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A master in the art of living draws no sharp distinction between his work and his play;
his labor and his leisure; his mind and his body; his education and his recreation. He

hardly knows which is which. He simply pursues his vision of excellence through
whatever he is doing, and leaves others to determine whether he is working or

playing. To himself, he always appears to be doing both.

[L. P. Jacks, Education through Recreation, 1932]
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Abstract

The latest developments in industry have involved the deployment of digital
twins for both long and short term decision-making, such as supply chain
management and production planning and control. The ability to take appro-
priate decisions online is strongly based on the assumption that digital models
are properly aligned with the real system at any time. As modern produc-
tion environments are frequently subject to disruptions and modifications, the
development of digital twins of manufacturing systems cannot rely solely on
manual efforts. Industry 4.0 has contributed to the rise of new technologies
for data acquisition, storing and communication, allowing for the knowledge
of the shop floor status at anytime. If a model could be generated from the
available data in a manufacturing system, the development phase may be sig-
nificantly shortened. However, practical implementations of automated model
generation approaches remain scarce. It is also true that automatically built
representations may be excessively accurate and describe activities that are
not significant for estimating the system performance. Hence, the generation
of models with an appropriate level of detail can avoid useless efforts and long
computation times, while allowing for easier understanding and re-usability.

This research focuses on the development and adoption of automated
model generation techniques for obtaining simulation-based digital models
starting from the data logs of manufacturing systems, together with methods to
adjust the models toward a desired level of detail. The properties and parame-
ters of the manufacturing system, such as buffer sizes, are estimated from data
through inference algorithms. The system properties are also used in a model
tuning approach, which generates an adjusted model starting from the avail-
able knowledge and the user requirements in terms of complexity (e.g., num-
ber of stations). In addition, a lab-scale environment has been built with the
aim to test decision-making frameworks based on digital twins within a realis-
tic data infrastructure. The experimental results prove the effectiveness of the
proposed methodology in generating proper digital models that can correctly
estimate the performance of a manufacturing system. The model generation
and tuning method can positively contribute to real-time simulation. Indeed, its

xv



application within an online framework of production planning and control al-
lows for adapting simulation models to the real system, potentially at any time
a modification occurs. This way, decisions taken online are guaranteed to be
referring to the current state of the factory. Thanks to this research, manufac-
turing enterprises will be able to reach a higher production flexibility, together
with higher responsiveness to technological changes and market-demand fluc-
tuations.
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Preface

In the last decades, manufacturing environments have become significantly
more complex in the attempt to satisfy a higher demand for customized prod-
ucts, while aggressive digitization efforts have pushed production enterprises
to invest in new technologies toward higher levels of automation [3]. In mod-
ern organizations, information systems play a substantial role in the support
of day-to-day operations. Meanwhile, manufacturing systems are affected by
several types of disruptions, such as machine failures, quality losses, lack of
materials. Hence, Production Planning and Control (PPC) approaches must
take real-time actions on production and quality management of manufactur-
ing processes. For instance, deciding to maintain a station and route parts to
alternative process paths. The reaction time needs to be limited and control-
lable. Further, the decision-making criteria have to be always compliant with
the production system requirements that may evolve during its life cycle.

The PPC tools currently used in the manufacturing industry face significant
limitations. Specifically, they are slow in reacting to disruptions1 and they are
not able to evolve as fast as the real system. Traditional PPC tools typically
rely on digital models of the shop floor which have been developed at the
design phase, often relying on fixed thresholds or alarms; further, they do not
learn nor build knowledge from data collected on the field. As a result, such
models often represent old situations and might lead to wrong decisions in
production. Hence, traditional tools tend to be inadequate to manage rapidly
changing shop floor environments.

The time to create and/or update digital models is considerable, often rang-
ing from a few days to even some weeks. This criticality heavily affects the in-
dustry: most shop floors in the manufacturing industry are managed with sim-
ple conservative rules implemented in the Manufacturing Execution System
(MES), and with almost no use of system-level digital models. In summary,
new PPC methods suited to the industrial scenario still have to be designed
and MES tools must be extended to allow for the efficient online management
of modern shop floors.

1Common reaction times are largely greater than 15 minutes.
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The Industry 4.0 phenomenon has provided a set of new technologies for
production environments such as Internet of Things (IoT), cloud computing,
big data analytics, augmented and virtual reality, Radio Frequency Identifica-
tion (RFID), artificial intelligence, and machine learning [4]. Several innovative
solutions have been developed to assist production environments, such as
cyber-physical systems [5] and virtual factories [6]. The future industrial sce-
nario will be defined by how these new technologies will be exploited to shape
radical changes in the methodologies used to plan and control manufacturing
systems.

Modern decision-support tools are based on the coexistence of the real
system with its digital counterpart, often called digital twin [7]. Digital twins
have been considered as key components for the success of the Industry 4.0
initiative [8]. In general, virtual representations of physical resources can store
information such as kinematic data, interfaces, production events, and per-
formance indicators [9]. In production environments, digital twins have been
exploited in processes such as assembly, scheduling, machining and logistics,
with the main goal to reach a higher production efficiency [10]. With reference
to production planning and control phases, digital twins can be represented
by discrete-event simulation models. The addition of real-time streams of data
can help production planners to evaluate solutions that are optimal for the cur-
rent system state at any time [11].

The implementation of digital twins is claimed to make production pro-
cesses more flexible, adaptable, and predictable [12]. Indeed, thanks to the
aforementioned developments in industry and research, it is possible to imag-
ine a situation in which the shop floor status in manufacturing companies can
be retrieved anytime. This paves the way for new opportunities:

• Tailored decision-making. Production policies defined a-priori may
be optimal within a precise set of boundaries, but often turn out to be
detrimental on the system performance when applied in actual circum-
stances. A possible countermeasure is to design solutions which are
robust against many different scenarios, although they are never truly
optimal for any particular condition rather for the average performance
of the system. Distinctively, online decisions can be tailored exactly con-
sidering the system status in the very moment they are examined.

• Reduced reaction times. The capability to exploit real-time streams
of data can enhance decision-making and reaction time. The conse-
quent increased integration of functionalities allows for a closer coupling
of previously separated decisional levels. This brings benefits to pro-
duction systems such as the ability to promptly respond to unexpected
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events [13]. Indeed, quicker data exchange capabilities enable a tighter
decisional loop, which can be based on current streams of data from the
shop floor, resulting in better online decisions [5].

• Online and offline learning. By performing data collection from digital
instances of production systems, scenarios never happened in the prac-
tice can be explored and inspected before implementing the intended
actions [5]. This activity can be done both while the system is working
and offline.

Thanks to the key enabling technologies of Industry 4.0, manufacturing
companies will be able to build structured information from field data. Shop
floors will be able to improve efficiency and resilience thanks to an intensive
use of data and models shared within a digital network. In this emerging con-
text, current MES need to be extended with advanced PPC tools for the online
management of shop floors. Currently, there are no theoretical approaches in
support of PPC that provide data-driven, self-adaptable, and real-time capabil-
ities. This thesis contributes to the development of methods and approaches
to favor the introduction of digitally-assisted decision-making in manufacturing
systems.
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Chapter 1

Introduction: State of the Art on
Real-Time Simulation

Within a production planning and control scope, discrete-event simulation mod-
els constitute one of the main tools which can represent digital counterparts
of manufacturing systems and may be used for both long-term planning and
short-term decision-making. Real-Time1 Simulation (RTS) is a concept that
involves using simulation to take accurate decisions based on the current sys-
tem state [14]. This chapter interprets the main aspects of RTS applications
with the aim to identify which problems have been addressed in the literature
and which still remain an issue.

The chapter is organized as follows. Section 1.1 introduces the concept
of Real-Time Simulation for manufacturing systems. Section 1.2 presents se-
lected RTS frameworks from the literature. Section 1.3 collects significant
contributions exploring the role of RTS in production environments. The thesis
contribution and structure are presented in section 1.4.

1.1 Real-Time Simulation

In the manufacturing field, Real-Time Simulation (RTS) has been defined as "a
computerized system capable of performing both deterministic and stochastic
simulation in real-time or quasi real-time, to monitor, control, and schedule
parts and resources in a discrete part manufacturing environment" [15]. In
Real-Time Simulation applications, data are acquired from a production plant
and feed a simulation model of the system. Then, alternative scenarios are
defined and simulated: the one that leads to the best performance – if feasible

1Real-time in production has to be intended in relation to product turnarounds, which can
be minutes or even hours depending on the product and the planning horizon.
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Figure 1.1: Temporal representation of a Real-Time Simulation procedure.

– can be applied online. Figure 1.1 shows a general procedure that can be
followed in RTS approaches. The current state of a manufacturing system is
represented in digital form via a synchronization component. Several digital in-
stances may be generated, depending on the number of alternatives that have
to be considered. The digital models are then used to simulate the behavior
of the system. Each alternative action is explored, investigating the resulting
performance at the end of a time horizon of interest. Finally, the action that
produced the best performance is checked to verify if its application is still fea-
sible. If the last test is successful, the solution is implemented in the system.
The reaction time is determined by the duration of all the digital activities. It is
mostly influenced by the complexity of the simulation-optimization problem.

1.2 Frameworks

Manivannan and Banks [16] proposed one of the first comprehensive analyses
on RTS, and introduced a framework for real-time control of a manufacturing
cell using simulation. More recently, other schemes have been proposed. Mir-
damadi et al. [17] detailed the functionalities of a simulator for the real-time
production control and described a procedure for the monitoring and execu-
tion of production in which simulation is used to determine the best control
alternative. Rao et al. [3] described a novel Real-Time Simulation system for
real-time shop floor control. This framework relies on the relationship between
the simulator and the Manufacturing Execution System (MES). It is also shown
how the software infrastructure of a MES may incorporate RTS functionalities.
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Figure 1.2: RTS architectures. (a) Manivannan and Banks (1991); (b) Monostori et al.
(2007).

Indeed, the system can collect data from the physical shop floor and commu-
nicate with a scheduling controller through the MES.

Further contributions about RTS architectures may be found in [18], [19],
and [20]. All the frameworks are based on real-time input data acquired while
the real system is evolving, and decisions must be made as soon as the prob-
lems are identified in the system. Therefore, the simulation-optimization loop
is required to have fast-answer capabilities. For example, for the evaluation of
the best control policies, every alternative policy that is generated for compar-
ison has a corresponding simulation model for estimating its performances.
Each of these models has to provide a sufficient statistical warrant that the
performance estimates are valid, therefore dedicating enough replications to
its experiments. Most of the authors in the literature refer to computational
time and, in general, fast answering capabilities, as one of the main issues to
be solved for making RTS possible in the practice.

Figure 1.2 shows two architectures for RTS that are worth considering and
describing in detail. Let us assume that a manufacturing system with a dis-
crete process exists in a specific industrial context and has to be controlled
according to a previously computed production plan. The first architecture
(Figure 1.2a) is taken from Manivannan and Banks [16]; the main components
of the platform are the following:

• Data Acquisition hardware is made by sensors and devices to acquire
data from the field. Each manufacturing equipment that is represented
in the simulation model must have its sensory hardware correspondent.

• The Synchronization Module is responsible for the association of data
collected from the field to events in the simulated environment.
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• Static and Dynamic Databases (DB) contain machine and tool data,
product data, maintenance data, and performance measures; they con-
sist in the interface where information received from the sensors is con-
nected to the virtual components representing the machine tool, either
continuously or periodically.

• The Knowledge-base (KB) is a database where the results obtained from
previous simulation runs can be stored and retrieved to reduce the num-
ber of simulations. The authors suggest a structure of knowledge that
allows for inheritance between similar components used in the system.
Thus, when an item is added to the system, the level of knowledge about
that resource is already available. Moreover, solutions already encom-
passed by the control system are stored and lay the foundations for the
next decisions. Therefore, not all the events occurring in the system
require a simulation campaign. For example, some critical events may
have been already processed in the past, and if the solutions applied in
those cases are available and implementable there is no need to launch
new evaluations.

• Simulation Models: for the specific use-case, the authors refer to mod-
els characterizing the tool-wearing process of machining centers. The
simulation runs are triggered by a model supervisor.

• A Controller. This module interacts with the KB and retrieves the neces-
sary input data to perform simulation using the model created. The cell
controller updates the KB using the simulation outputs for future use.

The second framework structure is shown in Figure 1.2b and is taken from
Monostori et al. [21]. Here, the data from the plant feed a general decision-
making unit, composed by a production supervisor, an MES, a scheduler, and
a simulator which is based on the database of the system status. The MES
is interfaced with a factory simulator that evaluates the solutions before they
shall be implemented. By comparing the two architectures, we may state the
following: the first architecture considers explicitly the data collection and data
input from databases; the second architecture centralizes the databases of
the RTS loop and foresees the need of connection to other devices/ software
components. With this perspective, we may state that the framework of Figure
1.2b is more compliant with Industry 4.0. We may consider the controller of the
first framework as equivalent of an MES. Differently, in the second framework
the MES directly controls a simulator with no intermediate connections. As a
result, the simulator of the second architecture can be seen from two point of
views: (1) as a visualization of the system current performance; (2) as a tool
for evaluating several scenarios.
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Figure 1.3: Classification axes for the literature review on Real-Time Simulation ap-
proaches.

1.3 Related Literature

In this section, we aim to revise the existing literature on Real-Time Simulation
approaches. For such a task, three main classification axes have been identi-
fied, as described in Figure 1.3. The first classification method is derived from
the work of Manivannan and Banks [15], and it is centered on the perspective
of the data lifecycle. The second classification focuses on the interactions be-
tween the physical and the digital instances. The third axis is based on the
applicability of the RTS framework.

Manivannan and Banks [15] have identified the challenges to overcome
for the successful implementation of RTS models: (1) data handling, (2) model
generation and validation, (3) model synchronization and initialization, and (4)
efficient proactive scheduling models. Monostori et al. [5] described the op-
eration modes for DES models in production system, dividing them in three
categories: (1) offline simulation, used for sensitivity analysis and robustness
evaluation of production schedules before their execution; (2) proactive simu-
lation, used with the aim of defining online short term actions in response to
expected deviations from the production plan; (3) reactive simulation, used for
an online evaluation of alternatives after a disturbance has occurred. Mousavi
and Siervo [22] proposed a framework with the aim to provide three main fea-
tures: (1) flexibility: the framework has to be general in terms of input data and
utility function model (for example, the sample frequency can be determined
dynamically); (2) real-time readiness: the framework aims to make an effective
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use of data available at timenow for simulation modeling; (3) fast-forwardness:
it is always possible to feed the simulation model with different types of inputs
to perform what-if analyses; historical data may also be used to gradually im-
prove the response time of the system. The rest of this chapter elaborates
on the significant contributions from the literature, which have been organized
in Table 1.1 according to the three aforementioned classification criteria. The
following sections adhere to the classification over the RTS challenges.

1.3.1 Data Handling

Data collection is one of the most time consuming practices at the beginning
of a simulation project, and the optimization of this phase regards both static
and real-time approaches. Automated data acquisition and communication
paves the way for the exploitation of simulation for short-term decision-making
[8]. Beside the dataset size issues2, there is the need for an intelligent data-
handling unit that would correctly select different subsets of data depending
on the decisions to be made at the moment. In fact, data collection and
the related data transfer communication standards (e.g., IEC 61499) are a
central topic in Industry 4.0 related research [24, 25]. Robertson and Per-
era [26] proposed to automatically collect input data for a simulation model
to save modeling time. The authors discussed on how to revisit the data-input
methodologies for simulation and proposed to group the data-input phases ex-
ploiting an intermediate database between an Enterprise Resource Planning
(ERP) system and the simulation input data. Hanisch et al. [27] contemplated
two characteristics for data in real-time digital models: availability and qual-
ity. Availability means that all the necessary inputs are guaranteed either by
automatic collection from the system or by successive elaboration from the
existing datasets. Quality regards the degree of exactness of data. Mousavi
and Siervo [22] proposed a flexible data input management system as solu-
tion for quick-response decision-making. The aim is to generalize the input
procedure and make it applicable to a wide variety of manufacturing environ-
ments. Similarly, Blum and Schuh [28] defined a three-layer architecture for
data analytics in real-time frameworks, composed by (1) a data layer, (2) an
integration layer, and (3) a visualization layer. Since online decisions must be
made as soon as the problems are identified in the system, RTS frameworks
are based on real-time input data acquired while the real system is evolving.
Kitazawa et al. [29] used RTS to estimate the completion time of a flow shop
manual assembly. The data is collected by Bluetooth-based beacons to record

2For example, a typical production system can produce 152,000 data samples per second
[23].
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the proximity of operators to their workstation. The beacon position is used to
infer the operator current working state. Altaf et al. [30] showed the integra-
tion of simulation with RFID collected data to infer the status of a wood-frame
panel prefabrication plant. Similarly, Luo, Fang, and Huang [31] introduced an
approach for real-time scheduling using RFID technologies to facilitate shop-
floor-conditions visibility, by equipping jobs with RFID tags recording relevant
information such as the job identifier, the current production stage, the arriving
and processing time of the stage, and the job’s due date.

1.3.2 Model Generation

For a successful RTS implementation, the digital counterparts of production
systems have to reflect the current configuration of the system at any mo-
ment in time [32]. In flexible and reconfigurable manufacturing systems these
updates can be done in an automated way. Yet, most contributions of RTS
approaches in the literature assume the availability of simulation models, of-
ten static or generated through configuration files. However, these methods
have clear limitations in keeping the pace with the frequent changes of man-
ufacturing systems. Indeed, simulation models are very time-demanding in
their building phase, especially for the data-collection activities. The high cost
and time required for data collection often result in useless simulation mod-
els, because not promptly aligned with the system changes [33]. Therefore,
the existing frameworks for online decision-making encounter their limits when
used with high input frequencies and changeable system configurations.

According to Mathewson [34], a simulation generator is "a software tool
that translates the logic of a model into the code of a simulation language,
enabling a computer to mimic a modeler’s behavior ". Model generation deals
with the recognition of the logical relationships between components of the
manufacturing system (e.g., part routes, precedences, spacial contraints) [35,
33]. For instance, if an automated model generation procedure is established
along the life cycle of the production plant, a plugin of a new machining tool or
the deterioration of a machine can be detected online and the simulation model
can be updated coherently [36, 37]. Further, the simulation model should have
the ability to change their logic by observing the data from the manufacturing
systems, for instance following a machine failure. This problem corresponds to
finding the simulation model that best fits the data collected from the system,
and to have the system simulation model always aligned with the real system.
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1.3.3 Model Validation

Validation is defined as the process of determining whether a simulation model
is an accurate representation of the system, for the particular objectives of
study [38]. It compares the input-output transformation of the simulation model
with the one of the real system, by running the model using the same input
conditions derived from the real system and analyzing its behavior in terms of
output measures [39].

Planning and control activities using RTS typically rely on the assumption
that a simulation model for the real manufacturing system exists and has with-
stood the validation process [40]. Hence, if the model is generated online, val-
idation has to be performed with respect of the data representing the current
state of the system. In the literature, Autovalidation is intended as the practice
through which the simulation-model ability to predict the system performances
is checked online before using the model to take operative decisions; Model
Structure Update deals with the validation of an already available model, that
is compared with both the system structure and the process logical layout [41].

Several validation methods have been developed over the years for the
off-line validation of a DES model. These methods are mostly based on sta-
tistical techniques based on the comparison between output data from the
DES model and the real system [42]. A first-cut evaluation of the model per-
formance is to compute the differences between observed and predicted re-
sponses by means of statistical indicators. Some are used very often in the
practice (i.e. the mean, the median, the mean squared error) whereas others
are less popular although they can be used effectively: for instance, the Co-
efficient of Determination and the Coefficient of Residual Mass [43], the Mod-
eling Efficiency [44]. Usually, a simulation model is then validated by means
of statistical tests, such as t-test- and F-test-based statistics [45], two-sample
Kolmogorov-Smirnov test [46], regression-based tests [47], and trace-driven
methods [41].

The list of validation techniques is very long [48]. However, all of them
have been developed for an off-line use. Hence, they are limited when ap-
plied to RTS conditions due to their need of a large amount of data to reach
a statistical significance of their results. In a real-time scenario, the digital
model will be subject to very frequent changes, and simulation runs may never
reach the steady state. As a consequence, all the performance measures may
have to be computed in the warm-up phase. Validation techniques have to be
adapted taking into considerations this volatility of the simulators. Moreover,
while the emphasis of traditional validation techniques is put on a set of limited
performance indicators (e.g., number of pieces produced in a time window),
the new techniques may have to consider the validation of functions (e.g., uti-
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lization profile of a machine) to synchronize flows at critical resources. Recent
approaches have proposed to use signal processing theory for the online vali-
dation of digital models [49].

1.3.4 Model Synchronization and Initialization

The exploitation of a digital model of a factory, beside a continuous informa-
tion exchange with the real system, allows to make realistic simulation-based
predictions referred to the current system status [50, 51]. In general, the syn-
chronization between the system and its digital alter can be carried out in three
main ways [52]: (1) by continuously collecting data and connecting the data
acquisition devices to an input data processor within the simulation software;
(2) by developing a simulation model for each of the parts and resources, and
restricting data collection activities to those altering temporal information; (3)
by making use of past, future and current event lists. Kadar et al. [53] identi-
fied the following issues for synchronization: (1) the acquisition and validation
of the input data, (2) the responsiveness of the analysis, and (3) the capabil-
ity of quickly gathering the real system state to initialize the simulation model.
Talkhestani et al. [54] proposed to obtain model integration in a product life-
cycle management platform using an anchor-point-based method to system-
atically detect variations in the data structure between the digital models and
the physical system.

Initialization consists in a guarantee that alternative simulation models re-
fer to the same initial point in time. The goal is to assure that alternative
production policies can be effectively compared. Namely, in order for the per-
formance statistics of the alternative policies to be comparable to the ones
of the real system, the corresponding models must be initialized to the cur-
rent real system state, or at least to the same state which occurred in a certain
time-frame. Therefore, RTS models start from a state in which all the variables
of the model are set to the values of the physical quantities at timenow [27].
Bergmann, Stelzer, and Strassburger [55] proposed an initialization solution
based on the Core Manufacturing Simulation Data (CMSD) standard, and rec-
ommended proper extensions to guarantee that data can be transferred into
the digital model in a standardized way.

1.3.5 Proactive Policies

Typically, the Manufacturing Execution System (MES) includes short-term decision-
making functions such as re-scheduling and dispatching algorithms [56]. These
tasks can be accomplished online exploiting information coming from both
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the shop-floor and any other management software. Recently, several frame-
works exploiting RTS to improve online production policies have been pro-
posed [57, 58, 59, 60]. A production re-planning strategy describes when a
new production plan for a certain manufacturing system has to be generated.
This can happen in two main forms [61, 62]: (1) the plan can be adapted peri-
odically based on the present production trend; (2) the re-planning is triggered
by specific events that can have an impact on the system performances, such
as machine failures, urgent orders, quality issues [63]. Cardin and Castagna
[32, 64] explored the decisional component of a job-shop with six workstations
connected with transporters. The authors exploited a base model aligned with
the real system and variant models for proactive decision-making such as the
routing of parts on transporters. These decisions depend on many factors,
such as the number of available transporters in the system or the expected
machine breakdowns. The multitude of decision possibilities is reflected in the
number of variant simulation models that are initialized to the system state
and used to run experiments for a time horizon of interest. Harmonosky et al.
[65] developed an heuristic approach to manage the queue of unfinished jobs
at a failed machine in a flow-shop system. The main idea is to compare the
expected waiting time between the failed machine and an alternative machine
including a penalty term for accounting rerouting time. Simulations are done
offline before any actual system breakdown occurs. With reference to manu-
facturing systems characterized by stochastic processing times, Framinan et
al. [66] suggested that if real-time data measured on the shop-floor were ex-
ploited as a rescheduling contour condition, it would be possible to lower the
expected makespan. This advantage is greater if the variability in system pa-
rameters is fairly low, while a high variability translates into high uncertainty of
the results and may hinder the improvement. Mirdamadi et al. [17] described
a procedure for exploiting simulation to determine the best production-control
alternatives: events in the real system are clustered and tagged to identify the
necessity and to assign priority to the interventions.

1.4 Thesis Contribution

The following paragraphs outline the main contents of this thesis, which are
summarized in Figure 1.4.

1.4.1 Lab-Scale Models for Testing Real-Time Simulation

The literature on Real-Time Simulation approaches for manufacturing systems
is rich of contributions [4]. Meanwhile, it is hard for researchers and practition-
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Suresh et al. [60] • • •
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Challenges Operation
Modes

Features

Table 1.1: RTS literature items classified according to the three criteria (Figure 1.3):
challenges, operation modes, features.
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ers to provide a realistic environment to test their architectures and algorithms.
Typically, the proposed methods would either be tested on a real system or
within a digital setting. In the former case, it is necessary to allocate a con-
sistent portion of a production facility and to change the already established
strategies for a considerable time. The risk is to invest a lot of resources in
arranging the system to reproduce the desired behavior, rather than iterating
the proposed logic. On the other hand, the theorized algorithms and policies
could be compared and validated exploiting digital models of the production
systems. In this case, several issues related to the physical system might be
underrated. For instance, data-collection devices must be designed properly
to retrieve the desired information (e.g., current number of parts in a queue,
machine status) and to guarantee the alignment between the real system and
its digital counterpart. As a result, literature is rich of theoretical contributions
while lacking of practical implementations of RTS.

In response to such challenges, the adoption of lab-scale models enables
to examine approaches that involve information loops through real industrial
components (e.g., gateways, sensors), which is not possible if validation is
performed only on digital models. This way, hardware-related issues such
as data sharing between the various layers of a software architecture can be
investigated, while remaining capable to implement and iterate the proposed
PPC logic in reasonable times. Further, the realization of physical models with
components such as LEGO requires lower investments and provides higher
flexibility for tests compared to similar settings in real systems.

Chapter 3 describes the development of physical models of manufacturing
systems in a laboratory environment, together with their exploitation for test-
ing real-time decision-making approaches. Figure 1.5 shows an example of
a manufacturing system model developed with LEGO MINDSTORMS compo-
nents. Further, an approach for online production re-scheduling is adapted for
the implementation and to address real-time problems in critical operations,
where time constraints are strict. The approach is data-driven, and focuses
on delivering prompt actions anticipating or reacting to events in the shop floor
(e.g., machine failures and tool degradations).

1.4.2 Automated Generation of Simulation Models

Manufacturing systems evolve regularly due to external drivers such as the
irregularity of supplies or the availability of new disruptive technologies. Also,
more frequent changes may occur. For instance, robots can be moved from
one system to another, manufacturing cells can be reconfigured for new prod-
ucts, production lines may be re-shaped following new part-mixes. Further, the
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Figure 1.5: Example of LEGO-based physical model.

increasing demand for customized products highlights the necessary ability to
promptly adapt processes and resources [69].

The ability to take appropriate decisions online is strongly based on the
assumption that models properly aligned with the real system are either al-
ready available or obtainable within the decision time epoch [70]. Therefore,
the digital models supporting the decision-making task must be able to follow
this evolution. A manual adaptation of digital models cannot be achieved in
practice, because it would require large efforts and time (sometimes days or
even weeks), together with a high-competency workforce spent on repetitive,
non value-adding tasks. Further, the time to develop a new model may hinder
the exploitation of a digital twin along the life cycle of a production system [71].
Hence, digital models should be self-adaptable and driven by sensor collected
data. This problem corresponds to automatically building and adapting digital
models that fit the data collected from the system, detecting its modifications
and deviations, and being able to reliably predict the production behavior of
the shop floor.

