
Executive Summary of the Thesis

Evaluating FPGA-Based Convex Optimization Methods for Onboard
Low-Thrust Trajectory Guidance

Laurea Magistrale in Space Engineering - Ingegneria Spaziale

Author: Gonçalo Oliveira Pinho

Advisor: Dr. Alessandro Morselli

Co-advisors: Davide Perico, Gianfranco Di Domenico

Academic year: 2022-2023

1. Introduction
In recent years, the focus of the space indus-
try has shifted towards miniaturizing satellites
and their components. One valuable objective
for future missions is the enhancement of auton-
omy and delegation of flight-related tasks, such
as onboard guidance design, to automated sys-
tems [1]. However, the disparity in resources be-
tween OnBoard Computer (OBC) systems and
ground computers has prompted research stud-
ies proposing a combination of software (SW)
and hardware (HW) accelerators through Field
Programmable Gate Arrays (FPGA) implemen-
tations. This compact, low-power consump-
tion technology can integrate various functions
and meet unique application requirements post-
deployment, a valuable asset for missions that
require in-flight adaptability. Furthermore, it
provides high computational efficiency without
compromising accuracy [2]. Nonetheless, the in-
tegration of the technology presents non-trivial
challenges. Therefore, this thesis investigates
the considerations and concerns of deploying on-
board guidance algorithms that utilize convex
optimization methods on reconfigurable com-
puting hardware. The case problem at hand,
solved with a Sequential Convex Programming

(SCP) algorithm, is exhibited in Section 1.1.
Within it, a series of sub-problems are resolved
using the Embedded Conic Solver (ECOS), an
interior point solver [3].
This work delves into the functionalities and ar-
chitecture of Zynq devices [2], as well as the soft-
ware tools used for hardware design. The defi-
ance of utilizing hardware optimization frame-
works for implementing software-oriented appli-
cations in FPGAs is examined. Afterward, an
analysis and comparison of the numerical and
computational results between the original al-
gorithm and various hardware designs are con-
ducted. The impact of fixed-point precision in
similar problems is also presented. Lastly, a set
of remarks is provided to aid the development of
future onboard guidance applications that uti-
lize Interior Point Methods (IPM).

1.1. Problem Formulation
An Earth to Mars minimum-fuel Space Trajec-
tory Optimization (STO) problem was consid-
ered [4]. Assuming two-body dynamics, the re-
sulting equations of motion of the problem were
highly nonlinear. In addition, the state and
control variables were coupled. These aspects
posed the problem as nonlinear and nonconvex

1

Executive summary Gonçalo Oliveira Pinho

[4]. Thus, the problem was transformed into a
convex one through a series of processes that
include changing of variables, relaxing control
constraints, and linearizing the dynamics [1, 4].
After implementing these, a Convex Problem
(CXP) was attained, followed by a SCP ap-
proach. This is a local optimization method
where a sequence of convex optimal control sub-
problems, defined by the equations of the CXP,
is formed using the solutions from the previ-
ous iteration. Each sub-problem can be dis-
cretized into a Second-Order Cone Programming
(SOCP) problem, solved employing the interior
point solver ECOS [3, 4]. The SCP was the de-
veloped algorithm to be deployed in the hard-
ware.

1.2. FPGA Overview
FPGA are integrated circuits intended for cus-
tom hardware implementation, being reconfig-
urable for an infinite number of times [2].
Further detailed in Section 1.2.1, each device
presents a set of resources. The functional blocks
of logic included in the hardware and designed
by the user to meet specific functionalities are
called Intellectual Property (IP) blocks or cores.

1.2.1 Zynq Architecture

A System-on-Chip (SoC) is a single chip capa-
ble of implementing multiple system functional-
ities. However, the upgrade or replacement of a
component often requires the replacement of the
entire chip. Therefore, Xilinx created the Zynq
device, an All-Programmable SoC (APSoC) that
combines a dual-core ARM Cortex-A9 processor
with FPGA fabric [2]. Illustrated in Figure 1, its
architecture can be broken down into:
• Processing System (PS): formed around the

aforementioned processor, it is responsible
for running software routines or operating
systems;

• Programmable Logic (PL): the FPGA side,
responsible for implementing high-speed
logic, arithmetic, and data flow subsystems.

