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Abstract

All electronic components generate heat during operation. Traditionally, this heat was

removed using air cooling systems, with heat sinks and fans. But nowadays, as IT

equipment get faster and smaller, the amount of heat generated increases and it is more

concentrated in compact volumes. In fact, some high-performance electronic components

generate more heat than traditional cooling systems can dissipate and this brings to a

research interest into new possible solutions, such as water usage and new innovative

strategies. This new trend must be combined with the use of modelling and simulation

tools looking for e�cient and high-performance solutions. In this thesis work, an existent

Modelica software library will be presented and improved in order to implement and

adapt new models to the current research needs. This Modelica library contains several

components that are useful to model and simulate di�erent cooling systems, in addition,

a template has been created and explained to make possible the interaction between

Modelica and the 3D-ICE simulation platform, used to simulate and represent a virtual

system in detail. To show the capability and evaluate the Modelica library a data centre

rack system and its cooling system have been implemented and analyzed, all the results

and comments are pointed out in this work. To conclude, an overview of possible future

developments will be given.

Keywords: Object-Oriented Modelling, Computer Cooling, Thermal Modelling, Data

Centre





Abstract in lingua italiana

Tutti i componenti elettronici generano calore durante il loro funzionamento. Fino ad

oggi, questo calore veniva rimosso utilizzando sistemi di ra�reddamento ad aria, con

dissipatori e ventole. Oggigiorno, però, le attrezzature informatiche diventano sempre

più piccole e performanti, generando molto più calore concentrato in volumi sempre più

compatti. Alcune componenti ad alte prestazioni generano infatti più calore di quello

che è possibile dissipare attraverso i tradizionali sistemi di ra�reddamento, questo ha

generato un notevole interesse da parte della ricerca verso nuove possibili soluzioni, come

l'impiego di acqua e lo studio di strategie innovative. Per riuscire a trovare delle soluzioni

ottime e performanti, lo sviluppo di questi nuovi sistemi deve essere combinato con

l'impiego di software e piattaforme di modellazione e simulazione. Questa tesi si propone

di analizzare e migliorare una libreria software già esistente e sviluppata in Modelica,

aggiungendo e modi�cando alcune componenti in modo da espandere ed adattare la

libreria allo stato dell'arte attuale. Questa libreria contiene quindi diverse componenti

utili a modellare e simulare moderni sistemi di ra�reddamento, è stato sviluppato inoltre

un template in modo da rendere possibile l'utilizzo della piattaforma di simulazione

3D-ICE combinata con Modelica, questa può essere d'aiuto per ottenere simulazioni e

rappresentazioni virtuali del sistema molto dettagliate. Per mostrare le funzionalità e le

caratteristiche della libreria è stata modellata e simulata la struttura di un data centre,

tutti i risultati e le osservazioni fatte sono presenti in questo lavoro. Per concludere,

verrà o�erta una panoramica dei possibili sviluppi futuri e migliorie che potrebbero essere

implementate in futuro.

Parole chiave: Modellazione, Ra�reddamento a liquido, Centro elaborazione dati
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Introduction

The Overheating problem

Heat is an inevitable byproduct of computer hardware operations, since the beginning of

the electronic computing, overheating of electronic components was a primary problem

to deal with in both private and industrial setting.

Considering the industrial application, nowadays, as the demands of remote data services

keep increasing, both the workload of the data centre and its power consumption are

rapidly rising, these systems accounts currently for over 1% of the world's electricity

usage [1, 2]. For the ICT equipment, the operation temperature is an important factor

that can greatly a�ect their stability and performance. Therefore some auxiliary systems,

such as the cooling system and the power supply system, are used to ensure the stable

operation of the ICT devices [3]. Energy e�ciency becomes even more important for

these systems, data from surveys suggests that the consumption due to the cooling and

ventilation of the ICT equipment is between 30% and 55%, with an average of 40%, of

the total energy consumption in a data centre [1, 4].

Figure 1: Energy consumption distribution of a data centre [5]

Taking into consideration the private setting, such as personal computers and mobile

devices, there exist a trend toward more powerful and energy consuming microprocessor
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combined with the higher packing density of the components.

Therefore it is clear that with these new trends and growth there is a need for research

to be extended and improved. The design of new cooling strategies and the optimization

of the process, for both private and industrial setting, plays a fundamental role [6].

Cooling strategies

Generally, a cooling system is made up of three di�erent sub-systems [3]: heat generated

during hardware operations of the IT equipment will be absorbed by a terminal cooling

sub-system. Here heat is transferred to the primary heat sink by conduction and the main

goal is to remove it away from the hardware itself. Di�erent strategies can be applied,

such as change the material and shape of the heat sink or using oils or gas to modify

the thermal resistance. The second system transports heat from the heat sink to the

refrigeration sub-system, this can be done in several ways, generally heat is tranferred via

one or multiple �uids. The last sub-system is the above-mentioned refrigeration one in

which heat is disperse into the outdoor environment.

Figure 2: Example of a cooling system

Depending on the cooling principle, the last two sub-systems can be classi�ed into three

main technologies: air-cooling, liquid-cooling or hybrid-cooling [2]. Historically, forced-

and natural-convection air-cooling has been the predominant method of cooling electronics.

If additional cooling is necessary it is possible to implement a fan in order to increase the

air�ow over the heat sink to dissipate more heat, but this �lls valuable space with the fan,

fan mount and air�ow entry and escape paths. This equipment becomes troublesome if the

reduction of the space required becomes an important objective. Liquid-cooling counters

almost every drawback of air-cooling, it can dissipate more heat with considerably less
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�ow volume and surface area, maintain a better temperature consistency, and do it with

less local acoustic noise [7]. With a liquid-cooling technology there is the risk to damage

the delicate electronics in the event of a leak, and generally the complexity of the required

hardware to be controlled and managed added design and build costs [8].

In spite of these disadvantages, however, liquid-cooling strategies are essential in order to

remove su�cient heat from the tomorrow's more powerful systems [8, 9].

(a) Air-cooling component (b) Liquid-cooling component

Figure 3: Typical computer cooling components

Modelling and simulations

Modelling and simulations enable designers to test whether design speci�cations are

met by using virtual rather than physical experiments. In addiction, experiments on

management of large scale computing systems are di�cult or not possible to conduct in

real environments. The use of virtual prototypes signi�cantly shortens the design cycle

and is partiularly cost-e�ective. It further provides the designer with immediate feedback

on design decisions which, in turn, promises a more comprehensive exploration of possible

alternatives and better performing �nal results [10].

Simulation is particularly important for the design of multi-disciplinary systems in which

components of di�erent physical systems (mechanical, electrical, thermal, electromagnetic,

etc.) with di�erent time-scaled dynamics are tightly coupled to achieve optimal results

[11, 12]. The modelling procedure usually leads to a set of di�erential algebraic equations,

simulation is then conducted to numerically solve the mathematical equations in order to

calculate the system dynamics [12].

