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Abstract

The advent of Industry 4.0 marks a significant transformation towards a digitalized and
automated manufacturing environment. Collaborative robotics is a milestone of this de-
velopment, promoting a synergistic relationship between humans and robots to enhance
productivity. Ensuring safety is one of the key challenges in this field, as cobots are
designed to work in close proximity to humans without causing any harm.

This thesis explores the technical challenges of designing a collaborative robotic system
that can operate both safely and effectively. The methodological approach includes an
offline generation of a dataset of feasible paths connecting the starting configuration to
the goal using a Rapidly Exploring Random Tree algorithm. Subsequently, a Reinforce-
ment Learning method is employed to enable the robot to dynamically select on which
of the previously computed paths to travel and when to transition from a path to an-
other, depending on the human worker presence. The goal is to empower the robot to
autonomously identify the path that optimally balances maintaining a safe distance from
the human worker with reducing the distance between its current configuration and the
target one. The training and testing phases of the proposed algorithm are performed in
a simulated environment. The established optimal policy is then validated on the GoFa™
robotic arm.

Keywords: Human-Robot Collaboration, safety, path planning, Reinforcement Learning,
industrial automation.





Sommario

L’avvento dell’Industria 4.0 segna una significativa transizione verso un ambiente di pro-
duzione digitalizzato e automatizzato. La robotica collaborativa rappresenta una pietra
miliare di questo sviluppo, promuovendo una relazione sinergica tra umani e robot per
migliorare la produttività. Garantire la sicurezza è una delle principali sfide in questo
campo poiché i cobot sono progettati per lavorare in stretta prossimità con gli umani
senza causare danni. Questa tesi esplora le sfide tecniche nella progettazione di un sis-
tema robotico collaborativo che possa operare in modo sicuro ed efficace.

L’approccio metodologico include la generazione offline di un dataset di percorsi permessi
che collegano la configurazione di partenza a quella finale utilizzando un algoritmo di
Rapidly Exploring Random Tree. Successivamente, un metodo di Reinforcement Learn-
ing è impiegato per consentire al robot di selezionare dinamicamente su quale dei per-
corsi precedentemente calcolati viaggiare e quando passare da un percorso all’altro, a
seconda della presenza dell’operatore umano. L’obiettivo è consentire al robot di identifi-
care autonomamente il percorso che bilancia il mantenimento di una distanza di sicurezza
dall’umano con la riduzione della distanza tra la sua configurazione attuale e quella obi-
ettivo. Le fasi di addestramento e test dell’algoritmo sono state eseguite in un ambi-
ente simulato. Successivamente, la politica di apprendimento è stata validata sul braccio
robotico GoFa™.

Parole chiave: Collaborazione Uomo-Robot, sicurezza, pianificazione dei percorsi, ap-
prendimento per rinforzo, automazione industriale.
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1| Introduction

1.1. Field of application

The fourth industrial revolution, commonly referred to as Industry 4.0, has given rise to
the concept of the smart factories characterized by seamless connectivity, sensors integra-
tion, and the operation of autonomous and self-organizing systems. This transformation
is driven by digital technologies, like Internet of Things (IoT) and Artificial Intelligence
(AI), which are revolutionizing traditional manufacturing processes. The fusion of these
advanced technologies within smart factories serves to significantly enhance productivity,
marking a huge transformation in how industrial operations are conducted.

A prominent aspect of this revolution is the advent of robots in production lines, which are
becoming fundamental in various industries: robots are sophisticated, intelligent systems
equipped with advanced sensors, which are designed to operate autonomously, taking
real-time decisions based on environmental data. The use of robots in industries brings
several advantages: they excel in repetitive tasks, hazardous, with a high degree of pre-
cision, thereby freeing human workers from monotonous and potentially risky activities.
Moreover, robots in Industry 4.0 are often equipped with Machine Learning (ML) capa-
bilities, enabling them to learn and adapt to new tasks and scenarios, providing industries
with the flexibility needed to respond quickly to continuously evolving market dynamics.

With such opportunities, the adoption of robots in industries simultaneously presents
questions about the potential impact on employment, economic implications, cybersecu-
rity threats and ethical considerations [9]. Striking a balance between automation, human
labor and surveillance is a critical consideration in managing the current challenges. An-
other issue is the upfront cost and investment required to integrate sophisticated robotic
systems, which may be prohibitive for small and medium-sized enterprises. Furthermore,
reliance on robots raises concerns about cybersecurity and the vulnerability of manu-
facturing systems to hacking and data breaches. Finally, there is the matter of ethical
considerations and the need to ensure that the deployment of robots in industries does
not compromise human safety or well-being.
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1.2. Human-Robot Collaboration

A significant development in the context of the fourth industrial revolution has been the
rise of collaborative robots, also known as cobots, able to work alongside human in a
shared workspace, enhancing Human-Robot Collaboration (HRC) and exploiting their
combined abilities to achieve optimal outcomes. Collaborative robotics represent not
only a technological advancement but also a paradigm shift in how we envision the role
of robots in the workplace. As industries continue to embrace these innovative solutions,
collaborative robotics is expected to play a central role in determining the future of
automation and human-machine collaboration [33].

With respect to conventional industrial robots, which usually replace human workers and
operate in isolation or behind safety barriers, collaborative robotics aims at creating a
synergistic cooperation between humans and robots in a shared workspace, enabling them
to help humans to accomplish the sequence of actions required to perform a certain task.
In the context of industrial applications, certain operations demand advanced capabilities
and cognitive skills, making them better suited for human execution. On the other hand,
repetitive activities, requiring precision and reliability beyond human capacity, are better
handled by robots. This specific approach to automation has the potential to revolutionize
fields such as manufacturing, logistics, and healthcare [31]. The most commonly used
robots are shown in Figure 1.1.

Figure 1.1: From the left to the right: UR5, KUKA LBR iiwa, ABB GoFa™ CRB 15000,
ABB IRB14000 (YuMi)

In a collaborative context, ensuring a safe environment deserves thoughtful attention.
Cobots are designed to respect safety specifications, featuring compact sizes, lighter struc-
tures and protective padding to minimize the risk of injury upon impact while handling
light loads. They are equipped with advanced sensors, vision systems, and control algo-
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rithms which allow them to detect the presence and the movements of human workers,
allowing for real-time adjustments to avoid collisions and ensure a secure environment.

The survey by Villani et al. [44] highlights the three main challenges in HRC, defined in
the following:

• Safe Interaction refers to the set of principles and technologies that ensure physical
safety of humans when they are working in close proximity to robots. This involves
adhering to guidelines and specifications, which dictate how robots should behave
around humans to prevent injuries, as well as implementing robot operational modes
that are specifically designed for human interaction.

• Intuitive Interfaces refer to user-friendly technologies that allow humans to inter-
act with robots in a natural and effortless way. These interfaces are designed to
reduce the cognitive load on human operators, enabling them to communicate com-
mands to robots and receive information back from them without complex train-
ing or technical knowledge. They include programming by direct manipulation or
simple demonstrations, using straightforward input methods like gestures or voice
commands, and employing Augmented Reality (AR) or Virtual Reality (VR).

• Design Methods cover the development of control laws, techniques, and strategies
involved in creating robotic systems that can work effectively and safely alongside
human workers. They include establishing clear task planning and allocation to
harmonize robotic functions with human activities. Control laws must be designed
to respond to the presence and actions of human collaborators dynamically, ensuring
smooth and safe interactions. Furthermore, equipping robots with sensors enables
them to accurately detect and react to their surroundings and human movements.

Cobots must adhere to the ISO/TS 15066 safety specification [12]. This technical specifi-
cation addresses the unique safety challenges that arise when humans and robots share a
workspace. It outlines the critical parameters and methodologies to ensure a safe interac-
tion between humans and cobots, providing guidelines for the design and implementation
of this kind of systems. It identifies four types of collaborative operating modes: safety-
rated monitored stop (SMS), hand guiding (HG), speed and separation monitoring (SSM)
and power and force limiting (PFL).

These categories, illustrated in Figure 1.2 and further elaborated below, are designed to
mitigate risks associated with direct human-robot interaction, ensuring that cobots can
work alongside human operators without the need for physical barriers or safety cages:
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• In SMS, the robot detects the presence of the human in the workspace and auto-
matically pause its operations, maintaining its position until the person leaves the
space or it is deemed safe to resume.

• In HG, operators can directly instruct the robot by manually guiding it to desired
positions. The robot arm’s weight is compensated for, allowing it to maintain its
position while the operator physically interacts with the machine.

• SSM involves the continuous monitoring of the speed and position of both the robot
and the human worker during operations. Based on the distance between them, the
system dynamically scales of the velocity of the robot as it approaches the operator,
while preserving the path consistency of the trajectory [26].

• Finally, PFL allows the robot to operate near the human by limiting the amount of
force a robot can apply such that a potential impact remains below a predetermined
threshold for pain-free contact.

Figure 1.2: The four collaborative operative modes identified by robot safety specifications
(from [44])

Alongside these stringent safety requirements and protocols, there also lies an inherent
optimization problem related to an efficient execution of the tasks. This entails a careful
balance between upholding safety specifications and achieving operational efficiency.
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1.3. Thesis purpose

In a collaborative context, the recognition and prediction of human activities must be
exploited by the robot for decision-making. This thesis falls within the Design Methods
addressing the challenges associated with HRC as it focuses on the development of a
control logic allowing the robot to choose actions to be performed depending on the actual
human position, while minimizing the distance between the actual robot configuration
and the goal configuration. This approach find possible solutions which guarantees, at
the same time, the maximum safety for the operator and an efficient execution of the task
in terms of covered distance.

This thesis consists in an offline approach followed by an online validation. Initially, a
database of admissible paths is created using the Bidirectional Rapidly Exploring Random
Trees (BiRRT) algorithm to enable the robotic arm to navigate from its starting position
to the designated target within the workspace. The BiRRT algorithm is designed to allow
the manipulator to explore the configuration space by growing two trees with root nodes
at the specified start and goal configurations in a static environment. Its random sampling
strategy allows to efficiently cover large areas of the space, focusing on unexplored regions.
Subsequently, the Reinforcement Learning method, in particular the Q-learning (QL)
technique, is employed to enable the robot to dynamically select on which of the previously
computed paths to travel and when to transition from a path to another, depending on the
human worker presence. This approach aims at empowering the robot with the capacity to
autonomously identify the path that strikes an optimal balance between ensuring a safe
distance from the human worker and reducing time for the task completion. Through
this adaptive strategy, the robot can navigate the environment prioritizing both safety
and efficiency, adjusting its trajectory online to adapt to the dynamics of the human
movements. The training and testing phases of the Q-learning algorithm utilize different
sets of data from the Motion Capture (MoCap) Database HDM05, simulating human
movements across different tasks. Upon the completion of the training phase, an optimal
policy, characterized by an optimal Q-table, is derived and subsequently utilized during
the testing phase. This policy encapsulates the most effective actions the robot should
take in various states to achieve its objectives, balancing safety and efficiency based on
the learned experiences. The optimal Q-table serves as a decision-making guide, enabling
the robot to select actions that lead to the desired outcomes. Finally, the optimal policy is
validated on the GoFa™ robotic arm in the MeRLIn Lab at the Politecnico di Milano. In
the validation phase, a real-time detection of the human position guides the manipulator
in choosing optimal actions to navigate the trees using the established optimal policy.
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Typically, online path planning methods for robotic applications demand substantial com-
putational resources as decisions are made in real time as the robot moves. These methods
continuously analyze the environment, calculate possible routes, and make decisions on
the fly. This real-time computation can be intensive, especially in complex and dynamic
environments where obstacles or humans are moving, but they are useful when the robot
is asked to perform repetitive tasks, quite common in industrial assembly lines. The nov-
elty of this thesis lies in computing before all possible admissible paths the robot might
take. Alongside mapping out all viable routes, this thesis also involves defining an op-
timal policy for the robot’s navigation. As a consequence, when the robot is active and
functioning, the algorithm no longer needs to perform complex calculations to decide its
path. Instead, it simply observes the current condition, which corresponds to the current
robot position and the current human position, and refers to the dataset of paths and to
the optimal policy to quickly determine the best route to take. This drastically reduces
the computational load during real-time operations, as the robot is effectively matching
the current situation to a solution it already knows, rather than computing a new solution
from scratch.

1.4. Thesis structure

This thesis is structured as follows:

• Chapter 1 presents an overview on the current industrial landscape, marked by the
advent of digital technologies. Special attention is given on how the integration of
collaborative robots into the production lines influences industrial operations.

• Chapter 2 offers a State of the Art review, focusing on the literature surrounding the
most common path planning algorithms. Special attention is given to the Rapidly
Exploring Random Trees algorithm and to the Reinforcement Learning method.

• Chapter 3 outlines the theoretical concepts behind the thesis work, describing the
classes of models adopted to solve the robotic navigation and path optimization
problems. This chapter is dedicated to a detailed description of the creation, ex-
pansion, and connection processes inherent to RRT. Furthermore, the chapter intro-
duces the framework of Reinforcement Learning, focusing on its capacity to address
sequential decision-making problems.

• Chapter 4 describes the application of the BiRRT algorithm to efficiently explore
the robot’s workspace and generate multiple feasible paths connecting the starting
configuration to the goal configuration. The parent-child relationships graph is then
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extracted from the dense interconnected network of paths and the essential nodes
and their connections are identified.

• Chapter 5 outlines the formulation of the key components of a Reinforcement Learn-
ing problem and details the implementation of the Q-learning algorithm, enabling
the robot to navigate both safely and efficiently. Moreover, this chapter presents an
analysis of the algorithm’s performances evaluated through a testing phase.

• Chapter 6 illustrates the experimental setup used to validate the proposed algorithm
and describes the results achieved through the application of this work.

• Chapter 7 summarizes the conclusions of this study.
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2| State of the Art

2.1. Review of path planning algorithms

In recent years, the development of path planning algorithms for collaborative robots has
garnered significant attention due to the growing integration of these robots into shared
workspace with humans. The core challenge in designing these algorithms lies in balancing
safety and efficiency. Ensuring safety involves maintaining a safe distance between the
human worker and the robot at all times, preventing contacts or injuries. It is crucial
to optimize task execution time to adhere to industrial production standards, and the
complexity of achieving these goals has led to the development of various strategies and
classes of algorithms.

The methodology introduced by Balan et al. [5] addresses the challenges of navigating
through the shared workspace thanks to a sophisticated human occupancy stochastic
model. The proposed solution uses a sphere-based geometric model to represent both
the human and the robot, making it easier to calculate distances between them. This
model predicts the likelihood of the human presence in different parts of the workspace
at various times. By incorporating probability and uncertainty into the planning process,
the robot can make informed decisions that minimize the risk of collision. This method
allows for dynamic adjustment of the robot’s path in real-time, based on the predicted
movements and positions of human workers. A crucial part of this method is predicting
where the human and the robot will move next, reducing problems caused by the robot’s
slow reactions. The robot’s future movements are estimated with a mathematical model
that understands how it responds over time. At the same time, human movements are
predicted by looking at the average of where they have moved before.

A different approach, proposed in [20], solves the path planning problem focusing on task
allocation. Instead of directly modifying the robot’s path to avoid human workers, this
strategy assigns tasks to the robot in a manner that inherently avoids collisions. The
robot is programmed to engage in activities that do not intersect with human actions and
are optimized to reduce idle time. This approach relies on a strategic overview of the
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workspace dynamics, where tasks are allocated based on current and anticipated human
actions. As a result, the robot contributes productively to the task without the need for
continuous path adjustments. Instead, in the study referenced by Ragaglia et al. [34], a
sensor fusion algorithm integrates data from multiple depth sensors to generate a precise
representation of a human worker’s movements within the robotic environment. This
representation helps to predict the areas the worker might occupy, taking into account
the robot’s stopping time, and models these areas as convex swept volumes. Utilizing this
predictive model, the controller strategically alters the predetermined robot’s trajectory.
These adjustments ensure that safety is maintained by steering clear of these volumes,
thereby minimizing any disruption to the task at hand.

An innovative approach, which inspired the development of this thesis, is proposed by
Pellegrinelli et al. [32]. The time needed by the robot to execute its trajectory is com-
puted, incorporating a probabilistic model of the human presence. This research aims
at establishing a confidence interval for the robot’s trajectory execution time in environ-
ments where human-robot interaction is essential. The human arm movements in specific
collaborative assembly tasks are analyzed to determine the volumes and probabilities of
the worker occupancy. In this research, the optimal path is chosen from a dataset pre-
pared offline, designed to avoid areas frequently occupied by humans and maintain a safe
distance from the worker’s space. This process enables the estimation of the likelihood
of the robot reducing its speed, along with a confidence interval for its overall execution
time, as it can be seen in Figure 2.1.