The primary link between these two components
is established through Advance eXtensilbe Inter-
face (AXI) connections. AXI is a protocol tar-
geted at high-speed and high-frequency system
designs, being fitted for FPGA applications.

Figure 1: Simple scheme of the Zynq architec-
ture.

Currently, three types of interfaces exist [2]:
• AXI4: high-performance interface suited

for memory-mapped links;
• AXI4-lite: lightweight variant interface,

used in simple low throughput memory
transactions. When used, it creates a set
of C driver files with functions and struc-
tures useful for controlling actions of the IP
core (such as start, pause, resume, . . .);

• AXI4-Stream: used for high-speed stream-
ing data scenarios.

The selected device for this work was the Xilinx
Zynq ZC7Z020-1CLG484 APSoC, also known
as Zedboard. Positioned as a development kit,
it suited the scope of measuring the feasibil-
ity of deploying algorithms such as those ex-
plored in this work. The resources on the PL
side of the board are 13300 Logic Slices, 220
DSP48E1s, and 140 Block Random Access Mem-
ory (BRAM), each of 36 Kb. Logic slices are
fundamental elements for implementing various
logic functions. DSP48E1s are mainly used for
math-intensive operations while BRAMs refer to
memory storage. The software tools used exten-
sively throughout this work are Vivado, Vitis
Integrated Design Environment (IDE) and Vitis
High-Level Synthesis (HLS).

1.2.2 Optimization Techniques

Among the different approaches that could im-
prove the computational performance of the al-
gorithm, pipelining and dataflow have been con-
sidered. While pipelining explores an increase in
the hardware throughput through software op-
erations overlap, dataflow, and particularly the
unroll technique, parallelizes functions or loops
by physically increasing the number of dedicated
resources.

2

Executive summary Gonçalo Oliveira Pinho

1.2.3 Fixed-point Arithmetic

FPGA architecture revolves around fixed-point
representation, therefore presenting more effi-
cient arithmetic performances once compared to
floating-point. By making a wise selection of bits
for fixed cases that align with the application’s
required ranges, higher-quality hardware imple-
mentations are potentially achieved with fewer
resources and improved performance. Section
2.3 presents the fixed-point procedure used.

2. Implementation
The minimum-fuel STO problem between Earth
and Mars discussed in Section 1.1 was solved
considering 100-nodes with a set of initial and
final state conditions, and control constraints.
First, the SCP algorithm was developed by inte-
grating the ECOS framework. It was then com-
piled and executed on a desktop computer. Af-
terward, it was deployed in the PS of the Zed-
board. No discernible difference between the two
solutions was noted as Section 3.1 points out.

2.1. IP Design

2.1.1 Algorithm sub-routines

A profiling sequence was conducted to identify
the execution-time bottlenecks of the SCP ap-
plication. Therefore, the functions that have
a higher impact on the application’s execution
time were prioritized for IP core development,
resulting in kkt_factor and sparseMV. On one
hand, kkt_factor computes the numeric factor-
ization A = LDLT, where A is a symmetric
sparse matrix. With this process, the solution
of linear systems Ax = b can be computed at
reduced computational cost thanks to a set of
equations involving the permuted and lower tri-
angular matrices P and L. On the other hand,
sparseMV performs sparse matrix-vector multi-
plication operations. Both are extensively used
in the iterative solver.

2.1.2 Interfaces

After selecting and comprehending the opera-
tions of the functions to be implemented as IP
cores, a decision is made on which interfaces to
use. The IP core’s interfaces involve two com-
ponents: control signals, which encompass stan-
dard but crucial IP core control commands, and

data signals, which are the data exchanged be-
tween the PS and PL for the IP core operation.
For both IP cores and taking into account Sec-
tion 1.2.1, the AXI4-lite interface fulfilled the
requirements of control signals. For data sig-
nals, the AXI4-Stream was chosen due to its sim-
pler configuration, requiring only the introduc-
tion of the AXI Direct Memory Access (DMA)
IP core in Vivado. This block was responsible
for correctly routing data between the PS and
PL memories.
Moreover, the inputs and outputs of each func-
tion contained pointers to pointers, a coding
practice not supported by Vitis HLS. Conse-
quently, for the data exchange illustrated in Fig-
ure 2, Transmitters (TXs) and Receivers (RXs)
arrays were instead created in the PS. However,
as each AXI4-Stream interface must have an as-
sociated data type, the need to create distinct
stream interfaces arose as the selected functions
use integer and double data types. Therefore,
for each AXI4-Stream interface of a particular
data type, a respective TX (input) or RX (out-
put) was created. Essentially, for the workflow,
the TXs are loaded with all the data from the
algorithm’s variables to pass to the PL. Once
the FPGA computation is finished, the RXs re-
ceive the data, which is then passed back to the
algorithm’s variables.

