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Abstract

This thesis reports on a numerical investigation on the performances of massively parallel
Particle-In-Cell simulations of laser-plasma interaction in regimes that are relevant in the
context of laser-driven particle acceleration. Particle-In-Cell simulations are by far the most
established numerical tool for the approximated solution of the Vlasov-Maxwell system,
which governs the dynamics of relativistic, collisionless plasmas under a kinetic description.
Two physical scenarios are simulated and studied separately in a two-dimensional geometry:
a high-power laser pulse interacting with a thin solid foil or a with a low-density thick
plasma slab. These two configurations represent two cases-studies of relativistic laser-
plasma interaction in the over-critical and near-critical regimes respectively. Two Particle-
In-Cell codes – Smilei and WarpX – implementing different parallelization strategies are
exploited on the CPU-based cluster Galileo, hosted at Cineca.
The computational load required by the simulations is examined, exploring the role of
different code parameters and parallel configurations. Special attention is given to the
parallelization approaches implemented by the codes, with a particular focus on the domain
decomposition strategies, and to the consequential effects on the simulation times of the
main routines, which are broken down according to the main building-blocks of a Particle-
In-Cell algorithm. Moreover, one of the codes – WarpX – has been tested on the GPU-based
cluster Marconi100, hosted at Cineca as well, so that a hybrid GPU-CPU parallelization
framework has also been considered. These results indicate that the benefits of different
parallelization strategies, both code and cluster dependent, can be different depending on
the simulated physical scenarios.
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Sommario

Questa tesi riporta un’indagine numerica sulle performance di simulazioni massivamente
parallelizzate Particle-In-Cell di interazione laser-plasma in regimi che sono rilevanti nel
contesto di accelerazione di particelle tramite laser. Le simulazioni Particle-In-Cell cos-
tituiscono lo scenario numerico più largamente adottato per la risoluzione del sistema di
Vlasov-Maxwell, ovvero il modello che descrive, con una formulazione di tipo cinetico, la
dinamica di un plasma non collisionale relativistico.
L’oggetto di studio è costituito da due scenari fisici, simulati in un’ambientazione bidimen-
sionale: un impulso laser superintenso interagisce con un foglio solido sottile o con una
porzione spessa di plasma a bassa densità. Queste due configurazioni sono rappresenta-
tivi di due casi tipicamente studiati nell’ambito dell’interazione laser-plasma relativistica,
ovvero il regime sovra-denso e quello a densità quasi-critica rispettivamente. Tali simu-
lazioni vengono affrontate tramite l’utilizzo di due codici Particle-In-Cel – Smilei e WarpX
– caratterizzati da diverse strategie di parallelizzazione. A tal fine si ricorre all’architettura
CPU di Galileo, un supercomputer appartenente al centro di calcolo Cineca.
Nello specifico, l’aspetto esaminato è il carico computazionale richiesto dalle simulazioni in
questione, esplorando il ruolo ricoperto da diversi parametri dei due codici e dalle configu-
razioni di parallelizzazione. Un’attenzione particolare è riservata allo studio degli approcci
di parallelizzazione implementati dai due codici: in particolare, uno studio apposito è
dedicato alle strategie di decomposizione del dominio e ai conseguenti effetti sui tempi di
simulazioni delle principali routine, che sono analizzate separatamente, in accordo con lo
schema dell’algoritmo Particle-In-Cell. Inoltre, uno dei due codici – WarpX – è stato tes-
tato anche sul supercomputer ad architettura GPU Marconi100, anch’esso appartenete al
Cineca, in modo da considerare anche una parallelizzazione ibrida GPU-CPU. Tali risultati
indicano che i benefici derivanti da differenti strategie di parallelizzazione, dipendenti sia
dal codice sia dal cluster in questione, possono essere diversi a seconda degli scenari fisici
simulati.
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Estratto

Dalla sua invenzione nel 1960 fino ad oggi, lo studio e lo sviluppo di una tecnologia laser
avanzata ha reso possibile innumerevoli applicazioni tecnologiche e scientifiche. In parti-
colare, negli ultimi decenni il perfezionamento di alcune tecniche, sempre più raffinate, ha
consentito di realizzare impulsi laser superintensi: questi vantano una potenza elevatissima
(∼ 1 PW), una durata ultrabreve (qualche decina di fs) e sono focalizzati su aree minuscole
(qualche µm2), permettendo di raggiungere enormi intensità (& 1021 W/cm2).
L’interazione laser-materia ha da sempre costituito un interessante campo di studio, per
via dell’enorme potenziale che esso riserva. Infatti, come risaputo, laser sufficientemente
intensi, interagendo con opportuni bersagli, possono indurre una separazione della carica,
inducendo così la ionizzazione del materiale irraggiato, fino ad arrivare alla creazione di
plasmi.
Questo fenomeno è stato ampiamente sfruttato, negli ultimi anni, dalla comunità sci-
entifica, che ha sfruttato l’interazione laser-materia per diversi scopi di ricerca, tra cui
l’accelerazione di particelle. Nello specifico, laser dall’intensità superiore a 1018 W/cm2,
negli ultimi anni, costituiscono un oggetto di studio per l’enorme potenziale derivante dalla
loro interazione con la materia che, seppur inizialmente solida, viene rapidamente trasfor-
mata in plasma.
In futuro, acceleratori di particelle basati sull’interazione laser-plasma potranno quindi
risultare di notevole utilità, potenzialmente divenendo persino una valida alternativa agli
acceleratori convenzionali, grazie alle dimensioni e ai costi notevolmente inferiori.
E’ in atto, in particolare, una fase esplorativa che si pone come obiettivo lo sfruttamento
degli effetti derivanti dall’interazione laser-plasma finalizzato alla realizzazione di sorgenti
compatte di ioni accelerati. Uno degli schemi più usati, a tal proposito, consiste nell’utilizzo
di laser superintensi per irraggiare bersagli solidi sottili. Gli elettroni che si trovano sulla
superficie colpita, eccitati dall’impulso, acquisiscono un’energia cinetica tale da passare
attraverso il bersaglio fino a formare una nube elettronica sul retro. Questa separazione
di carica, quindi, induce un campo elettrico longitudinale talmente potente da accelerare
gli ioni sul retro fino a velocità relativistiche. Utilizzando laser con impulsi della durata di
qualche fs, si possono ottenere fasci composti da ∼ 1010 ioni accelerati, caratterizzati da
energie massime fino a ∼ 10 MeV, con un largo spettro esponenziale. In particolare, una
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strategia promettente, sempre meglio studiata, prevede un aumento delle prestazioni offerte
da questo schema attraverso un ampliamento degli effetti derivanti dall’accoppiamento fra
l’impulso laser incidente e gli elettroni del bersaglio. Infatti, ciò significherebbe aumentare
la temperatura degli elettroni eccitati, e quindi la loro energia cinetica, il che si traduce
in un’intensificazione del campo elettrico accelerante e quindi in una più efficiente accel-
erazione di ioni. In questo frangente, indagini numeriche sempre più corpose risultano di
fondamentale importanza, al fine di riuscire a studiare sempre più nel dettaglio il potenziale
derivante dalla fisica di questo fenomeno. Più precisamente, le indagini degli ultimi anni
sono state mirate allo studio di una struttura del bersaglio irradiato che possa ottimizzare
le prestazioni, sia nel numero degli ioni accelerati sia nell’energia cinetica da essi posseduta.
A tal proposito, le prestazioni fornite da diversi tipi di bersagli, più o meno elaborati, sono
state confrontate. Da ciò è emerso il fatto che un bersaglio doppio-strato, composto da
una schiuma nanostrutturata a bassa densità (qualche mg/cm3) depositata su un foglio
solido sottile può aumentare notevolmente la resa finale. Infatti, tale strato protettivo è
stato concepito nell’ottica di sfruttare al meglio l’accoppiamento che si instaura fra un laser
ad alta intensità e un plasma a densità critica (o quasi), il che si traduce in un guadagno
nell’assorbimento di energia dell’impulso da parte delle particelle, intensificando il processo
di accelerazione.

La fisica che descrive l’interazione fra laser superintensi e materia è assai complessa e
articolata e può essere caratterizzata da molti sofisticati meccanismi. Ad ogni modo, data
l’alta intensità degli impulsi in questione, la materia viene fortemente ionizzata, raggiun-
gendo ben presto lo stato di plasma. Ciò significa che può essere considerata come un
insieme di particelle cariche, che si muovono, interagendo, sotto l’effetto di campi elettro-
magnetici autoconsistenti generati dalla loro stessa dinamica.
Nell’ambito dell’accelerazione di ioni da laser, è possibile considerare le interazioni a lungo
raggio dominanti rispetto a quelle a corto raggio e, quindi, tali plasmi mostrano un com-
portamento prevalentemente collettivo. Diversi modelli matematici esistono per descrivere
questo stato della materia: in particolare, quello che risulta più adatto in questo ambito
consiste in un’estensione della teoria cinetica dei gas a questo particolare sistema. Nello
specifico, il modello matematico più usato deriva dall’accoppiamento fra l’equazione di
Vlasov relativistica e le equazioni di Maxwell. Studi analitici di questo sistema di equazioni
sono possibili solo tramite semplificazioni derivanti da forti assunzioni a priori, le quali
risultano inappropriate per descrivere contesti realistici, quale l’accelerazione di ioni. Di
conseguenza, l’unica strada percorribile prevede l’adozione di un approccio numerico e, tra
gli schemi numerici esistenti, il più utilizzato è senz’altro il metodo Particle-In-Cell (PIC),
dato che risulta essere quello che meglio si presta a simulazioni cinetiche di interazione
laser-plasma in regime relativistico e non collisionale. Tuttavia, la simulazione di scenari
così articolati, chiaramente, implica una complessità numerica non indifferente, che richiede



elevate risorse computazionali. Il numero di particelle coinvolte, infatti, è davvero elevato
e, per riuscire a catturare fenomeni che avvengono a scale caratteristiche del plasma (come
la lunghezza di pelle), è essenziale adottare una risoluzione numerica raffinata. Risulta,
dunque, proibitivo simulare scenari con parametri realistici: per esempio, una significativa
riduzione nella densità dei plasmi simulati, rispetto ai valori osservati in laboratorio, deve
essere introdotta al fine di alleggerire gli sforzi computazionali. Nonostante ciò, al momento
attuale, risulta spesso impossibile realizzare simulazioni tridimensionali, che richiedereb-
bero tempi eccessivi, e quindi il loro utilizzo viene riservato solo a casi selezionati. Ciò
significa che, nella maggior parte dei casi, deve essere intrapreso un approccio bidimension-
ale, il quale, però, è utile prevalentemente per raccogliere informazioni di tipo qualitativo.
Tuttavia, dato il grado di complessità sempre crescente degli scenari fisici che sono oggetto
di studio negli ultimi anni, l’adozione di un approccio eccessivamente semplificato, sia nei
parametri fisici sia nella dimensionalità nelle simulazioni, si rivela senz’altro limitante ed
emerge sempre più la necessità di simulazioni quanto più realistiche.
Urge, dunque, una campagna investigativa finalizzata allo studio dettagliato dei codici PIC
maggiormente utilizzati. L’obiettivo di questo lavoro di tesi consiste in un’indagine delle
performance raggiungibili con codici PIC, al fine di riuscire a sfruttare al più le potenzialità
di tali codici.

Il lavoro di tesi qui presentato riporta un’indagine numerica delle performance associate
a simulazioni bidimensionali selezionate di interazione laser-plasma, affrontate col metodo
numerico PIC. A tal fine, sono stati selezionati due codici open-source – Smilei e WarpX –
caratterizzati da diverse strategie di parallelizzazione. Inoltre, tale parallelizzaione, dotata
di logica altamente massiva, è stata esplorata su due diversi supercomputer, al fine di
testare sia un ambiente CPU sia un’architettura ibrida GPU-CPU. Due scenari fisici cos-
tituiscono l’oggetto di studio. Il primo è rappresentato dall’interazione fra un laser super-
intenso e un bersaglio solido sottile, mentre nel secondo scenario tale tipo di laser viene
fatto interagire con una schiuma spessa a bassa densità. Queste simulazioni numeriche
sono state eseguite mediante Galileo, un supercomputer ad architettura CPU che risiede
nel centro di calcolo Cineca, a Bologna. Inoltre, le performance raggiunte da WarpX sono
state studiate anche su Marconi100, un supercomputer recentemente avviato dal medesimo
centro di calcolo equipaggiato con un’architettura ibrida GPU-CPU.
Quindi, tali indagini, che si inseriscono all’interno di una campagna in fase di avvio, po-
tranno, in futuro, dare adito a una migliore comprensione delle strategie di parallelizzazione
più convenienti, anche in scenari fisici altamente sofisticati. Oltre a ciò, grazie all’estrema
efficienza insita nella natura multi-core delle GPU, simulazioni più realistiche (che al mo-
mento risultano troppo onerose) potranno essere intraprese, magari senza ricorrere (almeno
per il caso bidimensionale) a parallelizzazioni massive, ma utilizzando laptop comuni. Tali
risultati, quindi, costituiscono il primo passo verso una conoscenza più completa di come



algoritmi PIC possano meglio adattarsi ad ambienti altamente parallelizzati, gettando le
fondamenta per un’ulteriore ottimizzazione dell’uso di tale metodo numerico.
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Introduction

Since the laser technology was invented in 1960, the interaction between a laser pulse and
matter has been the focus of a great number of investigations. In the past decades, the
effects of several properties of both the laser pulses and the irradiated matter on the in-
teraction regimes have been studied in order to achieve a better understanding of these
processes, with the ultimate goal of controlling the physical mechanisms at play. The de-
velopment of laser technology has let the scientific community achieve higher and higher
laser focused intensities: in this context, a great conquest is represented by the realization
of the chirped pulse amplification technology, thanks to which very intense laser pules can
now be realized. Thus, the availability of ultra-intense and ultra-short pulses, called super-
intense pulses, opened the way to the exploration of new laser-matter interaction regimes,
which can also be exploited for laser-driven particle acceleration. Such acceleration can
be activated by suitably exploiting the complex physical mechanism that arise during the
interaction between a superintense laser and matter. In particular, given the high intensity
of such pulses, the irradiated matter is rapidly ionized, turning into the state of plasma.
Under this condition the irradiated matter can be considered as a collection of charged
particles, in electromagnetic interaction with each other.

Ongoing researches are exploring these complex phenomena in order to realize compact
sources of accelerated particles. In general, laser-plasma based accelerators, in fact, would
be preferable to conventional accelerators because of their significantly lower demands
in terms of size and cost. In particular, the acceleration of ions, in the most typical
configuration, can be obtained through the interaction of superintense pulses and thin
solid foils. In this context, a great issue consists in finding smart strategies to optimize the
conventional ion acceleration scheme. One option, studied in the last years, is to exploit
double-layer targets, which basically consist in a nanostructured, low-density material,
called foam, attached to a thin solid foil.

Intensive numerical campaigns are essential to achieve a deeper comprehension of these
complex mechanisms. The most widely exploited numerical tools are based on the Particle-
In-Cell (PIC) approach, which allows one to perform numerical simulations involving laser-



plasma interaction including kinetic and relativistic effects. However, as it often happens,
simulations performed with high accuracy come with considerable computational efforts.
Actually, realistic physical parameters are often impossible to reproduce so that reduced
values are chosen. Moreover, most of the times simulations in three-dimensional geometry
result prohibitive, especially when wide parametric scans are desired. Hence, many times a
two-dimensional framework becomes essential, even if this approach is limiting, because of
the inherent three-dimensional nature of the actual physics. For this reason, a numerical
investigation focused on understanding how to make an optimal use of PIC codes while
assessing their performances becomes of great interest.

The scope of the present thesis is the exploration of the numerical strategies which can im-
prove the performances of PIC codes when used in massively parallel environments, with a
special attention to the effects due to different parallelization strategies. The general goal is
to gain insights on optimal strategies which may reduce the computational times required
for typical laser-plasma interaction simulations. Two very different regimes of interaction
are selected: the interaction of a superintense laser pulse with a low-density plasma, rep-
resentative of a foam material, or with a thin solid foil. Two codes are tested which are
the open source, massively parallel, PIC codes Smilei and WarpX. The performances have
been tested on the CPU-based cluster Galileo and on the hybrid GPU/CPU-based super-
computer Marconi100, both of them hosted at CINECA, Bologna, Italy.

The thesis is organized as follows.

• Chapter 1 - Super-intense laser-plasma interaction - provides a background from the
physical and mathematical point of view. After an introduction of the concept of
high-intensity lasers, the plasma state is presented, with its mathematical description
given by the relativistic Vlasov-Maxwell system. Then, some general features of the
physics characteristic of laser-plasma interactions are discussed. Lastly, the basic
elements specific of laser based ion acceleration are exposed, with particular attention
to advanced double-layer targets consisting in nanostructured materials deposited on
solid foils.

• Chapter 2 - Numerical approaches to the kinetic description of laser-plasma interac-
tion - frames the two main classes of methods used for the numerical resolution of
the Vlasov-Maxwell system: grid-based methods and particle methods. In particular,
an in-depth description of the widely used PIC method, in all its constituent algo-
rithms, is given. The main differences between the two approaches are highlighted.
Motivations and goals of the present thesis are detailed at the end of this chapter.

• Chapter 3 - Performance analyses of laser-plasma interaction simulation on a CPU-
based cluster - provides an extended discussion of the numerical campaign to test the
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performances of the codes. Firstly, the selected codes are presented, with an in-depth
treatment of the implemented parallelization strategies. Then, two physical scenar-
ios are selected to be simulated. The computational times of several simulations
involving different numerical configurations are examined. Moreover, the single com-
putational contributions related to the algorithm routines and the communication
between different processes are investigated.

• Chapter 4 - Performance analyses of laser-plasma interaction simulations on a hybrid
CPU-GPU system cluster - is devoted to an investigation of the benefits deriving
using a hybrid GPU-CPU parallelization framework.

• Chapter 5 - Chapter 5 – Conclusions and perspectives – discusses the over-all results of
the work and highlights possible further developments along with ideas for potential
future studies.

xv



Chapter 1

Super-intense laser-plasma
interaction

Super-intense lasers and their interaction with matter is an interesting open field of re-
search: the possibility of exploiting lasers to manipulate matter has been a source of great
interest in the last decades, since the first realization of a laser pulse in 1960.
Currently laser facilities can achieve very high intensities and can produce concentrated
both in space and time pulses (focused on a very small area and with a very small dura-
tion).
In particular, in the last years an interesting field under investigation consists in the ion-
ization of matter and the generation of plasmas through super-intense lasers: in fact, the
interaction between high-power lasers and plasmas finds a large number of promising ap-
plications, such as the particle acceleration.
So, ultra-intense and ultras-short pulses can ionize matter and it’s possible to exploit the
laser-plasma interactions to generate accelerated beams of particles.
The availability of laser-plasma interactions to achieve particle accelerations was suggested
for the first time by Veksler in 1957 ([1]): unlike in conventional particle accelerators, where
the motion of each particle is completely determined by an external source and is indepen-
dent of the other particles, this method implies the concept of coherent acceleration, i.e.
the magnitude of the accelerating field acting on each individual particle is proportional
to the number of particles being accelerated.
The laser-induced particle acceleration, thanks to the compactness of this scheme, could be
an attractive alternative to conventional accelerators, addressing some of their limitations,
such as high-costs, not compact size, radioprotection issues and non-tunable energy.



1.1 High-power lasers

A laser, acronym for "Light Amplification by Stimulated Emission of Radiation", is a
device that generates or amplifies coherent radiation at frequencies in the infrared, visible,
or ultraviolet regions of the electromagnetic spectrum.
The theoretical foundations for laser were established for the first time in 1917 by Albert
Einstein in the paper “Quantum Theory of Radiation” [2], in which theorized the concept
of stimulated emission, according to which electrons could be stimulated to emit light of a
particular wavelength.
But it took nearly 40 years before scientists have been able to amplify those emissions
and the first laser was realized only in 1960 by Thedore H. Maiman at Hughes Research
Laboratories, in California ([3]).
A distinctive trait of this device is the spatial and temporal coherence of the emitted light:
spatial coherence allows a laser to be focused to a tight spot and to stay narrow over great
distances; temporal coherence, instead, allows to emit light with a very narrow spectrum,
in order to produce monochromatic waves.
Alternatively, temporal coherence can be used to produce ultrashort pulses, that are pulses
of light with a broad spectrum and time duration of the order of a picosecond (10−12 second)
or less.
Among the main parameters of a laser pulse there are the wavelength λ, the time duration
τ and the spot size σ.
The energy of the pulse can be estimated as the energy contained in the corresponding
electromagnetic field, expressed in the Gaussian system of units:

ε ≈ |E|
2

4π
σcτ (1.1)

where c is the speed of light and σcτ is the volume occupied by the pulse.
Moreover, it’s possible to define the intensity of the pulse as the energy per unit of area
per unit of time:

I ≈ |E|
2

4π
c (1.2)

The electromagnetic laser pulses mostly can be modeled, in the most simple way, as gaus-
sian beams, which are beam of monochromatic electromagnetic radiation whose intensity
envelope in the transverse plane follows a Gaussian distribution:

I (x, y, z, t) = I0 exp

(
−2

(
x2 + y2

)
w (z)2

)
exp

(
−
(
t− z

c

)2
wt2

)
(1.3)

where z is the propagation direction, I0 is the peak intensity of the pulse, w (z) is the waist
– the radius at which the intensity fall to 1/e2 and wt is described by the relation:

wt =
FWHM√

ln 2
,

2



where FWHM is the full-width-half-maximum of the intensity envelope in time.

