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Abstract

Low-quality pictures from the past are going to be lost if not digitalized and restored.
This work focuses on the restoration of exploded view diagrams, which represent a particular
subset of those images. The peculiarity of these images is their simplicity, which is both an
advantage and a disadvantage since the little information they provide is easier to handle but
harder to understand.

The final goal of the study is to both reconstruct their individual components and rebuild the
composite object. To do this, we need to generate a dataset of diagrams and their relative in-
formation that will be used for the application of reverse-engineering models which can restore
the images in 2D or 3D.

Most of the studies on the depth estimation of a scene have been developed on real pictures or
realistic simulations of scenes which include non-uniform lighting. The understanding of the
depth in an image or a video, in those cases, heavily relies on the different shades that the light
creates when hitting objects and shadows. However, we totally miss this information in the
exploded views, and this opens a new type of challenge.

From segmented 3D models, we reconstruct their components’ connections and explode them,
proposing an algorithm for the generation of the diagrams. We study the possibilities and choose
them with an eye on scalability and generalization, trying to adapt existing studies to ours.

In conclusion, we recognize how a set of ad-hoc techniques may outperform a general universal
algorithm.
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Introduction

Exploded view diagrams are a practical representation of the components of a 3D object which
must also be easily understandable to people without expertise. They allow visualizing the
otherwise hidden parts by decomposing the object into its components and showing them as
separate entities. With respect to a classical composite view, exploded views not only remove
the occlusions between components but also convey the information about their relationships
through the way they have been exploded. In fact, the displacement of the components has to
respect the hierarchy of dependencies they had in the original object, that is, it must be easily
comprehensible where each part was connected. On the other hand, because it’s often sufficient
to provide a single 2D view to explain the object, the depth component is lost.

Reconstructing the relationships and estimating the depth of the components is an intrinsically
ambiguous problem when dealing with single 2D views, as it is not possible to find a unique
valid solution for the problem; however, not all the valid possibilities are equally likely. In
the reconstruction phase is then fundamental to take into consideration the prior knowledge
about the diagrams and the 3D objects behind those, in order to find the reconstruction which
maximizes the posterior likelihood between all the possible choices. The rules that lead to a
solution may come from direct human observations or via supervised learning techniques.

Because of the lack of existing annotated datasets of exploded diagrams, we build one by au-
tomatically generating it from the PartNet dataset. By studying the semantics that it provides,
we define some heuristics that allow us to reconstruct the connections between components and
explode them accordingly. We also propose a pipeline for information extraction and recon-
struction of the diagrams.
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1

Background

1.1 Related work

1.1.1 Exploded view diagrams

The automatic generation of exploded view illustrations has been a subject of interest since the
’90s, when the process was starting to be computer-aided.
The solution proposed by [DC]:

• Requires human intervention to build the tree of connections between the pieces;

• From the tree of its components explodes an object by iteratively distancing its compo-
nents;

• Is too manual to build a dataset efficiently.

A more complete automation tool has been studied by Li in [LAS], which:

• Analyzes the blocking constraints between parts (which components can not be moved
before others do);

• Builds the explosion graph of the object from the blocking constraints;

• Works well in presence of many interlocking pieces, but for our applications this study
is not enough because, as we will see, the data we use to develop our dataset lacks many
intersections between components that in real life would exist.



1 Background

Dataset

Because we are compacting the information about a 3D object into a single 2D image, the prob-
lem of its reconstruction is intrinsically ambiguous, and we need to be able to choose the most
likely solution between the infinitely many compatible ones. For this reason, we need to have
some prior knowledge to get the common sense of what is the most likely interpretation of the
image, and this can be provided by using a dataset of diagrams whose meaning is known.
Such a dataset is not yet available, so we are going to build one ourselves. Because manually an-
notating existing illustrations is extremely expensive, we will build an automatically generated
one.

• We took into consideration building objects from mechanical parts, for example from
ABC dataset [KMJ+], and we observed that placing arbitrary objects on a randomly gen-
erated explosion graph is not a good choice, as the lack of semantic meaning impacted
too strongly the quality of the diagram;

• We then decided to start from PartNet dataset [YLZ+], which provides a set of 3D seg-
mented objects, and allows us to use semantically coherent models. However, PartNet
requires extrapolating the connections and the explosion directions of each part, because
it does not provide this information.

1.1.2 Scene graphs

Behind an exploded diagram there exists a graph of connections between its constituent pieces.
The first step in the reconstruction of the object is to learn the relationships between its compo-
nents. Many works focus on finding the spatial and logical relationships between subjects in an
image, mostly working on photographs, and this leads to:

• The need to include some prior information about the world to include "commonsense"
[ZWYC];

• Increasing the importance of the semantic (labels) of the entities in consideration

This is justified by the nature of their images, which need to rely mostly on those to compensate
for the lack of depth information. The importance and efficacy of the objects’ labels are shown
in the benchmarks by [YRD], as the language-only model they use is not too far from the
accuracy of more complex ones. Many different solutions for the scene graph reconstruction
problem have been proposed, as shown in [CRX+], however, we will try to find a solution that
best fits our diagrams, which ideally will need to rely more on the spatial information rather
than the classification of its components.

1.2 Exploded view diagrams

An exploded-view diagram is a single 2D representation of an object that allows the understand-
ing of its composition in terms of its components and their connections. The goal is to provide
an understanding of the underlying structure of the subject by moving apart the components and
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1.2 Exploded view diagrams

thus providing a more clear view of its design.