Within the Industry 4.0 context, the availability of real-time data suggests
that if a model could be generated from available data in the manufacturing
system, the development phase may be significantly shortened, enabling dig-
ital twins to be automatically aligned with their real counterparts [72]. Tradi-
tional model generation techniques use the available data to estimate model
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parameters, such as inter-arrival times or rework ratios. These approaches
are based on an existing model structure, which is typically derived from pre-
vious knowledge or from interviews with company experts [73]. Model adap-
tations are typically handled through configuration files, for instance, to select
the number of parallel machines that are dedicated to a certain part type.
Such approaches are not effective against modern manufacturing systems
changes, in which also the system topology may change during production.
More recent approaches have introduced the exploitation of process mining
techniques [74], which can retrieve the system topology from the manufactur-
ing system data [75].

Despite the aforementioned improvements, practical implementations of
automated model generation remain scarce; one of the reasons for this is the
difficulty in adapting the level of detail of the model [76]. As a solution, a model
tuning step can remove complexities that may hinder both the understandabil-
ity and the re-usability of digital models. Chapter 4 focuses on obtaining digital
models starting from the data logs of manufacturing systems and the develop-
ment of an approach to tune them toward the desired level of detail.

1.4.3 Model Generation for Non-Linear Material Flows

The automated development of digital models for more complex manufactur-
ing systems reaches the limitations of the available methodologies. Indeed,
most approaches based on process mining are limited by the assumption of
so-called flat data. Namely, a unique part ID is used to identify material flows,
while in realistic context several different object types may be kept together
within certain production phases (e.g., batches, packages, orders). The rela-
tionships among different objects are disregarded by the available methodolo-
gies. The result is that certain types of systems cannot be modeled entirely
with an automated approach. For instance, assembly processes are very com-
mon in the production enterprises (e.g., automotive industry). In such environ-
ments, several material flows converge in assembly stations. During or after
the assembly of parts, it is common that new part identifiers are assigned
to the just-introduced assembled part. Traditional process mining techniques
assume a single part identifier to derive the logical flows (e.g., activity prece-
dences). As a consequence, the production system is discovered as a collec-
tion of separate models, while the assembly logic is effectively lost.

Chapter 5 explores the applicability of the developed model generation ap-
proach with respect to complex manufacturing systems such as factories with
assembly operations. In this chapter, an extension to the model generation
procedure from Chapter 4 is proposed to handle data logs with multiple ob-
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Figure 1.6: Graphical representation of the thesis chapters and suggested reading
precedences. Each node represents a chapter, while the arcs are indicative of the
reading precedence.

jects. This way, the digital models can include more complex production logic
such as the requirement of different components to proceed coordinated with
assembly operations.

1.4.4 Thesis Structure

The rest of the manuscript is organized as follows. Chapter 2 deepens the
discussion on the state of the art of approaches based on Process Mining.
Chapter 3 introduces the laboratory environment that has been developed to
test Real-Time Simulation approaches. Chapter 4 outlines the model gener-
ation and tuning method that has been developed, while Chapter 5 extends
the developed approach with a method suited for complex manufacturing pro-
cesses. Finally, conclusions and considerations over future developments are
collected in Chapter 6. Figure 1.6 presents a chapter precedence graph as
proposal for reading the thesis.
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Chapter 2

Process Mining and Model
Generation in Manufacturing:
State of the Art

In this chapter, the principal contributions from the literature regarding appli-
cations of process mining (PM) techniques in manufacturing are discussed.
PM is a discipline aiming to discover and exploit valuable information from
event logs available in information systems [1]. Since PM is agnostic, it has
been applied with a plethora of datasets for several scopes. We may classify
the applications depending on the scope medium: (1) material flows, hence
papers using PM to retrieve the movement of physical objects, or in general
information which can be linked to the work-pieces (e.g., production levels);
(2) information flows, namely contributions exploiting PM to analyze all the
business processes that surround the production environments. The following
sections include a selection of the contributions, with particular focus to model
generation.

The chapter is organized as follows: Section 2.1 presents the approaches
for mining material flows; section 2.2 summarizes the contributions dedicated
to the mining of information-based processes; finally, the limitations of the
available approaches are explained in section 2.3.

2.1 Material-Based Mining

The simplest yet effective way to use PM analyzing material flows is to visual-
ize the flows with a time perspective. Indeed, the transformation of data from
event logs into informative visualizations is offered by most PM tools. Data
can be analyzed from various perspectives, such as part identifiers, activities,
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and resource levels. More aggregated indicators can be easily retrieved (e.g.,
flow times, waiting times) and visualized over graph models, allowing for the
easy detection of bottlenecks and critical points [77]. The most common appli-
cations of PM are (1) performance evaluation, (2) process monitoring, and (3)
model generation.

2.1.1 Performance Evaluation

Performance evaluation is one of the most common application of PM in man-
ufacturing. Given that most times the structured event logs contain temporal
information (i.e., timestamps of the activities), several contributions exploit it
to relate temporal performance measures such as lead time and completion
times [78]. Intayoad and Becker [79] analyze event-logs from manufacturing
companies and use PM to extract contextual information of processed orders
namely (1) the number of process activities competing for the same resources,
and (2) the lead-time of the previous completed order if it was delayed. PM
can also support the development of a probabilistic model (e.g., Bayesian Net-
works) and predictive models. The integration of these models makes it possi-
ble to calculate the occurrence probability of all activities and future behavior
of the process in terms of completion time [80]. Park, Lee, and Zhu [81] de-
veloped a method for the joint data extraction, clustering, and performance
evaluation for a shipbuilding manufacturing system. The approach exploits
process mining to extract the sequence of operations, then clustering to find
similarities among production sequences. This way, each cluster can be ana-
lyzed independently, and Data Envelopment Analysis [82] is applied to analyze
its performance. The output of clustering and operation analysis can be used
for improving the company production planning and control activities.

2.1.2 Process Monitoring

Other contributions focus on process monitoring. Lee et al. [83] developed an
approach using fuzzy association rule mining with a recursive process mining
algorithm, using RFID to continuously update the parameters of a production
system and exploit them to detect anomalies. The goal is to find the rela-
tionships between production process parameters and product quality: a set
of decision rules for fuzzy logic that estimate the quantitative values of the
process parameters. Process Mining is responsible for identifying the hidden
patterns between process parameters and the finished quality of products to
generate a set of fuzzy association rules.
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2.1.3 Model Generation

We may divide model generation procedures in two main categories: (1) tech-
niques which rely on an underlying structure, and (2) approaches which do
not assume a specific logical structure. The former techniques consider that
the logic of the model is known, and they interpret model generation as the
translation of the logic into simulation code. The latter methods start from a
more general point and infer the logic from the available data.

Model Generation with an Underlying Structure

Among others, Shimizu and Van Zoest [84] developed an integrated software
approach in which MANUPLAN models can be translated into SIMAN models.
To date, this procedure enabled a simulation model of a factory to be devel-
oped in two days. Gong and McGinnins [85] developed a simulation code
generator which compiles a system description into a simulation code (e.g.,
SIMAN). The user can update the system design in the model by modifying
an input database and running the simulation code generator. The authors
demonstrated their approach with the operations and information flows of an
automated guided vehicle for manufacturing cells. Son et al. [33] developed a
methodology for automatically generating simulation models for specific man-
ufacturing scenarios. A neutral language has been designed to semantically
describe the simulation model, together with a model translator that converts
the neutral description into syntax of specific simulation packages. Mueller
et al. [86] introduced an approach in which the simulation model for a semi-
conductor manufacturing plant is generated from an input file that represents
the simulation data specification. The simulation model is a Petri Net and it
is built exploiting an object-oriented framework: several manufacturing system
components are mapped into sub-graphs of a Petri Net and are represented
by empty objects. Then, simulation model instances are created by populating
the Petri Net data structure. Mesabbah et al. [87] proposed an automated sim-
ulation model builder adapted for health-care applications. The methodology
couples model generation with machine learning algorithms that allow for the
prediction of the system performance based on real-time data stream. Indeed,
classifiers are constructed making use of historical data to predict several pa-
tient performance metrics, such as length of stay and next activities.

Model Generation without an Underlying Structure

Recent approaches exploit Process Mining (PM) for simulation model gener-
ation [88, 89]. The exploitation of process mining allows for an effective de-
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velopment of simulation models for manufacturing systems such as flow lines
[90]. Process Mining allows not only to estimate parameters and causal rela-
tionships, but also logical relationships such as precedences among activities.
Hence, it can be used to discover the topological structure of a manufacturing
system. Bergmann et al. [91] introduced a methodology for recognizing the be-
havior of a manufacturing system in terms of production policies. Several data
mining methods are tested (i.e. neural networks, support vector machines, de-
cision trees) with the goal to recognize which policies are applied in the system
generating data. Farooqui et al. [92] designed a methodology for the auto-
mated generation of formal models of robotic systems starting from the robot
code structure and data. Milde and Reinhart [93] developed an approach for
joint material flow discovery, parameter estimation, and control policies identifi-
cation from manufacturing systems event logs. Martin et al. [94] improved inter
arrival times modeling by including the mining of parts queuing at the entrance
of the system in a parameter estimation methodology. The authors used the
proportion of entities queuing at arrival as described in the event log to approx-
imately estimate the parameters of the inter arrival times distribution. Denno
et al. [95] developed a methodology to mine the production system structure
and used genetic programming to link colored Petri Net states with exceptional
system states such as blocking due to a machine unexpected failure. Ferreira
and Vasilyev [96] combined PM with logical decision trees to understand the
causes of process delays. Martin et al. [97] used PM to retrieve daily availabil-
ity records from an event log, by considering a resource availability with both a
temporal dimension and the possibility of intermediate interruptions. Martin et
al. [98] designed an algorithm to mine how operational activities are batched
within a production environment. The authors defined three batch processing
types, presented a resource-activity centered approach to identify batching be-
havior, and introduced batch processing metrics to acquire knowledge on the
batch characteristics and their influence on process execution. Pourbafrani et
al. [99] designed an approach to generate automatically a system dynamics
simulation model. The authors developed an algorithm to detect the relation-
ships between specific system features such as arrival rates and waiting times
using time windows and correlation measures. Popovics and Monostori [75]
designed an approach for automatically gathering data from Programmable
Logic Controllers (PLCs) with the aim to achieve simulation model generation
capabilities. The approach is based on parsing the code of a PLC and derive
useful information at an higher abstraction level. Choueiri et al. [78] proposed
a predictive model with the aim to use PM to predict online the cycle-times in
industrial environments.
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2.2 Information-Based Mining

Process Mining can be used effectively to derive relations among information
types in a structured system. Such information can be either related to the
physical processes themselves, or to the surrounding processes (e.g., pro-
duction planning, procurement, sales). PM can assist production systems for
both the understanding of the dynamics and the development of optimized
procedures. Maiorki, Santos, and De Loures [100] classified the recent con-
tributions related to the application of PM in the industrial context, through the
reference model for industry 4.0 (RAMI4.0). Information in an event log is clas-
sified based on the architecture levels, hence it is possible to extract portion
of the logs based on the required level of granularity (e.g., enterprise, factory,
workstation). Jo, Noh, and Cho [101] define the scope of a manufacturing
intelligence that can visualize shop floor data and detect and solve problems
at the business planning level. The authors developed a system that collects
data from the shop floor, monitors such data in real time, and quickly detects
and responds to problems providing solutions within the shortest possible time.
For such capabilities, four main modules are required: (1) data visualization,
to allow for the quick identification of issues in the system; (2) process mining,
to quickly gather a model of the system; (3) methods for selection and evalu-
ation of alternatives, and (4) a simulation environment to verify the proposed
solutions before implementation.

A typical challenge is that event logs for process mining are not available in
the required format in information systems. For instance, customer orders are
typically stored in CRM systems, while design steps are recorded by PLM tools
[102]. Schuh et al. [102] proposed a UML-based data model to describe the
data in a manufacturing environment in a way such that an appropriate model
can be discovered through process mining. A map of different data sources
within a modern information system is provided, which covers all the steps
from an initial customer order to the order fulfillment. Fleig, Augenstein, and
Maedche [103] proposed the integration of process mining within an ERP en-
vironment to analyze the purchase-to-pay and order-to-cash processes. The
scope is to determine if new processes must be standardized or kept as indi-
vidualized in the company.

2.2.1 Performance Evaluation

Once a dataset of traces is created, it is possible to study the interrelations
among them at system level. For instance, the combination of events in a
system may manifest in bottlenecks in other locations. The combination of
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process mining and correlation analysis can identify events that are causally
related one another [104]. Further, the addition of attributes to the log allows
to mine additional perspectives. For instance, the yield of a particular process
(e.g., semiconductor manufacturing) can be recorded in the log and used to
derive high-yield paths in the production flow [105]. Another attribute of interest
is cost. Indeed, if each event record refers to an activity, the hourly cost of such
performance is likely to be known. As a result, the total cost of production can
be estimated with the summation of the cost of the activities included in a
process [106].

2.2.2 Process Monitoring

Ruschel, Santos, and Loures [107] used process mining techniques to handle
shop floor data and obtain information about activity durations, process devia-
tions, cycle-time variations and the progress of the degradation rate. Process
mining is used to retrieve the model of a manufacturing process. A predictive
model using Bayesian networks is built for each activity [108]. The role of pro-
cess mining is therefore to feed the probabilistic models of each activity with
the time series representing the durations. Varga et al. [109] used event logs
from a coke refinery plant to retrieve the set of actions that operators perform
frequently in similar situations. The goal is to exploit multi-temporal sequence
mining to infer the causal relationship between the alarms and operator ac-
tions, together with the effects of these actions.

2.2.3 Model Generation

One of the non structured processes that can be analyzed with process min-
ing is worker’s movements. The supervision of manual operation is a very
resource-demanding task. The combination of activity recognition and pro-
cess mining can potentially increase efficiency and effectiveness [110, 111].
The scope is to use the activity data as input to process discovery techniques
to reveal knowledge about operators. Together with a big data analysis proce-
dure, process mining can also be used to structure the knowledge hidden in
more irregular data sources, such as the text of e-mails [112]. Further, the gen-
eration of a model enables prediction capabilities: given the state of execution
of a process, knowing how the situation might evolve allows the supervisors to
take the proper corrective actions [113]. Flath and Stein [114] propose a tool-
box for developing predictive models exploiting machine learning algorithms
and the manufacturing process mapped through process mining techniques.
PM is used as a support tool to develop the model, to filter the non-relevant
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features and to extract process patterns. Ortmeier et al. [115] discuss on how
process mining could support life cycle assessment activities in manufactur-
ing, for instance, to identify process deviations and interruptions. Dakic et al.
[116] analyze the potentials of two principal process mining software tools and
develops a methodology to implement process mining techniques over a case
study. The goal is to obtain a process map in the form of a directly follow graph.
The authors propose to combine PM with social network analysis to improve
the discovery of the organizational perspective of the enterprise.

2.2.4 Quality Management

The availability of data records of several instances in a system allow for in-
vestigating the quality perspective. Dogan and Gurcan [117] provide a guide
to apply lean six sigma together with data-based analyses. The authors insert
PM in a Quality Assessment framework, analyzing the role of different process
mining algorithm with respect to lean six sigma approaches, such as DMAIC
(define-measure-analyze-improve-control) and claim that the combination of
process mining with traditional techniques allows to make effective decisions
for quality problems. In general, the underlying research question is to find
what combination of process steps distinguishes the parts in which a strategy
(e.g., parameter setting) is successful from the parts in which the goal is not
reached. Meyer et al. [118] combined process mining with control theory and
proposed an iterative approach to enhance treatment strategies by predicting
and preventing failures based on information from electronic records. During
runtime, the deviations between the time sequence streams of parts in a model
can be used to determine concept drifts, namely deviations from the nomi-
nal process behavior [119]. When a reference model is available, the qual-
ity assessment can be performed through conformance checking methods.
Paszkiewicz [120] identified the production management processes that can
be assessed with a conformance checking procedure: logical conformance
to the formal model, respect of the imposed production policy (e.g., first-in-
first-out), quality assurance, performance indicators (e.g., maximum allowed
system time), condition-based rules (e.g., re-work), and workload distribution.
Saraeian and Shirazi [121] developed a conformance checking module which
compares real and expected characteristics of an additive manufacturing pro-
cess with the goal of preventing cyber-attacks and network intrusions.
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2.3 Limitations

Despite the advancements of PM-based approaches, several limitations re-
main for applications to manufacturing environments. This section elaborates
on such limitations, with a focus on the scope of this work.

2.3.1 Model Tuning

The availability of an up-to-date process model can result to be insufficient
since an automated model generation procedure could model some parts of
the system with an excessive level of detail. A common term referring to over-
complex models is the spaghetti model effect [1]. These models are not only
excessive in terms of size, but also inaccurate in estimating performance mea-
sures. From intuition, the higher number of paths in the system are repre-
sented in a model, the less data are available to estimate parameters on each
path such as processing and waiting times. Spaghetti models are also harder
to understand, as they may differ significantly from the physical system gen-
erating the data. Therefore, once a model has been generated, it is worth
noticing if the model level of detail is reasonable for its intended application.
In its most basic form, model tuning is a method to modify a model toward a
desired size.

Son et al. [122] introduced the concept of log profiling and trace cluster-
ing. The event log is split into homogeneous subsets for each observed case.
Then, specific features are calculated for each case (for instance, the number
of times a certain operator has intervened on that case) and a resulting vector
of features is assigned to each case. Clustering techniques are then used to
group common traces, and PM is applied separately on each cluster. Gunther
and Van der Aalst [123] developed a fuzzy miner algorithm through an attribute
analysis and a consequent abstraction of the mined event log. The method
assigns metrics to nodes and arcs based on both significance and correlation
scores. Then, three main steps are performed: (1) conflict resolution, in which
activities which are connected by arcs in both directions are analyzed with
the goal to remove the connection if less significant to the rest of the model;
(2) edge filtering, where the least significant edges are removed; (3) nodes
aggregation and abstraction: the least significant nodes are either removed
or aggregated in clusters, which will inherit the precedence relationships and
the connections between nodes. All the steps are based on edge and nodes
cutoff parameters that are user-defined thresholds. Bose and Van der Aalst
[124] introduced patterns definitions of commonly used process model con-
structs, together with an iterative method that captures these manifestations
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Figure 2.1: Example of a spaghetti model (from [1]).

and creates abstractions. The method finds repeated patterns in the traces
(e.g., loops) and generates hierarchical abstractions that are treated as activi-
ties and inserted in a new trace database. The corrected traces are then used
to generate a model. Prodel [125] developed a model reduction procedure to
generate simulation models of a health-care provider. The author formalized
the model reduction procedure with a mathematical programming model and
solved it using a tabu search heuristic. The objective is to find the model that
best fits the event log of the system based on replayability scores.

Although some PM-based approaches can be used effectively for adjust-
ing the model level of detail, most of the available approaches are appropriate
for business process mining and are not suited for manufacturing applications.
For instance, fuzzy mining [123] exploits the activity names to derive correla-
tion measures that can lead to activity clustering. This approach is certainly
proper for a service operation (e.g., bank, call center) but may be of little use
in production systems, where names could be simply sensor or machine iden-
tifiers. Trace clustering [122] effectively produces models with a lower com-
plexity. However, this is only true for some of the discovered clusters, which
are highlighting the entities following the simplest paths, while several other
clusters which may be linked to complex production dynamics are still present
in the log. Another option is the a-priori definition of patterns in the log [124],
which is also helpful as pre-processing activity. Yet, it is strongly based on
topology of the discovered relations, and has no clear link with the underlying
system generating the data.

2.3.2 Discovery of Non-Linear Material Flows

The discovery of more complex systems suffers from the limitations of avail-
able methodologies. Indeed, most PM-based approaches are based on the
assumption of a single part identifier in the datasets, while in most realistic
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environments multiple object types may be involved in a production step (e.g.,
packaging, batching, assembly). Assembly processes are very common in
production enterprises (e.g., automotive industry). Few contributions in the
literature explicitly mention mining assembly operations. Denno et al. [95]
mined an automotive under-body assembly system with the goal to optimize
its production schedule. Rashid and Louis [126] presented a framework that
jointly utilizes RFID tracking and process mining techniques to automatically
generate the digital model of an assembly line. The goal is to detect any de-
viation in the performed process from the predefined plan. Knoll et al. [127]
developed a methodology to apply process mining to internal logistics for a
mixed-model assembly line. The authors used multi-dimensional process min-
ing to automatize and improve the Value Stream Mapping methodology. The
goal is to allow for a precise process discovery and classification, including
performance analysis to find the parts of the plant where most of the waste is
produced.

The aforementioned papers address mining assembly operations. Yet,
none of them focus on simulation model generation. Despite being very com-
mon in production environments, the discovery of assembly operations has
had a scarce representation in the literature. This may be due to the prob-
lem of flattening data, which is particularly acute for assembly processes, in
which different material flows converge toward assembly stations. In such lo-
cations, the part identifiers are likely to change from a production stage to
the following one. For instance, a car frame is usually assigned an identifier,
while sub-components such as doors have other dedicated IDs. Once assem-
bled, the work-in-progress part may have either a new identifier or hold one
of the sub-components ID. Either way, the following events in the production
system will refer to the assembled product, which is linked to multiple sub-
components IDs. Hence, when aggregating events data, there are multiple
flattening choices possible which lead to different views that are disconnected
[128]. Therefore, the system structure overview is quickly lost as event data
need to be extracted multiple times for the different views. As a consequence,
the assembly positions can only be assumed or discarded from the represen-
tation, unless further manual inspections and modifications are affordable.

The following limitation is evident in the generated model. The simulation
model must consider the assembly phase to correctly model the behavior of
the system. Namely, the availability of all needed material upstream is a block-
ing condition on the assembly points. Neglecting this condition in a model
generation technique may result in overestimating the performances of the
real system. For example, Figure 2.2 graphically shows two different model-
ing options using a Petri Net. Transition 3 represents the assembly operation,
while transitions 1 and 2 are the last operations done by the sub-components.
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Figure 2.2: Example of assembly process modeled by Petri Nets: a) non-blocking
condition (improper modeling), b) blocking condition (assembly properly modeled).

In the first case, transition 3 may fire even if only one of the upstream op-
erations has been completed. Differently, in the second case, the assembly
transition is enabled by the availability of all sub-components.

2.3.3 Joint Process Mining Approaches

Most PM applications typically rely solely on one PM algorithm. As a result, the
user is forced to compromise between specific algorithm performance mea-
sures. For instance, inductive algorithms show good results in terms of scal-
ability, fitness to the log, and precision, while heuristic algorithms are able to
discover more process patterns. To cover this shortcoming, more accurate
process mining approaches shall be developed. For instance, by using more
than one PM algorithm within the same analysis: a joint methodology combin-
ing inductive and heuristic mining algorithms could allow to exploit the advan-
tages of each mining algorithm while maintaining reasonably low computation
times.

2.3.4 Discovery of Production Policies

PM can be applied not only for the discovery of material flows, but also for
revealing which production policies are applied in the shop-floor. The simplest
policies are typically related to the production plan and to the understanding of
splitting ratios when multiple alternative paths are available. However, realistic
environments are characterized by a large number of rules that determine
their performance (e.g., maintenance policies, priority rules, lean production
guidelines). PM approaches that are able to discover a complete spectrum
of production policies are still not available in the literature, and more work
is needed in this direction. Further, the ability to distinguish precisely among
policies can also enhance the model generation, since different elements of a
manufacturing system can be easily differentiated. For instance, a conveyor
that serves as a buffer can be characterized by a first-in-first-out policy [93].
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2.3.5 Management of Rare Events

A typical challenge of data-driven approaches is how to handle rare events. In
a manufacturing environments, such events can be represented by machine
breakdowns, unplanned intensive maintenance, extreme weather conditions.
Rare conditions are typically more disruptive than more frequent ones [129],
and may determine significant detriment to the overall system performance
and profitability. Unfortunately, the distinction of such conditions is not trivial
and it is often not aligned with the model generation techniques. For instance,
in a model tuning methodology, rare events are often disregarded by either
frequency- or causality-based scores. Further, automatically generated mod-
els may generate rare conditions themselves (e.g., not sound Petri Nets which
allow for deadlocks). In this case, the challenge is to distinguish from the cor-
rect modeling of rare conditions and modeling errors.

2.3.6 Integration of Expert Knowledge

In manufacturing environments, the workforce competencies are a key require-
ment to remain competitive [130]. Expert knowledge is often the key driver
to successful production operations. PM approaches typically rely solely on
event logs as their only source of information. More work is needed toward
integrating the company know how in the PM methodologies. Innovative PM
approaches may be combined with Machine Learning techniques to achieve
improved functionalities, such as predicting the results of certain actions or
classifying different production conditions. In this context, expert knowledge
can reveal essential to validate such approaches before applying them online.

Scope of Work. This thesis aims at overcoming some of the aforemen-
tioned limitations. A method for model tuning in manufacturing systems is
presented in Chapter 4, while Chapter 5 presents an approach for the gener-
ation of models representing non-linear material flows, specifically assembly
operations.
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Chapter 3

Lab-scale Models for Testing
Real-Time Simulation

In this chapter, we propose a lab-scale environment for testing Real-Time Sim-
ulation research and digital technologies for production systems. The pro-
posed laboratory reproduces the ISA95 architecture, hence we developed
both physical and digital levels and exploited IoT-compatible devices to con-
nect them. The adoption of such models enables to examine approaches that
involve information loops through real industrial components (e.g., gateways,
sensors), which is not possible if validation is performed only on digital mod-
els. For instance, hardware-related issues such as data sharing between the
various layers of a Cyber Physical Production System (CPPS) can be inves-
tigated, while remaining capable to implement and iterate the proposed pro-
duction planning and control logic in reasonable times. Further, the realization
of physical models with components such as LEGO, Arduino, fischertechnik,
requires lower investments and provides higher flexibility for tests compared to
similar settings in real systems.

The chapter is organized as follows. Section 3.1 introduces the problem of
Real-Time Simulation within a decision making process for production. Sec-
tion 3.2 introduces an architecture for the production planning and control of
manufacturing systems. Section 3.3 outlines the characteristics of the case
study which has been selected for this work (i.e. re-scheduling). The numeri-
cal results of the experiments are presented in section 3.4. Final remarks are
collected in section 3.5.
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3.1 Real-Time Simulation Problem Definition

In this section, we outline a procedure for applying Real-Time Simulation to a
generic production system. Let us consider a manufacturing system on which
a production policy π is implemented (e.g. priority rule). Further, define X(t)
a vector that describes the system state at time t (e.g., current buffer levels),
and T is a time horizon of interest. Let us define Θ(π,X(t), T ) a generic Key
Performance Indicator (KPI) achieved in the time period [t, T ] by implementing
π on a production system that is in state X(t) at time t.

In general, we can consider a moment te ∈ [0, T ] in which a simulation-
optimization cycle is launched to determine the production policy to be imple-
mented in the remaining part of the production planning horizon [te, T ]. For
instance, te may define the instant in which a disruption occurs (e.g., machine
failure). Indeed, disruptive modifications may detriment system performances,
and the current production policy might not be optimal any further. Therefore,
an evaluation is needed to search for a better reaction strategy. Define Π a
finite set of N + 1 policies {π0, π1, . . . , πN} defined a-priori: π0 is the origi-
nal policy implemented on the system and the remaining N policies define
alternative reaction scenarios. Further, assume that a discrete-event simula-
tion model of the manufacturing system is available and valid. The simulation
model is a digital instance of the manufacturing system and represents the so-
called base model. At te, the digital model is synchronized with the physical
system status X(te). The performances obtained by each policy are evalu-
ated with digital models derived from the base simulation model. Namely, N
variant models are created, each implementing the i-th alternative policy πi.
All simulation experiments start from the same time and system state X(te).
The solution corresponds to the new optimal system management policy π∗,
which satisfies:

π∗ = argmax
πi∈Π
{Θ(πi, X(t), T )}. (3.1)

Notice that π∗ = π0 is allowed, hence this procedure contemplates also
the do-nothing possibility. Finally, π∗ is implemented in the physical system
at the time t′e ≥ te and the interval [te, t′e] is proportional to the computation
effort required to identify the new policy. Figure 3.1 summarizes the temporal
evolution of the procedure.
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Figure 3.1: Real-Time Simulation procedure illustration with two alternative production
policies.