Today, many laser technologies exist, which generate laser pulses with different charac-
teristics (see [4]). Concerning high power lasers, three main technologies exist: Tita-
nium:Sapphire lasers, CO2 lasers and Nd:YAG (neodymium-doped yttrium aluminum gar-
net, Nd:Y3Al15O12) lasers.
Ti:Sapphire lasers can produce pulses with duration down to tens of fs (10−15 s), whereas
durations in the ps (10−12 s) and hundreds of fs ranges can be obtained with CO2 and
Nd:YAG lasers respectively. Moreover, the pulse generated by Ti:Sapphire technology has
a wavelength of approximately 0.8 µm, while CO2 and Nd:YAG generate pulses close to 1
µm and 10 µm respectively.
Today, laser-driven ion acceleration experiments typically employs solid state lasers based
on the Titanium:Sapphire technology, which can generate pulses with durations about tens
of fs transporting tens of J, focused to a few wavelengths spot sizes. This implies powers
over of 1 PW (1015 W) and intensities up to 1022 W/cm2.
These ultra-intense laser system are based on the Chirped Pulse Amplification (CPA), a
technique introduced in the mid-1980s by Donna Strickland and Gérard Mourou, work for
which they received the Nobel Prize in Physics in 2018 (see [5]). Essentially, the CPA is a
technique which allow to amplify a short, low-energy laser pulse. A conceptual scheme of
its principle is described in figure 1.1. Initially, the laser pulse undergoes a stretching and

Figure 1.1: Conceptual scheme of the Chirped Pulse Amplification technique

its duration is increased by a dispersion in time of the spectral components.
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Then, the resulting stretched pulse has lower power and it is easier and safer to amplify:
so, the pulse is subjected to undergoes different different amplification stages, which incre-
ment its energy by several orders of magnitude.
Finally, the amplified laser pulse is recompressed back to the original width, achieving a
final power which laser systems could generate before the invention of CPA.

1.2 Plasma generation

When a laser pulse interacts with matter it can produce ionization effects: in fact, if an
intense pulse impinges on an atom, it can distort the Coulomb potential and release the
electrons. So, if the electric field carried by the laser pulse is comparable with the atomic
binding field of electrons, matter can be strongly ionized with the consequent plasma
generation (the description of the plasma state is presented in next section).
Hence, if the laser is intense enough, matter ionization can occur before the arrival of the
intensity peak, and therefore the laser peak interacts always with plasma.
Basically, when an oscillating electromagnetic wave interacts with a plasma, electrons react
over faster timescales with respect to the ions, because of the higher charge-to-mass ratio
(so ions are restrained by the greater inertia).
In general, when an electron is affected by an incident plane wave, that can be represented
by its potential vector

A (r, t) = Re{A0e
iϕ} = A0 cosφ

it begins oscillating around its equilibrium position due to Lorentz force with a quiver
velocity

vq =
eA0

mec
. (1.4)

In addition, for high values for the laser intensity, relativistic effects must be taken in
consideration in the dynamics of the electrons: in this case it is essential to introduce
another parameter, the normalized vector potential

a0 =
eA0

mec2
=
vq
c

=

√
e2λ2I0

2πmec3
= 0.85

√
λ2
µmI0

1018Wcm−2
. (1.5)

Hence, it is easy to see that this quantity explicates the relevance of relativistic effects in
the electron dynamics: in fact a0

∼= 1 means that the quiver velocity is near to c, so their
kinetic energy is near to mec

2 = 0.511 MeV, which is the electrons rest energy, in a single
laser cycle or, equivalently, the laser irradiance λ2I0

∼= 1018Wcm−2µm2 .
Summarizing, if an ultra-intense laser interacts with matter, it can produce plasma with
relativistic effects, at least for what concerns electron dynamics.
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1.3 The plasma state

"Except near the electrodes, where there are sheaths containing very few electrons, the ion-
ized gas contains ions and electrons in about equal numbers so that the resultant space
charge is very small. We shall use the name plasma to describe this region containing bal-
anced charges of ions and electrons."

The American Nobel Physicist Award Irving Langmuir introduced the plasma word in
1928 in the paper "Oscillations in Ionized Gases" ([6]), borrowing it from the Ancient
Greek term πλασµα, meaning "moldable substance", to describe a "region containing bal-
anced charges of ions and electrons".
The plasma constitutes the 99.9% of the visible matter in the universe: the interior of
the stars, interstellar space, solar wind, boreal aurora, ionosphere and lightning are made
of plasma. In addition to these natural forms, plasma are reproduced in laboratory for
specific scopes, such as neon tubes, plasma balls, electric arches, radiofrequency discharges
for industrial applications, up to high temperature plasmas for controlled thermonuclear
fusion research and laser generated plasmas.
It is different from the classical three states of matter (solid, liquid and gas) and, so, it is
considerable as the fourth state of matter.
So, the plasma state requires a special definition all its own: as a first simplified approxi-
mation, it could be definable as a ionized gas, constituted by charged particles and globally
neutral, meaning that the total electrical charge is null.
The concept of charge separation in the plasma state had already emerged in the previous
section: namely, it has been explained that a high-power laser pulse can induce matter ion-
ization until reaching plasma generation: indeed, in a plasma different species of charges
coexist, the so called populations, that arise when electrons split from the rest of the nu-
cleus (creating ions).
Although these particles are unbound, they are not "free" in the sense of not experiencing
forces: the motion of the charges generates electromagnetic fields, and any motion of a
charged particle affects and is affected by the fields created by the other charged particles.
So a plasma, basically, is a many-body system of particles whose physical behavior is
strongly affected by the presence of the charges and it requires a description which takes
in account both the electromagnetic nature and the particle dynamics.

1.3.1 Fundamental parameters

There is a set of parameters to describe a plasma: a particularity of this state of matter is
that its fundamental parameters can vary in a very large range (as it is easy to see in the
table in figure 1.2).
So, plasmas can differ a lot from each other but it’s possible to describe all of them with
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the same theoretical framework.
Two fundamental parameters are the density na and the temperature Ta of each species: in
particular, the latter represents an information on the thermal kinetic energy of the parti-
cles and so it is commonly measured in electronvolts [eV]. Concerning spatial parameters,

Figure 1.2: Approximate magnitudes in some typical plasmas. Reprinted from the NRL Plasma
Formulary [7].

instead, an important quantity is the Debye length, so defined

λD =

(
4πe2

N∑
a=1

na,0Z
2
a

Ta

)− 1
2

, (1.6)

where na,0, Za and Ta are respectively the density in the unperturbed configuration, the
atomic number and the temperature of the a-th population. This quantity is important
because is related to the collective behavior of the charges: in fact λD is the minimal spatial
scale at which the plasma can be considered neutral and at which motion of each particle
can be seen as independent from the other charges.
So a particle in a plasma resent of the Coulomb-interactions only with the particles
whose distance is less than the Debye length, and all the others, out from the so called
Debye spehere are negligible.
Hence, it’s possible to see the entire Debye spehere as a unique body, called quasi-particle,
that interacts with the other bodies of the system as a classical particle in a gas: the
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number of particles in this sphere is clearly

ND =
4

3
πλ3

Dn = 1.72 · 109T
3
2

n
1
2
0

(1.7)

This number is useful to relate other quantities, which are the kinetic and potential energy
of a particle in a plasma:

εk '
3

2
T, εpot '

e2

n−0
1
3

For convention, it’s better to consider the inverse of this quantity, the plasma parametere

g =
1

ND
(1.8)

which is a measure of the ideality of the plasma: in fact the smaller is g, the shorter range
interactions are negligible (ND � 1) and the plasma is hot and rarefied.
At the limit g = 0, the entire system can be seen as an ideal gas, i.e. a gas composed by
particles moving only due to their thermal energy and without inter-particle interactions.
Finally, another important parameter is the plasma frequency, here definied, which mea-
sures the harmonic oscillations of electrons

ωp,e =

√
4πn0e2

me
, (1.9)

and it is a good approximation of the plasma frequency due to all the particles oscillations
(being the electrons very light compared to protons or ions).

1.3.2 Mathematical modeling of the plasma

There is not a unique mathematical model to describe the plasma state, but it’s possible
to choose from several existing alternatives depending on the nature of problem considered
and the level of details desired.
One of these is the multifluid description in which the identity of the individual particle is
neglected, and only the average motion is considered, just like in a fluid. In this case, the
plasma is seen as a mixture of fluids, one for each population, endued with electric currents.
This mathematical description, basically, consists of the continuity equation and theNavier-Stokes-like
momentum law: 

dna
dt

+ na∇ · ua = 0

mana
dua
dt

= −∇ · Pa + qana

(
Ea +

ua
c
×B +Ra

)
where, na and ua are the density and the velocity of the a-th fluid, Pa is the pressure
related to the random motion of the particles in the fluid and Ra is a term representing
the momentum exchanges caused by collisions with particles of other populations.
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Moreover, when the length scales of the problem under consideration are larger than the
Debye length and the time scales are larger than the inverse of plasma frequency, it is
possible to neglect the charge separation. In this case it’s useful to consider a further
approximation, the so called Magnetohydrodinamic model which combines the equations of
the multifluid model of the various populations in order to obtain new laws governing the
plasma considered as a unique fluid.
However this model cannot be chosen to describe a plasma involving high-frequency phe-
nomena, which may involve charge separation.

The two approaches presented, however, are very approximate and do not ensure a de-
tailed description of the plasma state. However, when an high level of detail is required, a
third approach must be considered, which is inherited from the kinetic theory and repre-
sents the most complete, solvable description.
Essentially, this approach consists in readjusting the kinetic theory of gases in order to in-
corporate the self-consistent electromagnetic interactions: so, starting from the microscopic
information of the single particles, it is possible to use averaged quantities to describe the
system with a kinetic model.

Relativistic collisionless kinetic description

Consider a non-relativistic plasma composed by N populations each one with mass ma,
charge qa and Na particles. The dynamics of a single particle i affected by the microscopic
fields Emicr and Bmicr, is dominated by the equation of motion:

dri,a (t)

dt
= vi,a

ma
dvi,a (t)

dt
= qa

(
Emicr (ri,a, t) +

vi,a
c
×Bmicr (ri,a, t)

) (1.10)

Moreover, the space-time evolution of the microscopic fields, expressed in the Gaussian
system of units, is governed by the Maxwell equations

∇ ·Emicr = 4πρmicr

∇×Emicr = −1

c

∂Bmicr

∂t

∇ ·Bmicr = 0

∇×Bmicr =
4π

c
Jmicr +

1

c

∂Emicr
∂t

(1.11)
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and, in order to close the system, it’s convenient to explicit the contribuits of charge and
current densities of external particles

ρmicr (r, t) = ρext +

N∑
a=1

qa

Na∑
i=1

δ (r− ri,a) (1.12)

Jmicr (r, t) = Jext +
N∑
a=1

qa

Na∑
i=1

vi,aδ (r− ri,a) (1.13)

Hence, system (1.10) represents a Lagrangian description of the trajectory of a particle in
time, while the second describes fields evolution in an Eulerian point of view.
It is important to underline that, while in the Lagrangian point of view the position is a
function of time, in the Eulerian one space coordinates and the time are independent, since
it’s possible to fixate t and evaluate the fields at different points in space.
Hence, even though the two descriptions are physically equivalent, a full-Eulerian descrip-
tion would be more suitable. For this purpose, it is convenient to transform particle
dynamic equations in an Eulerian form: to do so, the system needs to be described in the
phase-space, the six-dimensional space (r,v).
Now, consider the microscopic distribution function of the density of particles for the a-th
species in the space-phase

fmicr,a (r,v, t) =

Na∑
i=1

δ (r− ri,a(t)) δ (v− vi,a(t)) (1.14)

Expressing the external sources in Maxwell equations (1.11) in terms of fmicr,a, as

ρmicr = ρext +

Na∑
i=1

qa

∫
fmicr,a(r,v, t) dv (1.15)

Jmicr = Jext +

Na∑
i=1

qa

∫
vfmicr,a(r,v, t) dv (1.16)

and, using the equation of motion, it’s possible to derive the dynamic equation of the
distribution function

∂fmicr,a
∂t

+∇r · (fmicr,av) +∇v ·
(
fmicr,a

qa
ma

Emicr +
v×Bmicr

c

)
= 0 (1.17)

This is the Klimontovich equation: it is physically equivalent to the motion equation.
At this point, it is convenient to look for a less detailed description. Let the distribution
function fa be the ensemble average of the microscopic distribution function and in the
same fashion define the mean electromagnetic field E, B

fmicr,a = 〈fmicr,a〉+ f̃a = fa + f̃a

Emicr = 〈Emicr〉+ Ẽ = E + Ẽ

Bmicr = 〈Bmicr〉+ B̃ = B + B̃

(1.18)
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This allows to decompose the quantity in a sum of an average (over all possible microscopic
configurations that correspond to the same macroscopic state) and a fluctuating component
(Ẽ,B̃,f̃).
This statistical operation represent a sort of filter for the spatial scales which keep only
those characteristic of the problem.
Applying the same operation to the Maxwell equations (1.11) yields:

∇ ·E = 4πρ

∇×E = −1

c

∂B
∂t

∇ ·B = 0

∇×B =
4π

c
J +

1

c

∂E
∂t

(1.19)

where

ρ = ρext +

Na∑
i=1

qa

∫
fa(r,v, t) dv (1.20)

J = Jext +

Na∑
i=1

qa

∫
vfa(r,v, t) dv (1.21)

Now, the application of the average operation to the Klimontovich equation leads to the
so-called Boltzmann equation

∂fa
∂t

+ v · ∇rfa +
qa
ma

(
E +

v×B
c

)
· ∇vfa = −〈 qa

ma

(
Ẽ +

v× B̃
c

)
· ∇vfa〉 (1.22)

The left hand side of (1.22) is related to the collective motion of relatively large volumes
of particles through the mean self consistent field and expresses the macroscopic, averaged
and long-range interactions.
Instead, the right hand side, commonly indicated as Ca, manifests the microscopic, chaotic
and short-range collisions between particles: so it represents the creation and elimination
of particles in the phase space. However, Ca, which is a priori unknown, needs to be
addressed with a suitable mathematical model in order to close the system.
Nevertheless, when the time scales considered are shorter than the relaxation time of
the plasma, which is the scale time over which the system returns to the equilibrium
configuration after a perturbation, it’s possible to assume that the collision effects do not
influence the average behavior of the plasma and so Ca can be neglected.
This simplification leads to a closed system and introduces the Vlasov equation, holding
for a non-relativistic collisionless plasma:

∂fa
∂t

+ v · ∇rfa +
qa
ma

(
E +

v×B
c

)
· ∇vfa = 0 (1.23)
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Finally, it’s possible to write a closed solvable system, known as the Vlasov-Maxwell system,
whose unknown are the distribution function and the electric and magnetic fields:

∂fa
∂t

+ v · ∇rfa +
qa
ma

(
E + v×B

c

)
· ∇vfa = 0

∇ ·E = 4πρ

∇×E = −1

c

∂B
∂t

∇ ·B = 0

∇×B =
4π

c
J +

1

c

∂E
∂t

(1.24)

Collisionless relativistic kinetic description

All of the previous considerations, as premised at the beginning, hold if the particles do
not show a relativistic behavior: nevertheless, in a laser-generated plasma, for example,
electrons can reach relativist velocities. For these kind of situations, so, the kinetic de-
scription must be modified in order to consider relativist effects.
Obviously, only the component related to the particles dynamics must be corrected, be-
cause Maxwell equations hold even in relativistic regimes.
Hence, the motion equations become:

dri,a
dt

= vi,a =
pi,a
maγi,a

dpi,a
dt

= qa

(
Emicr +

pi,a
maγi,ac

×Bmicr

) (1.25)

where, pi,a and γi,a are the linear momentum and the Lorentz factor respectively, so
defined: 

pi,a = maγi,avi,a

γi,a =

√
1 +

p2
i,a

(mac)2

Proceeding in a similar way as the non relativistic case, the relativistic Vlasov equation is
obtained:

∂fa
∂t

+
pa
maγa

· ∇rfa +
qa
ma

(
E +

p
maγac

×B
)
· ∇pa

fa = 0 (1.26)

where the linear momentum pa and the Lorentz factor γa associated to the a-th species
are defined by: 

pa = maγava

γa =
1√

1− v2
a

c2

(1.27)
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Now, it is possible to write the relativistic correction of the Vlasov-Maxwell system:

∂fa
∂t

+
pa
maγa

· ∇rfa +
qa
ma

(
E +

p
maγac

×B
)
· ∇pa

fa = 0

∇ ·E = 4πρ

∇×E = −1

c

∂B
∂t

∇ ·B = 0

∇×B =
4π

c
J +

1

c

∂E
∂t

(1.28)

1.4 Laser-plasma interaction

A fundamental issue in the physics of laser-plasma interaction is whether pulse can propa-
gate through a given plasma or not: this section explains the basic elements of laser-plasma
interaction, showing the different regimes of interaction with can occur.
As a first approach, we will start studying a very simplified case, far from the realistic
phenomenon, of a single particle hit by a laser pulse.

1.4.1 Single particle approach

Consider a single non-relativistic electron interacting with a laser pulse with frequency ω
propagating along the direction k, represented by the electromagnetic field

E(x, t) = E0(x, t) cos(k · x− ωt) (1.29)

So, the Newton equation describing the motion of the particle will be:

ẍ =
q

m
(E +

ẋ
c
v×B) (1.30)

It can be meaningful to look for an approximate solution through a linearization of the
equation: using a perturbative approach the solution is split in a sum of two contribu-
tions

x = x(0) + x(1)

where x(0) is the solution at the 0-order of the linearized problem and x(1) correspond to
the perturbation of the system.
Now, expanding the electric field around the initial position of the particle xc

E ≈ E(xc) + [(x− xc) · ∇] E|x=xc

and linearization allows to arrive at

x(0) = xc −
qE0(xc)
mω2

cos(k · xc − ωt) = xc −
v(0)

ω
cos(φ) (1.31)
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Figure 1.3: Conceptual scheme of the ponderomotive force effects. Reprinted from [8]

where v(0) is the quiver velocity (1.4).
Thus, it’s immediate to derive the perturbative the force acting on the particle

ẍ(1) =
( q

mω

)2
[(E · ∇)E + E0 × (∇×E0) sin2 φ+ (. . . ) sinφ cosφ] (1.32)

As a result, this perturbative result is written as a sum of several contributions: the first
term is a function only of the spatial dishomogeneities while the last two terms depend
also on time, oscillating with frequency 2ω.
At this point, an average over the laser period T = 2π

ω allows to get rid ot the two last
terms

m
d2〈x(1)〉
dt2

= − q2

4mω2
∇|E0|2 = Fp (1.33)

This is the so called Ponderomotive force: nonlinear force which, because of the non-
uniformities in the spatial profile of the field, causes the particle to move towards the area
of the smaller field amplitude (see figure 1.3).
It’s meaningful to notice that this force is inversely proportional to the mass of the charge:
this means that only the electrons feel significantly its effects while protons and ions dis-
placement, in comparison, is negligible. Equivalently, it’s possible to say that the pondero-
motive force move the electrons towards regions with smaller ponderomotive potential

Up =
q2

4mω2
|E0|2 (1.34)

However, this formulations doesn’t take in account relativistic effects, which come into
play when high-intensities lasers are considered: in this case the relativistic correction of
the ponderomotive force yelds to

Fp = −mc2∇
√

1 + 〈a2〉 (1.35)

where a =
qA
mc2

is the normalized vector potential.
As premised in the beginning, this single particle approach is a very simplified and not

13



realistic physical configuration: however it is useful to clarify the importance and the
role of the ponderomotive force. In fact, despite all the simplifications, it allows to build
qualitative arguments to understand why it is possible to accelerate particles through laser-
plasma interactions: the interpretation of the ponderomotive effect explains how the laser
profile can affect the density of a plasma, pushing and piling up the electrons according to
its intensity profile.

1.4.2 Electromagnetic radiation-plasma interaction

The previous section was devoted to describe the effects felt by a single particle hit by
a laser pulse. Otherwise, a plasma is composed by a lot of particles, so it is required a
generalization of the previous concept to a full plasma.
In particular, a laser pulse shot into a dispersive medium, such as plasma, can lead to
several kinds of perturbations inside the medium. So, it is important to understand which
kind of relations (between lasers and plasmas) allow to obtain propagating effects.
In general a plane monochromatic electromagnetic wave propagating within a plasma must
satisfy Maxwell laws together with Kramers-Kronig relations (see Jackson [9]): under suit-
able hypothesis, it’s possible to arrive to simple conditions relating the wave frequency ω
the wave vector k.
First of all, neglect spatial dispersion: it could be a good approach if the spatial varia-
tions of the wave are greater than the characteristic lengths of the plasma, i.e the Debye
length:

λD �
1

k
⇔ vt �

ω

|k|

where vt =

√
T

m
is the thermal velocity. So neglecting spatial dispersions is equivalent to

neglecting thermal effects: this is the so called cold plasma approximation.
Thus,consider a cold, homogeneous, collisionless, non-relativistic, non-magnetized plasma:
thinking the incident electromagnetic wave as a small perturbation and assuming linear
response to small perturbations, it is possible to achieve the dispersion relations, i.e. the
conditions under which the wave is free to propagate inside the plasma.
In particular, in the case of transverse wave this relation is given by:

ω2 = ω2
p + |k|2c2 (1.36)

while, if the wave is longitudinal, the condition has a more simple form:

ω = ωp (1.37)

So, this is a minimum-value-condition for the propagation: if ω ≥ ωp wave propagations
occurr.
If, instead, ω < ωp the wave is partially refecleted and partially absorbed by the plasma.
The penetrating component travels through the surface of the plasma for a very small
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distance, called skin depth length, before being exponentially dumped.
This distance is related both to ω and ωp by the formula

L =
c√

ω2
p − ω2

(1.38)

but, if ω � ωp, L ' c
ωp

becomes a property of the plasma itself.