Figure 2.1: The shorter path crosses a zone where the human could be, and its execution
time is subject to variations due to possible robot stops to guarantee safety (from [32])
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A similar approach [3] introduces a virtual model of the collaborative workspace using
a 3D data structure known as a voxel-grid. This technique, highlighted for its relevance
to the thesis, focuses on robot trajectory planning with an emphasis on avoiding human-
populated areas and maintaining safety margins. Each voxel represents a volumetric
element within the workspace, allowing the robot to distinguish between free and occupied
spaces. This voxel-grid approach serves for efficiently navigating the shared workspace,
ensuring the robot avoids areas that are occupied by humans and maintains a safe distance
from previously human-occupied zones.

An interesting class of methods widely used in robotic navigation and obstacle avoidance
is represented by Artificial Potential Field (APF) algorithms. Drawing inspiration from
the concept of potential fields in physics, APF algorithms are formulated to guide the
robot by simulating a virtual force field, allowing for continuous adjustments of the robot
movements and enabling real time responses to changes in the surrounding environment.
The overall force acting on the robot is a combination of attractive forces towards the goal
and repulsive forces to avoid obstacles. The study presented in [36] is dedicated to online
collision avoidance for collaborative manipulators by adjusting offline generated paths.
The approach presented involves representing both the human coworker and the robot as
geometric shapes to facilitate the use of hypothetical repulsion and attraction vectors to
manage the space between humans and robots effectively. By integrating these vectors
with the robot’s kinematics, the robot is able to dynamically alter its predetermined path
to avoid collisions with humans, ensuring safety without compromising the completion of
industrial tasks.

Other classes of path planning algorithms worth analyzing in the context of path planning
with collision avoidance are grid-based search algorithms and visibility graph algorithms.
Grid-based search algorithms discretize the robot’s configuration space into a grid of cells,
where each cell represents a possible configuration or pose of the robot. The purpose of
grid-based search algorithms is to find a collision-free path for the robot to move from an
initial configuration to a goal configuration within this grid map. The paper by Lau et al.
[21] introduces novel algorithms for dynamic environment navigation in robotics, focusing
on efficiently updating grid maps like Euclidean distance maps, generalized Voronoi dia-
grams, and configuration space maps. By incrementally updating only the affected cells,
these algorithms enhance collision checking and path planning. The methods presented
in the paper have been validated through real-world data experiments, showing signifi-
cant improvements in computational efficiency and adaptability to complex structures.
On the other hand, visibility graph algorithms aim at creating a graph by considering
a direct line-of-sight connections between different points in the environment, allowing a
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robot to plan paths avoiding collisions with obstacles. While visibility graph algorithms
are not exclusively designed for collaborative robotics, they are especially useful in sce-
narios where robots share a workspace with humans. The ability to plan paths based on
visible connections aids in creating trajectories that are not only collision-free but also
consider the natural movement patterns and limitations of both robots and humans. This
enhances safety and efficiency in collaborative settings. The paper by Blasi [6] introduces
an innovative approach for creating optimal flight paths for unmanned aircraft, navigating
around obstacles and no-fly zones with a real-time collision avoidance algorithm. The pro-
posed algorithm employs the Essential Visibility Graph for minimum cost piecewise linear
path search and incorporates a re-planning procedure to update paths in dynamic envi-
ronments. The use of Dubins curves ensures smooth, flight mechanics-compliant paths.
Numerical simulations across diverse scenarios highlight the algorithm robustness, adher-
ence to collision avoidance standards, and suitability for real-time deployment due to to
its minimal computational requirements.

Two different classes of algorithms fundamental for the development of this thesis are
sampling-based algorithms and reward-based algorithms. Sampling-based algorithms al-
gorithms focus on generating a discrete set of samples in the robot’s configuration space
and building a feasible path through the connections between these samples. Probabilistic
Roadmap (PRM) and Rapidly Exploring Random Tree (RRT) are two types of sampling-
based algorithms. These algorithms provide a flexible and computationally efficient way
to plan paths in spaces with complex geometry and obstacles. However, they are time
consuming, since re-planning when the initial position changes is required and in some
cases, a feasible solution cannot be found. Moreover, Karaman and Frazzoli’s research [16]
deals with the asymptotic behavior of PRM and RRT algorithms. Their analysis uncov-
ers that, under commons conditions, these algorithms frequently yield to solutions that
are not optimal. To address this issue, PRM* and RRT* (where the symbol "*" stands
for the enhanced version) algorithms are introduced: being asymptotically optimal, they
ensure that the solution converges to the optimum as the number of samples increases,
without significantly increasing computational complexity.

On the other hand, reward-based algorithms algorithms, based on the mathematical the-
ory known as Markov Decision Process (MDP), provide a powerful framework for enabling
robots to learn and optimize their behavior in collaborative environments. MDP mod-
els the system as a set of states, actions, transitions, and rewards. States represent the
different conditions of the system, actions are the choices available to the robot, tran-
sitions describe the probability of moving from one state to another based on a chosen
action and rewards are numerical values assigned to every state-action pair in the environ-
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ment. Reward-based algorithms provide a positive reward to associate desirable actions
with positive outcomes and negative reinforcement to link undesired actions with nega-
tive outcomes. The ability of the robot to learn from negative outcomes enhances safety
by discouraging actions that may lead to undesirable consequences. The main feature of
reward-based algorithms is to determine the optimal sequence of choices that leads to the
maximum cumulative reward. In the specific context of HRC, rewards can be designed
to encourage safe, efficient, and collaborative behaviour.

In this thesis, the RRT algorithm, categorized under sampling-based algorithms, and the
Reinforcement Learning method, which belongs to the family of reward-based algorithms,
are coupled to solve the path planning problem for the GoFa™ robotic manipulator. With
respect to already mentioned contributions, the objective of this work is to develop a
dataset of known, precomputed and feasible paths. By discretizing the shared workspace
into voxels, a precise identification of the human positions is ensured. Based on this
spatial discretization, along with a comprehensive graph of potential paths, the robot
is equipped to learn, through an offline training phase within a simulated environment,
which route to select, balancing safety and efficiency.

2.2. Rapidly Exploring Random Tree algorithms for

path planning

Sampling-based algorithms have proven to be effective in addressing numerous complex,
high-dimensional motion planning problems for articulated manipulators. Rapidly Ex-
ploring Random Tree algorithms (RRT), through a process of random sampling of points
in the configuration space, construct a graph connecting sampled points which repre-
sents potential collision-free paths. This ensures the algorithm’s efficiency in navigating
the space and discovering viable paths for the robot. Since its formulation, the RRT
algorithm has undergone significant improvements, evolving into an highly efficient tool
for specific path planning problems. The majority of the RRT algorithms found in the
literature provide feasible paths guaranteeing only that there is no contact between the
robot and the obstacles. More sophisticated RRT-based algorithms impose extra safety
oriented conditions on the generated path, such as minimizing proximity to specific areas
whenever possible, adding an extra layer of safety to the paths they generate.

In [17] an anytime motion planning algorithm using the RRT* is introduced, focusing on
enhancing efficiency and safety of HRC in industrial settings. It emphasizes the RRT*
algorithm’s ability to quickly generate an initial feasible solution and iteratively refine it



14 2| State of the Art

towards an optimal solution without significant computational overhead. Through various
experiments, the algorithm demonstrates superior performance in dynamically adjusting
paths in real-time to avoid collisions with humans while maintaining task efficiency.

Instead, the approach discussed in [30] introduces the real-time version of RRT*, an in-
novative method for path planning in dynamic environments, which exploits online tree
rewiring. This technique enables real-time adaptation of paths to changing goals and
emerging obstacles, ensuring continuous alignment with the agent’s current position. The
algorithm’s ability to re-calibrate routes swiftly, without discarding previous computa-
tions, significantly enhances its efficiency. Through comparative studies, RT-RRT* is
demonstrated to surpass conventional methods, providing faster, adaptable solutions for
scenarios demanding immediate responsiveness in complex settings.

The paper by [28] introduces the Particle RRT algorithm, an enhancement of the RRT
path planning algorithm, incorporating uncertainty handling similar to particle filters.
This method treats each search tree extension as a stochastic process, allowing for simu-
lation of multiple outcomes. It enables characterization of robot behavior under specified
environmental uncertainties, offering performance guarantees. Paths are selected based
on the likelihood of successful execution, with benefits demonstrated through a rover
simulation navigating rough terrain with uncertain friction coefficients.

The study proposed by Lacevic et al. [19] utilizes the RRT framework to incorporate a
kinetostatic danger field to guide the expansion of the trees towards safer regions, ensuring
that the planner not only delivers collision-free paths but actively pursues safer alterna-
tives. Two modifications of RRT-based planner are presented: a unidirectional RRT algo-
rithm using the Jacobian transpose for targeted growth, and a bidirectional RRT-connect
approach rooted in specific start and goal configurations. Simulations demonstrate the
algorithms effectiveness in enhancing path safety over traditional methods.

2.3. Reinforcement Learning methods for path plan-

ning

Reinforcement Learning (RL) is one of the most effective approaches to solve complex goal-
oriented problems from interaction and it has been rapidly evolving in the last decades,
marked by significant progresses in algorithms development, practical applications, and
theoretical understanding. Reinforcement Learning has been widely used in many fields,
including robot control [18], autonomous driving [2], games theory [39], computer vision
[23], and natural language processing [37].
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Within the framework of control theory, the application of RL is integrated with a simu-
lation phase. This step is prior to real-world deployment and it is useful to improve the
effectiveness and safety of RL techniques. By harnessing controlled virtual environments
for algorithm training and refinement, simulation enables robots to achieve remarkably
precise and efficient task execution. The approach proposed in [25] explores the de-
velopment and training of a digital twin for a robotic arm using RL within a virtual
environment created in Unity. This approach seeks to enhance AI training efficiency by
simulating real-world observations and applying the acquired knowledge to a twin. This
research demonstrates the potential of digital twins in robotics, offering insights into train-
ing protocols and the mapping of virtual learning to physical applications. The paper by
James et al. [13] explores the integration of deep Q-learning and 3D simulation to train
a 7-DOF robotic arm to perform a control task without prior knowledge. The task in-
volves locating, grasping, and lifting a cube using images of the environment as input.
This innovative approach allows the robotic arm to learn and execute the task without
any preprogrammed knowledge, showcasing the potential of combining advanced Machine
Learning techniques with virtual simulations for robotic training. Furthermore, the re-
search in [27] investigates the use of different RL algorithms for the precise control and
positioning of robotic arms, focusing on how these algorithms can improve accuracy and
efficiency in task execution. By examining four RL algorithms across six distinct setups,
this work evaluates their performance in terms of positioning accuracy, motion trajectory,
and the number of steps required to achieve the goal. Simulations and real-world tests
with a robot were conducted to compare the effectiveness of these RL algorithms in prac-
tical scenarios, demonstrating that RL can be successfully applied to robotic arm control
tasks. An interesting application is described in the paper by Shehawy et al. [38], where
a single-arm robot employs Reinforcement Learning for the task of flattening and folding
a piece of cloth. The Deep Deterministic Policy Gradient (DDPG) algorithm is employed
to instruct the robot on the best actions to take based on the state of the cloth. As a
result, the robot was able to exploit the collected experiences to learn how to flatten and
fold a towel with a constrained edge. Concurrently, computer vision technology is applied
to observe and determine the cloth condition. This work details the creation of a simu-
lation environment and the development of a policy as well as methods for cloth corner
recognition using computer vision, comparing traditional and deep learning approaches.
The training phase showed successful results both in the simulations and in the real-world
application, conducted using an ABB robot and a 2D camera.

In the context of Reinforcement Learning, Q-learning is used for mobile robot navigation
due to its simple and well-developed theory. However, in the literature, it is not frequently
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applied for solving the robot arm path planning problem due to the necessity to account
for the motion of each individual joint. In this thesis, this complexity is overcome by
previously establishing a database of feasible paths for the robot arm using the RRT
algorithm. By adopting this strategy, the robot joints configurations associated with each
point along these paths are already known and they are defined as the states for the QL
problem, while the actions are defined as the transitions between different configurations.
In this thesis, the problem formalization was inspired by the approach proposed in [4],
where the robot locations and orientations are defined as states for the Q-learning. The
tests conducted reveal that, in nearly all scenarios, the QL generated path guarantees
minimal orientation error when the robot reaches the target point. Nevertheless, the
resultant path lacks in smoothness due to the discretization of states and actions. A
similar approach for mobile navigation in the dynamic environment is discussed in [14].
The relative position and angle between the robot’s current pose and the goal pose are
defined as states for the QL method. This choice allows to operate effectively in an
unknown dynamic environments while maintaining a compact Q-table. The experimental
tests reveal that the paths generated by this method exhibit remarkable smoothness,
with a success rate of 98% for the robot reaching the target pose along a collision-free
trajectory.

Also in [15], the C space of the robot undergoes a discretization. As the movements of
the robot joints must be coordinated to navigate around obstacles, the joint state space
is defined as a vector containing all joint information while the action space is composed
by the angular resolutions for each region. The reward function is used to evaluate an
action taken at a particular state and it is designed to impose a penalty when a collision
occurs. To mitigate the possibility of collisions between the robot arm and the obstacles,
the algorithm responds by assigning a negative infinite feedback value, effectively steering
the robot away from potential obstacles. In addition, the reward function is designed to
consider the distance from the current position to the target position within the configu-
ration space. This ensures that the algorithm not only prioritizes obstacle avoidance but
also takes into account in the spatial efficiency of the robot movements towards its goal.
According to this criterion, two terminal states and one transient state are defined. A
state is categorized as winning (WS) if the robot reaches the goal, as failure (FS) if the
robot collides with any obstacle, and as safe (SS) if the robot is located in safe regions
without obstacles. The reward function is set equal to -inf if the robot transitions from
an SS to an FS, it equals 10 if the robot moves from an SS to a WS, and it is calculated
as -µ ·D if the robot shifts from one SS to another SS, where D represents the Euclidean
distance between the safe states and µ is the penalty coefficient.
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3.1. Introduction

To gain a comprehensive understanding of the tools and methodologies employed in this
thesis, a theoretical foundation is provided. This chapter provides a general overview of
the Rapidly Exploring Random Tree family of algorithms, analyzing the main features
and operational processes of standard RRT, RRT* and BiRRT. Additionally, it explores
the Reinforcement Learning technique, with a specific focus on Q-learning method.

3.2. Rapidly Exploring Random Tree algorithm

A wide variety of path planning algorithms that address the navigation problem in a static
environment is present in the literature. Compared to other path planning algorithms,
the Rapidly Exploring Random Tree is advantageous for its flexibility, its simplicity of
implementation and its speed in finding a solution in complex environments, both cre-
ating a graph and finding a feasible path. The RRT is a tree-based motion algorithm
designed to efficiently explore non-convex, high-dimensional spaces, by building a search
tree incrementally from samples randomly selected from a given state space. The RRT
key feature lies in its randomized nature, which allows it to explore complex configura-
tion spaces effectively by growing a tree from an initial state towards randomly sampled
states. This exploration strategy is effective in handling environments with obstacles and
unknown spaces, making RRT well-suited for real-world robotic scenarios.

3.2.1. RRT algorithm

The operational process of the Rapidly Exploring Random Tree involves a systematic
exploration of the configuration space by dynamically growing a tree structure to discover
feasible paths from an initial configuration to a desired goal configuration. The efficiency
of the algorithm lies in its capacity to adapt and extend the tree based on the random
sampling of successive configurations. Algorithms 3.1 and 3.2, illustrated in [7], present
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the pseudo-codes corresponding to the process of generation and expansion of the tree
structure. The algorithm consists in sampling randomly a node xrand in the configuration
space C, which defines the set of all feasible positions and orientations the robot can
assume during its movements, and identifying an existing node xnear in the search tree
that is the closest to xrand. If the distance between xnear and xrand is higher than a threshold
ϵ, the planner expands from xnear towards xrand, until a state xnew is reached. Otherwise,
the new state xnew is equal to xrand. The new state xnew is added to the search tree
and the expand operation, illustrated in Figure 3.1, continues until the final node xgoal is
reached. The connection between xnear and xnew is set only after a check that the edge
connecting the two nodes lies entirely within the collision-free space Cfree. These steps are
repeated until the final state is hit or the maximum number of iterations is reached. If the
final state is reached, the series of connected nodes which form a path from the starting
configuration to the goal configuration is extracted from the RRT data structure.

