POLITECNICO
MILANO 1863

Dipartimento di Elettronica, Informazione e Bioingegneria

Master Degree in Music and Acoustic Engineering

Time-Scaling Detection in
Audio Recordings

by:
Michele Pilia

matr.:
915389

Supervisor:
Prof. Paolo Bestagini

Co-supervisor:
Dr. Sara Mandelli

Academic Year
2019-2020

Abstract

The widespread diffusion of user friendly editing software for audio sig-
nals has made audio tampering extremely accessible to anyone. For this
reason, it is increasingly necessary to develop forensic methodologies that
enable to verify if a given audio content has been digitally manipulated
or not.

Among the multiple available audio editing techniques, a very com-
mon one is time-scaling, i.e. the alteration of the temporal evolution of
an audio signal not affecting any pitch component. For instance, this can
be used to slow-down or speed-up speech recordings, thus enabling the
creation of natural sounding fake speech compositions.

In this thesis we propose a valid methodology to blindly detect the
application of time-scaling to an audio signal. Moreover, our method
estimates the time-scaling factor, i.e. the ratio between the duration of
the original signal and the time-scaled one.

Our solution is based on a data-driven approach. Specifically, we
develop a Convolutional Neural Network that analyzes Log-Mel Spectro-
gram and phase information of the input audio signal to expose time-
scaling.

The proposed technique is tested on a wide dataset of audio tracks
that have been edited using three different time-scaling algorithms and
several scaling factors. Results show that the Log-Mel Spectrogram is
the preferred input to achieve accurate time-scaling detection. Moreover,
experiments in a cross-dataset scenario show that the proposed method
is able to detect time-scaling regardless of the specific implementation,
thus proving the generalization capability of the proposed network.

Sommario

L’elevata diffusione di software di facile utilizzo per editing di segnali au-
dio digitali, ha reso la manomissione dei suddetti segnali estremamente
accessibile a chiunque. Per questo motivo, e sempre piu necessario lo
sviluppo di metodologie forensi che consentano di verificare se un deter-
minato contenuto audio e stato manipolato digitalmente o meno.

Tra le molteplici tecniche di editing audio disponibili, una molto co-
mune ¢ il time-scaling, ossia ’alterazione dell’evoluzione temporale di un
segnale audio senza influire su nessuna componente dell’intonazione. Ad
esempio, il time-scaling puo essere impiegato per rallentare o accelerare le
registrazioni vocali, consentendo cosi la creazione di composizioni vocali
false dal suono naturale.

In questa tesi proponiamo una valida metodologia per rilevare 1’ap-
plicazione del time-scaling su un segnale audio. Inoltre, il nostro metodo
stima il fattore di time-scaling, ovvero il rapporto tra la durata del seg-
nale originale e di quello modificato.

La nostra soluzione si basa su un approccio basato sui dati. Nello
specifico, sviluppiamo una rete neurale convoluzionale che analizza il Log-
Mel Spectrogram e le informazioni sulla fase del segnale audio in ingresso
su cui applicare il time-scaling.

La tecnica proposta viene testata su un ampio set di dati di tracce
audio che sono state modificate utilizzando tre diversi algoritmi di time-
scaling e diversi fattori di scaling. I risultati mostrano che il Log-Mel
Spectrogram e l'input preferibile per ottenere un rilevamento accurato
del time-scaling. Inoltre, gli esperimenti in uno scenario cross-dataset
mostrano che il metodo proposto ¢ in grado di rilevare il time-scaling
indipendentemente dall’implementazione specifica, dimostrando cosi la

capacita di generalizzazione della rete proposta.

Ringraziamenti

Un primo ringraziamento va alla mia famiglia, specialmente ai miei geni-
tori, che mi hanno sostenuto in ogni modo sin dal primo giorno di questo
percorso, nonostante la lontananza. Grazie di cuore a Chiara che mi e
stata vicina e mi ha fatto sentire a casa in ogni momento, alleviando
anche i momenti piu impegnativi.

Vorrei ringraziare infinitamente il Prof. Paolo Bestagini e la Dott.ssa
Sara Mandelli, che mi hanno guidato durante questo progetto con im-
mensa disponibilita e competenza.

Infine, grazie a tutti i colleghi con cui ho trascorso questi anni al
Politecnico. In particolare, grazie ad Antonino, con cui ho condiviso la
maggior parte dei progetti, e da cui ho imparato tanto.

M.P.

Contents

[Abstract] i
Sommariol ii
[Ringraziamenti| iii
[List of Figures| vii
i
[List of Tables| xii
UIntroductionl xiii
[Theoretical Background| 1
(1.1 Time-Frequency Audio Representation| 1
(L.1.1 The Fourier Transforml 1

(L1.2 The Short-ITime Fourier Iranstorml 3

(1.1.3 Spectrogram|. 4
(.14 Mel Scalel 6

(1.1.5 Log-Mel Spectrogram|. 8

(1.2 Time and Pitch Scalingf. 9
(2.1 MainIdealo 9

(1.2.2 'Time scaling definition| 9

(1.2.3 Phase Vocoder Time-Scaling Modification| 10

(L.3 Convolutional Neural Networks 11
(L.3.1 General Idea and Definitions 11

(1.3.2 Classification and Regression|. 13

[1.3.3 How totraina CNN 15

(1.4 Audio Forensics: State of the Art] 18
(.41 Related Methods 18

[Lb Conclusive Remarks 20

v

Contents v
2__Problem Statement and Formulationl 21
2.1 Problem Formulationl 21
2.2 Time-scaling Detection| 22
(2.3 Time-scaling Estimation| 22
2.4 Conclusive Remarks 23

[3 Preliminary Analysis on Phase Re-sampling Traces| 24
[3.1 Hints about Phase Re-sampling Traces| 24
[3.2 Empirical Phase Re-sampling Detection Analysis| 25
[3.2.1 Controlled Experiments: Single Tonel 25

[3.2.2 Experiment in the wild: complex audio track|. . . 29

3.3 Conclusive Remarks 30

4 Proposed Methodology| 31
[4.1 Audio Pre-Processingl 31
4.2 DBackbone Architecturelo 34
421 Classifier. o000 37

[4.2.2 Regressor| 39

4.3 Conclusive Remarks 39

[Experiments and Results| 40
BI Dafasefl 40
BIIT Generationl 40

[>.1.2 Dataset splitf. 42

(5.2 Training Setup| L 42
b3 Classifier Resultd 45
[>.4 Regressor Results| 48
[>.4.1 Single Time Window Results|. 51

[>.4.2 Multiple-Window Results| 55

b.5 Conclusive Remarks 64
6 Conclusions and Future Works| 66

6.1 Future Workslo,

List of Figures

(1.1 A Rectangular window and its frequency response.|. . . . 4
1.2 A Rectangular window and its frequency response.|. . . . 4
(1.3 'The phase unwrapping process.| 5
(1.4 A spectrogram of a .wav audio file]. 6
(1.5 "Two Mel filterbanks according to the different formulas| . 7
(1.6 A Log-Mel Spectrogram of a .wav audio file.] 8
[1.7 An example of convolution between a matrix and a Kernel |

filter) 13
(1.8 'Two examples of pooling.|. 14
[1.9 A summary diagram ot the main goals of Machine Learning| 15
(1.10 An example of Regression| 15
(1.11 An example of Classification| 16
[2.1 Formulation of time-scaling classification.|. 22
[2.2 Formulation of time-scaling estimation.| 23
[3.1 Results of Kirchner’s re-sampling detection for original im- |

age (top row), 111% up-sampling (middle row) and 150% |

(bottom row) [I|. Left column: images; center column: |

p-maps; right column: p-map spectra.. 26

B2

Phase error analysis for a 440 Hz time-scaled sinusoid |

(time-scaling factor = 0.1).]. 27

[3.3

Phase error analysis for a 440 Hz time-scaled sinusoid |

(time-scaling factor = 0.3).|. 27

B4

Phase error analysis for a 440 Hz time-scaled sinusoid |

(time-scaling factor = 1.5).]. 27

[3.5

Detector results on the unwrapped phase of the [Short- |

Time Fourier Transform (STFT)| for a 440 Hz time-scaled |

sinusoid (time-scaling factor =0.1).| 28

[3.6

Detector results on the unwrapped phase of the [S'TF'l] for |

a 440 Hz time-scaled sinusoid (time-scaling factor = 0.3).| 28

vi

List of Figures

vii

[3.7

Detector results on the unwrapped phase of the [S'TFT] for

a 440 Hz time-scaled sinusoid (time-scaling factor = 1.5)|

29

[3.8

Detector results on the unwrapped phase of the [S'TF'l] for

a complex time-scaled track (time-scaling factor = 0.3). .

30

A1

A summary representation of the proposed time-scaling

detection system|

12

The filtering process of the unwrapped phase ot the [S'TE'T]

32
33

A

The three possible channel matrices of the [Convolutional

Neural Network (CNN)I|

35

!

Residual bottleneck block (a) vs. [Mobile inverted Bottle-

neck Convolution (MBConv)[(D)2[]

4.5 The RelLUG activation function|

16

The extended representation of the EfficientNet-B0 [3]] .

36

37

38

B

The logs of the training process tor the regression task with

[Log-Mel Spectrogram (LMS)| as input, Audiotsm time-

scaling algorithm.|

52

Some examples of [Confusion Matrix (CM)| for the classifi-

cation task. L

(5.3

The temporal evolution ot the predictions for each time

window of a time-scaled audio signal with a factor a = 0.3

by means of Torchaudio algorithm. In this case the model

received a|LMS[as input, and it has been trained with the

Time-stretch-master algorithm.|

54

The histogram of the predictions about all the time win-

dows of a time-scaled audio signal with a factor a = 0.3

by means of Torchaudio algorithm. In this case the model

received a |LMJS|as input, and it has been trained with the

Time-stretch-master algorithm.|

55

Some examples of regression results (single time-window

approach).| oo

5.6

Some examples regression results (single time-window ap-

proach).|

[b.7

Some examples of results for the regression task with the

“multiple time-window” approach, [Median Residual un-

wrapped Phase (MedResPh)|as input, and Audiotsm time-

scaling algorithm.|

53

Spectrograms of original (a)) and time-scaled (b)) signals.|

o6
65

Glossary

ACC Accuracy.

ACV Audio Cooccurrence Vector.
AdaGrad Adaptive Gradient Algorithm.
Adam Adaptive Moment Estimation.

AE Absolute Error.

CEL Cross-Entropy Loss. ,
CM Confusion Matrix.

CNN Convolutional Neural Network. 13| [34]
B3 37} B9 BT-A5, BT} B3} 57 B (60162, 64 [66}69]

DFT Discrete Fourier Transform.
DL Deep Learning.

DTFT Discrete-Time Fourier Transform.
ENF Electrical Network Frequency.

FFT Fast Fourier Transform. 3], [33]

FM Feature Map. [12] [35]

FT Fourier Transform. [TH3] [}
GAN Generative Adversarial Network.

GLCM Gray-Level Cooccurrence Matrix.

HPF-Ph High-Pass Filtered unwrapped Phase. 32 (2]
64, b5 364

viil

Glossary ix

IDFT Inverse Discrete Fourier Transform. [3]

IFT Inverse Fourier Transform.

LMS Log-Mel Spectrogram, 20} B2, 3, [T} 9 57 A9 53 5
5% E7 6% B 6

LMSC Log-Mel frequency Spectral Coefficients.

LPC Linear Prediction Coding.
LR learning rate. [16] [17], 43} [44]

MAE Mean Absolute Error. 23]
MBConv Mobile inverted Bottleneck Convolution. [vii, [, [34] [36}

MedResPh Median Residual unwrapped Phase. [vii] (1],
H6H9, 5257 F9HEA

MFCC Mel-Frequency Cepstrum Coefficients.

ML Machine Learning. [13]
MSE Mean Square Error.

NLL Negative Log-Likelihood. [42]

NN Neural Network. [T}, [I9]

PCC Pearson Correlation Coefficient. [19, (48] 51 bFTH64,
00

PV-TSM Phase Vocoder Time-Scaling Modification. [10} [LT],

RMSProp Root Mean Square Propagation.

SE Square Error.

SGD Stochastic Gradient Descent.

STFT Short-Time Fourier Transform. [vid, [xiid], [xv], [11] [25]
27130}, 234} 66}, [63]

SVM Support Vector Machine.

List of Tables

Il

A summary of the baseline network of the EfficientNet [4].|

n2

A summary of the MBConv| block[4].|

34
36

53

Classifier Results with Log-Mel Spectrogram as input. In

bold, the maximum and the minimum achieved accuracy

values L

5.2

Classifier Results with [High-Pass Filtered unwrapped

Phase (HPF-Ph)[as input. In bold, the maximum and

the minimum achieved accuracy values|

[5.3

Classifier Results with [MedResPh| as input. In bold, the

maximum and the minimum achieved accuracy values.|

53!

Classifier Results with all the three kinds of input together,

T.e. the [LMS] the [HIPF-PH and the [MedResPh In bold,

the maximum and the minimum achieved accuracy values|

49

55

Regressor Results with LMS as input (single time-window

approach). In bold, the maximum and the minimum

achieved [Pearson Correlation Coethicient (PCC)| values. |

5.6

Regressor Results with HP-Ph as input (single time-

window approach). In bold, the maximum and the mini-

57

Regressor Results with [MedResPh| as input (single time-

window approach). In bold, the maximum and the mini-

mum achieved IPCClvalues. |

[>.8

Regressor Results with the three kinds of input together,

i.e. the[LMS| the[HPF-Phland the[MedResPh(single time-

window approach). In bold, the maximum and the mini-

mum achieved IPCClvalues. |

5.9

The summary of the tests for regression (multiple time-

window approach), Mode value, [LMS| as input. In bold,

I 1] 12 T -]” E:] -]IE£1£1|] |

58

List of Tables

xi

[5.10 The summary of the tests for regression (multiple time-

window approach), Mean value, [LMS| as input. In bold,

the maximum and the minimum achieved [PCC| values,

and two results for time-scaling factors not present dur-

g tralning.|

[5.11 The summary of the tests for regression (multiple time-

| window approach), Median value, [LM§|as input. In bold,
|] : 0 — Teved PCCvalues]

[5.12 The summary of the tests for regression (multiple time-

| window approach), Mode value, [HPF-Phl| as input. In

[bold, the maximum and the minimum achieved [PCC]| values.| 60

[5.13 The summary of the tests for regression (multiple time-

| window approach), Mean value, [HPF-Ph| as input. In

[bold, the maximum and the minimum achieved [PCC]| values.| 60

[5.14 The summary of the tests for regression (multiple time-

| window approach), Median value, [HPF-Phlas input.|. . .

61

[5.15 The summary of the tests for regression (multiple time-

| window approach), Mode value, [MedResPh| as input. In

| bold, the maximum and the minimum achieved [PCC]| values.| 61

[5.16 The summary of the tests for regression (multiple time-

| window approach), Mean value, [MedResPh| as input. In

[bold, the maximum and the minimum achieved [PCC]| values.| 62

[5.17 The summary of the tests for regression (multiple time-

| window approach), Median value, MedResPh| as input.| .

62

[5.18 The summary of the tests for regression (multiple time-

| window approach), Mode value, three kinds of input to-

[gether, i.e. the [LM5] the [HPF-Phland the [MedResPhl In

[bold, the maximum and the minimum achieved [PCC]| values.| 63

[5.19 The summary of the tests for regression (multiple time-

window approach), Mean value, three kinds of input to-

gether, 1.e. the |LMS] the [HPF-Phland the [MedResPhl In

bold, the cross-dataset test result for the model with Tor-

chaudio algorithm used for training and Audiotsm in the

testing stage.| oL

63

List of Tables xii

[5.20 The summary of the tests for regression (multiple time-

window approach), Median value, three kinds of input to-
gether, 1.e. the |LMS] the [HPF-Phland the [MedResPhl In
bold, the maximum and the minimum achieved |PCC| val-

ues, and the cross-dataset test result for the model with

Time-stretch-master algorithm used for training and Au-

diotsm in the testing stage.|. 64

Introduction

The widespread diffusion of electronic devices, such as smartphones,
tablets, or portable PCs, together with the recent drastic technologi-
cal evolution, resulted in a high ease of production of user-generated
contents. These multimedia contents can be generated by means of pro-
fessional, but increasingly easier to use, digital editing tools.

Because of the aforementioned simplicity to generate tampered con-
tents, nowadays multimedia files spread at extreme speed, and it is chal-
lenging to detect if a digital content has been altered or not.

These phenomena have led to the study and research of multimedia
forensic methods, in order to identify whether a given image, video, or
audio content is the original one or a digitally-tampered version.

Up to now, several audio forensics techniques have been developed
in order to detect tampering and forgeries of various kinds. As we will
describe in the next chapters, the detection of tampering in audio signals
can be complicated by the application of post-processing operations.

The main goal of this works concerns the identification of time-scaling
operations on audio signals. We developed a solution to perform time-
scaling detection and estimation, i.e. to predict if an input audio signal
has been modified by means of a time-scaling algorithm, and possibly
to estimate the correct value of the time-scaling factor. Typically, time-
scaling modification algorithms leaves some interpolation traces on the

IShort-Time Fourier Transform (STFT)| of the input signal. For this rea-

son, we tried to blindly investigate audio signals in order to find such
artifacts. The method we implemented strongly relies on a data-driven

approach. Specifically, we developed a [Convolutional Neural Network|
based solution, whose training process has been conducted with
original audio signals and time-scaled ones.

