
A Study of Evasive Behaviors in
Commercial Packers

Tesi di Laurea Magistrale in
Computer science Engineering - Ingegneria Informat-
ica

Author: Giorgio Coccia

Student ID: 912960
Advisor: Prof. Mario Polino
Co-advisors: Michele Carminati, Stefano Zanero
Academic Year: 2021-2022

i

Abstract

Sandboxes, Virtual machines, Threat intelligence , there are plenty of tools and techniques
that could be used to identify and analyze malware. Malicious programs need a way of
hiding the code and slowing down forensic analysis. For this purpose, Packers are software
used for obfuscating and compressing the code and they are widely used as a countermea-
sure to forensics tools. In this study, we are not gonna focus on the obfuscation added
by packers, but on the anti debugging techniques that may be added to the packed file.
The final goal is to demonstrate that the intent of the packers is not only to hide the
content of a file but also to prevent the analysis of the program. We first take a pool of
20 packers and we use them to pack a small and basic program. Then, we run the packed
files into a framework that is able to identify the anti debugging techniques involved. The
results will give an opportunity to prove that packers use multiple anti debugging tools,
to identify the most common techniques used and the most uncommon and advanced
ones. The output will be used to generate statistics, identify frequent packer behavior,
and provide the basis for developing new unpacking and anti-analysis tools based on the
findings.

Keywords: Packer , Debugger , Anti Debugging ,Anti VM

Abstract in lingua italiana

Sanbox, Macchine virtuali, Threat intelligence , ci sono una moltitudine di strumenti
e tecniche che potrebbero essere utilizzati per identificare e analizzare malware. Per
questo motivo, i virus hanno bisogno di un modo per nascondere il codice e rallentare
l’analisi forense. Una delle soluzione adottate per risolvere questo problema sono i Pack-
ers, software utilizzati per offuscare e comprimere il codice . In questo studio, non ci
concentreremo sull’offuscamento del codice operato dai packer, ma sulle tecniche anti de-
bug che potrebbero implementare nel file compresso. L’obiettivo finale è dimostrare che
l’intento dei packers non è solo nascondere il contenuto di un file, ma anche impedire
l’analisi del programma. Prenderemo un pool di 20 packers e li useremo per comprimere
un programma di origine da usare come test. Quindi, eseguiremo i file compressi in un
framework in grado di identificare le tecniche di anti debug coinvolte. I risultati daranno
l’opportunità di dimostrare che i packers utilizzano molteplici strumenti di anti debug, per
identificare le tecniche più comuni utilizzate e quelle più ricercate ed avanzate. L’output
sarà utilizzato per generare statistiche, identificare il comportamento dei packers e fornire
la base per lo sviluppo di nuovi strumenti di unpacking ed anti-analisi basati sui risultati.

Parole chiave: Packer , Debugger , Anti Debugging ,Anti VM

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 An introduction to the writing of scientific texts 1
1.1 Introduction . 1

2 State of the art 5
2.1 Related works . 5
2.2 Different types of analysis . 8

2.2.1 Static analysis . 8
2.2.2 Dynamic Analysis . 9

2.3 Process Environment Block . 10
2.4 What is a Packer . 10
2.5 Unpacking . 12
2.6 Debuggers . 13
2.7 Instrumentation . 14

3 Anti Dynamic analysis techniques 17
3.1 Anti debugging techniques . 17
3.2 Anti-debugging . 17
3.3 Anti-VM . 21
3.4 File . 22

3.4.1 Registry . 22
3.5 Stalling . 23
3.6 Timing . 23

4 Framework and approach of the experiment 25

vi | Contents

4.1 Sample used for the experiments: Hello world! 25
4.2 Data set of packers . 26
4.3 Description of the framework MBare . 27

4.3.1 Original Code . 27
4.3.2 Updates performed to the original code 29

4.4 Brioscia Intel pin Tool . 31
4.4.1 Original Code . 31
4.4.2 Updates performed to the original code 32

5 Analysis of the results 39
5.1 Anti Debugging results . 40

5.1.1 Logs and statistics for Anti Debugging functions 41
5.2 Anti VM results . 45

5.2.1 Logs and statistics for Anti Debugging functions 46
5.3 File results . 49

5.3.1 Logs and statistics for Files management 49
5.4 Registry results . 52

5.4.1 Logs and statistics for Registries management 52
5.5 Stalling and Timing results . 55

5.5.1 Logs and statistics for Registries management 56
5.6 Final results . 58

6 False Positives and relevant findings 61
6.1 False Positives . 61

6.1.1 SetUnhandledExceptionFilter() . 61
6.1.2 NtQuerySystemInformation(PHYSICALMEMORYINFO) 63
6.1.3 CPUID . 64
6.1.4 Other False Positives . 65

6.2 Highlighted findings . 66
6.2.1 Yoda’s Protector . 66
6.2.2 Mew11 . 67
6.2.3 Telock . 68
6.2.4 NtQuerySystemInformation() . 68
6.2.5 NtqueryAttributesFile . 70
6.2.6 In instruction . 71
6.2.7 Stalling routines . 71

7 Conclusion and future works 73

7.0.1 Conclusion . 73
7.0.2 Future works . 74

Bibliography 75

List of Figures 77

List of Tables 79

List of Symbols 81

1

1| An introduction to the writing

of scientific texts

Science, my boy, is made up of mistakes, but they are mistakes which it is useful to
make, because they lead little by little to the truth.

—

1.1. Introduction

The Cisco AIR (formerly Cisco’s Visual Networking Index or VNI) [4] stated that the
number of overall connected devices in 2023 will be close to 29.3 billion, an increase of
almost 40% compared to 18.4 billion in 2018.
This pattern demonstrates how the population is becoming increasingly computerized.
We live in a world where employees work smarter, where people spend more than 4 hours
a day on social media, and where laptops are the main tool for learning and working [10].
With such an increase in the number of network possible entries, it increases also the
risks for private and sensible data of users: phishing attacks on personal emails, Trojans,
Ransomware that could cost billions for companies.
Over the last decade, there has been an 87% [19] increase in malware infections and we
predict to spend in Cybersecurity research and technologies a sum of 1.75 trillion dollars
for the five-year period from 2021 to 2025 [17].
How is it possible that after all of our efforts and investments, we are still unable to detect
and eliminate viruses?
The majority of dangerous programs are either zero-day malware that exploits newly
found vulnerabilities or old malware that has been in use for years and has been updated
or camouflaged using modern technologies and tactics. One of the most powerful overused
weapon for escaping antivirus and proxy defenses are the packers [2] [23].
Packers were born as software for compressing and hiding the code but they are becoming
a must for spreading malware. Latest studies demonstrate that the usage of packers is
becoming a standard for viruses: 80% of malware uses packing software and 50% of the

2 1| An introduction to the writing of scientific texts

malicious files are the same malware obfuscated with different packers [2]. Compiling
small and portable programs is efficient, but the main reason behind this trend is that
packing is an efficient way to avoid the most common and effective anti-malware tools:
Threat intelligence, Static Analysis, and Machine learning.

Threat Intelligence Because we can simply access different versions of the same trojan
using the polymorphism characteristic of packers, the Threat Intelligence analytic
has become less effective.

Static analysis Because packers use numerous levels of encryption and the original code
is decrypted at run time, static analysis is time-consuming and ineffective.

Machine learning It was proved in [8] that a machine learning system tends to connect
a packed file with malware rather than distinguishing between benign and harmful
packed files. Studies are still in process, and while they may be used to examine
data more quickly, it is not yet a comprehensive and definite answer.

The remaining and reasonable solution is Dynamic analysis: it can be used to find the
original code when decrypted in memory, analyze registries and memory dumps, or pro-
cess and network Information.
If the packers also provide a defense against dynamic analysis, that means they present a
barrier for every sort of well-known and frequent analysis. Whether the barrier is strong
or small, it will certainly slow down and complicate the analysis.
To get this answer, we’ll look into whether packers employ Anti-Debugging and Anti-VM
technologies, as well as which techniques are the most popular. As a result, the study
will give evidence for the application of anti-debugging while simultaneously improving
the reverse of packed data.
The study’s unique aspect is that it employs instrumentation to detect anti-debugging
rather than more traditional methods. Instrumentation [20] is the best option for this
since it can disguise the analyzing process and identify anti-analysis ways without being
detected, while also implementing countermeasures to ensure safe program completion.
The following are the questions that this thesis attempts to answer:

RQ1. Are anti-debugging tactics being used by packers?

RQ2. Is there a correlation between a set of anti debugging methods and packers?

RQ3. In our dataset of packers, what techniques are exploited?

1| An introduction to the writing of scientific texts 3

5

2| State of the art

2.1. Related works

Anti debugging techniques and packers are widely studied in the context of Cybersecu-
rity. The quantity and complexity of anti-debugging techniques are growing, and there
are multiple well-documented manuals [9][6][14] offering strategies to fool the debugger.
As can be seen in [9][6][14], new approaches have been added to the initial set of well-
known techniques over a short period of time, demonstrating how rich, varied, and full of
possibilities this topic is.
However, debugging the code has been for years one of the most important resources for
the analysis and the unpacking of packers [3]–[9].

The majority of these methods rely on different heuristics to recognize the completion of
the unpacking procedure, and therefore the correct moment to dump the contents of the
process memory, and are based on dynamic execution of the sample (e.g., by an emula-
tor or a debugger). Being able to debug a packed file has been the primary weapon for
unpackers and analyzers, giving the opportunity to study the original code and publish
unpacking routines that are still in use by Antivirus [18]. Finding a correlation between
packers and anti-debugging would open an important question on the effectiveness of
Dynamic routines used by Antivirus, Unpackers, and Debuggers, for analyzing and un-
packing code.

Relation between Anti debugging and Packers

We have multiple examples of papers demonstrating an initial correlation between packers
and anti-debugging, starting from [20] which is a study of anti-debugging techniques used
by a large data set of malware. The authors discovered a link between the samples and
the methodologies used throughout their investigation.
Because malware is frequently packed, they attempted to build a machine learning sys-

6 2| State of the art

tem trained through anti dbitechniques and predict the appropriate packer family. In the
results, only PEtite demonstrated a clear correspondence, but it is a good result thinking
that the data set was not studied for that purpose as well as the classifier used. We
employed the same instrumentation equipment and approach as in this paper [20] , but
changed the scope of the study and added new features that targeted packers more specif-
ically.

The second main source of this paper is the article written by Peter Ferrie [21] for Mi-
crosoft company. The paper’s content is a study of anti-analysis strategies used by a
group of packers, which were identified through debugging operations. The methodology
(Instrumentation vs. Debugging), the pool of packers, and the varied techniques are the
differences in our study. On the other hand, he provided the opportunity to compare the
results in various ways, check previously established techniques, and add new ones. One
of the most significant contributions was the theoretical explanation of new techniques,
the foundation of new functionalities, and countermeasures added to our Instrumentation
instrument.

The article written by Young Bi Lee et Al.[25] is the final significant source, which ex-
amines the connection between the two components. This is the piece that most closely
resembles our methodology in this study; it is an analysis of commercial packer and pro-
tector anti-debugging strategies, as well as solutions for circumventing them. The tool
used, according to our study, is Intel Pin tool. It was a useful resource for confirming our
findings and discovering new sites for feature study. The differences are the data set of
packers, limited to a few protectors in their case; the final scope, which was limited to
targeted anti vm and anti debug functions, while our research is a complete overview on
all the packers world; the instrumentation was used not to discover which anti analysis
function is used, but to defeat already known techniques.

Theoretical manuals on Anti debugging techniques

During the experiment, a great source were three types of guide [14][9][6]. The first is a

2| State of the art 7

web page that contains the most well-known strategies, which are described using c++
examples. They are brief but intuitive explanations, and they have been one of the thesis’s
key resources.
The second one is [6] written by Peter Ferrie, and it is a more comprehensive book that
examines all possible anti-debugging behavior. This study not only describes new and
advanced strategies but also provides alternatives for applying and overcoming such tech-
niques.

Summary

As can be seen, there is a lot of information out there about the link between packers
and debugging, but this is the first comprehensive analysis of a pool of 45+ techniques
that have been tested using Instrumenting packed files. The method for checking the
approaches, which is done via Instrumentation, as well as the vast pool of anti-debugging
techniques employed, which is not restricted to simple and common techniques, but also
advanced and complex ones, is the interesting component of this research. Another item
to consider is that the data set used is based on 20 packers that contain the programs
used in the prior studies, allowing for a comprehensive overview of the packer families and
the ability to compare, confirm, and extend the findings of past studies.

8 2| State of the art

2.2. Different types of analysis

2.2.1. Static analysis

As stated in the introduction, various forms of analysis may be used to examine a packed
software. Static Analysis is the first option. Several ways for using static analysis to
detect and unpack programs have already been proposed [5], but as soon as they were
deployed and established a standard for every antivirus, new techniques and technologies
emerged that weakened this solution (Example Packers).
The main difference between this type of analysis and the others is when it is performed.
In particular, for applying a static analysis there is no need to run the program and it is
applied before the execution, because of this it is called static .

The first step in using static analysis is to examine the code. This can refer to a va-
riety of things, including plain text code (Java, Cpp,.Net, etc.), the assembly of a
compiled program, or directly byte code. This approach can be done manually by skilled
reverse engineers, but the most common solution is tools and automation. They are used
to study the flow of a program and comprehend its purpose, allowing malicious code to
be extracted and possible malware to be detected.
Examples of such solutions are ObjDump [13], a software that can deconstruct the code
into machine language, DnsSpy [12], which can revert a.Net file to its original CPP code,
or tools like IDA [7] or Redare, which can generate a graph that simulates the execution
of the code without running it.

The second strategy is to gather as much information as possible on the entity being
investigated: hashes, names, magic numbers, file types, user reports on the internet, and
so on. Some of them, such as hashes or byte signatures that characterize a virus family,
is employed by antivirus and firewalls as a check for the maliciousness of the code.
The problem is that obfuscation and polymorphic code can completely avoid this tech-
nique, for example, Christodorescu et al. observed in an experiment that “three commer-
cial virus scanners could be subverted by very simple obfuscation transformations”[3] .

2| State of the art 9

2.2.2. Dynamic Analysis

The second solution is Dynamic analysis, which is one of the topics of this research. Dy-
namic analysis is more effective than static analysis since it does not require disassembling
the infected file to evaluate it. Furthermore, dynamic analysis can detect both known and
undiscovered malware, and malware that is obfuscated or polymorphic cannot elude dy-
namic detection. Dynamic analysis, on the other hand, is time and resource expensive.