Many tools have been developed in academia and industry to perform computer modelling

and simulation of cooling systems, most of these are based on imperative programming

languages such as FORTRAN(e.g., TRNSYS[13]) and C/C++(e.g., Energy-Plus[14]).
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This approach has several limitations: the non-linear equations are usually manipulated

to be solved iteratively, and the di�erential equations are discretized to numerically

approximate the state variables. Therefore, the above-mentioned conventional simulation

tools expose several disadvantages in terms of their modelling and simulation performance.

In addition, these tools are hardly suitable on various user's needs and some traditional

languages are causal (e.g., MATLAB/Simulink) and do not support acausal modelling

[11, 12].

Modelica [15], on the other hand, is a modelling language governed by an open standard,

that can e�ectively address these limitations. First, is an equation-based and object-

oriented language that supports both causal and acausal modelling and, secondly, allows

developers to build multi-disciplinary system models featuring both thermo-�uid system

models (typically acausal) and realistic controls (typically causal) using a graphical and

hierarchical approach. These features allow models to be constructed with classical

physical equations (i.e., not constrained to only input/output formulations) and may

contain continuous, discrete, and hybrid di�erential equations, aiding �exibility for use

cases and signi�cantly reducing model development time [16]. Simulation code is generated

automatically, and in contrast to many traditional tools, the model equations are separated

from the simulation code. This improves the developer's ability to successfully simulate

complex system models, with both fast and slow dynamics, which are common in computer

cooling applications.

Lastly, the Modelica community has rich open-source libraries that span multiple domains,

which enable users to construct their case study models from similar systems and share

resources among external groups [12].

AIM of the work

The aim of this thesis work is to extend and improve an existent Modelica sofware library

containing hydraulic and thermal components [17]. The goal of this library is to provide

a complete set of models that can be used to easily design computer cooling systems. The

library has an user-�endly interface with the simulation tool 3D-ICE [18] used to simulate

and test di�erent cooling structures in a virtual environment.

In the �rst part of the thesis some basic notions about Modelica [15] and 3D-ICE [18]

will be introduced in order to simplify the following description of the models and scripts.

Then the existent library will be presented [17] and a brief overview over what contains

and its state of art will be given.

The second part of this thesis is dedicated to the description of the new models added to
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the library, mainly those that are typical of a liquid-cooling system, and how can be used

and improved.

A third part will focus on the interface between Modelica and 3D-ICE and on the template

used to integrate the two software [19]. Some scripts will be introduced in order to plot

the simulation results and analyze the cooling strategies.

In order to validate the models and evaluate the simulating performance of the library, an

example of a data centre rack cooling system will be shown [20, 21]. In addition, a basic

control strategy is applied to prove the capability of the library in the target to reduce

energy consumptions and optimize the cooling process.

Lastly, this thesis will discuss future development of the library and improvements that

can be made.
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This �rst chapter is dedicated to the introduction of Modelica and 3D-ICE platform. The

aim is to show the very basic software notions in order to better understand the following

contents of the work. In addition, the starting Modelica library will be introduced [17],

its structure and the existent models will be brie�y analyzed.

1.1. Modelica

Modelica is an object-oriented, equation-based and declarative modelling language for

complex systems modelling [22]. Its multi-domain capabilities allow designers to capture

and integrate the dynamic behaviour of any physical area. Every modelled components

can then be combined into sub-systems, systems or even architectures. Models are

represented both graphically and in code and can be easily adapted to �t speci�c needs,

moreover, as mentioned in the introduction, each model is described in terms of constitutive

set of equations in which there is no explicit speci�cation of system inputs and outputs.

The physical equations of each component are combined with energy conservation ones to

determine the overall set of equations to solve, their resolution and manipulation is left

to the simulation engine [23].

The free Modelica language is developed by the non-pro�t Modelica Association [22] for

all operative systems, which also provides open access to the Modelica Standard Library

[24] that contains lots of basic models for a wide range of applications. In addition, there

are math functions, utilities and examples for several domains.

In this section the basic functionalities and notions will be described [25, 26].

Packages

A package is simply a container, a directory, used to organize models, functions, constants,

and other allowed contents. The package name is pre�xed to all de�nitions within the

package itself using standard dot notation. Packages can contain sub-packages and can

store its models inside a proper directory, this can be useful in order to better arrange �les.
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In order to de�ne a package the syntax package <package_name> and end <package_name>

must be used and if a package or a model is nested in another package the clause within

<root_package_name> must be added.

In each package folder there are di�erent Modelica �les marked by the extension .mo that

represent the models inside the package, in addition, there is a �le with the extension

.order used by Modelica to establish the order of the Models and sub-packages inside

the package.

Models

A model is a behavioral description, it can be similarly juxtapose to class in object-

oriented programming languages. As the package syntax, the keyword model indicates

the start of the model de�nition and the key word end closes it. Models are divided

into two sections: the �rst one is used to declare variables and to list all the inheritance

and extensions or declarations of other models. the keyword equation denotes the second

section in which the physical (algebraic and/or di�erential) equations that represent the

component are listed.

An important clari�cation about models is the existance of the so called partial model,

this is a partial class since it does not contain enough equations to completely specify its

physical behavior, and is therefore pre�xed by the keyword partial. These models work

as parent class, are used to declare basic parameters, variables and equations of bigger

models that will inherit from them. Partial classes are usually known as abstract classes

in other object-oriented languages.

Variables

Any declared quantity has a speci�c variability, in Modelica there exist three kinds of

variables:

First there are the parameters that represent quantities which remain constant during

the simulation but may have di�erent values from one simulation to another, users can

change them before starting the simulation.

Then there are the constants that are quantities wich are unlikely to change, they must

have an expression for the value of that constant.

Lastly there are the variables which quantities change during the simulation, these

variables need to be declared specy�ng also the type: Real, Integer, Boolean, String,

etc.
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Each declared quantity has a set of attributes that can be associated either with the

type of the quantity. Some examples are: start to put a reasonable initial guess, fixed

in order to �x the value to the initial guess, min/max, unit to set the unit for a type, etc.

Connectors

A connector allows to match up the appropriate variables from connectors of di�erent

components, more precisely, connectors are small models designed to make di�erent

components exchange information. When two or more connectors are connected, some

equations are generated to correctly match the variables of each component.

Modelica supports equation-based acausal connections, which means that the direction of

data �ow in the connectors do not need to be speci�ed. Additionally, causal connections

can be established by connecting a connector with an input attribute to one declared as

output. Two types of coupling can be established by connectors depending on whether the

variables are declared non-flow (default), or declared using the pre�x flow: for non-flow

(also called across) an equation is generated which sets the matching components equal

to each other, for flow variables the equation generated sums the matching components

to zero. To de�ne a connector the syntax is connect(port1,port2).