The two fundamental goals of this thesis are:

o C(lassification, i.e. detecting if the input signal is original or if it has
been processed by means of a time-scaling algorithm. Therefore,

Introduction xiv

the [CNN| must return as output a discrete number indicating the
presence or not of time-scaling operations. Namely, 1 if the system
has encountered the application of a time-scaling algorithm, or 0 if
the signal has been identified as original, i.e. with no time-scaling

modifications.

o Regression, consisting of the estimation of the time-scaling factor «
of the possibly applied time-scaling algorithm. In this case, the out-
put value is a continuous number, indicating the prediction about
the time-scaling factor.

As far as classification is concerned, the approach consists of analyzing
a single temporal window composed by 64 frequency bins and 96 time
samples extracted for each input audio signal, and making a prediction
about the presence or not of time-scaling operations on that signal.

Regarding the task of regression, we identified two different ap-
proaches:

1. The “Single time-window” approach, consisting of making a predic-
tion for a single temporal window of 64 frequency bins and 96 time
samples for every input audio signal (i.e. likewise we proceeded for
the classification task);

2. The “Multiple time-window” approach, implying that each input
signal is divided into many subsequent temporal windows, then the
overall estimation about the signal time-scaling factor is produced
by computing the mean, the median value or the mode between
all the predictions about the temporal windows of the same input
signal.

For each audio signal, we feed our with different 2D represen-
tations of the signal itself: the Log-Mel spectrogram, a high-pass filtered
version of the unwrapped phase, a median filtered version of the un-
wrapped phase, and the three of them together.

The dataset needed for the training process of the employed
consists of original audio signals and time-scaled ones, obtained by means
of three different algorithms: Audiotsm [5], Torchaudio [6] and Time-
stretch-master [7].

We conducted all the experiments either by using the same dataset of
the training stage and by adopting a cross-dataset approach, i.e. choos-
ing two different datasets for training and test. This allowed us to mea-
sure the ability of the [CNN]to recognize general artifacts of time-scaling

Introduction XV

algorithms regardless of the specific algorithm used. The achieved re-
sults show that our solution is appropriate to solve the goals of this
work. Specifically, the best outcomes have been obtained with the Log-
Mel spectrogram as input, and in cross-dataset tests between Torchaudio
and Time-stretch-master related datasets. On the contrary, we need fur-
ther investigations to improve results for tests with unwrapped phases
as input, and for cross-dataset configurations with the Audiotsm related
dataset used during the testing stage.

This thesis is organized as follows.

Chapter [1| covers the basic concept which this work is based on, and
that will be necessary to understand the rest of the thesis. Moreover,
we present a brief overview about the state of the art in the multimedia
forensics field. In Chapter [2] we formally define the problem that we
want to solve with this work, relying upon a mathematical formulation.
Chapter[3] instead, contains the description of all the preliminary analysis
that we performed about the traces left by time-scaling algorithms on
the audio signal’s [STFT] and its phase. In Chapter [we describe the
methodology that we devised to achieve the fundamental goal of this
thesis. In particular, we will go into the details of the architecture of the
chosen system. In Chapter 5, we analyze in details the achieved results
for each task. Finally, in Chapter [0 we point out the possible future
directions suggested by this work.

Theoretical Background

This chapter introduces the readers to the basic concepts that will be
necessary to understand what we will discuss in the following chapters.
1.1 Time-Frequency Audio Representation

In this section we will focus on the standard concepts that are used to
represent audio signals in the time and frequency domain, which a great

part of this work is based on.

1.1.1 The Fourier Transform

The [Fourier Transform (FT)|[has been theorized by Jean Baptiste Joseph

Fourier in 1822, and it is an operator that allows to pass from the time
domain to the frequency domain, and vice versa [§]. Indeed,if we express
an analog signal s(t) as a function of time ¢, we can describe it in the

frequency domain with the following relationship:

S(f) = /_+OO s(t)e 2 tdt, f € R, (1.1)

o0

where f is the frequency and i the imaginary unit. The equation (1.1]) is
then the [F'T], while its counterpart, the [[nverse Fourier Transform (IFT)|
is used to move from the frequency domain to the representation as a

Chapter 1. Theoretical Background 2

function of the time, and it is expressed as follows:

s(t) = /_+OO S(f)eItdf, t € R. (1.2)

Briefly, we can write S(f) = F[s|f] and s(¢t) = F'[S|t], where F and
F~! are respectively the and of the signal. Another way to
express them is s(t) SN S(f), S(f) i s(t).

The above definitions are valid when we are in the analog domain,
so when we talk about continuous signals. However, in our work, we are
more interested in discrete-time signals, complex functions that we can
define as:

s: Z(T) — C, (1.3)

with Z(T) being the set of the multiples of T":
Z(T):{ ’_T’O’T’QT’}’ (14)

and T" > 0 is the sampling period, i.e. the time-spacing between the n
instants where the signal is defined, so that Fy = 1/T is the sampling
rate, namely how many samples are aquired for each unitary time.

The signal is usually denoted as s(nT), nT € Z(T). The of
discrete-time signals is called [Discrete-Time Fourier Transform (DTFT)|

and it is described by:

—+00

S(Q) =) s(nT)e ™, (1.5)

n=—oo

where Q = w/F, = 2nfT is the normalized frequency, and the
Inverse{DTET] is:

1 2

s(nT) = o /. S(Q)e™"dQ. (1.6)

In order to use electronic processors, we need to work with finite
sequences of values, both in the time and frequency domain. For this

reason, we will consider only a finite sequence of N time values:

Sp = {507817”' 78]\/'71}7 (17>
and a finite sequence of N frequencies:
Sk = {807517”' 7SN*1}7 (18>

basically obtained by sampling S(£2) at intervals of QW”, where each fre-

quency discrete sample is denoted as “bin”. Finally, this is achieved by

means of the [Discrete Fourier Transform (DFT);

N—-1
- 27
Sk = Z spe Nk (1.9)
n=0

Chapter 1. Theoretical Background 3

while the [Inverse Discrete Fourier Transform (IDFT)|is expressed by:

=

Spel Xk, (1.10)
0

Sp —

1
N

i

As we mentioned before, the final goal of the [DFTT]is to be used by
eletronic computers, but, since it exhibits a computational complexity of
O(N?), generally a more efficient version is implemented, that is the
IFourier Transform (FFT), with a complexity of O(N log N).

1.1.2 The Short-Time Fourier Transform

Previously, we described how the [F'T| represents a signal as a linear com-
bination of complex exponentials (1.1), but it does not give any infor-
mation about time evolution, i.e. how the frequency behaves as the

time changes. The algorithm that allows us to describe signals in a com-

bined time-frequency representation is the|[Short-Time Fourier Transform|
(STFT)| whose basic idea consists of dividing a signal into shorter seg-
ments by means of a window w, and performing the over them [9].

From now on, for the sake of simplicity, we will simply denote a discrete
signal as s(n). Its [STFT|is defined as:

o0
STFT{s(n)}(m,k) = S(m, k) = Z s(n)w(n — m)ei%k”. (1.11)

n=—oo

As we mentioned before, w is a window function localized at the time
instant n that takes only a portion of the signal around n. The length
M of w determines the behavior of the in terms of time and
frequency resolution, indeed, a narrow window provides good time res-
olution but poor frequency resolution, and vice versa for wide windows.

Some popular window functions are, for example, the Rectangular win-

dow (Fig. [L.1), defined as:

1, Mol oy o M
wr(n) 2 2 =0 (1.12)
0, otherwise

or the Hanning window (Fig. [L.2)):

wr(n) [1 +cos(27r—n)} . (1.13)

Chapter 1. Theoretical Background 4

Rectangular window of length M=39

Amplitude
o
w
(=]

T T T T T T T
-30 —20 -10 0 10 20 30
Sample

0 Frequency response of the rectangular window

T T T T T
—-0.4 -0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

|
]
w

|
3]
o

|
= |
o~
S w

Normalized magnitude [dB]

Figure 1.1: A Rectangular window and its frequency response.

Hanning window of length M=39

1.00
v 0.75
=
2
£ 0504
[=%
3 0.25
DOD T T T T T T T
-30 -20 -10 0 10 20 30
Sample
= . Frequency response of the hanning window
=
@
T -25
2
H
o 50
£
o -75
[T
N
% —100 A
£
5 . . . ‘ ‘
= -0.4 -0.2 0.0 0.2 0.4

Nermalized frequency [cycles per sample]

Figure 1.2: A Rectangular window and its frequency response.

1.1.3 Spectrogram
The [STET] of a signal can be decomposed as follows [10]:

S(m, k) = [S(m, k)| "), (1.14)

with
¢(m, k) = Z(5(m, k), (1.15)
where |S(m, k)| is the spectrogram of the signal (or magnitude of the

STET)), and ¢(m, k) is the phase spectrum of the [STFT}|
In addition, we can define the unwrapped phase of the |STFT| [11] as:

o(m, k) = ¢(m, k) + 2mp(m, k), (1.16)

Chapter 1. Theoretical Background D

Phase (rad)
o

T T T T T
0 20 40 60 80
Time (samples)

(a) Wrapped phase time evolution for a single frequency
bin.

—20 -

—40 4

Phase (rad)

—60

—80 -

T T T T T
0 20 40 60 80
Time (samples)

(b) Unwrapped phase time evolution for a single fre-
quency bin.

Figure 1.3: The phase unwrapping process.

where p(m, k) is an integer chosen appropriately so as to cancel any
discontinuity between consequent frames such that:

lo(m, k) —(m + 1,k)| > . (1.17)

Starting from the concept of spectrogram we just defined, we end up
with a really powerful visual representation tool that allows to see the
spectral evolution of a signal over time. Typically a spectrogram is rep-
resented in a graph with two dimensions: on the horizontal axis we have
the time evolution, while on the vertical one there are the frequencies,
arranged on several possible scales. We usually represent the behaviour
of the signal spectrogram (i.e. the magnitude) as a function of
time m and frequency k.

Chapter 1. Theoretical Background 6

10000

—60
8000
T -80
- -
¥ 6000 =
& z
b -100G
= 7]
4
£ 4000
-120
2000 —140
—160

5 10 15 20 25 30
Time (samples)

Figure 1.4: A spectrogram of a .wav audio file

1.1.4 Mel Scale

The Mel-Scale is the result of psychoacoustics research, relating real
frequencies to the perceived pitch, starting from earlier studies lead by
Stevens and Volkman [12]. From these studies emerged that human ear
resolves frequencies in a non-linear fashion across the audio spectrum
[13]. The human ear’s behaviour is simulated with the so-called Mel
filterbank, that is a set of triangular filters, usually 40, whose center
frequencies are located on the Mel scale. The two extreme minima of
each filter are located on the center frequency of the two adjacent ones,
according to an equation that puts in relationship the index of the bin of
the filter bank with its center frequency f[Hz]. In the literature there are
two main formulas to define the frequency arrangement on the Mel scale.
The HTK formula [I4] maps the frequency range (Hz) to Mel values:

Mel(f) = m = 2595 logy (1 + %) ; (1.18)

while the Slaney algorithm [I5] maps the Hertz frequency range on a
range from 0 to 40:

(f — f1)/66.67 if f < 1000Hz,

In(f/1000) .
13+ Tn(7y /1000) otherwise,

Mel(f) = m = (1.19)

where f; is the lowest frequency of the filter bank (generally 133.33Hz)
and fj, is the highest one (generally 6400Hz). The meaning of (1.19) is

Chapter 1. Theoretical Background 7

1.0+

0.8

0.6

Weights

0.4 1

0.2 1

0.0 1

T T T T T T T
0 1000 2000 3000 4000 5000 6000
Frequency (Hz)

(a) HTK Mel-scaled filterbank

1.0 1

0.8

0.6 4

Weights

0.4 1

0.2 1

0.0 1

T T T T T T T
0 1000 2000 3000 4000 5000 6000
Frequency (Hz)

(b) Slaney Mel-scaled filterbank

Figure 1.5: Two Mel filterbanks according to the different formulas

that, on 40 filters H,,(k), where m is the filter index and k the discrete
frequency, we have the first 13 linearly spaced by 66.67Hz followed by
other 27 log-spaced ones.

We will refer to €2(m) as the inverse function of Mel(f), by means
of which we can compute the frequency in Hertz starting from the value
on the Mel scale, refering to either the HTK or Slaney formula. The
filterbanks described in Fig. [I.5] will be denoted from now on as by,
whose triangular filters H,,(k) are obtained from (1.18) and (1.19) with

Chapter 1. Theoretical Background 8
the following:
(0, k< Q(m—1)
k—Q(m—1) B
m m+1)—k ’
0, k> Q(m+1)

1.1.5 Log-Mel Spectrogram

An important tool that is widely used for speech and audio processing

is the Log-Mel spectrogram. Its working principle is analogous to the

classic spectrogram described before, but it is computed in another way:

LMS = In(fbye - [S(n,)| + €),

(1.21)

where b, is the aforementioned mel-scaled filterbank matrix, ¢ is the

logarithmic offset (an arbitrarily small number used to avoid the compu-

tation of the natural logarithm of zero) and - computes the matrix multi-
plication between the Mel filterbank fb,,e and the spectrogram |S(n, f)|.
The obtained LMS is a 2-D matrix that will be displayed in the same
way as in the classic case.

Frequencies (Mel bins)

Figure 1.6: A Log-Mel Spectrogram of a .wav audio file.

25

Time (samples)

100

Intensity (dB)

150

175

Chapter 1. Theoretical Background 9

1.2 Time and Pitch Scaling

In this section we will cover the fundamental principles at the basis of
time and pitch scaling modification algorithms, including the main pur-

poses and some formal definitions.

1.2.1 Main Idea

Time-scaling (or time-stretching) is used to control the time evolution
(i.e. the duration) of a signal independently from its frequency behavior.
The aim is to speed up or slow down the audio signal without changing
its spectral content (in particular, the pitch in the case of a periodic
signal) [I6]. There are several applications in which time-scaling might

be significantly useful, for instance:

e Post-synchronization: In cinema and music industry it often
happens that different tracks of a song or images and dialogues of
a movie have been prepared separately, so when they have to be
put together there might be the need to adapt the speed of some
audio signal;

« Data compression: Makhoul and El-Jaroudi in 1986 [I7] the-
orized the use of time-scale modifications in order to compress
data for storage or communications. Data can be compressed when
stored or transmitted, by shrinking them, and expanded back once
received or loaded. However, this method it is not used anymore
since it can be applied only a limited number of times for each
audio track, and fortunately now we have better data compression
algorithms;

+ Reading by listening: For blind people, listening is the only valid
alternative to reading. However, since on average people can listen
faster than they can read, time-scale modifications can increase the
listening rate and the amount of usable information.

By contrast, pitch-scaling is referred to as the operation of altering the

frequency content of an audio signal without changing its time evolution.

1.2.2 Time scaling definition

According to the [FT] time and frequency evolutions are not completely
independent, so it can be complex to determine a model to explain time-

Chapter 1. Theoretical Background 10

modification without referring to pitch-scaling. This goal can be ac-
complished by adopting a parametric model for audio signal. Maybe
the simplest model we can use to start defining these algorithms is the
quasi-stationary model introduced by [I8, 19], in which the signal s(¢) is
represented as a sum of I(t) sinusoids with time-varying instantaneous
frequency w;(t), phase ¢;(t) and amplitude A;(¢):

1(t)
s(t) =Y Ai(t)e’*), (1.22)
i=1

with
¢

¢i(t) :/ wi(T)dr. (1.23)

From a mathematical point of view, the time-scale modification can be
seen as a mapping between time in the original signal and time in the
modified one. This mapping is described by the following equation:

t—>t’:T(t):/ Zar, (1.24)
0

o
where a > 0 is the so-called time-modification rate. When 0 < o < 1,
the signal is slowed-down, whereas, for a > 1, the signal is speeded-up
by means of time-scale compression. Finally, if we refer to the sinusoidal
model described in (1.22)) and , the time-scaled signal can be de-
scribed as:

I(T1(t"))
S)=> A(T()M, (1.25)
=1

with ;
gb;(t’):/ wi(T~(7))dr. (1.26)

The equation expresses that the amplitude of the 4;, sinusoid of
the time-scaled signal at the instant ¢’ is equal to the amplitude of the
same sinusoid of the original signal at time ¢t = T~1(#'). In the same way,
if we compute the derivative of ¢}(t') with respect to t we can notice
that the instantaneous frequency at time ¢’ in the original signal is the
same of the original one at time ¢ = T~!(¢). This means that the time

evolution has changed, while the frequency content has not.