Regimes of interaction

It’s a common procedure rewriting the dispersion relations in terms of the critical density,
which is the density at which ω = ωp

nc =
meω

2

4πe2
= 1.1× 1021cm−3

(
λ

1µm

)−2

where λ = 2πc
ω is the wavelength. Thus, the above considerations to the frequencies can

be transferred into considerations on the densities. Given a monochromatic wave and a
plasma, three different regimes can be distinguished:

• ne < nc(ω)undercritical plasma: the wave can propagate

• ne > nc(ω)overcritical plasma: there is no propagation

• ne ≈ nc(ω)near-critical plasma: intermediate complex situation where a strong wave-
plasma coupling occurs

However, these results have been obtained under the hypothesis if small perturbations;
however, if this assumption does not hold, non-linear effects may arise. So, when relativistic
effects are included, a non-linear treatment has to be adopted: this happens when high-
power lasers are involved, which, interacting with plasmas, induce relativistic effects.
In this case, the underlying physics become more complex and a relativistic treatment is
required: so, once introduced the relativistic factor

γ =

√
1 +

a2
0

2

substituting me with γme the relativistic correction appears:

nrelc = γnc = γ
meω

2

4πe2
(1.39)

Equation (1.39) shows that, if γ > 1, the maximum threshold and so propagation can
occur: this is the so called relativistic self-induced transparency, thanks to which the range
nc < ne < γnc is still valid for waves propagation.
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1.4.3 Laser-driven particle acceleration

Laser-plasma interaction can be exploited in order to obtain accelerated particles: ex-
ploiting ultra-intense and ultra-short pulses (with intensity greater than 1018W/cm2), it is
possible to rapidly ionize a target and to achieve a plasma state.
At this point, the laser-plasma interaction can excite the particles contained in the plasma,
inducing an acceleration. There exist scenarios of particle accelerations, depending, basi-
cally, on the regime of interaction under consideration.
Firstly, consider the undercritical regime: in this case the pulse is able to propagate through
the considered plasma for long distances. Traveling across matter, the pulse acts on the
electrons via the ponderomotive force, described by (1.33).
So, the electrons are pushed away from the region where the pulse is located towards re-
gions where the ponderomotive potential, defined in (1.34), is lower. Therefore, electrons
that have not met the pulse yet are moved forward along the laser propagation direction.
Meanwhile, the pulse, which moves further at the speed of light, can overtake those elec-
trons. So, the electrons are pushed back and forward by the laser.
Hence, this particular kind of interaction can produce a collective oscillation of the elec-
trons, i.e. a plasma wave, consisting in a wake of oscillating electrons, generated behind
the propagating pulse. Moreover, for proper laser wavelengths, the oscillation may be reso-
nant. This phenomena is called wakefield generation and is crucial for laser-based electron
acceleration (for more details on this topic see [10]). Basically, if resonance occurs, huge
electric fields arise within the plasma increasing up to a maximum value at which the so-
called wavebreaking occurs. In this scenario, part of the oscillating electrons are trapped in
the regions close to the maximum of the field and are effectively accelerated. A conceptual
scheme of this phenomena is reported in figure 1.4.
A different scenario appears when the overcritical regime is involved. Consider a thin

Figure 1.4: Wakefield acceleration. Reprinted from [11]

solid material impinged by laser pulse: in this case, as described previously, this target
behaves like a sort of mirror reflecting backward the laser pulse.
So, the interaction between laser and plasma occurs only at the superficial level: the elec-
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trons populating the front side of the plasma can gain energy form the laser pulse through
many different mechanisms.
Then, the resulting laser-plasma coupling induces a strong charge separation which, in
turn, generates intense electric fields in the longitudinal direction of the pulse; finally,
these longitudinal electric fields are responsible for the ion acceleration process.
In the last twenty years, several laser-based acceleration mechanisms have been studied,
focusing on enhancing both the number of accelerated particles and the achieved velocities
([12], [13],[14],[15],[16]): one of the most studied and understood is the Target Normal
Sheath Acceleration (TNSA), first proposed by Wilks et al. [17].
The basic idea is the following. A high-intensity laser impinges on a µm-thick solid target:
the pulse interacts with the electrons located in the front of the target, which are excited
by the energy of the laser and expand at relativistic energies, turning into fast (or hot)
electrons.
However, only electrons displacement occurs because today’s laser facilities are not pow-
erful enough to win also ions’ inertia, which is much greater inertia due to their mass. So,
fast electrons gain enough kinetic energy to cross the bulk and to reach the rear of the
target, forming a cloud of relativistic electrons, which extends out of the target for a few
Debye lengths.
Thereupon, the huge amount of relativistic electrons displaced generates an extremely in-
tense electric field (of the order of MV/µm), called sheath field, propagating along the
normal direction and rapidly decaying outside the target after few µs. The generation of
the sheath field depends both on the form of the electron distribution and on the density
profile of the surface.
This entire process causes ions acceleration, which occurs perpendicularly to the surface.
Clearly, this acceleration is most effective on protons (up to tens MeV), coming from the
ionization of the impurities located on the rear surface, thanks to their small charge-to-mass
ratio. Anyway, other kinds of heavier ions can be accelerated to similar values, on longer
time scales, if protons are not numerous enough to balance the charge of the escaping hot
electrons, and especially if impurity protons have been removed before the interaction (for
example, by preheating the target).

It’s possible to exhibit rough estimations of the intensity of the sheath field and the peak
energy achieved by accelerated ions using simply dimensional considerations: consider as
characteristic parameters to describe the problem the length of the hot electrons cloud Lc
and the hot electrons density nh and temperature Th.
First of all, Th can be estimated, starting from the ponderomotive effects felt by the hot
electron population, as the kinetic energy contained by the electric field of a laser in vac-
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uum, averaged over one oscillation

Th ∼ µhmec
2(γ − 1) = µhmec

2

(√
1 +

a2
0

2
− 1

)

where µh is the fraction of laser energy absorbed by hot electrons.
Now, as mentioned before, it’s empirically observed that the hot electrons travel for a few
Debye length beyond the rear of the target, so the size of the electron cloud is estimated
to be of the order of λD

Lc ∼ λD =

√
Th

4πe2nh

Thereupon, the sheath field can be approximated with the ratio

Es ∼
Th
eLc

and the peak energy of a ion immersed in this field is estimated as

ε ∼ ZeEsLc ∼ ZTh

So, consider the following typical experimental values:

• µh = 0.1

• nh ∼ 1023cm−3

• Laser irradiance I0λ
2 ∼ 1020W/cm2µm2(i.e.a ∼ 8.5)

the following values are obtained

• Lc ∼ µm

• Th ∼ MeV

• Es ∼ 1 MV/ µm

• ε ∼MeV , ε ∼
√
I

In addition, other theoretical models exist for the TNSA mathematical description and
they lead to more sophisticated power laws of ε.

By the way, there are several strategies to enhance the acceleration scheme: one option
consists in enhancing the number and the cut-off energy of accelerated ions increasing the
rate of laser absorption.
In this regard, a large body of research have been carried out on the design of the irradiated
target, in order to find the structure which maximize the acceleration. In particular, many
studies have noticed that the laser-plasma coupling is largely improved in the near-critical
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regime, i.e. when the plasma electron density is close to the critical density ([18], [19], [20]):
considered the typical experimental values λ ' 0.8÷ 1, this values is approximately

ne ∼ nc =
meω

2

4πe2
= 1.1× 1021cm−3

(
λ

1µm

)−2

' 1.1÷ 1.5625× 1021cm−3

with a corresponding mass density of few mg/cm3.
Experimentally, producing these kind of plasmas is already an issue and, so, there are very
few concrete options. One possible choice is represented by nanostructured low-density
targets, i.e. materials with a complex density profile characterized by non-homogeneity on
the nm-µm scale. So, thanks to their inherent non-homogeneity, nanostructured plasmas
allow a deep propagation of the pulse, resulting in a better conversion of laser energy into
plasma kinetic energy.
Hence, today an important issue in laser-plasma field is the research of an accurate math-
ematical modeling of both nanostructured plasmas and their interaction with lasers. How-
ever, some numerical investigations have been carried out in order to study the behavior
of nanostrucured targets impinged by ultra-intense pulses and they have confirmed the
enhancement in energy conversion with respect to homogeneous materials ([21]),[22], [23]).
Moreover, a a promising strategy emerging consists the exploitation the laser-plasma cou-
pling within the TNSA mechanism using a Double-Layer Targets (DLT), which can fur-
ther increase both the number of accelerated ions and their energy, achieving an enhanced
TNSA regime. A visual illustration of this scheme is given by figure 1.5, consisting in an
over-critical solid target with a near-critical layer, attached on the irradiated side. Thus,

Figure 1.5: a) Double Layer Target conceptual scheme. b)DLT Scanning Electron Microscopy
cross section view. Taken from [24]

advances in laser technology and the development of optimized DLTs targets can lead to
a compact, high-repetition rate laser-driven acceleration. Several investigations have been
conducted in order to verify these expectations and the results confirm that a very greater
yield can be achieved through the DLT technology (see figure 1.6). At this regard, material
science offers opportunities for manufacturing targets with low and controlled density, such
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Figure 1.6: Energy spectra of the protons obtained with a laser intensity of 4.1, 3.5, 3.7 × 10
20 W/cm 2 for S, P and C polarization respectively. The targets are double-layer targets with 8
µm- thick foam (spectra a, b, c respectively) and single targets (spectra d, e and f). The spectra
are collected along the target normal direction. The inset shows the electron energy spectra when
using double-layer targets with 12 µm-thick foam with S, P and C polarization, (spectra a, b, c
respectively) and using single targets for S and C polarization (spectra d and f). Reprinted from
[23].

as foam targets.
Consequently, the resulting challenge relies on the possibility to assemble a thin solid foil
with a nanostructured near-critical density layer, attached on the irradiated side.

The ongoing H2020 ERC project ENSURE ("Exploring the New Science and engineer-
ing unveiled by Ultraintense ultrashort Radiation interaction with mattEr") at the Micro
and Nanostructured Materials Lab, Department of Energy, Politecnico di Milano, focuses
on the experimental and numerical investigations of laser-driven ion acceleration with the
nanostructured, foam-attached targets described above. The present thesis work has been
carried out within the framework of the same project.
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Chapter 2

Numerical approaches to the kinetic
description of laser-plasma
interaction

In chapter 1 we have seen how the Vlasov-Maxwell system can describe the kinetic effects
of relativistic collisionless plasma. However, this model is way too complex to be solved
analytically, thus numerical schemes for their approximation must be considered: this
chapter is focused in summing up the numerical approaches, which can be adopted for the
resolution of this system.
Now, a brief review of the system of equations describing a plasma is developed, making
use of the kinetic approach, and of the corrections necessary in order to be equipped with
a relativistic description.
Consider a relativistic collisionless plasma composed by N populations of different charges:
as talk at length in the previous chapter, an Eulerian description for both the particle
dynamics and the electromagnetic fields can be achieved, expressed by the relativistic
Vlasov-Maxwell system:

∂fa
∂t

+
pa
maγa

· ∇rfa +
qa
ma

(
E +

p
maγac

×B
)
· ∇pa

fa = 0

∇ ·E = 4πρ

∇×E = −1

c

∂B
∂t

∇ ·B = 0

∇×B =
4π

c
J +

1

c

∂E
∂t

(2.1)



where ρ and J are given by

ρ = ρext +
N∑
a=1

qa

∫
fa(r,v, t) dv (2.2)

J = Jext +
N∑
a=1

qa

∫
vfa(r,v, t) dv (2.3)

2.1 Phase-space grid methods

In this section we will show the basic concepts of the phase-space grid methods used for
the numerical resolution of Vlasov equation and we will discuss their advantages and lim-
itations. Codes implementing this kind of methods are often called Vlasov codes: namely
they find a numerical solution only for the Vlasov equation, while Maxwell equations need
to be solved separately using other algorithms. The main idea of phase-space grid meth-
ods is, as their name suggests, to discretize the distribution function f(r,v, t) in a grid of
phase-space: this is a six-dimensional space and, so, these methods are extremely expen-
sive in terms of computations in 3D3V simulations (as will be discussed later) and, indeed,
their applications are often limitated to low-dimensional problems simulations.
In the following, some concrete aspects of phase-space grid methods will be briefly exam-
ined.

Time splitting

An original technique, proposed for the first time by Cheng and Knorr for the electrostatic
case [25] and later recovered by Cheng for the magnetized case [26], consists in splitting
the Vlasov equations at each time step into two advection equations.
The distribution function is evolved from time t to time t+ ∆t in four steps

• Solve for half a time step
∂f

∂t
+ v · ∇rf = 0 (2.4)

with v fixed.

• Solve the Maxwell equation 1.19

• Integrate for a whole time step

∂f

∂t
+
F(r,v, t)

m
· ∇vf = 0 (2.5)

with fixed r.

• solve again 2.4 for half a time step.

Then, the advection field of 2.4 is independent of the advection variable, so it’s possible
to solve explicitly it. However, the advection field of the 2.5 is not independent of the
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advection variable in general, but under suitable hypothesis, such as the electrostatic case,it
becomes independent and it gets explicit to solve.

Semi-Lagrangian methods

Semi-Lagrangian methods exploit the conservation of the distribution function

df(r(t),v(t), t)

dt
= 0 (2.6)

along characteristics of the Vlasov equation, namely the solution of the system

dr
dt

= v(t)
dv
dt

=
F
m

(r(t), t) (2.7)

Firstly, build a grid (ri,vi) on the phase-space and a partition of time {tk}.
For the sake of simplicity, from now on, a compact notation is used: x = (r,v) summarizes
the position and velocity Eulerian coordinates, whereas while a(x, t) =

(
v(t), F

m(r(t), t)
)

represents the total advection field.
Hence, the characteristic system, can be rewritten as

dX
dt

= a(X(t), t) (2.8)

The unique solution of 2.8, with initial condition X(s) = x is indicated with X(t;x, s).
Now, it is possible to choose if computing f forward or backwards in time([27], [28],[29],[30],[31]).
The first method can be thought as a particle method where the distribution function is
reconstructed on the phase-space grid at each moment, following forward in time the path
of the characteristic, exploiting the conservation of the distribution function:

f(xi, tn+1) = f(X(tn+1;xi, tn), tn)

. In the backward method, instead, the characteristics are followed backwards in time:
indeed, for each point, the origins of the characteristics ending at it are found and then f
is computed

f(xi, tn+1) = f(X
(
tn;xi, tn+1), tn

)
In the general case, it is necessary to use a fixed-point or Newton method to follow the
characteristics; moreover, since in general, X(tn+1;xi, tn) and X

(
tn;xi, tn+1

)
does not

coincide with any specific point of the grid, the distribution function is evaluated interpo-
lating the values from the grid: so, to avoid too much dissipation, high order interpolation
is needed: typically, cubic splines ([25]) or cubic Hermite with derivative transport ([32])
interpolation schemes are used.
In addition, a third option exists, known as the conservative method: the basic idea is to
exploit the conservation of the average of f over one cell along characteristics

1

V

∫
V
f(r,v) drdv
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where V is the volume of the cell.
So, starting from (2.6), time splitting application yields to 6 one-dimensional advection
equations, which can be written in conservative form:

∂f

∂t
+
∂a(x, t)f

∂x
= 0

. Now, firstly, indicating with fni the cell average of f at time step n, construct on every
cell a high order polynomial function whose cell average is equal to fni (for example using
an interpolation method). Then, compute the origins of the characteristics ending at the
grid points, i.e. backtrack each cell, solving the equation of the characteristics.
Finally, a projection step occurs consiting in computing cell average fn+1

i ) at the new time
step n+ 1 using the conservation property:∫ xi+1/2

xi−1/2

fn+1(x) dx =

∫ X(tn;xi+1/2,t
n+1

X(tn;xi−1/2,t
n+1

fn(x) dx

where fn(x) is the high order reconstruction found in the first step. So, after a time-
splitting scheme, this method allows to solve 1D advections successively for which the
volumes are merely intervals which are fully determined by their end points (see [27] for
details on this method).

Figure 2.1: Backward semi-Lagrangian method (left), forward semi-Lagrangian method (middle)
and finite volume (right). Taken from [27]

.

Spectral methods

Different spectral methods exist, depending on the kind of transform chosen for the phys-
ical and the velocity space. A possible strategy could be Fourier transforming both the
physical and the velocity space, as proposed in [33] and [34] for the electrostatic 1D1V
case.
Grant and Feix in [35], instead, proposed a different strategy consisting in apply a Fourier
transform for the physical space and a Hermite transform for the velocity one.
However, some difficulties arise in this kind of methods, such as code parallelization, bound-
ary conditions definition and prevention of the filamentation, so they not represent the best
choice.
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In this section a collection of the most famous phase-space grid methods was presented.
The great advantage of these methods is that they are not affected by numerical noise and
guarantee a fine and uniform resolution of the phase-space, even in those regions where
the distribution function takes very small values.
However, all of them show additional difficulties, due, in particular, to the filamentation
phenomena in the phase-space which often occurs in non-linear Vlasov simulations. So,
long time scale become impossible to simulate using a phase-space grid, because at some
point the grid will not be able to solve the filamentations arising during the evolution of
the distribution function: this implies numerical instabilities that can lead to non-positive
values of the distribution function, which has no physical meaning.
For this reason, many times phase-space grid methods do not represent the best choice.

2.2 Particle-In-Cell

Particle-In-Cell method is the most widely exploited numerical method in finding a nu-
merical approximation to the solution of the Vlasov-Maxwell system.
This method began to gain popularity since the late 1950s when John Dawson and Oscar
Buneman illustrated this algorithm in some papers regarding plasma physics numerical
simulations ([36], [37], [38], [39]).
After that, the PIC method continued to be deeply studied in the decades and a large
literature was build, enlighting both the mathematical ([40]) and the physical ([41]) as-
pects.

2.2.1 Particles and grid

The philosophy behind the PIC method consists in a combined Lagrangian-Eulerian ap-
proach able to deal with both the particle motion and the electromagnetic field. As seen
in chapter 1, indeed, particles and fields are two concepts indissoluble: namely, the motion
of each particle under the effects of the electromagnetic field (felt by the particle) can be
summarized in a unique equation, which is the Klimontovich equation (1.17), through the
introduction of the distribution function concept. So, the basic idea consists in following
the charged particles of the plasma along their trajectories in a Lagrangian frame, whereas
the electromagnetic fields are computed on a stationary Eulerian mesh grid.
The original innovation which makes feasible this mixed approach resides in the concept of
macro-particles (also called super − particles): namely, the distribution function of each
population is approximated using virtual numerical particles, each of which correspond to
a large number of real and physical particles inside the plasma. Hence, since each macro-
particle represents a bunch of particles, finite extension is assigned to them in the physical
space, while the point-like nature is kept in the velocity space. This finds a concrete real-
ization substituting the Dirac distribution of the particle positions with the more stretched
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Shape function: basically, for a considered population represented by Np super-particles,
the discrete approximation of the distribution function results in

f(r,p, t) ≈ fh(r,p, t) =

Np∑
p=1

wpS(r− rp(t))δ(p− pp(t))

where wp is a macro-particle weight depending on the density associated to the cell it
originates from

wp =
np(rp(t = 0))

Np

and S(r− rp(t)) is the mentioned shape function.
So, as its name suggests, this function describes the shape of macro-particles: so it has
to be an even function localized in a neighborhood of zero, and it must preserve the
normalization to unity of the Dirac distribution∫

R3

S(r− rp(t)) dr = 1

There exists several shape functions, consisting in piece-wise polynomials of different

Figure 2.2: Sampling of the distribution function with macro-particles. Each macro-particle has a
definite momentum, but is extended in space

.

orders. Typically the second order is chosen to approximate the macro-particles shape,
since the first order shape function has a too sharp profile, while the third order has too
long tails and are no indicated to approximate the distribution of the particles represented
by a single macro-particle. If a 1D uniform grid with spacing h and points i = 1, ..., Nx is
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considered, the second order shape function can be written as

S2(xi − x) = S2(u) =
1

h


3
4 −

(
|u|
h

)2
|u| ≤ 1

2h

1
2

(
3
2 −

|u|
h

)2
1
2h ≤ |u| ≤

3
2h

0 else

However, the PIC method allows to find a solution to the Vlasov-Maxwell system, without
actually solving the Vlasov equation: indeed, this method bypasses the difficulties arising
from Vlasov equation, which is a partial differential equation complex to solve, transform-
ing the problem in a system of equations of motion for the macro-particles, which are
ordinary differential equations. Thus, the equivalent continuous problem would be the
following:

• Consider a plasma provided by N populations, each of them composed by Np,a

macro-particles

• Let Ω ⊂ R3 be the physical domain, let V ⊂ Ω the volume in which the plasma is
contained

• Choose a proper shape function S : Ω→ R

• Each particle occupies an initial position rp,a,0 with a velocity vp,a,0

• The electric and magnetic fields at the beginning are given by E0,B0 : Ω→ R3

Hence, find:

• rp,a and vp,a : (0, T )→ R3 for each super-particle

• E,B : Ω× (0, T )→ R3 ∀r ∈ Ω ∀t ∈ (0, T )
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such that: 

drp,a(t)
dt = vp,a(t) in (0, T ),∀p = 1 : Np,a,∀a = 1 : N

dpp,a(t)

dt = F̃p,a(t) in (0, T ),∀p = 1 : Np,a,∀a = 1 : N

∇ ·E(r, t) = 4πρ(r, t) in Ω× (0, T )

∇×E(r, t) = −1
c
∂B(r,t)
∂t in Ω× (0, T )

∇ ·B(r, t) = 0 in Ω× (0, T )

∇×B(r, t) = 4π
c J(r, t) + 1

c
∂E(r,t)
∂t in Ω× (0, T )

rp,a(0) = rp,a,0 ∀p = 1 : Np,a, ∀a = 1 : N

vp,a(0) = vp,a,0 ∀p = 1 : Np,a, ∀a = 1 : N

E(r, 0) = E0(r) in Ω

B(r, 0) = B0(r) in Ω

+ boundary conditions on ∂Ω

where

pp,a(t) = mγp,a(t)vp,a(t), γp,a(t) =

√
1 +
|pp,a(t)|2

(mac)2

F̃p,a(t) = qa

∫
Ω
S(r− rp,a(t))

[
E(r, t) +

vp,a(t)×B(r, t)
c

]
dr

J(r, t) =
1

V

N∑
a=1

qa

Np,a∑
p=1

wp,aS(r− rp,a(t))vp,a(t), ρ(r, t) =
1

V

N∑
a=1

qa

Np,a∑
p=1

wp,aS(r− rp,a(t))

Each macro-particle has the same mass and the same charge of the real particles in the
plasma; moreover, the total number of macro-particles Np =

∑N
a=1Np,a is chosen a priori:

in general is several orders of magnitude lower than the real number of physical particles in
the plasma, but, at the same time, a very small number cannot be chosen without leading
to undesired numerical noises.
Actually, the system requires boundary conditions in order satisfy well-posedness. The
most easy to implement are the periodic boundary conditions for both particles and fields,
which means that when a particle exits from a side of the domain is assumed to reappear
in the opposite side, with the same momentum, whereas fields are assumed to have the
same values along the opposite sides. In addition, sometimes other kinds of conditions
are chosen, according to the system simulated, also in order to avoid re-circulation effects
which may arise if the simulation box is not big enough: in any case these alternatives
imply more difficulties in the implementation, so often the best choice consists in enlarging
the box domain.
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2.2.2 The standard PIC loop

In the following, the underlying logic of this numerical method will be illustrated: basically,
this procedure can be decomposed in a loop scheme. The current density field associated
to the motion of the macro-particles is scattered on a mesh on the configuration space, on
which the electric and magnetic fields are then computed. From the grid values of the elec-
tromagnetic field, the Lorentz force acting on every particle is calculated by interpolation,
hence particles motion can be updated. The procedure can be iterated for as many times
as desired.
Figure 2.3 summarizes the basic steps of the PIC loop.
In the following, we will focus on each single step of this scheme.