Functions and algorithms

During the development of models, there are cases where a procedural or algorithmic

approach is necessary. To address this need, Modelica includes support for algorithmic

functions. A function has only quantities labelled as input or output and it is not

connected to other components. When a function is called using positional argument

association, the number and the types of actual arguments and formal parameters must

be the same.

To de�ne a function the syntax is function <function_name> and end <function_name>,

whithin an algorithm statement the assignment operator ":=" must be used.

1.2. 3D-ICE

3D-ICE, or �3D Interlayer Cooling Emulator�, is a Linux based simulation platform written

in C used to simulate the transient thermal behavior of 3D IC structures [18, 27].

This open source thermal simulator is based on the compact modelling of heat transfer by

conduction in solids and on a new compact modelling methodology, called the "Compact

Transient Thermal Modelling" (CTTM) [28]. This model is based on the identi�cation
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of the equivalent electrical representation of convective heat transport in �uid �ows, as

a voltage-controlled current source. This leads to a subdivision of heat transferred by

convection in microchannels, users can size these partition depending upon the accuracy

and speed needs.

This simulator is ideal for situations where a quick estimate of chip temperatures is

required, when the aim is to iterate between various �oorplanning and operating strategies

in order to optimize the performance and thermal safety/reliability of the �nal system,

as in the case of this work.

In this part the general basic concepts will be described [27]. The detailed �les used for

the computer cooling work are speci�ed later.

1.2.1. Inputs of 3D-ICE

In order to provide to 3D-ICE all the information needed to emulate a heatsink-processor

model, several input �les must be de�ned, these data are stored in the heatsink model

folder.

Build FMI

This �le (*.mos) is the Functional Mock-up Interface (FMI), it de�nes a comunication

protocol to correctly and easily couple the dynamic models of 3D-ICE with other modelling

tools, such as Modelica.

Floorplan

This �le (*.flp) describes the thermal model architecture of a 3D IC. It contains all the

information about the location and the size of each functional block in the IC (cores,

caches, memories, etc...) and the corresponding heat dissipation traces, as a function of

time. Each die must have a corresponding �oorplan �le stating the position, based on a

cartesian grid (in µm), the dimensions of the heat spreader (in µm) and the dissipation

pro�le (or heat sources) for the simulation. Every block, called �oorplan element, has a

unique identi�er name and represents an area inside the die, laid out in the source layer.

Stack

The stack description �le (*.stk) is the project �le created by the user to describe the

3D IC thermal problem that will be solved. It contains information about the structure,

material properties of the 3D Stack, the description of the various heat sinks in the system,
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the discretization parameters, analysis parameters, and �nally, commands to 3D-ICE for

printing out the desired outputs from the simulation.

Figure 1.1: Floorplant and stack �les [27]

Make�le

Make�le is used in order to couple the Modelica (*.mo) �les with the FMI. It lists all the

Modelica packages and models needed for the simulation.

Simulate

The simulate.sh �le is launched by the terminal to start the simulation.

1.2.2. Starting the simulation

Once the input �les are completed the user can start the simulation by simply opening a

terminal in the heatsink folder and running the command:

./simulate.sh
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1.2.3. Outputs of 3D-ICE

At the end of the simulation, additional �les will have been created according to the

instruction put inside the stack �le. A new folder can be created in order to store the

results of the simulation, such as processor temperature collected in a precise position or

a general temperature map.

Figure 1.2: 3D-ICE outputs [27]

1.3. Computer cooling library

In this section the structure of the starting Modelica library will be presented, the main

packages are listed below with a brief description of what they contain and the purpose

of the models inside. A detailled description of some models will be presented in the next

chapter. For a complete overview of the whole library consult [17].

1.3.1. General description

The Computer Cooling package is built on Modelica Standard library 3.5.3. It is subdivided

into several sub-packages in order to better group models for di�erent purposes and
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physical domain, such as hydraulic components, sensors, heat transfer components, moist

air components, and so on. The library class hierarchy is shown in the �gure 1.3, as can

be seen models generally inherit from base classes that can be reusable, that makes the

use of the library more intuitive and approachable.

Figure 1.3: Diagram of the Starting Computer Cooling library [17]

1.3.2. Main packages

Icons

The Icons package contains a set of partial models that are useful for the navigation

and the clarity of the whole library. The partial models inside this package are basically

graphic marks useful to represent several elements, models and other tools within the

library.

Utilities

The Utilities package contains only the Recorder, it is a tool tha can be used to save

the results of a simulation in a �le. It is possible to modify the data time-step, the title
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of the output �le, to change the number of data to save and to add header in order to

name the data collected.

Functions

Inside this package there is a collection of Functions that can be useful to compute some

parameter values during the development of other models. A function is also useful to

better organize the parameter de�nition and the equation section within models.

Interfaces

The Interfaces package contains the connectors used by the other models of the library.

The elements inside allow the connection between models, indeed, they provide the

"coordinates" of the �uid state that is entering or exiting the component the port will be

part of. The parameters can be for example the �uid pressure p, the mass �ow rate w,

the enthalpy h, the mass fraction but also temperatures and power �ows.

Solid materials

SolidMaterials includes a set of records that can be useful to model the behavior of

several solid materials. These elements de�nes the value of basic attributes of materials

such as density ρ, speci�c heat capacity c and thermal conductivity λ. Each record

extends the base class that is common for all the solid materials.

Media

The Media package contains, as before, the base class and several models that represent

the behaviour of di�erent media such as incompressible water, moist air, glycol, etc...

This package includes also a constants package used to list all the standard constants for

convenience.

One phase liquid components

The OnePhaseLiquidComponents (OPLC) package includes all the models developed to

work with a medium that does not change from liquid state. Generally speaking all

the models inside this package are structured similarly; in the �rst part of the variables

de�nition it is speci�ed if the model has one or two hydraulic ports and a heat port,

then the medium and the possible presence of a solid material are speci�ed. After

the declaration of all other variables the equations are listed, starting from those that
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represent the current status of the medium, followed by dynamics equations and energy

computations at the ports. This package contains boundary conditions, pumps, valves,

tanks, ducts, and so on. The various components are not examinated individually, with

the exception of some models that have been improved in this work.

It is worth noticing that all the models inside this package are now developed to work

only with incompressible liquid and so, within this work, it has been renamed into

IncompressibleLiquidComponents.

Moist air

The MoistAirComponents package (MAC) groups all components designed to work with

a moist air �ow that accounts also of humidity variations. The structure of this package

is similar to the previous one and it contains fans, pressure drops, tanks, ducts, etc...

Heat transfer

The HeatTransfer package includes components that model heat �ow dynamics, this

contains boundary conditions, heat sources and heat transfer models. The heat sources

are de�ned positive if �ows out of the compoment.

Sensors

The purpose of the Computer Cooling library is to develop a cooling circuit that can be

later implemented and tested inside the 3D-ICE environment. whitout a speci�c tool is

impossible to collect data from the cooling circuit during or after the simulation. Hence,

inside the package Sensors are listed several models representing sensors in order to

capture data and collect them in the Recorder utility.
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In this chapter the improvements to the pre-existen Modelica library will be presented in

detail. As discussed before these upgrades have been developed in order to better model

and simulate modern computer cooling strategies, with a focus on liquid systems. All the

new models are grouped and presented according to the sub-package of which they belong

and their order within the library.