1.2.3 Phase Vocoder Time-Scaling Modification

In this subsection we will describe the time-scaling algorithm we will

refer to in the continuation of this work: the[Phase Vocoder Time-Scaling|

|Chapter 1. Theoretical Background 11|

IModification (PV-TSM)| [20]. The first step of the [PV-TSM|is to divide
the input signal s(n) into smaller analysis frames s,,(n), where m € Z

identifies the analysis frame, spaced by an analysis hopsize H,, in order
to compute S(m, f), the |STET| of the input signal. The crucial step of

the [PV-TSM]| consists of computing a modified [STFT| of s(n):
SMod (. £) = |S(m, f)| e2misMe k), (1.27)

where M°d(m, k) is the adjusted phase, computed to avoid artifacts, with
the phase propagation iterative process as:

(m, k) 22 (1.28)

Mo+ 1,K) = Mo (m, k) + Flk(m,) —

coef
F¥ . (m, k) is the instantaneous-frequency coefficient at bin (m, k), Hy the
synthesis hop size, i.e. the spacing between synthesis frames , and
F, the sampling rate. The modified analysis frames sM°d(n), m € Z, are
obtained by means of the of SMed (. f), then they are relocated on
the time axis in order to perform the time-scale modification, obtaining

the synthesis frames:
w(n)sied (n)

ZUEZ w(n - UHS)T

Finally, the output time-scaled signal y(n) is computed from the synthesis

(1.29)

Ym(n) =

frames as:

y(n) = ym(n —mH,). (1.30)

meZ

1.3 Convolutional Neural Networks

In this section we will define the basic concepts at the basis of the main

architecture that we used for our project, i.e. the [Convolutional Neurall
INetwork (CNN)|

1.3.1 General Idea and Definitions

A is an artificial feed-forward [Neural Network (NN)| whose con-

nectivity pattern between neurons is based on the animal visual cortex

organization [21].

are trainable architectures composed of multiple stages [22].
This concept was introduced in 1989 by Yann LeCun [23], who, follow-
ing the concept of Cognitron (the very first theorized by Kunihiko

Chapter 1. Theoretical Background 12

Fukushima in 1975 [24]), developed LeNet, a with the aim of recog-
nizing handwritten digits. addressed a niche market in the postal
and banking sector until 2010s, when new algorithms and technology
improvements, such as the possibility to use very large datasets and to
perform computations on GPUs, brought forth better results. Thanks
to these improvements, now are widely used for many purposes
like image and auditory perception, language understanding and many
others.

Each stage of a typical[CNN] has a set of [Feature Maps (FMs)|as input
and another one as output, in such a way that each output [FM]represents

a specific feature extracted at all locations of the input. Typically, a[CNN|
is composed by layers, including, as the most used [22]:

 Filtering (Kernel) Layer: the filtering layer contains, as input,
a 3D array, x;, with n; 2D with size ny X ng, while the output
is composed by a 3D matrix, called y;, with a m; X mg X m3 m
The filter is a trainable convolution matrix (kernel) denoted as
k with dimensions l; x ly and the same depth of the input [FM]
that connects x; to y;. The filter computes y; = b; + >, kij * z;
with b; being a trainable bias parameter, and x the convolution
operator, meaning that each filter detects a particular feature at
every input location. The filter moves with a certain step (stride)
in both horizontal and vertical dimension, in order to cover the
entire input [FM] A convolutional layer, in order to be completely
described, needs certain parameters to be described, such as the
kernel with its size, the number of input/output channels, and some

convolution hyperparameters like padding or stride.

e Non-Linearity Layer: In this layer a so-called activation func-
tion is applied to each point of the activation map of the
previous layer. Some typical applied functions are the Rectified
Linear Unit (ReLU: f(z) = max(0,x)), the Hyperbolic Tan-
gent (f(r) = tanh(x)) and the Sigmoid (o(z) = (1 + e7*)71).
Sometimes, this function is followed by some sort of normaliza-
tion, to enforce local competition between adjacent features, as

suggested by visual neuroscience models [25] 26].

« Feature Pooling Layer: Generally, a pooling layer of a [CNN]|
consists of a function that replaces the output of the net at a cer-

tain location with a summary statistic of the nearby outputs [27].

Some popular pooling functions used in [Deep Learning (DL)| are

the max pooling function, that takes the maximum output inside a

Chapter 1. Theoretical Background

13

rectangular neighborhood, the average pooling, the L? norm or the

weighted average, based on the distance of the pixels from the center

of the rectangular neighborhood. The pooling layer gives several

benefits, such as the spatial size reduction, with a consequent de-

crease of the required computational power, noise reduction in the

case of the maz pooling function, and finally it is useful because

it makes the representation substantially invariant to small varia-

tions. This property is important if we care more about detecting

a certain feature rather than identifying exactly where it is.

The idea behind has its origin in the studies conducted by D.
H. Hubel and T. N. Wiesel on the cat’s and monkey’s primary cortex

[21), 28]. In these works they pointed out that in visual cortexes there

are neurons that individually respond to certain portions of the visual

field, called receptive field of the neuron. They identified simple cells

with local receptive fields, whose task is analogous to the ConuvNets filter

bank layers, and complex cells, whose function is similar to the pooling

layers.

16

18

24

26

1 2 3 4
1|0 1
5 6 7 8
% 0 1|1 =
9 |10 |11 | 12
2|1 1
13|14 | 15| 16
x H-V Flip
112 Z
1 1|0 _
1|0 1

Figure 1.7: An example of convolution between a matrix and a Kernel filter.

1.3.2 Classification and Regression

IMachine Learning (ML)| problems can be split into two main categories:

supervised and unsupervised learning. In the former we utilize known

datasets, by means of labels, to make predictions, while in the latter we

infere structures about data without any prior information about them.

Chapter 1. Theoretical Background 14

7 |100| 8 |29 7 |100| 8 |29
34 (31| 0 |11 34 (31| 0 |11
14 | 14 | 16 | 45 14 | 14 | 16 | 45
14 |14 |74 | 9 14 |14 |74 | 9
szkpoul 2x2 pool

size size

100| 29 43 | 12

14 | 74 14 | 36
(a) Max pooling (b) Average pooling

Figure 1.8: Two examples of pooling.

Supervised Learning is the category we are interested in most, and it
can be defined through the following attributes:

e« Data: dataset D is composed of n samples, such that D =
{D1,Ds,...,D,} and D; = (z;,y;), where z; : (z;1,%i2, ..., Tig) 18
the input vector of size d and y; is the desired output (target or
label);

e Goal: learning the mapping between input and output f : X —
Y such that y; =~ f(z;),Vi=1,...,n.

Supervised learning is itself divided into two main groups: Classifica-
tion and Regression, whose substantial difference is that in classifica-
tion the output Y is discrete, while in regression Y is continuous. For
example, a typical regression problem can be to guess the price of a house
starting from some of its features, such as the size or the age (Fig.[1.10)),
while an example of a classification problem can be the identification of
the animal in a picture (Fig.|1.11]).

After that, both tasks require a loss computation stage, that performs
the calculation of a so-called loss (or cost) function. The loss function

Chapter 1. Theoretical Background 15
Machine
Learning
Supervised Unsupervised
Learning Learning
Classification Regression Clustering Association

Figure 1.9: A summary diagram of the main goals of Machine Learning

160000 - o

140000 -

120000 +

100000 A

e ($)

3 80000 -

Pric

600001

40000 A

200004

0

1500 2000 2500 3000

Area (m)

0 500 1000

Figure 1.10: An example of Regression

maps an event of the system to a real number that represents the behavior
of the so that all the complexity can be reduced to a unique single
scalar value. The importance of such reduction lies on the fact that it
makes the system comparable with others and, specially, allows us to
measure its quality. Concretely, a loss function measures how much our
system’s results f(xz;) differ from the expected ones y; [29].

1.3.3 How to train a CNN

Once the loss is computed, the problem of training a[CNN]is equivalent to
the problem of minimizing the loss function. At the very first step of the
training process the trainable filter weights k;; are randomly initialized,

hence the loss is quite high, but, as we said before, the goal is to minimize

Chapter 1. Theoretical Background 16

IICatII
Classification

llDogll

Figure 1.11: An example of Classification

it by adjusting such weights. The procedure by which we try to minimize
the loss of a [CNN]| is called back-propagation, that has the goal of
computing the gradient of the loss with respect to the filter weights,
so that it can be set to zero by optimizing the Kernel weights.

L)
Vi) =1: : (1.31)
()
where
p=(k1, - kn). (1.32)

As we described in and , the gradient of a function is the
vector field containing at the point p all the partial derivatives of that
function at p, and it is also a measure to understand the direction of the
fastest increase of the function f(p).

After the gradient is computed with back-propagation, we need to up-
date the weights by means of an optimization algorithm. One of the most

popular ones is the [Stochastic Gradient Descent (SGD), whose update

rule is k;; := kij — A2, where L is the loss function (or cost function)
ij

and A is the so-called [learning rate (LR)l Another important optimiza-

tion algorithm is the [Adaptive Moment Estimation (Adam), that com-
putes adaptive for each parameter, instead of keeping the same [LR]
for all the trainable weights, and, following the Momentum optimiza-

tion technique, takes into account the gradient of past steps to guide the
optimization process [30]. algorithm combines the advantages of

Chapter 1. Theoretical Background 17

|Adaptive Gradient Algorithm (AdaGrad)| and [Root Mean Square Prop-|
lagation (RMSProp)| [31), 32], resulting in the key features we described

before. The update rule for the (i5)™ weight at time step ¢ + 1 according

to the optimization algorithm is the following [33]:

A X 1My
Kiipar i=kiiy — ———" 1.33
])t+1 jvt \//UTt+ € ()
where
« my
— 1.34
mt 1 _ /Bi’ ()
b= —t (1.35)
1 =755
and where
my = (1—B1)g: + fim(t — 1), (1.36)
v = (1= Ba)gi + Pav(t — 1). (1.37)

Finally, there are only a few parameters remained to be defined, in order
to complete the definition of the algorithm: € is an arbitrarily small
number chosen in order to avoid the division by zero, ¢ is the gradient
defined as VJ(k;j14+1), and 5 and [are the so-called the exponential
decay rates, usually chosen as f; = 0.9, 55 = 0.999.

[LR] is one of the most crucial hyperparameters for [CNN§| since it
is very important to find a good compromise on its value, so as not to
choose it too big, avoiding to find an optimal solution, nor too small,
making this way the computation very slow and inefficient.

A useful set of tools generally used in the training process of
are the so-called callback functions, i.e. a set of functions that allow
to keep track of the situation of training in real-time, and eventually to
early-stop the process if no improvements are brought about the learning
point of view. Callbacks include some functions to dynamically modify
the [LR] such as the “Reduce [LR] on plateau”, that automatically reduces
the [LR] when it reaches the so-called plateau, i.e. a quasi-constant value
(hopefully a minimum).

Another important concept is the notion of epoch: the number of
epochs is a parameter that denotes how many times the learning algo-
rithm will pass through the entire training subset. During a single epoch
each sample in the training subset has had the possibility to adjust its
trainable weights. To understand the relationship between epochs and
batches, an epoch consists of one or more batches.

Chapter 1. Theoretical Background 18

Once a good approximation about the optimal filter weights has been
found, we can say that the training process has ended, namely our [CNN|
has learned how to answer at its best to our inputs, meaning that the
filter weights are set so that the error (i.e. the loss) between the network’s

output and the desired one is minimized.

1.4 Audio Forensics: State of the Art

The diffusion of electronic devices and multimedia platforms to share
digital user-generated contents has been growing exponentially in the
last decades. Moreover, there are more and more softwares on the market
that allow users to edit multimedia content in a very simple way with
professional results. Finally, multimedia files are usually employed in
law courts as evidence for trials. For these reasons, the evolution and
development of multimedia forensics solutions have been crucial in the
recent period.

1.4.1 Related Methods

Several research fields have been developed on the topic of audio foren-

sics, starting from the most classic studies on the [Electrical Network]

IFrequency (ENF)| for validating audio signals, concerning the extraction,

enhancing [34] and analysis of the small frequency variations in the noise
generated by the electrical current, and the consequent comparison with
timestamps in the provider’s database in order to guarantee the authen-
ticity of the audio signal. Audio signals can be modified by means of
tampering techniques such as splicing, deletion or replacement, and the
detection of such modifications is a pursued goal in many research stud-
ies.

To avoid the detection of the aforementioned artifacts, some kind
of post-processing techniques, like artificial reverberation or noise ap-
plication, might be applied after the tampering, in order to mask it.
Luo, in [35] developed a method to detect post-processing application

by means of |[Audio Cooccurrence Vector (ACV)| a feature based on the

|Gray-Level Cooccurrence Matrix (GLCM)| used for image processing,

that is the joint probability distribution of two pixels’ cooccurrence val-
ues at a given offset, nemely, how often pairs of pixels with a specific
value occur in the image at each offset. The offset is a position operator
denoted as (Az, Ay) that can be applied to any pixel in the image, e.g.,
(3,5) means "three down, five right".However, the cooccurrence matrix,

Chapter 1. Theoretical Background 19

the offset can be parametrized also in terms of a distance, d, and an
angle, 0, instead of the offset (Az, Ay). An image with p different pixel
values will produce a p X p co-occurrence matrix, for each given offset.
Yan, in [36], did a similar thing, indeed, his algorithm had the goal
to detect audio post-processing, but in this case, it was done by tracking

the pitch, and measuring the similarity by means of the [Pearson Correla|
tion Coeflicient (PCC)|and the average difference. Zhang in [37] reached
the same goal using a [Support Vector Machine (SVM)| classifier using
IMel-Frequency Cepstrum Coefhicientss (MFCCs)| and |Linear Prediction|
|Coding (LPC)|as features, while, in [38], Korycki described how to detect
tampering exploiting the traces leaved by lossy compression algorithms.

Speech resampling detection has been achieved in [39] by exploiting the
Nyquist-Shannon fundamental theorem of sampling, and so the inconsis-
tency between the bandwidth energy and the sampling rate. However,
this method works well with resampling factors higher than one (over-
sampling), but it performs worse with undersampling. The detection of
the application of the sustain piano pedal has been accomplished in [40],
recurring to a [CNN| with a dataset composed by the same tracks with
and without the piano pedal, using MIDI messages as the ground-truth
information.

In [41], Canclini et al. described a method to detect if an audio
signal has been recorded indoor or outdoor, either by thresholding the
RT60 parameter (outdoor environments are supposed to have a smaller
reverberation time than indoor ones), or by using a with
and [Log-Mel frequency Spectral Coefficientss (LMSCs)|as input features.

Moreover, they tried to estimate the reverberating signal, and then to
subtract it from the original one, in order to test in a stronger way the
algorithm, as an anti-forensics technique.

Other anti-forensics techniques have been described, as in [42], for
audio source identification purposes, and in [43] 44], for image forensics.

In all of these three cases, the tool used to achieve the desired result

was a |Generative Adversarial Network (GAN)| [45], a system composed
by two [NNg| in which one, the generator, has to produce real and fake
data, which the other, the discriminator, has to recognize. The training

is achieved so that the generator learns how to fool the generator, and

vice versa.

Chapter 1. Theoretical Background 20

1.5 Conclusive Remarks

In this chapter we defined the basic concepts that we will need in the
next chapters. In particular, we illustrated the theory behind Time-

Frequency audio representation, overviewing the [Fourier Transform (F'T)|
the Mel scale, and some different kinds of spectrograms (e.g. the
ISpectrogram (LMS))).

Moreover, we summarized the salient features about Deep Learning

that we exploited during our project, such as [Convolutional Neural Net-|

works (CNNs)| and basic Deep Learning tasks (e.g. Classification and

Regression).
Finally, we depicted the State of the Art related to audio forensics
methodologies, trying to correlate them with our project.

Problem Statement and Formulation

In this chapter we will describe the goals of this project, with all the
different facets. The main target is to blindly identify the application of
some sort of time-scale modification on an audio track, hence, without
any prior information about it. The purpose is to investigate the signal
and try to find-out eventual traces left by the algorithm itself.

In order to state the quality of our system we need to define an
appropriate cost function. It is important to choose a suitable one that
sufficiently represents our problem, in order to be able to optimize our
results at their best.

2.1 Problem Formulation

Formally, let us consider an audio recording z(n), n = 0,1,--- , N. Given
a generic audio track, our goal is to detect whether it is the original
version or a time-scaled one, namely to produce a discrete output y €
[0,1], where 0 means “original”, and 1 means “time-scaled”. If this is
the case, we also aim at estimating the time-scaling factor «, i.e. an
approximation & € R*. From this point, the identification of time-scaling

can be split into two specific purposes: detection and estimation.

Chapter 2. Problem Statement and Formulation 22

2.2 Time-scaling Detection

The time-scaling detection is essentially a binary classification, namely
assigning the audio track a discrete label such as “time-scaled” (i.e. pos-
itive, affected by time-scaling) or “original” (i.e. negative), so the system
should tell if the signal is the original one or if it has been altered in its

time evolution.

Input audio signal xin)

Time-Scaling
detection system

o—- «Time-Scaleds

Figure 2.1: Formulation of time-scaling classification.