Function call monitoring, function parameter analysis, instruction tracing, and infor-
mation flow tracking are some of the techniques that may be employed with dynamic
analysis. All of these solutions are based on traces left during the execution that may
regard functions, data stored in memory, processes, and others. The analysis can also
regard the traffic in input and output while the program is executed, useful to find a
possible connection to malicious domains. The most famous programs used for such in-
formation in reversing are Procmonitor, Procexp , Regshot, all of them part of a set of
dynamic analysis tools provided by Sysinternals, a windows utility set of 70 programs
[16].

Figure 2.1: Example of static analysis performed starting from the source code. .

10 2| State of the art

2.3. Process Environment Block

The PEB is a section of memory where are stored useful information and flag are used to
discover the presence of a debugger. It is a Windows NT structure and it saves data that
is necessary for the operation of the system and the proper flow of the process. The PEB
stores Global context, starting parameters, data structures for the program image loader,
the program image base address, and synchronization objects needed to enable mutual
exclusion for process-wide data structures. Above all the stored data, we are interested
in part of them useful for the research:

- IsDebuggedFlag

It can be found in the location fs[:30] at offset 0x2 and is set to 1 when the program
is debugged.

- NTGlobalFlag

The information that the system utilizes to determine how to generate heap structures is
stored in the PEB at offset 0x68 in an undocumented location. When the value at this
position is 0x70, we know we’re in debugger mode.

- HeapFlag

In the PEB structure, ProcessHeap is at 0x18. This heap has a header with fields that
indicate the kernel whether it was created in a debugger or not. The ForceFlags and
Flags fields are how they’re called, and to identify a debugger the ForceFlags must be
different from zero while in the Flags field we must not have the HEAP_GROWABLE
(0x00000002) flag set [1].

2.4. What is a Packer

The concept of packer is the main topic in this research. A packer is software that provides
obfuscation and compression to a file for privacy reasons but mostly for bypassing security
analysis. A packer takes the original code and hides it by adding encryption, polymor-
phism, and routines that must be completed in order to reach the beginning program.
As can be seen in the example (Fig. 2.1), Packers inserts superfluous variables, recreates
the test using string sums, for cycles, and random variables, and makes the original code

2| State of the art 11

hard to read and comprehend.
The example taken is the multi-staged virus Emotet coded in power shell script, it has
been taken as example because it is in clear text and it can be directly seen how confused
and meaningless is the code provided.

1 $hh=’hi’+’dd’+’en’;
2 $gIlZxbyvdhbBM=@(1..16);
3 $xztKds=-join ((65..90) + (97..122) | Get -Random -Count 9 | % {[char]$_

});
4 $myFLENLDEQ = $ bHBcnobnyRxRNzqezNXi+"\"+$xztKds;
5 $uHmMCma="";
6 for ($i=0; $i -le $myFLENLDEQ.length -1; $i++){;
7 $uHmMCma +=$myFLENLDEQ[$i]+’EF’;

Listing 2.1: Example of packed malware, written in powershell script.

Packers can create different layers of unpacking, the first layer unpacks the second layer,
the second unpacks the third, and so on until we reach our code. In the article "When
malware is packin’ heat" [8] , packers are divided into 5 categories and we are gonna take
the same categorization for better understanding:

Type I
This is the example case, where an unpacking routine is performed linearly and at the
end of the program the code is in plain memory and is executed. Examples of this type
are packers lightweight like Mpress and Upx.

Type II
In this second level there is not a single packing routing but multiple ones. The first
layer unpacks the second one and the second layer the following one. At the end of
the transactions, like in Type I, the code will be fully reconstructed and it will be executed.

Type III
This type is a development of type II; it performs sequential packing procedures but
may mix patterns and go ahead and backward between them. It commonly saves the
last layer for checking if the original code is unpacked, anti-debugging routines, or the
packer’s obfuscated code. The crucial issue is that the runtime procedure and the exe-
cution at the conclusion of the real program’s process are still distinguishable and divisible.

12 2| State of the art

Type IV
This kind is similar to the preceding ones, except that the packer’s execution isn’t
confined to the unpacking procedure; it may also inject its own lines of code into
the original program. The goal is to provide an extra layer of security that includes
anti-debugging methods, obfuscation, and encryption.

Type V
The unpacking procedures and the execution of the original code are interleaved, which
distinguishes this Type from Type V. This means that while some lines of the original
code are run during unpacking, it may still be fully recovered using a complete memory
dump.

Type VI
This is the type of packer that has the lower granularity level. It means that while doing
the unpacking routine the packer execution can decide to unpack a single instruction of
the original code and execute it.

2.5. Unpacking

As files can be packed, they can be also unpacked and reverted to their original state.
This is usually possible through a recovered file generated by the packer itself, but if the
file is missing or during the reversing of an unknown file, the possible solution could be
using Unpackers [15]. These are software created to revert packed file, starting from the
packing routines of well-known packers. Taking into mind the constraints that they may
offer, they can be a viable alternative to dynamic analysis.

They frequently assume that (I) the entire original code is unpacked in memory
at a specific point in time, (II) if a sample contains multiple layers of packing, these are
unpacked in order and the original application code is decoded in the last layer and (III)
the packer’s execution and the original application’s execution are not mangled together
(i.e., the packer transfers control to the original application at a specific point in time).
As it can be noticed, these assumptions are obsolete and can be avoided by changing the
packing routine or implementing more innovative solutions.

2| State of the art 13

There are multiple methods they use for unpacking, the most used is an approach
based on the signature. It works by comparing the code and trying to find behaviors or
routines that are specific to a packer. Of course, this method is limited by the fact that
the software must know the routine of the packer that obfuscated the file, or the fact
that packers can change routine or get updates .

Finally, this solution cannot be relied upon because it is only necessary to modify
a portion of the code or construct a private packer to overcome it.On the other hand,
it is a simple, intuitive method that identifies the majority of the most common and
well-known packers. The alternative is using a dynamic packer, which doesn’t compare
signature but is able to discover when a program is performing the packing routine and
when is starting the original code once unpacked.This is possible because it recognizes
when all of the original code has been unpacked and the program calls a memory location
that previously had no executable code. But this is possible only for linear packers, in
other most sophisticated routines there is the need of stronger algorithm and expensive
in matter of time and cpu.

PEiD[24] is the most well-known and widely used; it is unpublished software that
can be found in many repositories and is still widely utilized. Static analysis, dynamic
analysis, and entropy for determining if a file is packed and where it is unpacking the
code are all features of this application.

2.6. Debuggers

A debugger is a tool used to trace the execution of the program. It can be used to find
mistakes in your own code, reverse software and have a better understanding of what
the code is doing in every moment of its execution. It works by attaching himself to an
existing process or directly spawning the process to analyze.

Once the process is spawned and after becoming the father of the process, the de-
bugger waits for signals, parse them, and executes the linked routine. Operating systems
provide specific libraries for dealing with this feature and provide the debugger with the
necessary tools to intercept signals.
The debugger intercepts all the exceptions and traps of the debuggee program, but
the most used and important is INT 3, a 1 byte instruction that can be added at the
beginning of every instruction, causing a break-point exception and calling the debugging

14 2| State of the art

exception handler. It is an interception that stops the analyzed program and returns
the execution to the debugger. Here the debugger can obtain the state of the process’
memory, its registers, and every information stored before the interruption.

OllyDbg Features

Process memory

Stack

Registers

Hex-view, execution control , breakpoints

Figure 2.2: This figure represents a common graphical interface for debuggers, evidencing
the main views that can be used for analyzing the execution of a program. .

The UI and key features of OllyDbg, one of the most popular debuggers with a Graphical
Interface, are shown in Fig 2.2. We can see information such as the stack, register data,
and the instruction where the program is stopped in the image. X64 and IDA pro were
used in the studies to double-check procedures and detect problems in the code. Because
there are strategies that are meant to avoid certain debuggers and because they present
distinct features, the need to utilize different debuggers arose.

2.7. Instrumentation

The use of Instrumentation rather than a traditional Debugger is one of the most
innovative aspects of this study. Instrumenting software means adding code to the

2| State of the art 15

original executable at run time. Such a definition can be summarized as JIT compiler,
which means Just In Time Compiler. The instrumentation tool intercepts the execution
of the first instruction of the executable and generates ("compiles") new code for the
straight line code sequence starting at this instruction. It then transfers control to the
generated sequence (Fig. 2.3).

It can be decided whether to execute the original code or only use it as a refer-
ence and execute only the extra code during instrumentation. Because of this, it
became a powerful tool against anti debugging technique because it is possible to specify
routines for functions that are used during anti debugging and avoid or print them into
the logs. Furthermore, anti-debugging techniques hunt for debugger traces, but with
instrumentation, some of the debugger residues are partially gone.

In the paper "Measuring and Defeating Anti-Instrumentation-Equipped Malware"
[22], using a set of procedures that hides the presence of a debugger while executing,
instrumentation has been used to bypass anti-dbi techniques, demonstrating how
beneficial it may be against analysis protection, and the same approach can be used for
anti debugging .

The main advantages of instrumentation are that it can discover code at runtime,
allowing it to discover and instrument it as the code is unpacked; it can be attached to
a running process, allowing it to hide; and it can intercept exceptions, functions, and
system calls, providing an infinite number of possibilities for code analysis.

16 2| State of the art

Figure 2.3: This figure represent the process of adding new lines of code to the instru-
mented program. .

17

3| Anti Dynamic analysis

techniques

3.1. Anti debugging techniques

All of the anti-debugging techniques involved and studied are based on fingerprinting:
they try to find common traces during the execution of a process and the execution of a
process while it is being debugged, and if one of the techniques returns a positive result,
the program changes behavior or stops running. This type of approach can compare the
timing of execution of a function, compare the expected memory address with the one
provided while debugging, system information that involves the presence of a debugger,
and also the management of exceptions and traps.
Because of this wide range of different techniques, we divided them into 6 macro
categories: Anti-debugging, Anti-VM, File, Registry, Stalling, Timing. .

3.2. Anti-debugging

This is the most comprehensive set, containing all of the well-known and widely used
functions and approaches for detecting the existence of a debugger. They differ from the
other sections in that the method’s origin is not in a file, timing, or registry check, but
rather in functions and instructions designed specifically for debugging. :

• IsDebuggerPresent()

When a process is being debugged it triggers multiple flags inside the PEB, the
one searched by this function is the BeingDebugged flag. This technique works
by calling the mentioned function to check if the flag is set to 1, else the process
will terminate because it means that there is a debugger. The same is applied for
CheckRemoteDebuggerPresent. A possible alternative is using the assembly code
for avoiding hooks, it is based on 3 simple lines, the first retrieves the PEB address,

18 3| Anti Dynamic analysis techniques

the second one takes the value of NtFlag, and finally, the flag is returned(Fig.3.1.

1 mov %eax ,fs:30h;
2 movzx %eax ,[% eax +2];
3 retn

Listing 3.1: Example of code using IsDebuggerPresentTechnique().

• SetUnhandledExceptionFilter()

This is an example of Exception Handling technique. When a process is being debugged
traps and exceptions are intercepted by the debugger. If an exception is triggered and
there is no handler specified, the UnhandledExceptionFilter() will be called. By using
SetUnahandledExceptionFilter you can modify the UnhandledExceptionFilter() with your
own code: if it is called by the process it means it is not debugged, else it has been
intercepted and handled by the debugger (Fig. 3.2).

1 LONG UnhandledExceptionFilter(PEXCEPTION_POINTERS pExceptionInfo)
2 {
3 PCONTEXT ctx = pExceptionInfo ->ContextRecord;
4 ctx ->Eip += 3; // Skip \xCC\xEB\x??
5 return EXCEPTION_CONTINUE_EXECUTION;
6 }
7 bool Check()
8 {
9 bool bDebugged = true;

10 SetUnhandledExceptionFilter ((LPTOP_LEVEL_EXCEPTION_FILTER)
UnhandledExceptionFilter);

11 __asm
12 {
13 int 3 // CC
14 jmp near being_debugged // EB ??
15 }
16 bDebugged = false;
17 being_debugged:
18 return bDebugged;
19 }

Listing 3.2: Example of SetUnhandledExceptionFilter() technique added to the code.

• Instruction INT 3

The INT 3 instruction is a similar mechanism that is included in the Exception Handling
group but is less detailed. This exception is intercepted debugger and is utilized for
breakpoints, as indicated in paragraph 2.6. This means that if it’s called from within
the packed program’s code and the exception isn’t handled by the original process, a

3| Anti Dynamic analysis techniques 19

debugger could be looking for breakpoints. The next section of code contains an example
of the implementation (Fig. 3.3):

1 bool IsDebugged ()
2 {
3 __try
4 {
5 __asm int 3;
6 return true;
7 }
8 __except(EXCEPTION_EXECUTE_HANDLER)
9 {

10 return false;
11 }
12 }
13 }

Listing 3.3: Example of Int 3 technique added to the code.

• NtQueryInformationProcess()/NtQuerySystemInformation()

This function is used to retrieve information about the process: it can accept docu-
mented class as an argument and it outputs the requested information. If we choose as
an argument the documented class ProcessDebugPort and we obtain as a result of the
dwProcessDebugPort(It is an attribute of the class) the value 0xFFFFFFFF, it means
the process is being debugged.
The EPROCESS structure, which contains the NoDebugIneriht flag for detecting the
presence of the debugger, may be obtained by specifying the argument 0x1f; the Debug
Object handler, which is produced only if the process is being debugged, can be obtained
by specifying the argument 0x1e. Surprisingly, all of these variations appear in our results.

• FindWindow()

This function is used to retrieve windows classes, it can be exploited to check if there are
debugging classes imported by the process. Examples of these indicators are classes like
Regmonclass, Filemonclass, Procmon window class, and many others.

• NtGetContextThread(CONTEXT_DEBUG_REGISTERS)

This function is used to retrieve the thread_context of the specified thread. If a thread is
identified by the hThread parameter, it means that is typically being debugged, but the
function can also operate when the thread is not being debugged.

• Interrupt: IceBP 0xf1,Int1

20 3| Anti Dynamic analysis techniques

These functions are used to raise an exception. If the exception is raised and it is not
handled by the program itself, it means that there is a debugger intercepting the excep-
tions, and it won’t be handled. They all raise a different exception, but the scope of this
technique is the same.

