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Abstract 

 

 

The growing industrial interest in micro injection moulding, as 
leading process able to produce, on large scale, polymeric micro 
components and micro devices, is pushing towards the definition of 
a reliable process through the observation of affordable process 
variables that can be easily measured and optimized. 
Part weight in µIM can be considered one of the most significant 
variables able to provide an easy feedback on the quality of the 
process. 
The work related to the PhD activity is focused on providing an 
optimization procedure that, starting from a DOE approach, allows 
to determine a region of the parameters where the performances of 
the process are optimized (part weight is maximized) subjected to a 
constraint on the probability of flash formation.  
The present approach has a strong industrial relevance in terms of 
process optimization based on easy to measure quantities while 
also considering defect formation in the procedure. 
The proposed procedure exploits the bootstrap technique and the 
data depth approach to account for the variability of the process and 
to build a constrained optimality region. 
The selection of the optimal level of the process parameters was 
carried out using a utility function. The utility function aims at finding 
a compromise between the maximization of the weight and the 
minimization of the probability of flash formation. The use of a utility 
function that correlates two variables of the same process has 
proved to be fundamental for the construction of the optimality 
region. 
The results evidenced how effective the proposed approach is than 
the deterministic one. An overimposition of the optimal region for the 
5% quantile of utility and median, evidenced the optimality region for 
micro injection moulding. 
The result of this novel approach is a greater variability of the main 
process parameters, namely Tmelt and Phold, and this means a 
greater variability of the micro injection moulding process without 
falling into the risk of producing waste parts. 
In Appendix it is reported also a preliminary comparative analysis 
between simulation and experimentation of the micro injection 
moulding process. The aim was to assess the simulator’s ability to 
predict the real behavior of the process. 
In this preliminary phase of the work it has been identified a 
regression model with which it is possible to predict in a rather 
reliable way the set of process and simulation parameters that can 
minimize the percentage error between the simulation and 
experimentation weight in absence of flash. 
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CHAPTER 1 

 
 
 
 

 

Introduction 
 
 
 

Micro injection moulding (µIM), among micro manufacturing 
technologies, is the leading process able to produce, on large scale, 
polymeric micro components and micro devices. The growing 
industrial interest in this technology is pushing towards the definition 
of a reliable process through the observation of affordable process 
variables that can be easily measured and optimized. 
Part weight in µIM can be considered one of the most significant 
variables able to provide an easy feedback on the quality of the 
process. The standard approach to identify combination of 
parameters that influence the part weight is based on design of 
experiment, while the desirability function is used to solve multi-
optimization problems, such as optimizing both part weight and part 
weight variability or shrinkage. The process parameters considered 
in the optimization are mostly similar as well as the material used. 
The output is a set of processing conditions that ensure the 
maximization of the performances of the µIM process. 
Optimization techniques are widely used to choose the variable 
settings that ensure best performances. Usually, the optimization of 
process parameters results in a selection of only one set of process 
conditions, such as for RSM, ANOVA, genetic algorithms, etc., and 
this approach might be too conservative. Boundary conditions might 
change, and machine performances vary during their lifetime also 
when they are running in a steady state. The identification of a region 
of possible optimal values could be more interesting and provide 
higher flexibility in a manufacturing environment.  
Additional complexity is added to the optimization problem when the 
selection of the optimal process parameters (or the optimal region 
of the parameters) is subjected to constraints. Constraints might 
address quality, productivity, or cost issues for example.   
Considering only part weight as a performance index is not enough 
to ensure the production of high-quality part. That is because the 
maximization of the part weight could imply the presence of other 
defects, such as flash formation. So, the optimization of the part 
weight must consider a constraint on the presence of defects. The 
process parameters that describe the formation of flash in µIM are 
the same that define the part weight, so one experimental campaign 
can be designed to study both part weight and flash formation at the 
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same time. The results of the experimental campaign can be used 
to set up a constrained optimization problem to optimize the µIM 
parameters.  
For this reason, the work related to the PhD activity is focused on 
providing an optimization procedure that, starting from a DOE 
approach, allows to determine a region of the parameters where the 
performances of the process are optimized (part weight is 
maximized) subjected to a constraint on the probability of flash 
formation.  
The present approach has a strong industrial relevance in terms of 
process optimization based on easy to measure quantities while 
also considering defect formation in the procedure.  
The methodology is significant because it provides not only one 
combination of parameters but rather a set of optimal conditions that 
can be used in an industrial environment. Compared to the literature, 
the problem hereby investigated requires solving an optimization 
problem where both the objective function and the constraint are 
estimated from experimental data. This means that both functions 
are subjected to variability which need to be considered in the 
procedure.  
The proposed procedure exploits the bootstrap technique and the 
data depth approach to account for the variability of the process and 
to build a costrained optimality region. 
It has been explored also the simulation approach in order to identify 
a function able to compare the experimental results and the 
simulated results. Some intrinsic parameters of the simulation tool 
have been identified and a design of simulated experiments has 
been implemented, meshing together process parameters and 
simulation parameters. The purpose is to compare the results with 
the experiment results and to evaluate if it is possible to obtain a 
greater control on the simulator in order to minimize the simulation 
error compared to the experimental data. 
datasets has been used to preliminarly test the commercial simulator 
Autodesk Modlflow®. The purpose was to evaluate its prediction capability 
through the percentage error model. 
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CHAPTER 2 

 
 
 
 

 

Context of research 
 
 
 
 
 
 

2.1  Macro and Micro injection moulding 
 

Since early 1990s, there has been an increasing demand for 
compact, integrated and miniaturized products for use in our daily 
lives as well as for industrial applications. 
The various functional micro systems were rapidly widely used in 
different areas, such as watch and camera industry, printer ink jet, 
information storage, sensors and transducers, microfluidic system, 
micro heat exchanger, micro reactor and so on [1]. After impressive 
development, a new research scientific and engineering area was 
formed, named as Micro-Electronic-Mechanical systems (MEMs). 
Especially, in the last twenty years, Micro optical electron system 
(MOEMS) and Bio- micro electron mechanical system (Bio-MEMS) 
played important roles in the Information Technology (IT) and Bio-
Medical Engineering (BioM) fields [2-6]. 
The advent of micro system technologies (MST), in addition to 
microelectronics, has laid the foundations for the development of a 
new way to think about products and process strategies that are 
involving in an important way the most strategic fieds such as 
aerospace, automotive and especially biomedical world. 
As long as micro manufacturing wasn’t considered a mature 
technology, the first complex and integrated products required well-
known macro-fabrication methods, such as forming and machining, 
and were adapted into micro/meso-scales mainly using intuition and 
experience.  
So, standard injection moulding machines have been adapted to 
produce such kind of polymeric micro products, but it was 
immediately clear that this solution was not the right way to support 
the development of the new area of micro products. The reasons are 
mainly related to the technological limits of the standard process. 
Even if the process sequence is somehow the same, from the point 
of view of the main process phases, reported in Figure 2.1, there is 
an intrinsic difference related to the whole cycle in terms of time to 
reach the ejection phase. If we analyze in detail the Figure 2.2, in 
which the cycle time for standard injection moulding is compared 
with micro injection moulding one, we can see that the filling time for 



7 
 

micro injection moulding is highly reduced respect to the time for 
standard injection moulding. [7] 

 

Figure 2.1: Phases of the injection moulding process. 

 
The µIM process is faster compared to standard injection moulding 
process, as can be observed by Fig. 2a and 2b. The processing time 
is shorter to prevent rapid solidification of the molten polymer due to 
the high heat transfer rate. It can happen that some process steps, 
such as packing and holding stages, can’t concretely become 
effective because the polymer cool down too fast, as it has been 
evidenced in Fig. 2b (light blue) where the cooling stage can start 
already at the end of the fill. 

 

a) 

 

b) 

 

Fig. 2.2: Comparison between: a) typical injection moulding process and b) 
micro injection moulding production cycle time 

 

These observations can be translated in a completely different kind 
of machine necessary to operate in these extreme process 
conditions [7-9]. It is necessary to work at very high speed so that 
the whole micropart can be completely filled preventing the high 
cooling rate that can solidificate the part too early [10]. This means 
also that the advantage of the packing phase, that is usually useful 
to reduce the shrinkage, can’t have effect and consequently the 
warpage can’t be reduced creating problem during demoulding that 
damages the plastic microparts [11]. 
The need of high dynamics in such small cavities (Fig. 2.3), 
however, increase the influence of surface effects, that usually can 
be neglected in the standard injection moulding, and that becomes, 
instead, so significant at micro level and must be taken under control 
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to prevent incomplete filing or defects that can compromise the 
quality of the final product [12]. 

 

 

Fig. 2.3: Comparison of cavity thickness between micro and standard 
injection moulding 

 

Inside the cavity the flow of molten polymer assumes a fountain 
configuration (Fig. 2.4) and immediately a film of solid material is 
formed in contact with the surface of the mould, within which the 
molten material flows. The way the material flows affects the 
molecular arrangement. In the normal direction to the cavity surface 
and parallel to the flow direction, gradients of velocity forces arise 
producing proportional shear forces while shear stresses orient 
polymer chains in the flow direction.  

 

  

Fig. 2.4: Effect of wall thickness on temperature reduction and on surface 
tension [13] 

 

If the polymer cools very quickly, as it happens for micro cavities 
where the temperature of the polymer melt can drop down fast due 
to reduced cavity dimensions compared to the master mould steel 
with which the polymer melt is in contact, these orientations freeze 
influencing the characteristics of the produced part [11]. 
The quality of the tooling surface, in terms of surface roughness, is 
another aspect that becomes so important at micro level, as we can 
see from Fig. 2.5. While for standard cavities the roughness is 
negligible due to the overall dimension, for micro injection moulding 
the roughness is proportional to the small cavity thickness and 
directly impact on the melt flow due to the small layer of material. 
The viscosity is one of the main aspect directly affected by 
roughness and tends to increase near to the cavity wall, in particular 
during the packing phase [14].   
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Fig. 2.5: Influence of surface roughness on polymer melting micro cavities 

All these surface effects have effect also on the main process 
parameters of the micro injection moulding process. For the quality 
of the molded part, for example, it is important that the pressure is 
as homogeneous as possible at every point of the cavity. The 
pressure profile of the polymer in the cavity affects the extent of the 
final shrinkage. So, to reduce deformations, it is essential that the 
volumetric shrinkage is uniform throughout the cavity and for these 
reasons the injection pressure necessary to completely fill the micro 
cavities is higher than standard injection moulding (Fig. 2.6) [11].  

 

 

Fig. 2.6: Examples of pressure distribution for different cavity thickness. [13] 

 

Therefore, the high speeds and the high pressures involved require 
much higher dynamics (Fig. 2.7) but with performance in line with 
those of classic molding in terms of reliability. 
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Fig. 2.7: Difference in response time for conventional and high speed 
molding machine.[13] 

 

 

 

2.2  Micro injection moulding: open problems 
 

Micro injection moulding, among all the micro manufacturing 
technologies, is one of the more complex in terms of number of 
factors that can concur to the final quality of the product.  These 
factors can be gathered in the following tasks: design, material, 
process and machine parameters, mould manufacturing strategies 
and metrological approaches.  
The downscale from macro injection moulding to micro injection 
moulding is not so easy due to the high aspect ratio of the cavities, 
as seen in the previous section. Some physical aspects that are 
negligible in injection moulding seems to became so significant in 
micro injection moulding and the simulation softwares actually 
available and fully tested for injection moulding present a lot of 
limitations and are not able to perform good prediction of the 
behaviour of the polymer flowing through a micro cavity. 
Preliminary tests and experiments with conventional injection 
moulding machines did not respond to the performance and 
precision requested by such kind of micro products. Huge 
differences arise comparing the processes from a physical point of 
view. So, for example, in the micro injection moulding, the layers 
frozen up to ten times faster than conventional injection moulding 
[15-17]; the roughness influences the fluidity due to the aspect ratio 
so tight that the roughness is in the range of aspect ratio too and not 
in 1% of the thickness as in conventional injection moulding [18-21]. 
Material database is so poor for such extreme process parameters 
that the simulation approach fails in some predictions and it is unable 
to give a quantitative evaluation of the real process [11, 22-23]. 
Therefore, the development of specific micro injection moulding 
machines [11, 24] to produce polymeric parts in the range of 
milligrams (10 ÷ 100 mg) has opened the world to an intensive 
research activity mainly focused at different steps on the following 
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topics: the ability to reproduce a micro cavity, the technology 
required to produce moulds with cavities and inverse features in the 
range of micrometers, and the opportunity to improve the design 
using numerical approach [25-27]. These goals also improve 
research in fields that are essential for the micro injection moulding, 
such as high precision manufacturing, optical microscopy, 
roughness measurements, tribology, advanced materials, process 
optimization and quality control, etc. 
The introduced topic is of great interest for the industrial scenario 
which, after a long period of intense research,is starting to invest 
more in this technology, thanks to the new markets related, which is 
now much more mature from the point of view of process knowledge, 
but that now requires a more important step in the direction of 
process automation, especially from the point of view of quality 
control in production. The different approaches to the process 
emerged from the previous analysis, with respect to the standard 
process, and the management of components so small or with 
functionalities at the micrometric level, require important 
investments for the monitoring of both the process and the product 
quality. 
One of the main challenging points is related to the design limits, 
and in particular to the simulation tools available on the market, to 
catch the proper differences with standard injection moulding 
process [11, 28]. It is clear now that in order to produce such micro 
components it is necessary to invest towards specific micro injection 
moulding machines and micro manufacturing technologies able to 
realize the micro cavities with the precision requested. However, the 
risk of investment is so high because the cost of the manufacturing 
process is directly proportional to the complexity and precision 
requested. Improvements in modelling techniques are much more 
important now than ever before and the opportunity to obtain models 
that preserve a stochastic approach, due to the dependence from 
real process, and that can give suggestions on regions of process 
efficiency, are essential to make reliable predictions. 
Technology suffers of a big lack in the design of components 
because even if  industries are starting to investing in this 
technology, there are limits in simulation tools that are still not 
completely able to give a successful response in terms of behaviour 
of the polymer flow from a quantitative point of view, while they can 
give good indications on the feasibility of filling the cavity from a 
qualitative point of view thanks to the calibration guidelines of 
simulation software developed by researchers in recent years. The 
main limitations encountered are related to the fact that the 
rheological data used in current packages are obtained from 
macroscopic experiments [29] and that a no-slip boundary condition 
is employed, with the consequence that wall slip cannot be predicted 
[30-32]. Moreover, surface tension is not taken into account, but it 
plays a role on the filling of micro-structures [33]. Usually, a constant 
heat transfer coefficient is assumed, but it cannot describe the flow 
through micro-channels and its standard value suitable for the 
simulation of macro-parts differs substantially from values indicated 
for µIM [34-37]. Moreover, rheology data provided by the software 
database are obtained at shear rates and pressures typical of 
capillary rheometers (i.e., over significantly lower ranges if 
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compared with those of micro-molding), and therefore they are not 
directly applicable and not suitable for micro-scale polymer flow 
applications [29]. 
Another limitation to the full development of this technology is the 
difficulty of measuring micro components. In fact, the evaluations on 
the quality of the component are made off line with very complex 
devices, such as optical microscopes.  
In recent years, some techniques have been introduced, such as 
fingerprints, also in micro injection moulding, that are specific micro 
geometries independent from the component to be realized. Its 
direct observation gives an indication about the quality of the 
process and of the product. Thanks to a statistical approach, 
moreover, these fingerprints have been correlated to the process 
parameters and are able to give indications on which one to operate 
to improve the quality [60]. 
The implementation of pressure and temperature monitoring 
systems in micro cavities has produced better results thanks to the 
availability on the market of miniaturized sensors capable of 
simultaneously performing the two measurements. Also in this case 
the statistical approach allowed to correlate variables, such as 
pressure and temperature in cavities, to the main process 
parameters, providing important indications on the behavior of the 
process. However, this approach is strongly limited to the cavity 
geometries able to house such sensors in the areas of interest [29].   