All the developed components, as mentioned before, are de�ned in a precise way: with the

instantiation of required ports or the extension of a base class, declaration of the eventual

medium and solid material, followed by parameters and variables initialization. Then, the

equations that indicate the current status of the medium are stated before, followed by

dynamic equations and energy considerations at the ports.

2.1. Solid components

The SolidComponents package holds all the models that represent a solid element in

which the heat �ows between its layers or lumps. This includes stream con�nement for

tubes and planar walls that represent heat spreaders and chip. In all the models contained

in this package is possible to replace easily the material of the component, by choosing

one from the SolidMaterials package.

To correctly model the heat �ows between solid components is necessary to compute the

thermal conductance G and the heat capacity C of each lump, these values are computed

according to the following relationships:

G = λ · A

Dist
,

C = c · ρ · V ol.

(2.1)

(2.2)

WhereA is the heat transfer surface of a single volume lump, Dist is the distance between

the centre of two consecutive lumps and Vol is the volume of a single lump.
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2.1.1. Stream con�nement

The StreamConfinement package holds the models that represent the stream con�nement

within tubes. First, a base class model is developed and then two di�erent geometries are

considered: planar and cylindrical walls. These two models describe a pipe with a single

or multiple cross layers between the inner and outer heat interfaces, the pipes are also

divided in �nite volume lumps along the length-wise direction. An important detail is

that the equations in these models describe the heat exchange between the inner and the

outer heat boundaries only, the "horizontal" heat �ows between the �nite volume lumps

are, instead, not modeled in these components.

Figure 2.1: Stream con�nement component (icon view)

Base class

In the Base_StreamConfinement partial model two vector heat ports are instantiated

representing the inner interface (toward the �uid inside) and the outer interface (toward

the environment). A solid material (copper by default) is also instantiated as a replaceable

record to account for the thermal characteristics of the material. Then the geometrical

parameters are de�ned, together with the temperature matrix and its initial values. It is

also possible to set the number of volume lumps and the number of layers.

Planar wall

This model represents a planar stream con�nement, it inherits the parameters and ports

from the base class but, in order to compute the cross area, the width of the component

has to be de�ned. Accordingly to what said before the equations in this model describe,

for each �nite element i, the heat exchange between the inner and the outer interfaces,
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the complete set of equations is the following:

Qint|i =
1

2
G(Tint|i − T1,i),

C ˙Ti,j = G(Ti,j−1 − Ti,j)−G(Ti,j − Ti,j+1),

Qext|i =
1

2
G(Text|i − Tm,i).

(2.3)

(2.4)

(2.5)

Cylindrical wall

The Cylindrical wall model is similar to the previous one, with the only di�erence on

the geometry of the element. In order to compute the heat capacity and the thermal

conductance is su�cient to know the internal diameter and the total thickness of the

pipe. These parameters are placed inside a vector because their values change depending

on the layer that we are considering. Indeed the set of equations used is the same of the

planar case.

Figure 2.2: Heat propagation through a CylindricalWall_FiniteVolume model
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2.1.2. Uniform grid

Figure 2.3: PlanarWall_MultiLayer_UniformGrid component (icon view)

The PlanarWall_MultiLayer_UniformGrid model is used to simulate solid components

such as spreaders or chip made up of a speci�c solid material. In order to study the

temperature distributions in these solids, a �nite-volume approach must be used, in fact

the solid is decomposed into parallelepiped elements. Two heat ports are instantiated

representing the inner and the outer interfaces, then an user can set the total length and

the number of lumps along all the three directions (width, depth and thickness). The

model instantiates the temperature value of a single volume lump inside a temperature

3-dimensional matrix. The uniform grid case has the peculiarity that all the elements have

the same size and so it is su�cent to compute only three thermal conductances values

(one for each direction) and one heat capacity, because the volume of a single lump is the

same for all the �nite elements.
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Figure 2.4: Uniform grid solid component

To correctly model and quickly simulate the heat exchange within the solid component

is necessary to consider the temperature 3D matrix and write the exchange equations

without considering each �nite volume as a single component, this means that is not

necessary to take into account the temperature at the faces of the �nite volumes but, to

do so, we need to handle separately all possible cases where one or more volume faces

exchange heat with others volumes. This brings to a discretization of volume lumps into

di�erent groups, as shown in the �gure 2.5. Each group has its exchange equation and its

for loop.

Figure 2.5: Volume decomposition via uniform grid

As an example, below are shown the for loops required to simulate the heat exchange

between the lumps in the "central" part of the solid component (green elements in
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�gure 2.5). Denoting by w,d,t the number of elements along the three directions and by

T the 3-dimensional matrix of volume temperatures, the equations read:

for i in 2:w-1 loop

for j in 2:d-1 loop

for k in 2:t-1 loop

C*der(T[i,j,k] = G_w*(T[i-1,j,k]-2*T[i,j,k]+T[i+1,j,k])

+G_d*(T[i,j-1,k]-2*T[i,j,k]+T[i,j+1,k])

+G_t*(T[i,j,k-1]-2*T[i,j,k]+T[i,j,k+1]));

end for;

end for;

end for;

2.1.3. Structured grid

Figure 2.6: PlanarWall_MultiLayer_StructuredGrid component (icon view)

The PlanarWall_MultiLayer_StructuredGrid model is similar to the previous one with

the exception that the lumps dimensions along each direction may be di�erent from one

lump to another. This brings to a more complex system and parameter de�nition, in fact,

for this model is necessary to collect an array of lump dimensions along all the directions

to make the computation of the single volumes possible. A temperature 3D array is

instantiated as in the previous case but now the areas and distances must be computed

for each �nite volume and along each direction respectively. The thermal conductance and

the heat capacity values are stored inside 3D arrays so as to compute the heat transfer in

all directions. The loops used to model and simulate the heat exchange are the same as

before, the solid must be divided as in the previous case, but now the thermal conductance
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G and the heat capacity C within the equations depend on which �nite volume we are

considering.

Figure 2.7: Structured grid solid component

2.2. Incompressible liquid components

The IncompressibleLiquidComponents package contains all the models that are designed

to work with an incompressible and single phase medium which is instantiated via a

replaceable model, so as to make easy for users to replace it with other media . Within

this work the IncompressibleLiquidComponents package has been improved; the ducts

sub-package has undergone a refactoring and a new model for the waterblock has been

implemented. The following section will examine the various components.

2.2.1. Ducts

This sub-package contains components that are used to represent and simulate a liquid

stream �owing inside a tube, these models are structurally the same of those developed

in the original library [17]. During the refactoring only small changes has been applied

and now an user can choose between ducts with a generic and cylidrical section. The

subdivision into single layer and multi layer stream con�nement is no more necessary

because all these models can treat both cases, as speci�ed before. Users are now free to

choose the number of volume lumps and the number of layers, the only di�erence between

the two models is on the geometrical point of view.