Figure 3.1: The expand operation

Algorithm 3.1 RRT Algorithm - Build
Require: xstart, xgoal

1: T ← Initialize tree with xstart

2: for k=1 to K do
3: xrand ← Sample random node
4: E ← Expand
5: if E = Reached then
6: return T
7: end if
8: end for
9: return Failure
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Algorithm 3.2 RRT Algorithm - Expand
Require: T , xrand, xgoal

1: xnear ← Nearest neighbour node
2: if |xnear - xrand | < ϵ then
3: xnew = xrand

4: else
5: xnew = xnear + ϵ

6: end if
7: e ← Edge from xnear to xnew

8: if e ∈ Cfree then
9: T ← Add xnew to the tree

10: T ← Add e to the tree
11: if xnew = xgoal then
12: return Reached
13: else
14: return Advanced
15: end if
16: end if
17: return Trapped

The advantages of the RRT are illustrated in [22]:

• It is robust in scenarios where the environment is not entirely known, as it relies on
random sampling and exploration to discover feasible paths.

• The expansion of the tree is strongly directed towards unexplored regions of the
configuration space by biased random sampling.

• The distribution of the nodes tends to a uniform sampling distribution, meaning
that the nodes are evenly spread throughout the configuration space, leading to a
consistent behavior.

• The tree always remains connected, even if the number of nodes is low.

• It is probabilistically complete, meaning that as the number of iterations approaches
infinity, the algorithm is guaranteed to find a solution if one exists.

• It is straightforward to implement and can be included into a wide variety of plan-
ning systems, including both single-query and multi-query scenarios, as well as prob-
lems with dynamic obstacles.
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Finally, the use of Voronoi regions in conjunction with uniform sampling enhances the
efficiency of the motion planning algorithm by guiding the exploration towards regions
that are more likely to yield valuable paths. This bias promotes a rapid and uniform
exploration of the configuration space, avoiding unnecessary exploration of less promising
regions and leading to a faster and more efficient search for a solution. Figure 3.2 demon-
strates how the algorithm, with the introduced bias, explores the configuration space more
rapidly and uniformly compared to a scenario without such bias.

Figure 3.2: Voronoi Regions as the RRT explores the configuration space (from [22])

3.2.2. RRT* algorithm

The RRT* is the optimized version of the RRT algorithm, which produces smoother
graphs and finds the shortest path connecting the starting point to the goal, whether
considering the distance or other metrics. Unlike RRT, which tends to generate sub-
optimal paths due to the cubic graph structure, RRT* aims at improving the optimality
of the generated paths. The basic principle of RRT* is the same as RRT, but an improved
search of the nearest neighbor node and the rewiring of the tree, produce in significantly
better results. To find the optimal solution, the RRT* algorithm considers a cost function
Cmin associated to each node, defined as the cumulative cost of reaching that node from
the starting point. This cost function is used to evaluate and compare different paths,
facilitating the selection of more optimal routes. Instead of connecting the newly generated
node only to its nearest neighbor, RRT* considers a set of nearby nodes within a certain
radius. In the rewiring phase, if an alternative path offers a lower cumulative cost than
the existing connection, the algorithm re-configures the tree by rewiring the nodes. This
means establishing a new, more optimal connection between the nodes to improve the
overall quality of the generated paths. Figure 3.3 shows the advantage of the rewiring of
the tree and Algorithms 3.3 and 3.4 present the pseudo-codes of the illustrated procedure.
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The rewiring step is performed iteratively as the algorithm progresses through multiple
iterations. This continuous adjustment process allows RRT* to refine the tree structure
over time, ultimately converging towards smooth paths that are optimal in terms of the
defined cost function. RRT* is designed to be asymptotically optimal, meaning that as the
number of iterations increases, the probability of finding the optimal solution approaches
the unit. The drawbacks of RRT* are its time and computational expenses, consequences
of the continuous re-connections of the tree.

(a) Before rewiring (b) After rewiring

Figure 3.3: Tree connections before and after rewiring

Algorithm 3.3 RRT* Algorithm
Require: xstart, xgoal

1: T ← Initialize tree with xstart

2: for k=1 to K do
3: xrand ← Sample random node
4: xnearest ← Nearest neighbour node
5: xnew ← Steer between xrand and xnearest

6: e ← Edge from xnearest to xnew

7: if e ∈ Cfree then
8: T ← Add xnew to the tree
9: Rewiring

10: end if
11: end for
12: return T
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Algorithm 3.4 RRT* Algorithm - Rewiring
Require: xnew, xnear, xnearest

1: xmin ← xnearest

2: Cmin ← cost(xnearest) + edge(xnearest, xnew)
3: for all xnear ∈ Xnear do
4: if e ∈ Cfree ∧ cost(xnear)+ edge(xnear, xnew) < cmin then
5: xmin ← xnear

6: Cmin ← cost(xnear) + edge(xnear, xnew)
7: end if
8: end for
9: E ← E ∪ (xmin, xnew)

10: for all xnear ∈ Xnear do
11: if e ∈ Cfree ∧ cost(xnew)+ edge(xnear, xnew) < cost(xnear) then
12: xparent ← Parent(xnear)
13: E ← E \ (xparent, xnear) ∪ (xnew, xnear)
14: end if
15: end for
16: return E

3.2.3. Bidirectional RRT algorithm

Bidirectional RRT, also known as BiRRT, is an extension of the standard RRT algorithm
which explores the configuration space using two trees TA and TB starting from both
the starting node and the goal node simultaneously, and if the trees meet, a solution is
found. Algorithms 3.5 and 3.6 present the pseudo-codes corresponding to the process of
generation, expansion and connection of the two trees structures. The difference with
respect to the standard RRT algorithm is that, after the expand operation of each single
tree, the best node within TB is selected from the sorted list such that it provides collision-
free low-cost connection between the two trees. If the operation is successful, the algorithm
returns the end-to-end feasible path solution, connecting the starting and goal nodes.
Otherwise, the roles of the trees are swapped and another connection is tried, until one
is established. The main advantage of BiRRT lies in its ability to find a feasible path
with significantly lower number of iterations with respect to the standard RRT, especially
in scenarios where the start and goal configurations are far apart or the environment to
be explored is more complex. Moreover, BiRRT can help in avoiding dead ends in the
configuration space. If one tree encounters an obstacle or reaches a dead end, the other
tree might continue exploring and finding a valid path to the goal.
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Algorithm 3.5 Bidirectional RRT Algorithm
Require: xstart, xgoal

1: TA ← Initialize tree start with xstart

2: TB ← Initialize tree goal with xgoal

3: for k=1 to K do
4: xrand ← Sample random node
5: E ← Expand TA towards xrand

6: if E ̸= Trapped then
7: S ← Connect
8: if S = Reached then
9: return Path

10: end if
11: end if
12: (TA,TB) ← Swap
13: end for
14: return Failure

Algorithm 3.6 Bidirectional RRT - Connect
Require: TA, TB, xnew

1: xnear ← Nearest Neighbour within TB

2: E ← Extend from xnear to xnew

3: return E

3.3. Reinforcement Learning method

Everyday humans have to take decisions. Decisions are sometimes driven by the pursuit of
an immediate gratification, while on other occasions, we carefully weigh options, sacrificing
short-term pleasures for enduring satisfaction. Additionally, we are not immune to errors,
often making choices that result in undesirable outcomes. Yet, our ability to learn from
mistakes sets us apart as our brains, working as adaptive learning systems, assimilate the
consequences of our actions, gradually refining our decision-making processes. Our brains
learn by interacting with the environment in an endless sequence of trial and error. We
are likely not to repeat actions causing a negative reinforcement. Conversely, behaviors
associated with positive reinforcement tend to be revisited, showing our inclination to
repeat actions that have brought us satisfaction in the past. Reinforcement Learning
focuses on developing algorithms and models to enable agents to make intelligent decisions
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in an environment, being inspired by how humans and animals learn through interaction
with their surroundings.

Reinforcement Learning (RL) is defined by Sutton and Barto [41] as "learning what to do
- how to map situations to actions - so as to maximize a numerical reward signal. The
learner is not told which actions to take, but instead must discover which actions yield the
most reward by trying them”. A Reinforcement Learning problem is generally formalized
as a Markov Decision Process (MDP), which will be analyzed in detail in Section 3.3.1.
The agent interacts with the environment and learns to make sequential decisions to
achieve a specific goal by receiving feedback from the environment in the form of rewards
or penalties based on the actions it takes. The agent’s aim is to learn an optimal policy,
a mapping between states and actions, that maximizes the expected cumulative reward
over time. This learning process often involves exploration, where the agent tries different
actions to discover their consequences, and exploitation, where the agent uses the learned
policy to choose actions that are expected to yield high rewards.

Reinforcement Learning, supervised learning, and unsupervised learning are three funda-
mental approaches within the field of Machine Learning, each aiming at distinct purposes
and addressing specific types of learning problems. Supervised learning [10] relies on a
labelled datasets to train algorithms, enabling accurate classification of data and pre-
cise prediction of outcomes. The model refines its weights as input data are introduced,
achieving an appropriate fit during the cross-validation process. An example of supervised
learning are Neural Networks, which learn from data through a process called training.
During training, the network is presented with labeled examples, and it adjusts its weights
and biases to minimize the difference between its predictions and the actual outcomes.
This is typically done using optimization algorithms like gradient descent. In unsuper-
vised learning [11], instead, the algorithm explores the inherent structure or patterns
within the data without specific guidance on what to find. The goal is to discover hidden
patterns, group similar data points, or reduce the dimensionality of the data. An example
of unsupervised learning algorithm is K-means clustering, which is used for partitioning
a dataset into K distinct, non-overlapping subgroups or clusters. The goal of K-means is
to group similar data points together and assign them to a cluster, such that the variance
within each cluster is minimized. Algorithms used in RL include Q-learning, Policy Gradi-
ent methods, and Deep Reinforcement Learning, where Neural Networks are employed to
handle complex state-action spaces.Reinforcement Learning has recently received consid-
erable attention due to its successful application in several fields, including game theory,
operations research, combinatorial optimization, information theory, simulation-based op-
timization, control theory, and statistics.



3| Theoretical background 25

3.3.1. Markov Decision Process

RL algorithms operate on systems that are formalized as Markov Decision Processes
(MDP), which are mathematical frameworks used for modeling sequential decision-making
problems. In a MDP, the agent is the decision-maker or learner of the system and it takes
actions in response to the current state of the environment, with the goal of maximizing
the cumulative reward. The states represent the different configurations the environment
can be in and the agent’s perception of the environment at a given time is captured by
the current state. The reward is a numerical value associated with the transition from
one state to another based on the agent’s action and it provides a feedback to the agent,
indicating the immediate desirability or undesirability of the action taken. The agent’s
goal is to learn a policy that maximizes the expected cumulative reward over time. A
policy is a mapping from states to actions, so it defines the agent’s behavior, specifying
the action to be taken in each possible state.

In this thesis, the focus will be on discrete-time MDP, so, at a generic time step t, the
interaction dynamics between the agent and the environment, illustrated in Figure 3.4,
can be described as:

• The agent observes the current state of the environment St ∈ S, where S is the set
of all possible states.

• Based on the observed state, the agent selects an action At ∈ A(St), where A(St) is
the set of all possible actions enabled at state St.

• The environment responds to the action by transitioning to a new state St+1 and
provides a numerical reward Rt+1 ∈ R ⊂ R to the agent based on the transition.

Figure 3.4: Agent–environment interaction in a Markov Decision Process (from [41])
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At each step, the policy πt guides the agent’s decision-making process, influencing the
selection of the action at that state. The agent’s objective in a Reinforcement Learning
setting is to maximize the return, a function representing the sum of future rewards that
the agent seeks to optimize in terms of expected value. The definition of the return varies
based on the task’s nature and whether the problem involves discounting delayed rewards.
The undiscounted formulation, presented in Equation (3.1), is suitable for episodic tasks,
where the agent-environment interaction naturally breaks into episodes. In this case, the
return is computed by performing the cumulative sum of the rewards over the time se-
quence until time T. Conversely, the discounted formulation, whose formal definition is
given in Equation (3.2), is well-suited for continuing tasks, where the interaction persists
without a natural episodic structure. The return is computed by performing the cumu-
lative sum of the rewards over time, while incorporating a discount rate γ, which varies
between 0 and 1. This factor reflects the agent’s preference for immediate rewards over
future rewards. In particular, a higher γ tends to prioritize long-term rewards, encourag-
ing the agent to consider future consequences more heavily, while a lower γ places greater
emphasis on immediate rewards.

Gt = Rt+1 + Rt+2 + Rt+3 + ...RT (3.1)

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (3.2)

A property of particular interest in a Markov Decision Process is the Markov property,
which ensures that the future state depends only on the current state and action, not on
the sequence of events that preceded it, simplifying the modeling and analysis of sequential
decision-making problems. Moreover, in a finite MDP, the set of states, actions, and
rewards are bounded by a finite number of elements. This allows the random variables
of the current state St and reward Rt to be precisely described by a discrete probability
distributions, which depend only on the immediately preceding state St-1 and action At-1.
Equation (3.3) defines the transition dynamics function p, which completely characterizes
the dynamics of the environment of the finite MDP:

p(s’, r | s, a) = Pr{St = s’,Rt = r | St-1 = s,At-1 = a} (3.3)
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3.3.2. Policies and value functions

The brain of the RL agent is the policy, which is defined as a mapping from states to
probabilities of selecting each possible action. The policy can be deterministic, if, for
each state, there is a single corresponding action the agent will always take: a =π(s),
or stochastic, if the policy defines a probability distribution over the set of actions given
a state: π(a |s)=Pr [A |s ]. This last expression can be interpreted as the likelihood to
execute action a if the state is s. Alongside the concept of policy, Reinforcement Learning
algorithms involve the estimation of value functions, which are used to evaluate and
compare different policies, by defining how good it is for an agent to be in a particular
state or to take a specific action in a given state. By estimating the expected cumulative
rewards associated with states or state-action pairs, one can discern the quality of different
strategies. Once value functions are computed, they can be used to iteratively improve the
policy. Actions or policies that lead to higher values can be favored over those with lower
values. The value function vπ(s) of a state s under a policy π is the expected return when
starting in s and following the same policy afterwards. For a MDP, the value function is
defined by Equation (3.4), where Eπ[·] represents the expected value of a random variable
given that the agent follows the policy π.

Vπ(s) = Eπ[Gt | St = s ] = Eπ

[
∞∑
k=0

γkRt+k+1 | St = s

]
(3.4)

The function Vπ is called state-value function for policy π.
Similarly, it is possible to define the action-value function for policy π, as the value
associated with taking a specific action a being in the state s under the policy π, denoted
Qπ(s,a). Equation (3.5) represents the expected cumulative reward starting from state s,
executing action a and subsequently following the policy π.

Qπ(s, a) = Eπ[Gt | St = s ,At = a ] = Eπ

[
∞∑
k=0

γkRt+k+1 | St = s,At = a

]
(3.5)

The value functions Vπ(s) and Qπ(s,a) can be estimated based on the agent’s experiences
in the environment. In the following, Bellman equation is introduced to simplify the state-
value or state-action value calculations. Equation (3.6), named after the mathematician
Richard Bellman, expresses a recursive relationship between the value of a state or state-
action pair and the values of its successor states [40]. The idea of the Bellman equation
is that instead of calculating each value as the sum of the expected return, which is a
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long process, each value is given by the sum of the immediate reward plus the discounted
value of the state that follows.

Vπ(s) = Eπ[Rt+1 + γ vπ(St+1) | St = s ] (3.6)

Solving a Reinforcement Learning problem means, roughly speaking, finding a policy that
achieves a the maximum reward over an extended period [8]. For a finite MDP, a policy
π is defined to be better than or equal to a policy π’ if its expected return is greater than
or equal to that of π’ for all the states. However, multiple policies that are considered
optimal may exist, called π*. They share the same optimal state-value function, denoted
V * and defined in Equation (3.7).

V∗(s) = max
π

Vπ(s) (3.7)

Similarly, optimal policies share the same optimal action-value function, denoted Q*, and
defined in Equation (3.8).

Q∗(s, a) = max
π

Qπ(s, a) (3.8)

The importance of the Q-value function with respect to the V -value function is that the
optimal policy can be obtained directly from the same optimal action-value function, as
stated in Equation (3.9).

π∗(s) = argmax
a∈A

Q∗(s, a) (3.9)

3.3.3. Monte Carlo and Temporal Difference methods

Monte Carlo (MC) and Temporal Difference (TD) are two different strategies to estimate
value functions, which quantify the expected cumulative rewards associated with being in
a certain state or taking a specific action. Both methods are used to learn from experiences
and improve the decision-making of an agent in an environment.

Monte Carlo methods are well-suited for episodic tasks, where the agent-environment
interaction naturally breaks into episodes, and each episode terminates in a terminal
state. It requires a complete entire episode of interaction before updating our value
function as stated in Equation (3.10), where α is the learning rate. The value of a state
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or state-action pair is estimated by averaging the returns observed in multiple episodes,
providing a statistical estimate of the expected reward for a state or state-action pair.