Figure 2: Scheme of data exchange between PS
and PL.

2.1.3 Optimization

Referring to Figure 2, each IP core followed the
same high-level operational flow (steps 2 to 4).
Pipelining was used to reduce the cycle count
to a minimum in steps 2 and 4. However,
the primary optimization improvement stems
from step 3, which depends on the function’s
operation and structure. While parallelization
was explored during this step, it was ultimately
deemed impractical for the reasons described
ahead. Both functions revolve around multipli-
cation loops which, typical of software-oriented

3

Executive summary Gonçalo Oliveira Pinho

applications, employ compact matrix storage
methods, such as Compressed Column Storage
(CCS). CCS involves storing a matrix A in 3
distinct arrays. Specifically, Ax stores the non-
zero numerical values of A, Ai stores the row
indices of each entry, and Ap stores the index
of elements in Ax which start a column of A.
Using this approach, the number of iterations in
each multiplication loop depends on the number
of elements in Ax. The loops’ bounds change
based on the data utilized, resulting in a non-
deterministic behavior. By contrast, FPGAs
require deterministic loops to establish hard-
ware instances of appropriate bounds. Other-
wise, an arbitrary hardware instance is created,
leading to inefficient code sequences as the data
structure varies. Furthermore, parallel execu-
tion or pipelining becomes infeasible in cases
where loop iterations have data dependencies of
previous iterations. Both functions under anal-
ysis presented nondeterministic, data-dependent
and strictly sequential behaviors. Therefore, the
pipeline or concurrency of function operations
was not possible, leading to worse hardware im-
plementations when compared to the original al-
gorithm as Section 3 explores.

2.2. Problem Reduction
From Figure 2, the retrieved data from the
streams gets stored into local variables on the
PL using BRAM resources. However, during the
development of kkt_factor, it became notice-
able that accommodating all necessary variables
would necessitate a 457% increase in the avail-
able BRAM resources. Due to the high num-
ber of nodes considered, the problem presented
a vast workspace of variables. For this thesis,
the solution adopted was to reduce the size of the
problem by considering fewer nodes, still pairing
with the intent of learning insights when deploy-
ing STO algorithms in FPGAs. It has been de-
termined that a problem with 5 nodes would be
compatible with the resources of the Zedboard.
However, reducing the number of nodes of the
Earth to Mars problem from 100 to 5 would
lead to unrealistic solutions. Therefore, a sec-
tion of 5-nodes from the trajectory solution of
the original Earth to Mars 100-node implemen-
tation was chosen as the new problem to solve.
Accordingly, the conditions and constraints of
the new problem were adjusted in the discussed

SCP algorithm of Section 1.1.

2.3. Arbitrary Precision
It has been decided to implement the sparseMV
function using both floating-point and fixed-
point precision to investigate resource and per-
formance differences. This function was cho-
sen over kkt_factor due to its simpler routines.
One iteration of the function under analysis was
traced to calculate the required precision. From
it, two implementations resulted: one providing
coverage in precision up to 10−11 decimal places
and other up to 10−16 decimal places. Addition-
ally, the use of fixed-point precision was shown
to impact the algorithm’s convergence. Section
3.2 highlights the effects of such implementation.

3. Results
This section compares the results obtained from
the algorithm deployed in the PS and different
hardware designs. As a notation, "SW version"
stands for the original algorithm only using soft-
ware operations, whereas "HW version" denotes
a combination of SW and HW capabilities by
incorporating one of the developed IP cores into
ECOS. Seen from Sections 3.2 and 3.3, separate
designs for each IP core were created since the
FPGA implementations yield lower performance
efficiency when compared to the purely software-
based application. Otherwise, their combina-
tion into a single design would result in an even
less efficient outcome. Lastly, the designs were
clocked at 666.67 MHz for the Central Process-
ing Unit (CPU) and 100 MHz for the PL, this
last one being coherent with the frequency of the
IP cores.

