

24

4.5. ASYMPTOTIC ANALYSIS CHAPTER 4. INCREMENTAL QUANTTREE

4.5 Asymptotic analysis

Monte Carlo simulations are costly and time-consuming operations. Even though

Incremental QuantTree performs them before deployment, and it is not limited by

their execution time in the analysis of high frequency data streams, it can still benefit

from a faster simulation procedure, to facilitate the training phase and the making

of the experiments. This is particularly true when working with large data sets, as

the threshold computation procedure implemented by the threshold computation

algorithm of QuantTree becomes progressively slower as the training set size N

increases.

To address this problem we introduce cut on space, an algorithm able to compute

the thresholds with a precision comparable to the threshold computation algorithm

of QuantTree and in a notably shorter time, provided that the number of observa-

tions N is above a certain threshold. By proving that the threshold obtained using

cut on space is aymptotically equal to the one obtained with the original algorithm,

we show that it can be used to efficiently train the neural network of Incremental

QuantTree.

4.5.1 cut on space

Theorem 1 of QuantTree states that the value of any statistic computed on a Quant-

Tree histogram depends only on the probabilities π and on the number of observa-

tions Nt. The dependency on Nt does however depend on time. In this case, since

we learn the bin probabilities online, the number of observations grows overtime,

Figure 4.4 plots the average over different combinations π of the thresholds com-

puted with the the threshold algorithm of QuantTree with respect to the size N of

the training set. Larger N bring to higher thresholds, but it is possible to see how

this saturates over a certain N . Furthermore, it shows that for limN →∞ it tends

to a constant value.

There are multiple ways to exploit this property. The first and simplest one is

to set a large value of Nmax and to train the neural network only to learn the de-

pendency on N up to that points, assuming that Thr(π,N) = Thr(π,Nmax)ifN >

Nmax. We empirically verify that this assumption is true, and that this procedure

is feasible.

There is however a better way, which takes advantages of the fact that the simu-

lations are performed using a uniform distribution U [0, 1]. This results cut on space

is described in algorithm 4.

First a variable L, representing the portion of the interval [0, 1] yet to be assigned

25

4.5. ASYMPTOTIC ANALYSIS CHAPTER 4. INCREMENTAL QUANTTREE

Figure 4.4: The plot represents the dependency of the thresholds computed with

QuantTree threshold procedure with respect to the size N of the training set. For

each value N , multiple random combinations of target probabilities {πk}k
are drawn, and for each of them the threshold is computed. The value plotted is

the average of the thresholds obtained this way.

Algorithm 4 Cut on space

Require: πk > 0∀ k

return {Sk, π̂k}k
bern← Bernoulli(0.5)

bins← {[None,None]}k
L← [0, 1]

for πk in{πk}k do

if bern == 0 then

binsk ← [L[0], L[0] + πk]

L← [L[0] + πk, L[1]]

else

binsk ← [L[1]− πk, L[1]]

L← [L[0], L[1]− πk]
end if

end for

26

4.5. ASYMPTOTIC ANALYSIS CHAPTER 4. INCREMENTAL QUANTTREE

to any bin is set to comprehend the whole interval [0, 1]. For each target probability

πk, a value g is drawn from a Bernoulli of parameter p = 0.5. Depending on the

value of g, the first or last portion of L is assigned to the bin Sk, and the size of the

assigned portion is set to be equal to πk.

The cut scheme proposed follows the same pattern of the one used for thresh-

old computation in QuantTree. QuantTree compute the the cut points by draw-

ing N points and computing the empirical quantiles of the marginal distributions.

Cut on space is instead based on the fact that the expected value for the quantiles of

the univariate uniform distribution ψ used to compute the histograms has a lenght

of exactly π, where π is the probability associated to the bin.

Proposition The threshold computed by the standard QuantTree algorithm tends

to value obtained using by the cut on space when N tends to ∞.

Proof The cut on space and the algorithm used in QuantTree for threshold com-

putations are used on a uniform distribution on the interval [0, 1] for the Monte

Carlo simulations. We recall the main properties of this distribution.

1. U has a cumulative function G−1 given by

G−1(p) = p for p ⊂ [0, 1) (4.5)

2. The probability that a uniformly distributed random variable falls within any

interval of fixed length is independent of the location of the interval itself (but

it is dependent on the interval size), so long as the interval is contained in the

distribution’s support.

We first prove that the expected size of the bins computed using the QuantTree

algorithm tends to the value computed using cut on space, when N → ∞. We

then prove that this is a sufficient condition for the asymptotical equality of the two

threshsolds.

We know that the first cut points using quantTree corresponds to the value of

the point x̄ with the π · Nth largest (or smallest) value. For the law of the Large

Numbers, as N →∞, we know that that the value of x̄ is exactly the π (or 1− π)

quantile of the uniform distribution. From property 2 we know that the size of the π

and the 1− π quantiles are the same, and from property 1 we can tell that for both

it is exactly equal to π (which is the same value that we obtain when performing

cut on space). The same reasoning holds for any other cut point, therefore the size of

each bin Sk, characterized by a target probability πk, computed with cut on space is

27

4.5. ASYMPTOTIC ANALYSIS CHAPTER 4. INCREMENTAL QUANTTREE

asymptotically equal to the size of a a bin with equal target probability πk computed

using the QuantTree histogram creation algorithm on a uniform [0,1] distribution.