The relative positions of the pieces must be kept when they are moved. This may be achieved
in different ways, but the key is the readability for a human, who must be capable of virtually
visualizing the object in 3D and rebuilding it. An example is provided in Figure 1.1.

Figure 1.1: An example of an exploded diagram of a chair showing the connections of the pieces with
dotted lines. Even if the components are distanced we can infer how to reconstruct the object

1.2.1 Explosion conventions

The key of a good diagram is to respect the rules meant to keep it simple and clear. From
[LACS]:

• The arrangement of parts helps the viewer understand the blocking constraints (which
pieces can not be moved before others) and the relative positions of parts;

• The offsets between parts are chosen such that all the parts of interest are visible;

• Exploded views often minimize the distance of the final position with respect to the parts’
original location to make it easier for the viewer to mentally reconstruct the model;

• In most exploded views, parts are exploded only along the canonical axes: restricting the
number of explosion directions makes it easier for the viewer to interpret how each part
in the exploded view has moved from its original position;

• Parts can be grouped into sub-assemblies. To emphasize how the parts are grouped illus-
trators often separate higher-level sub-assemblies from each other before exploding them
independently.

Other rules can be stated about other details such as cutaways and labels, which however are
out of the scope of interest and are variable depending on the application field.

3



1 Background

1.2.2 Scene graphs

In a more abstract and implementation-oriented way, an exploded diagram can be represented
via a graph [DC, LAS]. In many cases, the graph can be seen as a tree, by not considering the
single objects but grouping them in sub-assemblies (see Figure 1.2). Depending on the object,
we can observe that the graph can have very different shapes, which can for example represent a
stack of components (e.g., the stages of a rocket are one on top of the other) or enclosing shells
around the origin (e.g., a matryoshka).

Figure 1.2: On the left, the colours indicate a possible logical grouping of the pieces. On the right,
each group is represented as a node with the corresponding colour and we can see that the
connections create a tree.

A generic scene graph G is characterized mainly by:

• A set S of elementary components that can be found on it

• A set of nodes N

• An association AN,S between one element of S and one node:

AN,S ⊆ N × S

∀an,s ∈ AN,S, ∃n ∈ N, s ∈ S s.t. an,s = {n, s} ∈ AN,S

• A set of node labels LN

• An association AN,LN
between one node and one label:

AN,LN
⊆ N × LN

∀al,n ∈ ALN ,S, ∃n ∈ N, l ∈ LN s.t. an,l = {n, l}

• A set of binary relations (arcs) between nodes:

RN,N ⊆ N ×N

∀rn,m ∈ RN,N , ∃n,m ∈ N ∧ n ̸= m s.t. rn,m = {n,m}

4



1.2 Exploded view diagrams

• A set of arc labels LR

• An association ARN,N ,LR
between an arc and a label:

ARN,N ,LR
⊆ RN,N × LR

∀rr,l ∈ ARN,N ,LR
, ∃n ∈ RN,N , l ∈ LR s.t. ar,l = {r, l}

While the object detection phase (producing labels for the image as bounding boxes or seg-
mentation masks) is the first fundamental step to understanding the scene, it is not enough to
represent the object, as it is missing the spatial and logical relationships between the parts. To
represent the hierarchy of the pieces, we can use a scene graph in the same way that many other
works did [HRC+, XZCFF, ZZJ+], representing each object component’s features with a node
and the pairwise relationships between components with edges and their associated labels.

Adaptation of scene graphs to explosion graphs

With respect to the existing works, we need to introduce some small modifications that are
needed to understand where the components are exploded from.

A label Lr on the arc Rn,m, represented by the association ARn,m,Lr , will represent the dis-
placement of node m with respect to node n. For example, in a bottle the cap is screwed in
the liquid-containing body, therefore we could say m = cap, n = body and to show this rela-
tionship we could lift the cap Rn,m = upwards of 5 centimeters. We must notice that this
relationship is not the only one that we can see, as we could reverse it (m = body, n = cap,
Rn,m = downwards of 5 centimeters), however, the former arc-label assignment is more
natural to see, as we identify the body as the main component of the bottle. For this reason, we
can simplify our graph by making it a directed graph and keep at most one arc connecting two
nodes.

Always considering this type of labelling, we must notice that we can not have cycles in the
graph: if we had those, we could get stuck in a loop in which the parts keep distancing from the
others, or get physically impossible situations.

In conclusion, we are not going to use a generic graph, but a directed acyclic one. Because
multiple interpretations of an object are possible (e.g., cap screwed to bottle or vice versa), we
can have multiple valid graphs. Nonetheless, some are more likely than others, so we are going
to look for the most meaningful one.

Groups-focused graphs

Another possible way to visualize an object is to highlight its possible component groupings
and create a hierarchy of those. This is the interpretation of the objects that is provided by the
PartNet dataset (that we will discuss more in detail later), and an example is shown in Figure
1.4. We can define a tree with two types of nodes: the leaves of the tree will be associated with
physical components, while the internal ones are abstract and represent groups of components.

This type of structure is useful to hold the information about the semantic meaning of the
object’s component (each vertical or horizontal bar is a part of the legs), but is in general not
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1 Background

(a) An example of a good graph to
represent a bottle. There is only
one connection for each node

(b) A bad example of graph. In this case, it is geomet-
rically impossible to represent this object respecting
all the constraints on the labels.

Figure 1.3: Examples from Section 1.2.2.