• Memory-R: PEB->IS_DEBUGGED,Memory-R: PEB->NTGLOBALFLAG,

These two flags have been already discussed in this chapter. They are different from isDe-
buggerPresent and CheckRemoteDebuggerPresent because they can be retrieved directly
by taking the PEB structure and checking the interested part of the structure. When this
technique is used, it signifies that the data was acquired directly through assembly code
rather than through functions.

• NtClose()

An error code is issued if no debugger is present and an invalid handle is passed to the
kernel32 CloseHandle() method (or directly to the ntdll NtClose() function). However,
if you use a debugger, you’ll get an EXCEPTION INVALID HANDLE (0xc0000008)
exception. An exception handler can catch this exception, which signals the existence of
a debugger.

• NtSetInformationThread()

A thread can be hidden from a debugger using this function. It can be utilized by either
an external or internal thread. The debugger will not receive any events when the thread
is hidden, allowing it to run anti-debugging tests without being noticed. The process will
crash if there are any breakpoints, and the debugger will be stacked.

3| Anti Dynamic analysis techniques 21

3.3. Anti-VM

In this set are inserted all the functions that are used to check the presence of a sandbox
or a virtual machine. As in the previous section, these techniques are all performed using
functions that directly return the information that may be related to a VM or Emulation.

• GetAdaptersInfo()

This function is a network-related technique that retrieves network parameters,
including the machine’s MAC address. Most virtual machine suppliers hard code
their MAC addresses for virtual machines, and you can tell if an application is
executing in a virtual environment by looking at the MAC address. This function
can also be used to get the adapter name; if it’s something like "VMWare" or
"VirtualBox," it means the program is running on an emulating system.

• GetComputerNameW()

This function is used to extract the name of the workstation; the technique is
very simple and consists of comparing the computer name with well-known virtual
machine default names.

• GetCursorPosition()

This is a method that necessitates human engagement. The function return in x,y
coordinates, as you might expect, returns the position of the mouse cursor. If the
position never changes, it indicates that the program is not being used by a human,
and it could be running in a sandbox, through an automatic script, or in a terminal.

• GlobalMemoryStatusEx()

This function returns memory-related information. You may find out the physical
and virtual memory dimensions of the system, which can be utilized to see if
the physical memory is less than a certain threshold, such as 1 GB. Virtual
environments require less memory because they are used for single tasks and
share memory with other virtual machines and the system. Nowadays, systems
typically have at least 4 GB of memory, whereas virtual environments require less
memory because they are used for single tasks and share memory with other virtual
machines and the system.

22 3| Anti Dynamic analysis techniques

3.4. File

All of the techniques that utilize file streaming are discussed in this section. During the
debugging process, a specific file for debugging, drivers, or libraries for encrypting may
be opened. The distinction between this section and the preceding sections is that these
techniques look into file descriptors directly, rather than using external functions.

• NtCreateFile()/NtOpenFile()

These functions are used to open a file descriptor to a file. When a file is being
debugged, it opens the file descriptor for receiving debugging alerts from the
running program. If we try to open a file descriptor in exclusive mode, while it is
already opened, it will raise an exception and discover the presence of a debugger
or another program that is using the file. This method is employed in our results
for two different purposes: the first is to open the hello world file directly. It’s
possible that the debugger is using the file descriptor if you try to open or create
it while it’s already in use, causing an exception. The second goal is to inspect the
libraries and drivers that debuggers utilize. It entails attempting to open files that
are only loaded when the debugger is active.

3.4.1. Registry

Some information may be kept in registries as well as files, and this section contains all
of the approaches that involve the opening and reading of registries.

• NtQueryValueKey()

This function returns a value entry for a registry key. It can be used to look for
traces of a debugger inside the registries.

• NtOpenyKey()

This function opens an existing registry key. It can be used to look for traces of a
debugger inside the registries.

• NtQueryAttributeKey()

This function returns an attribute entry for a registry key. It can be used to look

3| Anti Dynamic analysis techniques 23

for traces of a debugger inside the registries.

3.5. Stalling

The delaying functions can be used for a variety of things. The first is as a simple and
effective anti-sandboxing technique: sandboxes have a finite amount of time. They stop
the application from running after a short or long period of time and provide the analysis
findings.
The other goal is to slow down the entire debugging process by using the following func-
tions repeatedly. The last option is samples that stall not just by utilizing the OS’s
sleeping features, but also by doing pointless arithmetic operations, or system calls. Even
worse is software that includes time bombs that only activate on specified dates or times-
tamps.
In this research, we are gonna focus only on Windows functions that make the program
lose time.

• Sleep()/SleepEx()/NtDelayExecution

Suspends the current thread’s execution until the time-out interval expires.

• WaitForSingleObjectEx()

Waits until the specified object is notified, an I/O completion routine or an asyn-
chronous procedure call (APC) is queued to the thread, or the time-out interval has
passed.

3.6. Timing

The last set is composed of all the methods that measure the timing of a function.
Debugging a program introduces noticeable delays in the execution of functions; this
technique compares the timing of a function executed by the system to the same on top
of a debugger, and if the latter is significantly slower, the program is terminated. (Fig.
3.4).

• GetTickCount()()/GetTickCount64()

The amount of milliseconds that have passed since the system was launched is
returned. This value is updated by the system clock ticks.

• GetLocalTime()

The following time is used to get the current date and time in Coordinated Universal

24 3| Anti Dynamic analysis techniques

Time (UTC) format.

• RDTSC

Generates the rdtsc instruction, which returns the processor time stamp. The pro-
cessor time stamp records the number of clock cycles since the last reset.

• QueryPerformanceCounter()

Retrieves the current value of the performance counter, which is a timestamp with
a high resolution (1us) that can be used to measure time intervals.

1 bool IsDebugged(DWORD64 qwNativeElapsed)
2 {
3 ULARGE_INTEGER Start , End;
4 __asm
5 {
6 int 2ah
7 mov Start.LowPart , eax
8 mov Start.HighPart , edx
9 }

10 // ... some work
11 __asm
12 { int 2ah
13 mov End.LowPart , eax
14 mov End.HighPart , edx
15 }
16 return (End.QuadPart - Start.QuadPart) > qwNativeElapsed; }

Listing 3.4: Piece of code comparing the timing of a set of instructions, and the same
measured without a debugger.

25

4| Framework and approach of

the experiment
The details of the experiment and how we arrived at our conclusions will be explained in
the following chapter. The sample used will be shown in the first section, the data set
acquired in the second, and the last sections will be used to describe the tool used and
the adjustments made to it.

4.1. Sample used for the experiments: Hello world!

The sample used for studying the packed behavior is a hello world file.
The reason for this decision is that there was a need for a lightweight application that
could reduce library imports while also evidencing the logs added by the packers. In
particular, the experiment has been used 2 different versions, the first one is compiled
with the visual studio x32 compiler and written in C++, while the second one has been
compiled with mingw x32 and is written in C code . The reason for having two versions
is that the first version was not accepted by a small portion of packers because they
didn’t support visual studio libraries. On the other hand, it was the version that was
compatible with most of the packers.

The second version had the problem that mingw added by default TLS callback.
Normally, a program begins with the main function, but with TLS callbacks, you can
add lines of code to run before the main function is called. Adding this feature, packers
detected the program compiled with mingw as already packed or simply didn’t support
tls callback, failing the packing process.

Another reason is that outputting a simple hello world string could be used as an
indicator to verify if the software is not broken, is functioning well, or if it can be
debugged and output the hello world string after being packed. (Fig. 4.1.

26 4| Framework and approach of the experiment

1 #include <iostream >
2 int main()
3 {
4 std::cout << "Hello , World!" << std::endl;
5 return 0;
6 }

Listing 4.1: Code of the original sample used for experiments.

4.2. Data set of packers

The data set for this study consisted of 20 commercial packers who were chosen based on
a number of criteria. The first criterion was that the packer is capable of packing 32-bit
executables into Portable Executable files. Because Brioscia can only instrument 32-bit
exe files, this is a must.

The availability of the packer is the second criterion, which is more practical. Be-
cause most of the packers did not have their own website where they could be obtained,
they had to be downloaded from third-party file-sharing services. The motive is that
many packers have been there for years and were built in the early years of 2010, but
they are based on outdated architectures and have never been updated.
Armadillo, for example, is one of the most interesting and well-documented software
among packers who may employ anti-debugging techniques, but it has been completely
removed from standard download sources and is no longer available through third-party
sources.

Being free is the third guideline. The majority of packers are now given for a
cost, and as a result, the research’s limitation is that many of the packers utilized are
trial or free research, which may change and have fewer possibilities than the original
version.

The last requirement is being a packers used in the referred researches [22][20][6].
The motivation is that in this way it is possible to compare results from different sources
and confirm or not the results of other articles(Table 4.2).

4| Framework and approach of the experiment 27

Packer Version Trial

rlc 3.0.3.18 ✗

pecompact 3.0.3.18 ✗

mpress 2.19 ✗

petite 2.4 ✗

obsidium 1.7.4 ✓

vmprotect 3.5.1 ✗

mew11 1.2 ✗

aspack 2.43 ✓

pelock 2.11 ✓

yoda’s protector 1.03 ✗

enigma vm 9.7 ✓

telock 0.98 ✗

themida 3.1.1.0 ✗

exe32 545 ✗

alternate 2.440 ✓

asprotect 2018.2 ✓

enigma protector 7.0 ✓

upx 3.96 ✗

PcGuard ✓

kkrunchy 0.23 ✗

Listing 4.2: Table of the packers composing the data set. It is reported the version of
the sample used and if they were a trial version.

4.3. Description of the framework MBare

4.3.1. Original Code

Mbare is a framework written in python on top of brioscia. It is a framework that has been
used in earlier studies to undertake experiments on malware and harmful files [22][20]. The
experiments are designed as a client-server architecture, with the client sending samples to
the server (which is a local virtual machine) for analysis, and then collecting the findings
once they are available. The goal is to replicate a Sanbox where the packed data (possibly
malware) may be inspected without damaging the real OS, ensuring isolation and security
in a virtualized environment (Fig. 4.1).

28 4| Framework and approach of the experiment

Server VMServer VM

Brioscia

5. Return logs

6. Logs

3. Spawn VMs

send samples to be analyzed

4. Instrument sample

 Run

8. Parsed Logs

2. Send/receive Tasks

7. Upload/download results

Client Machine

MariaDB

Figure 4.1: Scheme of the entire structure that compose the framework MBare.

Framework Data Flow

The flow done by the MBare framework from the launch of the client application to the
retrieval of the parsed logs of the examined sample is described in the following list. The
list is arranged in chronological order and describes a typical run for analyzing a packed
sample.:

1) The client begins putting tasks in a database (Maria DB) and specifies the
packed sample to be evaluated in the new job.

2) When the client is launched, it collects one task at a time from the
DB and launches a virtual machine (Vbox) that is configured to listen for
and respond to new requests from the client.

4| Framework and approach of the experiment 29

3) The client delivers a sample file to the server using an http request.

4)The server consumes the sample into brioscia as soon as it receives
the request and waits for the results.
Because the experiments were done on a local system with memory and CPU limits,
the framework cannot manage numerous tasks at once. It can work in a multi-threaded
mode, but it was not possible to use in such conditions.

5) When the logs are complete, the server delivers them to the client

6) Mbare saves the received logs into the database after collecting the
results. The logs connected to anti-debugging machines, which are the output of the
instrumentation tool, would be obtained at this point. The issue is that it also contains
logs for normal calls and noise generated by the program’s execution. As a result, the
next step is to process the logs into a parser that selects, counts and generates an excel
file including all possible debugging techniques.

7) The client takes a new task and repeats the procedure after reset-
ting the virtual machine’s snapshot.

4.3.2. Updates performed to the original code

The support for Virtual Box is the first change made to the original code. Originally, the
framework was designed to work with VMWare, but we had to modify a section of code
to allow for the spawning and use of VBox Virtual Machines for practical reasons.
The final parser is where the second change is made. The goal of this study is to
examine and compile statistics from packer records. To achieve this goal, we created a
Python parser that reduced noise from the first logs as well as processed and counted
anti-debugging tactics, storing them into an excel file. This parser takes the logs as input
and checks them against a list. The list may be seen in fig 4.1, and it contains phrases
that are used in registries, files, and path directories, with the goal of reducing false
positives. The list has been expanded from the previous version, with the addition of
names of debugger drivers that produced different results in the final document, as well
as new filenames (Tab. 4.1).

30 4| Framework and approach of the experiment

Blacklist

"EXTREM","FILEM","FILEVXG","ICEEXT","NDBGMSG.VXD","NTICE"
"REGSYS,"REGVXG","RING0","SICE","SIWVID","TRW"
"SPCOMMAND","SYSER","SYSERBOOT"
"SYSERDBGMSG","SYSERLANGUAGE", "nkvwovuotd.exe"
"cng", "computername", "activecomputername", "Session Manager"
"vbox", "virtualbox", "vmware", "vmx", "parallels", "bochs"
"wine", "wireshark", "ollydbg", "processhacker", "pin", "tcpview"
"autoruns", "filemon", "procmon", "regmon", "procexp", "hookexplorer"
"sysinspector", "petools", "dumppcap", "python", "cuckoo", "debugger"
"debug", "vmm", "ida", "qemu", "sandbox", "virus", "sample", "malware"
"innotek", "dfserv", "vmhgfs", "prl_cc", "prl_tools", "vmsrvc", "vmusrvc"
"xen", "softice", "vbox", "virtualbox", "vmware", "vmx", "parallels", "bochs", "wine"
"vmm", "qemu", "innotek", "vmhgfs", "prl_cc", "prl_tools", "vmsrvc", "vmusrvc"
"xen", "sandbox", "wireshark", "ollydbg", "processhacker", "pin", "tcpview"
"autoruns", "filemon", "procmon", "regmon", "procexp", "hookexplorer"
"sysinspector", "petools", "dumppcap", "python", "cuckoo", "debugger"
"debug", "ida", "virus", "sample", "malware", "dfserv", "softice"

Table 4.1: Table containg the blacklist used during the parsing procedure. In green there
are the new added entries.

After parsing the list, the parser compares the logs of the unpacked and packed versions
of the program, discarding those that are identical. It is feasible to receive only the new
logs added by the packer in this way.
The parser’s second job is to generate an output summary that may be used to archive
all of the approaches utilized by packers. The result is an excel file that lists all of the
techniques found at the row level and the packers that used them at the column level.

Indicators added:

• NTICE,REGSYS,SYSER..

The first part of the table is dedicated to driver names that may be opened by the
packed sample for anti-debugging purposes.