V(St)← V(St) + α [Gt − V(St) ] (3.10)

On the other hand, Temporal Difference methods estimate value functions by updating
their estimates after each time step based on the observed experiences rather than waiting
for an entire episode to be completed. This accelerates learning in online applications.
TD methods combine the principle of Monte Carlo methods (which estimate values from
a complete episode) and dynamic programming (which involves bootstrapping to update
estimates based on other estimates). The key concept in TD methods is the use of
temporal differences, representing the difference between the estimated value of a state
or state-action pair and the immediate reward plus the estimated value of the next state
or state-action pair, as defined in Equation (3.11).

V(St)← V(St) + α [Rt+1 + γ Vπ(St+1)− V(St) ] (3.11)

TD methods, such as Q-learning, which will be extensively described in the following
Section 3.3.5, are widely used in Reinforcement Learning for tasks that involve continuous
interactions with the environment, where learning occurs incrementally over time.

3.3.4. Features of Reinforcement Learning algorithms

In the literature, a wide variety of RL methods are presented. A review is provided,
highlighting the most important features used to distinguish among several classes of
algorithms:

• Value-based and policy-based algorithms: value-based algorithms aim at estimating
and optimizing the value functions associated with different states or state-action
pairs. The goal is to learn a value function that guides the decision-making by
selecting actions that lead to states with higher expected returns. Contrarily, policy-
based algorithms directly parameterize and optimize the policy that maps states to
actions, without explicitly estimating value functions.

• Model-free and model-based algorithms: model-free algorithms, like Q-learning, di-
rectly learn optimal strategies by interacting with the environment, through trial-
and-error and without explicitly modeling the environment. While simple to im-
plement and versatile, they may require substantial sampling for effective learning.
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In contrast, model-based algorithms, such as Monte Carlo Tree Search, create and
use a model of the environment’s dynamics, in order to simulate and analyze possi-
ble future scenarios before they occur. Although potentially more sample-efficient,
model-based algorithms heavily depend on the accuracy of the learned model.

• Online and offline learning algorithms: in online learning, the RL agent learns and
updates its policy or value function while actively interacting with the environment
in real-time. The learning process occurs incrementally, with the agent adapting
its strategy based on immediate feedback and experiences. On the other hand, in
the offline learning, also known as batch learning, the RL agent learns from a fixed
dataset of precollected experiences without further interaction with the environment.
The agent processes historical data to update its policy or value function, making it
suitable for scenarios where the agent has a predefined set of experiences and wants
to improve its learning efficiency.

• On-policy and off-policy algorithms: on-policy algorithms, such as SARSA (State
Action Reward State Action), optimize the policy that is currently being used to
interact with the environment. The agent learns from its own experiences and
directly updates the policy while currently executing it. On-policy methods often
involve a trade-off between exploration and exploitation, as the agent refines its
strategy while actively interacting with the environment. Off-policy algorithms, on
the other hand, optimize a policy different from the one used to generate the data.
These methods can learn from experiences generated by another policy, allowing for
more flexibility. The policy being optimized is called the target policy, while the
policy generating the data is the behavioral policy.

Moreover, hybrid approaches, combining elements of both methods for each category,
are available to exploit the advantages of each paradigm for more efficient and robust
Reinforcement Learning.

3.3.5. Q-learning method

Q-learning is a model-free Reinforcement Learning algorithm designed to enable the agent
to learn optimal actions in a given environment through direct interaction. It is partic-
ularly effective in scenarios where the agent has limited prior knowledge about the envi-
ronment. Q-learning is a value-based method, as it finds its optimal policy indirectly by
training a value-function or action-value function, and an off-policy method, as it learns
the optimal policy by updating the Q-values based on the maximum expected future re-
ward, regardless of the policy that generated the data. Q-learning adopts the Temporal
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Difference approach to iteratively train its action-value function at each step. Q-learning
is the algorithm used to train a Q-Function, an action-value function that determines the
value of being in a particular state and executing a specific action at that state. Internally,
the Q-learning operates by employing a Q-table to store quality estimates (Q-values), for
specific actions in different states, thus guiding the agent’s decision-making process. The
idea of the Q-learning algorithm is that the agent acquires knowledge about the environ-
ment by executing actions and learning the values associated with each state-action pair
based on the received rewards.

In a finite MDP, characterized by a finite number of states and actions, a Q-table is a
valuable tool to map these pairs to corresponding values. The table is initialized to zeros,
then the agent performs a random action, transitioning to a new state and receiving a
reward. The agent uses this reward as a new information to update the value of the
previous state and the action that it just took using the Bellman Equation (3.12).

Q’(s, a)← Q(s, a) + α [R(s, a) + γ maxQ’(s’, a’)−Q(s, a) ] (3.12)

The Bellman equation allows the agent to iteratively refine the Q-table over time by
breaking down the whole problem into more manageable steps. Instead of attempting
to determine the true value of a state-action pair in a single step, the agent updates the
value each time it revisits a state-action pair through dynamic programming [35]. The
Q-table is constructed during the training phase, where the agent alternates exploration
and exploitation to populate the table with learned values. Once the training phase is
completed, the information contained within the Q-table dictates the actions constituting
the policy. Thus, during the testing phase, the agent will make optimal choices by selecting
the best action from this policy, relying on the Q-values.

The Q-learning algorithm, whose pseudo-code is provided in the following Algorithm 3.7,
uses the epsilon-greedy policy to handle the exploration/exploitation trade-off, by mak-
ing the agent choose the action that currently has the highest estimated Q-value with
probability (1- ϵ), while it selects a random action to explore the environment with prob-
ability ϵ. The tuning of the parameter ϵ, which is called exploration rate, is crucial in
Q-learning, as it determines the balance between exploration and exploitation within the
learning process. When the exploration rate is set to a high value, the agent prioritizes
the exploration, meaning that it is more inclined to try out various actions to discover
potentially beneficial outcomes. As time progresses and ϵ decreases, the agent shifts its
focus towards exploiting the knowledge it has gained from Q-values. The epsilon-greedy
policy allows the agent to explore various actions, even those with lower Q-values, which is
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essential for discovering potentially better strategies. As the agent gains more experience
and refines its Q-values, the exploitation becomes more dominant, and the policy tends
to select actions with higher Q-values. This dynamic adjustment of ϵ allows the learning
agent to strike a balance between discovering new possibilities and leveraging existing
knowledge for more refined decision-making.

Algorithm 3.7 Q-learning algorithm
Require: learning rate α, discount factor γ, number of episodes n, exploration strategy

(e.g., GLIE with ϵ decay)
1: Q(s,a) = 0 ← Initialize Q-table to zeros for all s ∈ S and a ∈ A(s) and

Q(terminalstate,·) = 0
2: for i=1 to n do
3: Update ϵ according to the exploration strategy
4: Observe initial state S0

5: repeat
6: Choose action At using the ϵ-greedy policy
7: Take action At and observe Rt+1 and St+1

8: Q (St,At) ← Q (St,At) + α [Rt+1 + γ maxa Q (St+1,a ) - Q(St,At) ]
9: Update state St ← St+1

10: until St is terminal
11: end for
12: return Q

3.3.6. Exploitation/Exploration trade-off

A critical challenge within Reinforcement Learning technique is commonly referred to as
the exploration/exploitation dilemma [42]. It is worth noticing that this dilemma extends
beyond RL, impacting the general ability to learn. This concept revolves around the
crucial decision of balancing the exploration of potentially new and improved solutions
versus exploiting the best currently known policy. When an agent engages exploration,
its average performance is usually lower than if it were to exploit the current best policy
consistently. A strategy exclusively centered on exploration is impractical when training
on physical hardware, as it may lead the agent to perform actions causing damage. Even
in simulated environments without the concern of damage, pure exploration is inefficient
as the agent tends to cover a larger portion of the state space, potentially slowing down the
learning process. On the other hand, using the same policy without exploration hinders
the discovery of potentially better alternatives. A learning approach focused only on pure
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exploitation may increase the amount of time to find the optimal policy or may cause
the learning algorithm to converge on a sub-optimal policy, as certain areas of the state
space remain unexplored. Therefore, optimal learning algorithms strike a balance between
exploring and exploiting the environment.

The ϵ-greedy strategy is commonly used in Q-learning to address the trade-off between
exploration and exploitation. This approach ensures that the agent opts for the action
associated with the highest estimated Q-value with a probability of (1 − ϵ). Conversely,
to promote exploration, it introduces the possibility of selecting a random action with a
probability of ϵ. This method allows the agent to both exploit its current knowledge for
immediate rewards and explore the environment for potentially better future rewards.

The dilemma between exploration and exploitation is particularly pronounced in online
methods, where the average learning performance serves as a metric for the quality of
learning. In this context, the goal is not only to find an optimal policy but to do so while
maintaining a trajectory of continuously improving performances. In contrast, offline
methods mitigate this concern, as the learning process begins only after a set of trajectories
has been collected. This approach ensures that the agent gains the necessary experience
to make informed decisions and optimize the policy without the immediate pressure of
real-time performance evaluations.
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of feasible paths

4.1. Introduction

In the first part of this chapter, the focus lies in the application of the BiRRT algorithm
to efficiently explore the robot’s workspace and generate multiple feasible paths from an
initial position to a desired endpoint. The use of this algorithm holds strategic significance
for the subsequent phase of Reinforcement Learning. It enhances the robot’s adaptability
and decision-making capabilities, allowing it to select the most appropriate path from a
range of options, especially when navigating in a shared workspace alongside humans.
As the trees expand within the workspace, it is necessary to identify only the feasible
paths which effectively lead to the goal configuration. Additionally, the parent-child
relationships graph is extracted from the trees structure, which provides a clear hierarchy
of the nodes within each path and helps in streamlining the decision-making process.

In the second part of this chapter, a model designed to represent the presence of the
human operator within the workspace is introduced. This is achieved by discretizing the
workspace into voxels, which are uniformly sized cubic volumes.

4.2. BiRRT algorithm

For the purpose of this thesis, multiple feasible paths reaching the final state must be
available for the robotic manipulator. The key point of this work is to enable the robotic
arm to switch between paths at any moment to avoid excessive proximity or, in the worst
case, impact with the human operator. Calculating these paths using the RRT algorithm
is extremely advantageous because, by imposing a high maximum number of iterations,
the tree extends in all directions simultaneously, creating a dense net of connections
throughout the workspace. Figure 4.1 shows the countless connections a RRT algorithm
is able to create throughout its branches while avoiding static obstacles. The black edges
represent the pathways generated by the standard RRT algorithm implementation, while
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the green edges are the result of the application of the optimized algorithm. The green
connections extend not only to connect nodes within the same branch of the tree but also
nodes that belong to different branches.

In particular, after a new node is added to the tree, the RRT* algorithm examines nearby
existing nodes within a certain radius, as the new node is considered a potential connection
point for both nodes belonging to the same branch and nodes belonging to other branches.
These two procedures are called within-branch rewiring and between-branch rewiring,
respectively. If connecting the new node to a node in a different branch results in a
lower cost path, a connection is established. This mechanism aims at minimizing the
cost of reaching a node by considering alternative paths, allowing for the refinement of
paths and the discovery of more efficient connections. The combination of within-branch
and between-branch connections allows the algorithm to build a dense net of possible
paths in the entire configuration space. Moreover, once the execution of the algorithm
is completed, i.e. the final state is reached or the maximum number of iterations is hit,
the series of connected nodes which form a path from the starting configuration to the
goal configuration and characterized by the lower cost, is extracted from the RRT data
structure. Being based on a random process of selection of the nodes, the RRT algorithm
generates different tree branches and provides a different optimal path every time the
procedure is repeated.

(a) Execution of the RRT algorithm (b) Another execution of the RRT algorithm

Figure 4.1: The combination of within-branch rewiring and between-branch connections
allows RRT* to iteratively adapt and refine its solution

In this thesis, a BiRRT planner is employed to explore the configuration space, creating
two distinct trees with root nodes at predefined start and goal configurations. Two static
obstacles, around which the tree must extend, are present in the workspace. The planner
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explores the joint configuration space and searches for collision-free paths among different
robot configurations. The extension of each tree involves the generation of a random
configuration and the definition of a connection with the nearest node, based on the Max-
ConnectionDistance property. The algorithm employs a connect heuristic to increase the
speed of the process, promoting a more efficient connection between the start and goal
trees. The choice of enabling or disabling the connect heuristic, via the EnableConnec-
tHeuristic property, becomes a trade-off between planning times and success rates. The
EnableConnectHeuristic property is set to false to limit the extension distance for connect-
ing the two trees to the value specified by the MaxConnectionDistance property, leading
to longer planning times and paths but increasing the likelihood of successfully finding a
path within the given number of iterations [43]. Fine-tuning of the planner parameters is
a crucial step in ensuring the effectiveness of the robot manipulator’s path planning. The
effects of these parameters on the tree extension are represented in Figure 4.2. Invalid
configurations or connections in collision with the environment are not added to the tree.

(a) EnableConnectHeuristic set to false (b) EnableConnectHeuristic set to true

Figure 4.2: Effect of the EnableConnectHeuristic property (from [43])

In the Matlab implementation of the bidirectional RRT planner, the EnableConnec-
tHeuristic property is set to false, the MaxConnectionDistance is set equal to 0,005 m
and the maximum number of iterations MaxIterations is set equal to 10.000. By limiting
the extension distance for connecting the two trees and imposing a maximum high num-
ber of iterations, but accepting a long planning time, the algorithm enables the trees to
extend widely in the workspace, resulting in the generation of a very high number of paths
connecting the start configuration to the goal configuration. The primary focus of the
planner is to enable the two trees to fully explore the workspace and establish connections
at various points. However, some drawbacks have to be taken into account and ultimately
be solved. The drawbacks include long planning times, which do not substantially affect
the result since this procedure is performed offline, and the presence of irregularities in
the branches, which appear edgy and tortuous.
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Subsequent sections 4.2.1 and 4.2.2 will address these challenges by introducing methods
to eliminate dead branches and to achieve smoother paths. The key point in the imple-
mentation of the planner is that the generated paths are feasible for the robot as they
exist within the configuration space. The planner ensures that the paths it constructs
satisfy the constraints and the limitations of the robot’s joints, making them immediately
suitable and practical for the robot to follow. As a result, the paths generated are specifi-
cally tailored for the robot selected for this thesis work, which is the GoFa™ robotic arm.
The result of the application of the bidirectional RRT planner in a simulated environ-
ment created in Matlab is shown in Figure 4.3. The tree in blue colour is generated at
the starting configuration, which corresponds to a set of angles of the robot joints equal
to [-51,6° 62,39° -8,24° 2,87° 34,49° 1,14°], while the tree in green colour starts from the
goal configuration, which corresponds to [56,17° 48,49° 20,9° -3,79° 19,82° 1,14°]. The
two trees extend in every direction towards each other, and when the maximum number
of iterations is reached or the distance between two branches of the trees becomes lower
that the one imposed by MaxConnectionDistance, a connection is established.

Figure 4.3: Result of the BiRRT algorithm application in the simulated environment
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4.2.1. Paths identification

The methodology outlined in Section 4.2 is designed to construct a dense network of inter-
connected paths throughout the workspace. Thus, the subsequent step involves identifying
and extracting valuable paths that connect the starting point to the end goal, removing
dead ends, which lead to no viable solution. To achieve this, the Matlab function allpaths
is employed, which returns all the paths between two graph nodes. This function aids
in navigating through the interconnected network and identifying feasible paths for the
robot which effectively lead to the goal configuration. For this application, the allpaths
function has successfully identified 165 feasible paths within the graph, which are shown
in Figure 4.4.

The identified paths are described in terms of sequences of robot configurations, where
each configuration denotes a specific robot pose that connects the initial configuration to
the goal. Additionally, these paths are described using sequences of identification numbers
for the nodes within the graph. This dual representation is not only useful for referencing
and navigating through the graph efficiently, as it simplifies the path description to a
series of node identifiers, but it also allows to easily derive the parent-child relationships
among the nodes. Defining the parent-child relationships in the graph is fundamental
because they represent the connectivity and the hierarchy between different configurations
or states, providing a clear framework for the robot’s movements within the workspace.