We can therefore can tell that asymptotically the two algorithms perform exactly the

same cuts. We know that the value of the statistic whose quantile is the threshold

is given by the variation between a batch of points drawn from the uniform [0,1]

and the tree performed using the algorithm, which in turn is made by the couple

Sk, π̂k. We proved that the tree is asymptotically the same for the two algorithm,

and we know that the batch does not depend on the algorithm we used to compute

the tree, therefore we can tell that the expected value of the threshold is the same

for the two algorithms, when N tends to infinite.

4.5.2 Comment on the results

There is a two-fold advantage in the implementation of cut on space. The first result

is that the simulation of a threshold for large training set can be done efficiently by

means of cut on space, thus reducing the computational cost of the simulations.

More importantly, the fact that the threshold computed with this technique is

asymptotically equal to that obtained using the threshold computation algorithm of

QuantTree, means that the threshold for any set of probabilities π converges to a

constant value as N →∞, and that there exists a number Nmax such that, provided

enough simulations to estimate the threshold for any N < Nmax, there is no need to

make any simulation for any N ≥ Nmax.

28

4.6. STATISTICS CHAPTER 4. INCREMENTAL QUANTTREE

4.6 Statistics choice

Incremental QuantTree uses the output of a Neural Network to compute the thresh-

old for the statistic. The training set for the network is generated by computing

for multiple different histograms and number of observations the thresholds accord-

ing to the procedure implemented in QuantTree. It is therefore important that the

Monte Carlo simulations of QuantTree algorithm return the correct value for all

the probabilities π used to train the Neural Network. In this section we study the

performance of the algorithm for different probabilities π and for the two statistics

used in [11], i.e the Pearson statistic and the Total Variation.

4.6.1 Pearson

The Pearson statistic for a histogram h computed on a distribution φ0 is defined by:

T (W) =
K∑
k=1

(yk − ν · π̂k)2

ν · π̂k
(4.6)

where yk is the number of points of the analysed batch that fall into the bin Sk,

π̂k the probability for a point drawn from φ0 and ν the number of points of the

batch. It represents the covariance of two variables, divided by the product of their

standard deviations, and it is a measure of the linear correlation between two sets

of data. The Pearson statistic is the standard choice adopted in [11], and in most

situations it guarantees a proper FPR control.

However, the threshold procedure implemented in QuantTree, when using Pear-

son, returns in some situations values on a different scale from the others. We call

this values outliers. The following properties hold for these outliers:

1. Outliers are systematic: The outliers are associated to some histograms in

particular and do not depend on the precision of the simulations.

2. Outliers are errors: These outliers can be considered errors and they should

not be used.

3. Outliers are caused by the Pearson’s formula. The reason the simulations using

the Pearson statistic can bring to outliers lies in the form of the histograms

used and the Pearson’s formula

Outliers are systematic The outliers are not randomly caused by variance in the

process involving Monte Carlo Simulations that is used to compute the thresholds,

but are highly correlated to certain combinations of probabilities {πk}k. To prove

29

4.6. STATISTICS CHAPTER 4. INCREMENTAL QUANTTREE

it, we generated multiple random combinations π, and computed the threshold as-

sociated to each of them using the standard QuantTree. Repeating the operation

multiple times with the same π, the outliers are always associated to the same com-

binations of probabilities. Therefore, the outliers are caused by some properties of

the target probabilities used for the histogram.

Outliers are errors We analyse the performance of a QuantTree, whose his-

togram has been built on some target probabilities {πk}k, which in our experiments

cause the insurgence of an outlier. If the thresholds were correctly computed, the

behaviour of the algorithms should be the same as the one of a tree built on a dif-

ferent combination of probabilities. We noticed instead that in those situations our

algorithm is much less powerful than usual.

The problem is the following: choosing such an high threshold, we will never be

able to notice any change which does not cause a point to fall in the low probability

batch, as the rise in the Pearson’s value won’t probably be enough to reach the

threshold, which could be orders of magnitude higher than the average Pearson’s

value. This leads to a severe loss in the algorithm’s power.

We show an example of the performance of a QuantTree initialized with a set

of probabilities that lead to an outlier, compared to a QuantTree initialized with

random probabilities. It is possible to see that the ability to detect a change of the

former is dramatically lower. We can therefore state that the presence of outliers

is not a correct behaviour of the Monte Carlo Simulations. This is important, as

it means that the neural network if Incremental QuantTree should not learn this

outliers.

Outliers are caused by the Pearson’s formula We want to know if it possible

to predict which π cause the insurgence of outliers. We found out that there is an

inverse correlation between the size of the smallest probability of a histogram and

its threshold. We proved that explanation lies in the Pearson formula, which with

alpha small enough bring to extremely high values. We explain the reason by means

of the following example.

We suppose to be given a set of probabilities π1, π2.. = π, such that there is

a very small probability πmin for a given point to fall in a certain bin. We use a

uniform distribution φ to run the simulations, as done in QuantTree 2. In order to

compute the threshold by means of the Monte Carlo Simulation, we we first generate

a large set of data N and we create a histogram on top of them. For the sake of

semplicity, let us assume that we had enough computational power to use a number

of data N large enough to have that the true probability for any point to fall inside

30

4.6. STATISTICS CHAPTER 4. INCREMENTAL QUANTTREE

Sk is exactly equal to πk. We now generate multiple batches and compute the value

of the statistic for each of them, then we sort the values obtained and we select the

1− α empirical quantile.