• nkvwovuotd.exe

It is the name of the packed executable. The first reason for this is that certain
techniques attempt to open the file to see if it has already been opened by another

4| Framework and approach of the experiment 31

application that may be examining it, returning an exception. The second reason
is because the registry key \\registry\machine\software\microsoft\windows
nt\\currentversion\\image file execution options\ProgramName.exe
where it may be stored the NtGlobalFlag value (a flag that is set to 1 while de-
bugging a program).

• NtOpenFile(\\device\\cng)

Functions for encrypting strings and code can be found in the cng library. When this
file is opened , it may be possible that the code has been hidden using a cryptography
algorithm. It is not a foolproof method, but it can be used as a guide.

• Session Manager

The Indicator Session Manager is part of the path \HKLM\
System\CurrentControlSet\Control\ Session Manager, which is another
way to check the value of the GlobalFlag [21].

• NtOpenKey/Ex(\\??\control\computername)

Inside the registry path \\registry\machine\system\currentcontrolset\
control\computername it can be found the name of the computer running the
program. This name can be compared against names that are often used in virtual
machines and sandboxes, and if there is a match, the program will be terminated.

4.4. Brioscia Intel pin Tool

4.4.1. Original Code

Here is described the instrumentation architecture used and its implementation.
The instrumentation tool used is based on Intel Pin Instrumentation [11], it is a Intel
library implemented to give all the necessary tools for doing instrumentation in C++
language. The code has been developed for studying anti debugging techniques and it is
used in "Systematical study" [20] and the implementation of Arancino [22], an anti anti
dbi tool.
The original Intel Pin version has crucial characteristics that lead to the packer study.
The PinDemonium cpp file is the program’s starting point; it contains the program’s
main function and is responsible for the configuration of the running instrumentation.

There are various options available, but the following are the most important:

32 4| Framework and approach of the experiment

The exception handler’s function is to intercept exceptions, parse them, and schedule
a routine to handle them. Because some anti-debugging strategies create interrupts for
testing the presence of the debugger, this class is quite significant. It works by hooking
exceptions and examining the exception code, printing it in the logs, and starting a
function to safeguard the code in the presence of a debugger if the pin shield is configured.
The pin shield is another important part of the initial configuration, as mentioned it
is used for fixing the environment and avoiding anti debugging technique, a good and
easy example is fixing the eip register. A few anti-debugging methods check the eip
address to see if the next scheduled instruction is the same as it would be without the
debugger. Before entering the exception routine, the shield merely alters the value of the
eip address, evading detection of the anti-db technique.

The setting of controlling the son of the starting process is just as critical as this
last portion because many packers split the unpacking routine and the code execution.
In this approach, the same hooks are grabbed for all of the son processes, increasing the
instrumentation tool’s coverage power. The instrumentation procedures are the last but
most important part of the program. System call and regular hook functions are the two
types of hook functions.They required a separate set of functions since the OS handles
them differently, but the way they function is the same. If the software detects the name
of a registered function, it can start a routine before and after it is executed.
The handlers normally print the technique in the log paper, but they can also give
additional information, such as registers,function arguments, and return address, among
other things.

4.4.2. Updates performed to the original code

The tool already had all of the necessary information for anti-debugging experiments,
but the version was out of date and relied on outdated libraries.
As a consequence, during the first run it caused thousand of errors and couldn’t compile
at all. It has been necessary about 2 months to totally debug and correct all the errors,
reaching a compatible and working version.
The fixing procedure was carried on by identifying the error that had the major number
of occurrences, finding a solution, implementing it, and repeating the process. In this
way, the number of errors started becoming less and giving the opportunity to patch
faster the entire code. In the end, the fix done are lesser fix, but it required deep analysis
of the entire code and multiple tries to find out the cause of the problems.

4| Framework and approach of the experiment 33

The first version of Brioscia detected different techniques but it was not intended
for studying packers. After reading and inserting the papers [14][6], it became more
evident that packers can implement their own type of techniques. Starting from papers
[21] it was possible to implement new detection functions in Pin that gave multiple hits
in packers and demonstrated the usage of anti debugging. This helped also to prove
that despite easy techniques and overused, they preferred to detect tricks less famous
but effective, which can be detected by skilled reversing engineering skills but would
definitely work on less advanced systems.
The list of new hooks detected in brioscia can be seen in Fig. 4.2 and it is explained in
the list below.

Figure 4.2: Piece of code where it can be seen the hooks configured for the new functions.

DebugActiveProcessStop()

This method is an alternative to DebugActiveProcess in that it can start a frash clone of
a debugged process. The issue is that a process can only be debugged by one debugger at
a time; if it has already been debugged, an error will occur. The function DebugActive-
ProcessStop() uses the identical procedure, but instead of launching a process, it tries to
stop one that has already been debugged.

GetVersion()

This function is used to ensure that the descriptor table layout matches the operating
system platform, discovering if a system is being emulated.

OpenProcess()

When a process is being debugged it acquires full control of the process CSRSS.EXE,
which is a system process. If a different program tries to open the same process it will cause
a program, and demonstrate that the file is probably being debugged. This technique was
studied by Piotr Bania in the year 2005. He released a document demonstrating how this
technique could affect and detect OllyDbg and WinDbg, both taking the full privileges

34 4| Framework and approach of the experiment

on csrss.exe at their start.

GetProcessHeap()

This function can retrieve 2 important flags, the NTFlags which is set to 2 by default,
and the ForceFlag, which is set to 0 by default. These values can be compared to the
usual combination used while the process is being debugged.

BlockInput()

This function is used to block keyboard and mouse events. The purpose of using this
call for anti debugging is to prevent the debugger from inserting new commands from the
command line or totally blocking debuggers that have a GUI.

CreateToolHelp32Snapshot/ Process32Next/Process32First()

The process ID of explorer.exe may be obtained using a coombination of the following
functions: CreateToolHelp32Snapshot/ Process32Next/Process32First() (but also Open-
Process()). This id may be compared to the running process’s parent to see if it was
started by explorer.exe or by another program, like a debugger or Instrumenting program.

CreateToolHelp32Snapshot accepts a flag and a pid as input; if the pid is 0 or
null, it produces a snapshot of all processes. The snapshot contains all of the process
handlers, and it is an iterable structure. It’s enough to read through the entire list until
you find the process you’re looking for.

This feature allowed the application to determine if the packed program was look-
ing for the parent process, pin.exe, or environment processes such as virtual box or
Procmon. It has also been added a feature for avoiding iteration and stopping the
software in the enumeration activity: if the list of processes in the snapshot comes to an
end, the iterable class Process32Next returns false. If we return false at the first call of
Process32Next(), the anti debugging check will halt at the beginning of the list and it
will be unable to acquire the list of processes Fig. 4.3.

4| Framework and approach of the experiment 35

Figure 4.3: Hooks for CreateToolHelp32Snapshot() and Process32Next().

SuspendThread()

This function is usually connected to the technique analyzed before (Section 4.4.2). If the
pid is not the same as explorer.exe, the program may decide to suspend the father process
Thread, increasing the possibility that the program is using the previous anti debugging
check.

Jmp Headers technique

This technique has been observed in mew11 by looking at the logs and looking at the
address of the executed functions (Fig 4.4).

This method makes use of the peculiar structure of a PE file. Starting at virtual address
0x400000, the PE loads the code of the executing application into memory. The headers
take up the first portion of memory, which is loaded in read-only mode. The code and
other parts normally begin at 0x401000 and operate in both writing and reading modes.
This method involves placing executable code in headers and jumping to it at the start
of the process. The debugger is unable to interact with the code or write to the memory
as a result of this. The common structure indicated before may be observed in Fig. 4.4.
The implementation is basic but effective: it checks for a jmp to the protected region at
the start of every instrumented function and outputs it in the results.

36 4| Framework and approach of the experiment

Figure 4.4: Implementation of the jmp headers technique inside Pin.

Figure 4.5: Example of common structure of a PE file, evidencing the starting address of
the Headers section . In this case we took the program Putty as an example and debugged
it with x64dbg.

Guard Pages Exception

This technique regards the EXCEPTION_GUARD_PAGE (0x80000001) and it is
expressly used to check if the program is running under the control of OllyDB debugger.
This technique consists in registering an exception handler for the guard page exception,
allocating a writable/readable memory, and inserting a C3 instruction (RET) on it.

4| Framework and approach of the experiment 37

After doing this, it is needed to change the protection of the allocated memory to Page
Guard. When this function is called, it will raise an exception and if it doesn’t trigger
the handler, it means that it has been intercepted by a debugger.
The Guard Pages are inaccessible allocated memory used for defending the code from
buffer overflow attempts and heap attacks. Because of this, trying to access a part of
this memory will trigger the exception and try to end the program. This technique is
implemented in brioscia by intercepting the exception, checking if the exception code is
the guard page one, and then writing the result inside the logs.

39

5| Analysis of the results
In this chapter, we will discuss the findings obtained from the experiments. This is the
research’s main focus, and it will demonstrate through the data the use of anti-debugging
by debuggers and how deeply it is engaged in their usage in packers. The results are
grouped into categories (Anti db, Anti vm, File, Registry, and Time-Stalling), each
focusing on a different component of the running program in order to detect a debugger.
In section 3.1 it can be found the description of the categorization applied and the
explanation of the motivation.
At the end of this chapter, the results divided by category will be joined and it will
provide an estimation of the effective packers implementing at least an anti dynamic
analysis technique (Section 5.6) .
For every section it will provide a distinction of the techniques analyzed in False
Positive, Uncertain and Secure, and statistics about the obtained logs. This option
between the Certain and Uncertain technique was picked after determining whether
the presence of a function in the logs indicates the employment of an anti-debugging
approach, or if it may be used for other purposes and there are no additional clues to
aid the decision. False positives are examples in which the number of logs produced
too much noise in the findings and plainly did not represent the truth of the facts;
as a result, we deemed these functions unsuitable and excluded them from the final results.

The subdivision in a different category is represented by symbols as follow:
- # False Positive
- G# Uncertain
- Certain

40 5| Analysis of the results

5.1. Anti Debugging results

ANTIDEBUG

CheckRemoteDebuggerPresent,

FindWindow(classname: filemonclass, procmon, regmonclass),

FindWindow(windowname: null, classname: shell_traywnd),

GetWindowThreadProcessId, G#

Instruction: 0xf1 - IceBP,

Instruction: INT 1,

Instruction: INT 3,

Instruction: POPF/D - TRAP FLAG SET,

IsDebuggerPresent,

JMP HEADERS technique,

Memory-R: PEB->IS_DEBUGGED,

Memory-R: PEB->NTGLOBALFLAG,

NtClose(INVALID_HANDLE),

NtGetContextThread(CONTEXT_DEBUG_REGISTERS),

NtQueryInformationProcess(0x07),

NtQueryInformationProcess(0x1e),

NtQuerySystemInformation(0x23),

NtSetInformationThread(0x11),

Process32Next, G#

SetUnhandledExceptionFilter, #

SuspendThread, G#

BlockInput,

Table 5.1: Categorization of the Anti Debugging techniques.
#False Positive, G#Uncertain Technique, Certain technique.

Table 5.1 shows all the functions found in the logs related to an anti-debugging technique
and the assigned category. The majority of the techniques are certain to be used as an
anti-debug trick, as they are functions or assembly lines specifically designed to collect
debugging information. The only uncertain functions detected are SuspendThread,
Process32First, Process32Next,GetWindowThreadProcessId. These are func-
tions that can be used to check the running process and the father process. A single call
to one of these routines may be a false positive, but numerous calls can be linked to show
that a running anti dbi trick is active. This is because their presence does not guarantee
that the program is doing anti-debugging; they may be part of one of these methods, but
they necessitate a more thorough examination of the logs and the running program 6.2.1
A pattern that can be extrapolated from the table 5.1 is that eight of the strategies are

5| Analysis of the results 41

based on looking at registers and flags in the PEB structure, making them the most used
among all the samples of packers. Techniques based on exception handling are ranked
second, with six different techniques belonging to the same family. The rest of the tech-
niques are using different sources and don’t evidence any particular pattern.
This finding demonstrates that, although being one of the oldest techniques, the PEB
structure and debugging flags methods remain the most popular, indicating a slow verti-
calization towards modern techniques.

5.1.1. Logs and statistics for Anti Debugging functions

function/packers Alter mpress pecomp obsid enigpr rlp vmp telock pelock pcguard

CheckRemoteDebuggerPresent, ✓

FindWindow(classname: filemonclass, procmon, regmonclass),
FindWindow(windowname: null, classname: shell_traywnd),
GetWindowThreadProcessId, ✓ ✓ ✓ ✓

Instruction: 0xf1 - IceBP, ✓

Instruction: INT 1, ✓

Instruction: INT 3,
Instruction: POPF/D - TRAP FLAG SET, ✓ ✓

IsDebuggerPresent, ✓ ✓ ✓

JMP HEADERS technique,
Memory-R: PEB->IS_DEBUGGED, ✓ ✓

Memory-R: PEB->NTGLOBALFLAG,
NtClose(INVALID_HANDLE), ✓

NtGetContextThread(CONTEXT_DEBUG_REGISTERS), ✓

NtQueryInformationProcess(0x07), ✓

NtQueryInformationProcess(0x1e), ✓

NtQuerySystemInformation(0x23), ✓ ✓

NtSetInformationThread(0x11), ✓ ✓

Process32Next,
SetUnhandledExceptionFilter, ✓ ✓ ✓ ✓

SuspendThread,
BlockInput

42 5| Analysis of the results

function/packers kkrun upx exe32 enigvm yp them mew11 asprot petite aspack

CheckRemoteDebuggerPresent, ✓

FindWindow(classname: filemonclass, procmon, regmonclass), ✓

FindWindow(windowname: null, classname: shell_traywnd), ✓

GetWindowThreadProcessId, ✓ ✓

Instruction: 0xf1 - IceBP,
Instruction: INT 1,
Instruction: INT 3, ✓

Instruction: POPF/D - TRAP FLAG SET,
IsDebuggerPresent, ✓ ✓ ✓ ✓

JMP HEADERS technique, ✓

Memory-R: PEB->IS_DEBUGGED,
Memory-R: PEB->NTGLOBALFLAG, ✓

NtClose(INVALID_HANDLE),
NtGetContextThread(CONTEXT_DEBUG_REGISTERS), ✓

NtQueryInformationProcess(0x07), ✓ ✓

NtQueryInformationProcess(0x1e), ✓

NtQuerySystemInformation(0x23),
NtSetInformationThread(0x11), ✓

Process32Next, ✓

SetUnhandledExceptionFilter, ✓ ✓ ✓ ✓ ✓ ✓ ✓

SuspendThread, ✓

BlockInput ✓

Table 5.2: Anti debugging logs’ results.