2.3 Time-scaling Estimation

In time-scaling estimation, instead, we are talking about linear regression,
then the goal is to produce a number in the continuous domain, as an
hypothesis about the value of the eventual time-scaling factor « ,
representing the rate between the duration of the original signal d,, and
the duration of the time-scaled one dis:

dor

o= —.
dts

(2.1)
Obviously, in the time-scaling estimation scope, if no time-scaling has
been applied, the returned value should be 1. In this case, being the
output a number in the continous domain instead of a discrete class,

the error should be computed in a different way. Some standard cost

functions for regression tasks are, for example, the [Absolute Error (AE)|

referred to as:
AE = |a — 4], (2.2)

or the [Square Error (SE)| expressed by:

SE = |(a — &)

, (2.3)

Chapter 2. Problem Statement and Formulation 23

where «; is the true time-scaling factor of the signal, and & the resulting
value from the system. To reduce the computational effort of the training
process, it is often used to split the dataset, that could be very large, into
smaller portions, called batches. For the reasons we just mentioned, we
need to resort to cost functions at batch-level, denoted as batch losses,
such as the [Mean Absolute Error (MAE)| and the [Mean Square Error|
(MSE)| obtained by computing the mean of respectively the and the
[SE] between all the samples of the batch.

Input audio signal xin)

Time-Scaling °
estimation system

Figure 2.2: Formulation of time-scaling estimation.

2.4 Conclusive Remarks

In this chapter we described the main goals we wanted to achieve in this
thesis. In addition, a mathematical formulation of the problem and of
the results to be obtained has been provided.

Preliminary Analysis on Phase

Re-sampling Traces

Before digging into the proposed method for audio time-scaling detection,
in this chapter we present some preliminary studies we have conducted
on the phase of time-scaled audio signals. In particular, we show that
it is reasonable to expect re-sampling traces on the phase of time-scaled
audio signals. This motivates the use of the audio phase as additional
input to our detector.

3.1 Hints about Phase Re-sampling Traces

In Chapter 1] we have described the working principles of time-scaling
algorithms in the [Short-Time Fourier Transform (STFT)| domain. We
showed that those algorithms have to perform some sort of re-sampling

operations on the [STFT] during the time-scaling synthesis stage. This
is necessary due to the mapping between the original and time-scaled
temporal axis.

In the light of this, magnitude and phase re-sampling traces
could be exploited to detect time-scaling operations. However, special
care must be used if phase is considered due to the way phase gets pro-

cessed and interpolated by time-scaling algorithms.

Chapter 3. Preliminary Analysis on Phase Re-sampling Traces 25

While magnitude interpolation is a trivial task, interpolating
the phase is not as straightforward. Indeed, a correct phase interpo-
lation must ensure phase continuation depending on the instantaneous
frequency of each tone present in the audio track. Moreover, due to its
2m periodicity, phase directly computed from an is wrapped (i.e.
it lies in the interval [—m, 7]), whereas phase continuation is performed
in an unwrapped domain (i.e. not considering the 27 periodicity). All
of these considerations must be taken into account in order to possibly
expose re-sampling traces on the phase. As an example, a wrapped phase
signal shows so many discontinuities that would make re-sampling detec-
tion a challenging task. It is therefore necessary to understand in which
domain it is better to perform phase analysis to expose re-sampling, thus

time-scaling.

3.2 Empirical Phase Re-sampling Detec-

tion Analysis

In order to understand which is a good domain for phase re-sampling
detection, we decided to conduct some experiments with the image re-
sampling detector proposed by Kirchner in [I]. Indeed, the phase
can be considered a 2D image with no loss of generality.

The considered detector [I] is a powerful forensic tool that exploits
the frequency representation of a signal in order to possibly expose re-
sampling traces. In a nutshell, the method is based on the computation
of the so-called p-map, that is a high-pass version of the signal under
analysis. Kirchner [1], Popescu and Farid [46] showed that the polished

and filtered [Fourier Transform (FT)|of the p-map exhibits strong promi-

nent peaks if some sort of re-sampling has been applied to the signal
under analysis (Fig. [3.1).

In the following, we show the output of the re-sampling detector in
a series of controlled tests with the goal of understanding whether it is
possible to detect re-sampling on the [STET] phase of time-scaled audio

signals in a specific domain.

3.2.1 Controlled Experiments: Single Tone

In this experiment, we consider the analysis of an audio signal composed
by a single tone (i.e. a single sinusoid at a given frequency), which is
time-scaled using different scaling factors. As we have full control over
the experiment, we can predict which is the theoretically expected phase

Chapter 3. Preliminary Analysis on Phase Re-sampling Traces 26

e+ 0s

§ 4]
bageyt
e

Figure 3.1: Results of Kirchner’s re-sampling detection for original image (top
row), 111% up-sampling (middle row) and 150% (bottom row) [I]. Left col-

umn: images; center column: p-maps; right column: p-map spectra.

of the time-scaled signal. We therefore compare the obtained unwrapped
phase after time-scaling with the theoretical one.

Considering a pure tone at 440 Hz, Fig. shows the theoretical
phase of its time-scaled version with factor 0.1 (a), the phase computed
from the actual time-scaled version (b), and the difference between these
phases (c). Fig. and report the result of the same experiment for
two additional time-scaling factors (i.e. 0.3 and 1.5, respectively).

By analyzing these figures, it is possible to notice that the phase
difference oscillates around a constant value (after an initial overshooting
due to the way time-scaling is implemented on the first time windows of
a signal). These oscillations must come from the computed phase, as
the theoretical one is linear. This suggested us to inspect the time-
scaled phase and also, if available, the difference between the expected
phase and the resulting one from the time-scaling algorithm, in order to
find an eventual correlation between its periodicity and the time-scaling
modification factor.

Chapter 3. Preliminary Analysis on Phase Re-sampling Traces 27

7
Time (samples)

(a) Expected phase of
440 Hz sinusoid’s [STET]
for time-scaling factor =
0.1

75 100
Time (samples T ime (samp les)

(b) Time-scaled phase of (c) Difference between
440 Hz sinusoid’s ETET] expected and resulting
for time-scaling factor = phase, at 440 Hz, time-
0.1 scaling factor = 0.1

Figure 3.2: Phase error analysis for a 440 Hz time-scaled sinusoid (time-scaling

factor = 0.1).

259
m| 07
s _oe
Ewo £
= =os
s
l 04
o
o 25 so s 10 wus oo 25 so 75 100 135 1m0 1
Time (samples)

75 00 us
Time (samples)

(a) Expected phase of
440 Hz sinusoid’s
for time-scaling factor =
0.3

yyyyyyyyyyyyy

(b) Time-scaled phase of (c) Difference between
440 Hz sinusoid’s [TET] expected and resulting
for time-scaling factor = phase, at 440 Hz, time-
0.3 scaling factor = 0.3

Figure 3.3: Phase error analysis for a 440 Hz time-scaled sinusoid (time-scaling

factor = 0.3).

Wo 125 130 1s
Time (samples)

(a) Expected phase of
440 Hz sinusoid’s [STET]
for time-scaling factor =
1.5

s 10
Time (samples)) Time (samples)

(b) Time-scaled phase of (c) Difference between
440 Hz sinusoid’s [STET] expected and resulting
for time-scaling factor = phase, at 440 Hz, time-
1.5 scaling factor = 1.5

Figure 3.4: Phase error analysis for a 440 Hz time-scaled sinusoid (time-scaling

factor = 1.5).

Fig. 3.5 reports the results of the re-sampling detector applied to the
unwrapped phase of the[STFT|of a time-scaled sinusoid with fundamental
frequency of 440Hz and time-scaling factor of 0.1. Specifically, Fig.
shows the [F'T] of the p-map, while Fig. [3.5D] reports a linear version of

Chapter 3. Preliminary Analysis on Phase Re-sampling Traces 28

Vertical Frequency
Magnitude

8

01 04 05

0z)
Frequency

3 B E)
Horizontal Frequency

(a) The p-map [FT|of the STFT|phase for (b) The p-map [FT| (linear version) of the
a 440 Hz sinusoid with time-scaling factor [STFT| phase for a 440 Hz sinusoid with
=0.1 time-scaling factor = 0.1

Figure 3.5: Detector results on the unwrapped phase of the [STFET| for a 440
Hz time-scaled sinusoid (time-scaling factor = 0.1).

5

Vertical Frequency
Magnitude

m M
o LJM
oo o o a5

oz)
Frequency

o B)
Horizontal Frequency

(a) The p-map [FT|of the |STFT|phase for (b) The p-map (linear version) of the
a 440 Hz sinusoid with time-scaling factor [STEFT| phase for a 440 Hz sinusoid with
=0.3 time-scaling factor = 0.3

Figure 3.6: Detector results on the unwrapped phase of the [STFT| for a 440
Hz time-scaled sinusoid (time-scaling factor = 0.3).

the same signal, obtained by integrating the p-map spectrum over the
angles in polar coordinates. In addition, in Fig. [3.6] and Fig. [3.7 we can
see the same detector results on the unwrapped phases of two time-scaled
sinusoids with a fundamental frequency of 440Hz and time-scaling factors
of 0.3 and 1.5 respectively.

The results just mentioned exhibit distinguishable periodicities in the

Chapter 3. Preliminary Analysis on Phase Re-sampling Traces 29

Vertical Frequency
Magnitude
8

04 05

3 B E) 0z)
Horizontal Frequency Frequency

(a) The p-map [FT|of the STFT|phase for (b) The p-map [FT| (linear version) of the
a 440 Hz sinusoid with time-scaling factor [STFT| phase for a 440 Hz sinusoid with

=15 time-scaling factor = 1.5

Figure 3.7: Detector results on the unwrapped phase of the [STFET| for a 440
Hz time-scaled sinusoid (time-scaling factor = 1.5).

[ET] of the p-map, as we can clearly notice in Fig. 3.5a] Fig. and
Fig. and manifest peaks in their respective linear versions (Fig.|3.5b|

Fig. and Fig. |3.7b]).

3.2.2 Experiment in the wild: complex audio track

Moving to a more generic and uncontrolled situation, the experiment
consists of the analysis of a complex audio track representing a music
recording of multiple instruments together. This track is time-scaled
using the same scaling factors of the previous scenario (i.e. 0.1, 0.3 and
1.5). In this case, since we are not able to exactly produce the actual
expected audio track with a different time evolution, we cannot compare
the obtained unwrapped phase after time-scaling with the theoretical
one.

In Fig. [3.§ we can analyze the results of the detector on the unwrapped
phase of the [STET] of a time-scaled complex track with a scaling factor
of 0.3. In this case, the intrinsic complexity of the track itself led to
the lack of clear periodicities in the of the p-map (Fig. , and to

weaker peaks in the linear version (Fig. |3.8b]).

Chapter 3. Preliminary Analysis on Phase Re-sampling Traces 30

Vertical Frequency
Magnitude

| M
o
) o) s

0z)
Frequency

3 B E)
Horizontal Frequency

(a) The p-map [FT|of the STFT|phase for (b) The p-map [FT| (linear version) of the
a complex track with time-scaling factor FTEFT| phase for a complex track with

=03 time-scaling factor = 0.3

Figure 3.8: Detector results on the unwrapped phase of the [STFT| for a com-
plex time-scaled track (time-scaling factor = 0.3).

3.3 Conclusive Remarks

The preliminary analysis described before on the phases of the [STET]
of time-scaled audio signals gave us some qualitative hints about the
correlation between the application of some time-scaling modification
algorithm and the presence of some recurrent pattern on the phase. As
we have seen, also the Kirchner’s detector shows some prominent peak
in the case of strictly controlled test cases (e.g. synthetically-generated
sinusoids). This is not valid anymore with more complex tracks, where
the intrinsic complexity of the signal masks the eventual traces left by the
time-scaling algorithm. Real test cases of complex audio tracks also make
practically impossible to pursue the approach of comparing the resulting
time-scaled signal with the expected one of the same duration, since in
this situation it would be very hard to produce a faithful estimation of
the expected phase.

Finally, despite a simple re-sampling detector turned out to be not
suitable to provide quantitatively reliable results about time-scaling de-
tection and/or estimation, it has been a very good starting point to find
a correlation between time-scaling and phase artifacts. As a matter of
fact, this detector inability to fully expose phase re-sampling motivated
us in investigating data-driven approaches that we will described in the

following chapters.

Proposed Methodology

In this chapter we will present the strategy we have used to achieve
the goals that we described up to this point. The adopted methods are
based on EfficientNet, a|Convolutional Neural Network (CNN)[developed
for image classification purposes [2]. Since we identified two different
tasks, we needed to define two different [CNNg with the fundamental
components in common, but with some slightly different architecture

elements, according to the task to be completed.
A summary representation of the proposed system is shown in
Fig. [4.1] We will analyze in details the architecture of such system in the

following sections.

4.1 Audio Pre-Processing

As we said before, the implemented [CNN] is based on a model that has
been developed to work with color images. Consequently, we need to
represent the signal as a 3D matrix with three (color) channels. We
moved from audio to three-channel images representations by producing
different kinds of 64 x 96 matrices from the signal, having so 64 frequency
bins to represent the spectral content, and 96 frames to describe temporal
evolution. These channel matrices are combined then in groups of three

with different arrangements.

Chapter 4. Proposed Methodology 32

W Input audio signal x(n)

Input pre-processing

Input Image
(3x64x96)

EfficientNet-BO Feature
Extraction

Feature Map
(1280x3x2)

Avg Pooling

Feature Vector
(1280)

Dropout Layer

Feature Vector
(1280)

Linear Map

Classifier Regressor

Figure 4.1: A summary representation of the proposed time-scaling detection
system

The channel 2D representations of the signal that we have decided to
use are:

o |Log-Mel Spectrogram (LMS);: This combined time-frequency visual

description of the audio signals has been computed according to the
Mel-scale conversion by means of the HTK formula ((1.18)) [14];

o |High-Pass Filtered unwrapped Phase (HPF-Ph); This representa-
tion is achieved by high-pass filtering the unwrapped phase ¢(m, k)
of the [Short-Time Fourier Transform (STF'T)| (1.16]);

e [Median Residual unwrapped Phase (MedResPh); This maytrix is
computed by subtracting the median-filtered version of (m, k)

from the original one.

The reason why we adopted the two aforementioned filtering-based ap-
proaches was that, initially, the unwrapped phases of time-scaled
©(m, k) exhibited for each frequency bin k£ a time evolution such as
small high-frequency variations over an important low-frequency signal

Chapter 4. Proposed Methodology 33

(Fig. 4.2). We wanted to filter-out this low-frequency information to
enhance the high-frequency variations. To do so, we adopted the two
strategies described above: the first one, the HP-filtered ¢(m, k), has
been reached by means of a 2"d-order Butterworth filter [47] with a cut
frequency set at 1kHz. The second method we used to keep the “noisy”
variations is to subtract the median-filtered version of ¢(m, k) from the
original one, since the median filter is a filtering technique used to re-
move noise by simply replacing each sample with the median value of the
neighbors [48].

404

Phase (rad)

-60 4 2

804

o 20 40 60 80 o 20 40 60 80
Time (samples) Time (samples)

(a) Unwrapped phase for a single bin. (b) HP-filt. phase for a single bin.

ad)
d)

404

Phase (r

60 4

80 4

0 20 40 60 80 0 20 40 60 80
Time (samples) Time (samples)

(c) Median filt. phase for a single bin ~ (d) Median residual for a single bin

Figure 4.2: The filtering process of the unwrapped phase of the [STFT

All of these representations are based on the computation of the
[STFT] of the input audio signal, that, in order to guarantee consistency,
we have implemented in all the cases with the same parameters:

o F,: 16kHz;
o Window type: Hanning;
o Window length: 25 ms (400 samples);

« Hop size: 10 ms (160);

o |Fast Fourier Transform (FF'T) length: 512 samples;

Chapter 4. Proposed Methodology 34

Table 4.1: A summary of the baseline network of the EfficientNet [4].

Stage Operator Resolution | # Channels | # Layers
i 7 BxW, | 6 i
1 Conv 3 x 3 224 x 224 32 1
2 MBConvl, k3 x 3 112 x 112 16 1
3 MBConv6, k3 x 3 112 x 112 24 2
4 MBConv6, k5 x 5 56 x 56 40 2
5 MBConv6, k3 x 3 28 x 28 80 3
6 MBConv6, kb x 5 14 x 14 112 3
7 MBConv6, kb x 5 TxT 192 4
8 MBConv6, k3 x 3 X7 320 1
9 Conv 1 x 1 & Pooling & FC TxT7 1280 1

e fi (for [LMS): 125Hz;
o f (for LMS): 7500Hz.

First, since we wanted to be coherent with the 64 x 96 shape of the
channel matrices, we needed to reduce the dimensionality of the [STFT]
from the resulting one to the standard size. In order to do so, we cut the
matrices on the time axis, and kept only the frequency bins associated
to the center frequencies of the HTK Mel filterbank.

As we said before, our[CNN|requires 3-channel images as input, there-
fore, we had to combine the channel matrices that we just described in
groups of three, and we decided to arrange them either by replicating the
same matrix three times, or by combining the three of them together, as
summarized in Fig. 4.3|

4.2 Backbone Architecture

Our [CNN] is based on EfficientNet, a model described by Tan et al. in
[2], whose main peculiarity is to uniformly scale its dimensions (depth,
width and resolution) by means of a compound scaling factor. This scal-
ing process starts from the baseline architecture, called EfficientNet-B0
[4]. As depicted in Table [1.1] the EfficientNet-BO0 is built on the
linverted Bottleneck Convolution (MBConv), also called Inverted Resid-
ual Bottleneck, a layer that was first introduced in [4] as fundamental
component of the presented MobileNetV2 Neural Network. has
been introduced on the convinction that:

Chapter 4. Proposed Methodology 35

20

Frequency (Mel bins)

[} 20 40 60 80
Time (samples)

|
[N]

|
-
o
-
~
w

Intensity (dB)

(a) Log-Mel Spectrogram

o

=
=)

]
(=1

<1

3

u
=
4
>
9
<
g
El
=
g
I

3

@
=1

40 60
Time (samples)

-6 -4 -2 2 4

o

o
Intensity (dB)

(b) HP-filtered phase.