3.2 Production Planning and Control Architecture

An established standard for production management is the ANSI-ISA95 [131].
It is based on five hierarchical levels as shown in Figure 3.2. Level 0 is asso-
ciated with the physical process; level 1 refers to the governance of actuators
and sensors; level 2 represents the control logic and production supervision;
level 3 to manufacturing operations (i.e. Manufacturing Execution System);
level 4 to the management of the entire firm (i.e. Enterprise Resource Plan-
ning). The ISA95 levels are often depicted as a pyramid, although recent
research claims that this hierarchical view of the production system has been
unsettled by the data sharing capabilities of IoT and cloud computing [56].
The proposed lab-scale models are part of a cyber-physical architecture with
four hierarchical levels which as shown in Figure 3.3. The first level is the
physical model of a production system built with structural components, sen-
sors, actuators, and Programmable Logic Controllers (PLC). The execution
level controls the PLCs and converts the sensor outputs into structured data
to be sent to the logic level ; it also receives and releases the motors execu-
tion commands. The logic level is related to the functions of monitoring and
supervising the process and the MES services such as the execution of pro-
duction orders. The fourth level can be composed by several tools such as
simulation-optimization or modules dedicated to production management (e.g.
ERP). The communication among the different levels is done by using Internet
of Things standards, thus guaranteeing the connection between the physical
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Figure 3.2: ISA95 levels [2].

and digital instances. Hence, the proposed laboratory is effectively a CPPS
on a smaller scale.

3.2.1 Physical System

The physical components include both structural pieces such as beams, shafts,
conveyor belts, and actuators, sensors and PLCs. The assembled models can
be used to replicate the behavior of a real production line by moving parts
such as spheres or discs along a proper route and reflect operation times by
letting parts wait in a station for an appropriate time span. Exploiting physi-
cal system models guarantees several advantages: (1) high flexibility, since
it is possible to build several kinds of production systems. (2) facilitated de-
velopment, because it is relatively easy to develop a model and the whole
assembly process does not require any particular tool. Indeed, small models
can be built in a few hours by a single person while the most complex ones
can generally be completed within days. (3) easy management : it is undoubt-
edly easier to manage a small scale model with respect to a real production
system. The models are usually built in a modular fashion in order to be easily
disassembled, transported, and re-assembled. (4) limited capital expenditure
and re-usability : the cost of the models is orders of magnitude lower than the
investments required in a real system. Further, almost 100% of components
can be reused after a project completion. Despite the aforementioned advan-
tages, most applications of lab-scale models in industrial engineering focus on
educational purposes [132, 133].
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Figure 3.3: The developed architecture with reference to the ISA95 levels.

The physical models proposed in this work have been built with LEGO
MINDSTORMS. Next, the common components of the proposed lab-scale
manufacturing system models are presented:

• Parts are modeled by wooden discs (�35mm) marked with a color plate.
The colors are used to represent different part types and are recognized
by the sensors along the system for assigning the right setup and pro-
cessing times.

• Conveyors are controlled by dedicated electrical motors and compose
the transportation system that moves the parts in the system. Each
conveyor can be set to run at a specific speed which can be changed at
runtime.

• Buffers are represented by the conveyors which bring parts from a sta-
tion to another. It is possible to define a specific buffer size through the
position of the downstream sensor of each station (sensor 3 in Figure
3.4a), while the maximum buffer size is superiorly limited by the length
of the conveyor. Special types of buffers can be modeled as well. For
instance, Figure 3.7 shows a model with a three-slide buffer system, in
which each part type is stored in a dedicated slide.

• Stations are represented by dedicated areas which hold parts for an
amount of time that mimics the setup and processing operations on the
parts as well as production disruptions such as failures. A station can be
in either one among three states: (1) working, (2) idle, and (3) blocked.
Figure 3.4a shows an example of a station built with LEGO. A station is
composed by an EV3 brick, three EV3 optical sensors, a part-entrance
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system and a motor. The part-entrance system is in front of each sta-
tion. A beam is driven by Motor 1 and blocks the parts in front of the
station to avoid the entrance of more than one part at a time. Figure
3.4b summarizes the workflow of the station model. Sensor 1 lies over
the part-entrance system to recognize if a part is waiting to be worked.
When the station is idle and a part is available, the part-entrance system
pushes the part inside the station. Motor 2 drives the part inside the sta-
tion. Sensor 2 is placed in the middle of the station structure to check if
a pallet has entered the machine and to distinguish the product type. As
soon as the part has entered, Motor 2 is stopped and the station is set
to working state. Sensor 3 is installed on the downstream conveyor and
determines if the downstream buffer is full. When the operation is done,
if there is enough space on the downstream conveyor, Motor 2 down-
loads the part and the station is set to idle state. On the other hand, the
station is set to blocked state while the downstream buffer is full. The
station model exploits three optical sensors to control the part flows.

• Programmable Logic Controllers. Each station is controlled by an EV3
device. In this work, EV3DEV OS has been used [134]. This open-
source operating system is based on Debian Linux and allows the exe-
cution of python scripts1 for controlling the sensors and motors through
dedicated libraries. Each EV3 is assigned an IP address in a local net-
work and can communicate with a centralized controller. The execution
level software is explained in section 3.2.2.

Further details on LEGO-based production system models can be found in
related works [133].

3.2.2 Execution Level

This level represents the software running on the PLCs that controls the phys-
ical devices. In this work, the execution level consists in a script that runs on
each EV3 brick. The execution level is responsible for (1) releasing start/stop
commands to the motors whenever required and (2) acquiring and sharing the
sensor outputs. The motors activation is triggered by specific messages that
communicate the desired actions. The sensor outputs can be conveyed in ei-
ther two modes: (1) on-demand, namely required by a higher hierarchical level
or (2) on-change, hence triggered by specific events. The code of the execu-
tion level is object-oriented. Specifically, three classes correspond to the three

1The choice of python as programming language is not restrictive and the proposed archi-
tecture can be extended to other languages.
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Figure 3.4: Example of station model: (a) physical model components, (b) logical
workflow.

main physical devices in the system: the EV3s, the motors, and the sensors.
Each class contains an attribute which is a list of all the relative instantiated
objects. The classes that have been developed (Figure 3.5a) are the following:

• The Ev3 class represents the logic controller. All the motors and sen-
sors executed by the controller are listed in the peripherals_list and are
contextually instantiated at startup.

• The Motor class has the attributes name and ev3motor. ev3motor is an
object available in the EV3DEV library that allows for interfacing with the
motors through python commands.

• The Sensor class has the attributes name, ev3sensor and color_seen.
ev3sensor is an object available in the EV3DEV library that allows con-
trolling the EV3 sensors. color_seen is an attribute that indicates the last
color identified by the sensor.

3.2.3 Logic Level

This level manages production rules, handles constraints and determines the
characteristics of the manufacturing system (e.g., station workflow as in Figure
3.4b). At startup, the logic level sends a configuration message to the EV3s
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(ev3_config) containing a description of the physical system logical layout (i.e.
the peripherals_list). Further, the logic level contains the messages definition
for communicating with the execution level and for exporting significant data
towards other management services (e.g., time-series database with the sen-
sor data). In this work, the logic level is a python script running on a central
controller (e.g., an industrial PC). The code is object-oriented and consists in
the following classes (Figure 3.5b). Each class contains an attribute which is
a list of all the relative instantiated objects.

• The Motor class has two attributes: name is the motor identifier and ev3
is the name of the EV3 device that controls the motor. Motor instances
also possess methods corresponding to the executable actions. When-
ever one of these methods is called, a corresponding message request-
ing the motor activation is published on the network to be processed by
the execution level (section 3.2.5).

• The Sensor class contains the attributes name and output, where the
latter is a dictionary with the indication of the sensor name and informa-
tion read by the sensor. Moreover, the Sensor class possesses the read
method that can be used for reading sensor output (on-demand).

• The ColorSensor class is a subclass of the Sensor class, with the addi-
tion of an instance attribute ev3 representing the name of the EV3 that
is connected to the sensor.

3.2.4 Fourth Level

The fourth level of the proposed cyber-physical architecture includes software
components exploiting the data from the system to perform several high-level
operations. For instance, simulation can be exploited for building digital twins
of the physical models. The developed architecture allows to communicate the
data measured on the shop-floor, hence it is able to infer the system status and
use it as initial condition for simulation models. It is thus possible to simulate
different production and management policies in order to determine which one
is optimal.

In this work, a digital model of the manufacturing system has been built
in Simulink Simevents. The synchronization of the base simulation model is
done through csv files that contain all the information regarding the produc-
tion plan and the system status. Specifically, three files describe the nominal
processing times, the setup times, and the initial production schedule, respec-
tively. Further, the current system status is represented by two files containing:
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Figure 3.5: The developed classes for (a) the execution level and (b) the logic level.

(1) the job currently under process by each machine and the remaining time
until each machine is expected to be in idle state, and (2) the effective produc-
tion schedule to be followed, which is read each time a machine is idle. The
files are shared between the logic level and the simulation model. Hence, the
system status can be updated continuously during production.

It is worth to notice that other software components can be added at this
level. For instance, data flows management tools are intermediary services to
transfer data between two utilities. Databases allow the storage, manipulation,
and query of the acquired data for obtaining useful information: for example,
the time series of a machine state may be used to derive both availability and
reliability indicators. Dashboards are applications for the real-time visualiza-
tion of both raw data and custom indicators and indexes. Cloud computing
components enable the interface with software tools such as ERP.

3.2.5 Communication Protocol

The communication between the software levels is possible thanks to an IoT
infrastructure based on the Message Queue Telemetry Transfer (MQTT) pro-
tocol. This allows the PLCs to send and receive messages to any kind of
IoT-compatible device connected to the network. Hence, it is possible to share
and store data from the real system and the architecture levels exploiting the
message-based communication protocol. Table 3.1 summarizes the mes-
sages exchanged. The messages are written in the JavaScript Object No-
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tation (JSON) format. In the following, two significant examples are explained.
Messages from the sensor/request topic are sent from the logic level to the
execution level and they contain the request to read a specific sensor output.
In this case, the message contains the name of the sensor and the EV3 device
which is controlling it. Messages of the topic motor/action are sent from the
logic level to the execution level and contain the actions that should be exe-
cuted by the motors. In the developed physical models the possible actions
are the following: start moving at a certain speed, run for a certain amount of
time at a certain speed, turn the axis to a specific angle value, run back-and-
forth of a specific angle value, stop. Notice that other actions can be designed
accordingly to specific system requirements. The message content is a JSON
object containing the motor name, the name of the EV3 that controls it and a
value that describes how to execute the prescribed action.

3.3 Case Study: Online Re-Scheduling

This section presents the case study designed to test a real-time production
planning method exploiting the proposed lab-scale physical models. The case
study refers to a Flexible Manufacturing System (FMS) with parallel machines
producing different product types. The system has been chosen with the in-
tent to address a significant level of complexity while maintaining a size that
facilitates the understanding of the obtained results.

3.3.1 Manufacturing System

Let us refer to an FMS with parallel machines m ∈ M. The system has to
produce a set of jobs k ∈ K belonging to part types j ∈ J within an expected
time horizon T . Let us accept the short notation j(k) to indicate the part type
to which the k-th job belongs. At any time t ∈ [0, T ], the production sched-
ule σm(t) = {j1(k), . . . , jNm(k)} is defined as the sequence of Nm jobs to
be produced on the m-th machine from time t until completion. For instance,
σ1(0) = {1, 1, 2} means that at time t = 0 on machine m = 1 three jobs are
scheduled: the first two jobs belong to part type 1 and are followed by a job
of part type 2. The machines are unreliable and can be subject to failures at
any time. Let us define three random variables: Pjm is the time to process a
part of type j on machine m, Sijm is the setup time to switch from producing
a job of part type i to a job of type j on machine m, and Fjm is the downtime
that may occur during the processing of part type j on machine m. Hence, let
P̃jk, S̃ijm, F̃jm indicate the effective processing time, setup time, and down-
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time, respectively. The makespan is the time in which all the products in the
production schedule have been completed. It can be written as follows:

Cmax = max
m

{∑
k∈σm

(
P̃j(k),m + S̃j(k)−1,j(k),m + F̃j(k)m

)}
. (3.2)

The production schedule is determined exploiting the predictable schedule
concept proposed by Arnaout [135], which is based on the idea that a robust
schedule should contain adequate safety times to account for the expected
disruptive events along the production. The safety time is proportional to the
expected failure rate of the machines and the production activities duration.
For example, if a machine is expected to spend a tenth of the available time in
downtime, a predictable schedule would include one unit of safety time every
ten time units of scheduled production activity. Let us call P̂jm the expected
time to process jobs of part type j on machine m, and Ŝijm is the expected
setup time to switch from producing jobs of type i to type j on machine m. The
safety time to be accounted for each k-th job scheduled on machine m can be
estimated with equation (3.3).

STkm = Rmδm(P̂j(k)m + Ŝj(k)−1,j(k),m)

(
1− POkm

Nm

)
∀ k ∈ σm,m ∈M

(3.3)
where Rm is the Mean Time To Repair (MTTR) on machine m, δm is the esti-
mated number of breakdowns on machine m per unit time, POkm is the k-th
job position in the schedule of the m-th machine, and Nm is the total number
of jobs that are scheduled on the m-th machine. Figure 3.6 shows an example
of schedule including the variables exploited in equation (3.3). Once an initial
schedule is set, the system starts to produce pieces. If no failures occur be-
fore a scheduled safety time, the latter is removed from the schedule and the
next programmed job is anticipated. At any moment t, each machine m has to
produce the remaining fraction of its schedule, σm(t). The Remaining Safety
Time (RST) of a machine m at time t is defined as RSTm(t) =

∑
k∈σm(t) STkm.

Whenever an unexpected event occurs on a machine, the corresponding RST
is diminished by the expected failure time, F̂jm.

3.3.2 Rescheduling Problem

Consider the situation in which a failure occurs while a machine is working a
part. Typically, the incomplete job is simply rescheduled as the next one to be
produced on the failed machine as soon as it returns available. Alternatively, it
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Figure 3.6: Predictable schedule example on two machines with three part types.

is possible to trigger an RTS procedure (section 3.1) in order to evaluate online
if a better solution can be found. Let us introduce two policies based on the
application of either one of the following reaction rules.

• Base Policy π0: Right Shift Repair (RSR). The job is rescheduled on
the same machine, right after the failure has been resolved. The produc-
tion schedules on the other machines do not undergo any modification.

• Alternative Policy π1: Modified Fit Job Repair (MFJR). The Fit Job
Repair (FJR) rule has been proposed by Arnaout [135] and prescribes
that a job which is unfinished due to a failure at time te has to be as-
signed to the machine with the highest RST. We introduce the Modified
FJT (MFJT) which establishes that on the machine chosen by the FJT
rule, the job is to be rescheduled in a position that also minimizes the
expected setup time.

For example, consider the case in which machine m = 1 fails at te = 100s
and a job of type j = 2 has to be rescheduled (Figure 3.6). According to RSR
rule, the job will be rescheduled on the same machine just after the end of
the downtime, whilst the MFJR rule would reschedule it on m = 2, because
it is the one with the highest RST. Further, since the schedule on the second
machine contains jobs of type j = 2, the rescheduled job will be programmed
after any job so to guarantee no additional setup time.
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Machine: m Initial Schedule: σm(0)

1 1 1 2 2 2 3 3
2 3 3 3 1 1 2 2
3 2 2 3 3 1 1 1

Table 3.2: Initial schedule of the FMS model – list of jobs for each machine m (each
job is defined by its part type).

3.3.3 Lab-Scale Model

In this case study, we refer to the production planning on an FMS composed
by three non-identical parallel machines (|M| = 3). 21 jobs of three part types
have to be produced (|J| = 3). The part type is modeled by three different
wooden discs colors: blue, red, and white. Each part type can be worked by
any of the three machines. The FMS physical model has been built with LEGO
MINDSTORM components. Figure 3.7 shows the developed model together
with the material flow. The input-output buffer can host 21 parts, 7 per type.
In this buffer, parts are hosted in three dedicated sliders and can be released
into the system in any sequence.

The initial schedule is shown in Table 3.2. At startup, the initial position of
all the discs is in the input-output buffer. The buffer releases the discs into the
system according to the production schedule. A job is released as soon as
one of the machines is idle. If all the machines are busy, the buffer does not
release jobs. The processing and setup times follow uniform distributions as
indicated in Table 3.3, and are assigned each time a part enters a machine.
Namely, each machine holds a disc for a duration equal to the corresponding
sampled production time, and – similarly – it remains idle during setup times.
At the end of the assigned processing time, each machine releases the disc
on the downstream conveyor and returns to the idle state. In the event of fail-
ures, the downtime is modeled as a processing time. Specifically, the involved
disc remains in the machine for a duration equal to the downtime before it is
sent back to the input-output buffer. The corresponding job is considered as
unfinished. The choice of uniform distributions is in accordance with Arnaout
[136], who reminds that high variances assure disadvantageous conditions for
testing scheduling algorithms.

3.3.4 Experimental Setting

In order to prove the effectiveness of online rescheduling, we have performed
experiments based on the application of the RTS procedure presented in sec-
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Processing time [s]

Part Type j: Pj,1 Pj,2 Pj,3

1 UNIF(10,12) UNIF(12,18) UNIF(5,9)
2 UNIF(12,14) UNIF(14,20) UNIF(6,10)
3 UNIF(14,16) UNIF(16,22) UNIF(7,11)

Setup time: Sij1 [s]

To j: 1 2 3

From i:
1 0 UNIF(28,32) UNIF(24,32)
2 UNIF(24,40) 0 UNIF(20,28)
3 UNIF(28,36) UNIF(30,32) 0

Setup time: Sij2 [s]

To j: 1 2 3

From i:
1 0 UNIF(24,40) UNIF(20,32)
2 UNIF(30,40) 0 UNIF(20,32)
3 UNIF(30,40) UNIF(24,40) 0

Setup time: Sij3 [s]

To j: 1 2 3

From i:
1 0 UNIF(30,40) UNIF(26,32)
2 UNIF(36,44) 0 UNIF(28,32)
3 UNIF(40,48) UNIF(32,40) 0

Table 3.3: Parameters of the FMS model – Processing and Setup times.
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Figure 3.7: FMS model built with LEGO MINDSTORMS.

tion 3.1. We have exploited a discrete-event simulation model built in Simulink
Simevents and synchronized with the system as base model. The physical
system is set to produce according to the initial production schedule. If the
schedule is modified during production, the system will produce part types
accordingly until the production plan is completed. We have designed two
specific cases in which a rescheduling activity is needed during production.

• Case A: failure at deterministic time. In this case, machine m = 1
fails one time at te = 100s for a downtime of 60 s. This single scenario is
replicated ten times, i.e. the lab-scale physical system is deployed in 10
independent experiments.

• Case B: failure at stochastic time. In this setting, three different fail-
ure scenarios are considered, one for each machine. In each scenario,
one failure happens at a time te, which is sampled from an exponential
distribution with mean 360s. The failure duration is 70 s. Each scenario
is replicated three times and the replications are independent.

Rescheduling is triggered by machine failures. The scheduler is a software
at the fourth level of the architecture (section 3.2.4) and consists of a MATLAB
script that controls the Real-Time Simulation procedure and communicates the
updated schedule to the logic level. Namely, when a failure occurs on a ma-
chine, the MATLAB script initializes the base simulation model to the system
status at the failure moment te. Then, two variants of this model are used to
simulate the production following the schedules generated by both the reaction

48



rules RSR and MFJR (section 3.3.2). For each rule in each scenario, the sim-
ulations are replicated three times in order to account for the noise of machine
behavior. If either one of the rules has obtained significantly better results than
the other in terms of obtained makespan, the corresponding schedule is exe-
cuted in the system. The implementation is done automatically by modifying
the production schedule files. Let us define C

(S)
max(πi) the makespan obtained

in a variant simulation model of the system by applying the production policy
πi. Hence, the optimal reaction rule which will be applied in the real system
satisfies the following:

π∗ = arg min
πi∈{RSR,MFJR}

{C(S)
max(πi)}. (3.4)

The effective makespan measured on the lab-scale physical system is
C

(L)
max(π∗). Hence, the duration of each run is the effective makespan.

In order to assess the successful implementation of the rescheduling opti-
mal policy, a full factorial design has been performed to compare the obtained
results in terms of makespan Cmax with the following factors:

• Rescheduling is a two-level factor that describes the following conditions:
(1) Rescheduling OFF: rescheduling is not allowed and if a failure occurs
the base policy is always applied (i.e. RSR). Hence, the makespan in this
case is always C

(L)
max(RSR). (2) Rescheduling ON: both the RSR and

the MFJR rules can be applied. In accordance with the RTS procedure,
the reaction rule obtaining the lowest makespan in the digital model is
applied online in the physical system.

• Evaluation tool is a factor that indicates if the makespan has been ob-
tained by the simulation model (i.e. the average value of three online
simulation runs) or by the physical system. Hence, the factor has two
levels: (S) Simulation model, (L) Lab-scale physical model.

• Scenario is a factor only used for case B. It has three levels that cor-
respond to the three respective failure scenarios: 1, 2, and 3 (section
3.3.4).

All the experiments have been done using a laptop with a 1.60GHz CPU and
8.00GB memory. Section 3.4 presents the numerical results.

3.4 Numerical Results

The proposed lab-scale model and the related architecture have been used
to assess the advantage of the rescheduling approach described in section
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Figure 3.8: Case A – The schedules generated by RSR and MFJR rules in response
to the failure on m = 1.

3.3.2 in the two cases listed in section 3.3.4. Table 3.4 summarizes the results
that have been obtained in each experimental condition in terms of average
makespan C̄max. The next two sections comment on the numerical results.

3.4.1 Case A: Deterministic Failure

In this case, the production is affected by a failure at te = 100s. Ten replica-
tions are done for each experimental condition. Since in each replication three
simulation runs are performed, this experiment counts 60 data points for sim-
ulation and 20 for the physical model. Figure 3.8 shows two of the schedules
generated by the two reaction rules. The MFJR rule always resulted more ad-
vantageous than RSR and has been applied online. The values of makespan
measured on the physical system and foreseen by the simulation model can
be found in Table 3.6.

Figures 3.9 and 3.10 show the main effects plot and the interaction plot of
the results obtained in this case, respectively. Due to non normality of ANOVA
residuals, we performed a non parametric test (i.e. Kruscall-Wallis) on the two
factors separately. Table 3.5 shows the obtained results. The Evaluation tool
factor is not significant and it demonstrates the alignment between the physical
system and its digital counterpart. Hence, we may infer that the optimal policy
found on the simulation model is also optimal on the physical system. This
is confirmed by the numerical results of this case because in all the experi-
ments the MFJR rule outperformed RSR both in the digital and physical mod-
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Figure 3.9: Case A – Main effects plot for Cmax depending on the two factors:
rescheduling condition, evaluation tool.

Figure 3.10: Case A – Interaction plot for Cmax depending on the two factors:
rescheduling condition, evaluation tool.

Factor DF H-Value P-Value

Evaluation 1 0.9 0.344
Rescheduling 1 29.27 0.000

Table 3.5: Case A – Kruscall-Wallis test results on the two factors.
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Figure 3.11: Case A – Box plots comparing the actual makespan obtained in the
conditions (1) Rescheduling ON and (2) Rescheduling OFF (10 data samples).

els. The Rescheduling factor is significantly influencing the response. Figure
3.11 shows the box plots of the makespan obtained in the two rescheduling
conditions for Case A. The average difference is 42.91s and it is contained in
the 95% confidence interval [40.05; 45.77]. Finally, from the numerical results
we can conclude that the online RTS-based rescheduling led to a significant
improvement of the system performance.

3.4.2 Case B: Stochastic Failure

In this case, three replications are made in each experimental condition. For
each replicate, three simulations for both the rules are performed. Hence, this
experiment counts 18 data points for the physical system and 54 for the digital
model. The values of Cmax measured on the physical system and foreseen by
the simulation model are collected in Table 3.8.

Figures 3.12 and 3.13 show the main effects plot and the interaction plot
of the makespan values depending on the experimental factors, respectively.
Due to missed normality of ANOVA residuals, a non-parametric test (i.e. Kruscall-
Wallis) has been performed to test the influence of the three factors. Table 3.7
shows the results. The factors Rescheduling and Scenario are significantly
influencing the makespan results, while the Evaluation tool factor is not signif-
icant. Also in this case, the alignment between the digital and physical model
is demonstrated by the fact that the Evaluation tool factor is not significantly in-
fluencing the makespan results. Figure 3.13 shows that there is an interaction
between the factors Rescheduling and Scenario. Indeed, in this case, MFJR

53



Rescheduling Replication C
(S)
max(RSR) C

(S)
max(MFJR) C

(L)
max(RSR) C

(L)
max(MFJR) t′e − te

ON

1

403.4 360.8 369.2 57.9
402.2 362.7
409.3 366.3

2

402.7 360.1 366.0 54.5
401.5 362.0
408.6 365.6

3

404.1 361.5 362.8 51.2
402.8 363.3
409.9 366.9

4

403.8 361.2 362.1 58.4
402.5 363.0
409.6 366.7

5

400.5 357.9 366.2 53.7
399.3 359.8
406.3 363.4

6

404.3 361.7 361.7 52.7
403.0 363.5
410.1 367.2

7

404.1 361.5 366.0 53.7
402.8 363.3
409.9 366.9

8

404.2 361.6 361.2 51.2
402.9 363.4
410.0 367.0

9

403.8 361.2 366.6 53.8
402.6 363.1
409.6 366.7

10
403.6 361.0 362.7 58.3
402.4 362.9
409.4 366.5

OFF

1
403.4 360.8 408.4 57.8
402.2 362.7
409.2 366.3

2

402.7 360.1 412.9 53.2
401.4 361.9
408.5 365.5

3

404.0 361.4 406.4 52.9
402.7 363.2
409.8 366.8

4

403.8 361.2 401.4 57.4
402.6 363.1
409.6 366.7

5

400.5 357.9 408.7 53.6
399.2 359.7
406.3 363.4

6

404.3 361.7 405.6 52.0
403.0 363.5
410.1 367.1

7

404.1 361.5 406.5 53.1
402.8 363.3
409.9 366.9

8

404.2 361.6 408.9 52.1
402.9 363.4
410.0 367.0

9

403.8 361.2 403.9 54.7
402.5 363.0
409.6 366.7

10

403.6 361.0 411.0 58.1
402.4 362.9
409.5 366.5

Table 3.6: Case A – Experimental results.
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Figure 3.12: Case B – Main effects plot for Cmax depending on the three factors:
Scenario, Rescheduling condition, Evaluation tool.

Factor DF H-Value P-Value

Scenario 2 26.06 0.000
Rescheduling 1 3.85 0.050
Evaluation 1 0.03 0.874

Table 3.7: Case B – Kruscall-Wallis test results on the three factors.

rule has not always been applied online. Specifically, in the second scenario,
a failure occurs on m = 3 at te = 46s on a job of part type j = 2. Given
the system state, the most performing decision is to reschedule the failed job
according to the RSR rule. Hence – as expected – in the second scenario
there is no significant difference between enabling rescheduling or not. This
demonstrates that even if a specific reaction rule could prove to be better on
average, it may still perform worse in certain settings. Real-Time Simulation
is able to identify these cases and it allows for a prompt evaluation of the best
decision to take so that the performance of a system in a particular situation
can be maximized.