The table 5.2 displays the logs obtained after running Brioscia and parsing the results; it
contains the anti debugging techniques discovered on the row level, as well as the packer
that implements the technique on the column level. As we can notice, there are multiple
hits in various techniques, and it demonstrates the first proof of the link between packers
and anti debugging. This table itself it’s relevant because we can focus on every packer
and evidence of which types of techniques are involved. This can be taken as the starting
point for other research on a single specific packer, as well as used for new unpacking
routines and programs involving packers. Starting from the table 5.2 , it was possible
to obtain statistics about packers and the usage of anti debugging, like the number of
techniques involved by each packer or the number of occurrences of the same function.

5| Analysis of the results 43

AntiDb function Total

SetUnhandledExceptionFilter 11
IsDebuggerPresent 7
GetWindowThreadProcessId() 6
NtQueryInformationProcess(0x07) 3
NtSetInformationThread(0x11) 3
NtQuerySystemInformation(0x23) 2
POPF/D - TRAP FLAG SET 2
PEB->IS_DEBUGGED 2
NtGetContextThread(DEBUG_REGISTERS) 2
NtQueryInformationProcess(0x1e) 2
CheckRemoteDebugger 2
FindWindow(file_regmon) 1
FindWindow(shell_traywnd) 1
IceBP 1
INT 1 1
INT 3 1
JMP HEADERS 1
PEB->NTGLOBALFLAG 1
NtClose() 1
Process32Next 1
SuspendThread 1
BlockInput 1

Table 5.3: Number of times a technique appears in the packers Data Set.

SetUnhanledExceptionFilter owns the top position in table 5.3, with eleven results.
The truth is that this technique has been classified as a False Positive, and the high
number of occurrences, when compared to the results of other procedures, was the initial
motivation for digging deeper and determining the cause (Section 6.1.1). We can see that
IsDebuggerPresent follows in position, which is an expected result for a solution that
is easy to create and effective against inexperienced reverse engineers. Every technique’s
number of occurrences reduces as the number position in the table decreases, but the vari-
ety increases, demonstrating that the packers applied numerous ways to avoid a debugger.
We could also add to the result of this technique, the results of CheckRemoteDebug-
gerPresent, because they are very similar, reaching a total number of 9 occurrences,
almost half of the packers studied.
A special mention goes to FindWindow, used in this case by Themida and Yoda’s
protector to check the presence of Procmon (Sysinternal debugging library) and the shell
process.

44 5| Analysis of the results

Alternate mpress2 pecompact obsidium enigpr rlp vmp telock pelock pcguard ✓

 + G# 0 0 0 2 3 0 7 2 4 4 6
 0 0 0 1 2 0 7 2 3 3 6

kkrunchy upx exe32 enigvm yp themida mew11 asprot petite aspack ✓

 + G# 0 0 1 0 8 9 1 2 0 0 5
 0 0 1 0 5 8 1 1 0 0 4

Table 5.4: Packers exploiting Anti Debugging techniques.
✓ indicates the number of packers exploiting at least one technique.

G#Uncertain techniques. Certain techniques.

The final table, 5.4, provides a summary based on the information in the first section. It
shows a first overview of the number of packers implementing at least one anti debugging
technique, in the case we consider both uncertain and working cases, or only the cases
that are 100% sure to be anti debugging.
The table demonstrates that the number of packers implementing a technique is at least
half of the total data set. The total number of packers varies between 10 and 11 depending
on whether you take an optimistic or pessimistic approach.
In this case, the packers which demonstrated to use the most number of techniques are
Themida, Yoda’s protector,virtual machine protector and Pc guard, but stand
alone cases like mew11 and telock will be demonstrated to use a less but effective number
of techniques (Chap 6).

5| Analysis of the results 45

5.2. Anti VM results

This section is dedicated to the results linked to Anti VM techniques, from the catego-
rization to the effective results parsed in the logs.

ANTIVM

GetVersion G#

GetAdaptersInfo G#

GetComputerNameA G#

GetComputerNameW G#

GetCursorPosition

GetDiskFreeSpace G#

GlobalMemoryStatusEx

CPUID(eax=0x00000001) #

IN(0x564d5868, 0x00005658),Instruction: IN(0x68584d56, 0x77875856)

Instruction: SLDT,Instruction: SLDT

NtQuerySystemInformation(PHYSICAL_MEMORY_INFO) #

NtQuerySystemInformation(Process:vbox)

NtQuerySystemInformation(SYSTEM_PROCESS_INFORMATION)

Table 5.5: Categorization of the Anti VM techniques.
#False Positive, G#Uncertain Technique, Certain technique.

The anti virtual machine techniques are more recognizable in case of false positives or
actual hits. The motivation is that the software tries to look for information linked to
emulated surroundings, this sort of activity is absolutely absent in the original code, and
there is no other justification for explaining the appearance of these methods. Some of
these are labeled as uncertain functions only because they are not born or used only for
anti VM purposes.

An example are GetComputerName, GetAdaptersInfo, GetDiskFreespace,
CPUID . These functions retrieve information on the host machine, but they can be
used to compare common virtual machine settings and names (Example the default
computer name, low static and dynamic memory etc..). As a result, we opted to classify
them as uncertain situations rather than real techniques, but their single appearance in
an example that prints the string "Hello world!" is odd.

On the other hand, there are techniques labeled for sure as anti debugging, like GetCur-
sorPosition which appears in packed programs that don’t need the information related
to the cursor position, or In(x,y) that is a well-known technique to check the signature

46 5| Analysis of the results

of Vmware or Virtual box.
The lone false positive in this section is NtQuerySystemInformation(PHYSICAL
MEMORYINFO), which is caused by the high number of occurrences and challenging
capability to discriminate between genuine case and false positive, as well as CPUID,
both discussed in Chapter 6.

5.2.1. Logs and statistics for Anti Debugging functions

A,N,T,I,V,M Alter mpress pecomp obsid enigpr rlp vmp telock pelock pcguard

GetVersion ✓

GetAdaptersInf ✓

GetComputerNameA ✓

GetComputerNameW ✓

GetCursorPosition ✓ ✓

GetDiskFreeSpace ✓

GlobalMemoryStatusEx ✓ ✓ ✓

Instruction: CPUID(eax=0x00000001) ✓ ✓ ✓ ✓ ✓ ✓

Instruction: IN(X,Y)
Instruction: SLDT,Instruction: SLDT
NtQuerySystemInformation(PHYSICAL_MEMORY_INFO) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NtQuerySystemInformation(Process:vbox)
NtQuerySystemInformation(SYSTEM_PROCESS_INFORMATION) ✓

ANTIVM kkrun upx exe32 enigvm yp them mew11 asprot petite aspack

GetVersion ✓ ✓ ✓

GetAdaptersInfo
GetComputerNameA
GetComputerNameW
GetCursorPosition
GetDiskFreeSpace ✓ ✓

GlobalMemoryStatusEx ✓ ✓

Instruction: CPUID(eax=0x00000001) ✓ ✓ ✓ ✓ ✓

Instruction: IN(X,Y) ✓

Instruction: SLDT,Instruction: SLDT
NtQuerySystemInformation(PHYSICAL_MEMORY_INFO) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NtQuerySystemInformation(Process:vbox) ✓

NtQuerySystemInformation(SYSTEM_PROCESS_INFORMATION) ✓

Table 5.6: Anti VM logs’ results.

The table 5.6 shows multiple hits,especially for packers like Themida, Enigma pro-
tector or PcGuard. On the other hand, it confirms that packers like upx,mpress
or Alternate have no hits or only false positives. This is consistent with the previous
section on anti-debugging, where the same packers failed to use any meaningful approach,
suggesting that they are primarily interested in using compression and obfuscation as a
means of evading dynamic analysis.

5| Analysis of the results 47

ANTIVM Total

NtQuerySystemInformation(PHYSICAL_MEMORY_INFO) 20
CPUID(eax=0x00000001) 11
GlobalMemoryStatusEx 5
GetVersion 4
GetDiskFreeSpace 3
NtQuerySystemInformation(Process:vbox) 2
GetCursorPosition 2
GetAdaptersInfo 1
GetComputerNameA 1
GetComputerNameW 1
IN(0x564d5868, 0x00005658),Instruction: IN(0x68584d56, 0x77875856) 1
Instruction: SLDT,Instruction: SLDT 1
NtQuerySystemInformation(SYSTEM_PROCESS_INFORMATION) 1

Table 5.7: Number of times a technique appears in the packers Data Set

The table 5.7 shows several techniques: there are techniques based on the emulated hard-
ware, techniques looking at the processes, and other techniques that looks for common
virtual machines configuration. Excluding the false positives, at the top of the list, there
is CPUID. Despite the fact that the huge number of instances practically qualifies it as
a false positive, its use as an anti-VM strategy remains an effective and quick check that
numerous packers can utilize. We decided to leave it out of the findings since it generates
too much noise, and we believe that if some packer is using anti-VM, it should imple-
ment it using other additional methods. Following, the most used ones are techniques
related to the emulated hardware (GlobalMemoryStatusEx and GetDiskFreeSpace)
, followed by common figuration of a virtual machine (GetVersion) and finally human
interactions functions (GetCursorPosition). Last but not least, there are single cases
that are specifically designed to avoid emulation at the end of the list.
NtQuerySystemInformation(vbox) deserves special attention since it is a clear evi-
dence of anti-VM and collects all of the packer’s attempts to locate Vbox processes, but
it will be discussed in Section 6.

Alternate mpress2 pecompact obsidium enigpr rlp vmp telock pelock pcguard ✓

 + G# 0 0 0 1 6 0 0 0 2 2 4
 0 0 0 1 2 0 0 0 2 1 4

48 5| Analysis of the results

kkrunchy upx exe32 enigvm yp themida mew11 asprot petite aspack ✓

 + G# 0 0 0 2 3 3 0 2 0 0 4
 0 0 0 0 2 2 0 1 0 0 3

Table 5.8: Packers exploiting Anti VM techniques.
✓ indicates the number of packers exploiting at least one technique.

G#Uncertain techniques. Certain techniques.

The table 5.8 describes the final results regarding anti VM, confirming that almost half
of the packers, certainly adopt some anti VM technique. Looking at the results, and
comparing them to the results in section 5.1, we can notice that the packers that involve a
secure anti VM technique, are included in the packers that use at least one anti-debugging
technique.This indicates that packers who choose to not only compress but also protect
the exe, are planned to shield from all the possible technologies of dynamic analysis.

5| Analysis of the results 49

5.3. File results

FILE

NtCreateFile(\\??\\global\\procmondebuglogger)

NtCreateFile(\\??\\ntice),

NtCreateFile(\\??\\sice)

NtCreateFile(\\??\\siwvidstart),

NtCreateFile(\\??\\spcommand)

NtCreateFile(\\??\\syser),

NtCreateFile(\\??\\syserboot)

NtCreateFile(\\??\\syserdbgmsg)

NtCreateFile(\\??\\global\\procmondebuglogger)

Table 5.9: Categorization of the File techniques.
#False Positive, G#Uncertain Technique, Certain technique.

In the file section, all of the categories are deemed to be working anti debugging ap-
proaches, as shown in the table 5.9. The motivation is that the libraries opened with
create files are all part of Sysinternals (a collection of utilities for managing registries,
processes, and dynamic data about programs), or they are all libraries commonly used by
debuggers. It’s also worth noting that some of the packers go straight for Procmon, the
most often used software for performing dynamic analysis at runtime.
The last piece of information worth to mention is that all the files are related to anti-
debugging functions rather than anti vm, giving additional proof of the concepts described
in section 5.1.

5.3.1. Logs and statistics for Files management

FILE Alter mpress pecomp obsid enigpr rlp vmp telock pelock pcguard

NtCreateFile(\\??\\global\\procmondebuglogger) ✓

NtCreateFile(\\??\\ntice) ✓ ✓

NtCreateFile(\\??\\sice) ✓

NtCreateFile(\\??\\siwvidstart) ✓

NtCreateFile(\\??\\spcommand) ✓

NtCreateFile(\\??\\syser) ✓

NtCreateFile(\\??\\syserboot) ✓

NtCreateFile(\\??\\syserdbgmsg) ✓

NtCreateFile(\\??\\global\\procmondebuglogger) ✓

50 5| Analysis of the results

ANTIVM kkrun upx exe32 enigvm yp them mew11 asprot petite aspack

NtCreateFile(\\??\\global\\procmondebuglogger)
NtCreateFile(\\??\\ntice) ✓

NtCreateFile(\\??\\sice) ✓

NtCreateFile(\\??\\siwvidstart)
NtCreateFile(\\??\\spcommand)
NtCreateFile(\\??\\syser)
NtCreateFile(\\??\\syserboot)
NtCreateFile(\\??\\syserdbgmsg)
NtCreateFile(\\??\\global\\procmondebuglogger)

Table 5.10: File logs’ results.

In this study case, there are fewer results compared to the previous sections. Studying
the results in the table 5.10, the only packers looking for Indicators in the files are
Obsidium, Pelock, Pcguard, and Yoda’s Protector. This discovery is consistent
with the prior ones, as they are all main characters in the preceding tables.
It must also be demonstrated how Pelock attempts to open the file descriptor for
practically every well-known debugger library, making him the most advanced in this
part.

FILE Total

NtCreateFile(\\??\\ntice), 3
NtCreateFile(\\??\\sice) 2
NtCreateFile(\\??\\siwvidstart), 1
NtCreateFile(\\??\\global\\procmondebuglogger) 1
NtCreateFile(\\??\\spcommand) 1
NtCreateFile(\\??\\syser), 1
NtCreateFile(\\??\\syserboot) 1
NtCreateFile(\\??\\syserdbgmsg) 1
NtCreateFile(\\??\\global\\procmondebuglogger) 1

Table 5.11: Number of times a technique appears in the packers Data Set.

Only Pelock looks for all the libraries used by a debugger, but the other packers only look
for one of them, as shown in Table 5.9. It’s possible that when the other packer reaches
one of the libraries specified, they stop this type of check, whereas Pelock enumerates
them all.

Alternate mpress2 pecompact obsidium enigpr rlp vmp telock pelock pcguard ✓

 + G# 0 0 0 2 0 0 0 0 6 2 3
 0 0 0 2 0 0 0 0 6 2 3

5| Analysis of the results 51

kkrunchy upx exe32 enigvm yp themida mew11 asprot petite aspack ✓

 + G# 0 0 0 0 2 0 0 0 0 0 1
 0 0 0 0 2 0 0 0 0 0 1

Table 5.12: Packers exploiting File techniques.
✓ indicates the number of packers exploiting at least one technique.