8

Frequency (bins)
8

3

-3 =2 -1 [1 2 3
Intensity (dB)

(c) Phase — median filter

Figure 4.3: The three possible channel matrices of the

o |Feature Maps (FMs)| can be encoded in lower-dimensionality sub-

spaces;

o Non-linearities in the narrow layers of residual structures may result

Chapter 4. Proposed Methodology 36

in loss of information, without any increase of the ability in terms
of representational complexity.

The is based on an inverted residual structure (Fig. 4.4{(b)),
where shortcuts are introduced between thinner layers, in order to com-
pensate possible degradation problems [49]. As it is described in Ta-
ble a block, takes as input a tensor made of k channels,
and (h X w) resolution. It is composed by three convolution sublayers:

(a) The residual bottleneck block. (b) The inverted residual bottleneck.

Figure 4.4: Residual bottleneck block (a) vs. (b)[2].

Table 4.2: A summary of the MBConv| block[4].

Input ‘ Operator ‘ Output ‘

hxwxk 1 x 1 conv 2d, ReLU6 | h x w x (tk)
h xw x (tk) | 3 x 3 dwise s = s, ReLUG | 2 x 2 x (tk)

%x%x(tk) linear 1 x 1 conv 2d %X%Xk/

1. A point-wise (1 x 1) convolution, in order to expand the low-
dimension input [FM] to a ¢-times deeper one, ie. with shape
(h x w x tk), followed by a ReLU6 activation function, where the
ReLU6 is defined as y = min (max (0,), 6) (Fig. [£.5);

2. A depth-wise convolution by means of a (3 x 3) kernel filter with
stride s, also followed by the ReLLU6 activation function, in or-
der to obtain spatial filtering, resulting into a [FM] with shape
(5 & x th);

3. Finally, the spatially-filtered [FM] is projected back to a low-
dimension subspace with a point-wise convolution, followed this

time by a linear activation function.

As we can see in Table. the in EfficientNetB0 are defined
at each stage i with the expansion factor ¢, the dimensions of the kernel
filter at the intermediate sub-layer, the input Resolution <ﬁ[l X Wl>, the

Chapter 4. Proposed Methodology 37

T T T T T T T T T
-10.0 —=7.5 =5.0 —-2.5 0.0 2.5 5.0 7.5 10.0
Input x

Figure 4.5: The ReLLU6 activation function

output depth éi, and the number of layers Ijl-, meaning that the same
indicated at stage ¢ is repeated L times, having C; output
channels at each repetition.

The EfficientNet-B0 is the first fundamental block of our that
we have chosen to extract a feature vector of shape (1280, 2, 3) from the
input tensor of size (3,64,96). The feature extraction block (Fig. is
followed by an average-pooling layer, that further reduces the dimensions
to a 1D vector of 1280 scalar features. Then, the feature vector is fed to
a dropout layer, whose main goal is to set to zero some random feature,
according to a Bernoulli probability distribution [50], in order to avoid
co-adaptation and overfitting issues [51]. Finally, a linear transformation
is applied to the feature vector, such that:

y=x-W+Db, (4.1)

where y is the output of the with shape (nou), x is the feature
vector of 1280 elements, W is the trainable weight matrix, whose shape
is (1280, noy) and b is a trainable bias parameter. The parameter 74y is
the number of output classes, and is the parameter that, as well as the
loss function, differentiates the classification [CNN]| from the estimation
one.

4.2.1 Classifier

In the classification task, n., = 2, hence the output is a vector of two
numbers [y, y1], such that:

o If y; > yo, the has detected the precence of time-scaling;

Chapter 4. Proposed Methodology

l 224x224x3

Conv 3x3

l 112x112x32

MBConv1l, 3x3

l 112x112x16

MBConv6, 3x3

l S56x56x24

MBConv6, 3x3

l S56x56x24

MBConv6, 5x5

l 28x28x40

MBConv6, 5x5

l 28x28x40

MBConv6, 3x3

l 28x28x80

MBConv6, 3x3

l 28x28x80

MBConv6, 3x3

l 28x28x80

MBConv6, 5x5

l 14x14x112

MBConv6, 5x5

l 14x14x112

MBConv6, 5x5

l 14x14x112

MBConv6, 5x5

| v
MBConv6, 5x5
I
MBConv6, 5x5
l Tx7x192
MBConv6, 5x5
l Tx7x192
MBConv6, 3x3
| o

Figure 4.6: The extended representation of the EfficientNet-B0 [3].

Chapter 4. Proposed Methodology 39

o If yo > y1, the output prediction is “original”.

After the linear transformation, we find a nonlinear layer, whose goal is
to compute the softmax function. The softmax function, or normalized
exponential function, is a common choice as a last activation function of
a[CNN] with the aim to normalize the output of the network to a proba-
bility distribution over predicted output classes. The softmax function ¢
takes the output vector of the previous layer (i.e. the linear transforma-
tion) as input, that is a vector x of C' = ngy real numbers, and normalizes
it into a probability distribution y, made by C probability values propor-
tional to the exponentials of the input elements. The softmax function
is defined as follows [27]:
eve

Ye = s(2) = e (4.2)
meaning that the softmax applies the exponential function to each ele-
ment z. of the input vector x and normalize them by computing the ratio
between the sum of all these exponentials; this normalization ensures the
sum of the components of the y to be 1.

In this case, as a loss measure, we chose the |Cross-Entropy Loss|
(CEL), whose specific implementation will be defined in the following
chapter.

4.2.2 Regressor

In the case of time-scaling estimation, instead, nq, = 1, so the output is
simply a number that is the prediction of the about the time-scaling
factor a. For the regressor, the error function we chose to optimize the
prediction results is the Mean Square Error (MSE) (2.3).

4.3 Conclusive Remarks

In this chapter we presented the methodology that we developed to solve
the central issues of this work. Specifically, we defined the fundamental
architecture of the employed pointing out the distinct features and
building blocks, according to the particular task to achieve.

Experiments and Results

In this chapter we present the practical implementation choices of the the
methodology we described before. After that, all the obtained results,
referring to each test that we conducted, will be analyzed in details.

5.1 Dataset

In this section we will define how the dataset used for the test experiments
has been built.

5.1.1 Generation

First, we created a dataset of the original audio tracks that we used to
get only the original (not time-scaled) samples. We select audio tracks
from two state-of-the-art datasets:

o GTZAN genre recognition dataset: the first dataset we took data
from is the one created by George Tzanetakis for the research de-
scribed in [52]. This dataset is composed by 1000 mono tracks,
each of which 30 seconds long, sampled at 22050Hz, 16 bit depth.
The dataset is equally divided into 10 genres (blues, classical, pop,
country, rock, disco, hip-hop, metal, reggae, jazz).

Chapter 5. Experiments and Results 41

o IRMAS Testing Dataset: it is the testing subset of the dataset com-
piled by Ferdinand Fuhrmann in 2012, for Instrument Recognition
in Musical Audio Signals [53]. It is composed by 2874 excerpts with
a length between 5 and 20 seconds, sampled at 44.1 kHz, 16 bit.

The time-scaling modified tracks have been generated using three dif-
ferent [Phase Vocoder Time-Scaling Modification (PV-TSM)| algorithms:

o Audiotsm [5];

o Torchaudio TimeStretch [6];

« Time-Stretch-Master [7].

Several time-scaled tracks have been generated using the three afore-
mentioned algorithms on the original present tracks. The amount of
time-scaled tracks for each original one, i.e. the balancing principles of
the datasets, were chosen in a different way for classification and regres-
sion tasks. Regarding each task, the time-scaled tracks are generated in
a mirrored way (i.e. with the same randomly-chosen time-scaling fac-
tor for the same original track and the three algorithms), so that, both
for classification and regression, we end up into three instance of the
same dataset, with all the same parameters except for the time-scaling
algorithm. Specifically, the datasets are balanced in the following way:

o Classification: the balancing is achieved when we have the same

number of original and time-scaling tracks;

» Regression: in this case, we generated an amount of time-scaled
tracks such that we had approximately the same number of files
for each time-scaling factor from 0.1 to 2.0, using a step of 0.2 for
training and validation subsets, while using a step of 0.1 for the
test subset, including in all the three cases the files with oo = 1, i.e.
the original files.

After the audio datasets have been built, for each audio track we have
computed the |[Log-Mel Spectrogram (LMS)| the [High-Pass Filtered un-|
wrapped Phase (HPF-Ph)| and the [Median Residual unwrapped Phase]
i.e. the three kinds of input to the proposed [Convolutionall
INeural Network (CNN)|l Let us recall that the shape of the input tem-
poral windows of the must be (64 x 96), but the computation of
the aforementioned windows leads to more than 96 time frames. We de-

cided to divide the resulting spectrograms into several (64 x 96) temporal
windows and to keep only from the 3'¢ to the 6" following the tempo-
ral evolution order, having then a dataset consisting of four temporal
windows for each audio track.

Chapter 5. Experiments and Results 42

5.1.2 Dataset split

Audio files contained in our dataset have been grouped into three sub-
sets for training, validation and test stages, according to the following
proportions:

o Training: 68%;
o Validation: 17%;
o Testing: 15%.

To summarize, the final dataset “seen” by the is composed by
two versions (i.e. for time-scaling detection and estimation), each of
which is composed by three mirrored instances (one for each time-scaling
algorithm) divided into three balanced subsets for training, validation

and testing stages. Hence, the final datasets are divided in this way:
o C(lassification:

— Training: 20727 samples;
— Validation: 5184 samples;
— Test: 4568 samples

o Regression:

— Training: 52140 samples;
— Validation: 7850 samples;
— Test: 6910 samples.

5.2 Training Setup

As we described in the previous chapters, we need to define a cost function

to minimize in order to get the best results by adapting the trainable
parameters of the [CNN|] For the regressor we chose the

(2.3]), while for the classifier we adopted the |Cross-Entropy|
Loss (CEL), in this case, with the implementation provided by Pytorch,
combining the softmax nonlinear activation function (4.2)), planned on

the last layer of the [CNN| and the [Negative Log-Likelihood (NLL)|loss
function, defined as:

NLL(y) = —logy. (5.1)

Chapter 5. Experiments and Results 43

This implementation results into a loss function equivalent to the [CEL]
defined as:
eve
Zj:l e

Following a benchmark procedure in [CNN] training, we divide training
and validation datasets in several smaller portions, called batches. In our
case, we used a batch-size of 20 samples. The Optimization algorithm
we chose for our system is the Adam optimizer, presented for the first
time by Kingma and Ba in [30].

In the implementation of our system, we decided not to keep a con-

stant value for the [learning rate (LR), but to adapt it dynamically by

automatically reducing the [LR] when the validation loss reaches the so-
called plateau, i.e. a quasi-constant value. In simple words, when the
validation loss does not exhibit any improvement after a certain number
of epochs, the [LR]is reduced by a factor 10 in order to tune the train-
able model parameters in a finer way. This allowed us to start with a
relatively high value (i.e. 1073), making more important the earlier
results, and to reduce it then after 10 epochs with no improvements on
the related loss, in order to help achieving boosts to the learning process.

We decided to monitor the progress of the learning process, with the
aid of the so-called callbacks, i.e. a set of functions that allowed us
to keep track of the situation of training in real-time, and eventually to
early-stop the process if no improvements are brought about the learning

point of view. In particular, the training process can stop in two cases:

1. Early patience reaching: prior to learning process, a hyperparam-
eter called “patience” is set to identify the number of epochs after
which, if no improvement about the validation loss function is ob-
tained, the training must be stopped to avoid any useless additional
computation. In our case, we set it to 20 epochs;

2. Reaching of the maximum number of epochs: a threshold about
the maximum amount of epochs is set, so that, after this number
of epochs, the training is stopped in any case, without considering
any information about the improvements of the learning curves. In

our implementation, the maximum number of epochs was se to 80.

The training process has been conducted for time-scaling detection
and estimation with the parameters we described above, then the now we
will go in the details of how the results have been collected. In Fig.
we can see the monitoring logs refering to the training-validation process

Chapter 5. Experiments and Results 44

0.0010

0.0008

0.0006

0.0004

Learning Rate

0.0002 4

0.0000 4 l

o 10 20 30 40 50 60 70 80

Time (Epochs)
(a) The [LR]evolution.

e
i
°©
o
N
°

Training Loss
Training Loss
e
o
7}

0.10

0 10 20 30 40 50 60 70 80 o 1 2 3 4

Time (Epochs) Time (Iterations) le6
(b) The training epoch losss evolution. (c¢) The training batch losss evolution.
1 14
124
0.8 1
104
é 0.6 é 0.8
5 5
3 £ 051
S 044 E
0.4+
0.2 02
0.04
o0 (‘l 1‘0 Z‘D Bb 4‘0 Sb 6'0 7b Eb 6 100'000 ZDUbOD SDO‘ODD QDObOD 500'000 EDﬂbOD
Time (Epochs) Time (Iterations)

(d) The validation epoch losss evolution. (e) The validation batch losss evolution.

Figure 5.1: The logs of the training process for the regression task with [LMS
as input, Audiotsm time-scaling algorithm.

of the [CNN] with [LMSg| as input and the Audiotsm algorithm to obtain
the time-scaling modified tracks.

Fig. shows how the [LR] evolves with the passing of the epochs.
We can see that the [LR] value decreases with a factor of 10 when the
validation epoch loss does not reach any minima within 10 epochs. For

instance, we can see that at the 20" epoch the validation loss reaches
a local minimum, and then it keeps oscillating at higher values. Hence,
around the 30" epoch, the value changes from 1073 to 107*. This

Chapter 5. Experiments and Results 45

allowed to fine the the trainable parameters with a better precision, in-
deed we can see that the loss starts to decrease again. We can see that
this behavior is repeated later on, even between the 70 and the 80",
indeed, since smaller improvements are recorded also in the latest epochs,
no patience of 20 epochs is reached, then the training process is stopped
at the 80" epoch.

In Fig. we can see the training epoch loss evolution, while in
Fig. 5.1¢ and Fig. there are respectively the training and validation

losses for each sample in the two subsets.

5.3 Classifier Results

We decided to measure the performance of the classification prediction
by means of the |Accuracy (ACC)| defined as:

Tr + Trs Tr+Trs

ACC = _ |
Tr + Trs + Fr + Frrs R+ TS

(5.3)

where:

o Tr and Trs are the number of true (correct) predictions of respec-

tively original and time-scaled signals;
o Fgr and Frg the false (wrong) predictions;

e R and TS are the number of the overall original and time-scaled
audio tracks in the dataset.

As we can see in Fig. [5.2] for detection (i.e. classification) task, we
have obtained satisfactory results with [LMS] as input, either with the
same dataset for both training and testing stages (Fig. , ACC =
0.8585), and with cross-dataset tests (Fig. [5.2b, ACC = 0.8626), proving
that the [CNN] has learned to recognize those typical features of original
and time-scaled signal, despite of the specific implementation details.

Nevertheless, how we can see in the other the system is not as
accurate with other input combinations. For instance, in Fig. [5.2c] we
can see the outcome of the [CNN| with the as input and the
time-scaled tracks obtained by means of the Audiotsm algorithm. The
resulting accuracy is ACC = 0.6273, that is slightly better of a purely-
random decision. If we consider instead the same input but
in a cross-dataset test, with the Torchaudio algorithm in training stage
and the Time-stretch-master for test phase, results get an improvement:
indeed the accuracy is ACC = 0.6760, because of the increased ability

Chapter 5. Experiments and Results 46

1.0 1.0
0.8 0.8
Real Real
3 0.6 E 0.6
3 5
]]
2 0.4 2 0.4
Time-Scaled Time-Scaled
0.2 0.2
0.0 0.0
Real Time-Scaled Real Time-Scaled
Predicted Label Predicted Label

(a) The Confusion Matrix of classification (b) The CM of the test with and
test With@ and Audiotsm algorithm Torchaudio (training), tsm (test)

1.0

1.0
0.8 0.8
Real Real
g 0.6 g 0.6
© ©
))
s $
= 0.4 fis 0.4
Time-Scaled Time-Scaled
0.2 0.2
0.0 0.0
Real Time-Scaled Real Time-Scaled
Predicted Label Predicted Label

(¢) The Confusion Matrix of classifica- (d) The Confusion Matrix of classification
tion test with [HPE-PL] and Audiotsm al- test with [HPF-Ph] Torchaudio (training),

gorithm. and Time-stretch-master (testing).
1.0 1.0
0.8 0.8
Real Real
E 06 2 0.6
© ©
- -
GJ L
2 0.4 2 0.4
Time-Scaled Time-Scaled
0.2 0.2
0.0 0.0
Real Time-Scaled Real Time-Scaled
Predicted Label Predicted Label

(e) The Confusion Matrix of classification (f) The Confusion Matrix of the test with
test with [MedResPhl and Time-stretch- all the three inputs, Time-stretch-master

master algorithm. (training), and Torchaudio (testing).