Figure 2.3: Sampling of the distribution function with macro-particles. Each macro-particle has a
definite momentum, but is extended in space. Taken from [40]

.

First of all, introduce a Cartesian computational domain Ω = X×Y ×Z with Nx×Ny×Nz

nodes forming cells with volume ∆x ×∆y ×∆z; then, discretize the time interval (0, T )

in Nt timesteps with spacing ∆t.

Maxwell solver

The numerical solutions of the Maxwell equations are often obtained with the second order
Finite Difference Time Domain approach: the electromagnetic fields are discretized onto
a staggered grid, named the Yee-grid, first introduced by Yee in [42]. The current density
and the electric field are calculated in the middle point of the each edge of the cells and
the magnetic one in the center of each face (see figure 2.4)
Time and space derivatives are discretized using centered finite differences; in addition, a
leap-frog scheme is adopted for the evaluation of time derivatives: this means that E and
B are not evaluated in the same timestep, but the second is shifted by ∆t/2 with respect
to the first.

29



Figure 2.4: Yee-lattice

So it’s clear that the Yee-lattice is a staggered grid both in space and in time: this strategy
turns out to be very useful due to the relation between spatial and time derivatives in
Maxwell equations. Thus, the magnetic field at timestep n+ 1

2 is obtained solving explicitely
the discretized Ampère-Maxwell equation

Bn+ 1
2 = Bn− 1

2 − (c∆t∇×En)

while, the electric one is evaluated at n from the Faraday equation

En+1 = En + ∆t(c∇×Bn+ 1
2 − 4πJn+ 1

2 )

and the curls computation is expressed by

∇× En =
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Finally, in order to guarantee numerical stability, the spatial and time steps must satisfy
the Courant-Friedrichs-Lewy condition

c∆t

√
1

∆x2
+

1

∆y2
+

1

∆z2
= C < 1

where c is the light speed (i.e. the velocity of the laser pulse) and C is the so called
Courant number
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Grid-to-particles field interpolation

In the PIC algorithm, the electromagnetic field is computed on the grid, whereas all the
quantities related to the macro-particles (ρ and J) are evaluated at the particle positions.
Nevertheless, in order to calculate the motion of each macro-particle, it’s mandatory to
know the Lorentz force on the particle position. For this reason the method needs to deal
with the values of the electric and magnetic fields in the particle position and so, in order
to fix the issue, these quantities are estimated with the interpolation technique.
Thus, since the electric field is already known at time n, it needs only to be interpolated
at the particle position rp

En(rp) =
1

∆x∆y∆z

∫
V
EnS(r− rnp ) dr

where V is the volume of a cell, while the magnetic field is known only at half-integer time
steps, so it requires to be advanced in two half-integer timesteps

Bn =
Bn+ 1

2 +Bn− 1
2

2

Bn(rp) =
1

∆x∆y∆z

∫
V
BnS(r− rnp ) dr

For cartesian meshes a standard choice is to perform interpolation choosing B-splines as
shape functions, i.e piecewise polynomial functions with compact support.

Particle pusher

Once the electromagnetic fields are evaluated, it’s time to calculate their effects on the
macro-particles motion: also in this case, a leap-frog algorithm is used to evaluate the
position and the momenta of the macro-particles on a staggered time grid. So, the dis-
cretization of the equations of motions yelds to

pn+ 1
2 = pn−

1
2 + ∆t qm [En + vn ×Bn]

rn+1 = rn + ∆tvn+ 1
2

where En and Bn are the values of the fields interpolated at the center of the macro-
particle at position rn at time t = n∆t. However, the velocity, and so the momentum, of
the macro-particles are known only at half-integer time, so their expression at n has to be
approximate in this way: pn = pn+1

2 +pn− 1
2

2

vn = pn

γn
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So, substituting pn+ 1
2 in the previous equation the following implicit equation for pn ap-

pears:

pn = pn−
1
2 +

∆t

2

q

m

[
En +

pn

γn
×Bn

]
At this point, this equation can be converted in an explicit equation using the Boris pusher algorithm.
First, introduce a normalized magnetic field vector

b =
q

m

∆t

2

Bn

γn

and define
p̃ = pn−

1
2 +

q

m

∆t

2
En

As a consequence, γn can be approximated in this way

γn =
√

1 + pn · pn =
√

1 + p̃ · p̃ +O(∆t2) ≈
√

1 + p̃ · p̃

Hence, from
(pn − pn × b)× b = p̃× b

pn =
1

1 + b2
(p̃ + p̃× b + (p̃ · b)b)

to the explicit form turns out
pn+ 1

2 = 2pn − pn−
1
2

Particles-to-grid current deposition

Current deposition, i.e. charge and current density projection onto the grid, is then per-
formed using the charge-conserving algorithm proposed by Esirkepov in [43]. The basic
idea is to compute the local current density from the discrete continuity equation written
for the single macro-particle and then, thanks to the linearity of the continuity equation,
to sum the contributions of all macro-particles. So, the single contribution of the p − th
macro-particle to charge density evaluated at the grid point R is

ρp(R) = qpS(R− rp) (2.9)

At this point, the algorithm requires the definition of the density decomposition vector
W

Wi,j,k = −∆t

qp
∇+ · Ji,j,k (2.10)

where J is the current related to the single macro-particle and

∇+ · fi,j,k :=

(
fi+1,j,k − fi,j,k

∆x
,
fi,j+1,k − fi,j,k

∆y
,
fi,j,k+1 − fi,j,k

∆z

)
Now, using (2.9) the discretized continuity equation becomes
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2
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and this can be expressed with the relation

W x
i,j,k +W y

i,j,k +W z
i,j,k = S(x+ ∆x, y + ∆y, z + ∆z)− S(x, y, z)

where the vector (∆x,∆y,∆z) stands for the 3D-shift of the macro-particle position due
to motion. Shifting the macro-particles generates eight functions:

S(x, y, z), S(x+ ∆x, y, z), S(x, y + ∆y, z), S(x, y, z + ∆z),

S(x+ ∆x, y + ∆y, z), S(x+ ∆x, y, z + ∆z), S(x, y + ∆y, z + ∆z),

S(x+ ∆x, y + ∆y, z + ∆z)

Thus, thanks to the assumption that W and the corresponding current density linearly
depend on these functions, it’s possible to decompose any three-dimensional shift as a
linear combination of one-dimensional shifts. In particular, it ca be shown (for more
details see [43]), that the decomposition vectors can be rewritten through the following
linear combinations

W x
i,j,k =

1

3

(
S(x+ ∆x, y + ∆y, z + ∆z)− S(x, y + ∆y, z + ∆z) + S(x+ ∆x, y, z)− S(x, y, z)

)
+

1

6

(
S(x+ ∆x, y, z + ∆z)− S(x, y, z + ∆z) + S(x+ ∆x, y + ∆y, z)− S(x, y + ∆y, z)

)
W y
i,j,k =

1

3

(
S(x+ ∆x, y + ∆y, z + ∆z)− S(x+ ∆x, y, z + ∆z) + S(x, y + ∆y, z)− S(x, y, z)

)
+

1

6

(
S(x, y + ∆y, z + ∆z)− S(x, y, z + ∆z) + S(x+ ∆x, y + ∆y, z)− S(x+ ∆x, y, z)

)
W z
i,j,k =

1

3

(
S(x+ ∆x, y + ∆y, z + ∆z)− S(x+ ∆x, y + ∆y, z) + S(x, y, z + ∆z)− S(x, y, z)

)
+

1

6

(
S(x, y + ∆y, z + ∆z)− S(x, y + ∆y, z) + S(x+ ∆x, y, z + ∆z)− S(x+ ∆x, y, z)

)

Hence, it’s now possible to solve (2.10) to obtain the current density associated with
the motion of a single macro-particle. Finally, the total J turns out summing up all
contributions on each grid point.

2.3 Potential and open challenges of PIC-codes

2.3.1 Capabilities of the PIC method

Both phase-space grid and particle-in-cell methods represent a very widely used tool in col-
lisionless plasma physics simulations: according to the problem under consideration and
the degree of precision desired, it’s possible to choose which of them to adopt.
In fact, Vlasov codes guarantee a fine and uniform resolution in the phase space and, so,
detailed information about the distribution of the particles.
Thus, in some particular situations, in which a high degree of details is required Vlasov
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codes may represent a wise choice. Although, the high degree of precision increases the
numerical complexity and, as a result, requires large computational efforts.
For example, consider a three-dimensional plasma simulation in which 1000 points for ev-
ery direction are used: the resulting discretized phase-space would be a six-dimensional
space and it would contain 1018 nodes. So, representing the distribution function with a
double (8 bytes) would require 8 ExaBytes of RAM, far beyond present-day supercomputer
capabilities.
For this reason, Vlasov codes in many cases do not represent the best tool for the prohibitive
computational effort and very often they are limited to low-dimensional simulations.
So, the strong suit of particle-in-cell scheme basically is the lower numerical complexity:

Figure 2.5: Comparison between the electron distribution functions in the phase space x − Px

obtained with a Vlasov and a PIC code for a electron–proton plasma simulation irradiated by a
laser pulse. The electron distribution functions are observed at times t=17T and t=27T for the
Vlasov simulation, and at times t=27T for the PIC simulation (where T = λ/c is the laser pulse
period): in a suitable limit the second solution converges to the first. Taken from [44].

however, many times the level of numerical precision in solutions offered by this method
is quite enough satisfactory and the recourse to Vlasov codes would take to useless very
higher costs (see figure 2.5).
Moreover, current PIC codes provide the possibility to consider additional physics, such
as collisions, ionization, quantum electrodynamics emission (QED), multiphoton Breit-
Wheeler pair creation, high-energy photon emission and radiation reaction: so they allow
to enlarge the range of scenarios to simulate.
They, also, provide a scheme relatively simple to implement and adapt very well to par-
allelization logics. For these reasons, PIC codes in many situations are the best choice:
in fact they are the most widely used numerical scheme in plasma physics community,
especially for laser-plasma simulations.
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2.3.2 Criticalities of the simulations

Accuracy of the simulated physics

As explained previously, PIC codes guarantees a lower degree of fidelity for the numerical
solutions because of an unavoidable numerical noise deriving just from the concept of
macro-particles.
In fact, the distribution function is sampled through a limited number of super-particles,
which is several orders of magnitude lower than the real number of particles, and this can
lead to an excessive level of approximation, with the consequence of numerical results very
far from realistic phenomena.
The limited number of macro-particles, also, implies a filter in space scale, under which the
density cannot be accurately resolved: this represents a big problem if the scenario under
consideration involves small perturbations or low density regions where the macro-particle
population is too small.
Furthermore, in laser-plasma physics a central role is played by phenomena which occurs at
lengths near to the skin depth and the numerical experiments must take it in consideration
when the space resolution is chosen. Otherwise, if the mesh is not fine enough, the aspect
under investigation will be numerically inexistent and the entire numerical campaign will
be totally useless. But, recalling the CFL condition

c∆t

√
1

∆x2
+

1

∆y2
+

1

∆z2
= C < 1 (2.11)

increasing the numerical resolution results in a reduction of the time step, making feasible
only short simulation time.
Moreover, the numerical noise can be reducted with a big number of particles per cell
(PPC): in general, denoting with ne the plasma electron density, as a rule of thumb

PPC ≥ min
{

1,
ne
nc

}
. However, the price to pay for the reduction of numerical noise is the increase of com-
putational costs; moreover, simulating solid-density plasmas, whose electron density ne

wander around 200nc results unaffordable if an high number of PPC is chosen: to address
this issue numerical simulations use lower, non-realistic electron densities (∼ 40− 80nc for
solid-density plasmas), considering a lower threshold to have overdensity (i.e. laser reflec-
tion) with respect to the physical values. For all these reasons, a superficial approach it’s
forbidden when performing laser-plasma simulations, but rather all these considerations
must be taken in account with attention.

Computational issues

As mentioned above, one should pay attention to selecting suitable values for the spatial
resolution and number of particles per cell in order to achieve a high enough level of
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accuracy. On the other hand, too accurate values for these numerical parameters may
have a significant impact on computational costs. More precisely, given a mesh size ∆

and a particles per cell number PPC, the computational time required to simulate a n-
dimensional simulation with a standard PIC code can be estimated as

T ∼ α
(

1

∆

)n+1

+ βPPC

(
1

∆

)n+1

(2.12)

where α and β are two suitable constants.
Usually, PPC � 1 and so most of the computational load derives from the particle con-
tribution; moreover, from (2.12) it is easy to notice that a 3D simulation would require
at least 1

∆ the times required by the same simulation in a two-dimensional environment
and it is a huge additional load. Hence, two-dimensional simulations may represent a good
compromise in order not to spend immense amounts of computational hours but, anyway,
many times a three-dimensional approach might be essential to capture sensitive aspects,
such as 3D electrostatic effects or real morphologies of structured plasmas.
To give an idea, typical 2D simulations of laser-driven ion acceleration cost ∼ 102 − 103

core hours, while 3D ones require ∼ 103 − 104. So, computational loads required by
laser-plasma simulations represent a complicated matter to handle and some optimization
strategies must be considered.

2.3.3 Parallelization and High Performance Computing Clusters

As discussed above, PIC codes must find a solution to optimize the run-time behavior, in
order to be competitive and to guarantee the realization of interesting numerical simula-
tions. For this purpose current PIC codes implement some parallization strategies, using
the well popular MPI and OpenMP protocols.
The Message Passing Interface (MPI) is a communication interface for parallel program-
ming, which allows to split code routines in several processes (or tasks) , assigned to
as many different computing units (or cores), which can operate simultaneously. These
processes, however, do not share the same memory regions, and that’s why this strategy
provides both point-to-point communications, in which two specific cores exchange infor-
mation, and collective communication, which allow to share information among all tasks.
Today, PIC codes avail of the MPI protocol. In computer science, several strategies of
parallelization are possible, focused on optimizing some distinctive issues of the algorithms
concerned.
The main point in parallelizing a PIC code lies in the coupling the grid and particle as-
pects of the code. Usually, most of the computational load is attributable to computations
related to the macro-particles.
So, a purely particle-based decomposition might seem to make sense: an equal distribution
of the macro-particles between the cores would guarantee an almost perfect load balance
for the entire simulation. Moreover, particles are independent from each other and they
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only interact with fields, so no particle communications are required.
For this reason, typically PIC codes exploit a grid-based parallelization technique, consist-
ing in domain decomposition.
The box of the simulation is split in several parts, called MPI regions, each of which is
assigned to a specific process: in other words, every unit executes only the calculations
associated to the particles and the fields belonging to the core itself.
As a result, the only communications required are those between neighbor domains and
are not a fundamental threat to performance or scalability.
Nonetheless, the randomness of macro-particle positions, which travel throughout the en-
tire domain, is a big issue: they require communications when local domain boundaries
are crossed and random access to the grid at every interpolation and projection phases is
required.
Nevertheless, this approach implies that all the processes have access to a shared global
memory of grid quantities (fields and currents), and all the accesses should be synchronized:
this requires frequent global communication, which prevent any form of scalability when
computations are split between a lot of cores. Most of the time, this issue is addressed
by operating a proper sorting of the particles: several algorithms exist in order to allocate
contiguous particles in contiguous spaces of memory.
On the other hand, the Open Multi-Processing (OpenMP) system consists of a set of com-
piler directives, library routines, and environment variables which allow to guide a set of
threads, i.e. series of instructions executed consecutively, which globally share the same
memory.
So, OpenMP is artificer of multi-threading implementation: a master thread forks a speci-
fied number of slave threads, that run concurrently providing better performances in terms
of computational times.
Thus, many PIC codes take benefits from these two protocols, sometimes combining them
in a hybrid MPI-OpenMP version: this stratagem permits to make accessible some numer-
ical simulations which would be impossible to perform otherwise.
Nevertheless, in laser-plasma simulations even the parallelization strategies aren’t able to
remove the problem of simulations duration. Indeed, the most of numerical simulations
performed by laser-plasma community, as mentioned before, require a degree of accuracy,
both in spatial resolution and in the number of macro-particles, which can’t be sustained
by current laptop, even by the most powerful on the market.
Therefore, only a big number of computing cores, handled with parallelization strategies,
represent a considerable option in this kind of numerical simulations: this task is covered
by supercomputers, i.e. very powerful computers organized in High Performace Computing
Clusters.
The term "super computing" was utilized for the first time in 1920 by the daily newspaper
New York World to describe some IBM tabulators allocated at the Columbia University.
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Figure 2.6: Simplified scheme of a supercomputer composed by N nodes

However, the creation of supercomputers, as today are intended, took some extra decades
as long as, in 1954, the realization of what is considered, by the most, the first supercom-
puter occurred: it was the Naval Ordnance Research Calculator (NORC), built by IBM for
the United States Navy’s, which, at the presentation ceremony, was employed to calculate
π to 3089 digits, which was a record at the time.
Basically, these cluster allow to split the same computations on a very bigger number of
units, tearing down computational times, thanks to their architecture.
A large number of processing units are grouped in nodes, interconnected in proximity to
each other, forming a massively parallel system. Each node has a proper memory which
allows the cores contained, sharing the same information, to operate on the same data, at
the same time, without needing to involve communications.
So, all the cores, contained by all the nodes, can work together in a parallel way, through
the MPI protocol
In addition, supercomputers exploit the OpenMP interface in order to implement a multi-
threading logic (for each node), which allows to split the process administration in several
threads.
Figure 2.6 provides a simple schematization of supercomputers architecture.
Today, a lot of powerful supercomputers exist, whose competitiveness is tracked by the

TOP500 project, which ranks and details the most powerful 500 systems twice a year:
today the first place is occupied by Fugaku, a supercomputer placed at the RIKEN Center
for Computational Science in Kobe, Japan.
So, thanks to their incredible power, supercomputers are exploited in computational sci-
ence, with computationally intensive tasks in various fields, including laser-plasma physics.
Finally, thanks to the massively parallel system sustained by modern supercomputers, more
and more laser-plasma simulations find realization, making feasible some scenarios which
otherwise couldn’t be studied.
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2.3.4 Exploiting Graphics Processing Units in PIC-simulations

In the last years, the literature about PIC codes has began to consider the idea to perform
numerical simulations using Graphics Processing Units.
"A graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly
manipulate and alter memory to accelerate the creation of images in a frame buffer in-
tended for output to a display device."
GPUs, unlike the classical Central Processing Unit (CPU), in which at most a few dozen
cores are incorporated, usually contains hundreds or even thousands of cores, able to work
to a frequency of ∼ 1 GHz (see figure 2.7).
GPUs are usually incorporated in embedded systems, mobile phones, game consoles and,

Figure 2.7: Comparison between CPU and GPU architectures. Taken from [45]

.

obviously, in personal computers: in the last case can be present on a video card o directly
embedded in the motherboard.
Thanks to its highly parallel structure, a GPU can do computations on algorithms that
process large blocks of data in parallel, very faster than CPUs, even if the latter work to
higher frequencies (∼ 2÷ 5 GHz). So, CPUs performances are not comparable to those of
GPUs, if parallelization is invoked, but the former have a higher clock speed (i.e. the rate
at which a processor can complete a processing cycle) which allow them to provide better
performance in serial computations.
That’s why, in the last years, the General-purpose computing on graphics processing units
(GPGPU) is expanding significantly, covering a lot of scientific fields (physics, mathemat-
ics, astronomy, chemistry, biology, ecc). Basically, this system uses GPGPU pipelines,
which are parallel systems between one or more GPUs and CPUs, that migrate data into
a form which GPUs can scan and analyze. The sequential part of the workload runs on
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the CPU, which is optimized for single-threaded performance, while the compute intensive
portion of the application runs on all the GPU cores in parallel.
Today, there exist some software layers designed for give direct access to the GPU’s virtual
instruction set and parallel computational elements, for the execution of compute kernels,
which are the routines compiled for GPUs (separate from but used by a main program).
The most widely used id the Compute Unified Device Architecture (CUDA) , which is a
parallel computing platform and application programming interface (API) model devel-
oped by NVIDIA, designed to work with programming languages such as C, C++, and
Fortran. Essentially the CUDA processing flow occurs in the following way: first of all
data are copied from main memory to GPU memory, then, after that CPU has initiated
the GPU compute kernel, GPU’s CUDA cores execute the kernel in parallel, copying the
resulting data from GPU memory to main memory. For a visual representation of this
scheme see figure 2.8. Clearly, even some Particle-In-Cell codes have implemented a GPU

Figure 2.8: Example of CUDA processing flow. Reprinted from Wikipedia

implementation, in order to reduce further computational costs. At the state of art, this
strategy is still set to an exploration phase in which some basic simulations are performed,
with the aim to quantify the real benefits with respect to classical CPU-codes performances
([46],[47],[48],[49],[50], [51], [52], [53], [54]): in all these cases a significant improvement in
performances is noticed. Moreover, in chapter 4 of this thesis work, some numerical tests
with a hybrid CPU-GPU scheme will be carried out, accompanied by some considerations
and perspectives.
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2.4 Motivations and goals of this thesis work

At this point, all the basic concepts necessary to explain the motivations and goals of this
thesis work have been introduced. Essentially, in chapter 1 the plasma state has been
described, focusing on both the physical aspects and the mathematical modeling, with a
special attention for the relativistic collisionless Vlasov-Maxwell system. In addition, a
particular attention has be devoted to the discussion of the main physical aspects underly-
ing the laser-plasma interaction, its connection with ions acceleration and its enhancement
through nanostructured double-layer targets.
After that, chapter 2, so far, was devoted to introduce the main numerical methods used to
find an approximation of the relativistic collisionless Vlasov-Maxwell system, distinguish-
ing phase-space grid from Particle-In-Cell methods: these last have been deepened, with a
detailed description of the several numerical ingredients incorporated.
Then, the chapter continues describing the issues arising from the numerical complexity of
this methods and the parallelization strategies exploited, in order to reduce the computa-
tional efforts, with an overview on massively parallelized systems, such as High Performance
Computing Clusters. Finally, we have introduced the concept of General-purpose comput-
ing on Graphics Processing Units, which allows to exploit the highly parallelized structure
of the GPUs, in order to further reduce computational times in PIC simulations.