3.5 Conclusions

In this work, we have proposed a lab-scale environment that exploits physi-
cal models of manufacturing systems to test production planning and control
approaches based on Real-Time Simulation. By exploiting easy-to-build com-
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Rescheduling Scenario Replication C
(S)
max(RSR) C

(S)
max(MFJR) F̃ C

(L)
max(RSR) C

(L)
max(MFJR)

ON

1

1

398.2 379.0 169.0 374.9
410.0 381.7
402.9 379.8

2

288.7 262.2 168.9 374.1
276.6 256.1
280.7 257.9

3

403.0 375.0 168.8 370.3
412.1 379.9
402.3 373.7

2

1

368.8 374.7 46.0 366.4
365.2 376.4
368.5 373.6

2

373.5 373.5 46.0 365.3
368.8 384.1
368.3 388.3

3

372.7 371.3 46.0 368.6
369.2 373.3
372.7 379.4

3

1

447.6 405.2 178.7 413.3
449.5 402.4
453.1 412.0

2

445.3 407.1 178.8 415.4
449.3 412.1
447.4 408.5

3

450.2 406.8 178.7 405.3
452.9 406.8
447.8 405.4

OFF

1

1

401.4 374.9 169.0 408.5
399.1 366.6
415.9 376.9

2

398.6 371.3 169.0 405.6
404.8 380.1
406.1 377.3

3

397.3 372.6 169.0 407.5
403.1 362.6
405.8 369.4

2

1

370.8 369.9 45.9 374.9
368.5 370.8
374.3 372.9

2

377.0 374.3 46.0 367.3
369.9 375.7
367.0 378.1

3

367.3 381.7 45.9 369.5
371.2 377.8
372.0 368.1

3

1

449.1 408.2 178.8 454.1
443.5 402.2
451.8 410.6

2

448.9 404.3 178.8 458.7
451.3 407.2
447.1 411.7

3

456.3 406.4 178.7 451.8
451.2 405.8
447.0 404.5

Table 3.8: Case B – Experimental results.
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Figure 3.13: Case B – Interaction Plot for Cmax depending on the three factors: Sce-
nario, Rescheduling condition, Evaluation tool.

ponents such as LEGO, several types of manufacturing systems can be trans-
lated into lab-scale models in a very short time. The case study proved that
RTS-based production planning and control approaches can be assessed on
lab-scale models of common manufacturing systems. Differently from tests
performed on real factories, the proposed lab-scale models allow for a much
more versatile and cost-effective setting, while maintaining the information
loop through industrial components. Hence, we believe the proposed labora-
tory will be beneficial in several industrial applications. For instance, the design
of new production control algorithms could include a testing phase exploiting
the physical models. Similarly, new devices such as PLCs could benefit from
trials on lab-scale models.

Several issues still need to be solved. The synchronization between digi-
tal and physical models theoretically allows for the online identification of the
optimal production policy. However, the computation time represents a major
obstacle. Indeed, although in this work the online comparison has involved two
alternative policies, the time span t′e− te has lied between 51 and 59 seconds,
which is very close to the downtime duration. In general, simulation time is
non negligible and it represents one of the most important challenges of RTS:
the number of replications are superiorly limited by the necessity of a timely
application of the prescribed actions on the system. On the other hand, reduc-
ing the simulation effort may weaken the confidence in the simulation results.
Hence, more work is needed for testing production planning problems requir-

57



ing higher computation effort. In the future, we aim at providing more case
studies based on different types of manufacturing systems and introducing
more production policies alternatives to explore the applicability boundaries.
Another interesting development of this work is the study and formalization of
the component types which can benefit from an increased Technology Readi-
ness Level (TRL) [137]. The TRL that can be obtained by an integrated system
can also be assessed, by taking into account the interactions and compatibility
between all connected components and digital models.
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Chapter 4

Generation and Tuning of Digital
Models

This chapter proposes a method for obtaining simulation-based digital twins
starting from the data logs of manufacturing systems. The contribution of this
chapter is twofold. First, it outlines a procedure to automatically discover a
manufacturing system from the production data and building a discrete-event
simulation model for performance estimation. The model generation is inclu-
sive of both the production system logical structure and its parameters. In
addition, this work provides a method to tune the model toward a desired level
of detail, removing complexities that may hinder both the understandability and
re-usability of the model for taking production planning and control decisions.

The chapter is organized as follows. Section 4.1 describes the problem of
system discovery and model generation with a proper level of detail. Section
4.2 outlines the main steps covered by the model generation methodology.
Section 4.3 presents the proposed model tuning method. The numerical ex-
periments are listed in section 4.4, while final remarks are in section 4.5.

4.1 Problem Description

Figure 4.1 graphically explains one of the possible outcomes of an automated
model generation procedure, using as example the three-station production
line shown in figure 4.1a. Conveyors bring pallets from one station to another,
and are equipped with sensors that record the correct advancement of pallets.
If all stations and sensors generate data, figure 4.1b shows a possible outcome
of an automated data-based model generation. The result is that sensors are
treated as activities, thus adding unnecessary operations to the model. Let
us assume to be interested in time-related performance indicators such as
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Figure 4.1: (a) Sequential 3-station production line; (b) graph model with 5 nodes; (c)
graph model with 3 nodes.

the system time. In this case, the information from the sensors is redundant
since the elements holding the work-pieces are the three stations. Hence,
for the intended goal, the model depicted in figure 4.1c is a more reasonable
abstraction of the process, and much closer to what an experienced modeler
would choose. Therefore, the ability to tune – or adjust – the model level of
detail is also desirable in an automated modeling procedure. In manufacturing
applications, model adaptation may refer not only to the model parameters,
but also to the system layout and logical structure. A tuned model is easily
understandable by the user, and it has a higher probability of being reused
[138].

This work focuses on modeling discrete parts manufacturing systems [139].
Our focus is on how to properly build and tune digital models which are exces-
sively exhaustive for the user purposes and have to be modified toward a rea-
sonable level of detail. Simulation models for manufacturing systems typically
represent components such as parts, resources (e.g., machines, conveyors,
operators), and the paths along which the parts are flowing in the system.
Hence, in a model tuning procedure, it is desirable to keep track of how much
the main components of a simulation model are being represented and, possi-
bly, reduced. Most PM contributions have defined fitness values that determine
the ability of a model to reproduce the behavior in the event log [140]. How-
ever, simply being able to replay an event log may be insufficient if the resulting
model produces bad predictions. In this work, we concentrate on the ability of
the model to reproduce the characteristics and to estimate the performance of
the system under study. Hence, we outline model generation starting from the
PM-based discovery of the manufacturing system structure and characteris-
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Figure 4.2: Graphical map of manufacturing system discovery and digital twin gener-
ation.

tics. Then, we address the issue of model tuning by exploiting manufacturing
systems properties such as buffer capacities and re-entrant material flows, as
indicators of the degree with which a model is correctly representing the data
log.

4.2 Data-Driven Manufacturing System Discovery

Figure 4.2 outlines the main steps covered by this work. Let us assume the
manufacturing system is equipped with a Manufacturing Execution System
that aggregates production data in an event log. The log is used to discover
the manufacturing system logical structure and its parameters. A digital model
Ω0 is built by a model generation procedure. Then, depending on the users
requirements, the model can be tuned toward a desired level of detail. In this
section, we outline the data-based system discovery and model generation,
while in section 4.3 we present the proposed model tuning method.

4.2.1 The Event Log

Event logs are files that aggregate all the data produced by the manufacturing
system. In general, the event log may contain several types of information,
such as part flows, resources identifiers, and quality check outcomes. In this
work, we assume the availability of event logs containing three main informa-
tion types: (1) the activity identifier n ∈ N, (2) the work-piece identifier h ∈ H,
and (3) the timestamps tS(n, h) and tF (n, h) indicating the moment at which
the n-th activity has started and finished on the h-th piece, respectively. Fur-
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Table 4.1: Example of event log used in this work.

Time stamp Activity Part ID Activity type

2020-11-12 09:31:32 S1 1 start
2020-11-12 09:31:36 S1 1 finish
2020-11-12 09:31:41 S1 2 start
2020-11-12 09:31:46 S1 2 finish
2020-11-12 09:31:48 C1 1
2020-11-12 09:32:02 C1 2
2020-11-12 09:32:12 S2 1 start
2020-11-12 09:32:24 S2 1 finish
2020-11-12 09:32:29 S2 2 start
2020-11-12 09:32:33 C2 1
2020-11-12 09:32:34 S2 2 finish
2020-11-12 09:32:39 C2 2
2020-11-12 09:32:44 S3 1 start
2020-11-12 09:32:58 S3 1 finish
2020-11-12 09:32:59 S3 2 start
2020-11-12 09:33:00 S3 2 finish

ther, we assume that the time span covered by the event log corresponds to
the time horizon of interest. Let us define each row of the log as event and
we define trace θh ∈ Θ the set of events experienced by the h-th work-piece,
where Θ is the set of all the traces identified from the log1. A trace is the
specific route that each part followed in the system. It can be expressed as a
series of activity identifiers. Hence, each h-th part has a corresponding trace
θh = {n(1), n(2), . . . , n(eh), . . . , n(#h)}, where #h is the number of the activities
performed by the h-th part and eh indicates the sequential position of the activ-
ity as observed in the log for part h. Table 4.1 shows an example of event-log
generated by the manufacturing system of Figure 4.1. In this example, the
trace of part h = 1 is θ1 = {S1, C1, S2, C2, S3}.

4.2.2 Digital Models

We may represent a simulation model as a directed graph, in which nodes
represent the manufacturing activities, and arcs represent the material flow
relationships between the activities. Let us define a model Ω as a tuple Ω =
(N,A) where N is the set of nodes and A ⊆ N × N is the set of arcs in
the model. For instance, the graph model obtained in Figure 4.1c is defined

1In general: |Θ| ≤ |H|.
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Table 4.2: Notation for digital models.

Nodes n ∈ N Pn Predecessor nodes set.
Sn Successor nodes set.
κn Buffer capacity of a node.
ϕn Frequency of a node.
ξn Number of close events on a node.
πn Node branching policy tuples set.

Tn = {τk,n} Nodes flow times matrix.

Arcs a ∈ A ηa = (n,m) Nodes connected by an arc.
ca Buffer capacity of an arc.
fa Number of events on an arc.
ea Number of close events on an arc.

Ta = {tk,a} Arc flow times matrix.

by the set of nodes N = {1, 3, 6} and the set of arcs A = {(1, 3), (3, 6)}.
Nodes and arcs may also contain information about the system character-
istics: the logical layout (i.e. precedences among activities), the capability
of holding work-in-progress parts, the production volume over a certain time
span, the routing policies, and the flow times. Hence, each node n ∈ N is
a tuple n = (Pn,Sn, κn, ϕn, πn, ξn, τn), where Pn,Sn are sets of predecessor
and successor nodes, respectively, κn is the buffer capacity of the node, ϕn

the frequency of occurrence of the respective activity, πn the set of branching
probabilities, ξn the number of events close in time, and Tn the flow times ma-
trix. Similarly, each arc a ∈ A is a tuple a = (ηa, ca, fa, ea, Ta), where ηa is a
tuple of connected nodes, ca the buffer capacity of the arc, fa the occurrence
frequency, ea the number of close events, and Ta the arc flow times matrix. Ta-
ble 4.2 summarizes the notation for the nodes and arcs of the models used in
the rest of this work. The properties of nodes and arcs are populated through
the model generation procedure, which is described in the next section.

4.2.3 Model Generation

Model generation is a procedure which links the data in the event log with a
digital model Ω. The first step is the identification of the traces. This procedure
characterizes the possible sequences of events in the system. Starting from
the event log, a unique set of activities N is created and the traces of all the
|H| parts are identified. Then, the traces are used to retrieve precedence
relationships among activities. Hence, a node exists in the model if a certain
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activity has been performed by at least one part, and an arc indicates that a
production step has followed another in at least one trace. Specifically, arc
(n,m) exists if ∃h ∈ H|n,m ∈ θh ∧ tF (n, h) < tS(m,h). In the following
paragraphs, we elaborate on node and arc characteristics.

Nodes. A node identifies an activity. Each node is linked to its predeces-
sors and successors nodes (Pn, Sn). Namely, two sets of nodes that represent
the activities done before (Pn) and after (Sn) the n-th node, respectively. A
node is also defined by the following properties: (1) capacity, (2) frequency, (3)
close events. The capacity of a node κn is defined as the maximum amount of
work-pieces that can be processed together by the corresponding production
activity. It can be estimated as follows:

κ̂n = max k | tS(n, h− k) ≤ tF (n, h) ∀n ∈ N. (4.1)

The frequency ϕn indicates the number of times the corresponding activity
has been observed in the log, while ξn indicates the number of events that
have been identified as close in time on the n-th node. In general, we de-
fine activities on the n-th node to be close in time if their time stamps satisfy
|tF (n, h) − tS(n, h)| ≤ ζN , where ζN is a user-defined threshold. Additional
parameters define the branching policies πn and the flow times. The former
is a set of tuples of the kind (s, ps) where s ∈ Sn is the target node and ps
the probability that a work-piece will perform activity s after the node n. The
probability ps may be estimated as follows:

p̂s =
ϕs∑

o∈Sn ϕo

∀s ∈ Sn. (4.2)

The flow times are described by a matrix, where each element indicates the
time work-piece h took to flow in node n. Hence:

τh,n = tF (n, h)− tS(n, h) ∀h ∈ H, n ∈ N. (4.3)

Arcs. An arc is a connector between two nodes. The nodes connected
by the a-th arc are collected in a tuple ηa = (n,m) ⊆ N × N. We may
conveniently identify an arc with its connected nodes tuple. The capacity ca
of an arc is defined as the maximum amount of work-pieces that has resided
on the arc at the same time, as retrieved from the event log. Namely:

ca = max k | tF (n, h− k) ≤ tS(m,h) ∀a ∈ A | ηa = (n,m). (4.4)

The number of work-pieces that have been observed flowing through the arc
is indicated by fa, while ea is the number of events that have been identi-
fied as close in time on the a-th arc, hence in which their time stamps sat-
isfy |tS(m,h) − tF (n, h)| ≤ ζA, where ζA is a user-defined threshold and
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ηa = (n,m). Flow times are defined by the matrix Ta = {th,a} where each
element indicates the time that the h-th work-piece took to flow in arc a:

th,a = tS(m,h)− tF (n, h) ∀h ∈ H,∀a ∈ A | ηa = (n,m). (4.5)

Model generation identifies the nodes and arcs and collects them in an
directed graph Ω0, which is populated with the properties of nodes and arcs
through Algorithm 1. Algorithm 1 is used to generate an initial model Ω0 start-
ing from an event log.

Once a graph model is created, it can be converted into a simulation model
that is able to estimate the system performance indicators such as production
throughput or system time. Indeed, from process mining literature we know
that a graph model has a Petri Net equivalent [141]. Among others, one of
the conversion procedures that can be used is the α-algorithm, which can be
found in [1]. Notice that also simulation graphs (i.e., event relationship graphs)
can be obtained, for instance exploiting direct conversion from Petri Nets [142].

4.3 Model Tuning

We may define model tuning as a procedure that aims to adapt an existing
model in order to satisfy complexity requirements, which can be expressed
in terms of maximum number of nodes or arcs. In general, let us define
Ω0 = (N0,A0) the model generated by the procedure described in section
4.2.3, and Ωj = (Nj,Aj) is a j-th alternative graph model. Among the alterna-
tive models satisfying the user-requirements in terms of level of detail, model
tuning finds the one that maximizes an adequacy-related score. The score
can be computed by the function Φ(Ω) in equation (4.6), which determines
how acceptably a model Ω represents the real production system.

Φ(Ω) =
∑
i

wi Ri(Ω) (4.6)

where each score Ri(Ω) is a function that describes how well does the model
Ω represent the i-th characteristic of the system, and wi is the weight of the
i-th score. This way, the score of a model is directly linked to the event log
and the following properties of the manufacturing system: (1) buffer sizes, (2)
events close in time, (3) re-entrant flows, (4) split and merge points, and (5)
activity occurrence frequency. We have defined five Ri(Ω) functions which are
listed in section 4.3.1. Table 4.3 summarizes the notation used for the model
tuning.
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Algorithm 1: Model Generation – Find the initial model Ω0.
1 Input: Event Log;
2 Output: Graph model Ω0;

3 Definition: Count(i|Condition) returns the number of times
Condition is satisfied for element i.

4 STEP 1 – Generate traces set Θ and unique activities set N;
5 STEP 2 – Activity relations:
6 for n ∈ N do
7 for θh ∈ Θ do
8 for j ← 1to#i − 1 do
9 A← A ∪ {(n(j), n(j+1))};

10 Sn(j) ← Sn(j) ∪ {n(j+1)};
11 Pn(j+1) ← Pn(j+1) ∪ {n(j)};
12 end
13 end
14 end
15 STEP 3 – Calculate frequencies:
16 for h ∈ H do
17 for event ∈ θh do
18 for n ∈ N do
19 if n ∈ θh then
20 ϕn = Count(n|n ∈ θh)
21 end
22 end
23 for a ∈ A do
24 if (n,m) ∈ θh |ηa = (n,m) ∧ j(n) = j(m)− 1 then
25 fa = Count(n|n ∈ θh)
26 end
27 end
28 end
29 end
30 STEP 4 – Calculate buffer capacities:
31 for n ∈ N do
32 n← κn = max k | tS(n, h− k) ≤ tF (n, h);
33 end
34 for a ∈ A do
35 a← ca = max k | tF (n, h− k) ≤ tS(m,h) n,m|ηa = (n,m);
36 end
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Algorithm 2: Model Generation – Find the initial model Ω0 (contin-
ued).

37 STEP 5 – Calculate contemporary events:
38 for a ∈ A do
39 a← ea = Count(h| |tS(m,h)− tF (n, h)| ≤ ζA);

40 for n ∈ N do
41 n← ξn = Count(h| |tS(n, h)− tF (n, h)| ≤ ζN);

42 STEP 6 – Calculate branching policies:
43 for n ∈ N do
44 for s ∈ Sn do

45 p̂s =
ϕs∑

o∈Sn ϕo

;

46 πn ← πn ∪ {(s, p̂s)}
47 n← πn

48 return Ω0 ← {N,A};

4.3.1 Model Adequacy Score Functions

The score functions that we have defined are the following:

• Buffers. R1 is a function that represents the buffer capacity of the sys-
tem. The aim is to favor the inclusion of nodes and arcs with a higher
buffer capacity.

R1(Ω) = r
(A)
1

∑
a∈A

ca∑
a∈A0

ca
+ r

(N)
1

∑
n∈N

κn∑
n∈N0

κn

(4.7)

where r
(N)
1 and r

(A)
1 balance the relative weight of nodes and arcs, re-

spectively.

• Close events. R2 is a function related to the number of events in the
system which occur within a short time window. For example, in a pro-
duction line the moment a part leaves a buffer may correspond to the
recorded time it enters the downstream station. R2 favors the exclusion
of nodes and arcs related to activities that are done within short time
frames.
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Table 4.3: Notation for the proposed model tuning method.

Parameters:
Umax
A maximum number of arcs allowed: Umax

A ∈ [1, |A0|].
Umax
N maximum number of nodes allowed: Umax

N ∈ [2, |N0|].
X = {χn,m} matrix of precedences among activities:

χn,m is 1 if ∃n,m ∈ N0, h ∈ H|tF (n, h) ≤ tS(m,h), 0
otherwise.

L boolean value that is 1 if self-loops are allowed, 0 oth-
erwise.

νin maximum number of input arcs in a node: νin ∈
[0,maxn∈N0{Pn}].

νout maximum number of output arcs from a node: νout ∈
[0,maxn∈N0{Sn}].

ιij number of loops in which the arc (i, j) is involved.

Decision Variables:
β = {βi} vector of included activities:

βi is 1 if the i-th activity is included in the graph, 0
otherwise.

Γ = {γij} matrix of connectors between activities:
γij is 1 if the i-th activity is followed by the j-th, 0 oth-
erwise.

M = {mci} matrix of cluster composition:
mci is 1 if the c-th cluster includes the i-th activity, 0
otherwise.
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R2(Ω) =
r
(A)
2

|A|
∑
a∈A

(1− ea
fa

) +
r
(N)
2

|N|
∑
n∈N

(1− ξn
ϕn

) (4.8)

where r
(N)
2 and r

(A)
2 balance the relative importance of node and arc

properties, respectively.

• Re-entrant flows. R3 is related to the loops in the material flow. A
loop may simply represent a station that withdraws parts from a con-
veyor, performs a certain activity, and then releases the parts back to
the conveyor. Since the performance of the loop influences the produc-
tion rate of the system, it is desirable to preserve it in the representation.
This function encourages the inclusion of parts in the model which are
involved in loops.

R3(Ω) =
1

|A|
∑
n∈N

∑
m∈N

γnmιnm (4.9)

where ιnm is 1 if the arc (n,m) is a portion of a loop in the model, 0
otherwise. Loops are identified as cycles in a directed graph Ω = (N,A)
with the algorithm defined in [143].

• Split and merge. R4 is a routing score defined in [125]. For instance,
in a manufacturing system the logic of the material flow may be defined
by splitting or merging points along the physical conveyors, i.e. positions
in which alternative activities following or preceding the n-th node are
possible. In such locations, relevant decisions may have to be taken
(e.g., prioritizing). Therefore, it may be desirable to keep the nodes with
multiple connected arcs.

R4(Ω) = r
(in)
4

∑
n∈N

∑
x∈Sn

γnx + r
(out)
4

∑
n∈N

∑
l∈Pn

γln (4.10)

where r
(in)
4 and r

(out)
4 balance the relative significance of inbound and

outbound arcs, respectively.

• Frequency. R5 is a function representing the number of parts flowing
in the nodes and arcs of the model. The aim is to favor the inclusion
of nodes and arcs which are visited with a higher frequency (i.e. the
preferred path).
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R5(Ω) = r
(A)
5

∑
a∈A

fa∑
a∈A0

fa
+ r

(N)
5

∑
n∈N

ϕn∑
n∈N0

ϕn

(4.11)

where r
(N)
5 and r

(A)
5 balance the relative importance of nodes and arcs,

respectively.

4.3.2 Mathematical Programming Formulation

Without loss of generality, we assume that the size of a model is defined by the
number of nodes and it is used as single criterion for pursuing model reduction
goals. Let us define Umax

N as the desired number of nodes in the model. If the
desired model size is either equal or it exceeds the one of the initial model
Ω0 (that is, if the number of nodes in the model satisfies the user-imposed
constraint |N0| ≤ Umax

N ) the solution to the problem is trivial and it corresponds
to Ω0. Otherwise, a reduced model has to be found. This can be obtained
in two ways: (1) by reducing the number of nodes in the model, thus omitting
certain activities, (2) by grouping the existing nodes and arcs in clusters c ∈ C.
A cluster is a node. Specifically, we indicate mnc = 1 if node n belongs to
cluster c, 0 otherwise; an arc a belongs to a cluster if its connected nodes also
belong to it (n,m ∈ C ∧ n,m ∈ ηa). The goal of model tuning is to find the
model Ω = (N ∪ C,A) that maximizes the score Φ defined in equation (4.6)
while satisfying a set of constraints (e.g., number of nodes).

Model tuning may be expressed as a mathematical programming model
through equations (4.12) - (4.22). The decision variables are defining the se-
lection of nodes and arcs to keep or aggregate in the model. Specifically, βi

defines if the i-th activity is kept in the representation or not, γij guarantees
the precedences of activities are maintained. The clustering of nodes is rep-
resented by variable mic.
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max
Ω

Φ(Ω) (4.12)

s.t.
∑
i

βi ≤ Umax
N (4.13)∑

ij

γij ≤ Umax
A (4.14)

γij ≤ MXMT ∀i, j (4.15)∑
i

mik ≤ 1 ∀k (4.16)

γij ≤ βi ∀i, j (4.17)
γij ≤ βj ∀i, j (4.18)
γii ≤ L ∀i (4.19)∑

i

γij ≤ νin ∀j (4.20)∑
j

γij ≤ νout ∀i (4.21)

βi, γij,mci ∈ {0, 1} ∀i, j, c. (4.22)

The optimization function (4.12) represents the maximization of the model
score expressed by equation (4.6). Constraints (4.13) and (4.14) limit the
number of nodes and arcs included in the model, respectively. Constraints
(4.15) translate the precedences among events to precedences among clus-
ters. Constraints (4.16) force each activity to be included in at most one cluster.
Constraints (4.17) and (4.18) guarantee that arcs are included only between
existing nodes. Constraints (4.19) allow or forbid for self-loops depending on
the value of L. Constraints (4.20) and (4.21) limit the number of input and out-
put arcs from each node, depending on νin and νout. Constraints (4.22) state
the nature of the decision variables.

4.3.3 Solution Methodology

The model tuning problem described in equations (4.12) - (4.22) is solved with
the local search algorithm described in Algorithm 3. Algorithm 3 is based on
the possibility to generate neighbors of a model. A neighbor is derived by
means of either two moves: (1) aggregation, in which two nodes are merged
in a cluster, (2) reduction, in which one node is removed from the model. The
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following section elaborates on the moves, while section 4.3.3 explains the
local search algorithm.

Removal and Aggregation Rules

In both aggregation and reduction moves, new arcs may be added in order
to maintain the flow of parts, and clusters may be added to represent node
groups. In this case, the newly introduced elements inherit the properties of
the removed parts. Figure 4.3 represents an example of this idea. In the
reduction case, node 2 is removed from the model, hence also the connected
arcs (1, 2) and (2, 3) have been removed. To guarantee the flow of parts, arc
(1, 3) is added. The properties of the added arc are derived from the ones of all
the removed elements. In the aggregation case, a new node cluster is created
by merging nodes 1 and 2. We may define two support indicator functions:
α(x, c) is 1 if element x has been aggregated in cluster c, 0 otherwise; ρ(x, a)
is 1 if element x has been removed and, as a consequence, arc a has been
added, 0 otherwise. We define the following inheritance rules:

• Frequency. New arcs or clusters inherit the maximum frequency of
events observed in any of the removed elements.

Reduction:

fa = max{max
n∈N
{ϕn},max

b∈A
{fb}} ∀n, b |ρ(n, a) = 1∧ρ(b, a) = 1. (4.23)

Aggregation:

ϕc = max{max
n∈N
{ϕn},max

a∈A
{fa}} ∀n, a |α(n, c) = 1 ∧ α(a, c) = 1.

(4.24)

• Contemporary Events. New arcs or clusters inherit the minimum number
of events close in time of the removed elements.

Reduction:

fa = min{min
n∈N
{ξn},min

b∈A
{eb}} ∀n, b |ρ(n, a) = 1 ∧ ρ(b, a) = 1. (4.25)

Aggregation:

ξc = min{min
n∈N
{ξn},min

a∈A
{ea}} ∀n, a |α(n, c) = 1 ∧ α(a, c) = 1. (4.26)
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Figure 4.3: Properties inheritance example: a) reduction, b) aggregation.

• Capacity. New arcs or clusters inherit the sum of the capacity of the
removed elements.

Reduction:
ca =

∑
n,b |ρ(n,a)=1∧ρ(b,a)=1

κn + cb (4.27)

Aggregation:
κc =

∑
n,a |α(n,c)=1∧α(a,c)=1

κn + ca (4.28)

Algorithm

Algorithm 3: Local Search – Find the most adequate model Ωf of
size Umax

N .