For every batch, the probability that at least a point of the batch falls inside

the bin with the smallest probability is given by the product of the probability for

a single point to fall inside Smin, that is πmin and the number of points in the batch

ν. If the number of batches observed B is large enough, at least one batch will

have this characteristic The Pearson statistic computed on a batch where at least a

single point falls in that batch has a very high level, as we have a denominator close

to zero in the formula. This means that, when sorting the values before choosing

the threshold, there will be a discontinuity between the first B − x values and the

last x, where x is the number of batches which have at least a point falling in Smin.

Therefore, if α is small enough that the α empirical quantile falls inside this region,

a threshold with a potentially extremely high value is returned.

4.6.2 Total Variation

The other analysed statistic is Total Variation, characterized by the formula:

Th(W) =
1

2
·
K∑
k=1

|yk − ν · πk|

Total variation comes with its own problems. Being a discrete statistics, it can

assume a finite set of possible values. This leads to low precision, because the

thresholds associated to different α may be the same value, reducing therefore the

possibility of precisely controlling the FPR.

It has to be noticed that Total Variation has a better performance when working

with large batches of data, as it can assume more values and provides a more precise

estimation for the correct value of the threshold to associate to alpha. However

relying on batches of many points reduces the precision with which the change is

located and increases the expected detection delay even for huge changes, as they

might occur at the beginning of the batch and we would be waiting ν points before

making a decision.

A much less costly solution is the following: if we use non symmetric probabilities

we have much more values to choose among and we obtain a threshold able to

determine precisely the FPR. The reason is that, when bins are symmetric, there

are multiple changes that can bring to the same final value, according to Total

Variation. In fact if two bins S1 and S2 are associated to the same probabilities, any

combination in which S1 has X points and S2 has Y leads to the same value. This

does not happen when π1 and π2 are different.

31

4.6. STATISTICS CHAPTER 4. INCREMENTAL QUANTTREE

Figure 4.5: Monitorig a QuantTree with an EWMA chart, it is possible to see that,

if the QuantTree has been built with uniform target probabilities {πk}k, the effective

FPR when using the Total Variation statistic is smaller than the one obtained using

Pearson, although they have been set to yield to the same desired FPR α = 0.5

Figure 4.6: When the probabilities {π̂}k are iteratively built by modifying an Incre-

mental QuantTree built on a sufficiently large training set, the probabilities {πk}k
are generally not symmetric, ant the performance of the Total Variation improves

as a consequence.

32

4.6. STATISTICS CHAPTER 4. INCREMENTAL QUANTTREE

In practice this reduces a lot the combination of possible values the statistic can

assume when dealing with constant cuts, strongly reducing the capability of the

learner to effectively control the False Positive Rate.

Choices adopted for the algorithm

We analysed the behaviour of the statistics used in different situations, proposed

a viable way to use both and proved experimentally that Total Variation, when

properly tuned, can be a properly used to solved the tasks required for our work.

In the end we opted to use Total Variation for our experiments, as it requires less

assumptions about the possible situations to perform properly. In fact it is not

always possible to predict in advance whether the final histogram will be unbalanced,

while it is safe to assume that it won’t be symmetric, as the probability for a random

set of probabilities {πk}k to be symmetric is extremely low.

33

4.7. EWMA-IQT CHAPTER 4. INCREMENTAL QUANTTREE

4.7 Incremental EWMA-QuantTree

We introduce here Incremental EWMA-QuantTree, a change detection algorithm

based on the combination of an Incremental QuantTree and an EWMA chart. Our

goal is to adapt the QuantTree algorithm to base the decision on all the data observed

so far, while maintaining the batch wise statistic. This is obtained by applying an

EWMA chart to the decisions made by an Incremental QuantTree on a sequence

of batches. Thanks to the properties of QuantTree discussed in chapter 3, the

probability to detect a change on a batch following φ0 can be set a priori to be equal

to α

4.7.1 Algorithm overview

As discussed in chapter 3, a common use of the EWMA charts is to continuously

monitor the classification error of a binary classifier [31] [23] [32]. Assuming the

probability error to be a parameter α, the problem boils to the continuous monitoring

of a Bernoulli variable of parameter α. Naming yt the variable stating whether the

prediction made by the classifier at time t is correct, we say that yt = 0 if the

prediction was correct and yt = 1 otherwise.

We consider QuantTree and Incremental QuantTree as classifiers, which classify

a batch as anomalous or normal. Under stationary conditions, we know that the

correct assignation to each batch is to classify it as normal: we say then that yt = 1

if the batch is labeled as anomalous, and yt = 0 otherwise. Recalling that for a

batch-wise monitoring change detection algorithm the FPR is the probability for a

batch to be labeled as anomalous when it was drawn from φ0, we can state that,

FPR = E[Tt] (4.7)

For Incremental QuantTree, the False Positive Rate is controlled and set to be equal

to a previously chosen parameter α, therefore we can expect that:

E[Tt] = α (4.8)

4.7.2 Implementation

The construction of the algorithm is composed of the following steps:

1. The choice of the monitored value, that is the proportion of positives returned

by QuantTree

2. The creation the monitored statistics and of the final statistic used to detect

a change.

34

4.7. EWMA-IQT CHAPTER 4. INCREMENTAL QUANTTREE

3. The computation of a threshold for the previously created statistic.

We discuss in details the choices made for all of the three points highlighted.

Choice of the values to monitor

The values monitored according to the described scheme are the detections made

by a QuantTree or Incremental QuantTree on batches of data. This consists of a

Bernoulli (whose expected value for the parameter p is α) under φ0, and represents

the proportion of wrong choices made by the tree. This is coherent to the setting

for which the monitoring scheme in [32] is proposed.