 

2.3  Draft resolutions 
 

The study of specific rheological behaviors for high injection speed 
(up to 500 mm/s) and rapid cooling down have been essential for 
better reproducing the characteristics of the micro injection molding 
process [38, 39]. The use of varioterm systems [40-42], vacuum 
systems [40-46], ultrasound systems [47-50] has been used to 
improve the viscosity and consequently the flowability in order to 
reach higher aspect ratio while cavity mould surface roughness [14, 
18, 19], heat transfer coefficient [34-35, 51-53], viscosity [38-39, 54-
56], wall slip [20, 30, 39], shear stress induced by high shear rates 
and compressibility of melt flow [34] have been analyzed in detail in 
order to better define each influence on the replication capability of 
micro features.  
Specialized micro injection molding machine such as Battenfeld, 
Desmatech and Amburg arised on the market giving the opportunity 
to work with small polymer quantitates, very high injection speed 
(injection rate) and high temperatures compared to the conventional 
injection molding [24]. The use of very precise control units and 
actuators for plasticizing and filling phases give the opportunity to 
manage a metering size more precise than before. Within this, the 
use of cavity pressure/temperature sensors have proven to be 
important to have a response about the behavior of the melt and to 
compare the simulation results to improve the reliability and to obtain 
more information that are difficult to obtain just from the analysis of 
the process parameters [11]. So, an analytical approach beside 
simulation and experimentation has been used to identify the 
phenomenon described above [56].  
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One of the main goals for micro injection moulding is to improve the 
flowability so that the micro cavity can be completely filled. An 
increasing interest in producing polymeric microfluidic devices, such 
as Lab on a Chip, with mass production technology such as micro 
injection molding is an essential step in this direction [27, 57]. A deep 
study of microchannel realized on thin plates seems a priority 
compared to other issues. The roughness seems really difficult to 
manage when working with high aspect ratio, such as for 
microchannel and v-grooves, in particular when approaching with 
simulation [58]. So rheological models and specific boundary 
conditions (Cross-WLF for viscosity, Hele-Shaw flow model, 
Continuity equation, Momentum equation, Energy equation, no slip 
condition, mold uniform thermal distribution, ecc..) are implemented 
sometimes in self-made (ad-hoc) simulation programs, with better 
results but with the difficulty to manage the software itself, largely in 
commercial simulation tools, but not always with a clear indication 
of how it is done and how it can be assessed the effectiveness.  
Later advancements observed in machine development, mold 
fabrication, temperature control, and process optimization have 
greatly increased the opportunities of producing smaller and more 
complex micro products [59]. Research works has focused on the 
manufacturability of micro products, mainly from the viewpoints of 
material selection and process control. In recent years, new trends 
have emerged toward obtaining more accurate and performance-
diverse microparts, stepping more closely to the practical 
applications. The success in characterizing and controlling micro-
morphologies and resultant properties has led to increased 
possibilities of tailoring μIM products for wider applications. The 
replication capability of micro injection molding products has 
become of prior interest due to the increasing demand for polymeric 
micro devices and micro products and the process starts to be more 
specialized [24]. Identify response variables that allows to monitor 
the overall quality of the micro component quickly and effectively is 
now a crucial requirement. In this perspective, the measurement of 
the weight of the micro component is certainly one of the most 
reliable way to evaluate the final quality of the polymeric micro part. 
The use of DOE approach has become useful in this direction, 
starting from the Taguchi method of the previous years, when a 
screening approach among a huge number of parameters has been 
investigated and then refined with ANOVA to identify the best level 
set of parameters selected as most influential, up to more refined 
factorial plans till to costrained optimization.  
 

2.4  References 
 

[1] Yu, L.; Koh, C. G.; Lee, L. J.; Koelling, K. W.  Madou, M. J. (2002), 
Experimental investigation and numerical simulation of injection 
molding with micro‐features. Polymer Engineering & Science, 42(5), 
871-888; 
[2] Liu, C. Recent developments in polymer MEMS. (2007), 
Advanced Materials, 19.22: 3783-3790. 
[3] Wilson, K.; Molnar, P.; Hickman, J. (2007), Integration of 
functional myotubes with a Bio-MEMS device for non-invasive 
interrogation. Lab on a Chip, 7.7: 920-922. 



14 
 

[4] Spatz, J. P. Building up micromuscles. (2005), Nature materials, 
4.2, 115-116; 
[5] Pal, P.; Sato, K. (2009), Complex three-dimensional structures in 
Si {1 0 0} using wet bulk micromachining. Journal of Micromechanics 
and Microengineering, 19.10, 105008; 
[6] Heckele, M.; Schomburg, W. K. (2003), Review on micro molding 
of thermoplastic polymers. Journal of Micromechanics and 
Microengineering, 14.3: R1. 
[7] Giboz, J.; Copponnex, T.; Mélé, P. (2007), Microinjection molding 
of thermoplastic polymers: a review. Journal of micromechanics and 
microengineering, 17.6: R96; 
[8] Tosello, G., Hansen, H. N. (2010), Micro-Injection Molding. 
Micromanufacturing Engineering and Technology. Amsterdam: 
Elsevier, 90-113.; 
[9] Tosello, G., Gava, A., Hansen, H. N., Lucchetta, G. (2010), Study 
of process parameters effect on the filling phase of micro-injection 
moulding using weld lines as flow markers. The International Journal 
of Advanced Manufacturing Technology, 47(1), 81-97.; 
[10] Griffiths, C. A., Dimov, S. S., Scholz, S., Hirshy, H., Tosello, G. 
(2011), Process factors influence on cavity pressure behavior in 
microinjection moulding. Journal of manufacturing science and 
engineering, 133(3).; 
[11] Surace, R.; Trotta, G.; Bellantone, V.; Fassi, I. (2012), The micro 
injection moulding process for polymeric components 
manufacturing, New Technologies—Trends, Innovations and 
Research, Chapter 4, INTECH Open Access Publisher; 
[12] Sha, B.; Dimov, S.; Griffiths, C.; Packianather, M. S. (2007), 
Micro-injection moulding: Factors affecting the achievable aspect 
ratios. The International Journal of Advanced Manufacturing 
Technology, 33(1), 147-156. 
[13] Shoemaker, J. (2006), Moldflow design guide; a resource for 
plastic engineers, Hanser Gardner Pub. 
 [14] Zhang, H. L.; Ong, N. S.; Lam, Y. C. (2008), Mold surface 
roughness effects on cavity filling of polymer melt in micro injection 
molding. The International Journal of Advanced Manufacturing 
Technology, 37(11-12), 1105-1112. 
[15] Marson, S.; Attia, U. M.; Lucchetta, G.; Wilson, A.; Alcock, J. R.; 
Allen, D. M. (2011), Flatness optimization of micro-injection moulded 
parts: the case of a PMMA microfluidic component. Journal of 
Micromechanics and Microengineering, 21(11), 115024; 
[16] Dawson, A.; Rides, M.; Allen, C. R. G.; Urquhart, J. M. (2008), 
Polymer–mould interface heat transfer coefficient measurements for 
polymer processing. Polymer Testing, 27(5), 555-565; 
[17] Nakao, M.; Tsuchiya, K.; Sadamitsu, T.; Ichikohara, Y.; Ohba, 
T.; Ooi, T. (2008), Heat transfer in injection molding for reproduction 
of sub-micron-sized features. The International Journal of Advanced 
Manufacturing Technology, 38(3-4), 426-432; 
[18] Zhang, H. L.; Ong, N. S.; & Lam, Y. C. (2007), Effects of surface 
roughness on microinjection molding. Polymer Engineering & 
Science, 47(12), 2012-2019; 
[19] Zhang, H. L. (2008), Numerical and Experimental Investigation 
on Cavity Roughness Effects in Micro Injection Molding (Doctoral 
dissertation, PhD Thesis, School of Mechanical and Aerospace 
Engineering, NTU, Singapore). 



15 
 

[20] Ong, N. S.; Zhang, H. L.; Lam, Y. C. (2009), Three-dimensional 
modeling of roughness effects on microthickness filling in injection 
mold cavity. The International Journal of Advanced Manufacturing 
Technology, 45(5-6), 481; 
[21] Nguyen, Q. M. P.; Chen, X.; Lam, Y. C.; Yue, C. Y. (2012), 
Effects of mold surface roughness on compressible flow of micro-
injection molding. World Acad. Sci. Eng. Technol., 65, 853-857; 
[22] Yao, D.; Kim, B. (2002), Simulation of the filling process in micro 
channels for polymeric materials. Journal of micromechanics and 
microengineering, 12(5), 604; 
[23] Cao, W.; Kong, L.; Li, Q., Ying, J.; Shen, C. (2011), Model and 
simulation for melt flow in micro-injection molding based on the PTT 
model. Modelling and Simulation in Materials Science and 
Engineering, 19(8), 085003; 
[24] Yang, C.; Yin, X.-H.; Cheng, G.-M. (2013), Microinjection 
molding of microsystem components: new aspects in improving 
performance. Journal of Micromechanics and Microengineering, 
23.9: 093001; 
[25] Jiang, B. Y.; Xie, L.; Tan, X. F.; Lu, S. Q. (2006), Influence of 
section shape of micro channels on microfluid flowability. Journal of 
Central South University: Natural Science, 37(5), 964-969; 
[26] Yang, C.; Huang, H. X.; Castro, J. M.; Yi, A. Y. (2011), 
Replication characterization in injection molding of microfeatures 
with high aspect ratio: Influence of layout and shape factor. Polymer 
Engineering & Science, 51(5), 959-968; 
[27] Attia, U. M.; Marson, S.; Alcock, J. R. (2009), Micro-injection 
moulding of polymer microfluidic devices. Microfluidics and 
nanofluidics, 7(1), 1; 
[28] Costa, F. S.; Tosello, G.; Whiteside, B. R. (2009), Best practice 
strategies for validation of micro moulding process simulation. 
Polym. Process Engin, 331-364; 
[29] Trotta, G.; Stampone, B.; Fassi, I.; Tricarico, L. (2021), Study of 
rheological behaviour of polymer melt in micro injection moulding 
with a miniaturized parallel plate rheometer. Polymer Testing, 96, 
107068; 
[30] Lou, Y.; Bai, C.; Pei, J. L.; He, P. Q. (2016), A Novel Micro Wall 
Slip Model Based on Chain Length and Temperature. International 
Polymer Processing, 31(2), 239-246; 
[31] Rosenbaum, E. E.; Hatzikiriakos, S. G. (1997), Wall slip in the 
capillary flow of molten polymers subject to viscous heating. AIChE 
journal, 43(3), 598-608; 
[32] Lam, Y. C.; Wang, Z. Y.; Chen, X.; Joshi, S. C. (2007), Wall slip 
of concentrated suspension melts in capillary flows. Powder 
Technology, 177(3), 162-169; 
[33] Kim, D. S.; Lee, K. C.; Kwon, T. H.; Lee, S. S. (2002), Micro-
channel filling flow considering surface tension effect. Journal of 
Micromechanics and Microengineering, 12(3), 236; 
[34] Nguyen‐Chung, T.; Jüttner, G.; Löser, C.; Pham, T.; Gehde, M. 
(2010), Determination of the heat transfer coefficient from short‐
shots studies and precise simulation of microinjection molding. 
Polymer Engineering & Science, 50(1), 165-173; 
[35] Babenko, M.; Sweeney, J.; Petkov, P.; Lacan, F.; Bigot, S.; 
Whiteside, B. (2018), Evaluation of heat transfer at the cavity-



16 
 

polymer interface in microinjection moulding based on experimental 
and simulation study. Applied Thermal Engineering, 130, 865-876; 
[36] Dawson, A.; Rides, M.; Allen, C. R. G.; Urquhart, J. M. (2008), 
Polymer–mould interface heat transfer coefficient measurements for 
polymer processing. Polymer Testing, 27(5), 555-565; 
[37] Nakao, M.; Tsuchiya, K.; Sadamitsu, T.; Ichikohara, Y.; Ohba, 
T.; Ooi, T. (2008), Heat transfer in injection molding for reproduction 
of sub-micron-sized features. The International Journal of Advanced 
Manufacturing Technology, 38(3-4), 426-432; 
[38] Chen, C. S.; Chen, S. C.; Liaw, W. L.; Chien, R. D. (2008), 
Rheological behavior of POM polymer melt flowing through micro-
channels. European Polymer Journal, 44(6), 1891-1898; 
[39] Zhang, N.; Gilchrist, M. D. (2012), Characterization of thermo-
rheological behavior of polymer melts during the micro injection 
moulding process. Polymer testing, 31(6), 748-758; 
[40] Xie, L.; Niesel, T.; Leester-Schädel, M.; Ziegmann, G.; 
Büttgenbach, S. (2013), A novel approach to realize the local 
precise variotherm process in micro injection molding. Microsystem 
technologies, 19(7), 1017-1023;  
[41] Xie, L.; Ziegmann, G. (2008), A visual mold with variotherm 
system for weld line study in micro injection molding. Microsystem 
Technologies, 14(6), 809-814; 
[42] Su, Q.; Zhang, N.; Gilchrist, M. D. (2016), The use of variotherm 
systems for microinjection molding. Journal of Applied Polymer 
Science, 133(9); 
[43] Zhang, N.; Zhang, H.; Stallard, C.; Fang, F.; Gilchrist, M. D. 
(2018), Replication integrity of micro features using variotherm and 
vacuum assisted microinjection moulding. CIRP Journal of 
Manufacturing Science and Technology, 23, 20-38; 
[44] Yoon, S. H.; Padmanabha, P.; Cha, N. G.; Mead, J. L.; Barry, 
C. M. F. (2011), Evaluation of vacuum venting for micro-injection 
molding. International Polymer Processing, 26(4), 346-353; 
[45] Sorgato, M.; Babenko, M.; Lucchetta, G.; Whiteside, B. (2017), 
Investigation of the influence of vacuum venting on mould surface 
temperature in micro injection moulding. The International Journal 
of Advanced Manufacturing Technology, 88(1-4), 547-555; 
[46] Sorgato, M.; Masato, D.; Lucchetta, G. (2017), Effect of vacuum 
venting and mold wettability on the replication of micro-structured 
surfaces. Microsystem Technologies, 23(7), 2543-2552; 
[47] Qiu, Z. J.; Zheng, H.; Fang, F. Z.; Wang, H. Y. (2012), 
Longitudinal ultrasound-assisted micro-injection moulding method. 
Nanotechnol Precis Eng, 10(2), 170-176; 
[48] Michaeli, W.; Opfermann, D. (2006), Ultrasonic plasticising for 
micro injection moulding. In 4M 2006-Second International 
Conference on Multi-Material Micro Manufacture (pp. 345-348). 
Elsevier; 
[49] Michaeli, W.; Kamps, T.; Hopmann, C. (2011), Manufacturing of 
polymer micro parts by ultrasonic plasticization and direct injection. 
Microsystem technologies, 17(2), 243-249; 
[50] Masato, D.; Sorgato, M.; Lucchetta, G. (2018), Effect of 
ultrasound vibration on the ejection friction in microinjection molding. 
The International Journal of Advanced Manufacturing Technology, 
96(1), 345-358; 