24 2| Computer Cooling

Figure 2.8: Tube_1D_Cylindrical model (diagram view)

Figure 2.9: Heat propagation from external heat port to �uid
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2.2.2. Waterblocks

Figure 2.10: WaterBlock_GenericSection_uniform_w component (icon view)

The waterblock model has been developed speci�cally for liquid cooling systems, this

component is used to represent the heat exchange from the processor (the source) into

the liquid that �ows through the channels within the waterblock, these channels are

designed so as to increase the heat exchange surface. This Modelica model instantiates an

array of LiquidStream_FiniteVolume components, these streams are the aforementioned

channels and form a grid over the processor. the mass �ow that comes from the input

pwh interface is divided equally between each channel. The waterblock component has

also a matrix heat port connected to each channel via code to enable the heat exchange

between the processor and the liquid. Users can de�ne the geometrical values and can set

the number of lumps and channels.

2.3. Control blocks

To better understand the example that will be developed later within this work, it is

necessary to do an overview on the ControlBlocks package. It contains analogical and

digital controllers and some actuation schemes. These elements will be presented in this

section.

2.3.1. Controllers

The controllers implemented in this library are subdivided into analogical and digital.

The purpose and the explanation of the controller schemes will not be presented within

this work because the used structures are already well covered in literature.
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2.3.2. Actuation schemes

the Actuation schemes represent, at the control synthesis level, how the controller drives

the actuators. The Actuation schemes developed for this library are listed below.

Split range

The purpose of the split range scheme is to consider two actuator as a single one, splitting

their action in a di�erent range of the control variable. As can be seen inside this model

a deadzone is introduced in order to avoid a continuously switching of the two actuators.

The two output control actions are enabled when the input signal is above or below the

deadzone respectively.

Daisy chain

The purpose of this scheme is to activate several actuators in sequence, an actuator is

enabled when the previous one has reached its maximum limit. The basic idea behind

this scheme is to start with the most e�cient actuator and then switch to the less e�cient

only if the previous one is not enough.

Counter Act

This actuation scheme has two outputs. If we consider an input control action with values

in the sector [0,1], the �rst output value is equal to the input, while the second one is the

complementary value, i.e. the necessary value to reach 1.

Rescaling inputs

The purpose of this scheme is to rescale the input value, an user can choose the boundary

values for 1 and 0, the maximum and the minimum respectively. Then this model rescale

the input value [0,1] within these boundaries.
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In this chapter a complete guide on how to set up a simulation will be given, starting

from the download of the Modelica Computer Cooling library. In addition, an example

will be treated to show how to plot and analyze the results using Scilab scripts, located

within the 3D-ICE template in the Computer Cooling repository.

3.1. Set-Up

3.1.1. Download Modelica library

Once a Modelica release is installed, to download the library object of this work, navigate

to the folder where the repositories will be saved and, from there, run the instruction:

git clone https://github.com/looms-polimi/computer_cooling.git

The Computer Cooling library is developed to work within Modelica 3.2.3 environment.

Hence, it is necessary to install a compatible standard library to correctly use the Computer

Cooling library.

3.1.2. Download 3D-ICE

Within the Computer Cooling folder, you will �nd a readme �le that lists the instructions

to install the dependencies and to download the 3D-ICE software which must be installed

at the same directory level of the computer_cooling repository.

3.1.3. 3D-ICE templates

3D-ICE supports a pluggable heat sink interface that allow it to perform co-simulations

with a separate heat sink model. It is possible for users to create their own heat sink model

and then use 3D-ICE to simulate its behaviour, as in our case. To do so the Computer

Cooling library has a 3D-ICE template folder, that must be copied outside the computer

cooling gir repository, at the same directory level of the computer_cooling and 3D-ICE



28 3| 3D-ICE Implementation

folders. The procedure to correctly copy the template is shown in the same readme �le.

To correctly run a simulation, the folders structure must be as the following one:

Figure 3.1: Directories scheme

3.2. MyHeatSink Template �les

In this section the �les inside MyHeatSink folder will be analyzed, starting from the 3D-

ICE input �les already discussed in chapter 1.

Figure 3.2: Contents of MyHeatSink directory

3.2.1. Input �les

These �les have been already presented in chapter 1, they are de�ned as usual with some

slightly di�erences in order to adapt the Modelica library to the 3D-ICE software. The
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FMI, floorplan, makefile and stack �les also load the Modelica library package in order

to give access to 3D-ICE to the heatsink Modelica components.

3.2.2. Modelica cooling circuit

The T05_3DICE_Integration.mo Modelica �le contains several models, that represent

various cooling circuits and heatsink models. These components are taken from di�erent

libraries within both 3D-ICE and Modelica software, therefore, in order to run a simulation

they must be loaded in a correct way. An user must load �rst the Computer Cooling

library package from the repository folder and, after that, the TermalBlocks and the

HeatSinkBlocks. These two libraries contain the 3D-ICE ports required to model the

heatsink and are located within ./3d-ice/heatsink_plugin/common/libraries and

./3d-ice/heatsink_plugin/common respectively.

After that users should load T05_3DICE_Integration.mo in the Modelica environment

and choose the system they want to simulate modifying the T05_Interface3DICE.mo

model. In addition, users can modify or implement other cooling circuits using all the

components provided by the Modelica library.

To simulate correctly a cooling circuit and its heatsink, the loaded libraries must be the

following:

Figure 3.3: Modelica libraries required
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3.2.3. Results

At the end of a simulation, some new �les will have been created within the results

folder according to the instruction written inside the stack �le. The outputs of our

default simulation are two di�erent �les: The �rst one is a trace.txt �le that contains

temperature data measured in a single point of the processor, speci�ed by the stack �le,

during the simulation. The second output is a map.txt �le that prints the temperature

map at the end of the simulation in a precise layer of the IC component. Two more

�les indicating x and y axis are created to be used during the map plotting. In addition,

another result �le can be added, it is by default called data.csv, it holds all the simulation

data requested by the user in the heatsink Modelica �le, through the Recorder utility.

3.2.4. Scripts

In order to better analyze the simulation results the Computer Cooling library provides

some scripts, that can be run using Scilab. These are located within the Scripts folder

and their function is the following: The plot_transient.sce plots the temperature

transient, it takes the values of time and temperature from trace.txt. It can be used

in order to be sure that the transient has gone and the temperature has reached the

steady state value. The plot_temperature_map.sce script allows users to see a map of

the �nal temperature reached by the processor, the temperature values are represented

with di�erent colours that makes the analysis more clear. Within this script a function

is de�ned, called virtualsensor, which allows users to stamp the temperature value

anywhere inside the processor component.