Statistic computation

Algorithm 5 ALG1: compute EWMA

Require: QuantTree QT, memory factor λ, False Positive Rate α for QT

t← 1

Z0 ← α

for t = 1, 2... do

xt ← QT.acceptbatch

Zt ← (1− λ) · Zt−1 + λ · xt
end for

return Z − t

The structure of the algorithm is the same used in [32], with the main difference

coming from the observed process. We compute two statistics, the EWMA and the

Y-statistic. The formula to compute the EWMA statistic Z is the following

Zt = (1− λ) · Zt−1 + λ · xt (4.9)

The value of the statistic Z(t) is give y the exponentially weighted sum of its

previous value ad the new observation, where λ is the forget factor. The second

statistic computed is the Y-statistic, which formula is:

Y (t) =
(t− 1) · Y (t− 1)

t
+
xt
t

(4.10)

Both statistics asymptotically tend, under φ0 to the FPR α of the monitored tree.

Unlike EWMA, the Y(t) estimator does not give more weight to recent observations.

Therefore EWMA is more sensitive to changes in p0, and it gives a value closer to

current value of α.

35

4.7. EWMA-IQT CHAPTER 4. INCREMENTAL QUANTTREE

Algorithm 6 ALG2: compute Y-statistic

Require: QuantTree QT, memory factor λ

t← 1, Ewma[0]← QT.alpha

y[t]← QT.acceptbatch

Zt ← (t−1)·Y (t−1)
t

+ xt
t
∗ λ

t← t+ 1

return Y

Whenever a change happens the FPR of QuantTree-based algorithms increase,

and the monitoring statistics tend towards the new value α1. EWMA is faster

to converge to the new value, therefore we can interpret a significant difference

between the two statistics as a prove that a change has happened. We detect a

change whenever:

Zt > Yt + L · σZt (4.11)

σZt is the variance of the Z estimator, and it is given by The choice of the limits for

the statistics boils down to the choice of L.

Control Limits

We reproduce the control limits choice applied in [32]. First of all, it should be noted

that we are assuming the FPR to be unknown. The monitored statistics are both

time-dependent, as at time t = 0 they both begin from the value of 0, while tending

to a different value α. This means that obtaining a constant rate of false positive

(and therefore controlling the ARL0) is possible only if we allow the control limit

to be time varying. From here on we hence name the control limit Lt to highlight

its dependence from time. The following procedure is used: Suppose f(p0, ARL0)

the function that returns the value of L corresponding to the desired ARL0 for

some desired P. We can approximate this function using a polynomial by means of

standard regression techniques, that can be used to estimate the thresholds. This

is a computationally costly procedure, but it can be computed once, and then used

for any run of the algorithm.

This means that a look up table can be created, and finding the threshold on

it requires a constant time. The table is generated by means of a Monte Carlo

simulation. It should be noticed that the table of the original work from [32] is also

available, which cuts even more the cost of the operation.

36

4.7. EWMA-IQT CHAPTER 4. INCREMENTAL QUANTTREE

Figure 4.7: The points drawn from φ0 (figure on the left) are used to build a Quant-

Tree histogram h = {Sk, π̂k}k. The points drawn from φ1 (figure on the right) have

a different distribution in the space of the data, but tend towards the center of the

bins {Sk}k

4.7.3 Comments on the results

The key innovation brought by the coupling of Incremental QuantTree and an

EWMA monitoring scheme comes from the fact that the whole procedure hap-

pens in an unsupervised manner. All existing schemes based on the monitoring of a

classifier error rate require the truth about the target values associated to at least

some observations, which are necessary to assess the error rate of the monitored

classifier and, in doing so, detect a change. In practice this is not always feasible.

QuantTree instead is fully unsupervised, which eliminates the need for labels during

the monitoring. This is a factor of key importance, because it allows to extend the

family of situations where it is feasible to apply this family of solutions.

Degenerate cases analysis In addition to what stated so far, EWMA QuantTree

is improves dramatically the performance of QuantTree when dealing to a degenerate

type of changes, which can never be noticed by classic QuantTree. In particular, it is

in principle possible that data distribution changes without moving from a bin to an

other, for example concentrating inside the bins (figure 4.7). In this case the lower

sensibility to the noise will bring to lower values of the statistic, which can never be

noticed by QuantTree or Incremental QuantTree. It is a very peculiar and probably

unlikely situation, but if we suspect that it may happen, we can build a two-tailed

test on the EWMA chart to detect any anomalous reduction of the positive rate

compared to the expected one.

37

4.7. EWMA-IQT CHAPTER 4. INCREMENTAL QUANTTREE

4.7.4 Paired learners

QuantTree paired with EWMA can be used as a stand alone change detection al-

gorithm. It is able to guarantee a prefixed ARL0, and is able to detect changes

thanks to the threshold computation mechanism. However we think that, at a prac-

tical level, the most interesting application can be as a stable learner paired to a

more reactive one, such as an Incremental QuantTree. This would both solve the

problem of the slow detection of big changes from the EWMA, which is caused by

its continuous nature, and the risk that an Incremental QuantTree learns from data

coming from φ0 (which might in principle happen if the shift between phi0 and φ1

is small, although it has not happened yet during our experiments). Some studies

in this direction have been made, but we consider them to be outside of the scope

of this thesis.

38

Chapter 5

Experiments

The goal of this chapter is to compare the performance of Incremental Quant-

Tree with existing methods in the literature, in particular with QuantTree and the

Hotelling statistic for change detection. Furthermore, we show that IQT is always

able to control the False Positives.