17 
 

[51] Tosello, G.; Gava, A.; Hansen, H. N.; & Lucchetta, G. (2010). 
Study of process parameters effect on the filling phase of micro-
injection moulding using weld lines as flow markers. The 
International Journal of Advanced Manufacturing Technology, 47(1), 
81-97. 
[52] Marhöfer, D. M.; Tosello, G.; Hansen, H. N.; Islam, A. (2013), 
Advancements on the simulation of the micro injection moulding 
process. In Proceedings of the Multi-Material Micro Manufacture 
(4M) Int. Conf., San Sebastian, Spain (pp. 8-10); 
[53] Babenko, M.; Sweeney, J.; Petkov, P.; Lacan, F.; Bigot, S.; 
Whiteside, B. (2018), Evaluation of heat transfer at the cavity-
polymer interface in microinjection moulding based on experimental 
and simulation study. Applied Thermal Engineering, 130, 865-876; 
[54] Chen, S. C.; Tsai, R. I.; Chien, R. D.; Lin, T. K. (2005), 
Preliminary study of polymer melt rheological behavior flowing 
through micro-channels. International Communications in Heat and 
Mass Transfer, 32(3-4), 501-510; 
[55] Ito, H.; Kazama, K.; Kikutani, T. (2007), Effects of Process 
Conditions on Surface Replication and Higher‐Order Structure 
Formation in Micromolding. In Macromolecular symposia (Vol. 249, 
No. 1, pp. 628-634). Weinheim: WILEY‐VCH Verlag; 
[56] Mnekbi, C.; Vincent, M.; Agassant, J. F. (2010), Polymer 
rheology at high shear rate for microinjection moulding. International 
Journal of Material Forming, 3(1), 539-542. 
[57] Vázquez, R. M.; Trotta, G.; Volpe, A.; Paturzo, M.; Modica, F.; 
Bianco, V.; Osellame, R. (2019), Plastic lab-on-chip for the optical 
manipulation of single cells. In Factories of the Future (pp. 339-363). 
Springer, Cham; 
[58] Trotta, G.; Volpe, A.; Ancona, A.; Fassi, I. (2018), Flexible micro 
manufacturing platform for the fabrication of PMMA microfluidic 
devices. Journal of Manufacturing Processes, 35, 107-117; 
[59] Haberstroh, E.; Brandt, M. (2002), Determination of mechanical 
properties of thermoplastics suitable for micro systems. 
Macromolecular Materials and Engineering, 287(12), 881-888. 
[60] Baruffi, F., Calaon, M., Tosello, G., (2018), Micro-Injection 
Moulding In-Line Quality Assurance Based on Product and Process 
Fingerprints. Micromachines, 9, 293; 
 

 

 

 

 

 

 

 

 

 



18 
 

CHAPTER 3 

 
 
 
 

 

Goal of the PhD activity 
 
 
 
 
 
 

3.1  Part weight as the main observed variable 
 

Micro injection moulding is a micro-fabrication technology which, 
more than any other, is proposed as a technology for mass 
production of micro components. For the definition already given by 
Sha et al [1], now widely shared by the scientific world, we can 
identify two types of micro components, namely plastic components 
on which are reproduced microfeatures and micrometric 
components in the order of a few milligrams.  
Although the micro-moulding process was considered as a scale 
factor of the traditional injection moulding at an early stage of 
technological development, the great differences between the two 
processes were gradually recognised, differences mainly related to 
the fast cooling of the micro cavity, due to the reduced size of the 
cavity compared to the entire master mould, and the different 
viscous behaviour of the material in the micro cavities. This last 
aspect, in particular, is related to the high aspect ratio of the cavity 
so that physical properties that in standard injection moulding are 
generally negligible, as for example roughness, becomes 
proportional to the thickness, and brings about thermal diffusivity 
and wall-slip phenomena that alter the polymer apparent fluid-phase 
viscosity [2, 3]. 
The process differences described led to the creation of machines 
specifically dedicated to micro injection moulding. These are 
machines capable of reaching speeds of an order of magnitude 
higher than the standard ones, and therefore able to transfer the 
material much faster in cavities, this in order to compensate the high 
cooling rate and prevent premature solidification of the material at 
the gate and resulting in incomplete filling of the cavity. 
The increase in process speeds, however, introduced two rather 
important requirements, namely on the one hand, much precise and 
reliable control of metering size, and on the other hand the need for 
higher injection pressures. These two aspects push micro injection 
moulding machines to an advanced technology level than standard 
ones, leaving almost completely the hydraulic system to exclusively 
marry the "full electric" in order to have a better control of the 
dynamics and consequently improve in precision and reliability. 
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What has been highlighted is thatmicro injection moulding is an 
emerging new technology which prospects still need to be fully 
discovered with related problems of process reliability. 
Several studies have focused on the analysis of the reliability of the 
micro injection moulding process, and in particular on aspects 
characterizing the process itself, such as the filling phase, the 
analysis of shrinkage, the cavity pressure distribution, the 
component weight. Through the study of the process parameters 
and the observation of the defects, some problems of micro injection 
moulding could be highlighted. 
The use of high dynamics results in a high variability of the injected 
charge, a problem mainly related to the reactivity of the numerical 
control while going from high acceleration phase to high 
deceleration phase (filling phase) that results in a less precise 
position control at the switchover point, where the machine switch 
from volumetric control to pressure control. This results in a large 
variability of the filling conditions, which can affect the following 
packing (or holding) phase, with consequent overpackingeffect, 
when the material injected in the cavity is excessive, or short shots 
effect, when the material is lower than expected. In the case of over-
packing, in particular, one of the main consequences is the difficulty 
of extraction, with the risk of damaging the component. 
Analysis of pressure distribution in cavities has shown that rather 
high injection pressures are needed to contrast the excessive 
pressure drop that is detected in cavities due to the high aspect ratio 
[4]. However, in some cases, the combination of the parameters 
necessary for the complete filling of the cavity leads to exceed the 
machine clamping force limit for a short time resulting in the 
production of flash, a rather widespread defect in micro injection 
moulding that is difficult to reduce due to the small process window. 
There is a clear difficulty in defining methods to analyse the quality 
of the micro component for the small size of the components 
themselves, as well as for the high process speed. Cavity pressure 
monitoring is very complex to perform because even if the size of 
the sensors is small, they require an housing space that is often not 
available and monitoring must be accepted in areas that are not 
particularly significant compared to the most appropriate ones. At 
the same time, optical systems for the rapid identification of faults or 
in any case for the measurement of parts of the moulded 
microcomponent are not available and quite often the 
measurements are made with optical systems "off line".  
From this analysis clearly emerges that the part weight could be, for 
the micro injection moulding, the element of synthesis for a rapid 
feedback on the quality and reliability of the process. Measuring the 
weight of the micro component, in fact, is conceptually very easy to 
achieve "in line" at the end of each cycle and would allow operators 
to automatically monitor the process with the implementation of the 
closed loop. 
 
3.1.1 State of the art of part weight  
 
Few articles have focused their research on the analysis of the part 
weight in the micro injection moulding process. The approach 
typically used is an experimental plan based on Design of 
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Experiments, mainly factorial plans, to make a preliminary screening 
of the process and to find a model that correlates the process 
parameters with the observed variable “part weight”. Then 
optimization approach based mainly on desirability function has 
been used to identify the feasible part weight and the related range 
of the statistically significant factors. 
Attia et al [5], in a first paper presented in 2009, for the first time 
introduced the part weight as an output parameter to reflect the filling 
of five separate parts with different micro-feature designs moulded 
with Polymethylmethacrylate (PMMA). Five processing parameters, 
namely mould temperature, melt temperature, injection speed, hold 
pressure and cooling time, are investigated using a screening half-
factorial experimentation plan, with Resolution-V, to determine their 
possible effect on the filling quality of the moulded parts. After 
preliminary process stabilisation through a short moulding phase, 
ten samples were randomly collected for each run. The average 
weight of the samples was recorded as the experiment response. 
From the analysis of the results it emerges a significant effect of 
holding pressure for all the five parts. The importance of holding 
pressure lies in the fact that it overcomes the tendency of the 
polymer melt to prematurely freeze before the injection process is 
complete. Premature freezing is related to the high rate of heat 
transfer between the polymer and the mould walls for parts with 
micro-scaled dimensions. For the authors, instead, the lack of 
significance of cooling time [6, 7] is related to the fact that the effect 
of cooling in injection moulding is usually associated with changes 
in the component geometry (e.g. shrinkage, warpage) [8], but the 
cooling scheme does not have the same effect on the part weight as 
its effect takes place after the cavity is already filled. The lack of 
significance of mould temperature, instead, may lie in the selection 
of the two levels at values below the glass transition temperature 
(Tg) of the polymer while increasing the mould temperature can 
significantly improve the filling quality [9]. The lack of significance of 
melt temperature is probably related to the polymer contact with the 
cavity walls that are at the mould temperature below the Tg [10]. 
Hence, by the time the polymer filled the part cavity it would have 
seen a significant reduction in its temperature. Finally, the lack of 
significance of the injection velocity as a parameter may lie in the 
relatively small change of shear rate associated with changing 
between the two levels of injection velocity [8]. After the screening 
stage, the optimization was carried out using the desirability function 
approach to calculate optimum values of the input parameters. The 
desired part weights were derived from the screening experiments. 
The moulded samples are inspected, and the completely filled 
samples are identified and weighed. The average weight of 
complete samples is used as the ‘‘target’’ weight for the desirability 
function. The minimum and maximum weights of the completely 
filled samples are input as the lower and upper limits for the target 
weight, respectively. A comparison of desirable moulding 
parameters for different part geometries, showed the influence of 
geometry on processing conditions. 
The methodology implemented in [5] has been used also in their 
other papers [11] and [12], but this time focalizing on complex 
geometries and different materials. They tried to identify the 



21 
 

influence of other parameters on the part weight and to improve 
knowledge analysing also the weight variation in terms of standard 
deviation of the replicated part weight. It was found that holding 
pressure, melt temperature and injection velocity were statistically 
significant for part weight, whereas injection velocity alone was 
significant for weight variation. 
This methodology has been replicated by Bellantone et al. [13] on a 
“dog bone” test specimen moulded with the most suitable materials 
for micro injection moulding due to their flowability: pure POM and 
LCP (glass reinforced). The purpose is to investigate the effect of 
micro injection process parameters on part weight and on its 
standard deviation, and overall dimensions of a moulded 
miniaturised tensile test specimen.  The process parameters 
considered for the experimentations are mould temperature, melt 
temperature, injection speed and holding pressure and time. It has 
been found that the holding pressure and holding time for POM and 
holding pressure and injection velocity for LCP have the highest 
influence on achieving high part weight. Differently, melt 
temperature has the highest influence on minimising the process 
variability for both tested polymers. A further investigation has been 
carried out on the relationship between the holding pressure and the 
part weight and dimensions demonstrating the existence of a linear 
correlation between specimen weight and dimensions.  
In [14], the authors tried to implement a statistical methodology to 
optimise both shrinkage and part weight in micro-injection moulding. 
Five factors were investigated: the injection pressure, the holding 
pressure, the melt temperature, the mould temperature and the 
holding time. The mould and melt temperatures and the holding 
pressure were identified as significant factors that affect both 
shrinkage in parallel to the flow direction and part weight 
independently. In addition, shrinkage in parallel to the flow direction 
is affected by combined effect of holding pressure-mould 
temperature and melt temperature-mould temperature. Optimal 
conditions for the minimisation of the total shrinkage and 
maximisation of part weight were determined using desirability 
functions. 
Eladl et al. [15] studied the effect of four process parameters (melt 
temperature, mould temperature, holding pressure and injection 
velocity) on the quality characteristics of polymeric parts produced 
by micro injection moulding observing part mass, flow length and 
flash formation according to a Design of Experiment approach. 
Holding pressure and injection speed were found to be the most 
effective on mass and flow length for both the used materials and 
micro cantilever geometries with variable thickness. Injection speed 
and packing pressure have direct effect on the flow length, 
increasing it inversely proportional to the thickness of the cantilever 
geometries. Injection speed and holding pressure had higher effects 
than melt and mould temperature and were the most affective 
parameters on increasing the amount of flash for both materials 
when set at high levels.   
A literature review comparison is shown in Table 3.1. It clearly 
emerges how it is difficult to generalize the results of the literature 
because of the different µIM systems, samples and material used. 
However, it appears that holding pressure, melting temperature and 
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injection speed are the most significant factors affecting the part 
weight. 
 

3.2  Costraints related to the part weight 
 

Typical defects that occur while processing micro injection moulding 
are the same observed for the standard process.  They can be 
classified in internal defects, which usually are shrinkage, weld lines, 
flow lines and jetting; surface defects, such as sink marks, gas burns 
(diesel effect) and ejection marks; geometrical defects, that usually 
are incomplete filling (short shot), flash and warping. 
These defects directly affect the principal characteristics typically 
evaluated to certify the final quality of the polymeric part: mechanical 
properties, part weight, form and dimensions, surface aspect. So, 
their correct detection is essential to prevent the non-conformities of 
the products. 
Most of these defects are identified, in the case of the standard 
process, by visual checks during production, such as the case of 
burns, sink marks, filling defects, ejection marks, geometric defects. 
Only in some cases it is implemented a destructive approach on a 
statistical basis or with density measurements, especially for internal 
defects. 
In the case of micro injection moulding, the dimensions involved do 
not allow a clear visual identification of most of these defects, which 
are often at micrometric level. Any type of inspection, whether visual 
or destructive, requires a microscope inspection for clear evidence 
and this complicates the evaluation of the quality of the process and 
extend the time to eventually correct the process, resulting in large 
amounts of waste. 
In literature, the study of the micro injection moulding process often 
focuses on the analysis of process parameters that most affect the 
quality of the product by directly observing some of the defects 
described and implementing an optimization approach of the defects 
themselves, in terms of minimization, or optimizing a characteristic 
such as weight or geometric shape, indirectly obtaining an 
assessment of the effectiveness of the proposed approach in order 
to minimize the defects themselves. 
Several authors used a Design of Experiment approach to identify 
the process parameters that mainly affect the observed variable and 
consequently to identify a subset of parameters on the basis of 
which to implement an optimization method based on Taguchi 
approach, as reported below. Other authors, as seen in the previous 
section for the part weight variable, used the optimization approach 
based on desirability function [1,7--10]. 
Erzurumlu et al. [16] and Chang et al [17] implemented an 
orthogonal array of Taguchi, the signal-to-noise (S/N) ratio, and 
analysis of variance (ANOVA) to find the optimal levels and the 
effect of process parameters on warpage and sink index [16] and on 
formability of microstructure and mechanical properties [17]. Both 
optimization approaches are based on a full factorial, three level, 
design. In order to reduce the time and experimental cost, a reduced 
number of the trials were used to implement the L18 orthogonal 
array. For [16] Packing pressure is the most influencing factor for 
PC, ABS and POM while melt temperature more than mould 
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temperature and packing pressure for PA66. For [17] mould 
temperature and injection speed are the most important process 
parameters. 
The research proposed by [18] investigates the effects that the tool 
coating can have on part demoulding in micro injection moulding. 
One method that can be used for improving the wear resistance of 
tool surfaces is to apply surface treatments. Taguchi L9 orthogonal 
array (OA) was employed (four factors at three levels) to ensure that 
the experimental results were representative of the considered 
processing window. Based on the experimental results, an analysis 
of variance (ANOVA) was performed in order to assess the 
contribution of each processing parameter to the resulting 
demoulding behaviour. 
Shen et al [19] implemented a general experimental approach to 
achieve a rapid cavity filled stage and reduce shrinkage. The optimal 
parameters for the thin-wall microinjection moulding are found, 
namely the injection speed, injection pressure and mould 
temperature, which can achieve a rapid cavity filled stage and 
reduce shrinkage effects.  
In Chien et al [20], a set of systematic experiments was conducted 
to examine the effects of process parameters on the replication 
accuracy of microchannels. They found that the accuracies of the 
imprint width and depth increased with increasing mold temperature, 
melt temperature, injection velocity and packing pressure within 
regular processing window. 
Annichiarico et al. [21] provide a method for measuring shrinkage in 
micro injection moulded (m-IM) parts. Clear differences in shrinkage 
between parallel and normal to the flow direction were found. 
Furthermore, differences between moulding, post-moulding and 
total shrinkage were observed. Mould temperature affected 
moulding shrinkage both parallel and normal to the flow but the 
direction of the effect was different. For post-moulding shrinkage, 
only shrinkage normal to the flow was affected by factors 
investigated in this study: a combination of holding time and mould 
temperature. However, for total shrinkage, only the shrinkage 
parallel to the moulding direction was affected by three factors and 
two combinations of factors. No statistically significant effects were 
observed for total shrinkage normal to the flow, and post-mould 
shrinkage parallel to the flow. 
Baruffi et al. [22] proposed a methodology to predict flash formation 
at micro level. The approach was based on a set-up of simulation 
model so that small extensions of the model in areas where, 
previously by experimental trials, it was observed flash. The 
simulation was compared with experimental DoE plan using a focus 
variation microscope and the results are an overestimate of flash for 
the model compared to the experimental trials while the process 
parameters were well predicted by the numerical model. 
In Table 3.2 is reported a review comparison related to the different 
approaches used to identify and minimize some of the typical 
defects of micro injection moulding process. 
What emerges from this analysis of the state of the art regarding the 
micro injection moulding is that this process has been extensively 
investigated from the scientific point of view in the last fifteen years. 
The researchers are still evaluating the influence of the process 
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parameters on process characteristics and defects, identifying 
possible models and defining guidelines for near-zero defect part 
micro manufacturing. Most of the work analysed treat the defects 
and their containment indirectly by observing, for example, the 
general quality of the component or through microscopic 
observations or by measuring process parameters in cavities. Only 
some cases report about possible interaction between two variables, 
one related to the process characteristics, such as part weight, and 
the other to some defects, such as shrinkage effect [14] or flash [15].  
According to the analysis reported, the idea is that the micro injection 
moulding can be considered a process ready for the industrial world, 
and in fact the micro injection molding machine market size is 
estimated to growth of 9.8% between 2021 and 2026 [23]. Medical 
filed is estimated to be the largest application of the micro injection 
moulding market in the next years, and this is in agreement with the 
large scientific interest in biomedical and microfluidic geometries, as 
seen in the previous chapter. However, despite these strong 
process developments, a level of automation and quality control 
comparable to that achieved by standard injection molding is still far 
away and requires further research.  
While some significant progress has been achived in building 
models for inline and real-time process control [24-26], the 
complexity of implementing cavity sensors for process control in a 
mould for micro,  or an online vision system for quality control, limit 
the full industrial development of the process that is still very linked 
to the sensitivity of the operator and the experience made in the field 
rather than to the implementation of methodologies and procedures 
developed by the scientific world. It seems necessary to futher 
contribute to the process development and in particular to the 
technology transfer from the scientific world to the industrial world, 
focusing more on concrete industrial applications, to have a closer 
response to the real production needs, and developing optimization 
procedures whose inputs are values related to variables easily 
manageable and measurable by machine tool operators.   