3.3. Example

In the last section of this chapter an example will be introduced in order to show the

capability of the 3D-ICE software to simulate a heatsink model developed using the

Computer Cooling library.
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3.3.1. Modelica scheme

Figure 3.4: Heatsink Modelica model

The Modelica model can be divided into two main parts; the �rst one is composed by

the waterblock component that takes heat away from the processor, it is connected to the

rest of the cooling circuit via two boundary condition blocks. All these components are

taken from the Computer Cooling library. The second part is composed by the heatsink

itself, this model comes from 3D-ICE libraries. In addition, two temperature sensors and

a recorder are added to the scheme in order to measure and record the temperature at

the beginning and at the end of the waterblock component.

Cooling circuit

In this example we will focus on the waterblock component and the heatsink, rather than

the whole cooling system. For this reason the cooling circuit is not represented with all the

components but it is de�ned only by boundary condition values. An user can con�gure

all the parameters of the circuit, in this example the waterblock is fed by water at 24°C

with a mass �ow rate of 0.12 l/min. The number of liquid channels and number of �nite

volumes per channel of the waterblock is imposed by 3D-ICE (using the default value of

10) and each channel has a dimension of 3x3cm.

Heatsink

The heatsink component is taken from the 3D-ICE HeatsinkBlocks, it is made of copper

and the dimension is the same of the waterblock, 3x3cm.
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Sensors and recorder

In order to measure the temperature at the beginning and at the end of the waterblock

two sensors are placed and a recorder component is used to store the values in a �le called

data.csv with a sampling time of 0.01s.

3.3.2. 3D-ICE parameters

The heatsink Modelica model is connected, by means of the 3D-ICE co-simulation interface,

with the 3D-ICE model of a square chip with a side of 1.024cm. The Stack and Floorplan

�les are de�ned as follows.

Stack

In the Stack �le the dimensions of the chip are de�ned, It is also possible to set the

resolution of the simluation through the value given to the cell discretization, for this

example the cell dimension is set to 0.032cm in order to obtain a high resolution simulation.

The die is made of silicon and it has a thickness of 0.61cm, the simulated time is 25s with

a transient step of 0.015s. The initial temperature of the chip, heatsink and waterblock

component is set to 27°C.

Floorplan

The Floorplan �le de�nes a grid of 4x4 heat generation areas, Each area is splitted into

two parts so as to put a temperature sensor in the middle of each heater, the two parts

are not individually controllable and generates in total a power of 7.5W. In the same way,

all the heaters generate 7.5W, with the exception of the second heat generation column

that is turned o� (i.e. Generates 0W). With this structure the chip that represents the

processor generates a total power of 90W.

3.3.3. Results

Temperature transient

In order to check that the temperature inside the processor has reached the steady state

value it is necessary to collect and plot the temperature trace at the center of the die

gathered into the �le trace.txt. The following �gure shows that, at the end of the

simulation (i.e. 25s) the transient is over and so the system has reached the steady state

value.
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Figure 3.5: Temperature transient at the center of the die

Temperature map

With the temperature map represented in �gure 3.6 it is possible to notice that the

heating pattern is coherent to the structure de�ned before. In this example the maximum

temperature of 85.2°C is observed in the top right heating elements, in fact it can be

observed that the temperatures in the bottom part of the chip are lower, this is due to

the fact that the water inlet is located there. If we analyze the second column in which

the heaters are turned o� it is possible to see that, consistently what said before, the

temperature at the bottom is lower.
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Figure 3.6: Temperature map at the end of the simulation

Temperature recorded

From data.csv �le it is possible to plot the temperature at the beginning and at the end

of the waterblock. In this example makes no sense to represent those values since the

temperature at the inlet is �xed to 24°C by boundary conditions and the whole cooling

circuit is not modelled. The recorder is added to the example only to show its functioning.
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Figure 3.7: Water temperature at the inlet and outlet of the waterblock
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In this last chapter an example of a liquid cooled rack system architecture will be presented.

All the models used to set-up and simulate this liquid cooling system are taken from the

Modelica library developed within this work. With this experiment is therefore possible

to demonstrate the capabilities of the library and the importance of simulations in the

search for an optimal implementation design.

First, an overview on the rack system architectures will be explored so as to explain

the main components and structures that will be implemented later on [21, 29]. The

experimental set-up will be shown afterward, both from the liquid cooling system side,

the rack system, and the controller side. After that, simulation results will be presented

and some parameters will be analyzed and modi�ed so as to show the e�ect of some

variations in the whole system. Lastly, the number of CPU units will be increased in

order to evaluate the capability, and performances, of the library to simulate large scale

models.

4.1. Liquid cooled rack system architecture

A liquid cooled rack system can be divided into three main parts: a CDU, a hot and cold

manifold and several CPU units also called server loops [21]. The �gure 4.1 shows the

whole architecture divided into the three parts, the detailed description of its component

is presented later.
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Figure 4.1: Liquid cooled rack system topology [21]

The coolant distribution unit (CDU) is a speci�c equipment that allows heat transfer

between the server and the external environment. The CDU consists of a set of interfaces,

pumps, heat exchangers, reservoir tanks, valves, controllers and sensors that guarantee the

correct �owing of the liquid inside the cooling circuit. The CDU controls the water supply

into the CPU units, this control action is based on the external ambient temperature

and on the IT workload within server loops. Usually the CDU provides a real-time

communication through Human-Machine Interaction, the operating parameters, the status

of the main equipment and any alarm signal can be transmitted to an host computer so

as to coordinate simultaneously di�erent CDU units.

Another key component inside a rack architecture is the manifold system, its purpose is

to distribute the cooling liquid within the rack to and from the IT equipment (CPU unit).

Analyzing the path of the liquid inside a cooling architecture, starting from the reservoir

tank within the CDU, the cold liquid is pumped inside the cold manifold and enters the

CPU units, where waterblock components allow the heat exchange with the IT equipment.

Then, the outlet hot liquid goes through the hot manifold and reaches the CDU heat

exchanger, a radiator, that cool down the liquid to the ambient temperature.

More details on the components are presented in the following where an example of a rack

system is designed using the Computer Cooling Modelica library.
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4.2. System set-up

In order to present clearly the components used to set-up this architecture in the Modelica

environment, the system is subdivided into three main parts: The liquid cooling system

(CDU), the rack system (manifolds and server loop) and the control system that usually is

implemented in the CDU unit, as said before. In this example the system components are

dimentioned in order to refrigerate three CPU units, the model diagram in the �gure 4.2

shows the whole architecture within the Modelica environment.

Figure 4.2: System architecture within Modelica

4.2.1. Liquid cooling system

The liquid cooling system is composed by several components that make possible the

�owing of the cooling liquid, in our case water, into the rack system. As said before,

all these components are located into the CDU unit, in our Modelica architecture these

components are placed out of the CPU_Array model, because they do not need to be

replicated in case of an increasing of CPU units. There is only a unique CDU unit inside

our architecture and below are listed and analyzed the components present inside.