1 Input: Graph model Ω0, size limit Umax
N ;

2 Output: Graph model Ωf ;
3 STEP 0: assign Ωcurrent ← Ω0; i← 0;
4 while (i ≤ Imax)¬ (#N(Ωcurrent) ≤ Umax

N ) do
5 STEP 1: Generate σA + σR neighbors of Ωcurrent (Algorithm 1);
6 STEP 2: Sort neighbors based on score Φ;
7 STEP 3: Set Ωcurrent ← argmax{Ω∈MA∪MR}Φ(Ω), i← i+ 1;
8 end
9 return Ωf ← Ωcurrent;

Algorithm 3 is a depth-first local search algorithm. At each step, a certain
number of neighbors can be generated. The neighbors generation function is
described by Algorithm 4, which produces a set of σA + σR neighbors of an
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input model Ω. OrderNodesArcs is a function that returns the ordered lists
of nodes and arcs, based on the ranking that satisfies the user-defined pri-
ority rule. GenerateNeighborByAggregation(Ω, (n,m)) is a function that gen-
erates a neighbor of model Ω, starting from the aggregation of nodes (n,m)
into a cluster, while respecting the inheritance rules defined in section 4.3.3.
Similarly, GenerateNeighborByReduction(Ω, n) is a function that generates a
neighbor of model Ω, starting from the removal of node n, while respecting the
inheritance rules defined in section 4.3.3.

Algorithm 4: Model Tuning – Generate neighbors of model Ω.
1 Input: Model Ω, number of neighbors from aggregation σA, number of

neighbors from reduction σR, priority rule;
2 Output: neighbor model sets MA,MR ;

3 {N′,A′} ← OrderNodesArcs(Ω, priority_rule);
4 while |MA| < σA do
5 Take first two nodes n,m in N′;
6 Ω′ ← GenerateNeighborByAggregation(Ω, (n,m));
7 MA ← Ω′, N′ ← N′ \ {n,m};
8 end
9 while |MR| < σR do

10 Take first node n in N′;
11 Ω′ ← GenerateNeighborByReduction(Ω, n);
12 MR ← Ω′, N′ ← N′ \ {n};
13 end

14 return MA,MR;

Let us call σA and σR the number of neighbor models generated by aggre-
gation and reduction, respectively. Hence, at each step, two sets of neighbors
MA and MR are generated, and |MA| = σA, |MR| = σR. Let us accept the
short notation Ni, Ai indicating the node and arc sets of the model selected at
the i-th iteration of Algorithm 3. At any i-th iteration, the complete exploration
of the neighbors set is achieved when σA = σR = |Ni|. Since a neighbor is
defined by the reduction of the model size by one node, |Ni| neighbors can be
generated by means of reduction moves, while |Ai| neighbors by means of ag-
gregation moves. For saving computation time, we may also set σA, σR < |Ni|.
As a consequence, it is necessary to define a neighbor generation rule, which
defines which nodes are to be considered for either aggregation or reduc-
tion moves. We have defined three neighbor generation rules: (1) Frequency.
Neighbors are generated by aggregating or reducing first the nodes with the
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lowest frequency; (2) Contemporary Events. Neighbors are generated by ag-
gregating or reducing first the nodes with the highest number of contemporary
events; (3) Capacity. This policy prescribes to aggregate or reduce first the
nodes connected by arcs of the lowest capacity. It is worth to notice that other
rules can be developed. The choice of which rule to observe depends on the
intended use of the digital model and on the manufacturing system involved.

4.3.4 Parameters Estimation

Once a final model Ωf has been identified, the parameters governing the be-
havior of the physical system have to be estimated. The main parameters that
influence the performance of a discrete parts manufacturing system are parts
arrival behavior and part processing distributions. In this work, we assume
both arrival times and processing times are available from the event log, and
we use the Empirical Cumulative Distribution Function as estimate. Specif-
ically, if a node does not belong to any cluster, the processing times of the
respective activity n can be derived from the event log simply by extracting the
time the h-th part spent in activity with equation (4.3), whereas in case the
nodes have been clustered by model tuning, we consider processing times of
the cluster as the inter departure times from the cluster:

τh,n = tF (n, h)− tF (n, h− 1) ∀n ∈ C, h ∈ H. (4.29)

4.3.5 Control Policies Identification

At the end of model tuning, a graph model Ωf is obtained. Since model tuning
may change both nodes and arcs, new split or aggregation points may have
been created in the graph. Hence, control policies have to be estimated again
by evaluating πn ∀n ∈ N ∪ C. It is worth to notice that the focus of this work
is not on policies estimation, hence the identification of only frequency-based
control policies is sufficient for our scopes. However, realistic settings can
present a much higher level of complexity, and smarter mining algorithms can
be developed for the identification of the control policies [93].

4.4 Numerical Experiments

This section elaborates on the experiments done to validate the approach pro-
posed in this work. Specifically, we have performed the following tests:
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Figure 4.4: 6-station flow line used for the experiments in this work. Squares depict
stations, while inter-operational buffers are represented as triangles.

1. Calibration. The goal is to determine which configuration of weights con-
tributes the most to the objective function of the model tuning problem
described in section 4.3.2.

2. Test Case 1: six-station flow line. The scope is to verify the behavior of
the proposed approach by comparing the performance estimated by the
obtained simulation models with the real system one (i.e. validation).

3. Test Case 2: six-station flow line with additional sensors. The goal is to
determine if records in the log from activities unrelated with the manu-
facturing process are correctly aggregated via model tuning.

4. Test Case 3: real manufacturing line. The objective is to apply the pro-
posed approach to a realistic event log.

4.4.1 Calibration

The goal of this section is to determine which configuration of weights con-
tributes the most to the objective function described in equation (4.12). The
function is a weighted sum of the scores defined in section 4.3.1. Specifically,
there are five weights w and eight weights r. All the weights are in the interval
[0, 1]. Experiments have been done by taking as reference the manufacturing
flow line with six stations depicted in Figure 4.4. The flow line processes one
part type. Stations process parts in sequence and each station can process
one part at a time. Each station s is processing parts with processing times
ps. Part inter arrival times are described by the variable pa. Inter arrival and
processing times are distributed according to an exponential distribution with
mean 1min. Each station s has an input buffer Cs. The first buffer is infinite,
hence all arriving parts are accepted, while buffers C2 to C6 can store maxi-
mum 10 parts each. A simulation model of the flow line has been developed
in Rockwell Arena and used to generate five independent event logs through
simulation experiments representing the production of 1000 parts.

For the calibration experiments, we have exploited a space-filling design
with a 256 points over the values of the weights of objective function (4.12).
Each point has been replicated five times. The replications are defined by
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Figure 4.5: Calibration – Main effects plots of the w and r weights influence on the
normalized objective function value Φ̄(Ω).

the event logs, which represent specific realizations of the system parameters
and settings. Hence, in each replication, models have been generated from
an independent log and tuned with Umax

N = 3. For each experimental point,
the value of the objective function Φ(Ωf ) has been calculated. Since the value
of Φ depends on the particular configuration of the weights, we have used the
normalized value Φ̄ for comparisons, defined as follows:

Φ̄(Ωf ) =

∑
iwiRi(Ωf )∑

i wi

. (4.30)

Figure 4.5 shows the main effects plots obtained in the calibration experi-
ment, suggesting a high value for w1, w2, w4, and w5, whilst maintaining a low
value for w3. This is also coherent with the fact that R3 is referred to loops,
which are not present in the flow line. Table 4.4 presents the ANOVA analysis
on the w and r weights. Considering a confidence level of 95%, w1, w2, and
w3 are significantly contributing to the objective function value. The fact that
w4 and w5 are not significant is reasonable since R4 is collecting the influence
of routing nodes, which are not present in a flow line, and R5 depends on the
frequency on the nodes and arcs, which is constant for the flow line since no
branching points are present. The influence of the r scores is less clear from
the graph, while the ANOVA table suggests that all of them have an influence
except for r(A)

1 and r
(N)
2 . Given the aforementioned results, the following ex-

periments have been done using: w1 = w2 = 1, w3 = 0, w4 = w5 = 0.5 and
r
(A)
1 = 0, r(N)

1 = r
(A)
2 = 1, r(N)

2 = 0, r(in)4 = 0.8, r(out)4 = r
(A)
5 = 1, r(N)

5 = 0.6.
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Table 4.4: Calibration – ANOVA table for the objective function weights w and r.

Source DF Adj. SS Adj. MS F-Value P-Value

w1 5 1.6803 0.33605 83.54 0.000
w2 5 3.9386 0.78773 195.81 0.000
w3 5 2.8950 0.57899 143.93 0.000
w4 5 0.0114 0.00227 0.57 0.727
w5 5 0.0827 0.01654 4.11 0.001
r
(A)
1 5 0.0591 0.01182 2.94 0.012
r
(N)
1 5 0.7786 0.15573 38.71 0.000
r
(A)
2 5 0.1063 0.02127 5.29 0.000
r
(N)
2 5 0.0575 0.01150 2.86 0.014
r
(in)
4 5 0.6497 0.12994 32.30 0.000
r
(out)
4 5 0.5449 0.10899 27.09 0.000
r
(A)
5 5 0.5834 0.11668 29.00 0.000
r
(N)
5 5 0.6181 0.12363 30.73 0.000

Error 1214 4.8838 0.00402
Total 1279 19.9532

4.4.2 Test Case 1: 6-Station Flow Line

The first test case has been developed using the simulation model of the 6-
station flow line described in section 4.4.1. The model has been used to gen-
erate 10 independent event logs, each representing the production of 1000
pieces. The objective of the experiment is to verify if a reduced model can
still correctly estimate the performances of the real system. This has been
done by varying the required size Umax

N in the interval [4, 6]. Hence, for each
log, three alternative models have been generated. In order to validate the
generated models, each of them has been used to simulate the production
of 1000 pieces in experiments replicated five times each. For this purpose,
we have converted each obtained graph model Ωf into a simulation model
in Rockwell Arena, which we used to estimate the performances in terms of
throughput TH [parts/min] and system time ST [min]. Table 4.5 summarizes
the obtained performances (mean values among the five replications). The
maximum computation time to obtain a tuned model is 43.29 s. The warm up
period has been identified with the Marginal Standard Error Rule [144]. Figure
4.6 shows the results obtained for the fifth log of the original system, where
the throughput and system time of the original system are marked with a red
dashed line and are 0.846 parts/min and 29.0min, respectively. We can no-
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tice how both system time and throughput are changing depending on which
model version we are using to simulate. As expected, the estimated perfor-
mances are worsening with smaller dimensions of the models. However, it is
worth to notice that for the most reduced model (Umax

N = 4), the mean abso-
lute error is 5% for the throughput and 7% for the system time. These errors
can be acceptable depending on the intended use of the digital models. For
instance, the model could be used for initial estimations and definition of lower
or upper bounds on decision variables. Further, in the best cases observed,
the mean absolute error is 0.23% for the throughput and 0.62% for the system
time.

Increasing the log length Next, we have investigated how the availability
of data could influence the obtained results. For this purpose, we have used
the original system for a simulation experiment producing 20000 parts. The
resulting event log has been used to generate digital models with Umax

N = 6
(i.e. the most accurate). In each case, we have used a different number of
data points. Specifically, we have selected the event log partition of the first
Hmax parts, where Hmax ∈ {10, 100, 1000, 10000, 20000}. Then, we have used
the generated model to estimate: (1) the throughput, (2) the system time, (3)
the buffer capacities, and (4) the processing times. Figure 4.7 summarizes the
obtained results. Figure 4.7a represents the throughput. It is possible to see
that 20000 parts are needed to reach an accurate throughput estimate. Figure
4.7b suggests that for the system time 10000 parts may be sufficient. Figure
4.7c shows how the estimation of the buffer capacities changes depending
on the number of parts observed. The figure suggests that for reaching the
correct buffer capacity estimation (i.e. Cs = 10∀s ∈ [2, 6]), the data from 1000
parts are necessary. Figure 4.7d shows the Cumulative Distribution Function
of the processing time p3. From the figure it is possible to notice that data
points from 1000 parts are needed to be close to the real function.

4.4.3 Test Case 2: 6-station Flow Line With Sensor Inputs

The second test case has the goal to check if the tuning procedure is prop-
erly aggregating the model components. The experiment has been done by
adding two virtual sensors to the second station of the line, each reporting to
the event log. Figure 4.8a depicts the second station configuration, in which
we have used the notation S2,1 for the manufacturing operation, while S2,2

and S2,3 represent the passage of parts at the sensor devices. The recording
operation takes a deterministic duration equal to one hundredth of the mean
processing time (p2,2 = p2,3 = p̄2,1/100). These sensors may represent PLCs
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Figure 4.6: Test Case 1 – Results of the experiments in the flow line case (fifth event
log): a) throughput; b) system time.

Figure 4.7: Test Case 1 – Results of the experiments with different number of input
data points: a) throughput; b) system time, c) buffer capacities, d) cumulative distribu-
tion function of processing time p3.
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Figure 4.8: Test Case 2 – a) discovered graph for the original system; b) tuned model
graph obtained with Umax

N = 6.

Table 4.6: Test Case 3 – Description of the processes on the electric motor assembly
line.

Op. Process Description Op. Process Description

0 Load 9 Press
1 Marking Check 10 Welding
2 Paper Insertion 11 Blowing
3 Assembly (3 parallel stations) 12 Electrical Tests Pre-finishing
4 Forming (2 steps) 13 Finishing
5 Forming (2 steps) 14 Electrical Tests Post-finishing
6 Material removal 15 Visual Quality Check
7 Welding 16 Rework station
8 Assembly 17 Unload

which record additional information, such as electrical tension values or quality
check results. Although adding rows to the event log, these recordings are not
relevant to the manufacturing operations and do not alter the system perfor-
mance. Figure 4.8b represents the obtained model with Umax

N = 6. It can be
noticed that the model tuning has correctly aggregated nodes from operations
very close in terms of time. The obtained model is equivalent to the one de-
rived in section 4.4.2 with Umax

N = 6, hence the same considerations regarding
the performance estimation are valid.

4.4.4 Test Case 3: Real Manufacturing Line

In this test, we aim to test the behavior of the proposed model tuning method in
the development of a model for a real production system. The analyzed system
is an automatic assembly line of electric motor stators for hybrid vehicles. The
stator is composed by several components and its assembly process consists
of 18 main operations. Table 4.6 summarizes the assembly process phases.
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Figure 4.9: Test Case 3 – a) Layout of the stator assembly line (section for which
the event log was made available). Stations are represented by squares, while inter-
operational buffers are depicted as triangles. – Graph models obtained for the stator
assembly line: b) complete model (|N| = 9); c) tuned model (Umax

N = 7).

The stator production line is a closed loop line composed by several work
stations. Each station follows a first come first served rule and can work one
piece at a time. Stations are connected one another by conveyors. Each stator
sub-assembly is placed on a dedicated pallet which moves on the conveyors.
A portion of each conveyor is used as inter-operational buffer, and the buffer
capacity is defined by the position of a dedicated sensor. Figure 4.9 shows
the portion of the manufacturing system for which the event log was made
available by the company, and table 4.7 shows an extract of the log.

The available event log is composed by 5000 events spanning two days of
regular production. The company has used this log to estimate the effective
cycle times of the assembly process. From the log we can observe that the
number of recorded operations is 9. This is because operations 4 and 5 are
effectively composed by two consecutive steps. Further, operation 3 can be
performed in parallel over three different locations, hence there is a material
flow split between operations 2 and 3, and the flow is merged again before op-
eration 4. The model generation procedure and the tuning method proposed
respectively in sections 3.2 and 4.3 have been used to build a digital twin of
the real system. Figure 4.9b shows the obtained complete model of the as-
sembly line section, while Figure 4.9c illustrates the tuned model representing
the line section with Umax

N = 7 nodes. As expected, the nodes corresponding
to similar operations (i.e., consecutive manufacturing steps) have been aggre-
gated. Notice that – in this case – the assembly process layout is available,
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Table 4.7: Test Case 3 – Extract from the available event log for two work-pieces (Part
IDs have been coded for confidentiality reasons).

Part ID Activity Time stamp (start) Time stamp (finish) Result Scrap

1 1 2017-12-18 14:49:56 2017-12-18 14:52:11 OK NO
2 1 2017-12-18 14:52:00 2017-12-18 14:53:44 OK NO
1 2 2017-12-18 14:54:13 2017-12-18 14:54:20 OK NO
2 2 2017-12-18 14:54:45 2017-12-18 14:54:53 OK NO
1 3c 2017-12-18 15:32:11 2017-12-18 15:36:03 OK NO
1 4a 2017-12-18 15:43:29 2017-12-18 15:43:54 OK NO
1 4b 2017-12-18 15:43:55 2017-12-18 15:44:14 OK NO
2 3c 2017-12-18 16:00:10 2017-12-18 16:04:03 OK NO
2 4a 2017-12-18 16:07:26 2017-12-18 16:07:51 OK NO
2 4b 2017-12-18 16:07:52 2017-12-18 16:08:11 OK NO
1 5a 2017-12-18 16:24:50 2017-12-18 16:25:47 OK NO
1 5b 2017-12-18 16:24:50 NA OK NO
2 5a 2017-12-18 16:43:12 2017-12-18 16:44:11 OK NO
2 5b 2017-12-18 16:44:24 2017-12-18 16:45:31 OK NO

hence it is known that the analyzed section consists of 7 main operations.
Therefore, further reductions would not be wise since they could exclude real
process phases from the representation. This experiment has demonstrated
that the model generation and tuning methodology defined in this work can be
effectively used to discover the manufacturing system structure and develop
its simulation model, aggregating activities which are correlated in the physical
process.

4.5 Conclusions

The capability to generate an accurate discrete-event simulation model in a
short time is essential to achieve digital twin potentials. In this work, we de-
scribed a method for discovering production systems structures and automati-
cally develop digital models starting from the event logs of manufacturing sys-
tems. The proposed automated generation and tuning method can positively
contribute to Real-Time Simulation applications, since it guarantees that an
updated and reasonably detailed model of the physical system can be ob-
tained at any time within one minute and with minimal manual intervention.
Being data-driven, a reasonable implementation guidance is to integrate the
logic within a production control system such as a Manufacturing Execution
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System. Thanks to the Industry 4.0 revolution, digitization efforts are being
undertaken by both large businesses and small and medium enterprises, and
a large number of users will have access to the proposed approach capabili-
ties.

Several limitations still have to be solved. The proposed approach is ag-
nostic with respect to its application and can be applied to several types of
manufacturing systems. However, there may be significant differences among
different system types. For instance, job shops are characterized by several
independent part flows, which may result in a more complex identification of
the system structure. At the same time, the estimation of certain parame-
ters might be more straightforward; for example, the buffer sizes in a job shop
may be considered as infinite. In addition, the developed local search algo-
rithm can be enhanced toward computational efficiency and the avoidance of
local optima. Notice also that model tuning can also be performed on sim-
ulation graphs [145], the proper balance between the two methods shall be
examined. Last but not least, in this work we have tested the proposed ap-
proach with a real case spanning two production days. Given the data-driven
model generation, the accuracy of the model may be superiorly limited by the
recorded events in the log. Minimal requirements in terms of observed time of
production shall be investigated.
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Chapter 5

Discovery and Model Generation
for Manufacturing Systems with
Assembly Operations

The goal of this chapter is to present an approach for the automated devel-
opment of discrete-event simulation models for manufacturing systems with
assembly operations. Its contribution is twofold: (1) it outlines the problem of
generating graph models of manufacturing systems with assembly operations,
and (2) it introduces a method to infer the locations of assembly operations in
manufacturing systems starting from available datasets.

The chapter is organized as follows. Section 5.1 describes the discovery
problem. Section 5.2 outlines the proposed method to take into account as-
sembly operations and presents a heuristic algorithm to solve the graph-based
mining. Section 5.3 presents the experiments that have been used to inves-
tigate the applicability of the approach and the numerical results. Concluding
remarks are in section 5.4.

5.1 Problem Description

The model generation method presented in Chapter 4 assumes the availability
of an event log with three information types: the timestamp, the activity iden-
tifier, and a single part identifier. As a result, the method is limited for more
complex types of manufacturing systems, in which different material flows may
converge at different locations. A common application that suffers from these
features are assembly operations, which are taken as reference within this
chapter.
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Figure 5.1: Illustrative example – Logical schema of a flow shop manufacturing sys-
tem.

Figure 5.2: Illustrative example – Difference among graph-models generated from the
event logs of the flow shop of Figure 5.1: a) traditional mining algorithm; b) assembly-
oriented algorithm (bold circles represent assembly stations).

5.1.1 Illustrative Example

Let us consider as illustrative example the manufacturing system depicted in
Figure 5.1. The system consists in five sectors. Each sector produces specific
part types. Stations 1 and 2 produce components of type A, while stations
3 and 4 are dedicated to components B and C. Parts of type A and B are
assembled into D-type products on station 5, while station 8 assembles com-
ponents of type B and C in products of type E. Products D and E are joined
to form a product type F in station 10. Several items of each part type may
be produced, and each of them has a unique identifier (e.g., data-matrix quick
response code). Each station is equipped with sensors and contributes to the
creation of an event log. The model generation procedure listed in section 4.2
produces the graph model shown in Figure 5.2a. From the figure, it can be no-
ticed that the result is a model with sectors treated as separate graph models.
This is because model generation is strictly based on the single part identifier
hypothesis. Since assembled parts have different identifiers from components,
assembly relationships are neglected.
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Figure 5.3: Entity relationship diagrams between parts and activities applied to manu-
facturing processes, relationships between part identifiers and activities: a) traditional
process mining approaches, b) object-centric process mining.

5.1.2 Object-Centric Data Perspective

Van der Aalst [146] discussed the gap between real event data and flattened
event logs exploited by traditional process mining techniques. The author pro-
posed a new mining paradigm called Object-Centric Process Mining (OCPM),
together with a specific logging format. The object-centric log is a collection
of events. Each event is related to objects of different types (e.g., tools, pack-
ages, shipments). Moreover, basic notations and a baseline discovery ap-
proach are presented to facilitate discussion and understanding. Figure 5.3
graphically explains the difference between two mining views. In traditional
mining approaches, only one part ID notion is allowed, while OCPM allows
to use several part identifiers, thereby representing objects that may refer to
multiple items (e.g., a component, an assembled product). Hence, OCPM can
be applied to better describe production systems with assembly operations.

An OCPM-compliant representation of a production system dataset is fea-
sible, provided the availability of relational tables connecting the components
to the assembled products, which are necessary to define the object relation-
ships. In production environments, such information is typically retrieved from
the Bill of Material (BOM). The BOM includes the component-product relation-
ships among all part types. For instance, the BOM of the products produced in
the system in Figure 5.1 can be written as {D : [A,B];E : [B,C];F : [D,E]}.
Section 5.1.3 elaborates on the types of BOM considered in this work. Ta-
ble 5.1 shows an extract of the object-centric log in which one component of
type A and B are assembled into a part type D. The components are coded 1
and 2, respectively, while the assembled part is coded with 3. In the new log
representation, the part identifier column has been substituted by two object
columns: (1) components, and (2) assembled products.

Despite the OCPM perspective, literature lacks of approaches on how to
effectively use it to generate models of manufacturing systems including non-
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linear material flows. This chapter aims at covering this gap with a proposed
discovery method and assembly location identification approach.

Table 5.1: Object-centric event log for the assembly of product nr. 3 (type D).

activity objects involved

event time-stamp name type components assembly

1 0.00 1 start 1 -
2 0.00 3 start 2 -
3 0.35 1 finish 1 -
4 0.35 2 start 1 -
5 0.45 3 finish 2 -
6 0.45 4 start 2 -
7 0.51 4 finish 2 -
8 0.62 2 finish 1 -
9 0.62 5 start {1,2} 3

10 0.76 5 finish {1,2} 3
11 0.76 6 start {1,2} 3
12 0.88 6 finish {1,2} 3

5.1.3 Bill of Material Representations

The Bill of Materials are tables widely used and commonly available within
tools such as Product Life-Cycle Management or Enterprise Resource Plan-
ning. Without loss of generality, in this work we will consider a tree-model of
BOM, in which each part type is represented by a node, and it is connected
with an arc to the nodes of components with which is assembled. We may
distinguish two main cases, which are depicted in Figure 5.4:

• BOM Type 1: Full part type traceability. In the first case, each node of
the BOM identifies a distinct part. Hence, each assembly step identifies
a new part type. In Figure 5.4a, part types A and B are assembled in a
component of type C, which is then used together with part type D for
the production of the final product, E.

• BOM Type 2: Partial part type traceability. In the second case, multiple
assembly operations may be performed on a part without changing its
part type. Such practice is typical for smaller components or consum-
ables. As example in Figure 5.4b, part types A and B are assembled in
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Figure 5.4: Bill of Materials representations: a) type 1: full traceability of product
types, b) type 2: partial part type traceability.

a work-in-progress component which is already tagged the same way as
the final product, i.e. part type E. A further assembly stage simply adds
the sub-component of type D.

In this paper, we use both types of BOM representations as support to define
the objects relationships in an event log.

5.1.4 Graph Completion Problem

Let us assume that a model generation procedure as the one described in
Chapter 4 has been done. After the system discovery step has been com-
pleted, the graph model must be corrected to account for assembly operations.
The problem consists in the addition of arcs to the graph model obtained by
traditional mining steps (Figure 5.2b). We call such addition Graph Comple-
tion. Any node in a sub graph can be an assembly node, and each added
arc can be dedicated to a product type that is produced in the system. Let
us define αijp as the boolean variable that defines if the directed arc (i, j) is
added to the graph for representing the assembly of product type p. The Graph
Completion corresponds with the addition of elements to the Γ matrix defined
in section 4.3. Namely, the complete graph can be defined by a Γ′ matrix, in
which each element γ′

ij is defined as follows:

γ′
ij = γij + I(

∑
p

αijp) ∀i, j (5.1)

where I(x) is 1 if x > 0, 0 otherwise.
For instance, referring to the illustrative example of Figure 5.1, γ1,2 = γ3,4 =

γ5,6 = γ7,8 = γ8,9 = 1, and α2,5,D = α4,5,D = α2,8,E = α4,8,E = α6,10,F =
α9,10,F = 1. Thanks to such addition, assembly nodes (i.e., 5, 8, and 10)
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can be recognized as such. Figure 5.2b shows the corrected graph after the
addition of arcs representative of the assembly of product types D, E, and F.

5.2 Proposed Method

The problem described in section 5.1.4 can be expressed as a matching be-
tween components and assembled parts. To this end, the temporal proximity
of operations can be exploited as indicator of assembly locations. The gen-
eral idea is that the added arcs have to be such that the temporal difference
between the production of components and assembled products is minimized.
Such assumption is suitable for a significant subset of manufacturing systems.
For instance, flow lines in which relevant components are produced in a nearby
machining area, or group technology manufacturing, in which a set of produc-
tion cells coordinate to produce the work-in-progress that will converge down-
stream. A typical example is the automotive sector: doors are usually formed
and welded in the same plant as the chassis, and converge to the main assem-
bly line with very limited time differences [147]. Meanwhile, other production
systems may not be suitable for a time-proximity-based approach. This is the
case for systems relying on batch production (e.g., foundry, molding). In such
systems, the completion timestamps of components will be equal for all the
components of the batch. Thus, the one-to-one matching loses significance.

In the following, we refer to dca as the difference between the instant a com-
ponent c is produced and the moment it is assembled with a product a. Such
temporal distance is accountable only for the respective assembly station s. To
account for both positive and negative temporal differences, the Mean Square
Error (MSE) is identified as proper indicator of mean temporal proximity and is
used as objective function of the problem.

5.2.1 Mathematical Formulation

The Graph Completion Problem (GCP) can be expressed with a mathematical
programming formulation. Let us define C as the set of components, A the
set of assembled products, S the set of stations (i.e. the nodes of the original
graph model), and P the set of part types.