The rest of the chapter is organized as follows:

• The first section is dedicated to the introduction and discussion of the principal

instruments used to design the tests. These are the algorithm we compare with

IQT to compare them and assess the performance, that is H-CPM, and the

procedure used to generate the data for the analysis.

• The second section is dedicated to the analysis of the figures of merits used.

• In the third section, we introduce the setting used for our experiments

• In the last section the results are displayed and commented.

5.1 Instruments used

5.1.1 The Hotelling test statistic

Hotelling’s T 2 statistic is a widely used statistic in statistical process control and

change detection. T 2 is used in change detection as a tool for parametric statistical

tests. Assuming that data come from a multivariate normal distribution, i.e. φ0 ∼
N (µ,Σ), the T 2 statistic can be expressed as

T 2 = (Xt − µ)′ · Σ−1 · (Xt − µ). (5.1)

39

5.1. INSTRUMENTS USED CHAPTER 5. EXPERIMENTS

The values of the parameters µ and Σ can be assumed to be known a priori [33],

or more realistically must be estimated during the training phase [34]. However,

estimating the parameters during the training phase requires a large training dataset,

which is not always available. An online change detection algorithm leveraging the

Hotelling statistic has been proposed in [35].

Change Point Model

The change point model defines the change in case of a d-variate normal case, where

φ0 ∼ Np(µ,Σ) and φ1 ∼ Np(µ1,Σ1).

The change point model divides the task of detecting the change point τ in two

statistical tasks: a testing task aiming at deciding whether there has been a change

in the analysed data, and an estimation task, with the goal of detecting the exact

location of the change point τ [19]. We call Phase I the task of detecting whether a

change has occurred in the analysed data, and Phase II the detection of the most

likely location of the change τ .

We focus here on the situation when the assumption Σ = Σ1 holds, so that

φ0 ∼ Np(µ,Σ) and φ1 ∼ Np(µ1,Σ), and define as:

X̄j,m =
1

m− j
·

m∑
t=j+1

Xt (5.2)

the mean of the data observed between the time t = j + 1 and t = m. Calling n

the number of data observed so far, and Wk the pooled variance structure for the

considered time t̄, we have that:

Wt̄ = {
k∑
i=1

(Xt − X̄0,t̄)(Xt − X̄0,t̄)
′ +

n∑
i=t̄+1

(Xt − X̄0,t̄)(Xt − X̄t̄,n)′}/(n− 2) (5.3)

It is important to assume n > d+ 1 to ensure full rank. [35].

Defining the standardized difference between the pre-shift and post-shift obser-

vations as:

Yt̄ = [t̄ · (n− t̄)/n]1/2 · (X̄0,t̄ − X̄t̄,n) (5.4)

and assuming a possible change point t̄ the Hotelling T 2 statistic for testing the

difference between pre-shift and post-shift data for that point is given by:

T 2
k = Y ′t̄W

−1
t̄ Yt̄, t̄ = 1, ...n− 1 (5.5)

The most suitable candidate for a change is the maximum likehood estimator (MLE)

for the change, named τ̂ , which is defined as the time t̄ maximizing:

τ̂ = arg max
t̄

T 2
t̄ (5.6)

40

5.1. INSTRUMENTS USED CHAPTER 5. EXPERIMENTS

Algorithm description

The authors of [35] proposed an algorithm for change detection, relying on the

Change Point Formulation, and able to work in a framework where no training

set is provided.. In the experiments we will refer to it as H-CPM, where H stays

for Hotelling. A common application of the Change Point Formulation is when the

analysed data have a fixed size, especially for Phase I. However, as we are discussing

the applications of the T 2 statistic for change detection on data streams, the size

of the data to analyse is unknown. To this end the authors of [35] proposed an

adaptation of the described model to to deal with this task, removing the boundaries

between Phase I and Phase II. Assuming the parameters µ and Σ not to be known

a priori, the process whenever a new observation Xn is available is the following:

• The T 2 for each possible split, and the T 2
max,n is computed

• If T 2
max,n exceeds some threshold hn,p,α, a change is detected. The time of the

change is identified as the k values leading to maximum T 2.

• Otherwise there is not enough evidence to detect a change, and the process

continues

In order to guarantee a fixed ARL0, it is enough to guarantee a constant false

positive probability α, and the sequence must satisfy [35]:

P [T 2
max,n > gn,p,α|T 2

max,j ≤ hj,p,α; j < n] = α (5.7)

These values can be computed via simulations. It must be noted that the lookup

tables with the result of the simulations is available at [?].

5.1.2 Controlling the Change Magnitude

Our experiments are performed using multi-variate gaussian distributions. In par-

ticular, we generate the post-change distribution φ1 as a roto-translation of φ0,

according to the ”Controlling the Change Magnitude” (CCM) framework [36]. No-

tably, a change performed via a roto-translation encompasses both changes affecting

the expected value µ of the distribution and the correlation among the data com-

ponents. CCM allows to generate a new distribution φ1 from φ0, with a fixed sym-

metric Kullback-Leibler (SKL) divergence between the two distributions, by means

of iterative algorithms, which are guaranteed to converge [36].

41

5.2. FIGURES OF MERIT CHAPTER 5. EXPERIMENTS

5.2 Figures of merit

False Positive Rate Given batch b drawn from the stationary distribution φ0

used to train a model h, we define the False Positive Rate FPR as the probability

for the batch to be detected as generated from a different distribution φ1, i.e.