Radiator

The radiator is a key component inside the liquid cooling circuit, its purpose is to allow

the heat exchange between the water and the external environment. The heat exchanger

of a CDU unit can be an air-to-liquid system, where a set of fans is used to cool down
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the water of the circuit, or it can be a liquid-to-liquid system in which an external liquid

circuit refrigerates the medium.

To represent the forced air convection of the radiator, three Tube_1D models have been

implemented, each of them has a length of 1m, a stream diameter of 1cm and a thickness of

1mm. The nominal pressure di�erence is 500Pa and the nominal mass �ow rate is 5 l/min

for each Tube_1D model. The ambient temperature for this experiment is set to 20°C.

Reservoir tank

Every liquid cooling system is designed with a pressure stabilization system to avoid

pressure �uctuation or even pipe damage due to thermal expansion and contraction

of the coolant, the stabilization system is also useful to avoid negative pressure at the

inlet of the components due to pressure drop through the pipeline. In our example we

have implemented a vented tank that works as a pressure stabilization system and has

a capacity of 1 l, we do not take into consideration the heat dissipation of the water

inside the tank, for this reason the heat port is not connected to the external environment

boundary condition.

Duct

To represent the pressure drops along the liquid circuit inside the CDU a LiquidStream

model has been implemented, this model, as in the previous case, do not take into

consideration the heat dissipation of the �uid because it is negligible with respect to the

other system components, such as the radiator and the waterblock. For the experiment

we have considered a duct diameter of 1cm and a length of 3m. The nominal pressure

di�erence is 500Pa and the nominal mass �ow rate is 15 l/min, based on the system

dimension.

Pump

The Pump is the heart of the system, it provides liquid �ow to other components. The

pump used for our experiment is a high-speed centrifugal pump with a nominal pressure

di�erence of 0.15bar in case of zero �ow and 0.1bar in nominal �ow working condition.

The pump is dimensioned in order to supply water to three CPU units, for this reason it

has a nominal �ow rate of 15 l/min. In order to coordinate the action of the pump and

the opening of the valves, this component is controlled by all the PIs in a speci�c manner

that will be presented later on.
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4.2.2. Rack system

To correctly model the server loops and the manifold distribution system a component

named CPU_array_with_PI_controllers has been developed. This model allows users

to set the number of CPU units componing the rack system, all these units are arranged in

parallel and controlled independently. Since the model can represent a single or multiple

CPU units, all the components instantiated inside can be duplicated.

An user can set the parameters of each component within the rack such as the liquid

streams, the valves and the CPU units. It is important to point out that all the values

are the same for all the componets that will be duplicated, i.e. if we set the spreader

thickenss dimension, this value is the same for all the spreaders of the CPU units. All the

component involved are listed and analyzed below.

(a) Model icon (b) Model diagram with 3 CPU units

Figure 4.3: CPU_array_with_PI_controllers model representing the rack system
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Manifolds

The CPU_array_with_PI_controllers has four hydraulic ports that represent the inlet

and the outlet of the cold and hot manifolds. In order to model the pressure drops inside

the manifold system two LiquidStream components has been added for each CPU unit,

one in the cold part and one in the hot part. An user can set the length and the diameter

of a single section of the manifold together with the nominal pressure di�erence and mass

�ow rate, it is also possible to set how to subdivide the component along its length, setting

the number of volume lumps. As before, the heat dissipation inside the LiquidStream is

not taken into account because it is negligible with respect to the CPU waterblocks and

other components.

For this example we have considered a LiquidStream length of 1m and a diameter of 5mm.

Considering the nominal mass �ow rate, even if the �ow is subdivided into each CPU unit,

we have to scale the manifold according to the dimension of the whole system, in order

to provide the same amount of water to all the CPU units. The nominal mass �ow rate

is, therefore, 15 l/min, the nominal pressure di�erence is set to 500Pa coherently with all

the other stream components.

Valve

To control independently the �ow rate inside each CPU unit a valve has been implemented.

Each valve is designed to provide the same amount of �ow rate inside each waterblock

whithin the CPU unit, for this reason, in our example the modulating valve has a nominal

mass �ow rate of 5 l/min, coherently to the fact that we have implemented three CPU

units, the nominal pressure di�erence is set to 5000Pa.

Each valve is controlled via a PI and its control action is based on the temprature on

the CPU surface, more details about the control strategy and its implementation will be

discussed later on.
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CPU unit

Figure 4.4: CPU_unit icon view

The CPU_unit model contains several components used to represent the processor, its

spreader and a waterblock that simulate the heat exchange between the cooling liquid

and the IT equipment.

First, a prescribed power component has been implemented to represent the internal

power generated by the CPU, its value can be set by the user externally and it refers to

each CPU unit.

The CPU and the spreader are represented via two PlanarWall_MultiLayer_UniformGrid

components, an user can set the geometrical dimensions and the number of lumps along

the three directions. For this example we have considered a squared CPU of 2cm with a

thickness of 1mm and a spreader of 5cm with a thickness of 3mm.

The last key element of the CPU_unit model is the waterblock, this component allows the

heat exchange between the IT equipment and the cooling water, its heat port is connected

to the external side of the spreader. The waterblock component has also two hydraulic

ports that represents the inlet and the outlet of each CPU unit. For this example we have

considered a waterblock with 4 liquid cannels, each with a length of 5cm. The nominal

mass �ow rate and pressure di�erence are set coherently to 5 l/min and 500Pa respectively.
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Figure 4.5: CPU_unit diagram view

4.2.3. Control system

To correctly control the whole system a PI controller has been developed for each CPU

unit, for this reason the PIs are implemented inside the CPU_array_with_PI_controllers

model in order to be replicated consistently with the number of CPU units.

Each controller compute the control action taking as input the temperature of the internal

side of the spreader, the one that is directly connected to the CPU (the sensor location

can be seen in the �gure 4.5), this control action is used to command the respective

modulating valve opening. The control structure whithin the model is represented in the

�gure 4.6.
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Figure 4.6: Model diagram with 3 CPU units and their controllers

In order to control also the external pump in a coordinated fashion, all the valves control

actions are added up in a weighted manner. The basic idea behind this strategy is to

avoid too much stress on the pump and valve components, that may occour when the

two actuators works against each other. The total control action is computed inside the

CPU_array_with_PI_controllers model and it is presented as an output connector so

as to be linked to the pump command signal.

For this example a simple PI controller has been implemented, where its parameters

are tuned with trial-and-error method, to reach a fast response without overshoot and

oscillations. More complex control structures and strategies can obviously be implemented

but this is not the focus of this work. The �nal controller has a gain of 0.1 and a time

constant of 2s, the minimum value for the valve opening is set to 0.02 in order to avoid the

growing of bacteria or algae in the liquid, that may occour when the �ow is not permitted

and the coolant water stops inside the components.
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4.3. Simulation results

Before showing the simulation results some more details about the boundary contitions

and the simulation setup will be presented. The ambient temperature, the one that cool

down the water inside the radiator is set to 20°C. To simulate the heating action of the

IT equipment a power trace table has been implemented, the power generated by the

processor oscillates between 5W and 80W. The maximum temperature limit allowed by the

PI controllers is 40°C for all the CPU units. Considering the simulation setup we simulate

a 3-hour-long working session with a sampling time of 3s.