Figure 1.4: The visualization of a tree based on the grouping of its components. The internal nodes
represent a group of objects rather than a component, which can be found only on the leaves.

ideal to store the physical connections; this can be explained by Figure 1.4, where the deepest
leaves do not explain that the horizontal components are attached to the vertical ones and it is
not explicit that the legs are attached to the seat, but not to the back.
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1.3 Deep neural networks fundamentals

1.3 Deep neural networks fundamentals

In the chapter about the applications of this work, we are going to talk about how we can solve
some common problems relative to the dataset we are going to build. To do this, we will talk
about solutions which use neural networks and, for this reason, we are now going to explain
their fundamentals.

1.3.1 Supervised learning in a nutshell

In a supervised learning problem, we are given a series of labelled inputs (which means pairs
(x, y) of an input object and its corresponding desired output) and the task to solve is to infer
the function f(·) (model) that is able to map the inputs x ∈ X to their corresponding output
y ∈ Y.

We are now going to describe the general technique in a simplified way, to then deepen the
explanations of the topics of our interest.

Training set

Learning the function requires the collection of a training set, which is an ensemble of known
(x, y) pairs, where all the x ∈ X ⊆ X and y ∈ Y ⊆ Y belong to a homogeneous domain
respectively (e.g., X represents images and Y a boolean value). How our training set is built is
going to be explained in the dataset chapter.

The training set is going to guide us towards the model we seek and, for this reason, it should
be rich enough to represent a significant portion of all data in X, because our goal is not only
to be able to reproduce the data in X (of which we have been explicitly told the solution), but
especially predict the output for x ∈ X − X . For example, if we wish to learn a periodic
function, it won’t be enough to provide samples from only one period to understand that the
function is indeed periodic.

Our model may be more or less complex, and with the increase of complexity we will also
need to increase the number of samples required to learn it. A trivial example is when we learn
polynomial functions: if we know that our Y is the set of linear functions, it will be enough to
know two samples to learn the parameters of the model; on the contrary, if Y is a polynomial of
5th grade, having 3 samples is not enough.

Model structure

Every supervised task is going to have a different resolution strategy. There exists no unique
technique to solve the problem, so we need to use the knowledge we have about it to choose the
learning algorithm and can not feed our data to a magic black box which works every time. In
general, the model will be a function characterized by a fixed structure and some parameters to
be tuned according to the data. In machine learning there are many known resolution techniques,
but we will focus on deep neural networks because they fit best our needs.
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Learning

Once we have a training set and a model, our goal is to optimize the parameters such that we
obtain a function that is able to predict the best the desired output from a given input in X.
When our model is a neural network, tuning such parameters proceeds in an iterative way:

1. An input is fed to the model

2. The result is calculated and compared to the expected output via a loss function, that
produces an estimate of the quality of the response

3. A feedback system evaluates the loss and adjusts the parameters of the model, according
to a learning rule

Overfitting

One of the main problems that can occur when learning (also said training in neural networks) is
that our model tends to perform very well on the training samples in X , but generalizes poorly
to the remaining X−X . This is called overfitting, and it can be fought by introducing another
independent data set, called validation set. When using the validation set, we can calculate the
loss on its samples to have a better estimate of the behaviour of the model on new inputs and
adjust the parameters taking this into account rather than checking only the training loss.

1.3.2 Artificial neural networks

Neurons and layers

An artificial neural network (NN or ANN) is a model formed by interconnected neurons. A
neuron is an entity which processes some input signals (passed by other neurons) with a (non-
linear) activation function and produces an output which is passed to other neurons. The differ-
ent inputs xi are combined with a weighted sum

∑
i aixi, where the weights ai need to be tuned

according to the problem, and then fed to the activation function f(·) of a neuron, which itself
depends on a bias parameter b.

Typically, the network is structured in an ordered manner by collecting the neurons in layers. A
simple network is the feed-forward NN, which is composed of an input layer l0, which gets the
inputs directly from the data, succeeded by a set of internal layers li, i ∈ 1..n− 1 and an output
layer ln. In this architecture, each layer lj gets the inputs from a set of neurons belonging to
lj−1, and thus we can see this as a direct acyclic graph of neurons. In general, however, NNs
can be more complex and have multiple input and output layers and non-contiguous layers may
communicate with any other one.

The operation of one layer can be represented in the compact matrix form f(WX + b), where

• f(·) is the activation function of the layer li

• X is the vector containing all the inputs

8



1.3 Deep neural networks fundamentals

• W is a matrix containing the nli × nli−1
weights, where nlj is the number of neurons on

the j-th layer

• b is the vector of biases of the neurons of layer li

Layers can be of different types, which are defined by the activation function of its neurons and
how many connections the neuron has with others.

Fully connected layers

A fully connected layer is of the most general type, as it exploits potentially all the inputs from
all the connected neurons. While this allows collecting most of the information, it comes at
a cost because, remembering that the number of weights relative to a layer is nli × nli−1

+ b,
the number of weights would increase too much to be handled, as the computation time would
become unbearable. For this reason, other layers are often employed to reduce the size of its
input vector to a value that can be handled.

2D convolution layer

A classic input example of a network is an image, which (considering it as a 1 channel image
for simplicity) we can see as a bidimensional N ×M matrix of pixel intensities. Handling the
image directly with a fully connected layer is not a good idea for two reasons: the number of
parameters and the loss of locality. Indeed, one pixel alone does not carry enough information
but necessitates the context of the pixels on its surroundings. To combine the information of a
pixel with its neighbourhood we can apply the convolution operation.
2D convolution employs a filter that consists of a k × k matrix W which is applied to one pixel
p[i, j] (the pixel in coordinates (i, j)) and its surroundings and is calculated as:

∗
∑

m=1..k

∑
n=1..k

W [m,n]p[i−m, j − n] (1.1)

Applying the same convolution filter to all the pixel locations does not only mix the local pixel
data but also greatly reduces the number of parameters, as the weights relative to the filter are
negligible, as its size is typically k = 3 or k = 5.