Assumptions. The following assumptions are valid for this problem. Let us
assume the manufacturing system is equipped with data collection devices,
and events in the system are aggregated in an event log. The log is clean
from incomplete traces, and each trace belongs to a part that is either a com-
ponent or an assembled product. Further, the BOM-related cardinalities are
respected: for instance, if one product requires two components, then the
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corresponding traces must be in the log. Finally, we assume no batching of
production is present and that no preemption is allowed: products and com-
ponents are processed in order, i.e. the initial sequence is identical to the final
sequence.

Parameters. The following parameters can be derived by the joint pre-
processing of event log and BOM: τc is the time instant at which component c
has been produced: from the log, τc = maxn∈N tF (n, c)∀c ∈ C. tsa is the time
instant at which assembled product a is produced on station s, 0 otherwise.
Namely, tsa = tS(s, a) if ∃ tS(s, a)∀a ∈ A, s ∈ S. ρa is the number of compo-
nents required for the assembly of assembled part a. as is 1 if the s-th station
is compatible with assembly, 0 otherwise. A station is compatible for assembly
if it produces at least one part type with sub-components. qca is 1 if the c-th
component belongs to the BOM of product a, 0 otherwise. pa is the part type
of assembled product a. Finally, M is a very large number.

Decision Variables: xcas is 1 if the c-th component is assigned to assem-
bled part a on station s, 0 otherwise. dca is the temporal distance between the
production of component c and the a-th assembled product.

Graph Completion Problem (GCP):

min y (5.2)
subject to:

y ≥
∑

a

∑
c d

2
ca

|C||A|
(5.3)

dca ≥ tsa − τc − (1− xcas)M ∀c, a, s (5.4)
dca ≤ tsa − τc + (1− xcas)M ∀c, a, s (5.5)∑

a

∑
s

xcas ≤ 1 ∀c (5.6)∑
c

∑
s

xcas = ρa ∀a (5.7)∑
c

∑
a

xcas ≤ M as ∀a (5.8)∑
a

∑
s

xcas ≤ M qca ∀s (5.9)∑
c

xcas ≤ M tsa ∀a, s (5.10)

dca ∈ R;xcas ∈ {0, 1}. (5.11)

The objective function (5.2) aims at the minimization of the Mean Square Error
y, defined by the temporal distance between the components and assembled
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products, as stated in constraint (5.3). Constraints (5.4) and (5.5) indicate
that the temporal distance dca is to be accounted only for the component-
assembly pairs that are selected. The constraints are activated only for the
component-product combination on the selected station, which is indicated by
xcas = 1. Constraints (5.6) state that each component can be assigned to ei-
ther one assembled product, on maximum one station. Constraints (5.7) state
that each assembled product has to be assigned to a number of components
corresponding to the BOM requirements. Constraints (5.8) guarantee that only
stations compatible with assembly operations are selected. Constraints (5.9)
guarantee that only feasible assembly operations are modeled. Constraints
(5.10) ensure that assembly locations are identified in accordance to where
the production is recorded in the log, hence that an assembled product is
not assigned to stations it did not visit. Constraints (5.11) indicate the nature
of the decision variables. In total, GCP counts |C||A|(1 + |S|) variables and
1 + |C|+ 2|A|+ |S|(|C||A|+ |A|+ 1) constraints.

Retrieving the Graph Model. Once GCP is solved, the solution in terms of
graph can be retrieved with a post-processing step. Indeed, the corrections
to the graph model defined by the variable α can be derived with the simple
procedure listed in Algorithm 7 in Appendix D.

5.2.2 Solution Procedure

In this section, we propose a solution procedure for the problem formulated in
section 5.2.1. The GCP is a quadratic mathematical programming problem,
which cannot be solved easily with common solvers. The proposed solution
method is based on the complete enumeration of feasible assembly stations in
the existing graph model. Then, the selection of the station is done following
the idea of temporal proximity. Figure 5.5 summarizes the procedure steps.

Step 1: Define the BOM Levels B

Without loss of generality, in the following we assume to analyze a subset of
nodes and arcs such that one level of BOM is explored at a time. Indeed, we
may separate a generic BOM B in a collection of levels, B = {B1, . . . , Bi}.
For instance, the BOM of the products produced in the system in Figure 5.1
has two levels: the first one is B1 = {D : [A,B];E : [B,C]}, while the second
is B2 = {F : [D,E]}. Hence, the problem is separated in two parts. Firstly, the
system without station 10 is analyzed, so that only 1 level of sub-components
is present. Then, the system composed by stations 5 to 10 is analyzed. Step
0 is dedicated to the identification and separation of the BOM levels. The
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Figure 5.5: Proposed procedure for solving the Graph Completion Problem.

remaining steps take as input one BOM level at a time, hence one GCP is
solved for each level.

Step 2: Define the Set of Candidate Stations SC

In this step, a subset of stations SC ⊆ S is identified. First, the graph-model
generation method described in section 4.2.3 is applied. The result is a graph
model Ω. Each node in the model is a station s ∈ S. By exploiting the informa-
tion from the BOM, it is possible to identify the stations that produce parts with
sub-components. All such stations are candidate assembly locations. Let Bi

be the i-th level of BOM selected at Step 0. Each station s ∈ SC is a candidate
station if it has produced an assembly included in Bi, namely ∃tS(s, a)|pa ∈ Bi.
This step is performed by Algorithm 5 in Appendix D.

Step 3: Define the Set of Combinations V

In this step, the possible combinations of assembly stations are identified.
Starting from the results of model generation, the obtained graph can be di-
vided in a collection of G disjunct subgraphs Ω = {Ω1, . . . , ΩG}. Since differ-
ent product types may be produced on different stations, there is no guarantee
that they will be produced on nodes from the same disjunct graph. Further, for
each product type, only one node is a candidate assembly station. As a result,
we may identify multiple combinations of candidate stations. Let us define V
a collection of tuples. Each tuple corresponds to a possible combination of
assembly stations for the considered part types. For instance, referring to the
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system in Figure 5.1, the subcomponents of product D can either be assem-
bled on station 5 or station 6, while for product E the candidate stations are 7,
8, and 9. Hence, V = {(5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9)}.

Step 4: Components Assignment Sub-Problem

Once a combination of stations has been selected, the remaining part of the
problem regards the assignment of the components to the corresponding as-
semblies. The time proximity is used as indicator of the best matchings. Notice
that this problem corresponds to a job assignment problem [148], in which the
cost matrix is determined by the square time differences between the produc-
tion time of components and assemblies.

Let us define x
(v)
ca as a variable defining the component-assembly assign-

ment in the v-th subproblem combination. x
(v)
ca is 1 if the c-th component is

assigned to the a-th assembled product, 0 otherwise. Further, let us define
the following parameters:

• dca is defined as the square difference of the timestamps of the a-th
assembled product and the c-th component. It can be written as follows:

dca = (tsa − τc)
2 ∀c, a (5.12)

• ρcp is equal to 1 if the c-th component is of part type p, 0 otherwise.

• Bap is an integer value representing the number of components of type
p required for the fabrication of the assembled part a.

min y (5.13)
subject to:

y ≥
∑

a

∑
c dcax

(v)
ca

|C||A|
(5.14)∑

a

x(v)
ca ≤ 1 ∀c (5.15)∑

c

x(v)
ca ρcp = Bap ∀a, p (5.16)

x(v)
ca ∈ {0, 1}. (5.17)

The objective function (5.13) represents the minimization of the time prox-
imity between the components and assemblies through the Mean Square Er-
ror y, which is defined in constraint (5.14). Constraints (5.15) guarantees that
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each component can be assigned to at most one assembled product. Con-
straints (5.16) ensure the correct number of components is assigned to each
product type, in accordance to the BOM. Constraints (5.17) state the nature
of the decision variables. The problem (5.13)-(5.17) has been implemented
in ILOG CPLEX v12.6 and it is solved using a PC equipped with an i7-6600U
CPU at 2.6 GHz and 16 GB memory.

Step 5: Identify the Solution x∗
cas

Finally, among the |V| combinations, the algorithm selects the one that guaran-
tees the lowest MSE, indicated by v∗. The combination of v∗ with the solution
of the corresponding assignment problem x∗

ca can be used to retrieve the GCP
solution x∗

cas. Starting from the selected solution, the corresponding nodes and
arcs can be added to the graph model. The procedure to complete the graph
model starting from a GCP solution x∗

cas is listed in Algorithm 7 in Appendix D.
Solution Scores. The algorithm provides information on both the component-

product assignment and the location of the assembly operation. Hence, it is
important to distinguish on both the capability to provide good assignments
and to spot the correct assembly locations. Let us define x∗

cas as the solution
of the algorithm, and wcas the matrix representing the correct assignments in
the system. Therefore, we may define the following indicators:

• The assignment score α is an indicator of the goodness of the assign-
ments on the a-th assembled product, as follows:

αa =

∑
c(
∑

s |x∗
cas − wcas|)
|C|

. (5.18)

For each assembled product, αa assumes values in the interval [0, 1],
with 1 representing the completely correct assignments. We may addi-
tionally define ᾱ ∈ [0, 1] as the average assignment score:

ᾱ =

∑
a αa

|A|
. (5.19)

• λc is the location assignment indicator on the c-th assembled prod-
uct, measuring how well the method has assigned components on the
assembly stations:

λc = −

(∑
s

(
|
∑

a x
∗
cas − wcas|
2

)
− 1

)
. (5.20)
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For each component, λc assumes values in the interval [0, 1], with 1
representing the completely correct location assignment. Similarly to α,
we may define λ̄ ∈ [0, 1] as the average location score:

λ̄ =

∑
c λc

|C|
. (5.21)

• Additionally, we may examine the global behavior of the obtained solu-
tion. This can be done with a reproducibility score, defined as:

Φ =

∑
c

∑
a

∑
s |x∗

cas − wcas|
|C||A||S|

(5.22)

and with a performance score, defined as follows:

Z =

∑
c

∑
a

∑
s dca (|x∗

cas − wcas|)
|C||A||S|

. (5.23)

5.3 Experiments

The solution procedure described in section 5.2.2 has been applied in three
test cases:

• Test Case 1. A multi-stage production system with five part types,
namely two assembled products and three components (single-level BOM
of type 1). The scope of this experiment is to verify that the proposed
approach can correctly be executed in a system with multiple assembled
parts.

• Test Case 2. A multi stage production system with four part types, with
a multi-level BOM of type 2. The scope is to show the behavior of the
proposed method with respect to a multi stage production system, i.e. in
which the BOM is composed by multiple levels.

• Test Case 3. A real production system with assembly operations within
the manufacturing of tier-1 automotive components (single-level BOM of
type 1). The scope of this test is twofold: (1) to verify the applicability
of the proposed approach in a realistic scenario, and (2) the quantita-
tive observation of the performance obtained with a complete model,
to understand the difference with a model generated with the standard
approach (Chapter 4).

In the following, we describe the test cases, the experimental settings, and
the numerical results.
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Figure 5.6: Test Case 1 – Flow shop system: stations 2 and 4 produce sub-
components, while stations 5 and 7 assemble them into products of type D and E,
respectively.

5.3.1 Test Case 1: Flow Shop

The first test case is a flow shop which produces two product types, D and E.
The system is depicted in Figure 5.6.

Production System

The system is composed by six stations. Stations 2 and 4 produce subcom-
ponents of type A, B, and C. Station 5 assembles parts of type A and B into
products of type D, while station 7 assembles B and C into E. Each station s
has a downstream buffer of size Hs and the buffer capacities are equal for all
stations: Hs = 10 ∀s, except from stations 6 and 8 which produce products
D and E as soon as the needed sub-components are available in the corre-
sponding upstream buffers. Both interarrival times and processing times are
distributed according to an exponential distribution with mean 1 min.

Experimental Setting

The manufacturing system described in Figure 5.6 has been modeled in Arena
Simulation Software. Five event logs have been generated, each correspond-
ing to an independent replication. Each replication represents the produc-
tion of 1000 final products, 600 of type D and 400 or type E. Since the BOM
contains a single level for both part types, one GCP has to be solved over
the entire set of nodes. Further, given that two part types are being pro-
duced, the set of possible combinations of assembly stations is given by the
permutations of 2 elements from the sets SD = {5, 6} and SE = {7, 8}.
Hence, for this case the set of candidate assembly stations are the tuples V =
{(5, 7), (5, 8), (6, 7), (6, 8)}. For each replication, the GCP solution method de-
scribed in section 5.2.2 has been used to generate a graph model.
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Figure 5.7: Test Case 1 – Graph model obtained by the proposed approach: the
dashed lines represent the added arcs.

Results

Table 5.2 summarizes the results obtained for the first test case. From the
table, we may notice that in each replication, the correct combination of as-
sembly stations v∗ = (5, 7) has been selected as the one guaranteeing the
minimum MSE value. Figure 5.7 shows the graph model obtained with the pro-
posed procedure. The arcs (2, 5) and (4, 5) have been added to represent the
production of part type D, while the arcs (2, 7) and (4, 7) model the assembly
of part type E. The obtained scores are: average assignment score ᾱ = 0.949,
average location score: λ̄ = 1.0, objective function score: Z = 0.931.

Table 5.2: Test Case 1 - MSE values calculated for each candidate combination of
assembly stations v.

Combinations V:
Replication (5,7) (5,8) (6,7) (6,8)

1 10.706 25.327 13.721 29.690
2 18.299 46.527 21.413 51.048
3 17.242 45.971 19.646 49.371
4 10.316 32.593 11.865 35.303
5 14.398 33.623 16.816 37.206

Note on computation time. The requirements in terms of computation time
have been tested by executing the first test case while varying the problem
dimension in terms of input components. Figure 5.8 shows the behavior of the
average computation time. As visible from the graph, the behavior is exponen-
tially increasing, and it is exceeding 5 minutes with 2000 components.

5.3.2 Test Case 2: Multi-Level BOM

In this case, we analyze a production system with multiple levels of Bill of
Material.
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Figure 5.8: Test Case 1 – Average computation time with respect to the number of
input components.

Production System

Figure 5.9 shows the structure of production system under study. Station 2
and 4 produce components of type A and B, respectively. Such components
are assembled in station 7 into product type D. On station 8, the component
type C is assembled on product D. Hence, the Bill of Material is of type 2 and
it consists in two separate levels. The first level consists in the assembly of
D and C, while the second one describes the assembly of components A and
B. Each station has a processing time ps which is distributed according to an
exponential distribution with mean 1min. Inter-operational buffers have 10
slots each.

Experimental Setting

The goal of this test case is to show the behavior of the developed approach
in a multi-level system. For the experiments, an event log has been generated
with a discrete-event simulation model (i.e. Arena) by the production of 1000
components for each type. The log contains a total of 9169 events.

Results

As first step, subsets of stations are selected based on the levels of BOM. Ac-
cordingly, we may select the set of stations for the first level as N1 = {5, 7, 8},
and for the second level, N2 = {2, 4, 7, 8}. Each node set consists in the input
of the remaining steps of the method.

Level 1. The set of candidate stations is the subset of N1 in which the as-
sembled components are produced, hence S1 = {7, 8}. Given that we have a
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Figure 5.9: Test Case 2 – Production System under study and Bill of Material structure.

single product, both stations are candidate. Hence, the set of possible com-
binations is V = {(7), (8)}. For each combination, the assignment problem
defined in section 5.2.2 has been solved. For both sub-problems, a total of
1792 components and 792 assembled products have been assigned one an-
other. The objective function is z7 = 0.00381 and z8 = 0.00323. Accordingly,
station 8 is selected as candidate assembly station. Figure 5.10a shows the
resulting graph model. The computation times are 63.14 s and 58.23 s, re-
spectively. Further, the scores defined in section 5.2.2 have been calculated:
average assignment score: ᾱ = 0.99833, average location score: λ̄ = 1.0,
objective function score: Z = 0.9995.

Level 2. In the second level of the BOM, the components are types A and
B and the assembled product is D. The subset of N2 in which D is produced
is S2 = {7, 8}. Again, both stations are candidate assembly locations, and
the set of possible combinations is V = {(7), (8)}. For both sub-problems, a
total of 2000 components and 792 assembled products have been assigned.
The objective function is z7 = 0.02101 and z8 = 0.02957. Hence, station 7
is selected as candidate assembly station. Figure 5.10b shows the resulting
graph model. The computation times are 65.03 s and 78.29 s, respectively.
Further, the scores defined in section 5.2.2 have been calculated: average
assignment score: ᾱ = 0.99802, average location score: λ̄ = 1.0, objective
function score: Z = 0.928.

The final complete graph model is visible in Figure 5.10c.

5.3.3 Test Case 3: Real Production System

The problem to be investigated is a multi-cell production system from a tier-1
supplier of road vehicle injectors.
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Figure 5.10: Test Case 2 – Resulting graph models depending on the levels of the
BOM: a) level 1, b) level 2, c) total model.

Production System

The system consists of nine stations, as shown in Figure 5.11. Stations 1, 2,
and 3 are dedicated to the production of sub-components, which are placed
in buffers 1 and 3. The remaining stations produce the main part of the injec-
tor, and in station 7 the sub-components are assembled. Table 5.3 presents
the detailed information about each manufacturing cell (process information is
not disclosed for confidentiality reasons). The distributions of the processing
times are fitted from collected field data or outputs of a more detailed simu-
lation model of each cell in isolation. Let us denote Hs the buffer capacity of
the downstream product store of each cell. The manufacturing system works
with a pull production planning using kanban, hence the buffer capacities de-
pend on the specific number of production cards issued in the shop floor. For
the sake of simplicity, herewith we do not consider this phenomenon and we
assume Hs = 10∀s; we analyze the situation in which injectors can be pro-
duced in station 7 whenever all required subcomponents are available in the
corresponding buffers.

Experimental Setting

The production system has been modeled in Arena Simulation Software. Five
event logs have been generated, each corresponding to an independent repli-
cation in which 1000 injectors are produced. For each replication, the proce-
dure described in section 5.2.2 has been applied. Then, the result has been
used to build a simulation model. For the sake of simplicity, the graph model

103



Figure 5.11: Test Case 2 – Automotive tier-1 supplier production system. Squares
represent stations and triangles represents product/component stores. Station 7 is
the assembly station.

Table 5.3: Test Case 2 – Parameters of the manufacturing system used for the exper-
iments (u is a random number between 0 and 1). The processing times refer to the
production of 1000 work-pieces.

Station s Buffer Hs Processing Time rs [s]

1 10 Logn(4.96, 0.52)
2 10 195 + Tria(30, 45, 90) + Logn(4.58, 0.542)
3 10 100 +Gamma(0.89, 111.91) + 240
4 10 156 +Gamma(1.13, 34.21)
5 10 Tria(80, 140, 500)
6 10 42 + Logn(1.57, 0.542), if u ≤ 0.53

62 + Logn(2.10, 0.632), if u > 0.53
7 10 170 +Gamma(5.94, 6.48)
8 10 196 +Gamma(5.75, 5.86), if u ≤ 0.93

277 +Gamma(0.94, 22.47), if u > 0.93
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Figure 5.12: Test Case 2 – Graph model obtained by the proposed approach: dashed
lines represent the added arcs.

has been converted manually into a simulation model in Arena. The obtained
model has been used to generate five independent event logs, and the corre-
sponding system performance in terms of throughput has been calculated.

Results

Table 5.4 lists the MSE value obtained for each replication. Notice that in this
case, since a single product type is produced, the assembly station combina-
tions V are represented by one-element tuples. Also in this case, the results
table shows that in each replication the minimum value for MSE corresponds
to components-assembly associations on the correct station: s = 7. Figure
5.12 represents the graph model that has been obtained. Station 7 is iden-
tified as the assembly location and arcs are added to the model accordingly.
The obtained scores are: average assignment score ᾱ = 0.884, average loca-
tion score: λ̄ = 1.0, objective function score: Z = 0.860. Such result allows to
model correctly the assembly process on station 7, hence enabling the auto-
mated generation of the digital replica of the system of Figure 5.11.

Table 5.4: Test Case 2 - MSE values calculated for each candidate assembly station.

Combinations V:
Replication (4) (5) (6) (7) (8)

1 2041212 1478139 489741 12833 14530
2 764825 667953 340785 147116 156065
3 457012 453468 439196 435132 473526
4 1355473 1022026 441851 38211 41126
5 375479 385469 376634 332724 348070
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Comparison with the Standard Approach

The obtained graph model has been validated by comparing the performance
between two cases: (1) model with assembly operations, (2) model obtained
with traditional mining method. Specifically, two performance indicators have
been chosen for the comparison: IDT7 is the vector of inter departure times
from the assembly station 7: IDT7 = tF (7, i) − tF (7, i − 1), and the System
Time, defined as the time an assembled part takes to flow in the system: ST =
tF (8, i) − tS(4, i). Table 5.5 summarizes the results obtained by simulation
experiments replicated 5 times each. From such results, we can notice that
the exclusion of assembly stations from the representation causes an over
estimation of the system performance. Notice that such difference depends
on the particular system configuration and parameters.

Table 5.5: Test Case 2 - Performance validation depending on addition of assembly-
related arcs out of 1000 samples (CI-HW = 95% Confidence Interval Half Width).

Assembly Replication IDT7 (mean) CI-HW ST (mean) CI-HW

original - 60.9 4.0 2249.5 24.9

with

1 58.5 3.6 2114.1 21.3
2 61.7 3.9 2231.1 23.0
3 62.0 3.8 2251.2 25.6
4 60.2 3.7 2201.6 25.8
5 60.3 3.7 2175.3 22.8

without

1 15.7 0.2 680.6 10.2
2 15.7 0.2 626.7 10.9
3 15.6 0.2 661.6 10.1
4 15.6 0.2 627.7 11.2
5 15.5 0.2 617.7 11.8

5.4 Conclusions

In this chapter, we have introduced an approach that allows for the discovery
and modeling of assembly processes within a simulation model generation
procedure. An algorithm identifies stations in which components are assem-
bled into final or work-in-progress products, and the corresponding material
flows. With this addition, the blocking condition related to the availability of
parts can be added to a simulation model, allowing for the proper estimation of
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system performances. This work is beneficial for automated model generation
techniques. Indeed, the proposed algorithm can be applied online, for instance
updated with a fixed frequency, hence it is promising for digital twins dedicated
to production planning and control. The developed technique can also be used
to investigate disassembly and de-manufacturing operations, since they suffer
from the same problem of dimensionality in the part identifiers.
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Chapter 6

Final Remarks

This thesis has proposed approaches to build and test real-time decision-
support tools based on discrete-event simulation models. This section in-
cludes the concluding remarks, with a focus on the impact of the research
and its future developments.

6.1 Research Impact

This research develops a model generation and tuning method that allows to
obtain digital models starting from the event logs of manufacturing systems.
The capability to generate an accurate model in a short time can enable Real-
Time Simulation applications. Indeed, the online application of the proposed
methodology allows for adapting simulation models to the real system coun-
terpart, potentially at any time a modification occurs. This way, decisions
taken online are guaranteed to be referring to the current state of the phys-
ical system. The proposed method is beneficial for production planning and
control. Manufacturing enterprises can reach a higher production flexibility,
together with higher responsiveness to technological changes and market-
demand fluctuations. Also model validation activities are positively affected
by this research. Indeed, by generating digital models online, it is possible to
compare them with the established simulation models and promptly identify
misalignments.

With the addition of the graph completion problem and the corresponding
solution procedure, the blocking condition related to the availability of compo-
nent parts can be added to a simulation model, allowing for the proper estima-
tion of the performance of systems with multiple part identifiers and non-linear
material flows. The developed technique can also be used to investigate dis-
assembly and de-manufacturing operations, since they suffer from the same
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problem of dimensionality in the part identifiers, and the material flow dynam-
ics are comparable to assembly processes.

Finally, the developed laboratory setting allows for testing Real-Time Sim-
ulation algorithms, while maintaining the physical dimension and the interplay
between a digital model and the real production system. The lab-scale models
can be programmed with general programming languages, they are econom-
ically sustainable, and there is potentially no limit in the type of system that
can be reproduced. The development of such a testbed for Real-Time Sim-
ulation is innovative within the research community, and it can bring benefits
also to other research groups and disciplines requiring flexible and sustainable
test benches for their algorithms. For instance, the lab-scale platform can be
used to test re-scheduling algorithms, maintenance policies, and production
control rules. Similarly, new devices such as programmable logic controllers
could benefit from trials on lab-scale models during their product development
phase.

6.2 Future Developments

In the following is presented a selection of insights on how this research can
be extended.

• Extensions of the model generation and tuning techniques. Future works
shall investigate the resilience and outcomes of realistic applications, in
which production systems could be composed by hundreds of activities.
For this purpose, specific rules may have to be developed. A system-
atic study on the value of prior information has to be done. Indeed, in
this work we have assumed that both inter-arrival times and processing
times can be estimated from the event log. In general, a situation of
partial knowledge is much more realistic. For instance, the buffer capac-
ities might be available in advance, while the processing times of certain
stations might be unknown. Another assumption in this work is the inclu-
sion of only material flow split policies, and the consequent identification
of routing rules solely based on the node visitation frequency. The dis-
covery of control policies can be extended, for instance by introducing
machine learning algorithms in the model tuning framework. Also the
identification of priority rules for assembly points can be addressed by
future works.

• Systematic study on modeling different features and system types. In
this work, we have proposed a single approach to be applied regardless
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of the system type. However, such an approach may under-perform in
comparison to others when facing particular system features and com-
ponents. For instance, while the proposed approach performs well with
flow lines, it is intuitively sub-optimal when facing flow shops. Indeed,
smarter model tuning moves could aggregate parallel activities or re-
move more than two nodes at a time if the model structure suggests it.
The correct choice of the specific model tuning rule is not trivial and this
requires an assessment of the advantages of using a specific rule or
objective function depending on the type of manufacturing system.

• Extensions of the technique for non-linear material flows. The approach
proposed in Chapter 5 assumes perfect traces and the complete avail-
ability of BOM data. Realistic datasets are more unreliable, and proper
adjustments could be required. Further, the exclusion of batched oper-
ations limits the applicability of the approach. In a system which oper-
ates in batches, the timestamps of completion for several components
are equal. Since the approach relies on temporal proximity, batches
would cause several equivalent solutions and a high risk of improper
identifications. Assuming the absence of batched operations causes
the exclusion of certain types of manufacturing systems, for instance,
semi-conductor production systems. In general, this approach is ideal
for systems with a certain degree of production coordination, in which
components are produced in-house and not stored for long times before
their usage. Future developments of this work should also address the
optimization of the solution procedure. Indeed, the developed algorithm
suffers greatly from the dimensionality of the problem. More research
in this direction is needed, for instance with the development of meta
heuristic approaches or ad-hoc branch-and-bound algorithms.

• Development of joint mining approaches. For instance, reliability models
are typically manually developed, and they are utilized in making a large
number of decisions, such as spare part purchasing, repair strategies,
and maintenance scheduling. The data generated by manufacturing sys-
tems can be utilized to automatically infer these controlled actions. The
goal of a joint process mining approach is to mine both material-based
and information-based data to discover the model of a given production
system and its policies (Figure 6.1). The research challenge is to com-
bine the results of different mining algorithms in a unique and consistent
framework.

• Exploitation of model generation techniques for making accurate estima-
tions. For instance, in manufacturing systems a very important problem
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Figure 6.1: Example of a joint model generation framework.

is the identification of the bottleneck. In complex environments, the bot-
tleneck may change during production, for instance due to micro-failures.
Such a problem requires a model of the system because it strictly de-
pends on the predicted performance. Hence, model generation can sup-
port the online application of techniques for the bottleneck identification.