 

 

3.3  Description of the original idea 
 

The purpose of the PhD project is to identify a response variable that 
allows to monitor the process and easy to measure at the same time. 
The purpose it to make it easy to implement, this procedure in any 
company interested in micro injection moulding technology providing 
a tool for which operators feel confident to use it and that can help 
to solve one of the most challenging aspects of micro injection 
moulding manufacturing, the lack of reliability in terms of ability to 
replicate the process. 
Even if starting from a common approach to what emerged from the 
state of the art, so from a Design of Experiment approach based on 
a factorial plan, the idea is to go beyond the analysis of variance to 
identify the most influential process parameters and subsequent 
optimization based on the largely used criterion of desirability that 
requires additional experimental cost.  
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The idea behind the PhD work is to observe, with an experimental 
approach, both the weight variable, which is a continuous variable, 
and the related flash defect, which is instead a categorical variable 
because it is defined on a basis of subsequent evaluations to 
observation. This approach is very useful because it follows, and 
somehow combines, the industrial methodology, which always 
prefers a direct observation of part to classify the quality and 
eventually the defect due to personal sensitivity and experience, 
with the scientific world that instead, with a statistical approach, 
seeks to identify reliable models for assessing the quality of the 
product. 
The in-depth analysis of the state of the art on the weight variable 
clearly showed how much this variable is of scientific interest, but 
above all also for industrial, for its ease of measurement and at the 
same time complexity in the evaluation of the result, in the sense 
that it is not always correct to identify as weight maximization the 
objective function that you want to achieve. The presence of flash, 
a rather frequent defect in micro injection moulding, is one of the 
defects that can most alter this objective. In addition, its identification 
and cataloguing is subject to the sensitivity and experience of the 
operator and this can be an additional disturbing element in the 
correct evaluation of the maximum weight.  
This evaluation, in fact, gives rise to the most ambitious objective of 
the doctoral work, that is to identify a model that considers at the 
same time the maximization of weight in a region where the absence 
of flash can be expected with good probability. 
Although simple in describing it, however it is not so simple because 
while the weight variable is quantitative, the flash variable is 
categorical and closely related to the weight variable. Therefore, the 
main objective of this work is to identify a region of eligibility of the 
optimal weight constrained by the probability of having flash. 
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Table 3.1: Comparison of the literature on part weight optimization in µIM (X means that the factor was varied in the experiment, * indicates the significant factors in the analysis). 

Paper Material Response Mould 
temperature 

Melt 
temperature 

Injection 
speed 

Holding 
pressure 

Cooling 
time 

Holding 
time 

Injection 
Pressure 

Result 

[5]  
PMMA 

Part weight 
 

X 
* 

X X 
* 

X 
* 

X   Holding pressure, injection speed and mould 
temperatureis are significant factors to control 
part geometries and part weight. Significant 
effect of holding pressure for all the five parts 
tested. 

[11]  
PMMA 

Part weight 
 

X X 
* 

X 
* 

X 
* 

X   Holding pressure, melt temperature and 
injection speed are significant for part weight 
and can be optimised within the initially 
specified upper and lower levels. 

[12]  
PMMA 

Part weight 
 
Variability 
 

X X 
* 
* 

X 
* 

X 
* 

X   Holding pressure, melt temperature and 
injection velocity were statistically significant for 
part weight, whereas melt temperature alone 
was significant for weight variation for one of the 
two produced parts. 

[13]  
POM  
LCP 
 

Part weight 
 
 
Variability 

X X 
* 
* 
* 

X 
 
* 

X 
* 
* 

 X 
* 

 Holding pressure, holding time and melt 
temperature are significant for POM part weight. 
Holding pressure, injection speed and melt 
temperature are significant for LCP.  

[14]  
POM 

 
Part weight 
 

X 
* 

X 
* 

 X 
* 

 X X Mould temperature, melt temperature, holding 
pressure, and their interactions, affect both 
shrinkage and part weight. The optimized 
values are the results of a compromise between 
shrinkage minimization and part weight 
maximization. 

[15]  
 
ABS 
PP 
 

 
Part weigh 
 
Flow length 
 
Flash 

X 
 
 
 
 
* 

X 
 
 
 
 
* 

X 
* 
 
* 
 
* 

X 
* 
 
* 
 
* 

   Holding pressure and injection speed were the 
most effective on mass and flow length for both 
materials. Injection speed and holding pressure 
had higher effects than melt and mould 
temperature and revealed to be the most 
affective parameters on increasing the amount 
of flash for both material when set at high levels. 
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Table 3.2: Comparison of the literature on Taguchi and ANOVA optimization approach for minimizing most common defects in µIM 
(X means that the factor was varied in the experiment, * indicates the significance levels of factors in the analysis (α= 0.05)). 
 

Paper Material Response Mould  
temp. 

Melt  
temp. 

Injection 
speed 

Holding 
pressure 

Cooling 
time 

Holding 
time 

Injection 
Pressure 

Switchover 
position 

Delay 
before  
ejection 

Clamping  
force 

Cycle 
time 

Result 

[16] PC/ABS 
 
POM 
 
PA66 

 
 
Warpage  
Sink index  
 

X 
 
 
 
 
* 

X 
 
 
 
 
* 

 
 

X 
* 
 
* 

       For PC/ABS and POM the holding 
pressure is the most influential 
factor for both responses, while 
mould and melt temperature for 
PA66 in addition to packing 
pressure. 

[17]  
(PC) PP 

 
Part 
geometry  
 

X 
 
* 
 

X 
 

X 
 
* 

X 
 
 

X X X X    Injection speed and mold 
temperature are the most 
important factors affecting the 
quality of the microprobes. 

[18]  
PC 
 
ABS 

 
Coated  
(*)uncoated 
Demoulding 
tool 

X 
* (*) 
 
*  (*) 

X 
(*) 
 
*  (*) 

  X 
* 

   X 
* 
 
(*) 

  Mould temperature is the factors 
that more than any other affect 
the demoulding for both 
parameters. Improvments in the 
demoulding performance for 
coated tool. 

[19]  
LCP 
 
 

 
High cavity 
filling, 
shrinkage 

X 
* 

X X 
* 

   X 
* 

  X X A high injection speed, 
pressure and mold temperature 
can achieve a rapid cav ity filled 
stage and reduce shrinkages 

[20]  
PMMA 

 
replication 
accuracy 

X 
* 

X 
* 

X 
* 

X 
* 

       Higher mold temperature, melt 
temperature, injection velocity 
and packing pressure can lead to 
better replication accuracy for 
vacuum situation 

[21]  
POM 

 
shrinkage 
 

X 
* 

X 
* 

 X 
* 

 X X     Mould temperature is the most 
influencing factor for shrinkage 
together with holding 
pressure and melt temperature. 

[22]  
POM 

 
flash 

X 
* 

X X 
* 

X 
* 

       Holding pressure is the most 
influencing factor for flash 
formation, together with mould 
temperature and injection speed. 
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CHAPTER 4 

 
 
 
 

 

Methodologies and tools to build  
the weight and flash datasets 

 
 
 
 
 
 

4.1  Part weight as the main observed variable 
 

According to the analysis of the previous chapter, the part weight 
has been identified as the affordable variable to predict the quality 
of the final part and some defects, such as flash, has been evaluated 
in order to identify the optimal region of part weight. 
The material used for experiments is POM (polyoxymethylene), a 
polymer largely used in micro injection moulding due to its flowability 
that foster the filling of very small cavities.  
In Table 4.1 the mechanical and physical properties of POM are 
reported. POM finds application in micro gears and micro filters for 
medical industries. 

 
Table 4.1: POM main properties1 

Properties Unit Values 

Density kg/m³ 1400 

Tensile modulus MPa 2700 

Yield stress, 50 mm/min  MPa 65 

Yield strain, 50 mm/min % 9.4 

Coefficient of linear thermal 
expansion, longitudinal (23-55)°C 

10-6/K 110 

Molding shrinkage (parallel) % 2.10 

Molding shrinkage (normal) % 2.10 

 

The machine used for experimentation is the DESMA Tec Formica 
Plast 1K which can inject up to 150 mm^3 with a maximum speed of 
500 mm/s at 3000 bar and with a clamping force of 10kN, Figure 
4.1Errore. L'origine riferimento non è stata trovata.a. 
The part identified for the experimentation is a benchmark for micro 
injection moulding, a double thin plate component with thickness of 
500 µm, a nominal part weight (POM) of 95,8 mg and an aspect ratio 
of about 8. The aspect ratio is defined as the ratio between the larger 
side (3.9 mm) and the smaller side (0.5 mm) of the rectangular 
section, see Figure 4.1b.  
 

                                                           
1 https://plastics-rubber.basf.com/global/en/performance_polymers/products/ultraform.html 
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a) 

 
b)  

 

Figure 4.1: a) DESMA Tec Formica Plast 1K and b) details of the micro moulds 
and injected part with general dimensions 

 
The mould has been designed considering n.5 ejectors in specific 
positions: at the beginning and at the end of the thin plate, and right 
under the sprue. The holes, that face the cavity, have been realized 
with a tolerance to ensure air evacuation while polymer fill the cavity, 
but preventing polymer outflow trough them. The lack of burn marks 
on the moulded parts produced in this work proves the correctness 
of the proposed solution.  
Preliminary check on the reliability of the measuring system of the 
part weight has been carried out in section 4.1. Then the evaluation 
of the sigma of the machine has been investigated in section 4.2 in 
order to define the minimum number of replicas through the power 
analysis. Finally, the experimental plan adopted and the 
methodology to define the flash defect has been reported in section 
4.3 while in section 4.4 are presented the criteria used to define the 
datasets for the identification of flash and weight models. 
 
 

4.2  Check of the measurement tool error 
 

In order to check the quality of the data obtained, a survey was 
carried out to verify the calibration of the balance. Certified weights 
were used and the weighing was carried out by two operators with 
different attitudes in random order. A 2-factor plan (weigh and 
operator) was prepared and the calibration points were 1 g, 2 g, 3 g, 
4 g, 5 g with 2 replicates. Below is an image of the setup used which 
also included a temperature control in the weighing area (Fig. 4.2). 
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Fig. 4.2: overview of the set up to check the accuracy of the balance calibration  

 
 

Table 4.2: Analysis of variance for the balance calibration check 
 

Factor Information 
Factor                     Type      Levels  Values 
Random operator  Fixed           2  1; 2 
random weights     Fixed          5  1; 2; 3; 4; 5 
 
Analysis of Variance 
Source                                    DF   Adj SS   Adj MS      F-Value       P-Value 
  Operator  random                  1       0,000    0,0000         1,69            0,201 
  random    weights                  4     97,999  24,4997  2,43735E+09    0,000 
  random operator *  
  random weights                     4       0,000    0,0000         0,51           0,726 
Error                                       40      0,000    0,0000 
Total                                       49  100,002 
 
Model Summary 
 
               S        R-sq    R-sq(adj)  R-sq(pred) 
0,0001003  100,00%    100,00%     100,00% 
 

 
The analysis of variance reported in Table 4.2 evidenced, in the 
Model Summary, that the resolution of 0,1 mg reported in the 
datasheet of the Gibertini Balance is correct. 
As we can see from the Main effect plot of figure 4.3a, the operator 
hasn’t effect on the measure that is influenced, as expected, by the 
calibration weights. The residuals are normally distributed (Fig. 
4.3b), there are no outliers and all the data are in the interval [+3; -
3] (Fig. 4.3c). The Bartlett test for normal distribution evidenced that 
the equal variance can’t be rejected (Fig. 4.3d) 
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Fig. 4.3a: Main effect plot Fig. 4.3b: Probability plot of Standardized residuals 

 
  

  

Fig. 4.3c: Scatterplot for outliers evaluation Fig. 4.3d: Test for equal variance hypothesis 

 

 

 4.3  Power analysis and evaluation of the sigma of the process 
 

In order to determine the number of replicates used in the study of 
the micro injection moulding process, it was necessary to carry out 
a preliminary trial for the determination of sigma (s) of the process. 
In the Table 4.3 it is reported the center point of the process 
parameters identified for the experimentation: 
 
Tab.4.3: Center point process parameters 
 

TRIAL Tmold Tmelt Vinj Phold thold 

 °C °C mm/sec bar sec 

17 80 210 125 1000 2 

 

Where Tmold is mould temperature, Tmelt is the melt temperature, 
vinj is the injection speed, Phold is the packing (holding) pressure 
and thold is the packing (holding) time. 
In order to obtain a correct evaluation of the sigma of the process to 
be used for the Power Analysis, the experimental part has been 
printed n. 11 times, of which only the last printed one has been used 
for the measurement of the weight. This operation has been 
repeated for 6 times at a distance of about an hour from each other, 
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turning the machine off, cooling down the mould temperature, 
turning on the machine and heating up the mould again. 
In the following Tab 4.4 the sequences of measurement (mean and 
standard deviation) are reported consisting of n. 3 weight 
measurements carried out in sequence for each repetition, each one 
performed by switching off and after a few minutes on the precision 
balance and recalibrating it (Gibertini E154 with max weight 150 g, 
resolution 0,1 mg and error di 1 mg). 
 
Tab.4.4: Weight measurement in the center point 

   

 
 
 
In Fig. 4.4 we plot the data of center point analysis done and we can 
see that the three measurements for each trial are very close 
(balance precision). 
 