Other layers

After using a convolution layer, the dimension of its output remains (approximately) the same,
but in many cases we wish to compact its representation and keep only the most useful infor-
mation. Similarly to the convolution layer, the max-pooling layer uses a filter which in this case
is used to calculate the maximum of the region beneath it and is run across the input matrix.

More practical tools rather than logical ones, the flatten layer reduces all the dimensions of
a tensor into one, thus unrolling it into a vector and the concatenation layer concatenates two
tensors along one axis. The latter can be useful when our networks have merging points between
two branches.
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1.3.3 Back-propagation

To train our network (tune its weights/parameters) the backpropagation technique will be used
to provide feedback of the quality of the predictions and update the weights to improve future
predictions. It consists of calculating the gradient of the loss function with respect to the weights
one layer at a time, with the goal of minimizing the loss function of the future predictions. The
backpropagation algorithm is repeated multiple times to adjust the NN’s weights progressively,
and the calculation of the gradient is not computed analytically but rather with approximation
techniques.
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Dataset Generation

2.1 Data generation

While it is possible to find plenty of diagrams, it is hard to find these together with the infor-
mation about their explicit underlying structure and their corresponding 3D models. However,
because we are going to need to extract (most of) this information using supervised learning
techniques, these are fundamental data to have. One solution could be to take the existing di-
agrams and manually annotate them, but this would require a lot of time and effort. The most
viable solution is to produce a synthetic dataset starting from the knowledge of a set of objects’
3D structures.

2.1.1 Limitations induced by a synthetic dataset

Real diagrams can vary a lot in their details (e.g., dashed lines, labels) which can be very useful
(if not fundamental) for understanding. However, we chose not going to represent these, as they
do not respect strict rules. This does not mean that the work based on this dataset will not be
applicable to more complex existing images, indeed it is the most general as possible to cover
the broad spectrum of possibilities.
It is likely that the algorithms built for such artificially generated images won’t immediately
work if given in input real images with annotations and, more in general, noise. To adapt the
work to real-world images (in which annotations are useful but not fundamental) we can per-
form a clean-up step to remove information that we are not used to working with. Nevertheless,
for very complex diagrams the annotations are fundamental and ignoring them leads to wrong
interpretations. Learning these is not feasible without including the required annotations to the
dataset images, and therefore they require a more specific dataset. Such complex diagrams are
however out of the scope of this work, as they are application-specific.



2 Dataset Generation

2.1.2 Restrictive hypothesis

For simplicity, we are also going to add some restrictions to the generated images. We will see
that for our applications these are not going to be too strict, but will help a lot with the decision
of the explosion directions and reduce significantly the computation time.

We are going to assume that the explosions occur always along one of three orthogonal canon-
ical axes, so a component can never be exploded with respect to the piece it is attached to in
a direction that is not canonical. To choose such axes, we are going to select those which are
reciprocally orthogonal and parallel to most of the straight directions. Because in our case we
will notice that the axes that respect these conditions are the x, y, z axes in the model space, we
don’t need to do this computation. Nonetheless, we are going to briefly present a technique that
could be used when we are not given hints about the axes.

Computation of the axes

Given a 3D model, we need to fix it into a Cartesian coordinate system, which we will use as our
explosion directions. Not every 3 orthogonal vectors constitute a good base for the explosion
axes, as we wish to find a reference system in which the pieces can be moved in meaningful
directions. Statistically, in mechanical objects we can identify them by looking at the direction
of the edges of their components, which are usually aligned parallel to the normals of the planes
of connection between pieces.

The first step is to detect the straight edges of the object; in case we don’t have enough, we
may try to detect symmetry axes to compensate. We can then detect 2 or 3 principal orthogonal
directions of the lines by looking at the histogram of the distribution of such directions’ angles
and taking the 2 or 3 highest peaks distant 90 degrees. Ideally, we get three directions, though
two suffice, as the third can be found as the cross product of the first two. An idea of part of this
procedure is shown in Figure 2.1, where the same concept is applied to a 2D image.

2.1.3 Scene generation from scratch

To create a meaningful image, we need to create or extract the relationships between the con-
stituents of an object, in other words, create its scene graph. In the most trivial approach, we
are going to build a randomized tree and place random components on it.

Degrees of randomization

The degrees of randomization of the tree and the objects chosen can influence a lot the learning
process, and we need to find the most desirable fidelity-generalization trade-off. While leaving
complete freedom to the graph structure would ideally help to approach the most variety of
scene graphs, using structures that resemble real-life objects can be more helpful in most cases
and allow to learn faster the object’s structure.

The main issue, however, is not in the graph creation (it is fairly easy to identify the most
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(a) Straight lines detected on a pc exploded
diagram

(b) Distribution of the angles of the lines

Figure 2.1: An example of axes directions detected with the Hough transform on a 2D image. On the
histogram, the red crosses identify the three main peaks.

common shapes it can assume, such as stacks and stars), but rather in the choice and placement
of the components on the graph. Indeed, selecting compatible objects (such as screws and
nuts, or gears and wheels) from a set with a uniform probability distribution allows the greatest
generalization, but setting constraints on couples of objects that need to be put close improves
the semantic meaning. While datasets of single mechanical components are available, these
are hard to exploit because they would require the integration of prior knowledge by hand (for
example, defining which components need to interlock and in which direction, or which have
no meaningful relation).