• Exploitation of the developed approaches for applications in other sec-
tors. Service systems (e.g., airports, hospitals) possess material flow
dynamics which are comparable to manufacturing environments. Hence,
they can be modeled exploiting the same approaches of this thesis.
Meanwhile, these systems are very complex and require accurate mod-
els for guaranteeing the ability of taking decisions in real-time. The ca-
pability of generating digital models online can bring benefits in such
application fields.

• Exploitation of the laboratory setting for application in other fields. The
lab-scale models mimic the material flow with tagged wooden discs.
Such devices can model not only manufactured goods but also other
items such as people, luggages, vehicles. Hence, the proposed labora-
tory setting is promising in the application to other fields in which either
a new decision-making logic or new technologies have to be tested.

112



Bibliography

[1] Wil M P Van Der Aalst. Process mining: Data science in action. 2016.

[2] Magnus Åkerman. Implementing shop floor IT for Industry 4.0.
Chalmers Tekniska Hogskola (Sweden), 2018.

[3] Y Rao, F He, X Shao, and C Zhang. On-Line simulation for shop floor
control in manufacturing execution system. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 5315 LNAI(PART 2):141–150, 2008.

[4] Fei Tao, Qinglin Qi, Ang Liu, and Andrew Kusiak. Data-driven smart
manufacturing. Journal of Manufacturing Systems, 48:157–169, 2018.

[5] L Monostori, B Kádár, T Bauernhansl, S Kondoh, S Kumara, G Reinhart,
O Sauer, G Schuh, W Sihn, and K Ueda. Cyber-physical systems in
manufacturing. CIRP Annals, 65(2):621–641, 2016.

[6] W Terkaj, P Gaboardi, C Trevisan, T Tolio, and M Urgo. A digital factory
platform for the design of roll shop plants. CIRP Journal of Manufactur-
ing Science and Technology, 26:88–93, 2019.

[7] Elisa Negri, Stefano Berardi, Luca Fumagalli, and Marco Macchi. MES-
integrated digital twin frameworks. Journal of Manufacturing Systems,
56:58–71, jul 2020.

[8] Mengnan Liu, Shuiliang Fang, Huiyue Dong, and Cunzhi Xu. Review
of digital twin about concepts, technologies, and industrial applications.
Journal of Manufacturing Systems, 58:346–361, 2021.

[9] Rakesh Kumar Phanden, Priavrat Sharma, and Anubhav Dubey. A
review on simulation in digital twin for aerospace, manufacturing and
robotics. Materials Today: Proceedings, 38:174–178, 2021.

[10] Qinglin Qi, Fei Tao, Ying Zuo, and Dongming Zhao. Digital twin service
towards smart manufacturing. Procedia Cirp, 72:237–242, 2018.

113



[11] S Tavakoli, A Mousavi, and A Komashie. A generic framework for real-
time discrete event simulation (DES) modelling. In Proceedings - Winter
Simulation Conference, pages 1931–1938, Miami, FL, 2008.

[12] Xingzhi Wang, Yuchen Wang, Fei Tao, and Ang Liu. New paradigm of
data-driven smart customisation through digital twin. Journal of manu-
facturing systems, 58:270–280, 2021.

[13] Daniel Rossit and Fernando Tohmé. Scheduling research contributions
to Smart manufacturing. Manufacturing Letters, 15:111–114, 2018.

[14] G Lugaresi and A Matta. Real-time simulation in manufacturing sys-
tems: Challenges and research directions. In Proceedings - Winter
Simulation Conference, 2019.

[15] S. Manivannan and Jerry Banks. Design of a knowledge-based on-line
simulation system to control a manufacturing shop floor. IIE transac-
tions, 24(3):72–83, 1992.

[16] S Manivannan and Jerry Banks. Real-time control of a manufacturing
cell using knowledge-based simulation. In Winter Simulation Confer-
ence Proceedings, pages 251–260, Phoenix, AZ, USA, 1991. Publ by
IEEE, Piscataway, NJ, United States.

[17] S Mirdamadi, F Fontanili, and L Dupont. Discrete event simulation-
based real-time shop floor control. Proceedings of the 2007 European
Conference on Modelling and Simulation, pages 235–240, 2007.

[18] P Mullarkey, S Gavirneni, and D J Morrice. Dynamic output analysis for
simulations of manufacturing environments. Winter Simulation Confer-
ence Proceedings, 2:1290–1296, 2000.

[19] C A Rabbath, M Abdoune, and J Belanger. Effective real-time simula-
tions of event-based systems. Winter Simulation Conference Proceed-
ings, 1:232–238, 2000.

[20] K Lee and P A Fishwick. Building a model for real-time simulation. Fu-
ture Generation Computer Systems, 17(5):585–600, 2001.

[21] L Monostori, B Kádár, A Pfeiffer, and D Karnok. Solution Approaches
to Real-time Control of Customized Mass Production. CIRP Annals -
Manufacturing Technology, 56(1):431–434, 2007.

114



[22] A Mousavi and H R A Siervo. Automatic translation of plant data into
management performance metrics: a case for real-time and predic-
tive production control. International Journal of Production Research,
55(17):4862–4877, 2017.

[23] GE-Automation. GE Automation: the rise of industrial big data. http:

//www.geautomation.com/download/rise-industrial-big-data,
2016. Accessed April 13th, 2018.

[24] L D Xu, E L Xu, and L Li. Industry 4.0: State of the art and future trends.
International Journal of Production Research, 56(8):2941–2962, 2018.

[25] Sigrid Wenzel and Tim Peter. Transformation of Real-time Reporting
Event Data to Long-term Simulation Models. Simulation in Produktion
und Logistik 2017, page 393, 2017.

[26] N Robertson and T Perera. Automated data collection for simulation?
Simulation Practice and Theory, 9(6-8):349–364, 2002.

[27] A Hanisch, J Tolujew, and T Schulze. Initialization of online simulation
models. In Proceedings - Winter Simulation Conference, volume 2005,
pages 1795–1803, Orlando, FL, 2005.

[28] Matthias Blum and Guenther Schuh. Towards a Data-oriented Optimiza-
tion of Manufacturing Processes. In Proceedings of the 19th Interna-
tional Conference on Enterprise Information Systems, Porto, Portugal,
pages 26–29, 2017.

[29] Masaki Kitazawa, Satoshi Takahashi, Toru B Takahashi, Atsushi
Yoshikawa, and Takao Terano. Real Time Workers’ Behavior Analyzing
System for Productivity Measurement Using Wearable Sensor. SICE
Journal of Control, Measurement, and System Integration, 10(6):536–
543, 2017.

[30] Mohammed Sadiq Altaf, Hexu Liu, Mohamed Al-Hussein, and Haitao
Yu. Online simulation modeling of prefabricated wall panel production
using RFID system. In Proceedings of the 2015 Winter Simulation Con-
ference, pages 3379–3390. IEEE Press, 2015.

[31] H Luo, J Fang, and G Q Huang. Real-time scheduling for hybrid flow-
shop in ubiquitous manufacturing environment. Computers and Indus-
trial Engineering, 84:12–23, 2015.

115



[32] Olivier Cardin and Pierre Castagna. Proactive production activity control
by online simulation. International Journal of Simulation and Process
Modelling, 6(3):177–186, 2011.

[33] Young Jun Son and Richard A Wysk. Automatic simulation model gen-
eration for simulation-based, real-time shop floor control. Computers in
Industry, 45(3):291–308, jul 2001.

[34] S C Mathewson. Simulation program generators: code and animation
on a PC. Journal of the Operational Research Society, 36(7):583–589,
1985.

[35] Florian Biesinger, Davis Meike, Benedikt Kraß, and Michael Weyrich.
A digital twin for production planning based on cyber-physical systems:
A Case Study for a Cyber-Physical System-Based Creation of a Digital
Twin. Procedia CIRP, 79:355–360, 2019.

[36] Gerardo Santillan Martinez, Seppo Sierla, Tommi Karhela, and Valeriy
Vyatkin. Automatic Generation of a Simulation-based Digital Twin of an
Industrial Process Plant. In Proceedings of the 44th Annual Conference
of the IEEE Industrial Electronics Society, IECON 2018, Proceedings of
the Annual Conference of the IEEE Industrial Electronics Society, pages
3084–3089, United States, 2018. Institute of Electrical and Electronics
Engineers.

[37] Mutsumi Fujihara and Kiyoshi Yoneda. Simulation through explicit state
description and its application to semiconductor fab operation. In Pro-
ceedings of the 24th conference on Winter simulation, pages 899–907.
ACM, 1992.

[38] Averill M Law. How to build valid and credible simulation models. In
2019 Winter Simulation Conference (WSC), pages 1402–1414. IEEE,
2019.

[39] Osman Balci. Principles and techniques of simulation validation, veri-
fication, and testing. In Proceedings of the 27th conference on Winter
simulation, pages 147–154, 1995.

[40] W J Davis. On-line simulation: Need and evolving research require-
ments. Handbook of Simulation, pages 465–516, 1998.

[41] Adnan Khan, Martin Dahl, Petter Falkman, and Martin Fabian. Digital
Twin for Legacy Systems: Simulation Model Testing and Validation. In

116



2018 IEEE 14th International Conference on Automation Science and
Engineering (CASE), pages 421–426. IEEE, 2018.

[42] Osman Balci. Validation, verification, and testing techniques through-
out the life cycle of a simulation study. Annals of operations research,
53(1):121–173, 1994.

[43] Keith Loague and Richard E Green. Statistical and graphical methods
for evaluating solute transport models: overview and application. Jour-
nal of contaminant hydrology, 7(1-2):51–73, 1991.

[44] D G Mayer and D G Butler. Statistical validation. Ecological modelling,
68(1-2):21–32, 1993.

[45] Ramesh Rebba, Shuping Huang, Yongming Liu, and Sankaran Mahade-
van. Statistical validation of simulation models. International Journal of
Materials and Product Technology, 25(1-3):164–181, 2006.

[46] Vance W Berger and YanYan Zhou. Kolmogorov–smirnov test:
Overview. Wiley statsref: Statistics reference online, 2014.

[47] Jack P C Kleijnen, Bert Bettonvil, and Willem Van Groenendaal. Valida-
tion of trace-driven simulation models: a novel regression test. Manage-
ment Science, 44(6):812–819, 1998.

[48] Robert G Sargent. Verification and validation of simulation models. Jour-
nal of simulation, 7(1):12–24, 2013.

[49] Giovanni Lugaresi, Gianluca Aglio, Federico Folgheraiter, and Andrea
Matta. Real-time Validation of Digital Models for Manufacturing Sys-
tems: a Novel Signal-processing-based Approach. Technical report,
2019.

[50] David Katz and S Manivannan. Exception management on a shop
floor using online simulation. In Proceedings of 1993 Winter Simulation
Conference-(WSC’93), pages 888–896. IEEE, 1993.

[51] Gerardo Santillan Martinez, Tommi Karhela, Reino Ruusu, Tuomas
Lackman, and Valeriy Vyatkin. Towards a systematic path for dy-
namic simulation to plant operation: OPC UA-enabled model adapta-
tion method for tracking simulation. In IECON 2017-43rd Annual Con-
ference of the IEEE Industrial Electronics Society, pages 5503–5508.
IEEE, 2017.

117



[52] J Banks, J S Carson, and B L Nelson. Discrete-Event System Simula-
tion. Prentice Hall, 1996.

[53] B Kadar, A Lengyel, L Monostori, Y Suginishi, A Pfeiffer, and Y Nonaka.
Enhanced control of complex production structures by tight coupling of
the digital and the physical worlds. CIRP Annals - Manufacturing Tech-
nology, 59(1):437–440, 2010.

[54] Behrang Ashtari Talkhestani, Nasser Jazdi, Wolfgang Schloegl, and
Michael Weyrich. Consistency check to synchronize the Digital Twin of
manufacturing automation based on anchor points. Proc. CIRP, 72:159–
164, 2018.

[55] Sören Bergmann, Sören Stelzer, and Steffen Straßburger. Initialization
of simulation models using CMSD. In Proceedings of the 2011 Winter
Simulation Conference (WSC), pages 2223–2234. IEEE, 2011.

[56] Rafal Cupek, Adam Ziebinski, Lukasz Huczala, and Huseyin Erdogan.
Agent-based manufacturing execution systems for short-series produc-
tion scheduling. Computers in Industry, 82:245–258, 2016.

[57] L Damiani, M Demartini, P Giribone, M Maggiani, R Revetria, and
F Tonelli. Simulation and digital twin based design of a production line:
A case study. In Lecture Notes in Engineering and Computer Science,
volume 2, 2018.

[58] M M Nasiri, R Yazdanparast, and F Jolai. A simulation optimisation
approach for real-time scheduling in an open shop environment using
a composite dispatching rule. International Journal of Computer Inte-
grated Manufacturing, 30(12):1239–1252, 2017.

[59] András Pfeiffer, B Kádár, L Monostori, and Zoltán Vén. Situation detec-
tion in production control by applying on-line simulation. In 5th Interna-
tional Conference on Digital Enterprise Technology, DET 2008, pages
225–241. Publibook, 2008.

[60] Pradeep Suresh, John M Wassick, and Jeff Ferrio. Real time perfor-
mance measurement for batch chemical plants. In Proceedings of the
Winter Simulation Conference, pages 2330–2340. Winter Simulation
Conference, 2011.

[61] Iracyanne Retto Uhlmann and Enzo Morosini Frazzon. Production
rescheduling review: Opportunities for industrial integration and practi-
cal applications. Journal of manufacturing systems, 49:186–193, 2018.

118



[62] Guilherme E Vieira, Jeffrey W Herrmann, and Edward Lin. Reschedul-
ing manufacturing systems: a framework of strategies, policies, and
methods. Journal of scheduling, 6(1):39–62, 2003.

[63] S Bohlmann, M Becker, S Balci, H Szczerbicka, and E Hund. Online sim-
ulation based decision support system for resource failure management
in multi-site production environments. In 2013 IEEE 18th Conference on
Emerging Technologies Factory Automation (ETFA), pages 1–4, 2013.

[64] Olivier Cardin and Pierre Castagna. Myopia of service oriented manu-
facturing systems: benefits of data centralization with a discrete-event
observer. In Service Orientation in Holonic and Multi-Agent Manufactur-
ing Control, pages 197–210. Springer, 2012.

[65] Catherine M Harmonosky, Robert H Farr, and Ming-Chuan Ni. Selec-
tive rerouting using simulated steady state system data. In Withers D H
Nelson B L Andradottir S. Healy K.J., editor, Winter Simulation Confer-
ence Proceedings, pages 1293–1298, Atlanta, GA, USA, 1997. IEEE,
Piscataway, NJ, United States.

[66] J M Framinan, P Perez-Gonzalez, and V.F.-V. Escudero. The value of
real-time data in stochastic flowshop scheduling: A simulation study for
makespan. In Chan V., editor, Proceedings - Winter Simulation Con-
ference, pages 3299–3310. Institute of Electrical and Electronics Engi-
neers Inc., 2017.

[67] Heiko Aydt, Wentong Cai, and Stephen John Turner. Dynamic spe-
cialization for symbiotic simulation-based operational decision support
using the evolutionary computing modelling language (ECML). Journal
of Simulation, 8(2):105–114, 2014.

[68] Malcolm Yoke Hean Low, Kong Wei Lye, Peter Lendermann,
Stephen John Turner, Reman Tat Wee Chim, and Surya Hadisaputra
Leo. An Agent-based Approach for Managing Symbiotic Simulation of
Semiconductor Assembly and Test Operation. In Proceedings of the
Fourth International Joint Conference on Autonomous Agents and Mul-
tiagent Systems, AAMAS ’05, pages 85–92, New York, NY, USA, 2005.
ACM.

[69] A Gunasekaran, B K Rai, and M Griffin. Resilience and competitiveness
of small and medium size enterprises: An empirical research. Interna-
tional Journal of Production Research, 49(18):5489–5509, 2011.

119



[70] Giovanni Lugaresi, Vincenzo Valerio Alba, and Andrea Matta. Lab-
scale models of manufacturing systems for testing real-time simulation
and production control technologies. Journal of Manufacturing Systems,
58:93–108, 2021.

[71] Anders Skoogh, Terrence Perera, and Björn Johansson. Input data
management in simulation–Industrial practices and future trends. Sim-
ulation Modelling Practice and Theory, 29:181–192, 2012.

[72] Heiner Reinhardt, Marek Weber, and Matthias Putz. A Survey on Auto-
matic Model Generation for Material Flow Simulation in Discrete Manu-
facturing. Procedia CIRP, 81:121–126, jan 2019.

[73] T A Spedding, W L Lee, R De Souza, and S S G Lee. Adaptive simu-
lation of a keyboard assembly cell. Integrated Manufacturing Systems,
8(1):50–58, 1997.

[74] W Van Der Aalst, T Weijters, and L Maruster. Workflow mining: Discov-
ering process models from event logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

[75] Gergely Popovics and László Monostori. ISA standard simulation model
generation supported by data stored in low level controllers. Procedia
CIRP, 12:432–437, 2013.

[76] Riku-Pekka Nikula, Marko Paavola, Mika Ruusunen, and Joni Keski-
Rahkonen. Towards online adaptation of digital twins. Open Engineer-
ing, 10(1):776–783, 2020.

[77] I. Sitova and J. Pecerska. Process Data Analysis Using Visual Analyt-
ics and Process Mining Techniques. In 2020 61st International Scien-
tific Conference on Information Technology and Management Science
of Riga Technical University, ITMS 2020 - Proceedings, 2020.

[78] Alexandre Checoli Choueiri, Denise Maria Vecino Sato, Edson Emilio
Scalabrin, and Eduardo Alves Portela Santos. An extended model for
remaining time prediction in manufacturing systems using process min-
ing. Journal of Manufacturing Systems, 56:188–201, jul 2020.

[79] W. Intayoad and T. Becker. Exploring the Relationship between Busi-
ness Processes and Contextual Information in Manufacturing and Lo-
gistics Based on Event Logs. In Procedia CIRP, volume 72, pages 557–
562, 2018.

120



[80] E. Ruschel, E.D.F. Rocha Loures, and E.A.P. Santos. Performance anal-
ysis and time prediction in manufacturing systems. Computers and In-
dustrial Engineering, 151, 2021.

[81] J. Park, D. Lee, and J. Zhu. An integrated approach for ship block
manufacturing process performance evaluation: Case from a Korean
shipbuilding company. International Journal of Production Economics,
156:214–222, 2014.

[82] William W Cooper, Lawrence M Seiford, and Kaoru Tone. Data envelop-
ment analysis. Handbook on data envelopment analysis, pages 1–40,
2000.

[83] C.K.H. Lee, G.T.S. Ho, K.L. Choy, and G.K.H. Pang. A RFID-based
recursive process mining system for quality assurance in the garment
industry. International Journal of Production Research, 52(14):4216–
4238, 2014.

[84] Masami Shimizu and David Van Zoest. Analysis of a factory of the future
using an integrated set of software for manufacturing systems modeling.
In Proceedings of the 20th conference on Winter simulation, pages 671–
677, 1988.

[85] Dah-Chuan Gong and Leon F McGinnis. An AGVS Simulation Code
Generate for Manufacturing Applications. Technical report, Institute of
Electrical and Electronics Engineers (IEEE), 1990.

[86] Ralph Mueller, Christos Alexopoulos, and Leon F McGinnis. Automatic
generation of simulation models for semiconductor manufacturing. In
2007 Winter Simulation Conference, WSC ’07, pages 648–657, Piscat-
away, NJ, USA, 2007. IEEE, IEEE Press.

[87] Mohammed Mesabbah, Waleed Abo-Hamad, and Susan McKeever. A
Hybrid Process Mining Framework for Automated Simulation Modelling
for Healthcare. In 2019 Winter Simulation Conference (WSC), pages
1094–1102. IEEE, 2019.

[88] A. Rozinat, R.S. Mans, M. Song, and W.M.P. van der Aalst. Discovering
simulation models. Information Systems, 34(3):305–327, may 2009.

[89] Wil M.P. van der Aalst. Process mining and simulation: A match made
in heaven! In Simulation Series, volume 50, pages 39–50. The Society
for Modeling and Simulation International, 2018.

121



[90] Giovanni Lugaresi and Andrea Matta. Automated manufacturing system
discovery and digital twin generation. Journal of Manufacturing Sys-
tems, 59:51–66, 2021.

[91] Soeren Bergmann, Niclas Feldkamp, and Steffen Strassburger. Ap-
proximation of dispatching rules for manufacturing simulation using data
mining methods. In 2015 Winter Simulation Conference (WSC), pages
2329–2340. IEEE, 2015.

[92] A. Farooqui, K. Bengtsson, P. Falkman, and M. Fabian. From factory
floor to process models: A data gathering approach to generate, trans-
form, and visualize manufacturing processes. CIRP Journal of Manu-
facturing Science and Technology, 24:6–16, 2019.

[93] Michael Milde and Gunther Reinhart. Automated Model Development
and Parametrization of Material Flow Simulations. In 2019 Winter Sim-
ulation Conference (WSC), pages 2166–2177. IEEE, 2019.

[94] Niels Martin, Benoit Depaire, and An Caris. Using process mining
to model interarrival times: investigating the sensitivity of the ARPRA
framework. In 2015 Winter Simulation Conference (WSC), pages 868–
879. IEEE, 2015.

[95] Peter Denno, Charles Dickerson, and J.A. Jennifer Anne Harding. Dy-
namic production system identification for smart manufacturing systems.
Journal of Manufacturing Systems, 48:192–203, jul 2018.

[96] Diogo R. Ferreira and Evgeniy Vasilyev. Using logical decision trees to
discover the cause of process delays from event logs. Computers in
Industry, 70:194–207, jun 2015.

[97] Niels Martin, Frank Bax, Benoit Depaire, and An Caris. Retrieving re-
source availability insights from event logs. In Proceedings - 2016 IEEE
20th International Enterprise Distributed Object Computing Conference,
EDOC 2016, 2016.

[98] Niels Martin, Marijke Swennen, Benoît Depaire, Mieke Jans, An Caris,
and Koen Vanhoof. Retrieving batch organisation of work insights from
event logs. Decision Support Systems, 100, 2017.

[99] Mahsa Pourbafrani, Sebastiaan J van Zelst, and Wil M P van der Aalst.
Supporting automatic system dynamics model generation for simulation
in the context of process mining. In International Conference on Busi-
ness Information Systems, pages 249–263. Springer, 2020.

122



[100] H.G. Maiorki, E.A.P. Santos, and E.F.R. De Loures. Multi-level log XES
format: A RAMI4.0 perspective. In Conference Proceedings - IEEE
International Conference on Systems, Man and Cybernetics, volume
2019-Octob, pages 1614–1620, 2019.

[101] H. Jo, S.D. Noh, and Y. Cho. An agile operations management system
for green factory. International Journal of Precision Engineering and
Manufacturing - Green Technology, 1(2):131–143, 2014.

[102] G. Schuh, A. Gützlaff, S. Schmitz, and W.M.P. van der Aalst. Data-
based description of process performance in end-to-end order process-
ing. CIRP Annals, 69(1):381–384, 2020.

[103] C. Fleig, D. Augenstein, and A. Maedche. Process mining for business
process standardization in ERP implementation projects – An SAP S/4
HANA case study from manufacturing. In CEUR Workshop Proceed-
ings, volume 2196, pages 149–155, 2018.

[104] Z. Toosinezhad, D. Fahland, O. Köroglu, and W.M.P. Van Der Aalst. De-
tecting system-level behavior leading to dynamic bottlenecks. In Pro-
ceedings - 2020 2nd International Conference on Process Mining, ICPM
2020, pages 17–24, 2020.

[105] M. Cho, G. Park, M. Song, J. Lee, B. Lee, and E. Kum. Discovery of
Resource-Oriented Transition Systems for Yield Enhancement in Semi-
conductor Manufacturing. IEEE Transactions on Semiconductor Manu-
facturing, 34(1):17–24, 2021.

[106] T.B.H. Tu and M. Song. Analysis and prediction cost of manufacturing
process based on process mining. In ICIMSA 2016 - 2016 3rd Interna-
tional Conference on Industrial Engineering, Management Science and
Applications, 2016.

[107] E. Ruschel, E.A.P. Santos, and E.F.R. Loures. Establishment of mainte-
nance inspection intervals: an application of process mining techniques
in manufacturing. Journal of Intelligent Manufacturing, 31(1):53–72,
2020.

[108] Rolando J Kurscheidt, Eduardo A P Santos, Eduardo de FR Loures,
Jose E Pecora Jr, and Jose M A P Cestari. A Methodology for Dis-
covering Bayesian Networks Based on Process Mining. In IIE Annual
Conference. Proceedings, page 2322. Institute of Industrial and Sys-
tems Engineers (IISE), 2015.

123



[109] G. Dörgo, K. Varga, M. Haragovics, T. Szabó, and J. Abonyi. Towards
operator 4.0, increasing production efficiency and reducing operator
workload by process mining of alarm data. Chemical Engineering Trans-
actions, 70:829–834, 2018.

[110] S. Knoch, S. Ponpathirkoottam, P. Fettke, and P. Loos. Technology-
enhanced process elicitation of worker activities in manufacturing, vol-
ume 308. 2018.

[111] F. Mannhardt, R. Bovo, M.F. Oliveira, and S. Julier. A taxonomy for
combining activity recognition and process discovery in industrial envi-
ronments, volume 11315 LNCS. 2018.

[112] H. Yang, M. Park, M. Cho, M. Song, and S. Kim. A system architecture
for manufacturing process analysis based on big data and process min-
ing techniques. In Proceedings - 2014 IEEE International Conference
on Big Data, IEEE Big Data 2014, pages 1024–1029, 2014.

[113] S. Ferilli and S. Angelastro. Activity prediction in process mining us-
ing the WoMan framework. Journal of Intelligent Information Systems,
53(1):93–112, 2019.

[114] C.M. Flath and N. Stein. Towards a data science toolbox for industrial
analytics applications. Computers in Industry, 94:16–25, 2018.

[115] C. Ortmeier, N. Henningsen, A. Langer, A. Reiswich, A. Karl, and C. Her-
rmann. Framework for the integration of Process Mining into Life Cycle
Assessment. In Procedia CIRP, volume 98, pages 163–168, 2021.

[116] D. Dakic, S. Sladojevic, T. Lolic, and D. Stefanovic. Process mining
possibilities and challenges: A case study. In SISY 2019 - IEEE 17th
International Symposium on Intelligent Systems and Informatics, Pro-
ceedings, pages 161–166, 2019.

[117] O. Dogan and O.F. Gurcan. Data perspective of lean six sigma in in-
dustry 4.0 era: A guide to improve quality. In Proceedings of the Inter-
national Conference on Industrial Engineering and Operations Manage-
ment, volume 2018, pages 943–953, 2018.

[118] G. Meyer, G. Adomavicius, P.E. Johnson, M. Elidrisi, W.A. Rush, J.A.M.
Sperl-Hillen, and P.J. O’Connor. A machine learning approach to im-
proving dynamic decision making. Information Systems Research,
25(2):239–263, 2014.

124



[119] F. Stertz and S. Rinderle-Ma. Detecting and identifying data drifts in
process event streams based on process histories, volume 350. 2019.

[120] Z. Paszkiewicz. Process mining techniques in conformance testing of
inventory processes: An industrial application. In Lecture Notes in Busi-
ness Information Processing, volume 160, pages 302–313. 2013.

[121] S. Saraeian and B. Shirazi. Process mining-based anomaly detection of
additive manufacturing process activities using a game theory modeling
approach. Computers and Industrial Engineering, 146, 2020.

[122] Minseok Song, Christian W Günther, and Wil M P der Aalst. Trace clus-
tering in process mining. In International conference on business pro-
cess management, pages 109–120. Springer, 2008.