3.1. Problem Solution
Table 1 presents the results of the 5-node prob-
lem and characteristics of the designs considered
in this work from a mean of 1000 test runs. The
4th column represents the number of SCP itera-
tions required to solve the problem while the Ac-
celeration Factor (AF), defined in equation (1),
is a metric to compare the performance of differ-
ent implementations. The measurements of the
number of cycles were possible thanks to the in-
clusion of the AXI Timer IP core.

AF =
Clock Cycles for SW version
Clock Cycles for HW version

. (1)

4

Executive summary Gonçalo Oliveira Pinho

Design Version Objective Function (-) Fuel Mass (kg) Iterations k (-) AF (-)

SW (reference) 0.1778736542714191 15.064871 2 -

HW kkt_factor - floating-point 0.1778736542714191 15.064871 2 0.357

HW sparseMV - floating-point 0.1778736542714191 15.064871 2 0.721

HW sparseMV - fixed-point
(10−11 precision coverage)

0.1778841011968801 15.064836 3 0.526

HW sparseMV - fixed-point
(10−16 precision coverage)

0.1778532160822693 15.064839 3 0.589

Table 1: Earth Mars 5-nodes problem solution for SW application and diverse HW designs.

The 1st row of Table 1 displays the solution
for the 5-node application problem solely using
software routines of the Zedboard PS. No dis-
cernible distinctions from running the algorithm
on a desktop computer were observed up to the
displayed precision.

3.2. Floating-Point Designs
The 2nd and 3rd rows of Table 1 present equal
results to those of the SW version. This out-
come was expected as both IP cores use IEEE
standard double floating-point precision, avoid-
ing any loss of range or precision in the FPGA
[2]. However, the AF of both is below 1, mean-
ing that the HW versions perform worse once
compared to the SW version. First, it was in-
ferred that the data transfer between the PS
and PL had a negligible impact on the perfor-
mance. Secondly, a significant reduction in the
HW performance was caused by the address of
data and stream management operations (steps
1, 2, 4, and 5 of Figure 2). Indeed, by remov-
ing the number of cycles associated with these
processes, the AF of each HW design was in-
creased to 0.583 and 0.842, respectively. The
still inferior performance efficiency can be at-
tributed to the presence of nondeterministic and
data-dependent loops, which prevented the use
of optimization techniques. Nonetheless, prior
studies have presented efficient hardware designs
of numeric factorization and matrix-vector mul-
tiplication processes. These are characterized
by structures and methods qualified for FPGAs.
Even so, introducing them into the algorithm
would be a complex process requiring extensive
changes to the ECOS framework.
To mitigate the additional cycles required
by FPGA operations such as data address,

transfer, and stream management, a possible
workaround is to deploy algorithm sections en-
closing multiple successive functions in a single
IP block, rather than their separate implemen-
tation. These should, anyhow, present a signifi-
cant impact on the application’s execution time,
as well as deterministic and data-independent
behaviors to exploit the device’s capabilities.

3.3. Fixed-Point Designs
The 4th row of Table 1 indicates a loss of pre-
cision in both the objective function and fuel
mass. In Section 2.3, although values above the
selected precision are kept for the sample of data
collected, a loss of decimal places still occurs.
As later demonstrated, this impacts subsequent
computations in ECOS that require more dec-
imal places than those retained by the chosen
precision. This aspect has further implications
in the design as the AF of 0.526 indicates a de-
crease when compared to the floating-point de-
sign. Indeed, the decrease in precision led to a
greater number of iterations k to reach the solu-
tion. These strictly related to a heightened num-
ber of ECOS iterations, increasing the overall
computational time. To express this hypothesis,
a second fixed-point design with greater preci-
sion coverage was considered.
The effect can be observed by controlling the
quantity of sparseMV function calls as it links to
the solver’s iteration count. Specifically, the 3rd,
4th, and 5th rows of Table 1 incorporated 1806,
3021, and 2585 sparseMV function calls, respec-
tively. A significant increase in the solver’s it-
eration count was witnessed in both HW ver-
sions once compared to the SW version. Fur-
thermore, the design of the 5th row of Table 1
approximates to the number of iterations of the