FPR = p(T (h, b) > Thr|b ∼ φ0) (5.8)

where T is the statistic used and Thr the threshold for the statistic T . We evaluate

the False Positive Rate by applying a statistical test to multiple batches drawn from

φ0 and computing the False Positive Rate as the empirical mean of the detections

as the number of alarms divided by the number of batches drawn from φ0 analysed.

Detection Power We compute the detection power as the counterpart of the

False Positive Rate when the points composing the batch b come from a distribution

φ1 6= φ0, i.e.

Detection Power = p(T (h, b) > Thr|b ∼ φ1 6= φ0) (5.9)

where T is the statistic used and Thr the threshold used for the statistic T . As for

the False Positive Rate, we evaluate the Detection Power by applying a statistical

test to multiple batches drawn from φ1 and computing the False Positive Rate as

the empirical mean of the detections, i.e. as the number of alarms divided by the

number of batches drawn from φ1 analysed.

Average Run Lenght We define the Average Run Lenght (ARL0) as the ex-

pected run lenght of the algorithm, when analysing data from the stationary distri-

bution φ0 used to train the model. More formally defining t’ as the random variable

representing the stop time

t′ = min t : Tt > Thr (5.10)

where T is the statistic used, Tt the valued assumed by T at time t, and Thr the

threshold for the statistic T , we define the ARL0 as:

ARL0 = E[t′] (5.11)

To compute the ARL0 we build multiple algorithms on different training sets of a

certain lenght N , and we monitor a data stream x1, x2.... For each tree we compute

the stop time and we define the ARL0 as the empirical mean of the stop time of the

algorithms.

42

5.2. FIGURES OF MERIT CHAPTER 5. EXPERIMENTS

Detection Delay We define the Detection Delay (ARL1) for an algorithm as the

the expected value of the interval between the change point τ in a data stream and

the stop time of the algorithm analysing it. More formally:

ARL1 = E[t′ − τ] (5.12)

where τ is the change time and t’ is the random variable representing the stop time,

defined as:

t′ = min t : Tt > Thr (5.13)

To compute the ARL1 we build multiple algorithms on different training sets of a

certain lenght N , and we monitor a data stream x1, x2.... We eliminate from the

pool all the algorithm stopping before the change point τ , and compute the ARL1

as the average of the time intercurred between the stop time and the change point

τ for the algorithm which had not stopped at τ .

43

5.3. DESIGN OF THE EXPERIMENTS CHAPTER 5. EXPERIMENTS

5.3 Design of the experiments

Our experiments are conducted using synthetically generated data, drawn from mul-

tivariate gaussian distributions. In particular we use a d-dimensional gaussian dis-

tribution as the pre-change distribution φ0, and a roto-translation of φ0 as the

post-change distribution φ1. We recall that the magnitude of the change can be

measured by means of the SKL value [36].

The first experiment we run has the goal to prove that Incremental QuantTree

is able to control the FPR regardless of the size of the initial training set and

of the distribution φ0. To this end we test IQT with different combinations of

data dimensions d, change magnitude SK, size of the initial training set N and

desired FPR α. We then proceed to prove that the control over the FPR effectively

translates into the control over the ARL0. To prove it, we use the same setting and

measure the ARL0 of an Incremental QuantTree, with the goal of having ARL0 =

ν · α.

The third group of experiments concerns the comparison of the detection power

of QuantTree and Incremental QuantTree, measured as the percentage of batches

effectively recognized as post change when drawn from the post-change distribu-

tion φ1. We show that an Incremental QuantTree starting with a small training

set TRsmall has a performance comparable with that of a QuantTree trained on a

significantly larger training set.

Finally we compare the performance of Incremental QuantTree and H-CPM.

As H-CPM does not require a training set, we confront it with an Incremental

QuantTree having access to an extremely reduced training set, composed of only 4

batches.

44

5.4. COMMENTS ON THE RESULTS CHAPTER 5. EXPERIMENTS

Figure 5.1: False Positive Rate

5.4 Comments on the results

We report here the results of our experiments. We dedicate a paragraph to the

analysis of the performance of Incremental QuantTree for all the figures of merit

discussed before. All our experimets have bee performed using d = 8 dimensions,

ν = 32 bins per batch M = 4 · ν as the size for small training sets and N = 100 · ν
as the size of the large ones, SKL = 2 as the change of the magnitude and α = 0.02

as the desired value for the False Positive Rate, in order to guarantee a desired

ARL0 = ν
α

= 1600.

False Positive Rate We show here the comparison between an Incremental

QuantTree trained with a small training set TRsmall = {w1, w2, ..wM} and a Quant-

Tree trained with a larger training set TR = {w1, w2, .., wN}. We then use both

algorithms to analyze the False Positive Rate, according to the described proce-

dure. Figure 5.1 shows that Incremental QuantTree is able to control the FPR as

QuantTree does.

Detection Power We compare the detection power of QuantTree and Incre-

mental QuantTree. To this end we train a QuantTree with a training set TR =

{w1, w2, .., wN}, and an Incremental QuantTree with a subset a training set TRsmall ⊂
TR. We used the N −M observations belonging to TR and not to TRsmall to iter-

atively update the histogram h of Incremental QuantTree. We then compared the

45

5.4. COMMENTS ON THE RESULTS CHAPTER 5. EXPERIMENTS

Figure 5.2: Detection Power

detection power on a series of batches drawn from a different distribution φ1, ac-

cording to the formula described in Section 5.2 Figure 5.2 shows that the Detection

Power of Incremental QuantTree is in line with that of QuantTree, even when the

size of the training set initially provided to IQT is very small.