 

 

Fig. 4.4: Individual value plot for weight of the measurements of Tab. 4.2 

 

The power of a hypothesis test is the probability that the test 
correctly rejects the null hypothesis. The power of a hypothesis test 
is affected by the sample size, the difference, the variability of the 
data, and the significance level of the test. If a test has low power, 
you might fail to detect an effect and mistakenly conclude that it does 
not exist. If a test has power that is too high, very small and possibly 
uninteresting effects might seem to be significant. 
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According to the results, we set on Minitab© all the parameters 
necessary to implement the Power Analysis test, useful to identify 
the minimum number of replicates necessary to detect an effect that 
might be significant. 
In the following Fig. 4.5 are reported the details of the Power Analysis 
settings and the results obtained. 

 

Power and Sample Size 

General Full Factorial Design 
α = 0,05  Assumed standard deviation = 1,7 
Factors: 5  Number of levels: 2; 2; 2; 2; 2 
Include terms in the model up through order:  2 
Not including blocks in model. 

 

 

Total                         Maximum 
Reps   Runs  Power  Difference 
      1     32       0,9     2,07670 
      1     32       0,8     1,79383 
      1     32       0,7     1,59006 
      1     32       0,6     1,41606 
      2     64       0,9     1,40607 
      2     64       0,8     1,21517 
      2     64       0,7     1,07752 
      2     64       0,6     0,95991 
      3     96       0,9     1,13860 
      3     96       0,8     0,98405 
      3     96       0,7     0,87261 
      3     96       0,6     0,77738 
      4    128      0,9     0,98260 
      4    128      0,8     0,84924 
      4    128      0,7     0,75307 
      4    128      0,6     0,67089 
      5    160      0,9     0,87717 
      5    160      0,8     0,75812 

 
Fig. 4.5: Power curves of replicas for maximum difference 

 
 
Remarks: 

• The injection plunger has a diemeter of 3 mm and for 1mm 
run, with polymer POM density of 1,4 g/cm3,  in he machine 
inlet in the cavity 9,8 mg of material; 

• The machine control has a response time of about 1 ms and 
this means that in 1 ms, at 100 mm/s, the machine injects in 
the cavity about 1 mg; 

• The balance has an average error of 1 mg with resolution of 
0,1 mg; 

 
Considering previous remarks, we can estimate a maximum weight 
difference of about 1,4 mg, and a power of 0,9, with n.2 replicates of 
a complete factorial plan. 
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 4.4  Experimental plan 
 

Parameters were varied according to a central composite design 
(CCD)2  that allows the estimation of quadratic effects rather than 

just the linear effect of the parameters on the responses. This 
approach is advantageous over 2^k or fractional 2^k factorial design 
used in the literature. For this reason, CCD designs are specially 
used for process optimization1. The CCD consists of a full factorial 
design (2^5 experiments) with the addition of 10 axial points and 20 
replicates of the centre point. The factorial and axial points were 
replicated two times, resulting in 104 experiments, that is [(2^5+10) 
x2]+20=104 . The distance between the centre point and the axial 
points was set to 1.31. The order of the experiments was 
randomized to avoid the effect of systematic errors. For each run, 
15 parts were produced. The parts produced in the first 5 cycles 
were discharged to stabilize the process, and the remaining 10 parts 
were considered for the analysis. 
For the sake of simplicity, in the analysis we consider x as the vector 
of the coded process parameters (x1, x2, x3, x4, x5), while natural 
variables are indicated with the name of the factor (Tmelt, Phold, Tmold, 
vinj, thold). In Table 4.5 a summary of the variables and of the 
nomenclature is reported. The levels of the process parameters, 
with alpha=1.3, are reported in Table 4.6. These levels were 
identified after a comparison among the suggested range of 
parameters reported on the material datasheet and the state of the 
art. 
 
Table 4.5: Correspondence between factors, coded variables, and natural 
variables 
 

Factor Coded 
variables 

Natural 
variables 

Melt temperature x1 Tmelt [°C] 
Holding pressure x2 Phold [bar] 
Mold temperature x3 Tmold [°C] 
Injection speed x4 vinj [mm/s] 

holding time x5 thold [s] 

 

Table 4.6: Levels of process parameters for the experimental campaign 
 

Levels 
(coded) 

Tmelt 
(melt 

temperature) 
[°C] 

Phold 
(holding 

pressure) 
[bar] 

Tmold 
(mold 

temperature) 
[°C] 

vinj 
(injection 

speed) 
[mm/s] 

thold 
(holding 

time) 
[s] 

(+1.3) 236 1650 106 157.5 3.3 
(+1) 230 1500 100 150 3 
(0) 210 1000 80 125 2 
(-1) 190 500 60 100 1 

(-1.3) 184 350 54 92.5 0.7 

 
 
The flash is a categorical variable that has been evaluated 
independently by three micro injection moulding experts. Even if it 
was possible to obtain more complex analysis of the flash defect, 

                                                           
2 D.C. Montgomery, Design and analysis of experiments, 10th ed., John wiley & sons, 2019. 
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the voting categories were simplified in 0 = no flash and 1 = flash. In 
case of doubtful evaluation, two out of three agreed votes assigned 
the category (examples extracted from the whole evaluation in Tab. 
4.7). 
 
 
Tab. 4.7: Example of the covarliates evaluation methodologies 
 

Run 
Order 

Weight  Flashing 
 

Categorical variable 
 

  [images] 0= no flash 
1= flash 

0= no flash 
1= flash 

0= no flash 
1= flash 

 [mg]  Observator 
1 

Observator 
2 

Observator 
3 

2 83,9 

 

0 0 0 

6 97,1 

 

1 1 1 

 
 

4.5  Dataset definition to identify the part weight and flash models 
 

The experimental plan developed, a central composite design 
(Section 4.3), gives us the opportunity to observe in detail the two 
variables under analysis, namely the part weight, compared to which 
we want to optimize the process, and the flash which, being a 
product defect, can be considered a constrain of the part weight.  
We decide two different approaches to identify valuable models for 
both part weight and flash variables, that will be detailed in the next 
Chapter 5: 
a. The flash constraint has been investigated with binary logistic 

regression methodology using the entire CCD plan consisting of 
104 experiements; 

b. The part weight has been investigated, instead, using a reduced 
dataset obtained considering only the values of part weight with 
0=no flash of the CCD plan and removing an outlier (run 3 in 
standard order due to the large residual), for a total of 70 
experiments 

 
➢ The CCD datasets has been used to preliminarly test the 

commercial simulator Autodesk Modlflow®. The purpose was to 
evaluate its prediction capability through the percentage error 
model. More details on the approach used and the results 
obtained are given in Appendix 1. 
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CHAPTER 5 

 
 
 
 

 

Methodologies and tools to identify  
the models of part weight and flash  

constraint to address the  
optimization problem 

 
 
 
 
 
 

5.1  Binary Logistic regression 
 

Logistic regression is the statistical technique used to predict the 
relationship between predictors (our independent variables) and a 
predicted variable (the dependent variable) where the dependent 
variable is binary.  
In our case, the dependent variable is the flash (flashing defect), 
introduced in Chapter 4, that has been binary categorized with 0 = 
no flash and 1 = flash. 
The dependent variable has been evaluated on the test parts 
produced with the Central composite design plan (CCD) defined in 
Chapter 4 Section 4.3. 
In Table 5.1 is reported the Analysis of Variance of the binary logistic 
regression. It was adopted a stepwise approach for which are not 
considered all variables in the model with the p-values greater than 
the specified alpha to enter value (in our case alpha = 0,15) and all 
variables in the model with p-values less than or equal to the 
specified alpha to remove value (in our case Alpha = 0,15). 
  
Table 5.1: Binary Logistic Regression in coded units 
 
 

Stepwise approach with alfa=0,15 

 

Method 

Link 

function 

Logit 

Rows used 104 

 

Stepwise Selection of Terms 

α to enter = 0,15; α to remove = 0,15 

 

Response Information 

Variable Value Count  

flashing_1 1 33 (Event) 

  0 71   
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  Total 104   

 

Regression Equation 

P(1) = exp(Y')/(1 + 

exp(Y')) 

 

Y' = -3,401 + 2,285 Tmold + 1,257 Tmelt + 4,95 vinj + 3,85 Phold - 

3,482 vinj*Phold 

 
Coefficients 

Term Coef SE Coef Z-Value P-Value VIF 

Constant -3,401 0,859 -3,96 0,000   

Tmold 2,285 0,582 3,93 0,000 1,95 

Tmelt 1,257 0,502 2,50 0,012 1,37 

vinj 4,95 1,12 4,43 0,000 5,92 

Phold 3,85 1,00 3,85 0,000 4,93 

thold -3,482 0,997 -3,49 0,000 4,49 

 

Odds Ratios for Continuous Predictors 

 Odds Ratio 95% CI 

Tmold 9,8255 (3,1427; 30,7193) 

Tmelt 3,5161 (1,3138; 9,4105) 

vinj * (*; *) 

Phold * (*; *) 

thold 9,8255 (3,1427; 30,7193) 

Odds ratios are not calculated for predictors that are included in interaction terms because 
     these ratios depend on values of the other predictors in the interaction terms. 

Model Summary 

Deviance 

R-Sq 

Deviance 

R-Sq(adj) AIC AICc BIC 

Area Under 

ROC Curve 

64,61% 60,76% 57,99 58,86 73,86 0,9652 

 

Goodness-of-Fit Tests 

Test DF Chi-Square P-Value 

Deviance 98 45,99 1,000 

Pearson 98 52,16 1,000 

Hosmer-Lemeshow 7 11,79 0,108 

 

Analysis of Variance 

  Wald Test 

Source DF Chi-Square P-Value 

Regression 5 23,82 0,000 

  Tmold 1 15,44 0,000 

  Tmelt 1 6,27 0,012 

  vinj 1 19,63 0,000 

  Phold 1 14,80 0,000 

  thold 1 12,19 0,000 

 

 

Fits and Diagnostics for Unusual Observations 

Obs 

Observed 

Probability Fit Resid Std Resid   

5 1,000 0,165 1,900 2,05 R   

7 0,000 0,537 -1,241 -1,37   X 

22 1,000 0,537 1,115 1,23   X 

24 1,000 0,115 2,081 2,21 R   

35 1,000 0,086 2,216 2,33 R   

52 1,000 0,115 2,081 2,21 R   

55 0,000 0,537 -1,241 -1,37   X 

66 0,000 0,537 -1,241 -1,37   X 

88 1,000 0,394 1,365 1,54   X 

97 1,000 0,394 1,365 1,54   X 

 

R  Large residual 

X  Unusual X 
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The contour plot of Fig. 5.1 shows how flash variable relate to the 
process parameters based on a model equation (5.2). For each pair 
of parameters analysed, the area < 0,1 means that the probability to 
find flash is less than 10% (eq. 5.1). Higher values mean higher 
probability to find flash.  
The quadratic effect of the main factors of equation (5.1) is clear for 
the contour plot of Phold*vinj, the two variables that are the main 
cause of flash and which interaction is well balanced to demonstrate 
their equivalent importance. 
In table 5.2 it is reported the variance covariance matrix that will be 
used and discussed in Chapter 6 to identify the optimal region of part 
weight constrained by flash. 
 

𝑃(1)  =  
𝑒𝑥𝑝(�̂�)

1 +  𝑒𝑥𝑝(�̂�)
 

(5.1) 

�̂� =  −3,401 +  2,285 𝑇𝑚𝑜𝑙𝑑 +  1,257 𝑇𝑚𝑒𝑙𝑡 +  4,95 𝑣𝑖𝑛𝑗 
+  3,85 𝑃ℎ𝑜𝑙𝑑 +  3,482 𝑣𝑖𝑛 ∗ 𝑃ℎ𝑜𝑙𝑑 

(5.2) 

 
 

 
 

 Fig. 5.1: Contour plot summary of flash variable 
 
 
Tab 5.2: Variance - Covariance Matrix 
 

0,737955 -0,158502 -0,105678 -0,80125 -0,73622 0,725698 

-0,158502 0,338254 0,143945 0,33919 0,19680 -0,158366 

-0,105678 0,143945 0,252291 0,15561 0,13333 -0,104554 

-0,801250 0,339190 0,155613 1,24757 0,95137 -0,921081 

-0,736216 0,196803 0,133329 0,95137 1,00284 -0,848643 

0,725698 -0,158366 -0,104554 -0,92108 -0,84864 0,994447 
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5.2  Part weight model identification based on reduced dataset 
 

 

In Table 5.3 it is reported the analysis of variance of the reduced 
model related to the part weight (eq. 5.3). The dataset used has 
been obtained removing from the 104 experiments of the CCD all 
the trials with flash=1 and an outlier, for a total of 70 experiments. 
Fig. 5.2 evidenced that there are no outliers and all the standardized 
residuals are in the range [+3; -3]. In Tab. 5.4 it is reported the 
variance covariance matrix that will be used and discussed in 
Chapter 6 to identify the optimal region of part weight. 
 
Table 5.3 – Analysis of variance of reduced model to flash 
 

Response Surface Regression: weight no flash versus Tmelt; Phold 

Coded Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 88,114 0,249 353,90 0,000   

Tmelt 1,419 0,235 6,04 0,000 1,15 

Phold 7,402 0,254 29,16 0,000 1,20 

Phold*Phold 3,705 0,342 10,85 0,000 1,12 

Tmelt*Phold 1,494 0,257 5,80 0,000 1,16 

 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

1,42566 93,01% 92,58% 91,68% 

 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Model 4 1758,83 439,71 216,34 0,000 

  Linear 2 1734,82 867,41 426,77 0,000 

    Tmelt 1 74,19 74,19 36,50 0,000 

    Phold 1 1728,54 1728,54 850,44 0,000 

  Square 1 239,12 239,12 117,65 0,000 

    Phold*Phold 1 239,12 239,12 117,65 0,000 

  2-Way Interaction 1 68,43 68,43 33,67 0,000 

    Tmelt*Phold 1 68,43 68,43 33,67 0,000 

Error 65 132,11 2,03     

Total 69 1890,94       

 

Regression Equation in Coded Units 

weight  = 88,114 + 1,091 Tmelt + 5,693 Phold 

+ 2,193 Phold*Phold + 0,884 Tmelt*Phold 
  (5.3)   

 

Fits and Diagnostics for Unusual Observations 

Obs weight  Fit Resid Std Resid   

2 91,767 88,114 3,652 2,60 R   

5 100,600 102,134 -1,534 -1,22   X 

9 102,433 102,134 0,300 0,24   X 

26 102,800 102,134 0,666 0,53   X 

33 99,267 96,309 2,958 2,18 R   

43 103,933 102,134 1,800 1,44   X 

45 87,667 84,494 3,173 2,32 R   

48 81,300 84,755 -3,455 -2,55 R   

52 81,500 84,755 -3,255 -2,40 R   

55 85,300 88,114 -2,814 -2,00 R   

69 85,200 88,114 -2,914 -2,08 R   
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Fig. 5.2: Scatterplot of standardized residuals 
 
 
Tab 5.4: Variance - Covariance Matrix 
 

0,0619908 0,0002111 -0,0018129 -0,058998 0,0002436 

0,0002111 0,0551336 0,0158097 0,014933 0,0174109 

-0,0018129 0,0158097 0,0644162 0,025749 0,0182387 

-0,0589980 0,0149333 0,0257492 0,116703 0,0172275 

0,0002436 0,0174109 0,0182387 0,017228 0,0662791 

 
 

5.3  Summary of the identified models of part weight and flash constraint 
 

The analysis done in the previous sections has given us the 
opportunity to identify a part weight model (eq. 5.3) and a model of 
the probability of having flash (eq. 5.2), both obtained from the same 
experimental plan but with different datasets. 
We have evidenced how flash can influence the part weight and this 
means that we can identify a feasible region whose boundaries are 
defined by the absence of flash defect.  
 
So, the response variables used are:  
1. the part weight;  
2. the probability of having flash. 