The motivations of this thesis derive from the necessity to enlight the computational load
required for the advanced PIC simulations, under complex scenarios of actual physical in-
terest. PIC codes represent a wide used numerical tool since the 1960s, in order to exploit
simulations involving plasmas.
However, as discussed in chapter 1, in the last years the laser-plasma community is studying
more and more sophisticated physical scenarios (such as the nanostructured double-layer
targets described in chapter 1). Hence, this field of reasearch needs intensive numerical
campaigns in order to understand which strategy represents a promising way to enhance
ion acceleration.
So, the arising open challenge consists in exploiting PIC codes to perform simulations
involving very complicated frameworks, far from the classical scenarios for which PIC
methods have been designed.
Clearly, simulating such complex physical scenarios requires ever more computational ef-
forts, which may be prohibitive even if supercomputers are engaged. For this reason,
a three-dimensional approach results too expensive and, usually, it is adopted only for
selected cases; however, two-dimensional simulations constitute only a qualitative inves-
tigation, but they can not report quantitative informations, which must be researched
entirely through experimental sessions.
Moreover, even exploiting a 2D approach, realistic physical configurations are extremely
hard to reproduce numerically and today we are enable to simulate realistic parameters,
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solving all the characteristic lengths (e.g the skin depth, described in chapter 1).
Therefore, it becomes essential, when using PIC codes, looking for some strategies to
achieve reasonable computational times when complex simulations are performed. Oth-
erwise, the existing codes are quite complex and each of them has specific strategies for
handling the parallelization.
Hence, need to deepen the understanding of code performances when dealing with com-
plex physical configurations, in order to be able to squeeze as much as possible the codes
capabilities: indeed, once that specific strategies will be found, more realistic simulations
will become possible to perform.
Nonetheless, at the state of art there exist not a consistent literature reporting solutions
which could address these issues.
Therefore, this thesis work represents a sort of investment, in terms of computational
hours, to search for configurations which may increase the codes performances, reducing
the computational efforts.
In particular, this work set itself the objective to analyze the behavior of different PIC
codes when distinct scenarios are simulated, exploiting different clusters.
For this purpose, two open-source PIC codes, Smilei and WarpX have been selected as
tool to perform a collection of numerical tests. Chapter 3 is devoted to the description of
the main aspects of both these applications and to the presentation of the main results ob-
tained. To this regard, we have availed of Galileo, a CPU based supercomputer belonging
to the Italian computing centre CINECA, located in Bologna.
Moreover, we have conducted an investigation, described in chapter 4, on the perfor-
mances reachable in simulations exploiting graphics processing units. We have reported
the results, achieved through the hybrid GPU-CPU based cluster Marconi100, the lat-
est supercomputer acquired by CINECA. All these simulations have been performed with
WarpX: chapter 4 contains also a brief explanation about the adaption of the code to GPUs
parallelization.

Lastly, chapter 5 highlights the conclusions of this work and its future perspectives.
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Chapter 3

Performance analyses of laser-plasma
interaction simulations on a
CPU-based cluster

3.1 Selection of open source Particle-In-Cell codes

At the present day, it is possible to choose among several Particle-In-Cell codes, which
often find application in a wide range of physics studies, among which not only plasma
physics ([40], [41]), but also cosmology ([55], [56]) and solid ([57], [58]) and fluid ([59],
[60])) mechanics.
In particular, thanks to the high versatility of many PIC codes, various kinds of simu-
lations in a wide variety of environments are possible, from the laboratory experiments,
such as laser-plasma interaction, to astrophysics problems. In this thesis work, two codes
have been considered, Smilei ([61]) and WarpX ([62]), whose main features will be largely
discussed in the following.
First of all, the first reason that justifies this selection is the fact that both the codes are
open source, so they are available for use or modification from the original design, if some
adaptations are required by particular frameworks.
They are object-oriented codes and are designed to run on a wide range of machines, from
laptops to supercomputers: their approach guarantees a large user community and, as a
consequence, support for a variety of applications. Moreover, these codes are submitted
to continuous active development and upgrades, in order to improve the utilization. Fur-
thermore, they can guarantee very good performances, in terms of computational costs,
thanks to the efficient adaptability on massively parallel systems, relying on an hybrid
MPI-OpenMP implementation and on other special techniques of load balancing which
will be discussed more in detail in the following. Hence, Smilei and WarpX are two valu-



able representatives of PIC codes exploited in plasma physics, which work even in massively
parallel logic, involving different parallelization strategies, based on the MPI and OpenMP
paradigms.

3.1.1 Smilei

Smilei is a fully-relativistic electromagnetic PIC code, developed at Ecole Polytechnique,
in Paris, by the laboratory of research in numerical simulations Maison de la simulation.
It is designed to perform one-dimensional, two-dimensional and three-dimensional simula-
tions, using a cartesian or cylindrical geometry.

Parallelization strategies

Smilei avails of the MPI protocol, in order to split computations between many processes,
which exchange information communicating with each other: as many PIC codes (see
2.3.3), it exploits a grid decomposition strategy. More specifically, Smilei uses a brilliant
strategy (introduced in [63])), founded on patch-based decomposition: it consists in a very
fine-grain grid decomposition in group of cells, the so called patches, which, basically, con-
stitute small sub-domains.
Essentially, groups of cells are collected in patches and, then, group of patches are organized
in MPI regions and assigned to the different processes, in such a way that every process
handles many patches (as shown in figure 3.1). The basic idea is to provide a variable
number of patches to each MPI process in order to balance the computational load carried
by each rank. Actually, this strategy allows a sort of particle sorting: all the particles
related to a given patch are naturally stored in a compact array of memory and attached
to the grid portion they can interact with. Moreover, any patch, due to the relative small
number of cells contained, can fit very well into the cache.
A direct result of this fine domain decomposition is the necessity of additional commu-
nication at the patch-level. Actually the real trouble, in terms of computational costs,
is represented only by the patches belonging to different processes: indeed, intra-process
communications are carried out copying a relatively small amount of ghost cells (extra cells
out from the region) and exchanging particles in a shared memory system.
A completely different issue arises when inter-process synchronizations are invoked, in
which, in order to exchange data between patches belonging to different MPI regions, ex-
pensive routine provided by the MPI library are called.
That’s why, a wise distribution policy is needed, which tends to minimize the boundaries
of the MPI regions (and so the number of MPI calls), but, at the same time, flexible
enough to be applied for an arbitrary number of processes and of patches per processes.
An elegant solution is achieved ordering the patches along a Hilbert space-filling curve: this
sophisticated mathematical function, a shown in figure 3.2, guarantees the minimization of
contiguous portions of the regions, which are created simply following the curve (see [64]
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Figure 3.1: Example of a patch-based decomposition. The full domain is discretized with 960 cells.
Then, the mesh is divided in 32 patches, composed by 6×5 cells. Lastly, the patches are organized
in 5 MPI regions, each of them assigned to a different MPI process.

and [65]).
Furthermore, Smilei provides a strategy to minimize cache misses: in fact a further par-
ticle sorting occurs inside the patches, thanks to which, even when the size of the patches
is too large, particles remain sorted without loss of performances.

This specific domain decomposition is also well adapted to the application of OpenMP
threads parallelism over this collection of patches per process: basically, a further paral-
lelization can be applied to the patches inside a MPI region, being independent subdomains.
This means that the operations to apply on each patch can be split with a multi-threading
logic.
For example, if a region is formed by 10 patches and 4 threads per process are imposed,
the 4 threads will handle the 10 patches, working in parallel, patch by patch, until the
10-th patch is done.
One great advantage deriving from his scheme allows a dynamic scheduling : inside one
MPI region, the faster threads, which operates on patches with few macro-particles, can
continue working passing to other available patches, without waiting for the busier col-
leagues, thus avoiding long waiting times.
Thus, a smart use of the hybrid MPI-OpenMP scheme can bring to significant reductions
of computational times and useless waists of time.
Most of the times, is convenient to choose the number of MPI processes equal to the number

45



Figure 3.2: Example of a 8 × 4 patches domain decomposition, shared between 5 MPI processes.
MPI domains are delimited by different colors. The Hilbert curve (black line) passes through all
the patch centers, starting from the patch in the south-west corner

of nodes selected, in order to optimize the memory distribution: indeed, less MPI processes
is not possible because they cannot be split among separate memory spaces, whereas more
MPI processes is not recommended because they are not as efficient as OpenMP threads.
The multi-threading, also, requires proper considerations and should not be taken light.
In order to use all the cores, it is recommended to impose as many threads per process as
cores per node (even more, but only if the architecture supports it well).
Therefore, the dynamic scheduling, handled by the threads, provides high performance if,
clearly, the total number of patches is larger than the total number of threads, in such a
way that the faster threads can work, sequentially, on several patches.

Load balancing

Smilei provides also the possibility to enable a global dynamic load balancing. This scheme
plays a relevant role when the macro-particles, and consequently the operations related
to them, are non equally distributed between the process: in fact, with this solution,
overloaded regions are allowed to send some patches to the contiguous ones, just following
the direction of the Hilbert curve (in other words, following the direction of the arrow in
figure 3.2). Inversely, an underloaded process will increase its number of patches to handle.
So, before the beginning of the simulation, Smilei tends to distribuite the patches in such
a way that a fair load is respected. After that, every fixed number of timesteps, set by the
user, the code performs a control on the loads associated to the different regions, and if it
is needed, operates a new redistribution in the way described above.
Thus, in order to implement this balancing strategy, the calculation of computational load
associated to a patch p, is calculated in this way

P (p) = Npart + Ccell ×Ncells
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where Npart is the number of particles in the patch, Ncells is the number of cells contained
and Ccell is a user-defined coefficient (default values is 1.0) representing the computational
cost of cells (mostly solving Maxwell equation).Generally, the most of the load is repre-
sented by Npart.
Now, the computational load sustained by a rank r results, simply, as the sum the loads
related to all the patches under its management

L(r) =
∑
p

P (p),

while the total computational load of the simulation is

Ltot =
∑
r

L(r)

So, given NMPI ranks, a perfect load distribution implies the same amount

Lopt =
Ltot
NMPI

for every process.
Thus, the balancing algorithm proceeds to a new assignement of the pacthes, in such
a way that each L(r) is very close to Lopt. Clearly, concrete improvements in terms of
performances are achieved if the load balancing occurs quite often: in fact, frequent and
small corrections give superior benefits than rare and dramatic adjustments (see figure
3.3).

Figure 3.3: Evolution of time spent for 100 iterations, as a function of the number of completed
iterations, for four different values of Nb (the number of iterations between two load-balancing
events). Taken from [61].

3.1.2 WarpX

Warpx is a Particle-In-Cell code developed, as a part of the U.S. Department of Energy’s
Exascale Computing Project, by a collaboration between the Lawrence Berkeley National
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Laboratory, SLAC National Accelerator Laboratory and Lawrence Livermore National Lab-
oratory. This software is still in active development with the aim to explore outstanding
questions in the physics of acceleration and transport of particle beams in chains of plasma
channels, in order to benefit the numerical investigation of laser-plasma accelerators.
Actually, this numerical tool derives from the orchestration of three major softwares (see
3.4):

• Warp ([66]) is a pre-existing PIC code responsible for the modeling of plasma, beam
and particle accelerators. This framework provides a Python interface with modules
for code control, user steering, additional physics and diagnostic packages.

• AMReX ([67]) is a C++ library which exploits Adaptive Mesh Refinement (AMR)
methodology to deal with of adaptive grids and particles, which interact with data
defined on a block-structured hierarchy of meshes. In addition, it handles MPI and
OpenMP parallelisms and load balancing strategies.

• The PICSAR package ([68]) contains FORTRAN routines for basic PIC operations,
subjected to continuous optimizations for the best adaptation to massively paral-
lelization.

Figure 3.4: UML diagram of WarpX. In addition to WarpX’s own source code (‘WarpX-Source’),
functionalities are provided by three packages: AMReX for the handling of AMR, communication
and load balancing, PICSAR for the low level individual PIC functionalities, and Warp for extra
physics packages, alternate user interface and control.

WarpX provides the possibility to perform both 2D3V and 3D3V Particle-In-Cell simu-
lations, exploiting a cartesian or cylindrical geometry. At the beginning of the project,
WarpX, resulted from the combination of the tools described above, was tested against
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Warp for some simple simulations, and the results of the two codes were in excellent agree-
ment (for more details see [62]).

Parallelization strategies

As already discussed, WarpX inherits the hybrid MPI-OpenMP parallelization strategies
from Amrex: thus, for a proper documentation on that one should refer to [67].
First of all, like many other PIC codes, among which Smilei, the program opts for a domain
decomposition based scheme: the entire mesh is subdivided in independent rectangular
subdomains, called simply grids. The user does not explicit a priori the domain decom-
position but the grids are automatically created on the basis of two numerical parameters
imposed, i.e. the maxgridsize and the blockingfactor. The maxgridsize corresponds
to a threshold (for each dimension) for the size of the subdomains, that the program must
not exceed during the grids creation. However, an assurance for good multi-grid perfor-
mance is fundamental: indeed, the lengths of the subdomains created must be divisible
by the value chosen for the blockingfactor (it’s possible to choose different values for
different directions), which must be a power of 2.
So, these parameters allow to draw a limit to the freedom of to the algorithm, which op-
erates the decomposition at run-time.
Basically, domain decomposition happens following this procedure.
At the beginning, a single grid, with size equal to the number of cells (in each direction),
is defined covering the entire physical domain. After that, if the value assigned to the
maxgridsize is lower than the number of cells, an iterative loop starts, which generates
subdomains until each grid is no longer than the maxgridsize. Clearly, each step of this
procedure must respect the blocking factor criterion, otherwise the loop is interrupted even
if the constraint imposed by the maxgridsize is violated. Furthermore, if the algorithm
produces less subdomains than MPI processes, further subdivisions are operated in order
to guarantee that each process is associated to at least one grid.
So, a good practice consists in carefully choosing these two numerical parameters, keeping
in mind that the best optimization is achieved, in computational terms, if at least one grid
is reserved to any process, in such a way that no shared regions exist.
By the way, even if the user cannot choose an explicit decomposition a priori, it is possible
to force the program to create a desired number of identical grids, setting the same value
for both the parameters, with the result that subdomains with this fixed size will be cre-
ated. Anyway, many times this forcing procedure, if not well motivated, does not reveal a
good idea because the algorithm implemented by WarpX is already designed to optimize
the computational load of each rank and, in many situations, identical fixed-size grids are
not the best option.
Beside the inter-process communication scheme, provided by the MPI interface, as al-
ready mentioned, as already pre-announced, WarpX includes a intra-process parallelization
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scheme, offered by OpenMP.
In the following, an explanation about how the Amrex package deals with multi-threading
is addressed.
Basically, once the domain decomposition is completed, there are several grids distributed
among the available processes; then, as figure 3.5 shows, each of these grids are logically
decomposed, through the so called tiling process: essentially, this procedure allows to
transform the loops, operated by a rank on a entire subdomain, into tiling loops that it-
erate over tiles and element loops that iterate over the data elements within a tile. This
results in thread parallelization, in which several threads per grid cooperate, working on
different tiles, improving data locality.

Figure 3.5: Comparison of domain decompositions without and with tiling. In the first example,
there are 2 grids, each one formed by 8 × 8 cell, while in the second one the 2 grids are logically
broken in 4 tiles of 4× 4 cells.

Load balancing

As illustrated before, each MPI rank typically computes a few grids, assigned in the ini-
tialization from the code. This assignment is lead focusing on equalize the computational
load between the processes. However, this procedure does not ensure a good balancing
for the full duration of the simulation, because probably the computational load felt by
each grid, and so by each process, will be subjected to alterations, due to macro-particles
motion.
That’s why WarpX provides the possibility to activate the load balancing : this procedure
implies a periodical redistribution of the grids, whose shape obviously remain unchanged,
among the processes in order to maintain a fair balance, and, so, to optimize performances.
In other terms, thanks to this scheme the processes with a lot of work can transfer one or
several grids to their neighbors: in this regard, the code provides two ways for estimating
the load of each ranks.
The user can choose the timers mode, which consists simply in a direct estimation of the
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computation time of each process, through in-code timers. Otherwise, the user can opt for
a heuristic approach, in which load balance costs are estimated according to a measure of
particles and cells assigned to every grid handled by a process. So the effort required by a
grid g is computed in this way

L(g) = wparticle × nparticle + wcell × ncell

where wparticle and wcell are two coefficients set to 0.9 and 0.1 by default, unless a redef-
inition is made. After that, this algorithm calculates the computational load assigned to
each rank r simply summing over the loads of its grids

L(r) =
∑
g

L(g)

Now that costs estimation has been performed, the subdomains redistribution can take
place and, by the way,the code provides two possible strategies.
The first option is represented by the Space Filling Curves (SFC) algorithm, which consists
in grids distribution following the filling-space Z-Morton curve (illustrated in 3.6).
Thanks to the shape properties of this mathematical curve ([69],[70]), this scheme guar-

Figure 3.6: The grids are enumerated following the space-filling Z-Morton curve and, then, dis-
tribute among the ranks, following the order, in a way that balances the load

antees compactness, which limits the length of the boundaries between communicating
processes, simple and fast encoding ability and flexibility, in order to ensure a good adapt-
ability for an arbitrary number of subdomains.
Alternatively, the user can select the knapsack algorithm. In this case, each grid is marked
with a weight, corresponding to the number of cells contained, and the same maximum
capacity is fixed for every process. Hence, the subdomains ripartitions takes place, trying
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to maximize the minimum load between the ranks. However, this strategy, most of the
time, does not represent the best choice, because the load of each grid is estimated only
considering its size, ignoring the macroparticle positions: so, when the plasma is not uni-
formly distributed among the domain, inefficient balances occur.
The entire load balancing scheme is reiterated periodically, diring the simulation, and the
frequency can be chosen a priori: in order to ensure substantial benefits, it’s recommended
to activate frequent load balances.

3.2 Simulated laser-plasma interaction scenarios

As discussed in section 1.4.3, double-layer targets represent a promising road to follow in
order achieve enhanced TNSA mechanisms. Therefore, more and more in-depth researches,
through numerical simulations, are required to understand which aspects, both in the mor-
phology of the DLT and in the laser parameters, can lead to a maximum yield in terms of
ion acceleration.
The DLT structure has been already elucidated: a solid density thin target, whose front
side, where the laser impinges, is covered with a thick near-critical foam. However, this
complex structure and its interaction with laser pulses requires a sophisticated modeling
and a big amount of computational efforts.
As explained in section 2.4, this thesis work aims to find a set of guidelines which can lead
to an optimal usage of the two PIC codes considered, providing some indications about
how much the choice of numerical parameters and parallelization configurations can impact
on the computational costs. Therefore, the numerical tests presented constitute a sort of
investment, in terms of computational hours, to delineate a good utilization of the two
codes in the future.
More precisely, this explorative numerical investigation aims at studying separately the
computational efforts required by simulating laser interaction with the two layers compos-
ing a DLT.
Hence, two distinct scenarios constitute the subjects of our simulations: a thin solid target
and a thick near-critical foam. The choice of studying the two distinct layers separately is
attributable to several reasons.
First of all, since this work constitutes a first approach to the research of strategies focused
in reducing computational times, it is better two consider simplified situations, which may
be rendered more sophisticated in a future investigation.
Moreover, the solid target and the near-critical foam present different physics mechanism,
when interacting with high-power laser pulses, and, so, they represent interesting scenarios
to be studied separately. Namely, very often numerical campaigns are dedicated to simu-
late a single layer scenario. For example, when the behavior of these configurations under
additional physics is wanted to be analyzed, it may be reasonable to simulate the responses
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of the different regimes separately.
Lastly, a deeper investigation of these two configurations clearly can suggest how to im-
prove the DLT structure.
In the following, a more detailed presentation of the two scenarios simulated is given.