Figure 5.2: Some examples of |Confusion Matrix (CM)l for the classification
task.

of recognizing the original tracks after the training with the Torchaudio
dataset. In Fig. we can see again the good ability of recognizing the
original tracks, in spite of a poor quality on the individuation of time-

Chapter 5. Experiments and Results 47

scaled samples, resulting into an accuracy of ACC = 0.6522. Finally,
in Fig. [5.2f] we can see the resulting [CM] from a cross-dataset test, with
Time-stretch-master algorithm for training and Torchaudio for test, using
this time the three kinds of input together, i.e. the [LMS] the [HPF]
[Ph] and the With this input set-up, the result are slightly
better than [HPF-Ph| and [MedResPh]|, indeed, in this case the accuracy is
ACC = 0.7138.

In Table [5.1 we can see all the accuracy results for classification

tests conducted with the LMS|as input. The results are pretty similar to
each other, since they are located in a range between 0.8516 (Torchaudio
for training and Audiotsm for test), and 0.8690 (Time-stretch-master for
training and Torchaudio for test).

Table 5.1: Classifier Results with Log-Mel Spectrogram as input. In

bold, the maximum and the minimum achieved accuracy values.

Training Test Algorithm Accuracy
Audiotsm 0.8585
Audiotsm Torchaudio 0.8569
Time-stretch-master 0.8558
Torchaudio 0.8631
Torchaudio Audiotsm 0.8516

Time-stretch-master 0.8526

Time-stretch-master 0.8670
Time-stretch-master Audiotsm 0.8542
Torchaudio 0.8690

In Tables and there are the results relating to tests with
[HPF-PL| and [MedResPhl as input. The values here are decisely worse,
being between 0.5979 (Table [5.3] Time-stretch-master for training and
Audiotsm for test), and 0.6801 (Table Time-stretch-master algo-
rithm for both training and test stages).

To conclude, in Table there are the results for tests with all
the three kinds of input together, i.e. the [LMS| the [HPF-Ph| and the
[MedResPhl The best outcome is achieved with the model trained us-
ing the Torchaudio algorithm (ACC = 0.7259), both in a cross-dataset
combination, with Time-stretch-master algorithm for test, and with Tor-

chaudio algorithm itself in the testing stage.
The worst results, instead, have been obtained with both the cross-
dataset situations with the Audiotsm algorithm used for test.

Chapter 5. Experiments and Results 48

Table 5.2: Classifier Results with [HPF-Ph| as input. In bold, the maxi-
mum and the minimum achieved accuracy values

Training Test Algorithm ‘ Accuracy
Audiotsm 0.6273
Audiotsm Torchaudio 0.6593
Time-stretch-master 0.6642
Torchaudio 0.6755
Torchaudio Audiotsm 0.6274
Time-stretch-master 0.6760
Time-stretch-master | 0.6801
Time-stretch-master Audiotsm 0.6256
Torchaudio 0.6759

Table 5.3: Classifier Results with [MedResPh| as input. In bold, the

maximum and the minimum achieved accuracy values.

Training Test Algorithm ‘ Accuracy
Audiotsm 0.5998
Audiotsm Torchaudio 0.6406
Time-stretch-master 0.6393
Torchaudio 0.6617
Torchaudio Audiotsm 0.6074
Time-stretch-master | 0.6617
Time-stretch-master 0.6522
Time-stretch-master Audiotsm 0.5979
Torchaudio 0.6524

5.4 Regressor Results

For the estimation task, the accuracy criterion is the [Pearson Correlation|
|Coetlicient (PCC)| defined as:

cov(Y,Y)

0y 0y

PCC = (5.4)

where:

o Y is the array containing the outputs resulting from all the input
testing data, namely ¥ = {dy,da, -+ ,dy}, where N is the amount

of samples in the testing subset;

Chapter 5. Experiments and Results 49

Table 5.4: Classifier Results with all the three kinds of input together,
i.e. the [LMS] the [HPF-PL and the [MedResPhl In bold, the maximum

and the minimum achieved accuracy values

Training ‘ Test Algorithm ‘ Accuracy
Audiotsm 0.7162
Audiotsm Time-stretch-master 0.7118
Torchaudio 0.7083
Torchaudio 0.7259
Torchaudio Audiotsm 0.6961

Time-stretch-master | 0.7259

Time-stretch-master 0.7136

Time-stretch-master Audiotsm 0.6906
Torchaudio 0.7138
o Y contains the relative ground truths, i.e. Y = {ay,as, - ,an};

« oy and oy are the standard deviations of Y and Y,
« cov(Y,Y) the covariance of ¥ and Y.

For the regression task, we developed two approaches to get the re-
sults after the training stage: one is based on the same working principle
of the classifier, i.e. making a prediction by looking to only 64 frequency
bins and 96 temporal samples of the query signal. We noticed that this
method suffered a bit from the impossibility to gather some information
by the temporal evolution of the signal, considering just one temporal
window too much “poor” to represent the entire signal.

For this reason, we decided to make also a prediction about the entire
signal, and not only about a single portion of it. Specifically, we apply
the previously-trained model on all the temporal windows of each audio
track, i.e. all the subsequent temporal windows of 64 frequency bins and
96 time samples (Fig. . Then, we reduced the M predictions related
to the M temporal windows to a single value.

In particular, we computed the prediction &, about the n' audio

signal by means of three different operations:

1. In the first case, we computed &,, as the arithmetic mean between

the M output values;

2. as an alternative scenario, we computed ¢,, as their median value;

Chapter 5. Experiments and Results 50

0.50 -

0.45

Prediction
=
-y
=]
1

0.35

0.30 A

\’v W= j_,f Vi e ,.f-‘“'\fv_/"\«f "[\‘“-"“‘-/\’\’f\f‘f' .

T
0 10 20 30 40 50 60 70
Time Window Index

Figure 5.3: The temporal evolution of the predictions for each time window
of a time-scaled audio signal with a factor & = 0.3 by means of Torchaudio
algorithm. In this case the model received a [LMS] as input, and it has been
trained with the Time-stretch-master algorithm.

60

50 A

40 1

30 A

Density

20

10

0.30 0.35 0.40 0.45 0.50
Prediction

Figure 5.4: The histogram of the predictions about all the time windows of
a time-scaled audio signal with a factor &« = 0.3 by means of Torchaudio
algorithm. In this case the model received a [LMS] as input, and it has been
trained with the Time-stretch-master algorithm.

3. finally, we computed &,, as the mode between the M values. Since
the regressor’s output values are continuous values, the practice to
compute the mode is to discretize the data by making a histogram,

Chapter 5. Experiments and Results 51

i.e. replacing the values by the midpoints of the intervals they
are assigned to. The mode is then the value where the histogram
reaches its peak (Fig. 5.4)).

Regarding both approaches, every regression task has been accom-
plished by using in the training stage only 10 time-scaling factors (i.e.
from 0.1 to 1.9 with a step of 0.2), plus the original tracks. In the testing
stage, we decided to use three different sets of time-scaling factors:

o The time-scaling factors used for at training time (“PCC Tr”), i.e.
from 0.1 to 1.9 with a step of 0.2, plus the original tracks with
a=1;

o The factors not used in the training stage (“PCC NT’), i.e. from
0.2 to 2.0 with a step of 0.2, in addition to the original tracks;

e The union of the time-scaling factor presented in the two previous
points (“PCC All”), i.e. from 0.1 to 2.0 with a step of 0.1.

5.4.1 Single Time Window Results

Here we will see and comment the results according to the first method
we have depicted, i.e. the analysis of a single temporal window for each
audio track. In Fig.[5.5and Fig.[5.6 we can see two examples of the visual
representation we chose to describe the test results as a whole. From these
scatter plots it emerges that the predictions for o > 1 are worse, since the
concentration of the results is weaker, with more vertical dispersion than
predictions for lower factors, where the results are more concentrated
near the correct value. The cause of this behavior is likely to be that
time-scaling with o < 1 implies the application of some interpolation,
with the introduction of artificial samples, that are easier to detect. By
contrast, time-scaling with o > 1 involves the rejection of some samples,
making harder the recognition of artifacts in the audio signal.

From Table to Table we have the results referring to the
regression task, considering separately each prediction about every single
input temporal frame.

In Table [5.5] we can see the [PCC]| values resulting from the regres-
sion tests with [LMS| as input to the The best outcomes have
been achieved when we used the same algorithm for training and test-
ing stages, ora with cross-dataset setups between Torchaudio and Time-
stretch-master. The best result is 0.9391, obtained for both the mod-
els trained with Audiotsm and Torchaudio. By contrast, we have got

Chapter 5. Experiments and Results 52

= = N
w ~ =)
o v =1

=
]
]

|
[]

* somam
LY —
e e
[w ~ [=]
wv (=] w o

Estimated Time-scaling factor
=
o
o

e
©
=)
L]
(NN

o
~
o
o e
- aeus ¢
T e
e e
mEwe ®
T e e

(=]
N
w
e
«
-
[L=
-
[=y

T T T T T T
025 050 075 100 125 150 175
True Time-scaling factor

(a) The results of tests with and Audiotsm

algorithm.

=
~
v

=
w
o

=
=}
S}

e
~

e

Estimated Time-scaling factor

o
wu
o

e
N
w

,_.
N
o]

. TS e

175
150
125

2
1.00 E
0.75

0.25 0.50 0.75 1.00 1.25 1.50 1.75
True Time-scaling factor

(b) The results of tests with and Audiotsm al-
gorithm (training), Time-stretch-master (testing).

Figure 5.5: Some examples of regression results (single time-window ap-

proach).

the worst results when we tested the Audiotsm algorithm with a model
trained with Torchaudio or Time-stretch-master. The worst case is repre-
sented by the model trained with Torchaudio and tested with Audiotsm,
with PCC = 0.7728.

In Tables and [B.7 we have shown the results related to [HPFH
[Ph] and We were able to achieve moderately good results,
such as 0.8699 (Table [5.6), or 0.8415 (Table [5.7), in the cross-dataset
case with Time-stretch-master for training ans Torchaudio for test. The
worst results, as we have seen in other cases, are represented by the
models trained with Torchaudio or Time-stretch-master, and tested with
Audiotsm (=~ 0.6).

Finally, in Table we show the results of the tests conducted

Chapter 5. Experiments and Results 53

=

~

v
i

I

5

<]
L

e @0 @I 44 O
- ~
“ 5}
Density

Estimated Time-scaling factor
o o [=
v ~ o N
o w o w
- o o
- IR %
S Iame e
eme @&
D e e o
- e
[1 e 1N
L1 1}
® S EGEE | IO

o
N
1]
e
«
-
-
[_J
L]
L]

0.00 T T T T T T T
025 050 075 100 125 150 175

True Time-scaling factor

(a) The results of tests with all the three kinds of in-
put together and Torchaudio algorithm (training),
Time-stretch-master (testing).

197 . 12
] 10
B
e ' 0.8
. z
.00 - H
o
| 0s 8
® 0.4
] ‘ ! .
[]
Wiy <"

u.ll

T T T T
0.25 0.50 0.75 1.00 125 150 175
True Time-scaling factor

(b) The results of tests with [MedResPhf and Au-

diotsm algorithm (training), Torchaudio (testing).

,_.
5
o
L]

Estimated Time-scaling factor
=) I = .
~ o N w
w o w o
[]
. e o0
L T 1J]

e
w
=]

o
N
v

Figure 5.6: Some examples regression results (single time-window approach).

with all the three possible kinds of input together. In this case we were
able to achieve [PCC| values such as 0.9172, with the model trained with
Torchaudio and tested with Time-stretch-master. However, the worst
results are quite satisfactory, such as PCC = 0.7745, in the case of the
model trained with Torchaudio and tested with Audiotsm, using the time-
scaling factors not present during the training process.

As we mentioned before, the “PCC Tr” column reports the results
regarding the tests conducted with the same time-scaling factors used
to train the For this reason, we expected to find the best results
with this configuration. On the contrary, in the “PCC NT” column we
have the results for the time-scaling factors which the has never
encountered during training. Hence, we assumed to achieve the worst
results with this configuration. Finally, the “PCC All” column repre-

Chapter 5. Experiments and Results 54

Table 5.5: Regressor Results with LMS as input (single time-window ap-
proach). In bold, the maximum and the minimum achieved values.

Train Alg. | Test Alg. | PCC Tr | PCC NT | PCC All

Audiotsm | 0.9391 0.9164 0.9299
Audiotsm | Torchaudio | 0.9015 0.8784 0.8926
Tstretch 0.8998 0.8785 0.8915

Torchaudio | 0.9391 0.9275 0.9340
Torchaudio | Audiotsm | 0.7728 0.7965 0.7814
Tstretch 0.9385 0.9275 0.9337

Tstretch 0.9375 0.9222 0.9313
Tstretch Audiotsm 0.7809 0.7846 0.7822
Torchaudio | 0.9376 0.9221 0.9313

Table 5.6: Regressor Results with HP-Ph as input (single time-window
approach). In bold, the maximum and the minimum achieved val-
ues

Train Alg. | Test Alg. | PCC Tr | PCC NT | PCC All

Audiotsm 0.8120 0.8222 0.8159
Audiotsm | Torchaudio | 0.7797 0.8185 0.7943
Tstretch 0.7792 0.8203 0.7947

Torchaudio | 0.8460 0.8652 0.8534
Torchaudio | Audiotsm 0.6453 0.6247 0.6364
Tstretch 0.8475 0.8665 0.8548

Tstretch 0.8365 0.8681 0.8486
Tstretch Audiotsm 0.6759 0.6534 0.6666
Torchaudio | 0.8346 0.8699 0.8482

sents the most general case, having both the factors present during the
training and those never encountered before. Therefore, with this setup,
we supposed to obtain results in between the first two columns.

This forecast was generally respected in Tables[5.5]and [5.8] namely in
the tests with respectively [LMS| and all the three kinds of input together

(i.e. [LMS| [HPF-Ph|and [MedResPh) as input. By contrast, we can see the
exactly opposite outcome in Tables[5.6land[5.7] i.e. in the tests with[HPF]

[Phj and as input. We think this unexpected behaviour surely
needs further investigations and will be tackled in our future research.

Chapter 5. Experiments and Results 55

Table 5.7: Regressor Results with [MedResPh| as input (single time-

window approach). In bold, the maximum and the minimum achieved

I@] values.

Train Alg. | Test Alg. | PCC Tr | PCC NT | PCC All

Audiotsm 0.7455 0.7670 0.7538
Audiotsm | Torchaudio | 0.7380 0.7670 0.7488
Tstretch 0.7383 0.7663 0.7487

Torchaudio | 0.8098 0.8412 0.8219
Torchaudio | Audiotsm 0.6280 0.6030 0.6181
Tstretch 0.8127 0.8415 0.8238

Tstretch 0.8248 0.8409 0.8309
Tstretch Audiotsm 0.6362 0.6117 0.6262
Torchaudio | 0.8252 0.8415 0.8314

Table 5.8: Regressor Results with the three kinds of input together,
i.e. the [LMS| the [HPF-Ph|and the [MedResPh| (single time-window ap-

proach). In bold, the maximum and the minimum achieved values.

Train Alg. | Test Alg. | PCC Tr | PCC NT | PCC All

Audiotsm 0.9006 0.8835 0.8937
Audiotsm | Torchaudio | 0.8844 0.8654 0.8771
Tstretch 0.8853 0.8658 0.8778

Torchaudio | 0.9167 0.9132 0.9150
Torchaudio | Audiotsm 0.7972 0.7745 0.7870
Tstretch 0.9172 0.9125 0.9150

Tstretch 0.9146 0.9144 0.9141
Tstretch Audiotsm 0.7933 0.7792 0.7870
Torchaudio | 0.9148 0.9150 0.9144

5.4.2 Multiple-Window Results

In this subsection we will go into the details of the approach consisting
of doing the test on the entire audio signal, then taking a final value
according to the arithmetic mean, the median value or the mode.

In Fig. [5.7] we can see two examples of the scatter plots that we used
to represent the test results, as depicted in the previous section.

Chapter 5. Experiments and Results 56

1754 .
|a'|l Il 12
5 1501 ° '
B H 10
o 1.25 4
£
o I | 0.8 o
3 1004 3
£ &
[" ° '] 0.6
B 0754 e °
s HEB '
E L3 °%e 04
a 0.50 4 L] °
0.2
0.254
o ' ° '] o 3 ‘ . o °

0.25 0. 5() 0. 75 1 ()0 1. 25 150 175
True Time-scaling factor

(a) The results of the “multiple time-window” ap-
proach for regression task (max value).

189 o 16
°
[}
1.6 P I l 14
. I

5 14+ i l 12
&
g 124 I 10
[}] ' >
6 107 ! ' [088
ol “abn A

0.8 [
E ‘ l] l s L] 0.6
E 06 . b b
=
& 0.4

0.2 4

WEE T L |
ge 0z

T T T T T T T
025 050 075 100 125 150 175
True Time-scaling factor

(b) The results of the “multiple time-window” ap-
proach for regression task (average value).