The network of paths in the configuration space, mapping the transitions from the initial
to the goal configuration, is quite intricate. Paths intersect each other at various points,
and there are many branching and junction nodes where different paths come together or
diverge. This complex network allows the robot to have multiple paths to choose from,
especially when it reaches significant nodes in the graph. This multiplicity of routes is
strategic for the subsequent phase of Reinforcement Learning, designed to offer the robot
an array of navigational choices. In this phase, the robot undergoes a training phase to
learn how to navigate this complex graph, aiming to optimize its route selection. By
learning the layout of the paths network and how humans move within it, the robot uses
the acquired knowledge optimally, becoming able to find the shortest path to reach the
goal but also to choose a path that ensures safety, maintaining at every time instant a
minimum distance from the current position of the human operator. This emphasizes
the robot’s ability to adapt and make informed decisions based on the intricate network
structure it has learned.
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Figure 4.4: Identification of the 165 feasible paths within the network connecting the
initial configuration to the goal configuration

4.2.2. Ramer-Douglas-Peucker algorithm

Once the feasible paths are identified as described in Section 4.2.1, the goal is to make
them smoother and more linear in order to facilitate the robot’s motion, improving the
fluidity of movements along the identified paths. This process of path smoothing can be
applied only on specific segments of the paths, specifically those without branching or
junction nodes. Considering that a branching node is a parent node with two or more
children nodes and a junction node is a child node with two or more parent nodes, the
sub-paths which can be simplified without altering the tree structure are exclusively those
one made by parent nodes which have only one child node and viceversa. The underlying
purpose is to guarantee that the robot reaches the key nodes, where a decision must be
taken in the subsequent phase of Reinforcement Learning. The remaining nodes, which
constitute unique paths with no possibility of shifting to other paths, can undergo a
process of simplification.
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Once these sub-paths are identified, the Ramer-Douglas-Peucker (RDP) algorithm is ap-
plied, which is a technique used for simplifying a curve represented by a series of points. It
is commonly employed in computer graphics, geographic information systems, and various
applications where the reduction of data points in a curve is desired without significantly
altering its shape. The RDP algorithm, whose pseudo-code is shown in Algorithm 4.1,
operates by iteratively identifying and removing points that contribute minimally to the
overall shape of the curve. First of all, the point in the curve that has the maximum
perpendicular distance from the line segment connecting the first and last points of the
curve is identified. If the maximum distance is greater than a predefined threshold ϵ, the
algorithm identifies the portion of the curve between the first and last points which con-
tains complex details that need further refinement. The algorithm is recursively applied
to simplify this specific portion, determining whether a point is essential for representing
the curve or if it can be approximated by a straight line segment connecting adjacent
points. Finally, the algorithm builds the final result list, which contains all the key points
that represent the essential shape of the curve [24].

Algorithm 4.1 Ramer-Douglas-Peucker Algorithm
Require: dmax , ϵ, PointList [ ], index
1: dmax = 0
2: index = 0
3: for i=2 to length(PointList) -1 do
4: d ← perpendicularDistance(PointList [i ], Line(PointList [1 ], PointList [end ]))
5: if d > dmax then
6: index = i
7: dmax = d
8: end if
9: end for

10: return ResultList [ ] = empty
11: if dmax > ϵ then
12: Result1 [ ] = DouglasPeucker(PointList [1,...,index ], ϵ)
13: Result2 [ ] = DouglasPeucker(PointList [index,...,end ], ϵ)
14: ResultList [ ] = {Result1 [1,...,length(Result1) - 1 ], Result2 [1,...,length(Result2)]}
15: else
16: ResultList [ ] = {PointList [1 ], PointList [end ]}
17: end if
18: return ResultList [ ]
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The following Figures demonstrate the influence of the factor ϵ on the approximation of
the original curve (depicted in yellow) with the approximated curves (depicted in blue).
Specifically, Figure 4.5 illustrates the simplification of the original curve, achieved by
setting a value of ϵ equal to 19,6. This process of simplification reduces the number of
points describing the original curve from 56 to 13. Similarly, Figure 4.6 results from
setting a value of ϵ equal to 7,9, which brings to 22 points of the approximated curve,
while Figure 4.7 is derived by setting a value of ϵ equal to 2,3, which leads to 37 points
of the approximated curve. Thus, smaller thresholds preserve more detail, while larger
thresholds result in greater simplification. The simplified curves present roughly the same
shape of the original curve but consist only of a subset of the points that defined the
original curve. In the practical application focus of this thesis, the parameter ϵ, used
for the robot’s paths simplification, has been set to 10 cm. A higher value would be
risky as the robot’s paths are designed to navigate around static obstacles present in the
workspace, so taking a higher value could result in a non collision-free path.

Figure 4.5: Simplification of the curve in yellow using the RDP algorithm with ϵ=19,6

Figure 4.6: Simplification of the curve in yellow using the RDP algorithm with ϵ=7,9
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Figure 4.7: Simplification of the curve in yellow using the RDP algorithm with ϵ=2,3

Figure 4.8 shows the 165 paths after the simplification with the RDP algorithm by remov-
ing the nodes that are non-essential and contribute minimally to the overall shape of the
curve. It is worth noticing that all the branching and junction nodes are still present in
the tree structure and the nodes which fall outside the RDP threshold are preserved. This
ensures that the robot still has some reference nodes between significant points, which
contribute to effective navigation and guidance for the robot in following a specific path.

Figure 4.8: Result of the application of the RDP algorithm to the 165 paths
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4.2.3. Parent-child relationships graph reduction

The dense network, which results from the trees expansion and connection processes, pro-
vides a foundation for the subsequent application of the Reinforcement Learning method.
The aim is to teach the robot how to navigate efficiently within the workspace, relying
on the knowledge derived from this network and on the parent-child relationships. As a
result, the graph representing the parent-child relationships undergoes a process of reduc-
tion as only the significant nodes are essential to define the states and actions required in
Section 5.3.1 to construct the Q-table. The significant nodes are defined as the junction
nodes and the branching nodes, as well as those nodes that are indispensable to uniquely
identify a path. The significance of these nodes lies in the fact that, in certain situations,
there may be numerous alternative routes connecting a branching node to a junction node,
as demonstrated in Figure 4.9. Therefore, it is necessary to keep some of those nodes to
preserve the ability to distinguish between paths that might otherwise become indistin-
guishable. All the nodes that are not filtered out by the RDP algorithm are removed from
the graph, as they do not contribute to the robot’s movement, which involves transitions
between notable nodes. This process effectively minimizes the number of nodes to only
those essential for the navigation. Moreover, for the future development of Reinforcement
Learning, it is crucial to focus exclusively on identifying the significant nodes and their
connections, providing a parent-child relationships graph containing only these relations.

Figure 4.9: Example of different pathways connecting node 1 to node 4999

The process of the parent-child relationships graph reduction can be summarized through
the following steps:

1. Determine the list N of the nodes that currently constitute the total parent-child
relationship graph G.

2. Define c as the counter of the nodes within the list N and initialize it to zero.
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3. If c is different from the number of nodes constituting G, proceed to step 4 ; other-
wise, the algorithm terminates.

4. Select the node in position c from N, named current node ncorr.

5. If ncorr has a single parent p and a single child f, proceed to step 6 ; otherwise,
increment c by one unit (c=c+1 ), and return to step 3.

6. If f has p as its parent, increment c by one unit (c=c+1 ), and return to step 3.
Otherwise, remove ncorr from G and N, along with the parent/child relationships be-
tween p and ncorr and between ncorr and f. Generate a new parent/child relationship
between p and f ; then return to step 2.

This process allows to simplify the full parent-child relationships graph from a total of
2.815 nodes to 131 nodes. The reduced graph containing the essential parent-child re-
lationships is shown in Figure 4.10. The nodes are linked with 201 connections, which
represent the actions of the subsequent training phase.
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Figure 4.10: Parent-child relationships graph with 131 nodes and 201 connections
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4.3. Workspace discretization

Workspace discretization into voxels involves dividing the entire workspace into uniform
cubic volumes, known as voxels. Each voxel is precisely defined by its cubic shape and is
characterized by Cartesian coordinates relative to a global reference frame, which coincides
with the robot reference system, as represented in Figure 4.11. This process aims at
representing the workspace in a structured and computationally manageable manner. The
number of voxels in the three-dimensional space is determined based on the dimensions
of the real workspace and the desired resolution. The higher the desired resolution, the
more voxels are required, subsequently increasing the computational cost.

Figure 4.11: Voxel coordinates are defined with respect to a global reference system

The motion of the human worker in the workspace is depicted through a series of occu-
pied voxels. Utilizing voxels to model the human presence offers a significant advantage,
particularly because human movements are inherently non-repetitive. The dimension of
a voxel is sufficiently large to encapsulate not only the average position of the movements
but also their standard deviation. This ensures that the model accounts for the range of
motion within the workspace, providing a more realistic representation of human activity.

For the application under study in this thesis, the shared workspace has been divided
into a total of 30 voxels, with each voxel being a cube with a side length of 30 cm.
Additionally, the introduction of an extra voxel, assigned the identification number 31, is
necessary to take into account the condition where specific skeletal positions of the human
body are located outside the designated workspace area. Figure 4.12 visually illustrates
how the three-dimensional space has been segmented into voxels. The spatial coordinates
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delineating each voxel are indicated by ’x’ marks, whereas the centers of the voxels are
highlighted with red dots. A unique identification number is assigned to each voxel within
the workspace, ensuring a systematic way to reference and track each cubic volume in the
space. These identification numbers are used to pinpoint which voxels are occupied by
each of the considered skeletal joints of the human at each time instance. This process
aims at mapping the skeletal points while executing the task to specific voxels. In this
way, the movements of the human necessary to execute the task are translated into an
evolution of the voxels occupied over time.

Figure 4.12: Workspace discretization in voxels
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application

5.1. Introduction

In this chapter, the Q-learning technique is employed to train the robotic manipulator.
The key point is to guarantee that the manipulator motion is not limited to a single path,
but instead has access to various alternatives to achieve its final state. The aim of this
research is to equip the robotic arm with the capability to dynamically switch between
these paths once a branching node is reached. This flexibility is essential for maintaining
a safe distance from the human operator and preventing any potential collisions. By em-
powering the robotic arm with a deeper understanding of its operational environment and
with the ability to adapt its movements in response to human movements, the interaction
between robots and humans in a shared space is significantly enhanced, leading to safer,
more efficient, and harmonious collaborations.

This chapter is structured into two main sections: initially, the focus lies on defining the
elements required for the MDP problem, including a human occupancy model. The model
leverages data pertaining to human movements during various tasks, sourced from the
Motion Capture (MoCap) database. For each of the selected tasks and at every moment in
time, the model determines the occupancy within each voxel, thereby providing a detailed
spatial and temporal analysis of human presence in the workspace. The second part of
the chapter is devoted to the training phase of the Q-learning algorithm and to evaluate
its performances through a testing phase. This approach allows for a comprehensive
evaluation of the algorithm’s capabilities, ensuring it learns the desired behaviors before
assessing its into the validation phase on the GoFa™ robotic arm.

5.2. Human occupancy model

Human occupancy data within the workspace during real-time operations are collected
using the Kinect camera. Instead, during the training phase of the Q-learning algorithm,
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input data regarding human movements within the workspace are sourced from the MoCap
database. The choice of this dataset proves to be particularly beneficial in this context
as the aim is to generalize human movements as much as possible. This ensures that the
final real-time model is capable of accommodating any human motion and task.

Referenced in [29], the MoCap database contains over three hours of systematically
recorded and well-documented motion capture data. This extensive collection features
more than 70 categories of motions, including walking, dancing, sports activities, and
gestures, realized in 10 to 50 variations by different actors and performed by over 140
subjects. For the purposes of the training, a selection of tasks was made from the MoCap
database, specifically focusing on those involving arm movements within the workspace
and excluding tasks related to activities such as walking. During the training phase, the
robotic manipulator has to learn how to navigate within the workspace to reach its final
configuration with the shortest path while also maintaining a safe distance from the hu-
man. The manipulator has to determine the best path to take in response to different
human movements, and, once the optimal policy is derived, in the subsequent testing
phase, the robot will be presented with new, previously non analyzed MoCap tasks. It
will then need to decide on a course of action to evaluate the effectiveness of the estab-
lished policy. Human movements from the MoCap dataset are represented as a series
of points for each joint of the human body. This detailed representation facilitates the
robot’s understanding and anticipation of human movements, allowing for more informed
decision-making in maintaining safe and efficient interactions within the shared workspace.
For the training phase, the tasks selected from the MoCap database are equal to 40, while
the optimal Q-table is then tested on 10 new tasks. Examples of the chosen tasks are
reported in Figure 5.1 only considering the movements relative to one hand.

(a) Task: "drink soda, screw on bottlecap" (b) Task: "high five"
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(c) Task: "shake hands" (d) Task: "conversation with hand gestures"

Figure 5.1: Human hand motion in the workspace for different tasks

The occupancy determination within each voxel is achieved for each of the selected tasks
from the MoCap database and for each time instant. Algorithm 5.1 is employed to
execute this identification procedure in a systematic and computational manner, ensuring
consistency and accuracy in determining the occupied voxels for the human’s hand across
different tasks and temporal moments. In particular, for a fixed task, the algorithm
evaluates whether the i-th point of the hand of the human body, with coordinates xi, yi

and zi, belongs to the volume of the j-th voxel, which is defined by coordinates Xj, Xj+1,
Yj, Yj+1 Zj and Zj+1. The algorithm provides as output the identification numbers of the
occupied voxels at each time instant.

Algorithm 5.1 Voxel occupancy map Algorithm
Require: [xi yi zi] of each skeletal point, [Xj Xj+1 Yj Yj+1 Zj Zj+1] of each voxel,

Nskeletal points, Nvoxels

1: for i=1 to Nskeletal points do
2: for j=1 to Nvoxels do
3: if Xj ≤ xi ≤ Xj+1 & Yj ≤ yi ≤ Yj+1 & Zj ≤ zi ≤ Zj+1 then
4: Voxeloccupied = Voxelid(j )
5: else
6: Voxeloccupied = 31
7: end if
8: end for
9: end for

10: return Voxeloccupied
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5.3. Algorithm training phase

Q-learning is a model-free Reinforcement Learning algorithm that seeks to find the best
action to take given the current state. It works by learning an action-value function that
ultimately gives the expected utility of taking a given action in a given state and following
a fixed policy thereafter. Training a Q-learning model requires several key components,
which are illustrated in the following and then defined specifically for this problem:

• The state space contains the set of all possible states in which the agent can find
itself. It captures all relevant information about the environment that allows the
agent to make decisions.

• The action space contains the set of all possible actions the agent can take in each
state. The action space defines the choices available to the agent at each step.

• The reward signal is the feedback that the agent receives from the environment
after taking an action. The reward signal indicates the immediate value of the
action taken and it allows the agent to learn which actions lead to better outcomes.

• The policy is the strategy that the agent follows to decide the actions to be taken.

• The Q-table is the table that contains the Q-values. The rows of the Q-table cor-
responds to the states and the columns to the actions. Each entry in the table
represents the expected cumulative reward of taking an action in a given state,
following the optimal policy thereafter.

• The learning rate α determines the extent to which the new information affects the
existing Q-values. A higher learning rate means that more weight is given to newer
information.

• The discount factor γ determines the importance of future rewards. A discount
factor close to 1 places nearly equal importance on future rewards as on immediate
rewards, encouraging the agent to consider long-term consequences of its actions.

• The exploration strategy is the method for balancing exploration, which consists
in trying new actions and exploitation, which consists in taking actions known to
yield high rewards. The ϵ-greedy strategy is commonly used in Q-learning, where ϵ

represents the probability of taking a random action.

• The Q-value update rule is the formula used to update the Q-values in the Q-table
based on the reward received and the estimated optimal future rewards. The update
rule enables the agent to improve its policy over time.
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5.3.1. MDP environment definition

The parent-child relationships graph, introduced in Chapter 4, serves as the fundamen-
tal component for defining discrete states and actions essential for the construction of
the Q-table. This framework supports the Reinforcement Learning model, facilitating
the systematic exploration of feasible paths and enabling the algorithm to learn optimal
decision-making strategies through interaction with the environment.

The actual 3D problem counts for 201 possible actions, 131 nodes, and 31 voxels. To
facilitate a clearer comprehension of how the Q-learning problem is formulated, a sim-
plified 2D version of the problem, which includes 26 possible actions, 19 nodes, and 24
voxels, is analyzed. Subsequently, the same method is applied to analyze the real, more
complex 3D problem. Figure 5.2 illustrates the structure of the 2D problem. The nodes,
which represent feasible positions for the manipulator, are depicted within circles, while
the actions the robot can take are illustrated by arrows linking two nodes. The numbers
displayed in pink color correspond to the states associated with each node, providing a
clear mapping between the robot’s location and its current state within the environment.
The manipulator motion starts in correspondence of node 1 and ends when the final node
19 is reached. Throughout the grid, multiple paths are available for the manipulator
to navigate and ultimately arrive at its designated endpoint. The presence of humans
within the grid is represented by a series of occupied voxels. To simplify the model, it
is assumed that at any given moment, only one voxel is occupied, specifically the voxel
that is occupied by the hand of the human worker. The grid is divided into 24 voxels,
with an additional voxel included to account for situations where the considered skeletal
position falls outside the designated grid area. Consequently, each node is characterized
by 25 states to accommodate this spatial modeling. The total number of states is com-
puted using Equation (5.1), with the assumption that the final node is represented by a
single state. This is due to the fact that, once the robot reaches the final node, no further
decisions are required and the human presence is irrelevant for the task’s completion.