3.2.1 Thin overcritical plasma

The first scenario, object of this study, is represented by a laser pulse impinging on a solid
target, represented by a thin overcritical plasma. In this physical scenario, the laser is
mostly reflected by the plasma, the interaction occurring in the overdense regime. Figures
3.7 and 3.8 give a visual representation of the dynamics of this kind of laser-plasma inter-
action.
The simulated domain consists of a square of 51.6 µm per side.
An ultra-intense laser pulse with a0 = 10 is shot by an antenna, located at the left side of
the domain. The pulse, which has a duration of 18 fs and a waist of 3 µm, travels along
the x-direction with a Gaussian space-time profile. Assuming a wavelength of 0.8 µm, the
resulting peak intensity is I0 '2.2×1020 W/cm2.
Moreover, is P polarized, i.e. its electric field oscillates along the transverse y-direction,
and impinges perpendicularly on a target situated at the center of the square. This tar-
get, of 1 µm thickness, with atomic number Z=13 and mass number A=27, represents a
aluminium foil, composed by electrons and ions Al13+. It’s electron density is 80 nc and,
consequently, the corresponding ion density amounts to 80/13 nc . Both the electron and
the ion density are sampled with 80 particles per cell.
This scenario is explored, from a numerical point of view, both with Smilei and WarpX.
The physical domain is discretized with a mesh of 4096×4096 cells, involving a spatial
resolution of 0.0125 µm in both the directions.
The total time of the simulation is 340 fs, split in 12194 timesteps with a time resolution
of 0.028 fs circa.
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Figure 3.7: Sketches of the laser-plasma interaction simulations in the thin solid target scenario
using Smilei. The figure reports the profiles of the electron density, ion density, magnetic field Bz

and electric field Ez (from up to bottom) for different timesteps (from left to right: 68.29 fs, 136.57
fs).
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Figure 3.8: Sketches of the laser-plasma interaction simulations in the thin solid target scenario
using Smilei. The figure reports the profiles of the electron density, ion density, magnetic field
Bz and electric field Ez (from up to bottom) for different timesteps (from left to right: 170.71 fs,
307.29 fs).
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Table 3.1 summarizes both the physical and numerical parameters.

Table 3.1: Solid target: simulations parameters

Mesh ‡
Domain 51.2 µm × 51.2 µm
Number of cells 4096×4096
Resolution [0.0125 µm, 0.0125 µm]

- - -
Time ‡
Simulation time 340 fs
Timesteps 12194
∆t 0.028 fs

- - -
Laser ‡
Type Gaussian
Incidence 0°
Normalized vector potential a0 10
Duration wt 18 fs
Waist w(z) 3 µm
Polarization P

- - -
Solid foil ‡
Electron density 80 nc
Thickness 1 µm
Electrons per cell 80
Ions per cell 80

3.2.2 Thick near-critical plasma

The second scenario considered is the interaction of a laser pulse with a thick near-critical
plasma, that we also refer to as foam. Figures 3.9 and 3.10 give a visual representation
of the dynamics of this kind of laser-plasma interaction. It can be seen that the laser
is able to penetrate and propagate along the foam. In order to reproduce the easiest
case, the foam simulated has a homogeneous structure. In this configuration, the physical
domain in represented by a rectangle, with length equal to 102.4 µm and height equal
to 51.2 µm. In this case, an antenna, located at the left edge of the domain, shoots a
high-power P-polarized Gaussian laser pulse, traveling along x-direction with a0=20 and
normal incidence, with a duration of 18 fs and a waist of 3 µm.
Moreover, assuming a wavelength of 0.8 µm, the pulse has a peak intensity I0 '8.7×1020
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W/cm2.
The foam starts at 21.6 µm from the antenna and extends up to the right side of the
domain, with a thickness of 80.8 µm. The foam represented is a carbon foam, composed
by electrons and C6+ ions (the atomic number and the mass number are Z=6 and A=12).
Since the foam to simulate must be a near-critical foam, the electron density is imposed to
1 nc, and so ion density is equal to 1/6 nc. Both the densities are sampled with 4 particle
per cell. Instead, for what concerns the space discretization, the same resolution is desired
in both the direction: so a mesh of 6144 × 3072 cells is created, with a spatial step of
0.0167 µm along x and y. In addition, the total time of the simulation is 340 fs, discretized
with 9146 timesteps with a resulting ∆t ' 0.037 fs.
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Figure 3.9: Representation of the laser-plasma interaction in the thick near-critical foam scenario
using Smilei. The figure reports the profiles of the electron density, ion density, magnetic field Bz

and electric field Ez (from up to bottom) for different timesteps (from left to right: 68.27 fs, 170.67
fs).
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Figure 3.10: Representation of the laser-plasma interaction in the thick near-critical foam scenario
using Smilei. The figure reports the profiles of the electron density, ion density, magnetic field
Bz and electric field Ez (from up to bottom) for different timesteps (from left to right: 204.80 fs,
307.20 fs).

Table 3.2 summarizes both the physical and numerical parameters. Hence, the main physi-
cal and numerical frameworks of the two scenarios, common to all the numerical tests which
follow, have been shown: some other parameters, characteristic of the two codes, will be
explored in the following, focusing on the effects determined by their variation.
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Table 3.2: Near-critical foam: simulations parameters

Mesh ‡
Domain 102.4× 51.2 µm

Number of cells 6144×3072
Resolution [0.0167 µm, 0.0167 µm]

- - -
Time ‡
Simulation time 340 fs
Timesteps 9146
∆t 0.037 fs

- - -
Laser ‡
Type Gaussian
Incidence 0°
Normalized vector potential a0 20
Duration wt 18 fs
Waist w(z) 3 µm
Polarization P

- - -
Near-critical foam ‡
Electron density 1 nc
Thickness 80.8 µm
Electrons per cell 4
Ions per cell 4

3.3 Numerical results

This section is devoted to the analysis of the behavior, in terms of computational impact,
of several test simulations, in which different configurations will be investigated.
This numerical campaign will be conducted with the aid of the Galileo HPC, at CINECA.
Table 3.3 summarizes the main technical details of Galileo’s hardware.
Since the object of interest of this chapter are numerical simulations running on CPUs,

only the nodes equipped with CPUs will be exploited.

3.3.1 Scaling using different multiprocessing configurations

To begin, an explorative campaign is has been lead, focused on the observation of the be-
havior of the simulation time when variations on the parallelization scheme and numerical
parameters are applied.
First of all, some initial choices, for both the simulated scenario, in the parameters respon-
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Table 3.3: Galileo: system architecture

Model Lenovo NeXtScale
Architecture Linux Infiniband Cluster
Nodes 1022
Processors 2 x 18-cores Intel Xeon E5-2697 v4 (Broadwell) at 2.30 GHz
Cores 36 cores/node
RAM 128 GB/node, 3.5 GB/core
Internal Network Intel OmniPath, 100 Gb/s
Peak performance single node 1.3 TFlop/s
Peak Performance 1.5 PFlop/s
Accelerators 60 nodes with 1 nVidia K80 GPU

+ 2 nodes with 1 nVidia V100 GPU

sible for domain decomposition are made, in both the codes.
In the following, the results achieved in the two scenarios are presented separately, with
special attention to the domain decomposition.

Solid target

Let us start considering the simulations of laser interaction with a thin solid-density plasma:
because of the very limited thickness of the target, with respect the full length of the do-
main, it is reasonable to think that a good domain decomposition may be represented by
several horizontal thin stripes, i.e. rectangles with a large width and a small height. This
domain decomposition, indeed, allows to divide the full target between a lot of subdomains
without excessively splitting the rest of the mesh, where the plasma is absent.
However, as explained before, an explicit definition of the domain decomposition is manage-
able in Smilei, while in WarpX implies more difficulties, considering that the user provides
only indications to the code but the effective decomposition occurs at run-time.
Specifically, in the simulations performed with Smilei, the mesh is divided in 4 × 128

patches, formed by 1024× 32 cells while those performed with WarpX, as a first attempt,
a large degree of freedom is let to the code, choosing a large max grid size, equal to 1024
(in both the directions), and a low blocking factor, equal to 4.
Moreover, concerning the OpenMP implementation, since the simulations are launched on
nodes of 36 cores, 36 threads per MPI process (i.e. OMP_NUM_THREADS = 36) are imposed,
in order to guarantee as many threads per process as cores per node are used.

Now, we analyze the numerical results without involving load balancing algorithms. The
first analysis consists in exploring different parallelization patterns, varying the number of
nodes involved (1,2,3,4) and, consequently, the number of MPI processes (36,72,108,144).
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The main focus of this experiment is to observe the scaling of the computational times
when increasing the number of available ranks. Clearly, in order to run a simulation, it is
necessary that the operating cores are reserved for the entire duration of the calculations.
To be more specific, Galileo quantifies the computational cost related to a simulation by
computing the product between the duration of the simulation and the number of cores
demanded. So, these computational costs, also referred to as cores hours, correspond to
the amount scaled from the residual budget.
Figure 3.11 shows both the computational times and costs used for all the performed

Figure 3.11: (a) Computational time required for the thin solid foil simulations using Smilei (blue
line) and WarpX (orange line) as a function of the exploited number of cores. (b) Computational
cost (i.e. computational time × number of cores) spent for the thin solid foil simulations using
Smilei (blue line) and WarpX (orange line) as a function of the exploited number of cores.

simulations. As expected (see figure 3.11(a)), the massive parallelization offers consistent
benefits, allowing to conclude the computations faster and faster when using more nodes,
with both codes. On the other hand, also the core hours must be taken in consideration.
From a purely budget point of view (see figure 3.11(b)), namely, it emerges that the most
convenient configurations is the one making use of 1 node only. Hence, the optimal number
of nodes is not straightforwardly known a priori but, depending on the context, a suitable
number of cores should be established as a compromise between the desired speed and the
available budget.
Moreover, running the simulations with the parameters mentioned before, the behavior of
the computational cost, using WarpX, shows a peak when using 3 nodes, i.e. 108 cores,
with a subsequent decline with 4 nodes.
The figure highlights that the same simulation costs more than twice if going from 1 to
3 nodes and using 3 nodes is even more expensive than using 4 nodes. This behavior is
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not straightforward to expect. Actually , WarpX defines different domain decompositions
when using different number of nodes. In particular, the simulation box is decomposed in
64, 128, 128 and 256 number of subdomains for 1, 2, 3 and 4 nodes respectively.
Smilei shows a trend that is easier to understand, consisting in a decreasing profile and in
an increasing profile for the computational time and cost respectively. In particular, the
same simulation requires less than half the time going from 1 to 4 nodes with an increment
in the computational cost of a factor close to 1.6.
Hereinafter, we investigate the computational times and costs when tuning different nu-
merical parameters other than the number of nodes, which we fix equal to 2, in order to
avoid both excessive durations and wastes of budget.
Based on the previous results obtained with WarpX, we investigate the role of the specific
domain decomposition adopted with both codes. This is clearly an interesting point in or-
der to verify the previous considerations about the best domain decomposition. For these
reasons, several configurations, considering different sizes for the subdomains, have been
tested in both Smilei and Warpx.
Figure 3.12(a) shows the computational time for the simulations performed with Smilei,

Figure 3.12: a)Computational times required for the thin solid foil simulations using Smilei with
different number of subdomains. b) Computational times required for the thin solid foil simulations
using WarpX with respect to different number of selected subdomains. The effective number of
subdomains operated by WarpX are 1× 128,2× 64,4× 32,4× 32,8× 16, 32× 4 respectively.

whereas the results achieved with WarpX are shown in figure 3.12(b). These results seem
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to confirm the initial assumption showing that it’s very beneficial to have few subdomains
along the x-direction (along the plasma occupies a small region) and several subdomains
along the y direction (along which the plasma occupies the full space): in particular, it is
possible to decrease the simulation time up to a factor of 3 in Smilei and 4 in WarpX when
changing the subdomain decomposition with a clever set up.

So far, none strategy of load balancing has been considered intentionally, in order to
define a clear picture of what happens when different strategies of mesh decomposition are
implemented. Indeed, invoking load balancing strategies – focused on redistributing the
subdomains among the processes to ensure a fair balance – could reduce the discrepancies
between the performances obtained with different numerical setups.
This being said, now that we have understood the role of the domain decomposition,
the analysis of the effective benefits coming with a well balanced scheme clearly acquires
significance. For this purpose, also the balancing logic has been investigated in both the
codes.
Figure 3.13 shows a comparison between simulations, performed by Smilei and WarpX,

Figure 3.13: Computational time required for the thin solid foil simulations using Smilei (a) and
WarpX (b) when load balancing schemes are I) not activated II) activated every 100 timesteps III)
activated every 500 timesteps

with and without load balancing. These results have been obtained with the original
domain decomposition: in Smilei the mesh has been decomposed in 4× 128 patches, while
a high degree of freedom is left to WarpX, resulting in 8 × 16, in order to not allow the
code to handle the load balancing without previous constraints.
In this case, it’s quite clear that applying load balancing strategies is successful, especially
if a non-optimal scheme has been implemented for the creation of the subdomains. In fact,
as shown in figure 3.13 (a), a slight improvement is registered in the results obtained with
Smilei (∼ 20% of time saved), while the simulations performed with WarpX, where a not
wise decomposition strategy has been selected, reveal a distinct improvement (∼ 40% of
time saved).
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Lastly, it may be interesting to study the effects resulting from a modification in the target
position within the domain. In this regard, additional simulations with a non-centered
solid target configuration have been performed. Namely, generally simulations involving
laser interaction with a solid target do not take particular care in exploit a symmetric
scenario: we want to observe if, instead, this point should be taken in consideration.
So, the same values of the previous cases have been set for the domain decomposition and

Figure 3.14: Comparison between the computational time required for the thin solid foil simulations
using Smilei and WarpX in a non-centered (red column) and centered (green column) framework.

the balancing scheme is activated.
Essentially, the simulations run with Smilei do not exhibit significant alterations. On the
other side, a symmetrical configuration helps WarpX – where a non ideal decomposition
has been set – handling the subdomains assignment to the MPI processes and so avoiding
useless wastes of time (∼ 40% of time saved).

Near-critical plasma

In this section the physical scenario under study is the laser interaction with a thick near-
critical plasma. In this case, considering the homogeneous structure of the foam, which
occupy long portions of the mesh in both the direction, not a particular shape of the sub-
domains seems to be smart to set.
So, the mesh is, initially, subdivided in squared patches of 128×128 cells for the simulations
carried out by Smilei, while grids with max grid size equal to 1024 are generated, with a
blocking factor equal to 4 (in order to let the code to be free enough in operating the
grids creation).
As in the previous scenario, since a number of threads per core equal to the number of cores
per node are desired, each node is handled by 36 threads (i.e. OMP_NUM_THREADS = 36).
In addition, no balancing effects are desired for now: namely the first object of interest
is the time scaling in basic configurations, which is more easy to observe if no balancing
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benefits are involved.
At this point, let us begin exploring how the computational time depends on the number of
MPI process selected. The first analysis compares different parallelization patterns, with
different number of nodes involved (1,2,3,4) and, consequently, different number of MPI
processes (36,72,108,144). Figure 3.15 highlights both the computational times and costs
used for all the performed simulations.
It is clarified (see 3.15(a) )that the increasing the number of ranks (at least until the maxi-
mum number tested, corresponding to 144 cores) brings considerable reduction to the time
required for the computations. On the other side, the importance of the computational
cost required by each simulation is equally important, when the parallelization configura-
tion is decided.
By the way, figure 3.15(b) shows that the results achieved using Smilei register a slight
increment of the computational costs (∼ 10% extra when going from 1 to 4 nodes), with
respect to the number of nodes demanded. Instead, WarpX presents an almost constant
profile, when 1,2 or 4 nodes are involved, while demanding 3 nodes implies a considerable
additional cost (∼ 40% extra). Therefore, after these considerations, for the following sim-

Figure 3.15: (a) Computational time required for the thick near-critical foam simulations using
Smilei (blue line) and WarpX (orange line) as a function of the exploited number of cores. (b)
Computational cost (i.e. computational time × number of cores) spent for the thick near-critical
foam simulations using Smilei (blue line) and WarpX (orange line) as a function of the exploited
number of cores.

ulations 72 computing cores, i.e. 2 nodes, are exploited, in order to spend with moderation
the available budget of CPU hours and to avoid excessive long computations.
At this point, as in the previous case, let us explore other choices for the domain decompo-
sition, with the aim to observe how the codes respond to modifications on the subdomains
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creation. The plots reported in 3.16 show the behaviors when modifications on the number
and shape of the subdomains are applied. More precisely, the shape of the patches seems
not to be relevant, while an overly abundance of patches appears to be counterproductive:
in particular, the simulation increases up to a factor of 1.4 if too many subdomains are
created. Whereas, in this case WarpX shows to be able to manage the decomposition,
without great differences when the imposed number of grids is modified.
Therefore, in the following the original shaping of the subdomains are preserved.
As mentioned above, so far no load balancing has been introduced. Thus, next goal

Figure 3.16: a)Computational times required for the thick near-critical simulations using Smilei
with different number of subdomains. b) Computational times required for the thick near-critical
simulations using WarpX with respect to different number of selected subdomains. The effective
number of subdomains operated by WarpX are 12× 6,6× 48,48× 6 respectively.

consists precisely in pointing out how much invoking a periodical redistribution of the sub-
domains between the processes can impact on the final results. In this context, different
balancing setups have been compared in both the codes. However, not consistent enhance-
ments have been achieved(see figure 3.17): namely, an activation on Smilei allow to save
not much more of the 10% of the time, while the benefits felt by WarpX are practically
null.

3.3.2 Investigation on PIC-routines and computational load

In the previous section, a numerical investigation, focused on an exploration of the reaction
of the two codes to some perturbations in the numerical scenarios, has been carried out. So
far, the debate revolved around only the global computational time required by the simu-
lations, i.e. the effective time during which Galileo has reserved its nodes for performing
computations. Nevertheless, in order to realize a simulation, not only routines related to
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Figure 3.17: Computational time required for the thick near-critical foam simulations using Smilei
(a) and WarpX (b) when load balancing schemes are I) not activated II) activated every 100
timesteps III) activated every 500 timesteps

the PIC algorithm are invoked: there are many other procedures which, clearly, require ex-
tra time. Indeed, since a massive parallelization has been exploited, a lot of inter-processes
communications play a role: substantially, part of the time is spent in allowing the ranks
to exchange information at each step of the simulation. Moreover, communication times
are not the only operations taking time. Several other activities are also included in the
global time: some of them are, for example, the periodical updates of the diagnostics files,
the initialization of the mesh, the creation of the particles, the video-output of the current
status (when the simulation is running) etcetera.
This section, instead, sets itself the objective of an accurate examination of the time spent
in performing the computations related to the different pieces of the PIC scheme. In ad-
dition, also the time required for the MPI communications represents an important term
to keep under observation. Both the codes enable an analysis of this kind, since they save
these information in specific output files.
Given the high number of processes implicated, the same operations can be faster or slower,
depending on the region in which they are executed. Hence, recalling the fact that different
MPI regions are assigned to different ranks, the time required to a specific activity varies a
lot, depending on the process involved. To be more specific, Smilei provides a file, named
"profil.txt", where for each timestep, the cumulative time required for each PIC routine
and for the operations which involve communications: actually, the minimum, maximum
and mean time, between the processes, is registered for each timestep. WarpX, instead,
provides the total time (as output at the end) required by every kind of routine necessary
for accomplishing a simulation.
Hence, after an investigation in the source codes, the terms related to PIC routines and
communications have been discerned. In particular, given the role covered by the particles
and the grid in Particle-In-Cell methods, it seems wise to split the computational time
required by PIC scheme in two components.
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The first component, named Tpart, must take into account all the operations which involve
particles. Clearly, the first contribution is represented by the Boris pusher algorithm, which
is responsible for the computation of the macro-particles trajectories. Moreover, this term
should include the time required for the fields interpolation, since the values of the elec-
tromagnetic fields are estimated on the position occupied by the particles. Finally, the
deposition operations should also be considered, in which the densities and the currents,
starting from the particles positions, are projected on the grid.
On the other hand, the second component, named Tgrid, has been defined to consider the
computations performed on the grid points, without considering the macro-particle loca-
tions: so, this term basically coincides with the time required for the Maxwell solvers, i.e.
the time updating of the electromagnetic fields.
For what concerns the time spent in the communications among processes, the term Tcomm

has been designed to quantify all the routines involving the MPI calls, which substantially
take care of synchronizing particles and fields data.
To provide a mathematical framework, the total computational time T seqcomp, considering a
sequential environment (i.e. only one MPI process and one OpenMP thread), is defined
as: 

T seqcomp = T seq1stepNstep

T seq1step = αNcellT
seq
1grid + βNpartT

seq
1part + Tother = αT seqgrid + βT seqpart + Tother

Nstep =
Tsim
∆t

∆t =
Ccfl
c

∆

n

Ncell =

(
Lsim

∆

)n

Npart = PPC ×Ncell

(3.1)

where T seq1step is the computational time required to perform 1 step (roughly assuming that
each step implies the same computational time), Nstep is the total number of steps, T1grid =
Tgrid
Ncell

, T1part =
Tpart
Ncell

, α and β are two suitable constants, Ncell is the total number of grid

cells, Npart is the total number of macro-particles, Tsim is the simulated time of the system
evolution (i.e. ∼ 102 − 103 of fs), ∆t is the timestep duration, ∆ is the grid cells length
(assuming same resolution along every direction), Ccfl is the Courant number, c is the
speed of light in vacuum, n is the dimensionality of the simulation, Lsim is the simulated
box size in each dimension (assuming a cubic geometry), PPC is the number of macro-
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particles per cell and Tother is the residual computational time (which is out of the scope
of this investigation). Once that these contributions have been defined, it is advisable to
perform some simple test simulations, in order to verify the behavior of this terms when
the number of particles and cells changes.
Since we will work on a massively parallelized environment, it should proper to generalize
the previous model for the computational time as:

Tcomp(p) =

(
Tcomp(1)Nstep

p

)γ
+ Tcomm (3.2)

where p is the number of MPI processes, γ > 1 is a suitable constant and Tcomp(1) ≡ T seqcomp

defined above. In this simple description we are assuming that every process takes the
same amount of time in performing the simulation, so that this can fairly represent the
computational time averaged over the p processes.
To check the soundness of this formulation, we performed some simple simulations involving
a circular thermal plasma, where no incident waves are injected so that the macro-particle
motion is ascribable only to the kinetic energy of the populations. In these simulations
we have changed the values of PPC and Ncell. The underlying idea consists in separately
doubling both the resolution and the PPC to examine the evolution of the contributions
of Tpart and Tgrid. Specifically, a reference configuration is performed with PPC=20 and
a resolution of 40 points per µm in each direction (see the table REF for more details).