We can see in Figure 2.2 two examples that show the trade-off between simplicity and general-
ization, and why this approach is not good.

Conclusions

While ideally a dataset of images built in this way would be the most general possible, the
semantic loss is too high (unless a relevant human contribution is introduced), and would lead
to the necessity of introducing important constraints on the process of learning the underlying
structure.

In 2.2 we are therefore going to build our images by exploiting a more direct source of prior
knowledge, reducing the randomization factor but increasing the semantic meaning.
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(a) Placing random objects along an L-
shaped tree and rotating the compo-
nents allows a lot of generalization,
but there is no meaning and therefore
even the tree shape is hard to under-
stand

(b) Reducing the number of objects involved and
their variability (transformations) allows to see
the underlying structure clearly but does not re-
semble a plausible object

Figure 2.2: Two examples of why placing random objects fails in generating good diagrams

2.2 PartNet dataset explosion

The most common scene graph comprehension problems are based on natural images (see, for
example, [CRX+, ZZJ+]), so their dataset is based on annotated photographs. More close to
our work is [LAS], which uses pictures of mechanical objects and explodes them in 2D. This
is closer to our needs, because of the subjects of the pictures, however, we wish to work on 3D
objects and not on coloured images.
PartNet [YLZ+] dataset provides data in a similar fashion with respect to our needs, offering the
segmentation of tridimensional models’ parts for several common artificial objects and creating
a logical tree of connections. In the next section, we are going to present it and adapt it to our
needs.

2.2.1 PartNet

PartNet dataset represents a collection of 3D models designed for the segmentation of everyday
objects. It is designed to be used with different levels of granularity thanks to its underlying tree
structure that relates the object’s components.

For each object, we are given the set of meshes (models) that compose it and their relationships,
grouping semantically similar parts in a hierarchical fashion and creating a tree of connections
between groups of objects (Figure 1.4). The tree is built such that:

1. A leaf must correspond to an individual component. It is labelled according to the class
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Figure 2.3: An example of the different classifications of the parts of some objects in PartNet, from
coarser to more refined. Image from [YLZ+]

of objects it represents;

2. Grouping siblings provides a less fine segmentation for those, by treating them as on the
same class. As a consequence,

3. an internal node represents the collection of all its children, plus possibly new individual
components.

This structure allows to segment with different levels of granularity, going from a single class
with all the parts in the root, to each individual component on the leaves.

2.2.2 Scene graph generation techniques and observations

As discussed previously, the segmentation of the model is necessary but not sufficient for our
needs. The structure that we are given provides hints for how to build the scene graph but is
not the scene graph itself, indeed it is represented by a structure to the one presented in Section
1.2.2. The main difference between these two forms of representation lies in the internal nodes:
PartNet hierarchy tree can tell us that the legs and the seat of a chair build its bottom part, but
cannot explicitly say that the legs are directly connected to the seat.

Therefore, we need to build the relationships rn,m ∈ RN,N between pairs of parts s ∈ S which
are physically and semantically directly connected. This does not mean to represent all the
possible contact points between objects, but to establish a more meaningful relationship of
parenthood between a sustaining and a sustained node, which is more external to the object and
requires its parent to be connected to the main body. An example of this hierarchy can be seen
in a bike, where a wheel is connected to the main body through the fork, so in the graph we will
encounter the main body first (closest to the root), the fork second and the wheel at last.
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No-prior scene graph reconstruction method

One approach that could be used is similar to [LACS] or [LAS], who approached the same
problem of exploding objects by creating a hierarchical explosion graph (Figure 2.4). This is
a progressive unlocking approach based on iteratively removing the pieces that are free to be
moved towards the outside (not blocked by others) and creating a decomposition that starts from
the outer shell and reaches the core. The reciprocal unlocking dependencies naturally create a
graph based on the relations between close objects and suggests also how to unlock and make
the parts visible.

Figure 2.4: The interlocking dependencies discussed by [LACS]. These create naturally an explosion
graph

The main advantage of this technique is that it requires no knowledge of the meaning of the
object because it is only based on the position and the shape of its components, which makes it
more versatile. Nonetheless, this can also be a disadvantage, because it leads to not considering
any prior information about the type of object represented.

Another big issue with this method is that it is not enough to explode many objects in PartNet.
This method is extremely useful in the case of objects interlocking with others (e.g., a screw
and a nut), however, most objects in PartNet have parts that do not intersect. The non-interlock
is a property generally shared by components that lay on each other (two flat faces touching),
but in PartNet it is caused also by the fact that some models have originally been created as a
unique piece (a mug is the fusion of the cup and the handle, which are not separate entities) and
have been later cut in pieces with a plane, leaving two hollow meshes (the mug and the handle)
that do not intersect (Figure 2.5). The lack of intersections between objects is problematic not
only because the connections become less obvious, but also because we don’t have a more or
less obvious explosion direction imposed by the direction in which we would extract an object
which is stuck into another.
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Figure 2.5: A model from PartNet. It is visible how in this case the pieces do not intersect as they would
in real life, but have been cut from a single mesh

Scene graph reconstruction by using the PartNet graph knowledge

Having to deal with this dataset in particular, we can rely on the knowledge of its underlying
graph for classification. This does not provide necessarily obvious physical dependencies but
integrates semantic meaning to the models. Combining it with the knowledge of the possible
classes of objects in the dataset, we can express quite solid knowledge about the relationships
between the components. For instance, in the PartNet tree, we will find all the legs of a chair
in the same leaf with the same label and the combination of the seat and the legs will be found
as its ancestor, as they compose the bottom part of the chair. While this kind of information is
not bound to necessarily give information about the connections between objects (for example,
one could label the break of a bike as an item attached to the handle but without telling us
that it is connected to the wheel), it gives us an important hint on the semantic meaning of the
components, telling us that even if the wheels of a car are far apart, they are all identical.