 
Let us consider that the factors evaluated are: 
 

𝐱 (𝑥1 = 𝑇𝑚𝑒𝑙𝑡, 𝑥2 = 𝑃ℎ𝑜𝑙𝑑, 𝑥3 = 𝑇𝑚𝑜𝑙𝑑, 𝑥4 = 𝑣𝑖𝑛𝑗, 𝑥5 = 𝑡ℎ𝑜𝑙𝑑) 

 
Regarding the part weight, we remind that the number of significant 
factors is 2, so 𝐱𝒘 = (x1, x2), and the model identified in eq. 5.3 is 
quadratic in two process variables: 
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�̂�(𝐱𝒘, �̂�)  =  88,114 +  1,091 𝑥1 +  5,693 𝑥2 +  2,193 𝑥2
2 +  0,884 𝑥1 ∗ 𝑥2 (5.3) 

 
Model Summary 

 

S R-sq R-sq(adj) R-sq(pred) 

1.42566 93.01% 92.58% 91.68% 

 

Beta Variance - Covariance Matrix 
                             

�̂�0 �̂�1 �̂�2 �̂�22 �̂�12 

0,0619908 0,0002111 -0,0018129 -0,058998 0,0002436 

0,0002111 0,0551336 0,0158097 0,014933 0,0174109 

-0,0018129 0,0158097 0,0644162 0,025749 0,0182387 

-0,0589980 0,0149333 0,0257492 0,116703 0,0172275 

0,0002436 0,0174109 0,0182387 0,017228 0,0662791 
 

 

Regarding the probability of having flash, the number of significant 

factors is 4, so 𝐱𝒇 = (𝑥1, 𝑥2, 𝑥3,  𝑥4), and the model identified with 
logistic regression in eq. 5.2 is reported below: 

 

𝒫𝐹 =
𝑒�̂�

1+𝑒�̂�  where 𝑦 = �̂�(𝐱𝒇, �̂�)    (5.1) 

 
with  
 

�̂�  =  −3.401 +  1.257 𝑥1  +  3.85 𝑥2  +  2.285 𝑥3 +  4.95 𝑥4–  3.482 𝑥2𝑥4 (5.2) 
 

𝜸 Variance covariance Matrix 
 

𝜸0 𝜸1 𝜸2 𝜸3 𝜸4 𝜸24 
0,737955 -0,158502 -0,105678 -0,80125 -0,73622 0,725698 

-0,158502 0,338254 0,143945 0,33919 0,19680 -0,158366 

-0,105678 0,143945 0,252291 0,15561 0,13333 -0,104554 

-0,801250 0,339190 0,155613 1,24757 0,95137 -0,921081 

-0,736216 0,196803 0,133329 0,95137 1,00284 -0,848643 

0,725698 -0,158366 -0,104554 -0,92108 -0,84864 0,994447 

 

If we impose a maximum probability of having a flash we have: 
 

𝒫�̂�(𝐱𝒇, �̂�) ≤ 𝛼 → �̂�(𝐱𝒇, �̂�) ≤ 𝑙𝑛 (
𝛼

1 − 𝛼
) = 𝑘0 (5.4) 

 

So, for example we can have:  
 

α k0 

0.01 -4.595 

0.05 -2.944 

0.10 -2.197 

0.50 0.000 
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CHAPTER 6 

 
 
 
 

 

Optimization problem:  
procedure, results and discussion  

 
 
 
 
 
 

6.1  Introduction 
 

In this chapter is presented the procedure, based on bootstrap 
simulation and data depth, used to identify a confidence region for 
the optimum of weight subjected to the constraint of the probability 
of flash. 
The procedure is based on the experimental approach described in 
the previous chapter and whose models are summarized below. 
The vector 𝒙 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} reported in fig. 6.1 is the vector of 
the main process parameters, namely 𝑥1 = 𝑇𝑚𝑒𝑙𝑡, 𝑥2 = 𝑃ℎ𝑜𝑙𝑑 ,  𝑥3 =
𝑣𝑖𝑛𝑗 ,  𝑥4 = 𝑇𝑚𝑜𝑙𝑑 ,  𝑥5 = 𝑡ℎ𝑜𝑙𝑑 , preliminary idetified to built the 

experimental plan. 
A logistic regression model was estimated to describe the probability 
of flash formation as function of the most significant process 
parameters. The model is: 
 

𝒫𝑓 =
𝑒�̂�

1 + 𝑒�̂�
  

where  
 

�̂�(𝒙𝒇, �̂�) = −3.401 + 1.257𝑥1 + 3.85𝑥2 + 2.285𝑥3 + 4.95𝑥4 − 3.482𝑥2𝑥4  (6.1) 

where  
�̂� = (−3.401, 1.257, 3.85, 2.285, 4.95, −3.482)  

and 
 

𝒙𝒇 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, } 𝑤𝑖𝑡ℎ 𝑥1 = 𝑇𝑚𝑒𝑙𝑡 , 𝑥2 = 𝑃ℎ𝑜𝑙𝑑 ,  𝑥3=𝑣𝑖𝑛𝑗
,  𝑥4=𝑇𝑚𝑜𝑙𝑑

 

The constraint can be rewritten in a linear form considering the 
following relationship: 
 

𝒫𝑓 ≤ 𝜙 → �̂�(𝒙𝒇, �̂�) ≤ 𝑙𝑛 (
𝜙

1 − 𝜙
) = 𝑘0 
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Where k0 is related to the probability of flash formation  .  

The conditions of the full experimental plan (CCD plan with N=104) 
that did not result in flash formation (NR=70), where used to 
estimate the weight of the parts as function of the most significant 
process parameters. The regression equation is the following: 
 
�̂�(𝒙𝒘, �̂�) = 88.114 + 1.091𝑥1 + 5.693𝑥2 + 2.193𝑥2

2 + 0.884𝑥1𝑥2  (6.2) 

where 
�̂� = (88.114, 1.091, 5.693, 2.193, 0.884) 

and 
𝒙𝒘 = {𝑥1, 𝑥2} 𝑤𝑖𝑡ℎ 𝑥1 = 𝑇𝑚𝑒𝑙𝑡 , 𝑥2 = 𝑃ℎ𝑜𝑙𝑑. 

 

6.2  Optimization Procedure 
 

Step 1 

The step 1 (fig. 6.1) of the procedure is the estimate of the objective 
and constraint function based on experimental data. The weight 

function �̂�(𝒙𝒘, �̂�) is described by the linear regression model 

eq.(6.1), while the constraint �̂�𝑭(𝒙𝒇,  �̂�) is described by the binary 

logistic regression model eq.(6.2).  
 

 

Fig. 6.1: Workflow of the step 1 of the procedure: experimentation 

 

Step 2 

In step 2 the bootstrap simulation has been used [1, 2]. The 
bootstrapping procedure proposed in [1] has been implemented 
using the original dataset I (fig. 6.1). Each bootstrap produces the 
vector  Ii  of {0, 1}. The bootstrap procedure produced a matrix of 
NB column and N strings that has been processed by binary logistic 

regression obtaining NB sets of γ̂B. For each bootstrap Ii , the 
conditions that resulted in a lack of flash defect were used to create 
a subset column of {1} and considered for bootstrapping the weight 
function. The result of bootstrapping the weight function with the 
vector of NRi strings (with N > NRi >0) and NB columns are NB sets 

of �̂�𝐵. This procedure has been selected to mimics the experimental 
approach used to estimate eq. (6.1) and eq. (6.2). 

 



46 
 

 

Fig. 6.2: workflow of the step 2 of the procedure: bootstrapping  

 

Step 3 

In Step 3, projection data depth [3] is used to order the NB instances 

of the bootstrap results. The NB instances [�̂�𝐵, �̂�𝐵] were ordered by 

trimming the α% outermost [3-9]. So, the confidence region ∁ (�̂�𝐵, �̂�𝐵)  
(fig. 6.2) identified after bootstrapping is reduced to the new 

confidence region  ∁1−𝛼

(�̂�𝐁,�̂�𝐁)
 (Fig.6.3), that indicates the confidence 

region of the coefficients of the models in eq. (6.1) and eq. (6.2). 
 
 

 

Fig. 6.3: workflow of the step 3 of the procedure: trimming  

 
 
Step 4 

In step 4 the optimization problem has been solved using a utility 
function (eq. 6.1) that is defined as the product between the weight 
of the part and the probability of flash formation for each set of 
process parameters (x) and for each bootstrapped set of 
parameters. The utility function is the following: 
 

𝑢(𝒙∗, �̂�𝑖
𝐵, �̂�𝑖

𝐵) =  𝑤(𝒙𝒘,  �̂�𝑖
𝐵)(1 − 𝒫𝐹(𝒙𝒇, �̂�𝑖

𝐵))   (6.3) 

If the probability of flash formation is large (that eq. (6.1) is close to 

1), then the value of 𝑢(𝒙, �̂�𝑖
𝐵, �̂�𝑖

𝐵) becomes close to 0 for every value 

of the part weight, and this means that are avoided the regions of 
the parameters where the defect probability is large independently 
from the value of the weight function. When the probability of flash 
formation is close to 0, instead, the utility function is comparable to 
the weight function.  
 
 
Step 5 

In Step 5 the optimality criteria for process optimization is selected. 
The utility function must be maximized; however, there are as many 
utility functions as the result of the trimming procedure, that is equal 

to NB (1-α). The values of the coefficients �̂�𝐵 influence the weight of 
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the part, while the coefficients �̂�𝐵 define the position of the constraint 
in the region of the parameters.  
This means that for a specific combination of input parameters x*, 
there are NB (1-α) values of the utility function. So, for the selection 
of the optimality region some statistics are used to describe the 

value of 𝑢(𝒙∗, �̂�𝑖
𝐵, �̂�𝑖

𝐵) at each point x*: 

 

• Median 

• 5th quantile 

• Mean 
 
These indexes have been selected because they better describe 
than others (Maximum, standard deviation, etc.) how the utility 
function behaves in the region of the parameters x*. 
 
 

6.3  Results and discussion 
 

6.3.1  Optimal value of part weight under deterministic 
constraint 
 
The optimization problem has been preliminary solved considering 
the probability of flash formation as deterministic costraint. Starting 
from the Step 1 of Section 6.1, once defined the probability of flash 
formation model and the part weight model, we maximized the utility 
function of eq. 6.3 to find the optimal set of parameters 𝐱𝟎,𝐃

∗  (fig. 6.3).   

When the probability of flash formation is close to 0, the utility 
function maximizes the weight of the part, which is a proxy of a 
successful filling phase. In the processing conditions that have a 
non-zero probability of flash formation, the weight is “penalized” and 
the utility is reduced. Therefore, the region where the flash formation 
is expected results in a lower utility. 
The optimization was carried out in the range [-1;1] even though the 
parameters were varied in the range [-1.3; 1.3]. This choice was 
made because in the limited range [-1;1] the variance of the 
predicted response is minimized [10] allowing a robust selection of 
the optimal conditions. 

 

Fig. 6.3: workflow to solve the deterministic optimization problem using the utility 
funcion of eq. 6.3 
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The utility function in Eq (6.3) was used to identify the optimal 
processing conditions that are the combinations of Phold, Tmelt, 
Tmold and vinj that maximize the weight. The utility function in Fig. 
6.4 is plotted against Phold and Tmelt while Tmold = vinj = -1. Utility 
increases as Phold and Tmelt increase, however as these two 
variables approach 1, the utility sees a sharp decrease. The 
reduction in the utility is due to the increased probability of flash 
formation, as shown in Figure 6.5.  
The maximum utility (93.54) is achieved at Tmelt=1, Phold=0.7, and 
Tmold=vinj=-1 as reported in Table 6. 
  
Table 6: Optimal process parameters based on the maximization of the utility 
function 
 

Optimal processing conditions 
Coded variabiles 

Optimal processing conditions 
Uncoded l variables 

Weight (mg) 
𝐱𝟎,𝐃

∗  
Flash 

probability 

Tmelt 

[°C] 

Phold 

[bar] 

Tmold 

[°C] 
vinj 

[mm/s] 
thold 

[s] 
Tmelt 
[°C] 

Phold 

[bar] 
Tmold 

[°C] 
vinj 

[mm/s] 
Thold 
[s] 

 
 

1 0.7 -1 -1 -1 230 1350 100 150 1 94.9 1.4% 

 
Tmold and vinj should be set at their lowest level because, in this 
condition, the probability of flash formation is minimized, and they 
do not influence the weight of the part. On the contrary, Tmelt should 
always be set at the highest level because it maximizes the weight 
of the part. Holding time (thold) does not affect the weight nor the 
flash probability, so it is set at the values that maximizes the 
productivity of the process; that is thold = 1 s. As previously noted, 
the minimization of the probability and the weight maximization are 
opposite objectives in terms of process parameters selection. To 
maximize weight, Phold and Tmelt should be maximized. However, 
at the same time, this choice leads to the maximization of the flash 
formation probability. There is a wide region of parameters that 
ranges from Tmelt [-1;1] and Phold [0.5; 1] that shares similar values 
of utility with the optimal values. This region is indicated by red 
contour lines in Fig. 6.5. 

 
Fig. 6.4: Utility as function of Phold and Tmelt (vinj = Tmold = -1) 
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Fig. 6.5: Contour plot of the utility function. The red dot indicates the optimal 
processing condition. 

 
Optimizing processing conditions in µIM requires a compromise 
between maximizing weight and minimizing the likelihood of 
producing components with flash. The optimal point involves a 
reduction of the holding pressure, which results in lower pressure on 
the cavity of the mould with a consequent reduction in the risk of 
reaching the limit of the clamping force. Therefore, a high 
temperature of the molten polymer must be used to reduce viscosity 
to correctly fill the microcavity and, at the same time, to compensate 
for the pressure reduction. 
 
6.3.2  Optimal region of part weight under stochastic constraint 

Analyzing eq. (6.1), we can see that if 4̂ (coefficient of 𝑥3) is positive 

and if 6̂  (coefficient of the interaction 𝑥24) is negative, then the 

solution of the optimization problem requires that 𝑥3 = −1 and 𝑥4 =
−1. In fact, if we look at the NB bootstrapped coefficients of Fig. 6.6, 
we can see that, for all the vectors of the bootstrapping procedure, 

the 4̂  coefficient is always positive and the 6̂ coefficient is  always 
negative. So, to minimize the probability of flash formation Tmold 
and vinj must be set at their lowest level.  
 

 

Fig. 6.6: B bootstraped values of the coefficients of Tmold, 4̂ , and the 

coefficient of the interaction vinj*Phold, 6̂  
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So, the optimization problem can be focused only on the 
optimization of 𝑥1 (𝑇𝑚𝑒𝑙𝑡) and 𝑥2 (𝑃ℎ𝑜𝑙𝑑) because they both influence 
the objective function and the constraint. In detail, as Tmelt and 
Phold increase the weight increases (and therefore the quality), but 
at the same time also the defect probability increases. The utility 
function can help to find a compromise between these two 
conflicting aspects.  
For each combination of (𝑥1, 𝑥2) = ( 𝑇𝑚𝑒𝑙𝑡, 𝑃ℎ𝑜𝑙𝑑) B bootstrapped 
values of weight and flash probability were generated in Step 4, 5% 
of which were trimmed, resulting in 95000 values. For clarity 
purposes, the distribution of the weight and probability of flash 
formation for a selected point are shown in Figure 6.7 (the point is 
𝑥1 = 0.8 and 𝑥2 = 0.8). 
The probability of flash formation varies between 0 and 0.4 (fig. 
6.7a), as expected because as Tmelt and Phold increase the defect 
probability also increases. However, around 8500 simulations 
resulted in a lack of formation of flash which is little less than 10% of 
the overall generated data. The weight distribution follows a 
gaussian distribution centered in 97 mg (fig. 6.7b). The resulting 
utility function for this specific combination of parameters is shown 
in Figure 6.7c. The utility has a right-skewed distribution due to the 
shape of the flash probability in Figure 6.7a.  

 
 

a) b) 

 

 

c)  
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Fig. 6.7: Examples of distributions of flash probability (a), weight (b), and utility 
function (c) for a specific point in the region of the parameters. In this case 
x1=tmelt=0.8 and x2=Phold=0.8. 