G#Uncertain techniques. Certain techniques.

At the end of this section, the results that imply checks in the File usage are 4 out of
20. It is a good result because obtaining this type of log from the original hello world file
is totally unexpected and provides decisive information for the additional feauture given
by packers (Table 5.11 and 5.12). We predicted fewer findings in this part because our
pool of methods does not include a big number of techniques utilizing File, and we parsed
just the logs that had a high possibility of being engaged with anti debugging out of the
massive number of files descriptors.

52 5| Analysis of the results

5.4. Registry results

REGISTRY

NtOpenKey/Ex(\\registry\machine\hardware\acpi\dsdt\vbox)

NtOpenKey/Ex(\\registry\??\currentversion\image file execution options\ProgramName.exe)

NtOpenKey/Ex(\\registry\machine\software\wine\wine\config)

NtOpenKey/Ex(\\registry\??\control\computername\activecomputername)

NtQueryValueKey(\registry\??\system, videobiosversion)

NtQueryValueKey(\\registry\??\centralprocessor\0, identifier) sz = intel64 family 6) G#

NtQueryValueKey(\registry\??\activecomputername, computername) sz = msedgewin10)

NtQueryValueKey(\\registry\??\system, systembiosversion) = vbox - 1)

NtQueryValueKey(\\registry\??\system, videobiosversion) = oracle vm virtualbox bios)

NtQueryValueKey(\\registry\??\0000, driverdesc) = virtualbox graphics adapter (wddm)

NtQueryValueKey(\\registry\??\disk\enum, 0) = ide\\diskvbox_harddisk)

Table 5.13: Categorization of the Registry techniques.
#False Positive, G#Uncertain Technique, Certain technique.

Values useful for anti-debugging and anti-VM can be found in the registries. The table
5.13 demonstrates that the majority of the checks are for detecting the presence of a
Virtual Box machine, but it also includes the ProgramName.exe function, which is one
of the techniques for looking for the NT debugging flag, and an inspection for the process
being debugged by wine. The control on the CPU version is the only category that is
designated as Uncertain (Intel 64). It is classified like this because programs can check its
value for compatibility issues, but it is also utilized by packers who run a more stringent
check on anti-VM, ensuring that it is with high probability used as anti-VM. Adding it as
certain or doubtful at the conclusion of the findings didn’t impact the final output, but
it’s meaningful to show how it might be simply considered as an anti-VM strategy.

5.4.1. Logs and statistics for Registries management

REGISTRY Alter mpress pecomp obsid enigpr rlp vmp telock pelock pcguard

NtOpenKey/Ex(\\registry\machine\hardware\acpi\dsdt\vbox)
NtOpenKey/Ex(\\registry\??\currentversion\image file execution options\ProgramName.exe)
NtOpenKey/Ex(\\registry\machine\software\wine\wine\config ✓

NtOpenKey/Ex(\\registry\??\control\computername\activecomputername) ✓ ✓ ✓

NtQueryValueKey(\registry\??\system, videobiosversion) ✓

NtQueryValueKey(\\registry\??\centralprocessor\0, identifier) sz = intel64 family 6) ✓

NtQueryValueKey(\registry\??\activecomputername, computername) sz = msedgewin10) ✓ ✓ ✓

NtQueryValueKey(\\registry\??\system, systembiosversion) = vbox - 1) ✓

NtQueryValueKey(\\registry\??\system, videobiosversion) = oracle vm virtualbox bios) ✓

NtQueryValueKey(\\registry\??\0000, driverdesc) = virtualbox graphics adapter (wddm)
NtQueryValueKey(\\registry\??\disk\enum, 0) = ide\\diskvbox_harddisk) ✓

5| Analysis of the results 53

REGISTRY kkrun upx exe32 enigvm yp them mew11 asprot petite aspack

NtOpenKey/Ex(\\registry\machine\hardware\acpi\dsdt\vbox) ✓

NtOpenKey/Ex(\\registry\??\currentversion\image file execution options\ProgramName.exe) ✓ ✓

NtOpenKey/Ex(\\registry\machine\software\wine\wine\config)
NtOpenKey/Ex(\\registry\??\control\computername\activecomputername) ✓ ✓

NtQueryValueKey(\registry\??\system, videobiosversion)
NtQueryValueKey(\\registry\??\centralprocessor\0, identifier) sz = intel64 family 6)
NtQueryValueKey(\registry\??\activecomputername, computername) sz = msedgewin10) ✓ ✓

NtQueryValueKey(\\registry\??\system, systembiosversion) = vbox - 1) ✓

NtQueryValueKey(\\registry\??\system, videobiosversion) = oracle vm virtualbox bios) ✓

NtQueryValueKey(\\registry\??\0000, driverdesc) = virtualbox graphics adapter (wddm) ✓

NtQueryValueKey(\\registry\??\disk\enum, 0) = ide\\diskvbox_harddisk)

Table 5.14: Registry logs’ results.

The packers who implemented the most number of anti VM checks in this section are
PCGuard and Themida. In particular, Themida looks for evidence that is linked to
Virtual box:
- It checks for the pc name to be msedgewin10, which is the default name for a windows
virtual machine.
- It checks for the videobiosversion, in particular, "Oracle VM virtual Box" which is the
value while using the Virtual Box virtual machine.
- It checks for the systembios version, which is "Vbox - 1" for a Virtual Box machine.
- It checks for the virtual box graphic adapter wddm.
PcGuard performs the same checks, with the addition of an inspection for the presence
of the windows debugger wine and the virtual box disk.

REGISTRY

NtOpenKey/Ex(\\registry\??\control\computername\activecomputername) 5
NtQueryValueKey(\registry\??\activecomputername, computername) sz = msedgewin105 2
NtOpenKey/Ex(\\registry\??\currentversion\image file execution options\ProgramName.exe) 2
NtOpenKey/Ex(\\registry\machine\hardware\acpi\dsdt\vbox) 1
NtOpenKey/Ex(\\registry\machine\software\wine\wine\config) 1
NtQueryValueKey(\registry\??\system, videobiosversion) 1
NtQueryValueKey(\\registry\??\centralprocessor\0, identifier) sz = intel64 family 6) 1
NtQueryValueKey(\\registry\??\system, systembiosversion) = vbox - 1) 1
NtQueryValueKey(\\registry\??\system, videobiosversion) = oracle vm virtualbox bios) 1
NtQueryValueKey(\\registry\??\0000, driverdesc) = virtualbox graphics adapter (wddm) 1
NtQueryValueKey(\\registry\??\disk\enum, 0) = ide\\diskvbox_harddisk) 1

Table 5.15: Number of times a technique appears in the packers Data Set.

The most used technique in registries control is the check performed for the active com-
puter name. This registry as a result can easily spot the presence of VMbox and VMware
or the default settings of an emulated environment. The second place is occupied by
the NT flag discovery in the Image File Execution directory, and following there are all

54 5| Analysis of the results

the virtual box environment checks. The table 5.15 doesn’t show any particular pattern,
despite the large use of the machine computer name compared to the other remaining
findings.

Alternate mpress2 pecompact obsidium enigpr rlp vmp telock pelock pcguard ✓

 + G# 0 0 0 0 2 0 0 0 2 8 3
 0 0 0 0 2 0 0 0 2 7 3

kkrunchy upx exe32 enigvm yp themida mew11 asprot petite aspack ✓

 + G# 0 0 0 1 0 7 2 0 0 0 3
 0 0 0 1 0 7 2 0 0 0 3

Table 5.16: Packers exploiting Registry techniques.
✓ indicates the number of packers exploiting at least one technique.

G#Uncertain techniques. Certain techniques.

5| Analysis of the results 55

5.5. Stalling and Timing results

STALLING

NtDelayExecution()

SetTimer()

Sleep/SleepEx()

waitForSingleObject/Ex()

TIMING
GetLocalTime G#

GetTickCount G#

GetTickCount64 #

Instruction: RDTSC/D

QueryPerformanceCounter #

timeGetTime G#

Table 5.17: Packers exploiting Registry techniques.
#False Positive, G#Uncertain Technique, Certain technique.

In this section, it will be treated Stalling and Timing. They both are related to the time
spent on the execution of a program and they both include a small number of functions,
making it possible to discuss them together.
In this category, the stalling part doesn’t show any uncertain technique. All the functions
used are repeated several times into the logs of the packers and are not stand-alone func-
tions. Such a behavior perfectly fits the final scope of a stalling process, slowing down
the dynamic analysis and avoiding sandboxes that are planned to have a limited amount
of time for the execution.
On the other hand, the Timing sections show completely the opposite behavior. All the
functions are uncertain or false positives because are commonly used during the normal
execution of a program. The uncertain functions are not labeled as False Positives be-
cause they perfectly match the results packers that already used multiple anti-VM and
anti-debugging techniques, making it reasonable to think that they are also involved in
measuring the timing of functions for anti-debugging purposes.

56 5| Analysis of the results

5.5.1. Logs and statistics for Registries management

STALLING Alter mpress pecomp obsid enigpr rlp vmp telock pelock pcguard

NtDelayExecution() ✓ ✓

SetTimer() ✓ ✓ ✓

Sleep/SleepEx() ✓

waitForSingleObject/Ex() ✓ ✓ ✓

TIMING
GetLocalTime ✓ ✓

GetTickCount ✓ ✓ ✓ ✓

GetTickCount64 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Instruction: RDTSC/D ✓ ✓ ✓

QueryPerformanceCounter ✓ ✓ ✓ ✓ ✓ ✓

timeGetTime

STALLING kkrun upx exe32 enigvm yp them mew11 asprot petite aspack

NtDelayExecution() ✓

SetTimer() ✓ ✓

Sleep/SleepEx() ✓

waitForSingleObject/Ex() ✓ ✓ ✓

TIMING
GetLocalTime ✓

GetTickCount ✓ ✓ ✓ ✓

GetTickCount64 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Instruction: RDTSC/D ✓

QueryPerformanceCounter ✓ ✓ ✓ ✓ ✓ ✓

timeGetTime ✓

Table 5.18: Stalling/Timing logs results.

The stalling section of table 5.18 reveals that two packers, Enigma protector and
Themida, make extensive use of stalling tactics.
In the timing section , removed the noise produced by false positives, we have a similar
results, where the same packers that adopt stalling, adopted also a timing procedure.

5| Analysis of the results 57

STALLING Total

waitForSingleObject/Ex() 6
SetTimer() 5
NtDelayExecution() 3

Sleep/SleepEx() 2

TIMING Total
GetTickCount64 20
QueryPerformanceCounter 12
GetTickCount 8
Instruction: RDTSC/D 4
GetLocalTime 3
timeGetTime 1

Table 5.19: Parameters needed for things that are not needed anymore themselves.

The last table, 5.20, demonstrates how the number of packers involved in timing and
delaying is nine out of twenty, whereas excluding uncertain techniques we obtain a result
of eight out of twenty. Both of the results are close to the half of packers, a result which
is aligned with the other sections.

Alternate mpress2 pecompact obsidium enigpr rlp vmp telock pelock pcguard ✓

 + G# 0 0 0 2 6 0 1 0 4 5 5
 0 0 0 1 4 0 1 0 2 4 5

kkrunchy upx exe32 enigvm yp themida mew11 asprot petite aspack ✓

 + G# 0 0 0 2 1 7 0 4 0 0 4
 0 0 0 1 0 5 0 2 0 0 3

Table 5.20: Packers exploiting Stalling\Timing techniques.
✓ indicates the number of packers exploiting at least one technique.

G#Uncertain techniques. Certain techniques.

58 5| Analysis of the results

5.6. Final results

The next Tables (5.21 and 5.22) summarize all the findings of the previous section.
The scope is to give an estimation of how many packers are implementing at least an
anti-debugging or anti VM technique.
The first table contains all the results obtained by selecting both certain and uncertain
techniques, while the second table contains only the certain technique. The scope is to
demonstrate that packers are using anti dynamic analysis methods, but also that despite
the categorization, the results are consistent.
Finding radically different results in the two examples would indicate that the uncertain
techniques were most likely false positives or that the categorization was incorrect.

Instead, if identical findings are obtained, it will be proved that the uncertain
techniques were most likely utilized for anti-debugging objectives, as they are used by
packers who are already employing more certain and reliable techniques. In our example,
we got the best result we could, proving that 12 out of 20 packers are performing
anti-analysis, regardless of whether we add or remove functions that may be utilized for
other purposes. The final table proves the usage of anti-debugging by more than half of
the data set, demonstrating that packers are commonly adding anti-debugging beyond
compression and obfuscation. We also demonstrated that all the uncertain techniques
are probably used for anti-analysis purposes, giving more information about which and
how many functions are used by the packers in our data set.

5| Analysis of the results 59

Packers implementing Anti Dynamic Analysis + G#

Alternate mpress2 pecompact obsidium enigpr rlp vmp telock pelock pcguard

ANTIDEBUG 0 0 0 2 3 0 7 2 4 4
ANTIVM 0 0 0 1 6 0 0 0 2 2
FILE 0 0 0 2 0 0 0 0 6 2
REGISTRY 0 0 0 0 2 0 0 0 2 8
STALL/TIME 0 0 0 2 6 0 1 0 4 5
RESULT ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓

kkrunchy upx exe32 enigvm yp themida mew11 asprot petite aspack

ANTIDEBUG 0 0 1 0 8 9 1 2 0 0
ANTIVM 0 0 0 2 3 3 0 2 0 0
FILE 0 0 0 0 2 0 0 0 0 0
REGISTRY 0 0 0 1 0 7 2 0 0 0
STALL/TIME 0 0 0 2 1 7 0 4 0 0
RESULT ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Table 5.21: This table collects for each packer the number of certain and uncertain techniques divided
by category, and output if they implements at least one technique.
✓ Indicates if the packer exploits at least one technique, ✗ if not.