Average Run Lenght We compare here the Average Run Lenght (ARL0) of

QuantTree and Incremental QuantTree. To this end we provided QuantTree with a

large training set TR = {w1, w2, ..wN}, and Incremental QuantTree with a subset

TRsmall = {w1, w2, .., wM}, where N < M . We then tested both algorithms on a

data stream x1, x2... ∼ φ0, comparing the average stop time of the two algorithms.

Figure 5.3 shows that both algorithms can be used to control the ARL0. In partic-

ular, Incremental QuantTree is able to control the ARL0, even when trained with

very small Training set.

We then compare the ARL0 of an Incremental QuantTree trained with the same

small training set TRsmall = {w1, w2, ..wM} and of an H − CPM , which does not

require a training set. We show in Figure 5.4 that the Incremental QuantTree has

a better control over the ARL0.

Detection Delay We compare here the detection delay of QuantTree and Incre-

mental QuantTree, according to the framework descried in Section 5.2. We use the

same initial training set TRsmall = {w1, w2, ..wM} and TR used for the experiment

46

5.4. COMMENTS ON THE RESULTS CHAPTER 5. EXPERIMENTS

Figure 5.3: Average Run Lenght before a false alarm, QuantTree and Incremental

QuantTree. N = 3200, D = 8, M = 128, the desired value for the ARL0 is 1800..

The green triangle represents the empirical mean of the two distributions, while the

yellow line represents the median.

Figure 5.4: Average Run Lenght: Incremental QuantTree and H-CPM. Incremental

QuantTree controls better the Average Run lenght.

47

5.4. COMMENTS ON THE RESULTS CHAPTER 5. EXPERIMENTS

Figure 5.5: Detection Delay: Incremental QuantTree and QuantTree. The green

triangle represents the empirical mean of the two distributions, while the yellow line

represents the median.

for the ARL0 and we continuously update the Icremental QuantTree histogram with

the observations {wM+1, wm+2...wN} of TR. We then compare the Run Lenght of

the two algorithms on a data stream x1, x2.., where each observation xi ∼ φ1, and

compute the Detection Delay as the average run lenght of the two algorithms before

a detection. We show in Figure 5.5 that the performance of an Incremental Quant-

Tree initially trained with very few data, is comparable to that of a QuantTree

trained with a considerable training set

48

Chapter 6

Conclusions

This thesis addressed the problem of change detection on data stream. Starting

from an analysis of the literature, we showed that there are only few algorithms

that can monitor multivariate data streams, whose distribution φ0 is unknown.

We propose a novel change detection algorithm, Incremental QuantTree, able to

start monitoring a data stream without having access to a large training set. We

designed the algorithm as an extension of QuantTree, a histogram-based algorithm

for batch-wise change detection on multivariate data.

Our contributes can be divided into three main components: a series of tech-

niques to enable an algorithm based on a QuantTree histogram to analyse online

data streams, a theoretical analysis of the algorithm and of its properties, and a

series of experiments assessing the performance of the algorithm. In particular, we

first introduced an algorithm to update a QuantTree histogram h upon the arrival of

new data (Section 4.2) and one (Section 4.3) to recompute the thresholds whenever

the histogram h is modified.

We then exploited a property of the thresholds computation algorithm of Quant-

Tree to propose a novel and faster threshold computation algorithm for large N , and

proved that the results of the two algorithms are asymptotically equal (Section 4.5).

Furthermore, we studied the performance of Incremental QuantTree Neural Network

based on the statistic used, and we suggested to use the Total Variation (Section

4.6). Then we discussed a possible combination of an EWMA chart with an In-

cremental QuantTree as an alternative change detection algorithm for data streams

(Section 4.7).

Finally we assessed the performance of Incremental QuantTree, proving that it is

possible to extend QuantTree to work with extremely small training sets, controlling

the False Alarm Rate and reaching a detection power in line with that of a QuantTree

trained on a large training set.

49

CHAPTER 6. CONCLUSIONS

Future works involve a further investigation in the use of an EWMA chart to

monitor an Incremental QuantTree histogram, and the use of ensemble learners

using QuantTree and EWMA charts. Finally, we believe that there is the possibility

of further analysing the use of Incremental QuantTree as an online learner, possibly

making it able to detect multiple changes in a fully online manner, re-initializing

upon the detection of a change.

50

Bibliography

[1] Ashbindu Singh. Review article digital change detection techniques using

remotely-sensed data. International journal of remote sensing, 10(6):989–1003,

1989.

[2] Daniel Kifer. Change Detection on Streams, pages 317–321. Springer US,

Boston, MA, 2009.

[3] Indrė Žliobaitė, Mykola Pechenizkiy, and João Gama. An Overview of Concept

Drift Applications, volume 16, pages 91–114. 01 2016.

[4] Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen, Cesare Alippi, and

Gianluca Bontempi. Credit card fraud detection: a realistic modeling and a

novel learning strategy. IEEE transactions on neural networks and learning

systems, 29(8):3784–3797, 2017.

[5] Fabrizio Carcillo, Andrea Dal Pozzolo, Yann-Aël Le Borgne, Olivier Caelen,

Yannis Mazzer, and Gianluca Bontempi. Scarff: A scalable framework for

streaming credit card fraud detection with spark. Information Fusion, 41:182–

194, 2018.

[6] Rodolfo C. Cavalcante and Adriano L. I. Oliveira. An approach to handle

concept drift in financial time series based on extreme learning machines and

explicit drift detection. In 2015 International Joint Conference on Neural Net-

works (IJCNN), pages 1–8, 2015.