The �rst simulation result that is important to analyze is the CPU temperature during

the complete working session, it is represented in the �gure 4.7 together with the power

generated by the CPU itself.

Figure 4.7: Simulation results: CPU temperature and power generated

It is worth noticing that the �gure represents the temperature and the power generated

by the �rst CPU unit, but since the system is correctly dimensioned, all the CPU units

has the same temperature dynamic, in fact, the inlet water conditions of each CPU unit

is the same.

Analyzing the graphical simulation results it is possible to notice that once the CPU

temperature has reached the maximum allowable value set by the controller (i.e. 40°C),

the control system is activated and the valve starts to open (�gure 4.8), allowing the �uid

to pass through the waterblock (Figure 4.9), cooling down the IT equipment. In the same

way the pump increases the speed providing a higher mass �ow rate at higher pressure

to the waterblock. This equivalent behaviour of the two actuators shows that the control

strategy allows a coordinate utilization of the valves and the pump.
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Figure 4.8: Simulation results: pump and valve command

Figure 4.9: Simulation results: waterblock inlet mass �ow rate

There are two main dynamics that are worth noticing, The �rst is the temperature

decreasing after 2000s, a detailed graphical representation can be seen in the �gure 4.10a.

The power generated by the processor decreases to 5W, now the controller can close

the valve to the minimum value and slow down the pump (Figure 4.10b), this ends up

with a temperature decreasing dynamic divided into two steps; during the �rst one the

temperature decreases faster because the valve and the pump can be closed and slowed

down respectively, but when they reach the minimum value it is no more possible to

reduce the �ow rate and the water pressure, so the IT equipment and the water cool

down slowly, according to the thermal characteristic of the components themselves.
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(a) Temperature detail

(b) Valve and pump command detail

Figure 4.10: Simulation results: decreasing temperature dynamic in detail

The second important behaviour can be pointed out after 6000s (�gure 4.7), the power

generated by the CPU reaches its maximum value and the controller is no more able to

maintain the temperature below the threshold of 40°C. This is due to the satuaration of

the two actuators, in fact when the valve reaaches its maximum opening and the pump

operates at maximum speed there is no way to cool down the IT equipment. Analyzing

the temperature of the water at the inlet and at the outlet of the waterblock (�gure 4.11)

it is possible to notice that, when the system saturates, the two temperatures are closer,

this means that the cooling system is no more able to refrigerate the IT equipment. This

behaviour can be observed also analyzing the water temperature at the inlet and outlet

of the radiator component, as shown in �gure 4.12.
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Figure 4.11: Simulation results: waterblock inlet/outlet water temperature

Figure 4.12: Simulation results: radiator inlet/outlet water temperature

4.4. Variations

To show the capability of the Computer Cooling library and to demonstrate the importance

of simulations in the search for an optimal implementation design, in this section some

parameters and dimensions are slightly modi�ed and a few other simulations are proposed.

Larger radiator dimensions

As a solution to the previously discussed saturation problem we now consider a larger

radiator system, more precisely we increase the diameter of the radiator tubes from 1cm

to 3cm and we extend the length of the tubes from 1m to 1.2m, with this new con�guration
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the heat exchange between the cooling water and the environment increases, this means

that the radiator component can cool down the liquid in a more e�ective way. The result

of these variations can be seen in the �gure 4.13 where the controllers can maintain the

temperatures below the threshold and the saturation does not occour anymore.

Figure 4.13: Simulation results: CPU temperature and power generated

Higher number of CPU units

In the last part of this chapter the performance of the library will be tested, as said

before the CPU_array_with_PI_controllersmodel has been developed as an expandable

component, this means that in order to increase the number of CPU units it is su�cient

to modify the corresponding parameter. It is ovious that also the cooling system must

be adapted to the new dimension of the rack system, this aspect is not the focus of this

test and so it is not treated here. The purpose is, instead, to collect some data so as to

evaluate the performance and the smart implementation of the library components. To

do so a 3-hour-long working session will be simulated and the number of CPU units will

be increased countinuously.

All the simulations are performed on an AMD Ryzen 7-5800H running Ubuntu 20.04 using

OpenModelica 1.20.0 dev-319-gbd71b95.
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Figure 4.14: Library performances

The graphical result shows that the 3-hour-long simulation took only 7s in the case of 3

CPU units, but also in the case of 9 CPU units, with 3x the number of equations, the

time required to simulate the whole working session is 74s which is approximately 146x

faster than real time, it is therefore possible to conclude that the performances of the

library are quite good and the models has been implemented in an e�cient way.
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5| Conclusions and future

developments

In this thesis an analysis on several computer cooling systems was carried out. To avoid

the overheating problem of the electrical components various strategies and technologies

can be applied, in this work the advantages and drawbacks of di�erent approaches has

been discussed, also considering the choice of the modelling and simulating platform.

The main purpose of this work is to provide a new set of tools in order to study, design

and simulate innovative and emerging cooling strategies, for both the private and the

industrial setting.

To do so a pre-existen modelica library has been improved and extended, several new

models are added to better represent various cooling systems for a wide range of uses.

This work focuses more on the liquid cooling solutions, that are capable of supporting high

density power and o�er multiple advantages, recalling that to improve energy e�ciency

is crucial, not only to allow an industry growth but also to reduce operational costs.

Another important tool that has been studied is 3D-ICE, a simulation platform written

in C, already existent and able to quickly simulate an IT equipment in a very detailed

way. This thesis provide a template that can be used in order to easily connect 3D-ICE

and the Modelica library.

Two di�erent examples has been developed, one for each category of usage (private and

industrial), to show the completeness and the capability of the library. The Heatsink

model is also used to demonstrate the user friendly interface between Modelica and

3D-ICE, whereas the rack architecture was an optimal opportunity to evaluate also the

performance of the simulations.

Concerning the future development it is clear that the Modelica library can be expanded

further; new components, media and solid materials can be easily added to the library

following the same structure of the existent models. With the implementation of new

components belonging to di�erent physical domains, for example ideal gas and moist air
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components, more complex systems can be modelled and simulated. This multi-domain

capability of the Modelica library can be the next step in the development of the library

itself. Another important improvement can be done about the interaction between 3D-

ICE and the library, the combined simulation can be accelerated and optimized, one of the

major bottleneck is caused by the low accessibility of Modelica variables when simulating

from 3D-ICE. To solve this problem a new software tool can be developed.

We hope that the Modelica library presented within this work can become a container

of simulation models for innovative and emerging cooling systems applied to computer

environment and, more in general, to electronic components environment.
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