In addition, other two simulations have been executed. The first doubling PPC and keep-
ing the same resolution, while the second with a resolution of 55 points for µm in both the
directions and PPC=10. It is important to underline that, when doubling the resolution,
the actual number of cells is little less than doubled (with a ratio of 1.9 circa instead of 2).
Moreover, this second case deserves a further consideration: indeed, doubling the number
of cells would imply also a double number of particles, since the PPC is defined on a single
cell, that is why we halved PPC=10. In addition, one should no forget the time discretiza-
tion is related to the the spatial resolutions by the CFL condition (2.11): therefore, this
second configuration performs the calculations a greater number of steps (× 1.4), resulting
in a further increase of run-time.
The results obtained with both the codes are summarized in figure 3.18 and 3.19, where
the averaged time, between the processes, have been plotted.
[hbt] Figures 3.18 (a) and (c) show the behavior of Tpart when doubling PPC, thus Npart

for both Smilei (blue) and WarpX (orange), respectively. It can be seen that a double
number of macro-particles simulated implies a doubling in the computational time related
to the operations on particles (Tpart). Besides, figures 3.18 (b) and (d) illustrate that when
the number of cells increases and the total number of particles is unaltered, then Tpart in-
creases only because of the increment of the timesteps number. More precisely it increases
by a factor close to 1.3, which is in agreement with the expectations.
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Table 3.4: Check: simulations parameters

Mesh Reference – Doubling Particles – Doubling cells
Domain 25.6 µm × 25.6 µm
Number of cells 1024×1024 – 1024×1024 – 1408×1408
Resolution [0.025 µm, 0.025 µm] – [0.025 µm, 0.0125 µm] – [0.018 µm, 0.018 µm]

- - -
Time ‡
Simulation time 85 fs
Timesteps 1524 – 1524 – 2096
∆t 0.056 fs – 0.056 fs – 0.041

- - -
Plasma ‡
Center [12.8 µm, 12.8 µm]
Radius 10 µm
Electron density 10 nc
Ion density 10/6 nc
Electrons per cell 20 – 40 –10
Ions per cell 20 – 40 – 10

On the other hand, figure 3.19 (a) and (c) show no dependence of Tgrid on the amount of
macro-particles (for both codes). However, when the resolution is modified, it is reasonable
to expect that Tgrid increases as a consequence of the modifications of both Ncell and Nsteps

by a factor close to 1.9× 1.4 ' 2.7. However, figures 3.19 (b) and (d) show that both the
codes reveal results which slightly deviate from this estimate. This can be explained by the
following argument: when the resolution has been changed, the numerical parameters re-
sponsible for the domain decomposition (the number of patches and the max grid size in
Smilei and WarpX respectively) have been kept unchanged. So, basically, these mutations
of the number of cells contained in the patches (in Smilei) and of the shape of the grids
(in WarpX) imply that the previous estimate cannot fully capture the actual behavior of
the codes, which may handle better or worse the subdomains.
These achieved results are interesting for a twofold reason. Firstly, they constitute a consis-
tency check which confirms that the particles and the grid computations have been isolated
in a reasonable way. Secondly, it is fair to assume a linear dependence of Tpart and Tgrid
on Npart and Ncell respectively. Hence, the latter point allows one to consider normalized
times and to compare even different configurations (in terms of PPC and resolution) in a
meaningful way.
At this point, it is appropriate to proceed with a deeper analysis of the results. In the
following, the two physical scenarios will be examined separately.
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Figure 3.18: Behavior of Tgrid when the number of macro-particles (left column) and the number
of cells (right column) are doubled, using Smilei (first row) and WarpX (second row). These results
are achieved in a pure MPI environment exploiting 2 nodes (i.e. 72 cores).

Solid target

In order to maintain the same structure of the previous section, the first scenario presented
is the solid target environment. Thus, thanks to the previous investigation on the particle-
time and grid-time components, it is possible to differentiate the contribution in the solid
target simulations.
So, a more detailed investigation has been carried out considering the results given by the
basic configuration, when load balancing algorithms have not been activated: the object
of interest is represented by the behavior of the several components when the number of
MPI processes varies. The same examination, obviously, has been conducted for the results
provided both by Smilei and WarpX.

Figure 3.20 shows the profiles of Tpart/Npart, Tgrid/Ncell, Tcomm and the sum Tpart+Tgrid+

Tcomm in each column from left to right respectively. The top row shows the results for
Smilei and the second row for WarpX. The calculations related both to the particles and to
the grid become faster and faster, on average, as the number of cores increases. Namely, the
MPI regions, as the number of processes increases, become smaller and, consequently, also
the portion of data administered by each process decreases. This means that the number of
macro-particles moving in a MPI domain is being reduced if a stronger parallelization is ex-
ploited, resulting in a particle-time reduction. An equivalent consideration can be applied
to the grid-time behavior, since also the number of cells managed by a single rank becomes
smaller. The price to pay resides in the efforts required by communication routines. As
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Figure 3.19: Behavior of Tpart when the number of macro-particles (left column) and the number
of cells (right column) are doubled, using Smilei (first row) and WarpX (second row). These results
are achieved in a pure MPI environment exploiting 2 nodes (i.e. 72 cores).

mentioned before, both these PIC codes involve communications between processes, hence
overheads, when the parallelization is activated in order to exchange information along
the boundaries of the MPI domains or to synchronize different processes. Otherwise, if
the number of nodes changes, also the MPI regions change in size and shape, and so the
boundaries depend on the specific configurations considered. So, what is interesting to
study is not the effective duration required for communicating, but rather the compu-
tational costs (intended, as always, as time × cores). For this reason we also show the
computational costs, associated to each type of routine, in figure 3.21. This figure shows
a reasonable ascending trend, for the computational costs required by communications in
Smilei. Instead, with WarpX a less obvious profile appears: indeed, the cost spent for MPI
communications grows if the number of nodes increases up to 3, as one could expect, but
it abruptly drops down when 4 nodes are requested. Hence, this case requires a deeper
investigation. For one thing, it should not be underestimated the fact that, as explained in
3.1.2, WarpX does not receive an actual instruction of how to perform the box decompo-
sition, as opposed to Smilei; rather, the grids creations is operated at run-time, according
to the constraints imposed by the user. Therefore, the effective shape of the grids created
in the four simulations has been studied more in detail. As expected, not the same decom-
position has been applied: table 3.5 summarizes which choices have been done at run-time.

Thus, it may be interesting to examine how the situation changes if the same decomposi-
tion is imposed in the four parallel configurations. As a first approach, WarpX has been
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Figure 3.20: Profiles of Tpart/Npart, Tgrid/Ncell, Tcomm and the sum Tpart +Tgrid +Tcomm in each
column from left to right respectively required for the thin solid foil simulations. The maximum
(dashed lines) and the average (solid lines) values between the MPI processes are plotted. These
profiles are shown for Smilei (top row) and WarpX (second row).

Number of cores Grids size [number of cells] Number of grids
36 512×512 8×8
72 512×256 8×16
108 512×256 8×16
144 256×256 16×16

Table 3.5: Grid decomposition performed by WarpX in the four configurations with 1,2,3,4 nodes
(i.e. 36,72,108,144 cores)

forced to generate grids of size 512×256 (number of cells), since this decomposition was
adopted by the code in half the cases. The obtained results are plotted in figure 3.22: it
is easy to observe that the situation almost remains unaltered, showing the same drop in
communication costs when 144 cores are running.
At this point, recalling that, as tested in the previous section, an efficient decomposition
strategy consists in creating few grids along x and many more grids along y, the following
strategy has been checked. The domain has been forced to split in grids of 2048×64 cells,
i.e the configuration boosting the best performances among those experimented in the pre-
vious campaign. In this case, as reported in 3.23, the average computational cost exhibits
a behavior similar to the previous cases (i.e. with less efficient grid decompositions), with
a peak when 108 cores are used with a subsequent fall.
But more interesting is the profile of the maximum cost (purple line), which monoton-

ically increases with the number of cores. Therefore, probably most of the exchanged

74



Figure 3.21: Profiles of Cpart/Npart, Cgrid/Ncell, Ccomm and the sum Cpart+Cgrid+Ccomm in each
column from left to right respectively required for the thin solid foil simulations. The maximum
(dashed lines) and the average (solid lines) values between the MPI processes are plotted. These
profiles are shown for Smilei (top row) and WarpX (second row).

information occurs between the central processes, which handle regions having a high den-
sity of macro-particles. So, in this case, the behavior of the maximum cost – associated
to the overloaded regions – may be more meaningful than the average one. Indeed, the
high number of subdomains which do not contain any plasma and do not require particles
synchronization contribute to lowering the mean cost.
Overall, from the results obtained with different griddings (automatic and the two forced),
we can conclude that the optimal configuration is able to minimize also the communication
contributions to the costs. Indeed, looking at figure 3.23 is easy to that the average (green
line) and maximum (purple line) communication profiles required by the optimal forced
environment are very lower than the ones involved in a non-optimal environment. So, the
optimal decomposition manage to minimize the communications in each parallelization
configuration (1,2,3 and 4 nodes): so the resulting profile for the maximum cost will be
clearly monotonically increasing (because the number of MPI processes increases), while a
non-optimal environment is not able to minimize these costs in each parallel configuration
(producing bizarre communications cost profiles).

Incidentally, another important aspect highlights from these plots. Namely, the maximum
computational particle-time profile of the forced 2048×64 scheme is very close to the av-
erage one, while the automatic configuration shows a maximum profile with values very
greater. On the other hand the grid-time behavior is more or less the same in both the
cases. This suggests one important point: the load represented by particle routines is better
distributed in the forced mesh, whereas, when an automatic decomposition occurs, there
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Figure 3.22: Computational times and computational costs required for an automatic and a forced
(grids of 512× 256 cells) domain decomposition in WarpX.

are few processes with are much more slower in performing computations related to parti-
cles. Moreover, the communications required in the original pattern require much greater
costs. In fact, it appears plausible that in this specific scenario, where a high-density
plasma covers a minuscule portion of the physical domain, the most of the communication
costs are due to particle motion between the MPI regions.
Therefore, it seems appropriate, for multiple reasons to let to the code the least possible
degree of autonomy in the grids generation.

Near-critical foam

The same approach adopted for the solid target scenario has been expanded for a deeper
investigation of the results provided by near-critical simulations exploration. So, also in
this case, the basic configuration has been considered, without involving load balancing
between nodes. Also in this case, so, the computational times spent for particles-routines
Tpart, grid-routines Tgrid and inter-nodes communications Tcomm have been separated and,
obviously, the proper normalization has been performed.

Figure 3.24 shows the profiles of Tpart/Npart, Tgrid/Ncell, Tcomm and the sum Tpart+Tgrid+

Tcomm in each column from left to right respectively. The top row shows the results for
Smilei and the second row for WarpX. An observation of figure 3.24 allows to introduce
some considerations. Figure 3.25 shows the corresponding computational costs. First of
all, Tpart and Tgrid , also in this case, seem to benefit a lot from a massive parallelization.
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Figure 3.23: Computational times and computational costs required for an automatic and the
optimal forced (grids of 2048× 64 cells) domain decomposition in WarpX.

However, the behavior manifested by the communication routines less reflects the expec-
tations, in the results achieved with both the PIC codes.
Let us start considering Smilei: the average computational cost for processes synchroniza-
tion remains approximately constant with respect to the number of processes working,
which represents a curious issue. Moreover, the sum of the average costs spent by the
three components, even decreases when the number of process, communicating each other,
increases. The sum of the maximum costs shows a counter-intuitive fall when 144 CPUs
are employed, assuming a value close to the maximum cost spent by the simulations run
on 36 cores.
This could be explained by the hybrid MPI-OpenMP asset: in fact all the discussed simu-
lations exploited also a multi-threading scheme, in which several threads work on a single
task.
In order to clarify this situation, further simulations, deprived of a multi-threading frame-
work, have been studied exploiting both 36 and 144 cores (corresponding to 1 and 4 nodes
respectively). Then, these new results have been compared with the original ones.
These tests, exploiting a pure MPI framework, are in a good agreement with the previous
hypothesis (see figure 3.26): namely, a considerable increment in the maximum sum-cost
have been measured when one move from the 36 cores to the 144 cores framework. How-
ever, the mean cost expended in communications is not subjected to substantial variations
also in this case.
Therefore, it is plausible deducing that, when a thick homogeneous plasma is simulated,
the filling-space Hilbert algorithm, implemented by Smilei when the patches are assigned
to the ranks, constitutes a successful strategy, which manage to reduce the boundaries
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Figure 3.24: Profiles of Tpart/Npart, Tgrid/Ncell, Tcomm and the sum Tpart + Tgrid + Tcomm in
each column from left to right respectively required for the thick near-critical foam simulations.
The maximum (dashed lines) and the average (solid lines) values between the MPI processes are
plotted. These profiles are shown for Smilei (top row) and WarpX (second row).

lengths enough to preserve communication efforts. In addition, when multi-threading is
involved, the combination of the strategies related to patches disposition and to threads
administration brings admirable benefits.
Now, let us go back to consider figure 3.25 and let us focus on the results provided by
WarpX (second row). In this case, all the costs assumes a bizarre profile, with a sharp
peak in correspondence of the 3 nodes framework.
Hence, after the considerations arose from the analysis of the results provided by Smilei,
the first approach has constituted in trying to switch off the multi-threading, repeating the
simulations without exploiting OpenMP. Then, the results obtained with a hybrid MPI-
OpenMP combination and with MPI scheme have been compared. Nonetheless, as clearly
emerges from 3.27, the general frame, related both to PIC routines and to communication
activities, practically does not change. So, this brings out the fact that WarpX , in this
scenario, do not seem to benefit very much from a multi-threading logic application.
Thus, the next step has been to have a view on the specific shapes of the grids generated at
run-time, in the different simulations. The different decompositions performed by WarpX
are summarized in table 3.6: it is notable that the critical case, in which 108 cores are par-
allelized, is the unique with a number of grids greater than the number of CPUs exploited.
In particular, 144 grids have been generated, meaning that there are a few processes which
handle more than 1 grids, whereas all the others are associated to a single grid. So, the
reason of the pathological behavior shown in the critical configuration is probably caused
by a non optimal decomposition scheme adopted.
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Figure 3.25: Profiles of Cpart/Npart, Cgrid/Ncell, Ccomm and the sum Cpart + Cgrid + Ccomm in
each column from left to right respectively required for the thick near-critical foam simulations.
The maximum (dashed lines) and the average (solid lines) values between the MPI processes are
plotted. These profiles are shown for Smilei (top row) and WarpX (second row).

Hybrid MPI-OpenMP Pure MPI
Number of cores Grids size [cells] Number of cores Grids size [cells]

36 36 grids: 1024×512 36 36 grids: 1024×512
72 72 grids: 512×512 † †
108 144 grids: 512×256 108 144 grids: 512×256
144 144 grids: 512×256 108 144 grids: 512×256

Table 3.6: Grid decomposition performed by WarpX in the hybrid MPI-OpenMP and in the pure
MPI environments

3.4 Discussion

In this section, we will discuss the results presented above, trying to arrive to more general
conclusions. The two simulated physical frameworks, i.e. the solid target and the near-
critical foam scenarios, have been studied separately. These simulated scenarios are quite
simplified and far from the realistic frameworks involved in experiments. Thus, it would be
very useful to observe the obtained results with a broader perspective, trying to compare
the two cases in order to detect possible similarities or differences.
First of all, both the scenarios exhibit a good time scaling with respect to the number of
parallel computing units: running a simulation on a large quantity of CPUs, allows one
to save a good portion of computational time, regardless of the physical scenario and the
code exploited. So, one could conclude that the best choice consists in exploiting as many
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Figure 3.26: Computational times (first line) and computational costs (second line) required for
a pure MPI (with 36 and 144 cores) and a hybrid MPI-OpenMP (with 36,72,108 and 144 cores)
configuration in Smilei.

nodes as possible. However, it must be taken in account that the total cost required by a
single simulation could considerably increase with the number of processes, at least if the
simulation setup has not been cleverly adjusted, since the number of communications may
increase too much. Therefore, a winning strategy is based on trying to smartly configure
the numerical parallel environment, in order to minimize the overheads among processes.
This challenge, in particular, consists in trying to adopt the best mesh decomposition
scheme, depending on the considered scenario. As a remark, consider that only Smilei
provides a simple interface to define the effective domain decomposition, while WarpX has
a much greater degree of freedom in this sense. Hence, in some cases it may be better not
to leave a high degree of freedom to the code.
However, the previous results suggest that, if the plasma occupies a large enough region
of the simulation box and its density is low enough, ascribable to the near-critical foam
case, the performances are less dependent on the specific domain decomposition. But the
situation changes dramatically when dense plasmas are confined in a limited region, like
thin solid foils. In this case, it is very important to consider beforehand how to distribute
the subdomains in order to split the computational load as evenly as possible among the
MPI regions. In such cases, it is convenient to perform many domain subdvisions within
the plasma (e.g. in our case along the y direction). In addition, it is advisable to take
in consideration the fact that this strategy can exploit its full potential if the plasma is
located in the center of the box: so, it is worth configuring a symmetrical scenario.
In addition, activating a periodical load balancing strategy, provided by both the codes,
can bring additional benefits.
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Figure 3.27: Computational times (first line) and computational costs (second line) required for
a pure MPI (with 36, 108 and 144 cores) and a hybrid MPI-OpenMP (with 36,72,108,144 cores)
configuration in WarpX.

By the way, one should considerate that, if the starting configuration is already well bal-
anced, the effective profits will be limited. So, when a large plasma is considered, like
the near-critical plasma, there are not consistent disparities between the MPI domains, in
terms of computational load. On the other hand, if the plasma thickness decreases, the
situation could change: but in this case a wise decomposition can fix this issue.
Moreover, the analysis of the specific time contributions related to the PIC algorithm and
the communication routine results as a confirm of the previous considerations. Namely,
when a thin plasma is considered, the domain decomposition chosen may have disastrous
effects on the communication times. Instead, a smart decomposition minimize the com-
munication efforts and, consequently, the global simulation time.
S These results show that it is not straightforward how to make an optimal use of these
complex Particle-In-Cell codes.
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Chapter 4

Performance analyses of laser-plasma
interaction simulations on a hybrid
CPU-GPU cluster

In the previous chapter we presented a numerical investigation on the performances achieved
by some simulations, launched on the Galileo supercomputer. All these simulations have
been performed in a parallelized context, in which only CPU were involved. This chapter,
instead, wants to analyze how the performances change, when a hybrid CPU-GPU cluster
is exploited.
Hence, several numerical tests have been carried out, in which the computations have
been performed by set of units, composed by both CPUs and GPUs. For this purpose,
we have exploit the Marconi100 cluster, the latest supercomputer acquired by the Cineca
computing center. This device is equipped a with powerful architecture, thanks to which
it occupies the ninth place in the TOP500 list of 2020.
Table 4.1 summarizes the main technical details of Marconi100 architecture.
All the numerical simulations presented in this chapter have been performed with WarpX:
next section explains how WarpX is implemented for running on GPU.