The most straightforward conclusions we can get from the PartNet tree come from the leaves.
Parts in the same node that share the same label express that not only that they represent like
objects, but can also hint at symmetries that we would like to keep during the explosion phase
(for example, exploding all the legs of a chair along the vertical axis instead of using a different
one for each). Less obviously, and with less certainty, we can observe that objects with the same
class are often close by in space, hence we can consider the depth of two nodes and the depth
of their lowest common ancestor to get an intuition on how far they may be.

2.2.3 Hybrid solution

To obtain the best results, we need to combine the strategies shown before. We are going to list
heuristics that help us reconstruct the object by keeping semantic and positional information,
and applying them while prioritizing the most informative. The construction of the tree requires
observations directly from the models but also indirectly from the PartNet tree, and requires
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comparisons between all the 3D components/PartNet nodes. From the pairwise relationships
between objects in direct connection, we can iteratively build the tree.

Proximity detection and validation

Having two objects touching is for sure very meaningful, but it is not enough to state that they
are indeed connected. For instance, the break touches the wheel of the bike, but it is not screwed
into it. Another example is shown in Figure 2.6.

Figure 2.6: The two parts of the vise separated by the plane do touch each other, but are not connected

First of all, we are going to build a bidirectional forest graph by detecting which objects are in
contact. In this graph, each object’s component is represented by a node and the arcs connect
parts that touch each other. Because we can’t exclude that some pieces do not touch (it could
happen for example in presence of repulsing magnets, as an example), we could find ourselves
with an unconnected graph. To solve this, we can identify the N isolated trees Ti, i ∈ {1..N}
and select the main tree Tk such that it has the highest number of nodes. We are then going
to connect each tree Tj , j ̸= k with Tk by connecting the closest nodes nk ∈ Tk to nj ∈ Tj ,
obtaining a single tree. Notice that the choice of connecting everything to the biggest tree is
not necessarily the best one, but simple enough and it fits well on the dataset we are operating
on. In general, we may want to consider each tree as a group and link each group to the other
closest one.

At this point, we need to integrate also the semantic information from the PartNet tree keeping
only the most meaningful connections. To do this, we need to first decorate the graph’s arcs
with weights that correspond to the semantic distance di,j of the nodes ni, nj; each node has
a corresponding one in the PartNet tree, so we can define the semantic distance between two
nodes as their distance in the PartNet tree (see Figure 2.7). Now, we can find the minimum
spanning tree to trim away the redundant connections and keep only the direct parent-child
relationships that should be associated with real attachment points.

To help us keep the information about the parts with the same class in the same PartNet node,
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in this stage we can treat them as a single object. We are then keeping multiple parts on a node,
and assign it a cardinality which corresponds to the number of objects contained. For the sake
of simplicity, we are going to refer to multiple meshes on a node as a single component.

Up to now we have a bidirectional tree and haven’t identified a root. The choice of selecting a
node as root can be based on:

• The size of the components

• The distance from the most external components

• The cardinality: a big single object is more likely to be the central piece with respect to a
node with many small parts

Figure 2.7: The illustration of the logic behind the construction of the graph of connections.
- a shows some pliers and their pieces
- b represents a semantically meaningful graph which highlights the symmetries
- c shows the connections and the distances of the touching components on the semantic
tree. The connection between the metallic pliers (green and blue) will be removed, as it
has a greater distance, thus maintaining the connection of the pliers with the screw but not
between themselves directly

2.2.4 Graph explosion

Now that we know to whom each piece is attached, we need to understand which is the smartest
direction to move it away from the parent. We will first discuss how to extract one component
from the other in case of interlocks, and then define a new procedure for the other cases.

Interlocks detection

When two components are one inside the other, we get the clearest connections. We can call the
enclosing object parent and the enclosed one its children. To detect this situation and understand
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how to free the lock, we are going to check the collisions against the parent object’s mesh and
its convex hull. Because of the nature of PartNet, we are going to analyse a simplified case with
respect to Li et al., excluding the case in which freeing one object implies breaking another.

Figure 2.8: On the left, the initial situation and the parts after unlocking them. On the top-right, we see
that the star is blocked because it intersects the convex hull of the parent. On the centre-
right, the star can’t move to the right, because it would collide with the other component.
On the bottom-right, the star is unlocked because it moved outside the convex hull without
colliding.

When the child collides with the convex hull of the parent, we know that in at least one direction
it is blocked by it. Furthermore, we know that the meshes of the two can not intersect, because
this would lead to the fusion of the two, which we assume to be physically impossible (we deal
with solid objects). We can therefore try to move the children apart from the parent with the
goal of reaching a position in which the child does not collide anymore with the parent’s convex
hull and which requires the child to never intersect the parent to get from its original position to
the unlocked one. This is shown in Figure 2.8

Versus of explosion

Independently on the direction of the explosion, according to the rules of explosion, we must
never let the children cross their parents during the explosion (we are not considering only the
endpoint of the displacement, but also all the intermediate points between the start and end
positions). We can make sure of this by checking that the pieces position is flipped during the
explosion.
When the two objects’ bounding boxes do not intersect, it suffices to check the relative posi-
tioning of their centroids (otherwise, we can treat this similarly to the interlocked case). We are
going to take the vector d from the centroid of the parent to the centroid of the child and project
it into the explosion axes x, y, z, obtaining dx, dy, dz and their corresponding versors vx, vy, vz.
If the final position of the pieces is such that the new centroid-to-centroid vector d′ has the same
projections’ versors, we have the guarantee that the rule is respected.
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Direction of explosion

While for the versus we had constraints dictated by the rules of explosion, the direction is
trickier, as it must be understood case by case. This is a fundamental step, as exploding in the
wrong direction may confuse the observer. We are going to examine some common cases to
extrapolate the rules to get the best axes.