[123] Christian W Günther and Wil M P Van Der Aalst. Fuzzy mining–adaptive
process simplification based on multi-perspective metrics. In Interna-
tional conference on business process management, pages 328–343.
Springer, 2007.

[124] R P Jagadeesh Chandra Bose and Wil M P der Aalst. Abstractions in
process mining: A taxonomy of patterns. In International Conference on
Business Process Management, pages 159–175. Springer, 2009.

[125] Martin Prodel. Modélisation automatique et simulation de parcours de
soins à partir de bases de données de santé. PhD thesis, Lyon, 2017.

[126] K.M. Rashid and J. Louis. Process Discovery and Conformance Check-
ing in Modular Construction Using RFID and Process Mining. In Con-
struction Research Congress 2020: Computer Applications - Selected
Papers from the Construction Research Congress 2020, pages 640–
648, 2020.

[127] Dino Knoll, Gunther Reinhart, and Marco Prüglmeier. Enabling value
stream mapping for internal logistics using multidimensional process
mining. Expert Systems with Applications, 124:130–142, jun 2019.

[128] Wil M P van der Aalst. Mining Additional Perspectives. In Process Min-
ing, pages 215–240. Springer, 2011.

[129] Nassim Nicholas Taleb. The black swan: The impact of the highly im-
probable, volume 2. Random house, 2007.

125



[130] Jay B Barney and Delwyn N Clark. Resource-based theory: Creating
and sustaining competitive advantage. Oxford University Press on De-
mand, 2007.

[131] Mohsen Moghaddam, Marissa N Cadavid, C Robert Kenley, and Abhi-
jit V Deshmukh. Reference architectures for smart manufacturing: A
critical review. Journal of manufacturing systems, 49:215–225, 2018.

[132] Young Jae Jang and Vina Sari Yosephine. LEGO robotics based project
for industrial engineering education. International Journal of Engineer-
ing Education, 32(3):1268–1278, 2016.

[133] Giovanni Lugaresi, Davide Travaglini, and Andrea Matta. A LEGO
® MANUFACTURING SYSTEM AS DEMONSTRATOR FOR A REAL-
TIME SIMULATION PROOF OF CONCEPT. Technical report, 2019.

[134] ev3dev, accessed July 1, 2020. http://www.ev3dev.org.

[135] Jean-Paul Arnaout. Rescheduling of parallel machines with stochas-
tic processing and setup times. Journal of Manufacturing Systems,
33(3):376–384, jul 2014.

[136] Jean-Paul Arnaout. Heuristics for the maximization of operating rooms
utilization using simulation. Simulation, 86(8-9):573–583, 2010.

[137] Stanley R Sadin, Frederick P Povinelli, and Robert Rosen. The NASA
technology push towards future space mission systems. In Space and
Humanity, pages 73–77. Elsevier, 1989.

[138] Stewart Robinson, Richard E Nance, Ray J Paul, Michael Pidd, and
Simon J E Taylor. Simulation model reuse: definitions, benefits and
obstacles. Simulation modelling practice and theory, 12(7-8):479–494,
2004.

[139] Bart L Maccarthy and Flavio C F Fernandes. A multi-dimensional clas-
sification of production systems for the design and selection of pro-
duction planning and control systems. Production Planning & Control,
11(5):481–496, 2000.

[140] A Augusto, R Conforti, A Armas-Cervantes, M Dumas, and M La Rosa.
Measuring Fitness and Precision of Automatically Discovered Process
Models: A Principled and Scalable Approach. IEEE Transactions on
Knowledge and Data Engineering, page 1, 2020.

126



[141] Willibrordus Martinus Pancratius van der Aalst, K M Van Hee, and G J
Houben. Modelling and analysing workflow using a Petri-net based
approach. In Proceedings of the second Workshop on Computer-
Supported Cooperative Work, Petri nets and related formalisms, pages
31–50. of, 1994.

[142] Lee Schruben and Enver Yucesan. Transforming Petri nets into event
graph models. In Proceedings of Winter Simulation Conference, pages
560–565. IEEE, 1994.

[143] Keith Paton. An algorithm for finding a fundamental set of cycles of a
graph. Communications of the ACM, 12(9):514–518, 1969.

[144] Rob J Wang and Peter W Glynn. On the marginal standard error rule
and the testing of initial transient deletion methods. ACM Transactions
on Modeling and Computer Simulation (TOMACS), 27(1):1–30, 2016.

[145] Enver Yücesan and Lee Schruben. Structural and behavioral equiva-
lence of simulation models. ACM Transactions on Modeling and Com-
puter Simulation (TOMACS), 2(1):82–103, 1992.

[146] Wil M P van der Aalst. Object-centric process mining: Dealing with
divergence and convergence in event data. In International Conference
on Software Engineering and Formal Methods, pages 3–25. Springer,
2019.

[147] Merih Seran Uysal, Sebastiaan J van Zelst, Tobias Brockhoff, Anahita
Farhang, Mahsa Pourbafrani Ghahfarokhi, Ruben Schumacher, Sebas-
tian Junglas, Günther Schuh, and Wil M P van der Aalst. Process Mining
for Production Processes in the Automotive Industry.

[148] David W Pentico. Assignment problems: A golden anniversary survey.
European Journal of Operational Research, 176(2):774–793, 2007.

[149] John C Mankins and Others. Technology readiness levels. White Paper,
April, 6(1995):1995, 1995.

[150] Mihály Héder. From NASA to EU: the evolution of the TRL scale in
Public Sector Innovation. The Innovation Journal, 22(2):1–23, 2017.

[151] William L Nolte. TRL calculator. In AFRL Assessing Technology Readi-
ness Development Seminar, 2005.

127



128



Appendix A

Assessment of the Technology
Readiness Level (TRL)

Let us consider the case in which a new RTS-based technology has to be
tested. It is reasonable to reflect on the advantages of exploiting a lab-scale
environment such as the one described in section 3.2.1. An established way to
assess the maturity of a technology is the Technology Readiness Level (TRL).
The TRL is an nine-level indicator originally developed by NASA [137] which
has been used extensively in the last 40 years to assess the maturity of a
technology in the aerospace sector [149]. Nowadays, the TRL is also used
to assign grants and evaluate research proposals such as European Horizon
2020 [150]. It is assumed that a TRL level cannot be reached before the previ-
ous levels are obtained. The first three levels refer to the observation of basic
principles, the formulation of technology concepts and proof-of-concepts. TRL
4 is achieved if the proposed technology is validated in a laboratory. In such
a setting, the operating environment is not realistic. For instance, consider
load cells tested with lower weights or an actuator used to provide smaller
displacements than in the intended use cases. Since the proposed lab-scale
models are compatible with the ISA95 industrial standard and can incorporate
IoT components, we infer that the proposed environment allows specific com-
ponent types to advance their own TRL to a level higher than 4. In order to
clarify our assumption, we have exploited a questionnaire developed by the
US Air Force Research Laboratory (AFRL) [151]. The questionnaire consists
in 274 questions. If a newly-developed technology can satisfy all the questions
related to a TRL, it can be considered at that readiness level. Table A.1 sum-
marizes the questions that we believe could be answered positively by using
the lab-scale models. Specifically, we selected three types of components that
could be evaluated exploiting the proposed testing environment: (1) a soft-
ware component, (2) a hardware device (e.g., gateway, sensor, PLC), and (3)



a method (e.g., a scheduling algorithm). Depending on the component type,
we have identified the achievable TRL level. As a result, the lab-scale setting
can grant each tested component to advance on its own TRL. It is worth to
notice that this analysis cannot assess the TRL of the entire manufacturing
system.

A.1 Software Component

If the software component is in the loop with the lab-scale model, the labora-
tory can be considered a relevant environment. Indeed, if the actuators and
sensors can provide the same functionality of the real system (e.g., changing
routes, stopping part flows) it is possible to reproduce material flows represen-
tative of a real system behavior. If the steady state performance of the model
is comparable with a real system, it is possible to design tests to address spe-
cific factory requirements such as quality control frequency or production rate.
Further, the hardware processors for the lab-scale environment can be the
same one as the real environment (e.g., gateways and PLCs), with no spe-
cific limitations concerning the integration among software tool components.
The interfaces can be described with reference to real components. For ex-
ample, the cyber-physical architecture can incorporate the same data formats
required by a specific PLC model. Moreover, the whole architecture can be
verified through the established communication channels, for instance by test-
ing the conformance to priority rules among different hierarchical levels.

A.2 Hardware Component

In case of a hardware component such as a PLC or gateway, if the test scope
is production planning and control and the implemented functionalities of the
lab-scale model correspond to large scale systems (e.g., flow control) the labo-
ratory setting can be considered a field environment equivalent. Also, anoma-
lous conditions can be designed properly in the lab-scale model to be repre-
sentative of a realistic situation. For instance, an anomalous flow in a real plant
could be simply recorded and replicated in the lab-scale model. The hardware
can be tested through the connection between the lab-scale architecture lev-
els and the field devices (e.g., serial ports). Additionally, interfaces can be
tested on the lab scale models the same way as in a realistic environment
(e.g., through dashboard visualizations and database connections).
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A.3 Method

In case the intended technology is a method for production planning and con-
trol (e.g. scheduling algorithm), if the stream of parts replicated in the model
is realistic (e.g., steady state performances are comparable) we may consider
the lab-scale environment as representative of a field environment. Indeed,
the algorithm uses data coming from the field sources as inputs and outputs,
regardless of the production system mechanics. Hence, if the installed devices
are representative of the production system of interest, logical functions can be
tested on the lab-scale models with the same expected outputs. For instance,
a scheduling algorithm can be tested against realistic disruptions replicated in
the physical model.
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TRL Question

S
of

tw
ar

e

5

System software architecture established
External interfaces described as to source, format, structure, content, and method
of support
Interfaces between components/subsystems are realistic (Breadboard with real-
istic interfaces)
High fidelity lab integration of system completed, ready for test in simulated envi-
ronments
Some special purpose components combined with available laboratory compo-
nents
Laboratory environment modified to approximate operational environment
Individual functions tested to verify that they work
Individual modules and functions tested for bugs
Integration of modules/functions demonstrated in a laboratory environment
Algorithms run on processor with characteristics representative of target environ-
ment

6

Factory acceptance testing of laboratory system in laboratory setting
Representative model/prototype tested in high-fidelity lab/simulated operational
environment
Realistic environment outside the lab, but not the eventual operating environment
Prototype implementation includes functionality to handle large scale realistic
problems
Algorithms partially integrated with existing hardware / software systems
Individual modules tested to verify that the module components (functions) work
together
Components are functionally compatible with operational system
Representative software system or prototype demonstrated in a laboratory envi-
ronment
Laboratory system is high-fidelity functional prototype of operational system
Integration demonstrations have been completed
Production demonstrations are complete

H
ar

dw
ar

e

7

Materials and manufacturing process and procedures initially demonstrated
Each system/software interface tested individually under stressed and anomalous
conditions
Algorithms run on processor(s) in operating environment
Most functionality available for demonstration in simulated operational environ-
ment
Operational/flight testing of laboratory system in representational environment
Fully integrated prototype demonstrated in actual or simulated operational envi-
ronment
System prototype successfully tested in a field environment.

M
et

ho
d

8

Components are form, fit, and function compatible with operational system
Form, fit, and function demonstrated in eventual platform/weapon system
All functionality demonstrated in simulated operational environment
System qualified through test and evaluation on actual platform (DT&E com-
pleted)

Table A.1: AFRL questions that can be satisfied by the proposed lab-scale models.
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Appendix B

Codes

This appendix collects the codes implemented for the LEGO stations.

B.1 EV3 Station Code

In this section is reported the python code used for the implementation of the
station workflow described in Figure 3.4.

# ! / usr / b in / env python3

from ev3dev . ev3 impor t *
from time impor t s leep
from datet ime impor t datet ime
impor t t ime
impor t random

Simu la t ion_ leng th = 10000000
Global_Time = datet ime (2018 , 11 , 21 , 10 , 12 , 39 , 0)
GroupID = 12
Group_Type = [1 , 1 ]
Group_Seed = [203 , 84]
random . seed ( Group_Seed [ GroupID ] )
Product_A = ’ red ’
number_Product_A = 0

motor_block = MediumMotor ( ’ outD ’ )
moto r_s ta t ion = LargeMotor ( ’ outB ’ )
conveyor_opt ica lsensor = ColorSensor ( INPUT_2 )
conveyor_opt ica lsensor . mode = ’COL−COLOR’



s t a t i o n _ o p t i c a l s e n s o r = ColorSensor ( INPUT_1 )
s t a t i o n _ o p t i c a l s e n s o r . mode = ’COL−COLOR’
b lock ing_op t i ca l senso r = ColorSensor ( INPUT_3 )
b lock ing_op t i ca l senso r . mode = ’COL−COLOR’

co lo rs = ( ’ unknown ’ , ’ black ’ , ’ blue ’ ,
’ green ’ , ’ yel low ’ , ’ red ’ , ’ white ’ , ’ brown ’ )
i = 0
in_p = 0
out_p = 0
T_ in_s ta t i on = 0
T_out_s ta t ion = 0
T_s ta r t = datet ime . now ( )
Simulat ion_Star t_T ime = t ime . t ime ( )
workingA = 0
Current_Simulat ion_Time = 0
TOT_Load_Time = 0
TOT_Working_Time = 0
TOT_Unload_Time = 0
TOT_Block_Time = 0

f i le_TW = open ( ’ WorkingTime_A_S1 . t x t ’ , ’w ’ )
f i l e _ t i m e _ i n p u t = open ( ’ t ime_in_S1 . t x t ’ , ’w ’ )
f i l e _ t i m e _ f i n i s h = open ( ’ t ime_f in ish_S1 . t x t ’ , ’w ’ )
f i l e _ t i m e _ o u t p u t = open ( ’ t ime_out_S1 . t x t ’ , ’w ’ )

wh i le i < S imu la t ion_ leng th :
c o l o r _ s t a t _ a v a i l a b l e = co lo rs [ s t a t i o n _ o p t i c a l s e n s o r . value ( ) ]
co lo r_conv_enter ing = co lo rs [ conveyor_opt ica lsensor . value ( ) ]
i f ( c o l o r _ s t a t _ a v a i l a b l e == ’ black ’ ) and ( co lo r_conv_enter ing == Product_A ) :
in_p = in_p + 1
T_ in_s ta t i on = Global_Time + ( datet ime . now ( ) − T_s ta r t )
T_ in_s ta t i on = T_ in_s ta t i on . s t r f t i m e ("%Y %m %d %H %M %S.% f " )
f i l e _ t i m e _ i n p u t . w r i t e ( ’ { } ’ . format ( T_ in_s ta t i on ) )
f i l e _ t i m e _ i n p u t . w r i t e ( ’%d \ n ’ % in_p )
LoadingTime_input = t ime . t ime ( )

motor_block . run_ fo rever ( speed_sp=−750)
sleep ( 0 . 4 5 )
motor_block . stop ( s top_ac t ion = ’ hold ’ )
motor_block . run_ fo rever ( speed_sp=750)
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motor_s ta t ion . run_ fo rever ( speed_sp=825)
sleep ( 0 . 4 5 )
motor_block . stop ( s top_ac t ion = ’ hold ’ )

a = 0
b = 0
T_check_input = t ime . t ime ( )
wh i le a < 1:
c o l o r _ s t a t _ e n t = co lo rs [ s t a t i o n _ o p t i c a l s e n s o r . value ( ) ]
i f c o l o r _ s t a t _ e n t == Product_A :
a = 1
i f ( t ime . t ime ( ) − T_check_input ) > 5 :
a = 1
b = 1
i f b == 1:
in_p = in_p − 1

motor_s ta t ion . stop ( s top_ac t ion =" hold " )
LoadingTime = t ime . t ime ( ) − LoadingTime_input
TOT_Load_Time = TOT_Load_Time + LoadingTime

co lo r_s ta t_work ing = co lo rs [ s t a t i o n _ o p t i c a l s e n s o r . value ( ) ]
i f co lo r_s ta t_work ing == Product_A :
number_Product_A = number_Product_A + 1
p r i n t ( ’ Number o f Pieces i s : ’ , number_Product_A )
i f GroupID == 0:
Tw_Astoc = random . uni form (2 , 8)
e l i f Group_Type [ GroupID ] == 1:
Tw_Astoc = random . t r i a n g u l a r (2 , 6 , 4)
e lse :
Tw_Astoc = random . t r i a n g u l a r (2 , 6 , 4)
workingA = Tw_Astoc
sleep ( workingA ) # Operat ion t ime assignment o f Product A
TOT_Working_Time = TOT_Working_Time + workingA

T_ f i n i sh_ope ra t i on = Global_Time + ( datet ime . now ( ) − T_s ta r t )
T_ f i n i sh_ope ra t i on = T_ f i n i sh_ope ra t i on . s t r f t i m e ("%Y %m %d %H %M %S.% f " )
f i l e _ t i m e _ f i n i s h . w r i t e ( ’ { } ’ . format ( T_ f i n i sh_ope ra t i on ) )
f i l e _ t i m e _ f i n i s h . w r i t e ( ’%d \ n ’ % number_Product_A )

co l o r_b lock_ava i l ab l e = co lo rs [ b lock ing_op t i ca l senso r . value ( ) ]
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i f co l o r_b lock_ava i l ab l e == Product_A :
Block = 1
Block ingTime_input = t ime . t ime ( )
BlockingTime = 0
whi le Block < 2:
co lo r_b lock = co lo rs [ b lock ing_op t i ca l senso r . value ( ) ]
i f co lo r_b lock == Product_A :
Block = 1
else :
Block = 2
BlockingTime = t ime . t ime ( ) − Block ingTime_input
TOT_Block_Time = TOT_Block_Time + BlockingTime

UnloadingTime_input = t ime . t ime ( )
moto r_s ta t ion . run_ fo rever ( speed_sp=1000)
sleep ( 1 . 4 )
out_p = out_p + 1
UnloadingTime = t ime . t ime ( ) − UnloadingTime_input
TOT_Unload_Time = TOT_Unload_Time + UnloadingTime

T_out_s ta t ion = Global_Time + ( datet ime . now ( ) − T_s ta r t )
T_ou t_s ta t ion = T_out_s ta t ion . s t r f t i m e ("%Y %m %d %H %M %S.% f " )
f i l e _ t i m e _ o u t p u t . w r i t e ( ’ { } ’ . format ( T_ou t_s ta t ion ) )
f i l e _ t i m e _ o u t p u t . w r i t e ( ’%d \ n ’ % out_p )
moto r_s ta t ion . stop ( s top_ac t ion = ’ hold ’ )

Current_Simulat ion_Time = t ime . t ime ( ) − Simulat ion_Star t_T ime
f i le_TW . w r i t e ( ’%d ’ % number_Product_A )
f i le_TW . w r i t e ( ’% f ’ % workingA )
f i le_TW . w r i t e ( ’% f ’ % Current_Simulat ion_Time )
f i le_TW . w r i t e ( ’% f ’ % TOT_Load_Time )
f i le_TW . w r i t e ( ’% f ’ % TOT_Working_Time )
f i le_TW . w r i t e ( ’% f ’ % TOT_Block_Time )
f i le_TW . w r i t e ( ’% f \ n ’ % TOT_Unload_Time )

i = i + 0.000000000001
f i le_TW . c lose ( )
f i l e _ t i m e _ f i n i s h . c lose ( )
f i l e _ t i m e _ i n p u t . c lose ( )
f i l e _ t i m e _ o u t p u t . c lose ( )
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Appendix C

Real-time Application of Model
Generation

This appendix presents a test case for the application of the model generation
procedure. For this purpose, the lab-scale models of manufacturing systems
described in chapter 3 have been used.

C.1 Test Case

The data is generated by a 6-station flow line lab-scale model. A schematic
representation of the line is shown in Figure C.1. The physical system is a
closed-loop production line composed by six stations with intermediate con-
veyors that operate also as buffers. We denote with bs the buffer capacity
before station s. The blocking after service rule is applied. A fixed number of
pallets (n = 20) circulates into the system. It is assumed that station s = 1 is
the load/unload station and a large number of unprocessed parts are waiting
in front of the first station, and that a finished part can immediately leave the
system. Each station can process one part at the same time. Production activ-
ities are represented by the time ps that a station holds a part before releasing

Table C.1: Test Case: parameters of the lab-scale model depicted in Figure 4.4.

Station s Upstream Buffer Capacity bs Processing Time ps [s] Failure Probability fs Repair Time rs [s]

1 4 1 0.15 UNIF(5,60)
2 3 1.5 0.1 UNIF(5,60)
3 6 1.1 0.35 EXPO(1)
4 6 1 0.34 Max(0.5, NORM(4,2))
5 2 Max(2, NORM(2, 10)) 0 0
6 4 2.5 0 0



Figure C.1: Test Case: 6-station flow line used for the numerical analysis of this work.

Time-stamp Part-ID Activity-ID Type

2020-11-23 16:37:40 1 1 start
2020-11-23 16:37:44 1 1 finish
2020-11-23 16:37:47 2 1 start
2020-11-23 16:37:51 2 1 finish
2020-11-23 16:37:52 1 2 start
2020-11-23 16:37:54 3 1 start
2020-11-23 16:37:57 1 2 finish

Table C.2: Test Case: portion of the event log generated by the lab-scale model of
Figure 4.4.
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Figure C.2: Test Case: discovered models at different times (first log). Arcs are tagged
with the respective buffer sizes.

it to the downstream conveyor. Stations s ∈ [1, 4] are unreliable and may fail
with probability fs. If a failure occurs, the part is held by the station for an ad-
ditional amount of time rs, which accounts for the station repair. All stochastic
quantities are sampled each time a part enters a station. The quantity ϕs(i)
represents the whole operation time that the i-th part spends in a station, and
its realization is as follows:

ϕs(i) = p̃s + Ĩsr̃s (C.1)

where Ĩs is an indicator function which is 1 if u < fs, 0 otherwise. u is a random
number in the interval [0, 1] and it is sampled each time a part enters a station.
Conveyors move at a constant speed. Table C.1 reports the parameters of the
lab-scale model1.

C.2 Experiments

The system described in section C.1 has been used to produce parts for
around 1 hour. This production experience has been repeated 9 times among
different days, hence 9 independent event logs are available. We have applied
the model generation procedure with an online setting. For practical conve-
nience, experiments have been done in a separate time. Namely, we have
selected the portion of the log such that tF (a, i) ≤ τ ∀i ∈ I, a ∈ A, where
τ ∈ {25, 35, 45, 60, 100}, corresponding to the time to produce 4,5,7,9, and 11
parts, respectively. The goal is to observe the automated model building be-
havior during the initial transient phase. Further, we have recorded the models
built for τ up to 2000 seconds, corresponding to the production of 142 parts.

1Although unrealistic, high failure probabilities have been set to increase the amount of
failures that can be observed within a production session.
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Figure C.3: Test Case: discovered buffers sizes depending on time.

The goal is to assess if the parameters of the system are correctly estimated
given a certain amount of data. Finally, we have used the nine independent
logs to check how parameters fitting techniques behave with different sample
sizes. Namely, we have used (1) Kernel Density Estimation and (2) Empirical
Cumulative Distribution Function to estimate the distribution of operation time
ϕ5.

C.3 Results

Figure C.2 shows the models developed from the first event log, depending
on different values of τ . It can be noticed how the initial transient determines
the capability of discovering the correct model of the system. Indeed, a time
of τ = 100 s is needed for obtaining the correct 6-station model. From Figure
C.2 we can also notice that the discovered buffer sizes have not reached the
real values even after 100 s. Figure C.3 shows the buffer capacities estimated
by the model development method for τ ∈ [0, 2000]. The convergence of all
buffer capacities is reached after τ = 600 s. However, the convergence is not
sufficient to obtain a correct estimation of buffer capacities. Indeed, the size of
b3 is biased by one slot even after τ > 2000 s. Figure C.4 shows the estimation
of the processing time ϕ5 among different days. We may observe that one day
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Figure C.4: Test Case: comparison among Kernel Density Estimation (KDE) and
Empirical Distribution Function (ECDF) for the estimation of the operation time ϕ5.

is not enough for an estimation of the distribution, two days can be sufficient
for a rough estimation of the distribution parameters (e.g., first moment), while
the correct estimation of the distribution is reached at 9 days, despite a biased
estimation of the first moment which is mostly due to noise of the real data.
From the results we may also infer that KDE and ECDF produce comparable
results for the estimation of operation times.
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Appendix D

Algorithms for Model Generation
of Manufacturing Systems with
Assembly Operations

This appendix presents the algorithms used in chapter 5 for the automated
generation of graph models in the case of assembly operations.

D.1 Selection of Candidate Stations

In this section we elaborate on the method described in step 2 of the procedure
in section 5.2.2. This step requires as input three information tables: the event
log (L), the BOM level selected at step 1, Bi, and the part types table (i.e., pa
is the part type of assembled product a). Let us define E as the set of events
in the log. id(e) is the part identifier corresponding to the e-th event in the log.
Similarly, st(e) is the station – or node – at which event e occurred. Algorithm
5 lists the steps to identify the set of candidate stations SC . Figure D.1 explains
this step graphically using an example.

D.2 Definition of the set of combinations V
In this section we elaborate on the method described in step 3 of the pro-
cedure in section 5.2.2. The obtained graph from the model generation ap-
proach (Chapter 4) can be divided in the collection of G subgraphs Ω =
{Ω1, . . . , ΩG}. In step 3, the goal is to determine a set of tuples. For each
tuple, the elements are the candidate assembly nodes for the par types of in-
terest. Let us accept the short notation N(Ωi) as the function returning the set



Algorithm 5: Selection of candidate stations (step 2).
Data: Event log L, BOM i-th level Bi, part types table pa;
Result: Set of candidate stations: SC ;

1 for e ∈ L do
2 k ← id(e);
3 if pk ∈ Bi(0) then
4 s← st(e);
5 SC ← s;

Figure D.1: Selection of candidate stations (step 2).
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of nodes for the i-th subgraph. Algorithm 6 outlines the procedure of this step.

Algorithm 6: Definition of the set of combinations V.
Data: collection of G subgraphs Ω, Candidate Stations SC ;
Result: Set of station combinations V;

1 for Ωi ∈ Ω do
2 for n ∈ N(Ωi) do
3 if n ∈ SC then
4 v ← n;
5 SC ← s;

6 V← v;

D.3 Graph Model Retrieval

Once the GCP problem (section 5.2.1) has been solved, the solution in terms
of graph model can be retrieved with a post-processing step. Namely, the
graph additions defined by the variable α can be derived with the simple pro-
cedure listed in Algorithm 7. The algorithm analyses all the components of the

Algorithm 7: Graph model retrieval.
Data: GCP solution: x∗

cas;
Result: Graph model addition variables: αijp;

1 αijp ← 0 ∀i, j, p;
2 for c ∈ C do
3 for a ∈ A do
4 for s ∈ S do
5 if x∗

cas = 1 then
6 l = argmaxn∈S tF (n, c);
7 αl,s,pa ← 1.

solution matrix x∗
cas. If x∗

cas = 1, it means the c-th component has been as-
signed to the a-th assembly on station s. In this case, the algorithm searches
for the last station where a production record exists for component c. Namely,
where the last station l recording the time-stamp tF (l, c). Such station is the
starting node of the arc that represents the convergence of components of
type pa, toward station s. The arc is represented by αl,s,pa = 1.
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[...] e in fine il piacere che si prova in gustare e apprezzare i propri lavori, e
contemplare da sé compiacendosene, le bellezze e i pregi di un figliuolo proprio, non
con altra soddisfazione, che di aver fatta una cosa bella al mondo; sia essa o non sia

conosciuta per tale da altrui.

[G. Leopardi, Zibaldone, 1828]
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