5

Executive summary Gonçalo Oliveira Pinho

SW version by covering a broader range of the
values utilized by ECOS, despite not being suf-
ficient. In fact, the author of the solver states a
need for single floating-point precision when tar-
geting FPGA implementations to cover the dy-
namic range of numbers that arise from the IPM
[3]. This is a frequent concern in FPGA imple-
mentations of problems that utilize IPMs, where
the employment of fixed-point precision is not
recommended [5]. Therefore, for the aforemen-
tioned reasons, the later described performance
efficiency of fixed-point arithmetic is surpassed
by the need to cover the range of values that IPM
solvers present. These conclusions align with the
AF values of the last 3 rows of Table 1.
To control the behavior differences between
floating-point and fixed-point arithmetic, a stan-
dalone test problem of the sparseMV function
was constructed. From it, the HW designs of
the 3rd and 4th rows of Table 1 required 11181
and 5680 clock cycles, respectively, to solve the
problem, confirming the performance efficiency
of fixed-point implementations. The SW ver-
sion of this function only required 1263 clock cy-
cles. The discrepancy between SW and HW ver-
sions corroborated the difficulty of implementing
software-oriented applications in FPGAs when
optimization techniques are not employed.
Moreover, despite Section 2.2 highlighting the
board’s resource limitation when deploying on-
board guidance algorithms, the performance gap
between FPGA and SW implementations should
scale positively with the size of STO problems
solved by IPM [3]. Lastly, another approach for
performance improvement is increasing the IP
core frequency to the maximum value that still
meets the hardware design timing. Notice, how-
ever, increasing the IP core frequency can limit
the concurrency of functions due to the afore-
mentioned timing constraints and vice versa.

4. Conclusions
The present work concludes that deploying
onboard guidance algorithms in FPGAs is a
complex assignment for a conjunction of mo-
tives. Highly impacted by the board’s resources,
the optimization, and structure presented by
software-oriented applications pose a demand-
ing transition into hardware. Furthermore, the
selection of IP cores shall target sub-routines
of the algorithm with high execution time sig-

nificance that convey deterministic and data-
independent behaviors. These enable the par-
allelism and pipeline benefits FPGAs introduce.
If the mentioned attributes are not present, the
function’s structure and implementation must
be adapted accordingly. However, this can lead
to complicated algorithm redesign due to the in-
tricacy of IPMs. A suggested procedure is the
development of single IP cores that incorporate
sections of the algorithm characterized by multi-
ple sequential functions. Thus, the added clock
cycles that FPGAs require for operations like
data transfer and address are counteracted by
its concurrency benefit. Nevertheless, these sec-
tions should display relevance to the execution
time and the aforementioned attributes. Finally,
for onboard guidance algorithms utilizing IPMs,
floating-point precision must be employed in IP
core designs to cover the imposed range of com-
putational accuracy.

References
[1] Andrea Carlo Morelli et al. Robust Low-

Thrust Trajectory Optimization Using Con-
vex Programming and a Homotopic Ap-
proach. IEEE Transactions on Aerospace
and Electronic Systems, 58(3):2103–2116, 11
2022. doi: 10.1109/TAES.2021.3128869.

[2] Louise H. Crockett et al. The Zynq
Book: Embedded Processing with the Arm
Cortex-A9 on the Xilinx Zynq-7000 All Pro-
grammable Soc. Strathclyde Academic Me-
dia, 2014. ISBN 099297870X.

[3] Alexander Domahidi et al. ECOS: An SOCP
solver for embedded systems. 2013 European
Control Conference, ECC 2013, pages 3071–
3076, 07 2013. doi: 10.23919/ECC.2013.
6669541.

[4] Zhenbo Wang et al. Minimum-Fuel Low-
Thrust Transfers for Spacecraft: A Convex
Approach. IEEE Transactions on Aerospace
and Electronic Systems, 54(5):2274–2290, 2
2018. doi: 10.1109/TAES.2018.2812558.

[5] Junyi Liu et al. FPGA implementation
of an interior point method for high-speed
model predictive control. In 2014 24th Inter-
national Conference on Field Programmable
Logic and Applications (FPL), pages 1–8,
2014. doi: 10.1109/FPL.2014.6927473.

6

	Introduction
	Problem Formulation
	FPGA Overview
	Zynq Architecture
	Optimization Techniques
	Fixed-point Arithmetic

	Implementation
	IP Design
	Algorithm sub-routines
	Interfaces
	Optimization

	Problem Reduction
	Arbitrary Precision

	Results
	Problem Solution
	Floating-Point Designs
	Fixed-Point Designs

	Conclusions