16
1754 P
.
. 14
_ 150
g 12
5 .
& []
= 1.25
5
B Lo
& 1.00] ' H
E 0.8 §
= I
T 0754] L]
go {3 0.6
E o L4
b=
i 0.50 ' 0.4
.
0.25 4 l ' . ® 0.2
025 050 075 100 125 150 175

True Time-scaling factor

(c) The results of the “multiple time-window” ap-
proach for regression task (median value).

Figure 5.7: Some examples of results for the regression task with the “multi-

ple time-window” approach, as input, and Audiotsm time-scaling
algorithm.

Chapter 5. Experiments and Results Y

In this case, the results have been obtained with in input
and the dataset built with the Audiotsm time-scaling algorithm. For this
combination, the training process has been conducted on 11 time-scaling
factors, from 0.1 to 1.9, with a step of 0.2, including the original signals,
with @ = 1. The testing stage, instead, as we can see from the scatter
plots is conducted on 20 time-scaling factors, i.e. from 0.1 to 2.0, with a
step of 0.1.

For instance, in Fig. [5.7a], the results have been computing by taking
the Mode value between all the predictions about the same track. In a
similar way, Fig. |5.7bland Fig. |5.7c/show respectively the results obtained
by means of the arithmetic mean and the median value between all the
predictions about a track. As reported before in Section [5.4.1 we can
see better results for low scaling factors (i.e. a < 1), while, for higher
factors (i.e. o > 1), we can see how in all the cases the results exhibit a
more prominent vertical dispersion. This is probably be due to the fact
that time-scaling with @ < 1 can be seen as downsampling, implying that
some interpolation is applied, hence new artificial samples are introduced
into the signal. On the contrary, time-scaling with o > 1 can be seen as
a type of up-sampling, then it is a process in which we are “discarding”
some information from the original signal. That is why it can be more
difficult to detect time-scaling modification artifacts in those situations.

As we already described, each test case is summarized by the [PCC|
as shown from Table [.9 to Table 5.200 In Table 5.9 we can see the
results from the tests with in input, with the Mode approach, while
in Table [5.10] we refer to the Mean approach and in Table [5.11] to the
Median value. Given that the results are quite good in all the cases that
we just mentioned (worst result: 0.8201), we can notice that this system
better performs with the Mean and Median approach, since they ex-
hibit comparable results. The[CNN|has shown excellent results also with
cross-dataset test, especially between Time-stretch-master and Torchau-
dio algorithms, while it seems to provide slightly worst results when we
test with Audiotsm the model trained with the other two algorithms. The
results show also that they are quite good even if we test the network with
time-scaling factors “never seen” during training (e.g. PCC = 0.9670 in
Table . At last, the best result is obtained with a cross-dataset
set-up, using Time-stretch-master algorithm for training and Torchaudio
for test, with the mean approach, and keeping only the factors used for
training (PCC = 0.9738, Table |5.10]).

As we could expect, the tests with [LMS| as input exhibit the best re-
sults if we consider only the time-scaling factors employed during training

Chapter 5. Experiments and Results 58

Table 5.9: The summary of the tests for regression (multiple time-window
approach), Mode value, as input. In bold, the maximum and the
minimum achieved I@] values.

Train Alg. | Test Alg. | PCC Tr | PCC NT | PCC All

Audiotsm | 0.9600 0.9425 0.9532
Audiotsm | Torchaudio | 0.9260 0.9162 0.9219
Tstretch 0.9261 0.9038 0.9170

Torchaudio | 0.9566 0.9401 0.9499
Torchaudio | Audiotsm | 0.8201 0.8423 0.8282
Tstretch 0.9562 0.9380 0.9489

Tstretch 0.9513 0.9459 0.9492
Tstretch Audiotsm 0.8270 0.8396 0.8315
Torchaudio | 0.9498 0.9478 0.9490

Table 5.10: The summary of the tests for regression (multiple time-
window approach), Mean value, as input. In bold, the maximum
and the minimum achieved [PCC]| values, and two results for time-scaling

factors not present during training.

Train Alg. ‘ Test Alg. ‘ PCC Tr ‘ PCC NT | PCC All

Audiotsm 0.9737 0.9623 0.9691
Audiotsm | Torchaudio | 0.9506 0.9397 0.9463
Tstretch 0.9507 0.9397 0.9464

Torchaudio | 0.9722 0.9664 0.9694
Torchaudio | Audiotsm | 0.8593 0.8831 0.8678
Tstretch 0.9720 0.9664 0.9693

Tstretch 0.9737 0.9670 0.9708
Tstretch Audiotsm 0.8662 0.8682 0.8664
Torchaudio | 0.9738 0.9670 0.9708

(i.e. “PCC tr” column), while we have the lowest values for the values
never “seen” by the [CNN] and intermediate ones if we consider a com-
bination of the previous two. The only exception about this behavior is
represented by the cross-dataset configurations in which we did the tests
with the Audiotsm algorithm, in which we can see the exactly opposite
outcomes.

The results related to the tests with [HPF-Ph| as input are shown in

Chapter 5. Experiments and Results 59

Table 5.11: The summary of the tests for regression (multiple time-
window approach), Median value, as input. In bold, the maximum
and the minimum achieved I@] values.

Train Alg. | Test Alg. | PCC Tr | PCC NT | PCC All

Audiotsm | 0.9754 0.9578 0.9684
Audiotsm | Torchaudio | 0.9503 0.9386 0.9458
Tstretch 0.9506 0.9387 0.9460

Torchaudio | 0.9726 0.9656 0.9693
Torchaudio | Audiotsm | 0.8508 0.8788 0.8601
Tstretch 0.9727 0.9656 0.9693

Tstretch 0.9726 0.9652 0.9694
Tstretch Audiotsm 0.8581 0.8666 0.8603
Torchaudio | 0.9726 0.9652 0.9695

Tables [5.12], [5.13]and [5.14] with respectively the Mode, Mean and Me-
dian approach to extract the result from the predictions of each track.

Here the results are slightly worse than before, but we still reach val-
ues such as PCC = 0.9421 in Table [5.13] with Mean approach and
Time-stretch-master algorithm for training and Torchaudio for test, but,
moreover, with time-scaling factors not used during training. As in the
previous case with [LMS] also with [HPEF-PhL] the best cross-dataset results
are achieved between Time-stretch-master and Torchaudio algorithms,
while Audiotsm performs better if used both for training and test. Also
with this combination the results get worse with cross-dataset tests where
the test dataset is built with the Audiotsm algorith: indeed, in Table
we get the lowest result (PCC = 0.6552) with Torchaudio algorithm for
the training stage, and time-scaling factors not present in the training
process.

If we consider the tests with [HPF-PL] as input, the outcome related
to the set of time scaling factors usied during tests confirmed our ex-
pectations only in Table i.e. with the “Mode” approach. For the
other two combinations, instead, the outcome has been substantially the
opposite, with best results for the “PCC NT” column and worst for the
“PCC Tr” one.

The situation related to tests with as input is depicted
in Tables [5.15] [5.16] and [5.17] The best results have been obtained
by taking the mean of all the predictions for each track (Table [5.16]
PCC = 0.9344), and we still can see the excellent results with cross-

Chapter 5. Experiments and Results 60

Table 5.12: The summary of the tests for regression (multiple time-

window approach), Mode value, [HPF-Ph|as input. In bold, the maximum
and the minimum achieved I@] values.

Train Alg. | Test Alg. | PCC Tr | PCC NT | PCC All

Audiotsm 0.8752 0.8917 0.8816
Audiotsm | Torchaudio | 0.8358 0.8703 0.8484
Tstretch 0.8258 0.8671 0.8420

Torchaudio | 0.8945 0.8930 0.8939
Torchaudio | Audiotsm 0.7450 0.6552 0.7082
Tstretch 0.8977 0.8891 0.8943

Tstretch 0.8808 0.8961 0.8868
Tstretch Audiotsm 0.7589 0.7082 0.7370
Torchaudio | 0.8771 0.8955 0.8843

Table 5.13: The summary of the tests for regression (multiple time-
window approach), Mean value, [HPF-Phlas input. In bold, the maximum
and the minimum achieved @ values.

Train Alg. | Test Alg. | PCC Tr | PCC NT | PCC All

Audiotsm 0.9188 0.9416 0.9272
Audiotsm | Torchaudio | 0.8820 0.9227 0.8969
Tstretch 0.8816 0.9235 0.8970

Torchaudio | 0.9207 0.9365 0.9267
Torchaudio | Audiotsm 0.8010 0.7964 0.7967
Tstretch 0.9214 0.9376 0.9275

Tstretch 0.9197 0.9419 0.9283
Tstretch Audiotsm 0.8336 0.8320 0.8308
Torchaudio | 0.9197 0.9421 0.9283

dataset tests between Torchaudio and Time-stretch-master, in addition
to good results for other combinations. Also in this case, the lowest
[PCC] is obtained with cross-dataset tests, with Time-stretch-master for
training and Audiotsm for test (Table [5.15, PCC = 0.6707).
Unexpectedly, the results referring to tests with as input,
generally exhibit the best results if we consider the tests with only the
factors not present during the training stage. On the contrary, the worst
results have been achieved when we tested the with the factors we

Chapter 5. Experiments and Results 61

Table 5.14: The summary of the tests for regression (multiple time-

window approach), Median value, [HPF-Ph| as input.

Train Alg. | Test Alg. | PCC Tr | PCC NT | PCC All

Audiotsm 0.9199 0.9384 0.9265
Audiotsm | Torchaudio | 0.8842 0.9210 0.8979
Tstretch 0.8827 0.9196 0.8965

Torchaudio | 0.9230 0.9349 0.9273
Torchaudio | Audiotsm 0.7888 0.7725 0.7787
Tstretch 0.9232 0.9361 0.9279

Tstretch 0.9202 0.9391 0.9275
Tstretch Audiotsm 0.8213 0.8050 0.8118
Torchaudio | 0.9195 0.9390 0.9270

Table 5.15: The summary of the tests for regression (multiple time-
window approach), Mode value, [MedResPh|as input. In bold, the maxi-
mum and the minimum achieved @ values.

Train Alg. | Test Alg. | PCC Tr | PCC NT | PCC All

Audiotsm 0.8513 0.8423 0.8478
Audiotsm | Torchaudio | 0.8221 0.8450 0.8308
Tstretch 0.8077 0.8316 0.8166

Torchaudio | 0.8576 0.8817 0.8670
Torchaudio | Audiotsm 0.7427 0.6778 0.7174
Tstretch 0.8673 0.8612 0.8648

Tstretch 0.8718 0.8729 0.8721
Tstretch Audiotsm 0.7447 0.6707 0.7154
Torchaudio | 0.8807 0.8842 0.8817

used to train it. This unexpected behavior will certainly be subject of
future investigations.

Finally, in Tables [5.18] [5.19/and [5.20| we have the values of the re-
sults for the tests with all the three kinds of input (i.e. the[LMS| [HPF-Ph|
and for the . Here the results about the are no-
tably good, since they are all located in the range between 0.8153 (Table
, in the case of the cross-dataset test with Torchaudio algorithm for
training and Audiotsm for test, with time-scaling factors not present in
the training stage, and 0.9631 (Table , in the cross-dataset test with

Chapter 5. Experiments and Results 62

Table 5.16: The summary of the tests for regression (multiple time-
window approach), Mean value, MedResPh|as input. In bold, the maxi-
mum and the minimum achieved @ values.

Train Alg. | Test Alg. | PCC Tr | PCC NT | PCC All

Audiotsm 0.8972 0.9288 0.9091
Audiotsm | Torchaudio | 0.8693 0.9112 0.8844
Tstretch 0.8697 0.9115 0.8847

Torchaudio | 0.9074 0.9306 0.9162
Torchaudio | Audiotsm | 0.8079 0.8220 0.8116
Tstretch 0.9071 0.9311 0.9162

Tstretch 0.9145 0.9344 0.9219
Tstretch Audiotsm | 0.8079 0.8157 0.8092
Torchaudio | 0.9145 0.9341 0.9218

Table 5.17: The summary of the tests for regression (multiple time-

window approach), Median value, [MedResPh| as input.

Train Alg. | Test Alg. | PCC Tr | PCC NT | PCC All

Audiotsm 0.8976 0.9234 0.9070
Audiotsm | Torchaudio | 0.8701 0.9017 0.8813
Tstretch 0.8703 0.9027 0.8819

Torchaudio | 0.9093 0.9270 0.9159
Torchaudio | Audiotsm 0.8049 0.8069 0.8034
Tstretch 0.9101 0.9260 0.9160

Tstretch 0.9129 0.9327 0.9200
Tstretch Audiotsm 0.7978 0.7997 0.7957
Torchaudio | 0.9124 0.9324 0.9196

Time-stretch-master algorithm and the same time-scaling factors present
in the training stage. Differently from other combinations, we can notice
quite good results also referring to cross-dataset tests with the Audiotsm
algorithm used in the testing stage (e.g. PCC = 0.8828, Table , and
PCC = 0.8760, Table .

As we could imagine, if we consider the results with all the three
kinds of input together (i.e. the [LMS] [IPF-Ph| and [MedResPhl), the
best results have been achieved most of the times if we tested the
with only the factors present, during training. The worst results, instead,

Chapter 5. Experiments and Results 63

Table 5.18: The summary of the tests for regression (multiple time-

window approach), Mode value, three kinds of input together, i.e. the

[LMS]| the [HPF-PL] and the [MedResPh In bold, the maximum and the

minimum achieved @ values.

Train Alg. | Test Alg. | PCC Tr | PCC NT | PCC All

Audiotsm 0.9319 0.9100 0.9234
Audiotsm | Torchaudio | 0.9017 0.8910 0.8974
Tstretch 0.9023 0.8974 0.9003

Torchaudio | 0.9338 0.9381 0.9352
Torchaudio | Audiotsm 0.8471 0.8153 0.8332
Tstretch 0.9354 0.9290 0.9328

Tstretch 0.9363 0.9347 0.9356
Tstretch Audiotsm 0.8484 0.8380 0.8426
Torchaudio | 0.9344 0.9353 0.9347

Table 5.19: The summary of the tests for regression (multiple time-
window approach), Mean value, three kinds of input together, i.e. the

[LMS| the [HPF-PL] and the [MedResPhl In bold, the cross-dataset test

result for the model with Torchaudio algorithm used for training and

Audiotsm in the testing stage.

Train Alg. | Test Alg. | PCC Tr | PCC NT | PCC All

Audiotsm 0.9534 0.9494 0.9516
Audiotsm | Torchaudio | 0.9371 0.9320 0.9350
Tstretch 0.9369 0.9320 0.9348

Torchaudio | 0.9600 0.9598 0.9596
Torchaudio | Audiotsm 0.8887 0.8763 0.8828
Tstretch 0.9600 0.9599 0.9596

Tstretch 0.9614 0.9610 0.9609
Tstretch Audiotsm 0.8860 0.8765 0.8814
Torchaudio | 0.9601 0.9607 0.9599

are shown in the “PCC NT” column, and, finally, the tests with all the
time-scaling factors brought to intermediate [PCC| values.

Chapter 5. Experiments and Results 64

Table 5.20: The summary of the tests for regression (multiple time-

window approach), Median value, three kinds of input together, i.e. the

[LMS]| the [HPF-PL] and the [MedResPh In bold, the maximum and the

minimum achieved [PCC| values, and the cross-dataset test result for the

model with Time-stretch-master algorithm used for training and Au-

diotsm in the testing stage.

Train Alg. | Test Alg. | PCC Tr | PCC NT | PCC All

Audiotsm 0.9551 0.9455 0.9511
Audiotsm | Torchaudio | 0.9359 0.9362 0.9359
Tstretch 0.9360 0.9355 0.9357

Torchaudio | 0.9600 0.9600 0.9596
Torchaudio | Audiotsm 0.8810 0.8690 0.8743
Tstretch 0.9602 0.9603 0.9598

Tstretch 0.9631 0.9605 0.9615
Tstretch Audiotsm 0.8781 0.8760 0.8754
Torchaudio | 0.9617 0.9599 0.9605

5.5 Conclusive Remarks

Let us summarize finally the results we got from all the tests on original
and time-scaled signal. For example, we can see in Fig. the spectro-
grams of a time-scaled signal (Fig. and of the respective original
one (Fig. [5.8Db]).

Starting from the results we showed and analyzed in [5.3| and [5.4] we
can derive some final considerations about the obtained results, referring
to cross-dataset configurations and the chosen input for the [CNN|

Specifically, we noticed excellent results for cross-dataset tests when
we put together Torchaudio and Time-stretch master algorithms. On
the contrary, the outcomes worsened considerably in all the cross-dataset
setups with Audiotsm algorithm in testing stage.

Concerning the input of the [CNN] for all cases the best results have
been achieved with the despite we were able in some situations to

get satisfying results also with the [HPF-Phj and the [MedResPhl

Chapter 5. Experiments and Results

20000
17500

— 15000
]

H.

. 12500

10000

Frequenc

7500

5000

2500

T T T T
2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (samples)

—225 —200 =175 —150 -125 —100 =75 -50
Density

(a) Spectrogram of original signal.