NumStatitot = (NumNoditot − 1) · NumVoxeltot + 1 (5.1)

In a Markov Decision Process problem, states and actions are designed to comprehen-
sively describe the environment to the extent necessary for decision-making purposes.
This means that the states should capture all relevant information that could influence
future decisions and the outcomes of those decisions. Similarly, the actions should contain
all possible choices available to the agent that can affect the state of the environment.
Consequently, each state is defined by a specific pairing: a voxel that is occupied by the
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human operator and a node that is occupied by the manipulator. In other words, the
combination of a node and a voxel occupancy defines a particular state. For instance,
state 1 indicates that the robot is located at node 1 with voxel 1 being occupied, while
state 2 signifies that the robot is still at node 1, but now voxel 2 is occupied. Similarly,
state 28 shows the robot has moved to node 2 and voxel 3 is occupied, an so on.

Figure 5.2: 2D grid structure with 26 possible actions, 19 nodes and 24 voxels

5.3.2. Transitions and rewards definition

Transition and reward matrices are square matrices used to model the dynamics of the
environment and the outcomes of actions taken by an agent within that environment. In
the context of MDP, there is typically a separate transition matrix and reward matrix
for each action that can be taken. Given that there are 26 distinct actions for the 2D
simplified case, this results in the creation of 26 separate transition matrices and 26
corresponding reward matrices. On the other hand, for the three-dimensional real case,
the number of transition and reward matrices is equal to 201, as the number of actions is
equal to 201. The transition matrix describes the probabilities of moving from one state
to another in a given environment. Each element of the matrix represents the probability
of transitioning from one state to another as a result of a particular action.
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To facilitate the definition of the transition matrix and of the reward matrix, which are
fundamental for the development of the Q-table, the initial step involves creating a matrix
which contains all possible and impossible transactions based on the current state and the
action taken. In this matrix, the transitions the robot can execute in a particular state are
marked with a 1 in the last column, signifying their availability. Conversely, actions that
are not viable in the current state are denoted by a 0, indicating their unfeasibility. This
preparatory step ensures a structured framework, allowing for a systematic representation
of how actions taken in specific states lead to subsequent states and the associated rewards
or penalties. A portion of this matrix involving nodes 1 and 2 is illustrated in Table 5.1,
providing an example of how the information contained in Figure 5.2 is applied in practice.

In the MDP implementation, it is necessary to define transitions for all state-action pairs,
including situations where certain actions may not be feasible within specific states. This
approach is adopted to prevent undefined behavior and to meet the specifications of the
particular MDP framework in use. To manage infeasible actions within the code, a self-
transition, which means transitioning back to the same state, with a probability of 1 is
assigned for actions that are not applicable in a given state. For example, node 1, whose
associated states are from 1 to 25, permits actions from 1 to 5. By taking action 1,
the manipulator transitions to node 2, which is associated with states from 26 to 51.
Similarly, action 2 leads to node 3, corresponding to states from 51 to 75, and so forth.
Conversely, actions from 6 to 26 are not viable at node 1. Therefore, executing one
of these prohibited actions while at node 1 results in the robot remaining at node 1.
Implementing this strategy ensures that taking an infeasible action in any state results
in remaining in that state with absolute certainty. This approach not only simplifies
the handling of actions that cannot be executed in certain states but also maintains the
integrity of the MDP model by avoiding undefined behavior. By doing so, the model
accounts for the consequences of all actions, including those that do not lead to a change
in state, thereby maintaining a complete and consistent representation of the environment
essential for effective decision-making and policy evaluation within the MDP framework.

Moreover, given that each node is linked to 25 distinct states, the feasible transitions
must consider that there is an equal probability of moving from any of the 25 states of
the starting node to any of the 25 states of the target node. For instance, when transi-
tioning from state 1, which is associated with node 1 and occupied voxel 1, there exists a
probability of 1/25 of moving to each state within the range of 26 to 50, corresponding
to node 2, upon executing action 1. This equal distribution of probabilities ensures a uni-
form approach to state transitions, reflecting the inherent uncertainty about the specific
end state within the target node’s state set, given a particular action.
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Nodestart State1 State2 Nodeend State3 State4 Action Feasible

1 1 25 2 26 50 1 1

1 1 25 3 51 75 2 1

1 1 25 4 76 100 3 1

1 1 25 5 101 125 4 1

1 1 25 6 126 150 5 1

1 1 25 1 1 25 6 0

1 1 25 1 1 25 7 0

... ... ... ... ... ... ... ...

2 26 50 7 151 175 6 1

2 26 50 8 176 200 7 1

2 26 50 2 26 50 1 0

2 26 50 2 26 50 2 0

... ... ... ... ... ... ... ...

Table 5.1: Columns from left to right: ID of the starting node, range of states associated
to the starting node, ID of the end node, range of states associated to the end node,
actions, feasibility of the action

The reward function quantifies the benefit or consequence of performing a specific action
in a given state, serving as a critical feedback mechanism that guides the learning al-
gorithm. By assigning a numerical value to each action’s outcome, the reward function
helps the agent discern which actions are beneficial for achieving its goal. This relation-
ship between actions and their consequent rewards is fundamental for the agent to learn
optimal behaviors through trial and error, optimizing its strategy to maximize cumulative
rewards over time.

Once infeasible actions are identified for a given node, the reward function assigned to
these actions is set to -1.000. This ensures a substantial penalty is associated with at-
tempting any impossible action within the current context, effectively discouraging the
selection of such actions. Instead, for feasible actions, the reward function is designed to
achieve a balance between ensuring that the robotic manipulator consistently maintains a
certain minimum distance from the voxel occupied by the human and minimizing the dis-
tance from the current configuration of the manipulator to the goal configuration. Thus,
the computation of the reward function takes into account two quantities: the distance
between each node and every voxel within the grid, which evaluates the proximity to the
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human occupied voxel, and the distance between each node and the goal node, which
assesses the efficiency of the path towards the objective. This approach enables the robot
to navigate safely and efficiently, avoiding too close an approach to the human while op-
timizing its path to the goal. Algorithm 5.2 presents the mathematical formulation of
this theoretical concept. The reward associated to a specific action is composed by two
terms, which are called R1 and R2. R1 is derived from the proximity between the node
that could be occupied in the next time step by the robot and the voxel that is occupied
by the human at the current moment. This part of the reward incentives the agent to
maintain an appropriate distance from the human, promoting safety and efficient naviga-
tion within the shared environment. In fact, the calculation of R1 incorporates a specific
formula that is selected according to a threshold parameter, denoted as a, which defines
some zones of close proximity within the voxel’s area. This parameter, which is computed
in Equation (5.2) for the 3D real case, quantifies the distance from the vertex of a voxel
to its center, serving as a key factor in determining the proximity-based reward.

a =

√
3 ·

(
DimensioneVoxel

2

)2

(5.2)

Furthermore, the use of the logarithmic function results particularly advantageous because
by dividing the node-voxel distance by 2·a, when the logarithm’s argument falls below 1,
it takes on a negative value. This mechanism effectively imposes a substantial penalty
on very small node-voxel distances. Conversely, when the logarithm’s argument exceeds
1, indicating that the node is sufficiently distant from the occupied voxel, the logarithm
results in a positive value. This value increases as the node-voxel distance grows, thus
encouraging the agent to maintain a safe distance from the human-occupied voxel by
rewarding greater separation with higher rewards. On the other hand, R2 pertains to the
distance between the node that might be occupied in the subsequent time step and the
designated goal node. This segment of the reward focuses on guiding the agent towards its
goal configuration. R2 is computed by considering a factor µ equal to 25 and considering
the inverse of the node-goal distance, as the aim is to penalize actions that bring to nodes
that are far from the goal node. In the end, the reward function for states associated with
voxel number 25 for the 2D case or 31 for the 3D real case, when the human worker’s
hand is positioned outside the workspace, is calculated focusing only on the shortest path
from the current to the goal configuration. In these cases, the absence of a human within
the workspace eliminates any collision risk, making the term R1 equal to zero.
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Algorithm 5.2 Rewards definition
Require: DistNode-Voxel, DistNode-GoalNode, a, VoxelID
1: if DistNode-Voxel = 0 then
2: R1 = -1.000
3: else if DistNode-Voxel ≤ a then

4: R1 = ln
(

DistNode-Voxel
2a

)
·DistNode-Voxel · 50

5: else
6: R1 = ln

(
DistNode-Voxel

2a

)
·DistNode-Voxel

7: end if
8: if VoxelID == 31 then
9: R1 = 0

10: end if
11: R2 = µ · 1

DistNode-GoalNode

12: Reward = R1 + R2

13: return Reward

5.3.3. Policy and training procedure

The training phase involves iterating through episodes of interactions within the envi-
ronment. The goal is to train the agent to make decisions based on the state of the
environment, which includes the robot’s position and the human trajectory. Each episode
of the training uses a trajectory selected randomly from the MoCap database to simulate
the human’s movement through the environment. At the beginning of each episode, the
initial state is determined by the robot’s starting node and the initial position of the
human from the trajectory. The current state combines the robot’s and the human’s po-
sitions to represent the situation accurately. For each step within an episode, the model
selects an action based on the current state, using a policy derived from the Q-table.

The action selection process implemented in the training procedure draws inspiration from
the ϵ-greedy algorithm but it is adapted to this specific problem. The decision-making
environment is defined by an intricate graph of parent-child relationships, as depicted
in Figure 4.10, which showcases an extensive array of possible paths starting from each
branching node. Given the width of alternatives in terms of possible paths connecting the
starting configuration to the goal configuration and the complexity of navigating through
such a diversified parent-child relationships graph, this approach allows to prioritize ex-
ploration over exploitation, especially in the initial episodes of the training process. The
action selection process implemented for this problem is detailed in Algorithm 5.3. The
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total number of episodes, denoted as NumEpisodestot, is set equal to 10.000, while the
exploration rate, ϵ, is set equal to 0,9. The process for deciding the next action adopts an
epsilon-decreasing approach to balance exploration and exploitation. Exploration involves
selecting a random action within the range of 1 to 26 in the 2D case scenario, or within 1
to 201 for the 3D real-world setting. Upon choosing such an action, if it is viable at the
current node, the reward calculation takes into account two specific contributions, R1 and
R2, as previously described. Conversely, if the selected action is not feasible, it incurs a
penalty with a reward set to -1.000, reflecting the significant negative impact of infeasible
actions within the exploration process. Exploitation, in contrast, involves choosing the
action that is associated with the highest value in the state-action pair according to the
Q-table. This approach prioritizes the selection of actions that the agent has learned to
yield the most favorable outcomes, based on its accumulated experience. For the first
half of the episodes, exploration is strongly encouraged, while during the second half of
the episodes, the value of epsilon is dynamically adjusted based on the episode count.
This helps to focus more on exploration in the initial stages of learning and more on
exploitation in later stages, when the Q-table has accumulated more knowledge of the
environment. With this strategy, ϵ1 gradually decreases with each episode, allowing the
agent to transition from an initial phase of intensive exploration to a more advanced phase
of exploitation, based on the acquired knowledge, in a smoother and controlled manner.

Algorithm 5.3 Action selection process
Require: Qtable, episode, NumEpisodestot, ϵ, CurrentState
1: Qtable ← Inizialize Qtable with zeros

2: if episode >
NumEpisodestot

2
then

3: DecayRate = − log(0, 1)/

(
NumEpisodestot

2

)
;

4: ϵ1 = ϵ · exp
[
−DecayRate ·

(
episode− NumEpisodestot

2

)]
;

5: else
6: ϵ1 = ϵ;

7: end if
8: if rand(1 ) > ϵ1 then
9: NextAction ← Take the maximum value of Qtable(CurrentState , :)

10: else
11: NextAction ← Choose random between 1 and 201
12: end if
13: return NextAction
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Once the agent selects its next action based on the policy and on the current state, it
interacts with the environment by executing that action, which results in a transition
from the current state to the next state according to the dynamics of the environment.
Concurrently, this transition provides a reward, representing the immediate consequence
of the action taken. The reward is used as a new information to update the values
associated with the action taken and the previous state. The mechanism of updating
of the Q-values in the Q-table is done through the Bellman equation, which represents
the utility of taking a given action in a given state and following the optimal policy
thereafter. This equation represents a foundational principle in dynamic programming
and Reinforcement Learning, enabling the agent to iteratively adjust values to reflect the
expected long-term benefit of its actions. Q-learning uses the Temporal Difference (TD)
error, which quantifies the discrepancy between the predicted value of a state or state-
action pair and the immediate reward plus the estimated value of the next state or state-
action pair. Such update rule allows the algorithm to recursively improve its estimates
of the Q-values towards the optimal action-value function, which dictates the best action
to take in every state to maximize future rewards. These concepts are formalized using
the equations in the following. The TD error is defined in Equation (5.3). The Reward
used in this formula is the feedback associated to the transition from the OldState to the
CurrentState taking the ChosenAction. Instead, Equation (5.4) illustrates the process of
updating the NewQValue, starting from the OldQValue and using the TD error adjusted
by the learning rate factor.

TD = Reward + γ ·max(Qtable(CurrentState, :))−OldQValue (5.3)

NewQValue = OldQValue + α · TD (5.4)

5.3.4. Q-table analysis and convergence strategies

The outcome of the training phase is the Q-table, which is a matrix with number of
columns equal to the number of available actions and number of rows equal to the number
of possible states. For the 2D case, the Q-table matrix has 451 rows and 26 columns.
A number of episodes NumEpisodestot equal to 5.000 is more than enough to obtain a
complete matrix at the end of the training phase for the two-dimensional scenario. This
implies that throughout these episodes, the state space is exhaustively explored, ensuring
that every possible state-action combination is evaluated at least once. On the other hand,
in the real 3D scenario, the Q-table is a significantly larger matrix, counting specifically
4.000 rows and 201 columns. For such a complex environment, a number of episodes equal
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to 5.000 proves to be insufficient for achieving a fully populated matrix. The number of
rows in the Q-table whose maximum state-action pair value is null is equal to 1.677,
which corresponds to the 41,9% of the total number of rows. Thus, the complexity of
the environment results in a high percentage of unexplored or under-explored state-action
pairs. This gap in exploration can impact the algorithm’s ability to fully understand
and optimize its decision-making process across the entirety of the state-action space,
potentially leaving certain strategies less refined or certain outcomes less predictable. An
obvious solution to this problem is increasing the number of episodes, giving the algorithm
more opportunities to interact with the environment, thereby increasing the likelihood
of encountering and evaluating more state-action combinations. Thus, the number of
episodes is increased first up to 10.000 and then up to 50.000. This solution is not
definitive on its own because the number of rows in the Q-table, where the maximum
value of the state-action pair is null, equals 1.187 in case of 10.000 episodes and equals
673 in case of 50.000 episodes. This represents respectively the 29,7% and 17% of the
total number of rows.

Two different strategies are applied. The primary strategy makes the most of a funda-
mental characteristic of MDP: the outcome of future states is determined only by the
current state and the action taken, rather than by the history of events that preceded it.
This intrinsic property of MDP allows for a significant optimization in the algorithm’s
functionality. The algorithm begins its process at a fixed starting point, which is the
initial node labeled as node 1. However, instead of commencing every episode from this
predetermined starting node, the algorithm is modified to introduce an element of ran-
domness in selecting its starting position. At the beginning of each episode, it selects a
starting node at random from within the range of 1 to 130. Regardless of the starting
node selected at random within the specified range, the algorithm is capable of navigat-
ing the robot through the graph to its intended destination. Another advantage of this
approach is that it ensures equal probability for all states to be analyzed. Typically, if
the algorithm always initiated from node 1, the nodes at the beginning of the graph,
including node 1 itself and those in higher positions, would be examined more frequently.
Conversely, states corresponding to nodes in lower positions might not receive adequate
analysis due to the graph’s complexity and breadth. By randomizing the starting node,
the algorithm mitigates this imbalance, allowing for a more uniform exploration of the
graph. The training procedure is repeated with this improvement and the number of
episodes is set equal to 5.000, 10.000 and 50.000.