 

For the specific case in Fig. 6.7Errore. L'origine riferimento non è 
stata trovata., the mean utility is 94.7 mg, the median is 95.4 mg 
and the 5% quantile is 89.78 mg. The mean and median utility show 
closer values, while the 5% quantile of the utility function has lower 
values because it is more conservative.  
Considering the indexes reported at Step 5, the resulting utility 
functions are shown in the following Fig. 6.8. 
 

  

a) 3D surface of 5% quantile b) Contour plot of 5% quantile 

  

c) 3D surface  of mean d) Contour plot of mean 
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e) 3D surface  of median f) Contour plot of median 

 
Figure 6.8: Utility functions based on different indexes. a) 0.05-quantile, b) mean 
and c) median  

 

The shape of the three utility functions in Errore. L'origine 
riferimento non è stata trovata. is mostly the same, in particular 
for mean and media, while the 5% quantile is more conservative. If 
we look at the contour plots of fig. 6.8 b, d, f, we can observe that at 
low levels of both parameters (Phold and Tmelt), the utility values 
are low because of the low weight of the part. At the same time in 
the same evaluated region, the probability of flash formation is close 
to 0. As Phold (𝑥2) increases, the utility also increases reaching its 
maximum when Phold is larger than 0.8. However, in the upper right 
corner (𝑥1 = 𝑥2 = 1) there is a sharp decrease in the utility mostly 
due to the high probability of defect formation. Median and Mean 
utility function reach the same maximum value of 96, while the 
maximum value of the 5% quantile utility function is 92 and therefore 
lower, as expected, because choosing the 5% quantile means to 
select the value of utility that is exceed by 95% of the values. On the 
contrary, mean and median allow for an increased utility accepting 
a higher risk of defects for the parts. Since the distribution of the 
utility (Fig. 6.7) is not symmetrical, the median index is preferred to 
the mean. An overimposition of the optimal region for the 5% 
quantile of utility and median is shown in Fig. 6.9 where in yellow it 
is evidenced the optimality region for micro injection moulding.  
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Figure 6.9 - Optimality region (yellow) for the micro-injection process. 

 
 

 6.4  Nomenclature 
 

Symbol Definition Value 

x Vector of the main process parameters See Fig. 6.1 

𝐱𝐟 Vector of the most significant process parameters of 
the to describe the probability of flash formation 

See eq. (6.1) 

𝐱𝐰 Vector of the most significant process parameters of 
the weight model 

See eq. (6.2) 

𝐱∗ Vector of the most significant process parameters of 
the utility function 

See eq. (6.3) 

�̂� Estimated logistic equation for flash formation 
probability based on experimental data 

See eq. (6.1) 

�̂� Least square estimate of the weight of the part based 
on experimental data 

See eq. (6.2) 

N Combination of process parameters of the full CCD 
plan 

 

𝑁𝑅 Reduced database of N that did not result in flash 
formation 

 

𝑁𝐵 Combination of process parameters of the Bootstrap 
sampling of the logistic model that did not result in flash 
formation 

 

𝑁𝑅𝑖 Combination of process parameters of the Bootstrap 
sampling of the logistic model that did not result in flash 
formation 

 

i index 𝑖 ∈ {1,  𝑁𝐵}  

j index 𝑗 ∈ {1,  𝑁}  

�̂�𝐵 Bootstrap coefficient of the weight function   

�̂�𝐵 Bootstrap coefficient of the constraint function  

�̂� Coefficient of the experimental weight function  

�̂� Coefficient of the experimental constraint  

α Percentage of trimmed data 5% 

B Number of iterations of the bootstrap procedure 100000 
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CHAPTER 7 

 
 
 
 

 

Conclusions 
 
 
 

 
The present work focused on the evaluation of part weight as an 
affordable variable to be easily implemented in an industrial 
environment to estimate the quality of the moulded part.  
The quality of the produced components in µIM process is still an 
open question to which researcher are still trying to give an answer. 
Some defects, such as flash formation, are more usual than 
standard injection moulding due to the extreme process conditions 
of the micro injection moulding process and arise when the part 
weight is maximized.  
In the proposed work, it has been defined a procedure to identify an 
optimality region for the maximum weight of the moulded part in 
which the risk of generating flash is minimized.  
For the first time, such a procedure was applied to a technological 
problem and, additionally, the procedure was generalized to also 
consider a stochastic constraint. 
An extensive experimental campaign based on a Central Composite 
Design CCD was carried out to assess the influence of five process 
parameters (namely holding pressure, molding temperature, 
injection speed, holding time and melting temperature)  
These parameters have been chosen based on the available 
literature to easily verify the effectiveness of the proposed method 
and the further steps forward compared to the state of the art. It was 
decided, for example, to set the injection pressure at the maximum 
level allowed by the machine and vary the injection speed. This 
approach, which tends to minimize the cycle time, is certainly more 
useful from an industrial point of view. Further insights into the topic 
of cycle time could introduce additional factors related to the 
dynamics of the press, in terms of performance. In this sense, for 
example, the analysis of the switchover point could be a factor able 
to give interesting indications on the precision of the machine 
because its variability can introduce more or less material in the 
cavity and concretely affect the part weight. 
Flash formation has been evaluated by three injection molding 
experts that provides a binary response to determine if flash is 
formed, 1= flash and 0=no flash. This approach is replicable in an 
industrial environment where the presence of defects should be 
assessed instantly, however it has limitations because different 
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levels of severity of flash can be determined. Even if the 
methodology proposed is not affected by this simplification, a future 
step will consider the opportunity to extend to more than two levels 
the flash evaluation. In this way, we expect to have a much broader 
and more precise evaluation criteria. 
The experimental data were used to estimate two regression 
models: a quadratic model describing the weight of the component, 
affected by melt temperature and holding pressure, and a logistic 
model for the probability of flash formation, that is influenced by the 
same parameters as the weight and in addition by mould 
temperature and injection speed.  
The selection of the optimal level of the process parameters was 
carried out using a utility function.  
The utility function aims at finding a compromise between the 
maximization of the weight and the minimization of the probability of 
flash formation.  
The constrained optimization problem has been previously solved 
with the deterministic approach, and the optimal point obtained 
involves a reduction of the holding pressure, which results in lower 
pressure on the cavity of the mould with a consequent reduction in 
the risk of reaching the limit of the clamping force. Therefore, a high 
temperature of the molten polymer is necessary to reduce the 
viscosity to fullfill the microcavity and, at the same time, to 
compensate for the necessary pressure reduction to prevent flash 
formation. 
Then the constrained optimization problem has been solved 
considering a stochastic costrain. The bootstrap technique and data 
depth approach has been used to identify the optimality region of the 
part weight constrained by the region related to the probability of 
flash formation. The results evidenced how effective the proposed 
approach is than the deterministic one. An overimposition of the 
optimal region for the 5% quantile of utility and median, evidenced 
the optimality region for micro injection moulding. 
The result of this novel approach is a greater variability of the main 
process parameters, namely Tmelt and Phold, and this means a 
greater variability of the micro injection moulding process without 
falling into the risk of producing waste parts. 
The use of a utility function that correlates two variables of the same 
process has proved to be fundamental for the construction of the 
optimality region. An approach based on the use of a utility function 
can be extended to other related parameters and defects, as well as 
being applied to the study of further process-related aspects, such 
as an energy-based utility approach, or on the convenience or not 
of some types of geometries that could increase the occurrence of 
problems related to the material shrinkage, for example.   
Future steps will involve also a simulation approach in order to have 
more predictive ability. Preliminary results related to the comparison 
of process simulation and experimentation are given in Appendix 1. 
It has been defined a procedure for correctly setting the simulator 
parameters in order to minimize the percentage error related to the 
part weight and consequently to improve the ability of the simulator 
to predict the flash formation. 
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APPENDIX 1 

 
 
 
 

 

Part weight comparison between  
simulation and experimentation:  

preliminary analysis 
 
 

 
 
 

A1.1  Introduction 
 
 

A part of the Phd activity focused on the study of the simulation 
process of micro injection molding and in particular on the 
identification of the intrinsic parameters of the simulator whose 
setting may affect the part weight. 
The choice of the part weight, as observed variable, is linked to the 
need for a variable easily measurable and therefore that can provide 
a fast response on the quality of the component. 
The part weight is widely used for classic molding, as discussed in 
previous chapters, while it is the subject of study in the field of micro 
injection molding technology, among others, which is not yet 
properly exploited precisely because of the difficulty of measuring its 
miniaturised components and the scarcity of measuring and 
simulation tools that it can provide, as is the case with classical 
moulding, a valid support both for the designer and for the 
production. 
Therefore the activity proposed with the doctorate fits into this gap 
with the clear intention of trying to build a new procedure for the 
analysis of the micro injection moulding process, which uses on the 
one hand the process parameters configurable on the machine and, 
on the other hand, trying to identify, within the thermoplastic 
simulation software Autodesk Moldflow©, which parameters can 
have a greater influence on the part weight in order to identify a 
prediction model on the basis of which you can try to optimize the 
process and have a clearer vision of how different the approach to 
the micro world is compared to the macro; and so what factors need 
to be "calibrated" for a correct prediction of the process in order to 
minimize waste and then make micro injection molding process 
more repeatable and therefore more reliable. 
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A1.2  Simulator parameters 
 

The simulator parameters identified that can influence the part 
weight are: 
 
Heat Transfer Coefficient (HTC): defines the heat transfer at the 
interface between the molten polymer and the mould wall, which 
models the associated thermal resistance. If HTC = 0, there is no 
heat exchange between molten polymer and mould. The higher the 
HTC value, the greater the heat transfer from molten polymer to 
mould. The HTC values are set at different values for filling, packing 
and cooling analysis in a proportional way so that once the 
temperature reduces, due to the cooling of the material, the HTC 
value is reduced too. 
The cooling conditions under which the melt is injected, cooled and 
packed also need to be considered. The heat transfer coefficient in 
μIM is more difficult to determine because it has a stronger 
dependence on pressure, melt viscosity, part shrinkage as well as 
newly emerged factors such as the wall slip phenomenon. One 
approach to obtain the heat transfer coefficient involves measuring 
the heat flux and the melt/mold temperatures at the interface via 
experimental methods. Alternatively, comparing simulation results 
with short-shot experiments to get a best fit also allows us to obtain 
heat transfer coefficients comparable to those directly found in 
experiments. However, in both methods the heat transfer coefficient 
in μIM is considered as a constant, which neglects its process 
condition dependence. Instead, a variable heat transfer coefficient 
seems to be more applicable in predicting the polymer filling in 
micro-channels. Furthermore, in most existing numerical simulations 
(for both CIM and μIM), the material is treated as an incompressible 
flow during the filling phase, indicating the neglect of the melt 
compressibility effects. Under extremely high pressure as in μIM, the 
rarely considered melt compressibility may produce significant 
influence on parameter predictions. As demonstrated in a recent 
report, failure to consider melt compressibility apparently 
underestimates the filling pressure, especially at the late stage of the 
melt filling process, and as a result, this gives inaccurate information 
on the part density. To overcome this defect, the compressibility (i.e., 
the nonzero term, ∂ρ/∂t) should be included in the continuity 
equation as applying simulations. 
 
Coefficient of Thermal Expansion (CTE): is a material property 
which characterizes the ability of a plastic to expand under the effect 
of increasing temperature. It tells us how much the developed part 
will remain dimensionally stable under temperature variations. Two 
values representative of the transversally isotropic CTE are 
considered: Alpha 1 (Coefficient of thermal expansion in the flow 
direction) and Alpha2 (Coefficient of thermal expansion in the 
transverse direction). 
 
Cross WLF viscosity model: is the viscosity model tipically used in 
numerical softwares for injection moulding because, compared to 
other models such as Ellis, Bird-Careau, etc., describes the 
temperature, shear rate, and pressure dependant of the viscosity. 
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The viscosity model is given by the following equation: 

𝜂 =
𝜂0

1+(
𝜂0�̇�

𝜏∗ )
                        (A1.1) 

where: 
 

 is the melt viscosity (Pa s) 
 is the zero shear viscosity or the 'Newtonian limit' in which the 

viscosity approaches a constant at very low shear rates, 

 is the shear rate (1/s) 
 is the critical stress level at the transition to shear thinning, 

determined by curve fitting, and 
 is the power law index in the high shear rate regime, determined 

by curve fitting. 
The zero shear viscosity is given by the equation: 

 

𝜂0 = 𝐷1
[−

𝐴1(𝑇−𝑇∗

𝐴2+(𝑇−𝑇∗)
]
  (A1.2) 

where 

• 𝑇 is the temperature (K) 

• 𝑇∗ is the glass transition temperature, determined by curve 
fitting, 

 𝐴2  =  𝐴3  +  𝐷3𝑝 
 

• 𝑝  is the pressure (Pa),  
 
and where 
 

• 𝐷1, 𝐴1, 𝐴3 and 𝐷3 are data-fitted coefficients. 
 
The glass transition temperature is given by the equation:  𝑇∗ = 𝐷2 +
𝐷3 𝑝  where 𝐷2 is a data-fitted coefficient. 
Among all the parameters observed, 𝐷1 can be considered the most 

influential because can significantly affect 𝜂0, and consequently 𝜂. 
 
 

A1.3  Variability range of simulator parameters 
 

The identification of the range of the simulation parameters was one 
of the most critical aspects because it was necessary to identify a 
range that could affected the part weight but without leading to 
divergence the simulator.  
A preliminary screening was done but the ranges identified were not 
large enough to detect their influence on the part weight. An expert 
of Autodesk Moldflow has been consulted in order to understand 
with which criterion to choose the range of the simulator parameters 
identified. The following Table A1.1 is a summary of the 
assessments done. 

 

 

 



60 
 

 

Table A1.1 - preliminary ranges of the simulator parameters 

 

 

According to the analysis of table A1.1, for each one of the simulator 
parameters different criteria has been used: 

• The HTC parameter is splitted, on the software in n.3 
subparameters, namely HTC filling, HTC packing ed HTC 
detached. We decide to set them with the same variability 
defined for the screening tests and in agreement with the 
Moldflow expert, considering that the parameter HTC filling 
loses significance if it is set too near to the extreme values 0 
[W/m2 °C] and 20,000 [W/m2 °C]. For HTC packing and HTC 
detached, instead, once defined the interval for HTC filling, it 
has been used the same proportion proposed by Moldflow, 
so halving HTC filling values to have HTC packing values, 
and then halving HTC packing values defined to have the 
HTC detached values. 

• As regards D1, we decided to apply the approach proposed 
by the Moldflow expert. So, thanks to a specific search 
criterion for the D1 parameter available in Moldflow material 
database, it was possible to query the database to identify the 
maximum and the minimum value of D1 among all the POM 
available. 

• The same approach has been used also for CTE. After a 
check on the available database for POM, from which it 
emerges that quite all the alpha values are set equal, we 
decide to use the extreme values that  haven’t given problem 
of divergence during simulations. 

 
In Table A1.2 are reported the levels of the process parameter 
defined for the experimental campaign (Chapter 4) and the levels of 
simulator parameters to be tuned in the simulator. 
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Table A1.2 - Ranges of the simulator parameters identified 

 

 

A1.4  Design of simulated experiments 
 

In order to compare the simulated process with the real one, it was 
decided to build the simulation plan using the design of experiment 
approach by creating a fractional factor plan with 10 factors (Table 

A1.2) without replicas whose details are reported in Table A1.3. 
 
Table A1.3 – Design summary of the design of simulation plan 
 

Factors: 10 Base Design: 10; 128 Resolution: V 

Runs: 129 Replicates: 1 Fraction: 1/8 

Blocks: 1 Center pts (total): 1     

 

Design Generators: H = ABCG; J = BCDE; K = ACDF 
Block Generators: ADG 
Defining Relation:  I = ABCGH = BCDEJ = ACDFK = ADEGHJ = BDFGHK = 
ABEFJK = CEFGHJK 

 

 

The response variable identified as useful for comparing simulation 
results with experimental results is the percentage error reported in 
eq. A1.3   

 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 =  (
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ− 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡
) ∗ 100 (A1.3) 

 
 

A1.5  Coding of experiments related to flash 
 

In literature, the flash formation has been predicted in a single 
micropart production by adding the venting channel as part of the 
cavity domain [1, 2]. With the novel approach proposed in this 
section, the flash formation during the simulations has been 
associated with the overcoming of the clamping force. The limit 
value of the clamping force can be set in the simulator and when the 
process exceeds the limit, the software provides some warning 
messages, available in the real time log file on the screen, which do 
not inhibit the simulation itself.   
In the following table A1.4 is reported the coding criteria adopted for 
the simualted experiments in order to differentiate the response 
behaviour in terms of weight and flash of the simulator from the 
experiments described in Chapter 4. 
 