Packers implementing Anti Dynamic Analysis

Alternate mpress2 pecompact obsidium enigpr rlp vmp telock pelock pcguard

ANTIDEBUG 0 0 0 1 2 0 7 2 3 3
ANTIVM 0 0 0 1 2 0 0 0 2 1
FILE 0 0 0 2 0 0 0 0 6 2
REGISTRY 0 0 0 0 2 0 0 0 2 7
STALL/TIME 0 0 0 1 4 0 1 0 2 4
RESULT ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓

kkrunchy upx exe32 enigvm yp themida mew11 asprot petite aspack

ANTIDEBUG 0 0 1 0 5 8 1 1 0 0
ANTIVM 0 0 0 0 2 2 0 1 0 0
FILE 0 0 0 0 2 0 0 0 0 0
REGISTRY 0 0 0 1 0 7 2 0 0 0
STALL/TIME 0 0 0 1 0 5 0 2 0 0
RESULT ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Table 5.22: This table collects for each packer the number of certain techniques divided by category,
and output if they implements at least one technique.
✓ Indicates if the packer exploits at least one technique, ✗ if not.

✓ Total packers ≡ 12 ✗ Total packers ≡ 8

61

6| False Positives and relevant

findings
The reasons and research that led to the classification of some functions as False positives
will be described in this chapter. Because admitting strategies that are not certain would
introduce noise and unbalance the final number of packers involving anti-debugging, this
section was crucial for the output in the end results.
The other goal of this chapter, in terms of false positives, is to examine some specific
and advanced strategies that were discovered during the experimental phase. They are
functions that, despite being listed in the end logs, need more room and have a prominent
presence in the involving packer’s final logs.

6.1. False Positives

6.1.1. SetUnhandledExceptionFilter()

The first function analyzed and considered as a False Positive is SetUnhandledExcep-
tionFilter. A first look into the logs showed that 11 packers out of 20 involved this type
of technique. It may appear to produce a result that is consistent with the research’s
ultimate outcome, but the reality is that it was employed by packers who failed to
produce any results throughout the study cases and who appeared to have little interest
in anti-debugging.
Going back to the original logs to determine if the function was already utilized by the
hello world example was the first index that helped us prove our point. Looking at the
logs it can be seen that this type of function is already added at compiling time by the
GNU and Visual studio compiler:

62 6| False Positives and relevant findings

(*:0:kernel32.dll:setunhandledexceptionfilter)->(*:1:main:)->
(*:1:main:)->(*:0:ucrtbased.dll:initterm)

(*:0:kernelbase.dll:setunhandledexceptionfilter)->
(*:1:main:)->(*:1:main:)->(*:0:ucrtbased.dll:initterm)

(*:0:kernel32.dll:setunhandledexceptionfilter)->(*:1:main:unnamedimageentrypoint)->
(*:1:main:unnamedimageentrypoint)->(*:0:ucrtbased.dll:initterm)

(*:0:kernelbase.dll:setunhandledexceptionfilter)->(*:1:main:unnamedimageentrypoint)->
(*:1:main:unnamedimageentrypoint)->(*:0:ucrtbased.dll:initterm)

Listing 6.1: Call tree produced by the SetUnhandledExceptionFilter functions in the
original unpacked programs. The logs are printed using different colors to highlight the
logs that evidenced similar call trees. .

The other results are extremely similar to the function called in Fig 6.2, and they are not
eliminated by the parser because the call tree is shortened or the section name changes,
which is another argument that may prove the function’s origin.
The second factor that influenced the selection was that the technique relies on throwing
an unhandled exception, and none of the packers had an unhandled exception like division
by zero or others, but just conventional exceptions that were already connected to a default
handler.
Being quite all the logs produced similar, the third and last point to prove the thesis has
been analyzing UPX which is a packer that didn’t use any other anti-debugging function
and trying to find it is possible to unpack it through a debugger. The reason behind the
choice of the packer is that UPX it’s easy to unpack and , being all the logs quite the
same, we could extend the result to the other packers.
As expected, the result showed that it was possible to reach the original code through
IDA pro after being unpacked, and reading the "Hello World!" string loaded in memory,
as can be shown in figure 6.1. This demonstrates that the packed file could be debugged
until reaching the original code and reading the test String.

6| False Positives and relevant findings 63

Figure 6.1: Hello World string stored in memory, after the unpacking procedure is ended.
.

6.1.2. NtQuerySystemInformation(PHYSICALMEMORYINFO)

The following function was added to the False Positives for a variety of reasons, the first
of which is that it was implemented by all packers. This leads to the conclusion that it
might be used for other purposes other than anti-debugging.
The fact that this function is the endpoint of a large pool of other functions linked to
normal execution supports this hypothesis. To demonstrate it, we examined the logs for
this type of call and discovered roughly a hundred calls involving numerous and distinct
methods and call trees.
As a result of this, it was decided that the rule was too naive to be used as an
anti-debugging signal.

->(*:0:combase.dll:coincrementmtausage)->(*:0:combase.dll:coincrementmtausage)
->(*:0:coremessaging.dll:coreuiconfigureuserintegration)->(*:0:coremessaging.dll:msgrelease)
->(*:0:coremessaging.dll:coreuiconfigureuserintegration)->(*:0:coremessaging.dll:userintegration)
->(*:0:coremessaging.dll:msgrelease)->(*:0:coremessaging.dll:coreuifailfastoom)
->(*:0:rpcrt4.dll:rpcstringfreew)->(*:0:rpcrt4.dll:rpcstringfreew)

Listing 6.2: Small part of the large number of functions that make the use of Nt-
QuerySystemInformation(PHYSICALMEMORYINFO) .

64 6| False Positives and relevant findings

6.1.3. CPUID

The CPUID technique is effective and simple to verify; all that is required is to call the
assembly function and check one of the bits of the results. This made deciding whether
or not to include it in the False Positive set extremely difficult. A trend discovered in the
logs proved to be the deciding factor. Looking at them, it’s clear that CPUID followed
three distinct patterns in the brioscia output:

1) (*:1:main:unnamedimageentrypoint)-> (*:1:main:unnamedimageentrypoint)-
> (*:1:main:unnamedimageentrypoint)->(*:1:main:unnamedimageentrypoint)

This first pattern is implemented also by the original program Hello World.exe. It
is characterized by a sequence of 4 identical calls building the tree of calls.

2) (*:1:main:.mpress1)-> (*:1:main:.mpress1)->
(*:1:main:.mpress1) -> (*:1:main:.mpress1)

This second one is the pattern found in almost all of the other packers. We can
see that it is quite identical to the previous pattern adopted in the original code. The
difference is that it inserted the name of the section where is done unpacking instead of
the function itself. This could mostly like mean that they are the same functions of the
original code but printed in different ways in the output.

3) (*:1:main:)

The last pattern found in the logs is just a call in the main function. This is
probably where the false positive is a real anti-VM function. The reason is that for app
laying this technique is enough calling a line of assembly and it is coherent with this
pattern. It is also implemented by packers which are considered to use for sure anti
dynamic analysis techniques, confuting more the thesis. Despite these instances, and
because of the significant number of False Positives, we opted to exclude these findings
as they were irrelevant to the research’s ultimate results.

6| False Positives and relevant findings 65

6.1.4. Other False Positives

The remaining false positives as the one inserted in Timing, are labeled like this because
they are uncertain techniques used during common runs of an everyday program and
there were no countermeasures to check if they were employed or not as anti-analysis
tools. Instead of adding useless noise to the results of such weak techniques, we preferred
to exclude them and trust only the more meaning full ones.

66 6| False Positives and relevant findings

6.2. Highlighted findings

6.2.1. Yoda’s Protector

This section is dedicated to the packer Yoda’s prtector since it necessitated a more
thorough investigation to determine the procedures involved. The issue with this packer
was that it stopped working right at the start of the program, making it difficult to
investigate the remaining logs. The issue was caused by an anti-debugging check done by
the packer itself, which tested if the process’s parent was "Explorer.exe" at the start of
execution. If not, it used the SuspendThread() method to suspend the application.
Enumerating all active processes and gathering the associated names was how it
discovered the PID of Explorer.exe and the PID of the parent process. Pin.exe was the
parent process in our situation since it gathered logs while performing instrumentation,
as seen in Fig 6.3.

->Process32Next(notepad.exe,10108)
->Process32Next(SearchFilterHost.exe,6416)
->Process32Next(pin.exe,6388)
->Process32Next(pin.exe,1608)
->Process32Next(hello_yp.exe,1168)
->Process32Next(svchost.exe,10084)
->Process32Next(svchost.exe,8860)
->Process32Next(SearchProtocolHost.exe,11536)
->Process32Next(SearchProtocolHost.exe,11536)
->CreateToolHelp32Snapshot(-1018964676, 4515593)
->CreateToolHelp32Snapshot(4, 1608)
->OpenProcess(1608)
->Program launched an exception with code 0xc0000005

Listing 6.3: Logs evidencing how yoda’s protector is enumerating processes to find the
descriptor of the current father’s process.

The image depicts how the program sifted through the list of processes until it came
across "pin.exe" and "hello yp.exe", which are the pin and packed programs,
respectively. At this point, the list is stopped, the pin’s PID is taken, and the process is
opened to obtain further information. It raises an exception and exits the program after
this call.

6| False Positives and relevant findings 67

After writing a routine that stopped the list of the processes at the beginning instead of
being enumerated, the program could continue the execution, reach the end, and output
new interesting results like the function IsDebuggerPresent() and BlockInput().

6.2.2. Mew11

Mew 11 gets special notice since it is the only one that uses a one-of-a-kind method that
necessitated the creation of a custom rule. Because the headers section is a Read-only
region, the solution we’re talking about is placing code inside it to avoid writing new
code in the solution. Analyzing every jump instruction and examining the area it was
jumping in might reveal this strategy.
The rule which spotted this technique was also applied to all the other packers, but it
didn’t reveal any other positive cases. This means that it could be a technique created
and implemented only by this packer.

Figure 6.2: Picture taken in IDA pro, it represents the start function pointing to the
headers section. This is an additional proof of the correctness of the implemented rule.

68 6| False Positives and relevant findings

6.2.3. Telock

Telock has been included in this list because it displayed unusual behavior when
examining logs. The discovery in question was an unusually high number of calls to the
POPF/D - TRAP FLAG instruction., as it can be seen in Fig 6.4.

Instruction: POPF/D - TRAP FLAG SET
Instruction: POPF/D - TRAP FLAG SET
Instruction: POPF/D - TRAP FLAG SET
Instruction: POPF/D - TRAP FLAG SET
Instruction: POPF/D - TRAP FLAG SET
Instruction: POPF/D - TRAP FLAG SET
Instruction: POPF/D - TRAP FLAG SET
Instruction: POPF/D - TRAP FLAG SET

Listing 6.4: Part of telock’s logs demonstrating that the packer is using interception for
counting the instructions.

This evidence was difficult to explain using the instrumentation hooks and other logs,
but it may be achievable owing to the study [21], which used dynamic analysis to discover
the same approach. This allowed us to not only confirm the findings of the previous
article but also get a deeper understanding of how these functions are employed. The
trap instruction, as mentioned in the article, is used to count the number of instructions
utilized in the program and to verify if there are any extra lines of code. This approach,
which is more closely connected to anti-dbi techniques than anti-debugging, is also
effective against instrumentation.

6.2.4. NtQuerySystemInformation()

The function NtQuerySystemInformation() deserves a mention in this section be-
cause it has been used for clearly look into processes and understand if the environment
is emulated or it’s being performed dynamic analysis. In Fig. 6.5, 6.6, 6.7 can be seen
how Themida,Yoda’s protector and Pelock are looking for virtual box instances:

6| False Positives and relevant findings 69

->NtQuerySystemInformation(PROCESS_INFORMATION) -> VirtualBox.exe
->NtQuerySystemInformation(PROCESS_INFORMATION) -> VBoxSVC.exe
->NtQuerySystemInformation(PROCESS_INFORMATION) -> VBoxSDS.exe
->NtQuerySystemInformation(PROCESS_INFORMATION) -> VirtualBoxVM.exe
->NtQuerySystemInformation(PROCESS_INFORMATION) -> VirtualBoxVM.exe
->NtQuerySystemInformation(PROCESS_INFORMATION) -> VirtualBoxVM.exe

Listing 6.5: Part of Themida’s logs demonstrating that the packer is looking for Virtual
box.

->NtQuerySystemInformation(PROCESS_INFORMATION) -> VBoxService.exe
->NtQuerySystemInformation(PROCESS_INFORMATION) -> VBoxTray.exe
->NtQuerySystemInformation(SYSTEM_PROCESS_INFORMATION)

Listing 6.6: Part of Yoda’s protector logs demonstrating that the packer is looking for
Virtual box.

->NtQuerySystemInformation(PROCESS_INFORMATION) -> VirtualBox.exe
->NtQuerySystemInformation(PROCESS_INFORMATION) -> VBoxSVC.exe
->NtQuerySystemInformation(PROCESS_INFORMATION) -> VBoxSDS.exe
->NtQuerySystemInformation(PROCESS_INFORMATION) -> VirtualBoxVM.exe
->NtQuerySystemInformation(PROCESS_INFORMATION) -> VirtualBoxVM.exe
->NtQuerySystemInformation(PROCESS_INFORMATION) -> VirtualBoxVM.exe
->NtQuerySystemInformation(SYSTEM_PROCESS_INFORMATION)

Listing 6.7: Part of pelock logs demonstrating that the packer is looking for Virtual
box.

As it can be seen in the tables 6.6 6.7 6.5, these 3 packers are looking for the presence
of virtual box by enumerating and comparing processes utilized by the virtual box

70 6| False Positives and relevant findings

instances. This is clear evidence of anti-VM behavior, and it’s been discovered in three
separate packers that run comparable checks. For sake of better understanding, we tried
to run other processes while Themida was running, discovering that it not only looks
for virtual machines but also other processes like Procmon (Fig 6.8).

->NtQuerySystemInformation(PROCESS_INFORMATION) -> Procmon.exe
->NtQuerySystemInformation(PROCESS_INFORMATION) -> Procmon64.exe
->NtQuerySystemInformation(SYSTEM_PROCESS_INFORMATION)

Listing 6.8: Pelock logs evidencing an attempt to find procmon in the processes. .

It may be possible that Themida has a list of interesting processes to look for while
searching debugging or virtual machines instances. It could be interesting to run the
experiment with different debuggee processes and find out the whole list of the process
they are looking for.

6.2.5. NtqueryAttributesFile

One of the most recent discoveries was that Pelock searches the disk for the files VBox-
OGL.dll and VBoxHook.dll, attempting to access multiple paths. They are common
Dynamic Link Libraries used by Virtual Box, and it’s fascinating to know that they’re
utilized by Virtual Box. Pelock implements a list of probable paths where they might be
found and enumerates them using the NtqueryAttributesFile function. The next figure
(Fig. 6.9) is reported a little sample of the giant pool of paths tested by the program.