The enhancement of the algorithm’s efficacy incorporates a second strategy, which in-
volves using the knowledge of the parent-child relationship graph and, in particular, the
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knowledge of the actions that are feasible and not feasible in each node, which are re-
ported in Table 5.2. This approach simplifies the decision-making process and optimizes
the algorithm’s performance by clearly delineating the actionable paths and constraints
at each juncture. As a consequence, the approach of selecting actions undergoes a sig-
nificant modification. During the exploration phase, the next action is no longer chosen
randomly from the entire range from 1 to 201, which counts for both feasible and not
feasible actions, for each node independently. Instead, for every node, the subsequent
action is selected exclusively within the range of feasible actions at that specific node.
The major advantage of this strategy is that the time needed to complete the training
procedure is significantly reduced, as a consequence a number of episodes is set equal to
50.000 and 500.000.

To summarize, the various training sessions, along with their characteristics and outcomes,
are presented in the following:

• Results of the training session with node 1 as initial node and random action chosen
between feasible and not feasible actions for every node in the exploration phase:

– over the course of 5.000 episodes, the Q-table exhibits the 41,9% of the rows
with maximum value of zero.

– over the course of 10.000 episodes, the Q-table exhibits the 29,7% of the rows
with maximum value of zero.

– over the course of 50.000 episodes, the Q-table exhibits the 17% of the rows
with maximum value of zero.

• Results of the training session with initial node selected randomly between 1 and
130 and random action chosen between feasible and not feasible actions for every
node in the exploration phase:

– over the course of 5.000 episodes, the Q-table exhibits the 32% of the rows
with maximum value of zero.

– over the course of 10.000 episodes, the Q-table exhibits the 20% of the rows
with maximum value of zero.

– over the course of 50.000 episodes, the Q-table exhibits the 9% of the rows
with maximum value of zero.

• Results of the training session with initial node selected randomly between 1 and
130 and random action chosen only between feasible actions for every node in the
exploration phase:
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– over the course of 50.000 episodes, the Q-table exhibits the 7% of the rows
with maximum value of zero.

– over the course of 500.000 episodes, the Q-table exhibits the 7% of the rows
with maximum value of zero.

The analysis of the training sessions conclusively identifies the most effective Q-tables as
the ones derived from a setup where the initial node is randomly selected from a range
between 1 and 130, random action chosen between feasible and not feasible actions for
every node in the exploration phase. The Q-tables derived from this setup and training
sessions with 50.000 and 500.000 episodes both exhibit a commonality: 7% of the rows
have a maximum value of zero. This observation suggests that the outcomes have reached
a state of convergence, indicating that further improvements do not produce positive
effects even with an increase in the number of episodes.

Despite the fact that 7% of the rows in the Q-table display a maximum value of zero, the
table itself is fully populated. This means that every state-action pair has been evaluated
and assigned a specific value by the algorithm. Rows exhibiting a maximum value of
zero are characterized by negative values across all actions. In fact, actions that are
not feasible at a given node are assigned a negative value but also certain states, which
represent particular robot node and occupied voxel combinations, present negative values
in correspondence of the feasible actions. In such cases, the negative values indicate that,
although the actions are permitted, they lead to undesirable outcomes because the robot
node is either located within the same voxel occupied by the human or is extremely close
to it. Given that each node within the workspace is mapped to a specific voxel, it is
reasonable and expected that at least one state associated with each node would have a
negative reward value, a reflection accurately captured within the Q-table.

5.4. Algorithm testing phase

Once the policy is sufficiently optimal, the learning process can be stopped and the optimal
Q-table is extracted. The testing phase of the learning algorithm is useful to evaluate the
performances of the algorithm, ensuring it has learned the intended behaviors. This
phase is essential before advancing to the validation stage on the GoFa™ robotic arm.
During the testing phase, the algorithm is exposed to new sets of data of the of human
hand movement, sourced from the MoCap database, which are different from the data it
was trained on. By utilizing previously unseen data, the testing phase aims at assessing
the algorithm’s generalization capabilities and its ability to apply learned patterns and
behaviors to new, unexplored scenarios.
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An example of the results of the testing phase for the 2D scenario is presented in the
following. The algorithm is tested on the following sequence of occupied voxel: 1, 2, 3,
4 and 10. In Figure 5.3, the scenario begins with voxel 1 occupied by the human hand,
and the robot is initially positioned at node 1. The first step is to identify the state corre-
sponding to the combination of the robot position and the voxel occupied by the human,
which in this case is state 1. Consequently, the algorithm consults the optimal Q-table
previously obtained, specifically targeting the first row, to determine the optimal action
based on the highest value present in that row. Therefore, the algorithm selects action
1, which corresponds to a transition from node 1 to node 2. The voxel occupied at the
following time instant is number 2, as depicted in Figure 5.4, while the current position
of the robot is node 2. This specific scenario is represented by state 27, and the analysis
of the 27-th row in the Q-table reveals that the index corresponding to the maximum
value is 7. Consequently, the robot executes action 7, which results in its transition to
node 8. Subsequently, state 178 identifies the scenario where voxel 3 is occupied and the
robot is located at node 8. In this context, the action chosen is number 26, as illustrated
in Figure 5.5. The robot transitions to node 9 and since the following voxel occupied is
4, the corresponding state is 204. The algorithm selects action 18, transitioning to node
15, as shown in Figure 5.6. Finally, the state corresponding to node 15 and voxel 10
is 360. The robot correctly selects action 22 and arrives to its final node 19, which is
represented only by one state, as illustrated in Figure 5.7. The final state is 451 and no
further actions are needed. Table 5.2 summarizes the chosen actions based on the current
state and on the information contained in the Q-table.

Voxel Node State Action

1 1 1 1

2 2 27 7

3 8 178 26

4 9 204 18

10 15 360 22

10 19 451 -

Table 5.2: Actions are selected by the algorithm based on the current state of the agent
and the information contained in the Q-table, which provides a mapping of state-action
pairs to Q-values
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Figure 5.3: Robot node = 1, Next voxel = 1, Current state = 1, Chosen action = 1.

Figure 5.4: Robot node = 2, Next voxel = 2, Current state = 27, Chosen action = 7
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Figure 5.5: Robot node = 8, Next voxel = 3, Current state = 178, Chosen action = 26

Figure 5.6: Robot node = 9, Next voxel = 4, Current state = 204, Chosen action = 18
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Figure 5.7: Robot node = 15, Next voxel = 10, Current state = 360, Chosen action = 22

The methodology implemented in the testing phase for the 3D case study is coherent to
the conceptual framework just described for the two-dimensional scenario. The Q-table is
subjected to evaluation using 10 new MoCap datasets, each representing distinct patterns
of human hand movement. These datasets are chosen to differ from the data utilized
during the training phase. The outcomes of this testing phase are detailed subsequently.

In 9 cases out of 10, the testing algorithm successfully identifies a solution, effectively
determining a sequence of nodes that avoids and circumvents the series of occupied voxels
for that specific task. However, in one case, the algorithm fails to discover a valid path.
This failure occurs because the maximum value in the row corresponding to the specific
state under examination equals zero. As described in Section 5.3.3, the 7% of the rows
in the Q-table display a maximum value of zero, even though the table is fully populated.
When the maximum value of the row equals zero, no actions are deemed feasible at that
state. This scenario occurs when specific actions are disallowed due to the limitations set
by the parent-child relationship graph, and the remaining actions carry a negative state-
action value. This is because their associated transitions would result in a node that is
dangerously close to an occupied voxel, making these actions unsuitable for navigating the
workspace without breaching the minimum safety distance required from the operator.
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Figure 5.8 illustrates the outcome of the testing algorithm given a sequence of occupied
voxels equal to: 5, 5, 5, 5, 15, 15, 15, 30, 30 and 29. In this representation, the green
dots represent the centers of the occupied voxels, while the asterisks mark the vertices of
these voxels. The algorithm first determines the current state of the robot based on its
current position and a predictive model estimating the next voxel to be occupied by the
human hand. Actions to be performed by the manipulator are then selected according
to this current state and the knowledge derived from the Q-table. The testing algorithm
calculates that the path to be followed in this case, adhering to the optimal policy derived
from the optimal Q-table, consists of the sequence: 1, 8, 9, 86, 76, 123, 125, 126 and
130. This sequence of nodes and their connections are depicted by the red path in the
Figure. Similarly, Figure 5.9 represents the optimal path to be followed by the robotic
manipulator when navigating through the following sequence of voxels: 4, 19, 18, 18, 31,
19, 31 and 20. For this task, the optimal path according to the optimal policy derived
from the optimal Q-table, consists of the sequence: 1, 59, 62, 63, 95, 101, 102 and 130.
Table 5.3 and Table 5.4 provide a summary of the decision-making process, containing in
each column the sequences of occupied voxels, of nodes connecting the starting point to
the goal, of corresponding states and of chosen actions for the selected tasks.

Figure 5.10 and Table 5.5 depict an unsuccessful outcome of the training phase. The
algorithm is not able to find a valid path connecting the starting point to the target
destination. The initial state is equal to 22 and action 6 leads to a transition towards node
66. Subsequently, the algorithm selects action 39, determining a transition to node 67.
At this point, state 2.068, linked to node 67 and voxel 22, is analyzed. Unfortunately, the
maximum value in the Q-table for this state is equal zero, indicating that all actions within
the Q-table are unfeasible, effectively bringing the algorithm’s progress to a standstill.
It is simple to verify that node 67 belongs to voxel 22, resulting in a negative reward
associated to the only permitted transaction. To address this issue, the proposed solution
involves implementing a self-transition mechanism for the robot. The policy is improved
by imposing that the robot remains at the current node whenever the algorithm is unable
to select an optimal action for a given state. As a result, when the algorithm analyzes
state 2.068 without identifying a viable solution, the robot stays at node 67 until the
voxel in input changes, thereby altering the state and enabling the algorithm to discover
a feasible action based on a new combination of previous node and new voxel occupied.
This approach ensures that the algorithm stops only when the final state is reached by
awaiting new conditions that facilitate the progress. Moreover, the introduction of this
safety mechanism guarantees that if the human and the robot occupy the same voxel, the
robot automatically stops, effectively preventing any potential collisions.
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Figure 5.8: The optimal path to be followed by the manipulator to maintain in every
moment a safe distance from the occupied voxel of the selected task is depicted in red

Voxel Node State Action

5 1 5 6

5 8 222 69

5 9 253 91

5 86 2.640 92

15 76 2.340 93

15 123 3.797 75

30 125 3.874 76

30 126 3.905 77

29 130 4.000 -

Table 5.3: Sequences of voxels, nodes, states and actions for the selected task
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Figure 5.9: The optimal path to be followed by the manipulator to maintain in every
moment a safe distance from the occupied voxel of the selected task is depicted in red

Voxel Node State Action

4 1 4 10

19 59 1.817 96

18 62 1.909 98

18 63 1.940 118

31 95 2.945 99

19 101 3.119 100

31 102 3.162 101

20 130 4.000 -

Table 5.4: Sequences of voxels, nodes, states and actions for the selected task
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Figure 5.10: The optimal path to be followed by the manipulator is incomplete for the
selected task

Voxel Node State Action

22 1 22 6

22 66 2.037 39

22 67 2.068 ?

? ? ? ?

Table 5.5: Sequences of voxels, nodes, states and actions for the selected task until the
algorithm reaches a state where all the actions listed in the Q-table are unfeasible
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6| Experimental validation

6.1. Introduction

This chapter is dedicated to the validation of the proposed algorithm through its appli-
cation on the GoFa™ CRB 15000 ABB robotic arm. The use case implementation took
place in the MeRLIn Lab at Politecnico di Milano. In particular, this chapter details
the experimental setup, including the robot and its controller, a workspace with static
obstacles, and a Kinect for human detection. The chapter concludes by showcasing the
validation results, demonstrating the algorithm effectiveness in the real world scenario.

6.2. Experimental setup

The experimental setup employed for the validation process is depicted in Figure 6.1 and
Figure 6.2. The robot is fixed towards the front end of the table, leaving a wide space
in front of the robot for operations and human interactions. The control pad is used for
manually control the GoFa™ robotic arm. The screen displays a graphical interface that
can show the status of the robot or provide different options for operations. The red
button serves as an emergency stop mechanism and, when pressed, it allows operators
to immediately stops all robot’s movements. A Kinect sensor, used for detecting human
presence and movement within the workspace, is positioned to monitor the area around the
robot to ensure safe human-robot interaction, dynamically adjusting the robot’s actions
based on the sensor’s input. In front of the GoFa™ robot, an ArUco marker is placed on
the table. This black and white marker is used for pose estimation and it is often utilized
in robotic applications for precise detection and spatial orientation, enabling the robot to
interact with objects at specific coordinates within its operational space.

The simulation environment used during the algorithm training and testing phases mirrors
the actual setup, including identical dimensions of the table, same positions of the static
obstacles, and equal starting and goal configurations. Ensuring consistency between the
simulated and real environments is critical for validating the algorithm’s effectiveness.
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Figure 6.1: GoFa™ robotic arm in the workspace and Kinect sensing camera on the left

Figure 6.2: GoFa™ robotic arm in the workspace with static obstacles and ArUco detector
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6.2.1. GoFa™ robotic arm

The proposed algorithm is validated on the GoFa™ CRB 15000 robotic arm, illustrated
in Figure 6.3 and produced by ABB [1]. The 6-axis GoFa™ manipulator is tailored for
safe, continuous operation alongside workers, simplifying installation and use in various
industrial settings. Like all collaborative robots, it complies with ISO/TS 15066 safety
specification, incorporating sophisticated sensors for instantaneous contact response, soft
pads, and a design free from trap points that could otherwise catch body parts or clothing.
It is equipped with advanced torque and position sensors across its six joints, which ensure
safety through superior power and force limitation capabilities, immediately halting in
case of unexpected contact to prevent operator injuries. The GoFa™ robotic arm presents
a payload capacity up to 5 kg, speed up to 2,2 m/s, and a working radius of 950 mm.
Designed for a wide array of tasks including material handling, assembly, packaging,
machine maintenance, and more, its compact design does not sacrifice power for size.
Further details can be found on the technical datasheet in Figure A.1 in the Appendix.

Figure 6.3: ABB GoFa™ CRB 15000

6.2.2. Kinect camera and ArUco markers

The human occupancy data in the workspace are collected by the Kinect Version 2 camera.
Originally developed by Microsoft for gaming console, the Kinect V2 has found a wide
range of applications, including human detection. Shown in Figure 6.4, the Kinect V2
is a sensing camera designed for motion tracking and spatial analysis. This technology
integrates two cameras with differing resolutions: a RGB camera at 1920x1080 pixels for
visual capture data and a depth camera at 512x424 pixels for detailed spatial analysis.
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The RGB camera provides color coordinates in the two-dimensional space, whereas the
depth camera offers depth coordinates, allowing for the calculation of distances from the
camera to objects in the scene.

Figure 6.4: Kinect V2 camera

ArUco marker detectors, shown in Figure 6.5, are employed in the fields of computer vision
and robotics to facilitate the translation of camera coordinates into world coordinates.
ArUco markers are simple, black and white square markers that can be easily detected and
decoded in images. The utility of ArUco markers lies in their ability to allow accurate pose
estimation. Upon identifying an ArUco marker within an image, the system is capable
of calculating the camera’s orientation and position relative to the marker’s real-world
location. This calculation is based on the marker’s predefined dimensions and its unique
identifier, which determines its orientation.

Figure 6.5: ArUco marker detectors with different IDs

6.3. Validation process

In the validation phase, the Kinect camera, in conjunction with an ArUco marker attached
to the operator’s wrist, is utilized for real-time detection of the human hand’s position.
This setup enables precise identification of the ArUco marker’s center point by the camera,
effectively pinpointing the exact location of the operator’s right wrist. Then, the voxel
occupancy map Algorithm, illustrated in Section 5.2, is employed to determine to which
voxel, within the subdivided workspace, the given detected point belongs to.

A schematic representation of the validation process is detailed in Figure 6.6. The robot
and the computer establish a communication via a socket connection, which facilitates
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real-time data exchange essential for the robot’s operation and coordination. The val-
idation algorithm, which has been developed in Python and operates on the computer
side, requires the occupied voxel as input. The algorithm processes the current robot
pose and the occupied voxel to compute the current state. It then employs the optimal
policy to calculate the action to which the maximum cumulative reward is associated and
generates the identification number, coordinates, and joint configurations for the subse-
quent node. On the other hand, the GoFa™ robot is operated using RAPID, an high-level
programming language, which is specifically designed for articulating and controlling the
movements of ABB robots. The RAPID program interprets the positional data provided
by the Python validation algorithm. Upon receiving the coordinates for the next target
point from the computer, the robot navigates towards that point. Every time the robotic
arm reaches a new node, it sends a confirmation signal back to the computer and, at the
same time, the Kinect system captures a new frame of the human hand, feeding this data
into the algorithm. This triggers the Python algorithm to process and send the next set
of movement instructions, ensuring a continuous operation. Throughout every test, this
loop is continuously running to ensure the robotic arm’s movements are synchronized with
the human operator’s hand movements, ensuring for real-time interaction and allowing
the system to adapt dynamically to the actions of the human operator.