20000
17500
— 15000
]
12500

10000

Frequency (H

7500

5000

2500

0 : - . . : e
2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (samples)

—250 —225 —200 -175 -150 —-125 —100 =75 —50
Density

(b) Spectrogram of time-scaled signal.

Figure 5.8: Spectrograms of original (H} and time-scaled (IEI) signals.

Conclusions and Future Works

This thesis proposed a methodology in the audio forensics field for au-
tomatic time-scaling detection and estimation, i.e. respectively to find
if some sort of time-scaling modification has been applied to an audio
signal and eventually to find the right value of the time-scaling factor.

Typically, time-scaling modification algorithms leave some interpola-

tion traces on the [Short-Time Fourier Transform (STFT)| of the input

signal. For this reason, we tried to blindly investigate audio signals in
order to find such artifacts. The proposed methodology is based on

a data-driven approach, using a [Convolutional Neural Network (CNN)

trained on original and time-scaled audio signals.
In this thesis we have set two main tasks regarding time-scaling iden-
tification:

o C(lassification, i.e. indicating if the input signal is the original one
or a time-scaled modified version. In this case, the goal is
to produce an output discrete number, such that 0 means that
the track is the original one and 1 indicates that the input was a

time-scaled signal;

o Regression, i.e. predicting the time-scaling factor a of an audio
signal. For this task, the should give as output a continuous
value, indicating the estimation of the eventual factor of the applied

Chapter 6. Conclusions and Future Works 67

time-scaling modification algorithm (if no modification has been
applied, the output should be 1).

The regression task has been accomplished by proposing two different
approaches:

1. The first consisted of making a prediction for a single temporal
window composed by 64 frequency bins and 96 time samples that
we have extracted from the input audio signal,

2. The second one involved that each input signal has been divided
into many subsequent temporal windows, then a prediction has
been made about each one of them. Finally, we computed the
overall estimation for the input signal by computing the mean, the

median value or the mode between all the predictions.

The aforementioned has been trained with different kinds of 2D
representations of the audio signal itself, i.e. the Log-Mel spectrogram,
a high-pass filtered version of the unwrapped phase, a median filtered
version of the unwrapped phase, and the three of them together.

We built the dataset to train and test our [CNN| by combining original
audio signals with time-scaled ones, obtained by means of three different
algorithms: Audiotsm [5], Torchaudio [6] and Time-stretch-master [7].
Our tests have been conducted either by using the same dataset of the
training stage and by adopting a cross-dataset approach, i.e. choosing
two different datasets for training and test. This allowed us to mea-
sure the ability of the to recognize general artifacts of time-scaling
algorithms regardless of the specific training dataset used.

The test results for classification showed good accuracy values when
the Log-Mel spectrogram has been used as input (e.g. accuracy is always
greater than 0.85), either with cross-dataset configurations and when we
used the same dataset during training and test stages. The situation
regarding the classification task worsened noticeably when we considered
the two filtered versions of the unwrapped phase as input, since in these
cases we achieved accuracy values between 0.5979 and 0.6801, ie. a
slightly better result than a random approach. When we considered the
three inputs together (i.e., the Log-Mel spectrogram and the two filtered
versions of the unwrapped phase), we were able to achieve accuracies such
as 0.7259 with the model trained using the dataset built from Torchaudio
algorithm.

If we referred to the regression task with the analysis of a single time
window for each audio signal, the best results have been achieved with

Chapter 6. Conclusions and Future Works 68

the Log-Mel spectrogram as input (e.g. we can achieve a
irelation Coefficient (PCC)| = 0.9391), considering either the Torchaudio

or Audiotsm datasets with the time-scaling factors present during train-

ing. Tests with a more general configuration (i.e. with time-scaling
factors both present and not during training) exhibited good result as
well, such as PCC = 0.9337 in cross-dataset setups. [PCC| values became
lower when we used the unwrapped phases as input of the [CNN| reaching
results such as PCC = 0.6030 in the worst case. If we used instead all
the three kind of inputs together, we were able to achieve PCC = 0.9050
when we tested the model trained on the Torchaudio dataset with all the
time-scaling factors.

Finally, considering the multiple time window approach, we found
out the same qualitative behavior of the single-window procedure, that
is, the best results have been achieved with Log-Mel spectrogram as
input, while the worst came out from tests with the unwrapped phase
as input. The real salient feature of this second approach was that we
can gather more information from the temporal evolution of the track.
This allowed us to achieve excellent results such as PCC = 0.9754 in the
case of the Audiotsm algorithm in both training and test, and the mode
approach to compute the final prediction about the signal. Furthermore,
we obtained comparable results such as PCC = 0.9708 in cross-dataset
configuration and all the time-scaling factors during testing, denoting a

good ability to perform in a reliable way also in real scenarios.

6.1 Future Works

As we mentioned before, the tests that we conducted allowed us to point
out the strongest features of our system. However, there are still a few
aspects that are worthy of investigations.

For instance, we would like to improve the results of the classifier,
maybe by finding the right compromise between the dataset size, the
input pre-processing and the [CNN] parameters. To overcome this issue,
we will investigate the parameters by means of which we compute the
[STFT] its phase and the related filters, as well as the mel-scale conversion
to adapt the frequency scale.

For both the classification and regression tasks, we clearly noticed
some configurations that lead to worse results, namely the two filtered
versions of the unwrapped phase as input of the [CNN] and the cross-
dataset tests with the Audiotsm dataset employed during the testing
stage. We will spend some more effort to train the [CNN|for these specific

Chapter 6. Conclusions and Future Works 69

scenarios.

Once solved these issues, a possible future research area will be the
detection of the specific algorithm used to modify the signal (among
a hopefully larger selection of time-scaling implementations). Once we
identify the time-scaling factor and the exact algorithm used, another
task we are interested in is to restore the audio track with its original time
evolution. To achieve this, we would like to train a by minimizing
the error between the resulting restored signal (i.e. the prediction) and
the desired original one (i.e. the ground truth).

1]

[10]

Bibliography

M. Kirchner and T. Gloe, “On resampling detection in re-
compressed images,” in 2009 First IEEE International Workshop
on Information Forensics and Security (WIFS), pp. 21-25, 2009.

M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” 2019.

“Efficientnet: Improving accuracy and efficiency through au-
toml and model scaling.” https://ai.googleblog.com/2019/05/
efficientnet-improving-accuracy-and.html. Accessed: 2021-
03-07.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” 2019.

Muges, “Audiotsm phase vocoder.” https://github.com/Muges/
audiotsm, Oct. 2017. Accessed: 2021-02-21.

Pytorch, “Time stretch.” https://pytorch.org/audio/stable/
“modules/torchaudio/transforms.html#TimeStretch. Accessed:
2021-02-21.

W

“Time stretch master.” https://github.com/gaganbahga/time_
stretch, Dec. 2020. Accessed: 2021-02-22.

G. Cariolaro, “Unified signal theory,” 2011.

M. Portnoff, “Magnitude-phase relationships for short-time fourier
transforms based on gaussian analysis windows,” in ICASSP ’79.
IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 4, (Washington, DC, USA), pp. 186-189, IEEE,
1979.

K. K. Paliwal and L. D. Alsteris, “On the usefulness of stft phase
spectrum in human listening tests,” Speech Communication, vol. 45,
no. 2, pp. 153-170, 2005.

70

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
https://github.com/Muges/audiotsm
https://github.com/Muges/audiotsm
https://pytorch.org/audio/stable/_modules/torchaudio/transforms.html#TimeStretch
https://pytorch.org/audio/stable/_modules/torchaudio/transforms.html#TimeStretch
https://github.com/gaganbahga/time_stretch
https://github.com/gaganbahga/time_stretch

Bibliography 71

[11]

[12]

[13]

[14]

[19]

[20]

[21]

22]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Fast and accu-
rate phase-unwrapping algorithm based on the transport of intensity
equation,” Applied Optics, vol. 56, p. 7079, 09 2017.

S. S. Stevens and J. Volkmann, “The relation of pitch to frequency:
A revised scale,” The American Journal of Psychology, vol. 53, no. 3,
pp. 329-353, 1940.

S. Umesh, L. Cohen, and D. Nelson, “Fitting the mel scale,” 1999.

S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D. Ol-
lason, V. Valtchev, and P. Woodland, “The htk book,” Cambridge
University Engineering Department, vol. 3, 2002.

M. Slaney, A MATLAB Auditory Toolbox: Toolbox for Auditory
Modeling Work, version 2. Interval Research Corporation, 1998.

M. Kahrs and K. Brandenburg, Applications of Digital Signal Pro-
cessing to Audio and Acoustics. USA: Kluwer Academic Publishers,
1998.

J. Makhoul and A. El-Jaroudi, “Time-scale modification in medium
to low rate speech coding,” in ICASSP ’86. IEEFE International
Conference on Acoustics, Speech, and Signal Processing, vol. 11,
pp. 1705-1708, 1986.

L. Almeida and F. Silva, “Variable-frequency synthesis: An im-
proved harmonic coding scheme,” in ICASSP ’84. IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing,
vol. 9, pp. 437440, 1984.

R. McAulay and T. Quatieri, “Speech analysis/synthesis based on a
sinusoidal representation,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 34, no. 4, pp. 744-754, 1986.

J. Driedger and M. Miiller, “A review of time-scale modification of
music signals,” Applied Sciences, vol. 6, no. 2, 2016.

D. H. Hubel and T. N. Wiesel, “Receptive fields of single neu-
rons in the cat’s striate cortex,” Journal of Physiology, vol. 148,
pp. 574-591, 1959.

Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional net-

works and applications in vision,” 2010.

Bibliography 72

23]

[29]

[30]

[31]

[32]

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to
handwritten zip code recognition,” Neural Computation, vol. 1,
pp. 541-551, 1989.

K. Fukushima, “Cognitron: A self-organizing multilayer neural net-
work,” Biological Cybernetics, vol. 20, pp. 121-136, 1975.

Siwei Lyu and E. P. Simoncelli, “Nonlinear image representation us-
ing divisive normalization,” in 2008 IEEE Conference on Computer

Vision and Pattern Recognition, pp. 1-8, 2008.

N. Pinto, D. D. Cox, and J. J. DiCarlo, “Why is real-world visual
object recognition hard?,” PLoS Comput Biol, vol. 4, p. €27, 2008.

I. J. Goodfellow, Y. Bengio, and A. C. Courville, Deep Learning.
Adaptive computation and machine learning, MIT Press, 2016.

D. H. Hubel and T. N. Wiesel, “Receptive fields and functional archi-
tecture of monkey striate cortex,” Journal of Physiology (London),
vol. 195, pp. 215-243, 1968.

Y. Lemoigne and A. Caner, Molecular Imaging: Computer Recon-
struction and Practice. NATO Science for Peace and Security Series
B: Physics and Biophysics, Springer Netherlands, 2008.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 8rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings (Y. Bengio and Y. LeCun, eds.), 2015.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, pp. 2121-2159, 07 2011.

M. C. Mukkamala and M. Hein, “Variants of RMSProp and Ada-
grad with logarithmic regret bounds,” in Proceedings of the 34th In-
ternational Conference on Machine Learning (D. Precup and Y. W.
Teh, eds.), vol. 70 of Proceedings of Machine Learning Research, (In-
ternational Convention Centre, Sydney, Australia), pp. 2545-2553,
PMLR, 06-11 Aug 2017.

“MS Windows N'T kernel description.” https://blog.paperspace.
com/intro-to-optimization-momentum-rmsprop-adam/. Ac-

cessed: 2021-03-17.

https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/
https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/

Bibliography 73

[34]

[35]

[37]

[39]

[40]

[41]

[42]

[43]

G. Hua and H. Zhang, “Enf signal enhancement in audio recordings,”
IEEFE Transactions on Information Forensics and Security, vol. 15,
pp. 1868-1878, 2020.

D. Luo, M. Sun, and J. Huang, “Audio postprocessing detection
based on amplitude cooccurrence vector feature,” IEEE Signal Pro-
cessing Letters, vol. 23, pp. 688-692, 2016.

Q. Yan, R. Yang, and J. Huang, “Copy-move detection of au-
dio recording with pitch similarity,” in 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 1782-1786, 2015.

Y. Zhan and X. Yuan, “Audio post-processing detection and identifi-
cation based on audio features,” in 2017 International Conference on
Wavelet Analysis and Pattern Recognition (ICWAPR), pp. 154-158,
2017.

R. Korycki, “Detection of tampering in lossy compressed digital au-
dio recordings,” in 2012 Joint Conference New Trends In Audio €
Video And Signal Processing: Algorithms, Architectures, Arrange-
ments And Applications (NTAV/SPA), (Lodz), pp. 97-101, IEEE,
2012.

Z. W. D. Y. R. Wang, L. Xiang, and T. Wu, “Speech resampling
detection based on inconsistency of band energy,” Computers, Ma-
terials & Continua, vol. 56, no. 2, pp. 247-259, 2018.

B. Liang, G. Fazekas, and M. Sandler, “Piano sustain-pedal detec-
tion using convolutional neural networks,” in ICASSP 2019 - 2019
IEEFE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 241-245, 2019.

M. Mascia, A. Canclini, F. Antonacci, M. Tagliasacchi, A. Sarti, and
S. Tubaro, “Forensic and anti-forensic analysis of indoor/outdoor

classifiers based on acoustic clues,” in 2015 23rd Furopean Signal
Processing Conference (EUSIPCO), pp. 2072-2076, 2015.

X. Li, D. Yan, L. Dong, and R. Wang, “Anti-forensics of audio
source identification using generative adversarial network,” IFEFE
Access, vol. 7, pp. 184332-184339, 2019.

C. Chen, X. Zhao, and M. C. Stamm, “Mislgan: An anti-forensic

camera model falsification framework using a generative adversarial

Bibliography 74

[44]

[45]

[46]

[47]

[50]

[51]

network,” in 2018 25th IEEFE International Conference on Image
Processing (ICIP), pp. 535-539, 2018.

Y. Luo, H. Zi, Q. Zhang, and X. Kang, “Anti-forensics of jpeg com-
pression using generative adversarial networks,” in 2018 26th Euro-
pean Signal Processing Conference (EUSIPCO), pp. 952-956, 2018.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems (Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger,
eds.), vol. 27, Curran Associates, Inc., 2014.

A. C. Popescu and H. Farid, “Exposing digital forgeries by detecting
traces of resampling,” IEEE Trans. Signal Process., vol. 53, no. 2-2,
pp. 758-767, 2005.

“Scipy butterworth filter.” https://docs.scipy.org/doc/scipy/
reference/generated/scipy.signal.butter.htmll Accessed:
2021-02-27.

W. K. PRATT, “Median filtering,” Semiannual Report, Univ. of
Southern California, 1975.

T. Liu, M. Chen, M. Zhou, S. S. Du, E. Zhou, and T. Zhao, “Towards
understanding the importance of shortcut connections in residual
networks,” CoRR, vol. abs/1909.04653, 2019.

J. Uspensky, Introduction to Mathematical Probability. No. v. 10 in
Ballard CREOL collection, McGraw-Hill book Company, Incorpo-
rated, 1937.

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural net-
works from overfitting,” Journal of Machine Learning Research,
vol. 15, no. 56, pp. 1929-1958, 2014.

G. Tzanetakis and P. Cook, “Musical genre classification of audio sig-
nals,” IEEE Transactions on Speech and Audio Processing, vol. 10,
pp- 293-302, 2002.

J. J. Bosch, J. Janer, F. Fuhrmann, and P. Herrera, “A comparison
of sound segregation techniques for predominant instrument recog-
nition in musical audio signals,” in Proceedings of the 15th Interna-
tional Society for Music Information Retrieval Conference, ISMIR

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html

Bibliography 75

2012, Mosteiro S.Bento Da Vitoria, Porto, Portugal, October 8-12,
2012 (F. Gouyon, P. Herrera, L. G. Martins, and M. Miiller, eds.),
pp- 559-564, FEUP Edigoes, 2012.

	Abstract
	Sommario
	Ringraziamenti
	List of Figures
	Glossary
	List of Tables
	Introduction
	Theoretical Background
	Time-Frequency Audio Representation
	The Fourier Transform
	The Short-Time Fourier Transform
	Spectrogram
	Mel Scale
	Log-Mel Spectrogram

	Time and Pitch Scaling
	Main Idea
	Time scaling definition
	Phase Vocoder Time-Scaling Modification

	Convolutional Neural Networks
	General Idea and Definitions
	Classification and Regression
	How to train a CNN

	Audio Forensics: State of the Art
	Related Methods

	Conclusive Remarks

	Problem Statement and Formulation
	Problem Formulation
	Time-scaling Detection
	Time-scaling Estimation
	Conclusive Remarks

	Preliminary Analysis on Phase Re-sampling Traces
	Hints about Phase Re-sampling Traces
	Empirical Phase Re-sampling Detection Analysis
	Controlled Experiments: Single Tone
	Experiment in the wild: complex audio track

	Conclusive Remarks

	Proposed Methodology
	Audio Pre-Processing
	Backbone Architecture
	Classifier
	Regressor

	Conclusive Remarks

	Experiments and Results
	Dataset
	Generation
	Dataset split

	Training Setup
	Classifier Results
	Regressor Results
	Single Time Window Results
	Multiple-Window Results

	Conclusive Remarks

	Conclusions and Future Works
	Future Works