4.1 WarpX on GPUs

One of the reasons which have directed in the selection of WarpX as Particle-In-Cell code is
the fact that it avails of a GPU support, thanks to the fact that the Amrex tool, exploited
by WarpX to handle parallelization, provides an adaptation for graphic processing units.
This chapter briefly presents the strategy provided by WarpX to perform parallelization
on GPUs (for a more detailed explanation see [67]).
Essentially, AMReX’s GPU strategy focuses on providing performant GPU support with



Table 4.1: Marconi100: system architecture

Model IBM Power AC922 (Whiterspoon)
Racks 55 total (49 compute)
Nodes 980
Processors 2x16 cores IBM POWER9 AC922 at 2.6(3.1) GHz
Accelerators 4 x NVIDIA Volta V100 GPUs/node, Nvlink 2.0, 16GB
Cores 32 cores/node, Hyperthreading x4
RAM 256 GB/node (242 usable)
Peak Performance about 32 Pflop/s, 32 TFlops per node
Internal Network Mellanox IB EDR DragonFly++
Disk Space 8PB raw GPFS storage

minimal changes, with respect to the CPU strategy, and maximum flexibility, allowing
application teams to get running on GPUs quickly.
Generally AMReX avails of the hybrid MPI-CUDA interface for GPUs but, actually, it can
be further combined with other parallel GPU languages, like OpenACC and OpenMP, to
control the offloading of subroutines to the graphics processing unit.
Basically, at the beginning of each simulation, the MPI tool is exploited to create as many
processes as the GPU involved: in other terms, each GPU correspond to a single rank.
After that, the domain decomposition occurs, and several grids are created, which are
useful for the multi-threading scheme. As described in chapter 3, in a CPU based system
the parallelization strategy consists in a combination of the MPI and OpenMP protocols,
making use of the tiling strategy. However, the tiling strategy is ineffective on GPUs and
the efficient use of the GPU’s potential is the primary aim, considering the great benefits
which a highly parallel structure, such as the one of GPUs, can provide, if well adminis-
tered.
Indeed, improving resource efficiency allows a larger percentage of GPU threads to work
simultaneously, increasing effective parallelism and, consequently, decreasing the computa-
tional efforts. More specifically, the calculations that can be offloaded efficiently to GPUs
use CUDA threads to parallelize over a grid at a time: this is done, as illustrated in figure
4.1, exploiting a lot of CUDA threads that only work on a few cells each. AMReX uti-
lizes CUDA managed memory to automatically handle memory movement for mesh and
particle data. Moreover, a further parallelization occurs, by using CUDA streams, which
are sequences of data processed by paradigms that allow some applications to more easily,
simply by by restricting the parallel computations that can be performed. More in detail,
a series of operations, called kernel functions is applied to each element in the stream, ex-
ploiting a limited form of parallel processing: CUDA guarantees execution order of kernels
within the same stream, while allowing different streams to run simultaneously. AMReX
places each iteration of the various loops on separate streams, allowing each independent
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Figure 4.1: Comparison of OpenMP (left) and CUDA (right) work distribution. OpenMP threads
break down the grid into two large boxes (blue and orange). The lower and higher corners of one
tiled grid are marked. On the other hand, each CUDA thread works on a few cells of the grid: in
this example one cell per thread is used. Reprinted from [67].

iterations to be run simultaneously (see figure 4.2).

4.2 Numerical results

In this section the main numerical results obtained are presented. As a first approach, like
the previous investigation carried out with Galileo, the main focus has consisted in a pre-
liminary examination of the global computational times, in various configurations, spent
to conclude the simulations. Then, following the previous procedure, the focus has been
relocated on the individual times, related to the different PIC routines and the communica-
tions. Also in this case, the two physical scenarios have been studied independently.

4.2.1 Analyses of the performances using different multiprocessing hy-
brid configurations

Solid target

This paragraph focuses on the analysis of the time employed to simulate the laser inter-
action with a thin solid target. As explained in the previous section, the MPI protocol
splits the computations between as many ranks as GPUs employed, producing a one-to-one
correspondence between processes and graphics processing units.
To begin, some simulations have been launched, varying the number of CPUs and GPUs
running. However, in each simulation the same number of CPUs and GPUs has been ex-
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Figure 4.2: Timeline illustration of GPU streams. Illustrates the case of a loop of five iterations
with three GPU kernels each being ran with three GPU streams. The CPU runs the first iteration of
the loop (blue), which contains three GPU kernels. The kernels begin immediately in GPU stream
1 and run in the same order they were added. The second (red) and third (green) iterations are
similarly launched in streams 2 and 3. The fourth (orange) and fifth (purple) iterations require
more GPU resources than remain, so they have to wait until resources are freed before beginning.
Meanwhile, after all the loop iterations are launched, the CPU reaches a synchronization and waits
for all GPU launches to complete before continuing.

ploited, since it should guarantee better performances. This set of simulations has allowed
to study the time scaling when the number of cores increases.
Figure 4.3 shows both the computational times (a) and costs (b) used for all the performed
simulations. From this figure emerges that a good time scaling has been achieved. In par-
ticular, these results illustrates that a very slight increment of units used allows to save a
consistent fraction of computational time. Moreover, also in this case the computational
costs related to each configuration have been calculated. Namely, when a single simulation
is launched on Marconi100, the supercomputer scales an amount of hours from the avail-
able budget of the user, depending on the number of units demanded. Otherwise, the CPU
and the GPU have not the same weight in the quantification of the computational cost,
but each GPU counts as 8 CPU. Hence, the explicit computation is the following:

Cost = 8×NGPU × time

Thus, the costs required by these tests have been compared (see figure 4.3(b)): clearly,
demanding for different number of CPUs and GPUs implies variations of few hours. How-
ever, the costs do not seem to increase significantly, when the number of units grows: so,
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Figure 4.3: (a) Computational time required for the thin solid foil simulations using WarpX as a
function of the exploited number of GPU-CPU. (b) Computational cost (i.e. computational time
× ( 8 × number of GPUs) spent for the thin solid foil simulations WarpX as a function of the
exploited number of GPU-CPU.

opting for a high number of units, could be a good choice.
After that, we have analyzed the effects resulting from the domain decomposition per-
formed by WarpX. For this purpose, different values for the max grid size have been
imposed. Hence, has been noticed that high values for this parameter, which allow WarpX
to create big grids, lead to better performances(see figure 4.4 ). So, a high number of grids,
with a compact size, does not represent a good choice. At the same time, also the depen-
dence of the performances on the blocking factor has been studied. In fact, as explained
in chapter 3, WarpX performs the grid creation at run time, on the basis of the values
imposed by the user for both the max grid size and the blocking factor. In this case,
several options for this parameters have been explored. Figure 4.5 reports the computa-
tional times involved when different values of the blockingfactor are considered. This
figure shows that this parameter doesn’t impact so much in the resulting simulation time.
In fact, checking the effective decompositions operated in these several tests, it emerges
that WarpX tends to create grids as large as possible, with a size equal to the maximum
imposed (i.e. the max grid size).
All the numerical tests shown so far, in this paragraph, have no exploited load balancing
procedures: so, this strategy has been tested in order to see if further benefits can be
achieved. For this purpose, an extra numerical simulation have been launched, imposing
a max grid size equal to 1024, since, as just shown, this configuration had presented the
best performances.
Figure 4.6 shows a comparison between simulations with and without load balancing. In
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Figure 4.4: Computational times required for the thin solid foil simulations using WarpX with
different number of selected subdomains.

this framework, the load balancing schemes have not led to particular improvements, but
the reduction of time achieved is almost negligible.
Nevertheless, it can be not overlooked the fact that the last simulation, involving balancing
among the processes, have been designed with an efficient setting for domain decomposi-
tion, so the limited benefits can be justified by this efficient configuration.

Near-critical foam

In this paragraph an equivalent exploration, performed on the near-critical foam frame-
work, will be presented. The same procedure has been adopted also in this case: first of
all, several simulations have been launched, each of those on a different number of GPUs,
and, so, different number of MPI process have been produced. As a remark, here the tests
are performed exploiting a different resolution with respect to what was done in chapter
3: a mesh of 8192×4096 cells is generated, with a spatial step of 0.0125 µm along x and y,
12194 steps and a resulting ∆t ' 0.028 fs. Figure 4.7 shows both the computational times
(a) and costs (b) used for all the performed simulations. Like in the previous scenario, also
this time a good scaling has been achieved in computational times: increasing the number
of graphics units, so, can enhance consistently the performances. Moreover, also in this
case the fall in computational time is efficient enough to not imply big increments in the
computational costs required. So, opting for a relatively number of GPUs represents a
valid option.
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Figure 4.5: Computational times required for the thin solid foil simulations using WarpX with
different values for the blockingfactor parameter with two different choices for the max grid size

(left:512, right:1024).

Figure 4.6: Computational time required for the thin solid foil simulations using WarpX when load
balancing schemes are I) not activated II) activated every 100 timesteps.

Moreover, also in this case the load balancing has been tried, in order to analyze if the
further reduction of time can be ensured. Figure 4.8 shows a comparison between simu-
lations with and without load balancing. It appears clear that, in this case, a simulation
exploiting balancing algorithms can save a discrete amount of computational time.

4.2.2 PIC-routines and computational load

The results presented so far have been studied and compared in terms of the effective simu-
lation time required by the cluster to conclude the full simulation. Now, we are interested
in observe the computational time spent in doing computations related to specific PIC
routines. In this purpose, the same procedure followed in chapter 3 has been followed.
So, the computational time associated to computations involving particles (Tpart) has been
defined: in particular it has been designed to take in account Boris pusher, current depo-
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Figure 4.7: (a) Computational time required for the thick near-critical simulations using WarpX
as a function of the exploited number of GPU-CPU. Both the maximum and the average value
(between the MPI processes) have been plotted. (b) Computational cost (i.e. computational time
× (8 × number of GPUs) spent for the thick near-critical simulations WarpX as a function of
the exploited number of GPU-CPU. Both the maximum and the average value (between the MPI
processes) have been plotted.

sition and field interpolations routines.
After that, since the computations performed on the grid points coincide with the Maxwell
solver, a second element has been considered, consisting in the time spent for updating the
electromagnetic fields (Tgrid).
A deep analysis of the definition of these two times, which has been described in chapter 3,
had allow to assume that Tpart and Tgrid linearly depend on the number of macro-particles
and cells respectively. So, also in this case, an observation of their normalized values makes
sense.
In addition, also the communications required for synchronize the MPI processes have been
included in a third component.

Figure 4.8: Computational time required for the thick near-critical simulations using WarpX when
load balancing schemes are I) not activated II) activated every 100 timesteps.
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Here the profiles of these distinct components have been reported, for both the simulated
physical scenarios, i.e. the solid target and the near-critical foam framework.
Figure 4.9 reports the plots resulting from the solid target scenario: it shows the profiles
of Tpart/Npart, Tgrid/Ncell, Tcomm and the sum Tpart + Tgrid + Tcomm in each column from
left to right (first row) respectively and the same for the computational costs (second row).
Essentially, both the particle-time and the grid-time (average and maximum) scale with
the number of processes applied, as it was reasonable to expect. Moreover, the correspond-
ing costs seem to keep an almost constant profile.
On the other hand, the communication times tend to assume a similar decreasing profile,

Figure 4.9: Profiles of Tpart/Npart, Tgrid/Ncell, Tcomm and the sum Tpart + Tgrid + Tcomm in each
column from left to right respectively required for the thin solid foil simulations(first row). The
corresponding computational costs are reported in the second row. The maximum (dark green)
and the average (light green) values between the MPI processes are plotted. These results are
obtained with WarpX.

except for the configurations presenting 4 GPUs, which exhibits a value quite higher than
the times required from the other configurations.
But, as can be easily checked observing the sum of the three times, the most of the time
has been spent in order to keep the GPUs synchronized: in fact the communication time
is close the sum of all the components. This is probably due to the particular geometry
of the scenario simulated, in which the charged regions occupy a very short portion of the
entire domain. However, in almost all the parallel configurations exploited, the average
and the maximum time are very close: this means that an efficient domain decomposition
occurred, resulting in a fair balance of the global load between the processes.
At this point, the same analysis have been done on the results obtained by the near-critical
foam simulations. The different computational times and the corresponding computational

90



Figure 4.10: Profiles of Tpart/Npart, Tgrid/Ncell, Tcomm and the sum Tpart +Tgrid +Tcomm in each
column from left to right respectively required for the thick near-critical foam simulations(first
row). The corresponding computational costs are reported in the second row. The maximum
(dark green) and the average (light green) values between the MPI processes are plotted. These
results are obtained with WarpX.

costs are illustrated in figure 4.10.
Also in this case, the mean and the maximum times related to the PIC routines, i.e. the
particle-time and the grid-time, decreases with respect to the increasing of the number of
GPUs running. Moreover, as in the solid target scenario, the corresponding costs seem to
remain almost the same.
Finally, the cost associated to the mean communication time not feel big increments, while
the maximum cost increases together with the number of processes. Otherwise, the maxi-
mum one is more indicative, because it is attributable to the slowest processes, which affect
the effective simulation time, since each timestep doesn’t finish until all the processes have
done their job.

4.3 Discussion

In the previous section, we have illustrated the results obtained by the exploratory nu-
merical investigation carried out on Marconi100 supercomputer. Now, we are interested
in developing a general discussion of the results. Moreover, a main concern consists the
comparison between the performances achieved with the CPU and the hybrid GPU-CPU
based cluster. In practice, we are interested in the observation of the benefits which can
be achieved exploiting graphics processing units parallelization.
The first evidence is the fact that a good time scaling can be achieved increasing the num-
ber of GPU parallelized. Moreover, contrary to that observed with CPU parallelization,
where the computational costs, in general, feel sensible increments when the number of
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computing units is increased, demanding for more GPUs do not impact significantly on
the resulting costs. This happens thanks to the inherent high parallelized architecture of
GPU: indeed, adding a single GPU to a parallelized system implies only some additional
communications but can take consistent advantages.
Instead, when a pure CPU parallelization is exploited, like in the simulations of chapter 3
performed with Galileo, full nodes have to been added in order to see consistent variations
in terms of simulation times. Otherwise, each node contains a lot of CPUs, 36 in the case
of Galileo: this means that adding a single node is equivalent to add a lot of MPI processes,
and, consequently, a lot of MPI calls.
Moreover, the effects arising from the inclusion of periodical load balancing schemes have
been analyzed in both the scenarios. As a general consideration, the load balancing bene-
fits could be irrelevant if a good domain decomposition occurred before, exactly like in the
simulations running on CPUs systems. Otherwise, it is better to activate always a frequent
redistribution of the work load between GPUs, especially if a good domain decomposition
strategy is not known a priori.
Now let us focus on the behavior shown by the particle-time Tpart and the grid-time Tgrid.
In both the physical scenarios simulated they show a very good scaling with respect to the
number of GPUs implicated, with the effect of almost constant computational costs. So,
adding GPUs allow to reduce these times so much that the computational costs related to
do computations on particles and grids are not affected.
In addition, from a comparison of the two scenarios it results that the simulations involving
a thin solid plasma spend a bigger fraction of time in performing communications, with
respect to the case in which a thick near-critical foam is considered. This is attributable to
the fact that the solid target scenario presents a less homogeneous environment, in which
a thin surface, loaded of a lot of macro-particles, is surrounded by empty space. For this
reason, given the fact that the particles begin to move when the target is impinged by the
laser, a lot of particles continuously crosses the boundaries of the MPI regions, requiring
frequent communications.
Moreover, it is useful to examine how much an hybrid GPU-CPU parallelization framework
can benefit with respect to a CPU-based environment.
Figure 4.11 compares the performances of two simulations, involving a near-critical foam
scenario, performed on Galileo and on Marconi100. Note that we are comparing the most
efficient case, in terms of computational time, for what concerns Galileo and the worst one
for Marconi100. The figure reports (from left to right) the profiles of the global simulation
time, the normalized Tpart and Tgrid and the communication times. It easy to observe that
the simulations run with Marconi100 show much better performances. The term Tpart,
which represents the most heavy routine of the PIC scheme, is reduced up to a factor of
∼ 9.6, while Tgrid is reduced up to a factor of ∼ 5.8. Moreover, also the communication
time Tcomm takes considerable advantages from the GPU parallel environment: in fact, the
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Figure 4.11: Comparison between the performances of two thick near-critical foam simulations
scenario, performed on Galileo (orange) and on Marconi100 (green). The figure reports (from left
to right) the profiles of the global simulation time, the normalized average Tpart and Tgrid and the
average communication times. These results have been achieved involving 4 nodes (i.e. 144 CPUs)
on Galileo and 1 GPU-CPU on Marconi100.

ratio between the communications times of these two compared simulations is ∼ 5.4 All
these benefits clearly result in a consistent reduction of the global simulation time, which
decreases by a factor close to 6.4.
However, today there are not so many Particle-In-Cell codes compatible with a GPU par-
allelization. Anyway, these results show that exploiting an hybrid GPU-CPU system may
considerably improve the simulations performances, with a consistent reduction of the
computational efforts.
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Chapter 5

Conclusions and perspectives

In this thesis we have carried out a numerical campaign to investigate the performances of
selected two-dimensional kinetic Particle-In-Cell (PIC) simulations of laser-plasma inter-
action exploiting a massively parallel computing environment (see chapter 3 and 4). Two
different open source codes – Smilei and Warpx – were adopted which implement different
parallelization strategies. Moreover, two different supercomputer were used in order to
explore the different CPU and hybrid GPU-CPU architectures. Also, two distinct physi-
cal scenarios have been considered: the first is represented by a high-intensity laser pulse
interacting with a thin solid target (in the first case) and with a thick near-critical foam
(in the second case). The numerical simulations were performed on the CPU based High
Performance Computing cluster Galileo, hosted at CINECA, Bologna, Italy. On the other
hand, WarpX performances have been tested on both Galileo and on the hybrid GPU-CPU
based supercomputer Marconi100, the latest supercomputer acquired by CINECA.
As a first approach, a preliminary exploratory campaign has been carried out, focused
on the observation of the codes behavior, for different parallel configurations. This inves-
tigation has been conducted on the two physical scenarios separately tp study how the
computational times scale with the number of computing units, i.e. with different num-
bers of CPUs on Galileo and GPU-CPU systems on Marconi100. Not only the effective
simulations times have been considered but also the computational costs, consisting in the
total equivalent core hours (depending both on the effective times and on the number of
CPUs or GPUs requested).
The parallelization schemes, especially the domain decomposition and the assignment of the
subdomains to the various MPI regions, implemented in the two codes are quite different
one from the other: this has an impact on the final computational performances. Indeed,
while Smilei has shown a good ability to adapt to the increasing number of MPI processes,
instead WarpX has not exhibited an equally smooth time scaling, but it has shown that
there are some computing configurations which dramatically increase the computational



costs. In addition, the load balancing strategies for periodical work redistribution among
the processes, provided by both the codes, resulted very useful, especially if a not smart do-
main decomposition has been implemented. Moreover, the geometrical distribution of the
plasma inside the simulation box also plays a role in determining the final results, in terms
of computational time. Next, a deeper analysis on the code routines involved in a parallel
PIC scheme has been taken forward: in particular the time related to computations involv-
ing particles, grid points and MPI communications/synchronizations have been studied.
Breaking down the routines into the fundamental bricks of a parallel PIC algorithm has
let us isolate the portion of the computations that are responsible for spoiling the scaling
of the computational time with the number of processing units. From this, we obtain that
the communications can counterbalance the benefits (i.e. the cost reduction associated to
the particles and grid computations) coming from stronger parallel configurations.
The results discussed in chapter 4 have suggested that an hybrid GPU-CPU parallel sys-
tem can significantly improve the code performances, especially if the plasma simulated
covers a large portion of the mesh, such as in the near-critical foam scenario. Indeed, a
comparison between the results on Galileo and on Marconi100, has revealed that a hy-
brid GPU-CPU approach can tear down the computational costs. In addition, it results
that the parallel strategy implemented by WarpX seems to better behave on Marconi100:
this is an indication of the fact that the GPU architecture may mitigate the non-optimal
parallelization strategy. Indeed it is plausible to think that, thanks to the much higher
computing power of the GPUs, a given simulation can be performed with much less MPI
processes, thus tearing down the impact due to communications. For this reason the GPUs
can also positively counterbalance an unbalanced and non optimized simulation as for what
concerns its geometry. So, considering the scenarios simulated in this thesis, the GPU ar-
chitecture can give a special benefit in the overcritical regime of interaction, in terms of
the performances obtained with different parallel frameworks.

These results represent a first step of a numerical investigation which is becoming more
and more fundamental, in order to address the computational issues characteristic of PIC
algorithms. The obtained results constitute a useful basis for the future, in the context
of laser-plasma simulations involving solid targets or near-critical foams. Moreover, this
work could allow to reduce the computational efforts required for simulating complex struc-
tures, such as double-layer targets, especially if exploring different sizes and structures. In
particular, the considerations derived for the solid target scenario can be extended, up to
a certain limit, to simulations involving a rather thin and homogeneous foam, attached
to a solid foil. On the other hand, if the thickness of the simulated foam has a relevant
size, it may be reasonable to exploit the considerations deduced for the foam scenario.
Then, in the future, the numerical research on the performances must proceed in order
to achieve strategies tailored to more complex physical scenarios. An important objective
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is represented by understanding how these strategies can be adjusted if a nanostructured
near-critical foam is considered. In fact, in this case the foam would be constituted by small
and dense aggregates, so that particular attention must be paid to the overall numerics. A
further step could consist in observing how the situation changes if the simulations are car-
ried out in a three-dimensional geometry, focusing in understanding how the considerations
developed for two-dimensional scenarios may be adapted. Also it could be of interest to
explore the impact on the performances due to additional physical effects, such as photon
emissions, collisions and ionization. Finally, all these tests should be carried out also ex-
ploiting other codes which implement other parallelizations, focusing on a quantification of
the effective benefits even in complex situations, especially when using GPUs. Therefore,
such investigations would likely allow to get a more satisfactory understanding of the most
convenient parallel strategies in many kinds of situations. In this way, one may be able to
squeeze the code performances and as a consequence simulate more realistic and accurate
physical scenarios. Besides, thanks to the extreme efficiency of the GPU architecture it
may become possible to perform reduced two-dimensional simulations on ordinary laptops.
These results constitute a first step towards a more comprehensive understanding of how
the PIC algorithm can perform in a massively parallel computing environment, setting the
basis for a even more optimized use of this method.
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