[7] Jan Zenisek, Florian Holzinger, and Michael Affenzeller. Machine learning based

concept drift detection for predictive maintenance. Computers Industrial En-

gineering, 137:106031, 2019.

[8] Yanjun Li, Zhi Wang, and Yeqiong Song. Wireless sensor network design for

wildfire monitoring. In 2006 6th World Congress on Intelligent Control and

Automation, volume 1, pages 109–113, 2006.

51

BIBLIOGRAPHY BIBLIOGRAPHY

[9] A. G. Tartakovsky, B. L. Rozovskii, R. B. Blazek, and Hongjoong Kim. A novel

approach to detection of intrusions in computer networks via adaptive sequen-

tial and batch-sequential change-point detection methods. IEEE Transactions

on Signal Processing, 54(9):3372–3382, 2006.

[10] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting change in data

streams. pages 180–191, 04 2004.

[11] Giacomo Boracchi, Diego Carrera, Cristiano Cervellera, and Danilo Maccio.

Quanttree: histograms for change detection in multivariate data streams. In

International Conference on Machine Learning, pages 639–648. PMLR, 2018.

[12] Gordon J. Ross, Dimitris K. Tasoulis, and Niall M. Adams. Nonparametric

monitoring of data streams for changes in location and scale. Technometrics,

53(4):379–389, 2011.

[13] Gordon J. Ross and Niall M. Adams. Two nonparametric control charts

for detecting arbitrary distribution changes. Journal of Quality Technology,

44(2):102–116, 2012.

[14] Shuang Li, Yao Xie, Hanjun Dai, and Le Song. M-statistic for kernel change-

point detection. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems, volume 28,

pages 3366–3374. Curran Associates, Inc., 2015.

[15] Gordon J. Ross, Dimitris K. Tasoulis, and Niall M. Adams. Online annotation

and prediction for regime switching data streams. In Proceedings of the 2009

ACM Symposium on Applied Computing, SAC ’09, page 1501–1505, New York,

NY, USA, 2009. Association for Computing Machinery.

[16] Rosana Noronha Gemaque, Albert França Josuá Costa, Rafael Giusti, and Eu-

landa Miranda Dos Santos. An overview of unsupervised drift detection meth-

ods. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,

10(6):e1381, 2020.

[17] William H. Woodall. Control charts based on attribute data: Bibliography and

review. Journal of Quality Technology, 29(2):172–183, 1997.

[18] Nicholas P. Cheremisinoff. S. In Nicholas P. Cheremisinoff, editor, Condensed

Encyclopedia of Polymer Engineering Terms, pages 268–300. Butterworth-

Heinemann, Boston, 2001.

52

BIBLIOGRAPHY BIBLIOGRAPHY

[19] Douglas M Hawkins, Peihua Qiu, and Chang Wook Kang. The changepoint

model for statistical process control. Journal of quality technology, 35(4):355–

366, 2003.

[20] Ewan S Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115,

1954.

[21] Pierre Granjon. The cusum algorithm-a small review. 2013.

[22] William H. Woodall. Control charts based on attribute data: Bibliography and

review. Journal of Quality Technology, 29(2):172–183, 1997.

[23] Marcus B Perry. The exponentially weighted moving average. Wiley Encyclo-

pedia of Operations Research and Management Science, 2010.

[24] S. W. Roberts. Control chart tests based on geometric moving averages. Tech-

nometrics, 1(3):239–250, 1959.

[25] Ludmila I Kuncheva. Change detection in streaming multivariate data using

likelihood detectors. IEEE transactions on knowledge and data engineering,

25(5):1175–1180, 2011.

[26] Cesare Alippi, Giacomo Boracchi, Diego Carrera, and Manuel Roveri. Change

detection in multivariate datastreams: Likelihood and detectability loss, 2016.

[27] A. N. Pettitt. A non-parametric approach to the change-point problem. Journal

of the Royal Statistical Society. Series C (Applied Statistics), 28(2):126–135,

1979.

[28] Gordon J Ross, Dimitris K Tasoulis, and Niall M Adams. Nonparametric

monitoring of data streams for changes in location and scale. Technometrics,

53(4):379–389, 2011.

[29] Dengsheng Lu, Paul Mausel, Eduardo Brondizio, and Emilio Moran. Change

detection techniques. International journal of remote sensing, 25(12):2365–

2401, 2004.

[30] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf,

and Alexander Smola. A kernel two-sample test. Journal of Machine Learning

Research, 13(25):723–773, 2012.

[31] Gordon J Ross, Niall M Adams, Dimitris K Tasoulis, and David J Hand. Expo-

nentially weighted moving average charts for detecting concept drift. Pattern

recognition letters, 33(2):191–198, 2012.

53

BIBLIOGRAPHY BIBLIOGRAPHY

[32] Muhammad Aslam Masood Amjad Khan Hina Khan, Saleh Farooq. Expo-

nentially weighted moving average control charts for the process mean using

exponential ratio type estimator. ournal of Probability and Statistics, 2018.

[33] H. Hotelling. Multivariate quality control-illustrated by the air testing of sample

bombsights. 1947.

[34] Nola D. Tracy, John C. Young, and Robert L. Mason. Multivariate control

charts for individual observations. Journal of Quality Technology, 24(2):88–95,

1992.

[35] K. D Zamba and Douglas M Hawkins. A multivariate change-point model for

statistical process control. Technometrics, 48(4):539–549, 2006.

[36] Diego Carrera and Giacomo Boracchi. Generating high-dimensional datas-

treams for change detection. Big data research, 11:11–21, 2018.

54