6| False Positives and relevant findings 71

->NtQueryAttributesFile(?\C:\Program Files\dotnet\VBoxHook.dll)
->NtQueryAttributesFile(\??\C:\Program Files\dotnet\VBoxHook.dll)
->NtQueryAttributesFile(\??\C:\Users\??WindowsApps\VBoxHook.dll)
->NtQueryAttributesFile(\??\C:\Users\??WindowsApps\VBoxHook.dll)
->NtQueryAttributesFile(\??\C:\Users\cocci\.dotnet\tools\VBoxHook.dll)
->NtQueryAttributesFile(\??\C:\Users\cocci\.dotnet\tools\VBoxHook.dll)
->NtQueryAttributesFile(\??\C:\Users\cocci\Downloads\VBoxOGL.dll)
->NtQueryAttributesFile(\??\C:\Users\cocci\Downloads\VBoxOGL.dll)
->NtQueryAttributesFile(\??\C:\Windows\SYSTEM32\VBoxOGL.dll)

Listing 6.9: Pelock’s logs looking for VBox dlls .

6.2.6. In instruction

This case must be mentioned because it is for sure recognized as an anti-VM technique.
The only packer applying an instance of this type of technique is Themida. The VMware
virtual machine provides an I/O port communication channel that allows data to be
exchanged between the host and guest operating systems. Analysts can get information
about I/O ports by using the IN instruction. Furthermore, if analysts perform the
IN instruction by entering the value 0x5658 (i.e., VX) into the DX register (i.e., the
communication channel), the value comprising the virtual machine’s information is
placed in the EAX or EBX register. As a result, the IN instruction may be used to
detect the virtual machine.

The value checked by themida are Instruction: IN(0x564d5868, 0x00005658)
and Instruction: IN(0x68584d56, 0x77875856). Both of the instructions are
looking for VMware magic numbers,in particular the endian and endianess values
0x564d5868 and 0x68584d5.

6.2.7. Stalling routines

Packers such as Enigma Protector, Pelock, PCGuard, Enigma Virtual Machine,
Themida, and AsProtect were shown to have a delaying technique in the logs. The
reason behind this is that they didn’t utilize the stalling routines just once, for waiting
for a single event or for something else in the code. Waiting routines, such as Themida,
looked to have entirely contaminated the logs in the samples, with over 19 thousand
calls to NtDelayExecution() in a single run. The intriguing thing is that some of these

72 6| False Positives and relevant findings

packers, such as themida, increased the stalling time while executing, whilst others, such
as Enigma Protector, kept the same stalling time throughout the execution by repeatedly
using the call Sleep(4000) and Sleep(300).

73

7| Conclusion and future works

7.0.1. Conclusion

We offered three questions at the start of our study, and now we can evaluate if we were
successful in answering them.
RQ1. Are anti-debugging tactics being used by packers?
We found that 12 of the 20 packers utilized at least one anti-dynamic analysis approach.
This is a gratifying finding that proves that anti-debugging occurs in more than half of a
randomly chosen data set of a packer. We should point out that packers are designed for
obfuscation and compression, not anti-debugging. Finding such a big number of results
might indicate that they are now also used for security purposes.
RQ2. Is there a correlation between a set of anti-debugging methods and packers?
During our research, we saw some trends in the categories, but more importantly, we dis-
covered that the most often used anti-debugging strategies (such as IsDebuggerPresent)
are basic and old. On the other side, we may show that there is no particular pattern,
but that they strive to use a wide range of techniques that are either well-known or
unique to each packer.
RQ3. In our dataset of packers, which techniques are exploited?
We added a chapter that broke down all of the techniques used by each packer, classifying
them and comparing the results among the packers. The findings can be utilized as
a foundation for further research as well as more confirmation of packer defenses and
protection.
We provided a pool of newly discovered techniques that both verified previous results
while also introducing new strategies for each packer.

74 7| Conclusion and future works

7.0.2. Future works

We proposed different researches that could be linked using the same environment and
approach. The first idea is to perform the same research using packed malware instead
of files obfuscated with public packers. The motivation is that viruses usually implement
a private and modified version of the public packers and could be interesting to compare
how far are from our results or if we can recognize the original packers looking at the
logs.

Future research can be used to identify new approaches for the research’s most in-
teresting example. Tools like Themida, Enigma, and Obsidium are quite complex and
may conceal further techniques and routines. It may be used in conjunction with In-
strumentation and Debugging to understand all parts of the program and how it operates.

Another possibility is to look at the packers themselves, rather than the packed
file. During our research, we used our instrumentation tool to monitor the packers as
they compressed the file. We discovered useful information and outcomes throughout our
investigation. The study of packer software is motivated by the possibility that it will
aid in the troubleshooting of a packer. We can exactly know which procedures are done
during compression and develop better unpackers if we can debug a packer.

75

Bibliography
[1]

[2] D. Al-Anezi. Generic packing detection using several complexity analysis for accu-
rate malware detection. International Journal of Advanced Computer Science and
Applications, 5, 01 2014. doi: 10.14569/IJACSA.2014.050102.

[3] M. Christodorescu and S. Jha. Static analysis of executables to detect malicious
patterns. 12, 03 2004.

[4] Cisco. Cisco annual internet report. Technical report, 2021. URL
https://www.cisco.com/c/en/us/solutions/executive-perspectives/

annual-internet-report/index.html.

[5] K. Coogan, S. Debray, T. Kaochar, and G. Townsend. Automatic static unpacking of
malware binaries. In 2009 16th Working Conference on Reverse Engineering, pages
167–176, 2009. doi: 10.1109/WCRE.2009.24.

[6] P. Ferrie. The "ultimate" anti-debugging reference. 04 2011.

[7] hex rays. Ida freeware. URL https://hex-rays.com/ida-free/.

[8] F. M. M. L. S. O. D. B. G. V. Hojjat Aghakhani, Fabio Gritti, S. B. . S. d. T. . . I. .
f. Christopher Kruegel University of California, and ¶davide.balzarotti@eurecom.fr.
When malware is packin’ heat; limits of machine learning classifiers based on static
analysis features. 02 2020. doi: 10.14722/ndss.2020.24310.

[9] M.-J. C. Jong-Wouk Kim1, Jiwon Bang2. Defeating anti-debugging techniques for
malware analysis using a debugger. 11 2020. ISSN 2415-6698.

[10] S. KEMP. Digital global overview report, 2021. URL https://datareportal.com/

reports/digital-2021-global-overview-report.

[11] T. linux programming interface. dnspy, . URL https://www.intel.com/content/

dam/develop/external/us/en/documents/cgo2013-256675.pdf.

[12] T. linux programming interface. dnspy, . URL https://github.com/dnSpy/dnSpy.

https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-internet-report/index.html
https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-internet-report/index.html
https://hex-rays.com/ida-free/
https://datareportal.com/reports/digital-2021-global-overview-report
https://datareportal.com/reports/digital-2021-global-overview-report
https://www.intel.com/content/dam/develop/external/us/en/documents/cgo2013-256675.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/cgo2013-256675.pdf
https://github.com/dnSpy/dnSpy

76 7| BIBLIOGRAPHY

[13] T. linux programming interface. objdump(1) — linux manual page, 02 2021. URL
https://man7.org/linux/man-pages/man1/objdump.1.html.

[14] C. P. S. T. LTD. Anti debugging tricks, 2020. URL https://anti-debug.

checkpoint.com/.

[15] L. Martignoni, M. Christodorescu, and S. Jha. Omniunpack: Fast, generic, and safe
unpacking of malware. pages 431 – 441, 01 2008. ISBN 978-0-7695-3060-4. doi:
10.1109/ACSAC.2007.15.

[16] Microsoft. Sysinternals. URL https://docs.microsoft.com/en-us/

sysinternals/.

[17] S. Morgan. Ventures, Cyber Defense Magazine, 2019. An optional note.

[18] N. N. M. P. S. B. U. Najmeh Miramirkhani, Mahathi Priya Appini. Spotless sand-
boxes: Evading malware analysis systems using wear-and-tear artifacts. 12 2017. doi:
DOI10.1109/SP.2017.42.

[19] T. Naudi. Acunetix web application vulnerability report. Techni-
cal report, 2019. URL https://www.acunetix.com/blog/articles/

acunetix-web-application-vulnerability-report-2019.

[20] M. P. M. C. A. C. S. Z. Nicola, Galloro. A systematical and longitudinal study of
evasive behaviors in windows malware. 12 2021. doi: https://doi.org/10.1016/j.cose.
2021.102550.

[21] M. C. Peter Ferrie, Senior Anti-Virus Researcher. Anti-unpacker tricks. 04 2011.

[22] M. Polino, A. Continella, S. Mariani, S. D’Alessio, L. Fontana, F. Gritti, and
S. Zanero. Measuring and defeating anti-instrumentation-equipped malware. pages
73–96, 07 2017. ISBN 978-3-319-60875-4. doi: 10.1007/978-3-319-60876-1_4.

[23] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas. Sok: Deep packer
inspection: A longitudinal study of the complexity of run-time packers. In 2015 IEEE
Symposium on Security and Privacy, pages 659–673, 2015. doi: 10.1109/SP.2015.46.

[24] wiki. Peid wiki page. URL https://www.aldeid.com/wiki/PEiD.

[25] J. H. S. YOUNG BI LEE and I. DONG HOON LEE. Bypassing anti-analysis of
commercial protector methods using dbi tools. 04 2020. doi: 10.1109/ACCESS.2020.
3048848.

https://man7.org/linux/man-pages/man1/objdump.1.html
https://anti-debug.checkpoint.com/
https://anti-debug.checkpoint.com/
https://docs.microsoft.com/en-us/sysinternals/
https://docs.microsoft.com/en-us/sysinternals/
https://www.acunetix.com/blog/articles/acunetix-web-application-vulnerability-report-2019
https://www.acunetix.com/blog/articles/acunetix-web-application-vulnerability-report-2019
https://www.aldeid.com/wiki/PEiD

77

List of Figures

2.1 Static Analysis . 9
2.2 OllyDbg GUI . 14
2.3 Streamflow forecast ensemble on April 1st 2000 16

4.1 Scheme of the entire structure that compose the framework MBare. 28
4.2 Piece of code where it can be seen the hooks configured for the new functions. 33
4.3 Hooks for CreateToolHelp32Snapshot() and Process32Next(). 35
4.4 Implementation of the jmp headers technique inside Pin. 36
4.5 Blacklist . 36

6.1 Streamflow forecast ensemble on April 1st 2000 63
6.2 Streamflow forecast ensemble on April 1st 2000 67

79

List of Tables

4.1 Table containg the blacklist used during the parsing procedure. In green
there are the new added entries. 30

5.1 Categorization of the Anti Debugging techniques. #False Positive, G#Uncertain

Technique, Certain technique. 40
5.2 Anti debugging logs’ results. 42
5.3 Number of times a technique appears in the packers Data Set. 43
5.4 Packers exploiting Anti Debugging techniques. ✓ indicates the number of packers ex-

ploiting at least one technique. G#Uncertain techniques. Certain techniques. 44
5.5 Categorization of the Anti VM techniques. #False Positive, G#Uncertain

Technique, Certain technique. 45
5.6 Anti VM logs’ results. 46
5.7 Number of times a technique appears in the packers Data Set 47
5.8 Packers exploiting Anti VM techniques. ✓ indicates the number of packers exploiting

at least one technique. G#Uncertain techniques. Certain techniques. 48
5.9 Categorization of the File techniques. #False Positive, G#Uncertain Technique, Certain

technique. 49
5.10 File logs’ results. 50
5.11 Number of times a technique appears in the packers Data Set. 50
5.12 Packers exploiting File techniques. ✓ indicates the number of packers exploiting at least

one technique. G#Uncertain techniques. Certain techniques. 51
5.13 Categorization of the Registry techniques. #False Positive, G#Uncertain

Technique, Certain technique. 52
5.14 Registry logs’ results. 53
5.15 Number of times a technique appears in the packers Data Set. 53
5.16 Packers exploiting Registry techniques. ✓ indicates the number of packers exploiting at

least one technique. G#Uncertain techniques. Certain techniques. 54
5.17 Packers exploiting Registry techniques. #False Positive, G#Uncertain

Technique, Certain technique. 55
5.18 Stalling/Timing logs results. 56

80 | List of Tables

5.19 Parameters needed for things that are not needed anymore themselves. . . 57
5.20 Packers exploiting Stalling\Timing techniques. ✓ indicates the number of packers ex-

ploiting at least one technique. G#Uncertain techniques. Certain techniques. 57
5.21 This table collects for each packer the number of certain and uncertain techniques di-

vided by category, and output if they implements at least one technique. ✓ Indicates if

the packer exploits at least one technique, ✗ if not. 59
5.22 This table collects for each packer the number of certain techniques divided by category,

and output if they implements at least one technique. ✓ Indicates if the packer exploits

at least one technique, ✗ if not. 59

81

List of Symbols

Variable Description SI unit

u solid displacement m

uf fluid displacement m

To be written

	Abstract
	Abstract in lingua italiana
	Contents
	An introduction to the writing of scientific texts
	Introduction

	State of the art
	Related works
	Different types of analysis
	Static analysis
	Dynamic Analysis

	Process Environment Block
	What is a Packer
	Unpacking
	Debuggers
	Instrumentation

	Anti Dynamic analysis techniques
	Anti debugging techniques
	Anti-debugging
	Anti-VM
	 File
	 Registry

	 Stalling
	 Timing

	Framework and approach of the experiment
	Sample used for the experiments: Hello world!
	Data set of packers
	Description of the framework MBare
	Original Code
	Updates performed to the original code

	Brioscia Intel pin Tool
	Original Code
	Updates performed to the original code

	Analysis of the results
	Anti Debugging results
	Logs and statistics for Anti Debugging functions

	Anti VM results
	Logs and statistics for Anti Debugging functions

	File results
	Logs and statistics for Files management

	Registry results
	Logs and statistics for Registries management

	Stalling and Timing results
	Logs and statistics for Registries management

	Final results

	False Positives and relevant findings
	False Positives
	SetUnhandledExceptionFilter()
	NtQuerySystemInformation(PHYSICALMEMORYINFO)
	CPUID
	Other False Positives

	Highlighted findings
	Yoda's Protector
	Mew11
	Telock
	NtQuerySystemInformation()
	NtqueryAttributesFile
	In instruction
	Stalling routines

	Conclusion and future works
	Conclusion
	Future works

	Bibliography
	List of Figures
	List of Tables
	List of Symbols