Table A1.4 – coding criteria for simulated experiments 

FLASH 

Simulation Experimentation Condition Available data 

Tmold Tmelt vinj Phold thold viscosity (D1) HTC filling HTC packing HTC detached CTE

[°C] [°C] [mm/s] [bar] [s] [ W/m^2-C] [ W/m^2-C] [ W/m^2-C]

low (-) 60 190 100 500 1 8,84220E+13 1500 850 400 0,00003

high (+) 100 230 150 1500 3 6,22000E+16 15000 7500 3750 0,00050

Process parameters Software parameters
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0 0 (0 0) 55 + 10 center points of 
experimental camapign 

0 1 (0 1) 24 

1 0 (1 0) 18 

1 1 (1 1) 29 (+2)* 

  

where:  
0 = no flash; 1 = flash 
 
*N.2 simulated experiments were not completed successfully but 
they gave a warning on the clamping force confirmed by the flash 
for experimental trials with same process parameters. 
 
 

A1.6  Regression on condition (0 0) 
 

A1.6.1  Full model 
 
In the following section it is reported the analysis of variance (Table 
A1.5) related to the condition (0 0), which means that for both 
compared trials we have absence of flash. The analysis of variance 
evidenced a great significativity of the Phold and of Tmelt, as 
expected, and high significativity also of the HTC packing, a 
simulator parameter. 
 
Table A1.5 – Analysis of variance for the full model related to the condition (0 0) 

Source DF Adj SS Adj MS F-Value P-Value  

Regression 45 1921,28 42,695 24,11 0,000  

  Tmold 1 2,58 2,584 1,46 0,242  

  Tmelt 1 22,66 22,662 12,80 0,002  

  vinj 1 0,26 0,257 0,14 0,708  

  Phold 1 100,11 100,114 56,54 0,000  

  thold 1 0,07 0,069 0,04 0,846  

  D1 1 12,71 12,708 7,18 0,015  

  HTC filling 1 0,00 0,001 0,00 0,981  

  HTC packing 1 35,43 35,428 20,01 0,000  

  HTC detached 1 7,13 7,133 4,03 0,059  

  CTE alfa 1 6,62 6,617 3,74 0,068  

  Tmold*Tmold 1 25,15 25,148 14,20 0,001  

  Tmold*Tmelt 1 0,72 0,720 0,41 0,531  

  Tmold*vinj 1 1,19 1,194 0,67 0,422  

  Tmold*Phold 1 11,18 11,183 6,31 0,021  

  Tmold*thold 1 0,31 0,309 0,17 0,681  

  Tmold*D1 1 0,25 0,251 0,14 0,711  

  Tmold*HTC filling 1 0,12 0,121 0,07 0,796  

  Tmold*HTC packing 1 2,29 2,295 1,30 0,269  

  Tmold*HTC detached 1 0,08 0,078 0,04 0,836  

  Tmelt*vinj 1 1,85 1,847 1,04 0,320  

  Tmelt*Phold 1 11,59 11,595 6,55 0,019  

  Tmelt*thold 1 0,48 0,477 0,27 0,610  

  Tmelt*D1 1 0,00 0,002 0,00 0,971  

  Tmelt*HTC filling 1 0,00 0,000 0,00 0,987  

  Tmelt*HTC packing 1 0,00 0,002 0,00 0,971  

  Tmelt*HTC detached 1 1,26 1,261 0,71 0,409  

  Tmelt*CTE alfa 1 0,34 0,339 0,19 0,667  

  vinj*Phold 1 0,03 0,029 0,02 0,900  

  vinj*thold 1 12,09 12,088 6,83 0,017  

  vinj*D1 1 1,09 1,086 0,61 0,443  

  vinj*HTC detached 1 0,23 0,234 0,13 0,720  

  vinj*CTE alfa 1 2,69 2,691 1,52 0,233  
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  Phold*thold 1 3,21 3,212 1,81 0,194  

  Phold*HTC filling 1 0,48 0,478 0,27 0,609  

  thold*D1 1 2,40 2,404 1,36 0,258  

  thold*HTC filling 1 0,41 0,414 0,23 0,634  

  thold*HTC packing 1 13,71 13,707 7,74 0,012  

  thold*CTE alfa 1 0,13 0,129 0,07 0,790  

  D1*HTC filling 1 0,04 0,035 0,02 0,889  

  D1*HTC packing 1 4,39 4,393 2,48 0,132  

  D1*HTC detached 1 1,26 1,259 0,71 0,410  

  HTC filling*HTC detached 1 1,95 1,953 1,10 0,307  

  HTC filling*CTE alfa 1 0,07 0,070 0,04 0,845  

  HTC packing*HTC 
detached 

1 0,59 0,593 0,34 0,569  

  HTC detached*CTE alfa 1 0,03 0,028 0,02 0,901  

Error 19 33,65 1,771      

  Lack-of-Fit 10 20,03 2,003 1,32 0,342  

  Pure Error 9 13,62 1,513      

Total 64 1954,92        

 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

1,33072 98,28% 94,20% * 

 
 
A1.6.1  Reduced model for condition (0 0) 
 
The reduced model confirmed the significativity of the Phold 
compared to the other parameters (Table A1.6). The regression 
model identified (eq. A1.4) has an R2adj around 80%, so still with a 
good prediction capability. The normality plot in Fig. A1.1(left)  
evidenced a normal distribution of the residuals, while for the 
scatterplot of Fig. A1.1 (right) all the values are in the interval [+3; -
3] and there is no evidence of outliers. 
 
Table A1.6 – Analysis of variance for the reduced model related to the condition 
(0 0) 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 5 1607,90 321,58 54,67 0,000 

  Tmold 1 14,43 14,43 2,45 0,123 

  Tmelt 1 27,48 27,48 4,67 0,035 

  Phold 1 1542,07 1542,07 262,17 0,000 

  HTC packing 1 102,60 102,60 17,44 0,000 

  Tmold*Tmold 1 243,65 243,65 41,42 0,000 

Error 59 347,03 5,88     

  Lack-of-Fit 50 333,41 6,67 4,41 0,011 

  Pure Error 9 13,62 1,51     

Total 64 1954,92       

 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

2,42525 82,25% 80,74% 78,21% 

 

Regression Equation 
 

Perc. error = 0,870 + 0,568 Tmold + 0,718 Tmelt + 6,957 Phold 
- 1,442 HTC packing + 5,753 Tmold*Tmold       

(A1.4) 
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Fig. A1.1 – normality distribution (left) and scatteplot of standard residuals 
versus fits and process parameters (right) for condition (0 0) 

 

A1.7  Regression analysis on condition (0 0) + (1 0) 
 

 
A deeper analysis of the clamping force results concerning the 
condition (1 0), so flash detected for simulation but not confirmed by 
experimentaiton, showed that more than half of the simulated trials 
of the condition (1 0) didn’t exceed too much the limit of the clamping 
force (Fig. A1.2). 

 

 

Fig. A1.2 – Clamping force distribution for trials related to the condition (1 0) 

 
 
The analysis of variance (Table A1.7) confirmed the significativity of 
the parameters identified with the condition (0 0) but with the addition 
also of D1 but with low impact on the process. 

 

Clamping force limit 
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Table A1.7 – Analysis of variance for the full model related to the condition (0 0) 
+ (1 0) 
 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 48 3240,87 67,518 42,97 0,000 

  Tmold 1 2,39 2,389 1,52 0,226 

  Tmelt 1 48,19 48,187 30,66 0,000 

  vinj 1 8,04 8,041 5,12 0,030 

  Phold 1 812,79 812,789 517,23 0,000 

  thold 1 2,76 2,757 1,75 0,194 

  D1 1 21,03 21,033 13,38 0,001 

  HTC filling 1 4,20 4,200 2,67 0,111 

  HTC packing 1 53,62 53,624 34,12 0,000 

  HTC detached 1 5,90 5,899 3,75 0,061 

  CTE alfa 1 5,76 5,762 3,67 0,064 

  Tmold*Tmold 1 123,27 123,266 78,44 0,000 

  Tmold*Tmelt 1 0,31 0,310 0,20 0,660 

  Tmold*vinj 1 0,02 0,019 0,01 0,914 

  Tmold*Phold 1 9,16 9,158 5,83 0,021 

  Tmold*thold 1 0,44 0,441 0,28 0,600 

  Tmold*D1 1 6,37 6,373 4,06 0,052 

  Tmold*HTC filling 1 2,01 2,013 1,28 0,266 

  Tmold*HTC packing 1 1,98 1,977 1,26 0,270 

  Tmold*HTC detached 1 0,66 0,660 0,42 0,521 

  Tmold*CTE alfa 1 0,01 0,013 0,01 0,929 

  Tmelt*vinj 1 1,91 1,914 1,22 0,278 

  Tmelt*Phold 1 26,38 26,382 16,79 0,000 

  Tmelt*thold 1 0,00 0,000 0,00 0,992 

  Tmelt*D1 1 0,05 0,047 0,03 0,864 

  Tmelt*HTC filling 1 1,08 1,081 0,69 0,413 

  Tmelt*HTC packing 1 2,08 2,082 1,33 0,258 

  Tmelt*HTC detached 1 2,75 2,746 1,75 0,195 

  Tmelt*CTE alfa 1 0,27 0,270 0,17 0,681 

  vinj*Phold 1 3,73 3,735 2,38 0,132 

  vinj*thold 1 21,16 21,159 13,46 0,001 

  vinj*D1 1 1,80 1,800 1,15 0,292 

  vinj*HTC detached 1 4,03 4,025 2,56 0,119 

  vinj*CTE alfa 1 15,45 15,448 9,83 0,004 

  Phold*thold 1 7,45 7,453 4,74 0,036 

  Phold*HTC filling 1 0,23 0,228 0,14 0,706 

  Phold*HTC packing 1 0,31 0,310 0,20 0,660 

  thold*D1 1 6,09 6,089 3,87 0,057 

  thold*HTC filling 1 0,19 0,187 0,12 0,732 

  thold*HTC packing 1 30,53 30,534 19,43 0,000 

  thold*CTE alfa 1 0,14 0,145 0,09 0,763 

  D1*HTC filling 1 4,22 4,215 2,68 0,111 

  D1*HTC packing 1 6,46 6,458 4,11 0,051 

  D1*HTC detached 1 0,15 0,146 0,09 0,762 

  HTC filling*HTC detached 1 0,01 0,006 0,00 0,949 

  HTC filling*CTE alfa 1 1,76 1,757 1,12 0,298 

  HTC packing*HTC 
detached 

1 0,03 0,026 0,02 0,899 

  HTC packing*CTE alfa 1 0,02 0,023 0,01 0,905 

  HTC detached*CTE alfa 1 0,50 0,497 0,32 0,578 

Error 34 53,43 1,571     

  Lack-of-Fit 25 39,81 1,592 1,05 0,499 

  Pure Error 9 13,62 1,513     

Total 82 3294,30       

 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

1,25357 98,38% 96,09% * 
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A1.8  Comparison of reduced models 
 

The comparison between the regression analysis for the condition 
(0 0) and the one extended to condition (0 0) + (1 0), shows that the 
models found have very similar coefficients (Table A1.8). If we 
analyze the R2adj we can detect a minimum improvement for the 
model obtained from the conditions (0 0) + (1 0) compared to the 
one of condition (0 0). However the error increases slightly for the 
condition (0 0) + (1 0). Therefore the models are both valid and this 
allows us, with the model obtained from the condition (0 0) + (1 0), 
to be able to monitor an eligible region wider than the one with 
condition (0 0). 
 
Table A1.8 – Syntesis of regression analysis for reduced models of condition (0 
0) and (0 0)+(1 0) 
 

(0 0) reduced model (0 0) + (1 0) reduced model 

Analysis of Variance 

Source DF Adj SS Adj MS 

F-

Value 

P-

Value 

Regression 5 1607,90 321,58 54,67 0,000 

  Tmold 1 14,43 14,43 2,45 0,123 

  Tmelt 1 27,48 27,48 4,67 0,035 

  Phold 1 1542,07 1542,07 262,17 0,000 

  HTC packing 1 102,60 102,60 17,44 0,000 

  Tmold*Tmold 1 243,65 243,65 41,42 0,000 

Error 59 347,03 5,88     

  Lack-of-Fit 50 333,41 6,67 4,41 0,011 

  Pure Error 9 13,62 1,51     

Total 64 1954,92       
 

Analysis of Variance 

Source DF Adj SS Adj MS 

F-

Value 

P-

Value 

Regression 5 2748,70 549,74 77,58 0,000 

  Tmold 1 4,36 4,36 0,62 0,435 

  Tmelt 1 95,24 95,24 13,44 0,000 

  Phold 1 2522,63 2522,63 356,02 0,000 

  HTC packing 1 94,48 94,48 13,33 0,000 

  Tmold*Tmold 1 206,44 206,44 29,13 0,000 

Error 77 545,60 7,09     

  Lack-of-Fit 68 531,98 7,82 5,17 0,006 

  Pure Error 9 13,62 1,51     

Total 82 3294,30       
 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

2,42525 82,25% 80,74% 78,21% 

    
 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

2,66189 83,44% 82,36% 80,88% 
 

Regression Equation 

percentage 
error 

= 0,870 + 0,568 Tmold + 0,718 Tmelt 
+ 6,957 Phold - 1,442 HTC packing 
+ 5,753 Tmold*Tmold 

 

Regression Equation 

percentage 
error 

= 0,870 + 0,264 Tmold + 1,191 Tmelt 
+ 6,272 Phold - 1,138 HTC packing 
+ 4,926 Tmold*Tmold 
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A1.9  Conclusions 

 
In this appendix are reported the results of a preliminary comparative 
analysis between simulation and testing of the micro injection 
moulding process. The aim was to assess the simulator’s ability to 
predict the real behavior of the process. 
The simulation investigation was performed using the same DoE 
plan used for the experiments, obviously without replicas because 
the simulator is deterministic, in order to directly compare the results. 
The innovative aspect compared to the state of the art was to include 
in the simulation plan, in addition to the process parameters used 
for testing, some parameters of the simulator that are HTC (heat 
transfer coefficient), the parameter D1 of the Cross-WLF viscosity 
model and the coefficient of thermal expansion (alpha). 
A criterion able to associate the flash constraint to a simulation result 
has been identified, that is considering, as a simulation event that 
generates the flash, a warning that advices about the overcoming of 
the clamping force. 
From a first direct comparative analysis between simulation and 
experimental results, it was found that the simulator was able to 
predict as well as the experimentation in 67.5% of cases compared, 
of which about 43,5% the absence of flash and about 24% the 
presence of flash. 
The response variable identified as useful for comparing simulation 
results with experimental results is the percentage error with which 
the simulator is wrong compared to the experiments. 
In this preliminary phase it has been identified a regression model 
with which it is possible to predict in a rather reliable way the set of 
parameters that can minimize the percentage error in absence of 
flash.  
Future developments foresee further investigations on the model 
identified with the aim of being able to build a confidence region of 
the deterministic optimal thanks to the stochastic part due to the 
experimentation. 
The study has also shown that only a couple of parameters of the 
simulator have proved to be influential on the weight, and it will be 
interesting to extend this type of approach to other observation 
variables, such as shrinkage, to assess which simulator parameters 
affect the new variable as well as considering other defects typical 
of the micro injection molding process, such as warpage. 
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