One case consists of one piece lying on top of another so that they share a contact surface (see
Figure 2.9.b). From the observation of the dataset, we can see that it is more likely that the child
piece needs to be lifted orthogonally to the shared face (a pillow on the seat of a chair, the top
of a table on the legs...). However, we must also take into consideration that the normal n to the
surface of contact may be not aligned to the explosion axes; in this case, we are going to take
the principal component of the projection of the normal on the axes.
Another possible heuristic does not rely on the contact of the parts, but checks only the relative
position of the objects (see Figure 2.9.c). In this case we are going to rely again on the centroid-
to-centroid vector d and its projections dx, dy, dz. We are going to define a threshold 0 <

τ ≤ 1 and if ∃dj s.t. dj
dk+dl

> τ where j, k, l represent one axis each, then we define the two
components as aligned along the axis j, which is going to be the axis of explosion.

Figure 2.9: Some possible cases for the explosion of the small parallelepiped (child) with respect to the
big one (parent). The top row represents the object before the explosion, and the bottom row
the object above after the explosion.
- a represents the case in which the child is interlocked with the parent
- b represents the case in which parent and child share a face
- c represents the most generic case, in which we consider only the position of the centroids

Modulus of explosion

Regarding the distance of the pieces, there is no strict rule, and the only constraint we need to
take into account is that we must avoid collisions and not cross the paths of other blocks. An
example is on Figure 2.10. In this work, we have chosen to use a distance that is proportional
to the size of the objects involved.
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Figure 2.10: On the left, the situation before the explosion, on the right A explodes first, B second. In
green is represented a valid position for B, in red alternative not-valid positions for it

2.2.5 Rendering

Once we have created and exploded our object in 3D, we must project it on an image.

Camera settings

While our eyes are most used to viewing in perspective, in the context of mechanical objects it
is more helpful to use an orthographic view, as it allows us to notice more easily the regularities
and symmetries of human artefacts and to understand their real reciprocal proportions.

Because the goal of an exploded-view diagram is to show the structure of the object, we need
to let most of the components visible, or at least comprehensible thanks to symmetries. One
first trivial constraint is then to fit all the objects in the viewing area of the camera, and then
maximize the visibility of the components. In general, we would be choosing an area where
to focus our attention based on its relevance, and position the camera such that its visibility is
maximized. When trying to automate this, we could base our choice on some heuristics (e.g.,
the most central piece, the biggest) or learn it. However, learning the salient parts requires
the dataset to be annotated with this information; nonetheless, we could simplify this labelling
process by grouping the objects by categories and noticing, for example, that the seat is more
likely to be the focus of our attention rather than one leg, and applying these observations
uniformly for each category. Once we have an area to focus on, we can position it in the centre
of the image and maximize its visibility. We can observe that, because our objects are aligned
to the axes of explosion, it is unlikely that the camera will be aligned to those as well, as angling
it allows a better view.

Edges

Up to now, we have been ignoring the fact that our final image should resemble a drawn schema.
In the 3D meshes we are given we don’t have the information about the edges which will be
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visible in the final image and we are also totally missing some contours: for example, theoret-
ically, a sphere has no edges, however, it will appear as a circle. Another factor we need to
take into consideration is the absence of shading, which needs to be compensated to hint curve
surfaces (Figure 2.11, Figure 2.12).

Figure 2.11: It is necessary to hint at the shades even if they do not represent real edges to distinguish a
flat surface from a curved one

Figure 2.12: The figure shows three types of lines that need to be represented:
- Blue (external lines): contours. They may coincide with edges, or be fictitious lines that
appear when projecting the object on a plane
- Red (internal lines in correspondence of smoothed edges): curves
- Green (bottleneck rim): real edges

We are then going to output two images: the first one containing the segmentation map of
the components and the second one with the information about the face normals to consider
respectively the external contours and the edges and curves of the components (Figure 2.13).
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(a) The absolute value of the normals of the
faces. Each component vx, vy, vz of the
vectors is represented respectively by the
red, green and blue colour components

(b) A simplified
segmentation
map for the
components of
the chair

Figure 2.13: The two renders with the normals and segmentation information, preliminary step to the
final image

We then merge the information provided by those images to generate the diagram in its final
drawing-like shape. To generate the edges and hint at the curvatures, we are going to analyze
the colour gradient of the normal map: the idea is to define a threshold on the colour gradient,
above which we draw a line; in practice, we are going to apply a Canny edge detector. The
contours of the image are straightforward to obtain as they are the contours of each class in the
segmentation map, and the final image is obtained as the superposition of the two.

Figure 2.14: The final exploded-view diagram of the chair in Figure 2.13
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2.3 Implementation

The following section will show the practical implementation of the aforementioned rules and
techniques, describing how they are applied to the dataset and explaining the challenges en-
countered and how to overcome them.