Figure 6.6: Schematic representation of the validation process
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6.4. Results of the validation process

This section is dedicated to demonstrate the operational integrity of the deployed sys-
tem. Here, the theoretical and computational efforts spent on training the Reinforcement
Learning agent are translated into a practical application. Various tests have been con-
ducted to validate the effectiveness of the algorithm, ensuring that the deployment not
only works as intended but also delivers on the anticipated performance outcomes:

• "No human" category includes one test carried out without human presence in the
workspace.

• "Static pose" category accounts for six tests carried out with the human hand main-
taining a static position in the workspace, meaning that a single voxel is occupied
throughout the task’s duration.

• "One axis" category presents sixteen tests conducted with the human hand moving
linearly along a single axis, resulting in a sequential occupation of voxels along either
the x, y, or z-axis.

• "Random case" category comprises six tests in which the human is performing
diverse tasks that require hand movement in all three axes concurrently.

All the tests confirmed the absence of collisions between the operator’s hand and the
robot’s end-effector, affirming the algorithm’s reliability to address safety issues in a real-
world application. However, for a comprehensive validation of the algorithm, two distinct
criteria have been delineated. Firstly, the time needed for the task completion serves as a
critical benchmark. This parameter measures the algorithm’s operational efficiency and its
impact on productivity. Secondly, the maintenance of a minimum safety distance between
the human’s hand and the robot’s end-effector throughout task execution is imperative.
Their relative distance must exceed a predetermined threshold at all times during the task
execution. This safety threshold has been set to be half the dimension of a voxel, which
is equal to 15 cm. This measure ensures a buffer zone around the operator, providing a
standard to evaluate the algorithm’s performance in maintaining workplace safety.

Thus, the robot’s poses, captured during its movement from the starting point to the
goal, are directly obtained from the GoFa™ controller at intervals of 0,1 seconds. Instead,
the updates on the human hand’s position are provided by the Kinect camera only when
the robot reaches a node defined in the parent-child relationship graph. Consequently,
the synchronization of human positional data with the robot’s poses occurs exclusively at
these significant nodes. Human positions are then subjected to quadratic interpolation
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from one frame to the next, ensuring a continuous representation of human movement in
relation to the robot’s trajectory.

Utilizing the recorded robot poses and human positions over time, the data points can
be visualized on a graph. In the subsequent figures, the path followed by the robot is
illustrated in blue, whereas the path traced by the human hand is marked in red. Robot’s
starting and goal positions are highlighted using a green and a red point, respectively.
Figure 6.7 corresponds to test 1 from "One axis" category, specifically showcasing a human
movement exclusively along the x-axis. Meanwhile, Figure 6.8 is associated with test 3
from "Random case" category, while Figure 6.9 refers to test 6 of the same category.

The movement patterns are crucial to understand the interaction dynamics between the
robot and the human operator. These plots represent an accurate reproduction of what
happened during the tests performed in the laboratory. The robot is able to respond to
the real-time detection of the human trajectory and is also able to adjusts and deviates its
trajectory adapting to the human movement, trying to strike a balance between always
ensuring a maintaining safety distances and avoiding potential collisions while reaching
the goal in the minimum possible time. These plots demonstrate the robot’s agility and
the effectiveness of the collision avoidance strategy, confirming that the policy developed
during the training phase provides good results.

Figure 6.7: Robot and human hand paths for test 1 from "One axis" category
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Figure 6.8: Robot and human hand paths for test 3 from "Random case" category

Figure 6.9: Robot and human hand paths for test 6 from "Random case" category
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The tests results in terms of time required to complete the task, human occupancy volume,
minimum distance between the human and the robot, maximum distance, average distance
and standard deviation are reported in Table 6.1.

Test type ID T [s] V [cm3] Dm [cm] DM [cm] Davg [cm] σ [cm]

No human - 18,48 0,00 0,00 0,00 0,00 0,00

Static pose

1 28,79 6,23 44,58 97,00 78,18 15,09
2 18,48 7,93 52,88 123,01 105,08 17,48
3 30,58 10,23 21,78 89,68 69,12 19,33
4 39,48 17,28 36,17 113,53 89,30 26,42
5 29,71 8,22 32,80 129,66 108,07 25,56
6 35,95 5,89 34,36 105,64 79,64 22,18

One axis

1 50,52 145,60 30,84 114,78 87,07 24,87
2 29,70 252,31 54,76 135,78 119,21 23,04
3 29,14 191,24 37,81 104,59 89,64 15,55
4 39,28 269,56 34,98 114,47 87,62 24,67
5 35,81 160,09 16,30 148,23 117,58 43,08
6 28,07 9,03 35,85 149,62 76,43 36,11
7 29,00 196,64 4,34 75,80 50,52 19,40
8 43,05 430,37 29,34 141,31 91,63 29,39
9 42,58 686,46 44,57 108,53 70,45 20,24
10 39,17 960,02 19,24 137,15 81,38 34,93
11 25,13 23,61 41,39 136,96 110,16 25,57
12 35,11 67,91 49,44 111,44 92,37 21,19
13 35,83 118,81 47,45 94,86 72,39 14,53
14 86,30 68,90 55,69 91,41 83,78 9,47
15 35,81 134,47 56,83 146,83 122,27 32,36
16 38,04 79,94 36,89 143,32 118,64 35,29

Random case

1 35,82 1147,55 31,08 125,46 86,82 21,98
2 36,11 621,71 17,52 104,23 85,42 16,73
3 35,85 416,96 18,49 119,34 81,56 22,10
4 39,59 967,10 25,71 113,53 79,86 21,01
5 22,06 49,54 36,29 143,44 88,68 39,84
6 27,60 347,98 22,56 98,70 72,12 33,56

Table 6.1: Results of the validation process
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The shortest time needed to perform the task is recorded at 18,48 s, which is associated
to the test where no human is detected in the workspace and to the test with ID equal
to 2 from the "Static pose" category. Conversely, the longest task completion time,
clocking in at 86,30 s, is observed for the task labeled as ID 14 within the "One axis"
test category. The volume is computed by considering the sequence of point coordinates
occupied by the human’s hand over time as a point cloud volume, which encapsulates
the three-dimensional space covered by a point cloud. This volume represents an indirect
metric of the distinct voxels occupied by the human’s hand during its movement. The
occupancy volume varies significantly, ranging from 0 cm3 to 1147,55 cm3. As expected,
this parameter is lower in the "Static pose" tests, where the human is confined to a single
voxel, reaching its peak in the "Random case" test category as it reflects the dynamic
nature of human movement within the workspace.

The minimum distance maintained between the human hand and the robot’s end-effector
consistently exceeds the established safety threshold of 15 cm, except for one case. In the
test 7 of the "One axis" category the minimum distance is reported to be equal to 4,34 cm.
Upon detailed examination of the case at hand, it was clear that this deviation occurred
because the reward for moving to the following next node was calculated as positive,
given the node’s sufficient distance from the currently occupied voxel. Nevertheless, the
actual trajectory required for the robot to transition to this next node passed dangerously
close to the occupied voxel, despite both the starting and subsequent nodes meeting the
distance criteria for reward assignment. To avoid such situations and enhance safety,
introducing additional nodes along this segment would be necessary to guide the robot
along a safer path. Moreover, a notable constraint is that the positions of the hand across
successive frames are derived through interpolation, which means they don’t accurately
mirror the hand’s real-time location. Consequently, while the actual real-time distance
may have been greater, relying on interpolated data introduces a degree of approximation,
potentially distorting the true spatial relationship between the hand and the robot.

Figure 6.10 showcases the data collected from all the tests using a scatter plot. The
x-axis reports the volume occupied by the human within the robot’s operational space
while the y-axis displays the task execution time. The plot illustrates the observations
based on the typology of the tests conducted. The singular test executed without any
human presence in the workspace is depicted by a light blue circle. Data from the "Static
pose" experiment are marked in red, while the blue marks represent the "One axis"
tests and the green marks highlight the "Random case" experiments. The correlation
coefficient, calculated across all the experiments, between the variables task execution
time and volume occupied by the human in the workspace, is equal to 0,16. This low
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value suggests a weak relationship between the two variables. As a result, it is possible
to conclude that the method’s efficiency, identified by the time taken to complete the
task, is not influenced by whether the human’s movement is static or dynamic within
the workspace. The task execution time is not influenced by the nature of the test, i.e.
whether the hand is stationary or in motion, but rather by the specific voxel occupied
at the moment the robot is asked to make a decision. The identification number of the
occupied voxel, which identifies its position in the workspace, affects the decision-making
process. The extensive range of the path network, with its numerous alternative routes,
enables the robot to adjust its trajectory responsively to the human’s changing location
and the associated spatial occupation within the workspace.

Figure 6.10: Data collected from each category of the performed tests in terms of time to
task execution vs. human occupancy volume

It can be noticed that an outlier, which is a data point that significantly deviates from
the other points, is presented in the plot. The outlier point (x = 68,9 cm³ and y =
86,3 s), is characterized by a high value of time to task execution compared to the
others. This outlier is distinct from the rest of the data, potentially indicating a test
where the task execution time was unusually long, likely due to unforeseen circumstances
or complexities during the test. The presence of the outlier point can be justified by
analyzing more in details the sequences of nodes and actions performed during test 14
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of the "One axis" category. In the initial phase of the test, the robot efficiently adjusts
its trajectory, selecting a certain path in response to the presence of the human. The
robot’s route progression is mapped out through the following series of nodes: 1, 8, 10,
11, 13, 16, 121, 78, 77 and 122. Upon reaching node 122, the execution of the task is
momentarily suspended as the algorithm determines that the following node 123 is within
an unsafe proximity to the voxel currently occupied by the human. After consulting the
Q-table for this particular scenario, the most appropriate action to be taken results in a
self-transition to the same node, until it is safe to proceed. The same situation occurs
during the transition between nodes 123 and 125 and between nodes 125 and 126. A
detailed description of the time intervals for each segment of the trajectory is outlined
in Table 6.2. The task execution is paused at node 122, requiring 8,05 s to progress the
next node. Similarly, navigating to node 125 requires 10,19 s, while advancing to node
126 is accomplished in 7,99 s.

Start Goal Time [s]

1 8 0,79
8 10 3,40
10 11 5,20
11 13 1,80
13 16 1,48
16 121 1,65
121 78 1,80
78 77 0,80
77 122 2,94
122 123 8,05
123 125 10,19
125 126 7,99
126 130 4,39

Table 6.2: Time intervals required to move between two subsequent nodes for the outlier

In conclusion, the task execution time registers a minimum of 18,48 s seconds across
two tests. The inclusion of the human within the workspace leads to an increase in this
value, ranging from no change 0% to as much as 173%, with this calculation omitting
the outlier. Including the outlier in our analysis, the percentage increase in execution
time rises up to 300%, highlighting the significant impact human presence can have on
operational efficiency in this context.
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7.1. Final considerations

In collaborative robotic environments, safety is a critical concern. It is essential for robots
to employ techniques for human activities recognition and prediction as a fundamental
part of their decision-making processes. This thesis focused on Human-Robot Collab-
oration, in particular on the development of a Machine Learning algorithm that allows
robots to detect and respond to the human presence and movements. This capability is
crucial for preventing collisions and injuries, thereby enhancing safety in environments
where humans and robots work closely together. Additionally, the proposed algorithm
ensures an efficient execution of the task, demonstrating that safety measures can coexist
with productivity in a shared workspace.

An intriguing aspect of this research is that motion planning and decision-making algo-
rithms are entirely developed either offline or within a simulated environment to bypass
complex real-time calculations. The robot undergoes a training phase to learn how to
navigate the complex network of previously created paths, focusing on enhancing its path
selection strategies. By familiarizing with the network configuration and human move-
ment patterns within the shared workspace, the robot exploits the acquired knowledge
optimally, becoming able to find the shortest path to reach the goal but also to choose a
path that ensures safety, maintaining at every time instant a minimum distance from the
current position of the human operator. Following this, the optimal policy is deployed to
be evaluated and proven in a real-world application. The experimental validation of the
algorithm on the GoFa™ robotic arm confirmed its effectiveness, initially demonstrated
during the offline testing phases, in navigating the workspace without coming into contact
with the operator’s hand. The algorithm enables real-time detection of human presence
within the workspace, allowing the robot to alter its trajectory timely to maintain a safe
distance from humans or to halt completely in the event of an imminent collision.
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A significant advantage of the algorithm is that if the hand and the robot are in close
proximity, occupying the same voxel, the robot automatically stops, effectively preventing
any potential collisions. This safety mechanism is added to enhance the policy developed
during the training phase. Specifically, when the robot encounters a scenario where all
possible actions from a given node are associated with negative values in the Q-table, it
remains stationary until the human moves to a different voxel, thereby updating the cur-
rent state. This criterion was designed to elevate safety levels during real-time operations.
However, it is important to note that this safety mechanism, while elevating safety levels,
also increases the task completion time, as the robot must pause its operation, potentially
extending the duration from the start to the final configuration.

7.2. Future developments

Although the proposed algorithm successfully meets the task requirements and fulfills the
objectives of this thesis, it presents some limitations. This sections outlines potential
areas for improvement and future developments of the algorithm.

The BiRRT algorithm, employed for creating the dataset of paths, is precisely customized
for the specific environment and the robot being used. In fact, the algorithm generates
paths connecting a starting point to a final point, thereby fixing the robot starting and
goal configurations. Furthermore, the robot possesses distinct features, including six de-
grees of freedom and predefined joint lengths. Consequently, the paths identified are
expressed in configuration terms, making them uniquely applicable to the robot in ques-
tion. The environment also contains two static obstacles, with the algorithm’s generated
paths maneuvering around them. Should there be alterations to the workspace, robot
specifications, starting and goal locations, or the positions and sizes of obstacles, a re-
configuration is needed to recreate the navigational trees and extrapolate paths. This
requirement underscores the algorithm’s adaptability in accommodating changes within
its operational environment.

Another limitation of the proposed algorithm is that it focuses only on the interaction
between a single human hand and the robot’s end-effector, ensuring collision-free paths ex-
clusively concerning these two elements. Essentially, while it effectively prevents collisions
between the human hand and the robot’s end-effector, it does not account for potential
collisions involving other parts of the human body or other components of the robot.
To enhance the algorithm’s capability in addressing this limitation, future improvements
could involve incorporating the detection of multiple voxels simultaneously occupied by
the operator to better represent different parts of the human body. This enhancement
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necessitates enlarging the data structures, such as matrices and the Q-table, as the system
states would now encompass a robot’s pose in conjunction with various combinations of
occupied voxels (for instance, a robot’s pose with voxels 1 and 2 occupied, followed by
voxels 1 and 3, followed by voxels 2 and 3, and so on). Consequently, this adjustment
would lead to an expansion in the size of matrices and an increase in computational costs.
While moving towards a more comprehensive approach for collision avoidance significantly
improves safety measures in human-robot interactions, it simultaneously demands more
computational power and extends the training time for the algorithm.

A similar potential refinement of the current algorithm that involves increasing the dimen-
sion of the problem, could incorporate the examination of a temporal sequence of voxels
occupied by the hand. Through the application of predictive human behavior models, it
is possible to anticipate the future positions of humans and the specific voxels they are
likely to occupy. This strategy necessitates a redefinition of states within the Reinforce-
ment Learning framework to account for multiple robot nodes and voxels simultaneously
occupied by the human. Additionally, this enhancement necessitates a re-calibration of
the reward system to prioritize positions in the near future with greater precision, while
attributing lesser significance to more distant, uncertain positions. The feasibility of this
approach is supported by the knowledge of the parent-child relationship network, which
delineates the sequence of nodes the robot must navigate to achieve its final configura-
tion, thereby facilitating strategic long-term decision-making informed by a predictive
understanding of human movement patterns.

Moreover, the implemented algorithm halts its operation when the voxel associated with
the next node is occupied by the operator’s hand and resumes movement only after the
operator has moved away. While this measure significantly increases safety during the
task execution, it also extends the duration required for the robot to move from the start-
ing point to the goal. A possible improvement for the algorithm could involve allowing
the robot not to stop but to backtrack along the previously followed nodes until it reaches
the nearest prior junction node. At this point, it could select an alternate route. This
modification would be advantageous in situations where a particular voxel remains occu-
pied by a human for an extended period. It wouldn’t necessitate additional calculations
since the Q-table remains unchanged. The modification lies in how the algorithm inter-
prets it, as the logic and data driving the robot’s decision-making process stay constant.
This strategy could optimize the robot’s path-finding efficiency, particularly in dynamic
environments, by reducing idle times and adapting to changes in the workspace.
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Figure A.1: Technical datasheet of the ABB GoFa™ CRB 15000 cobot (from [1])
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