2.3.1 Symmetries and similarities

In this first step, we are going to use the information about the single nodes of the PartNet tree
to group components according to their similarities.

Each PartNet tree’s node can represent a group of components, single parts or a mix of both.
In this step we focus on the spare components and group them according to their class; we will
consider each group as a new individual component. There are multiple reasons to do so:

• These items are similar in nature, as they belong to the same class;

• Because of the (often) symmetric nature of the objects treated, it is likely that these parts
are symmetric along one axes or plane;

• From a practical point of view, we need to keep together some parts that are semantically
separate but represent a single component.

Creating these groups will ease our work later, as it allows us to maintain the symmetries and
keep together parts that must stay together.

This procedure eases the future steps and can be done in linear time with respect to the num-
ber of components. However, it is not perfect: these heuristics are indirect properties of the
tree based on observation and are not necessarily correct in every case. A more accurate strat-
egy would consist in detecting symmetries and similarities directly from the observation of the
object, however, this requires increasing the complexity, as symmetries require comparing the
meshes of each couple of components. Because the accuracy of the observations on PartNet
tree is quite high and because of the complexity of the alternative approach, we chose not to
proceed with this more accurate technique.

At the end of this process, we have a set of disconnected nodes that represent one or more
entities.

2.3.2 Connection tree

The most obvious hints on how to connect the nodes are given by the points of contact, but, as
discussed in Section 2.2.3, these are not enough. As already explained, we are first going to
connect the meshes touching each other, and later cut the branches which correspond to points
without direct connection.

After the first part of the procedure, we will find ourselves with a (possibly) cyclic graph. While
this may represent a generic scene graph, we already observed that this can not be used for our
objective, otherwise it would create impossible situations when exploding the object. We said
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how in general we can use a DAG (directed acyclic graph), but looking at our objects we can
state that we can reduce it further to a tree (in our case the minimum spanning one). We must
remember that the nodes we are considering at this point are, in general, ensembles of meshes,
so our parenthood relationships represent the point of contact of groups, and not the single
components, meaning that at least one mesh of a child is connected to at least one mesh of the
parent, as we will see later.

Root

Our tree, as an abstract structure, does not explicit a root, as the graph it is generated from is
bidirectional. Nonetheless, we need to define one and this could change the final result because
in the object explosion phase we will use the parent-child relation to define the explosion vectors
and the explosion type (that we explain in the next section). We can see this in Figure 2.15.

Figure 2.15: The importance of defining the correct orientation on the tree. On the left, the original
object is divided into two nodes (1,2). In case a, the circle is the parent, hence the objects
of class 1 are exploded radially. In case b, the objects of class 1 are the parent, the circle is
exploded by a translation and 1s don’t move

The root of the graph will be the starting point of the explosion, and it will not move. It may
represent the centre of the object (the fulcrum screw on a pair of scissors), the most important
part (the bike frame of a bike), or the biggest component.
We can observe that in all the above cases the root is characterized by a single piece, so this is
a desirable characteristic in our root node.
It is less likely that a piece which has only one connection with the rest will be the centre
rather than one which is connected to many, so we are going to prefer the latter. Extending
this reasoning, we can start from the leaves of the tree (which are known, as they have only
one connection) and follow them towards the internal ones to find the node with the greatest
distance from the leaves, as shown in Figure 2.16.

These heuristics are not necessarily the best ones. In alternative, we could give priority to the
biggest pieces, or choose the root that balances the tree.
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Figure 2.16: The visualization of the minimum distance of a node from the leaves. The gradient goes
from the most external nodes to the root

2.3.3 Explosion criteria - linear and central

In Section 2.2.4 we have presented different criteria for exploding one node with respect to the
parent. However, we were not considering nodes that are composed of multiple parts. Because
of this choice, we introduce another type of explosion.

When we are dealing with only a pair parent-child of objects, as we discussed, we are going
to use a displacement vector aligned to one axis of explosion, which is decided based on the
geometries of the parts. In the scene graph that we are using in this step, however, our nodes
represent multiple objects, that we treat as one component that is their union. If we apply the
same techniques as before, we can find ourselves in situations like the one represented in Figure
2.17, where some parts are correctly exploded but others in the same node have indirectly been
given less priority and are in the wrong final position. This occurs when the children are placed
around another component (note that not necessarily there are interlocks between single parts),
and it is generally solved by introducing a radial explosion.

We are going to use two types of explosion: linear and central (radial). By linear explosion we
mean a translation of all the pieces on one node by the same vector (which is what we discussed
up to now), while a central one implies that the parts in a node are exploded differently but
relative to a common centre. In the traditional way of representing a radial explosion, the
explosion vector has the direction and versus of the vector connecting the two parts that we
are considering, however, to stick to the axes of explosion that we have defined we decided to
take the principal component of the decomposition of such vector on the axes. This choice has
been made because linear and central types of explosion are clearly understandable when used
separately, but mixing these techniques may create confusion if we are not inserting lines to
indicate the connections.
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Figure 2.17: On the left, the model before the explosion. On the centre, the armrests have been exploded
with the same explosion vector and while one armrest is in the right position, the other is
not and is also colliding with the other components. On the right, each armrest has been
exploded around a common centre.

2.3.4 Separation of groups

Up to now, we have been working with nodes representing groups of objects, but what we wish
to obtain is a graph in which each individual part is connected to at least one other. To do this,
we are going to start from the tree that we used to learn the explosion directions (let’s call it
explosion tree) and refine the connections (obtaining the real connection graph).

Let us consider the parent node p and its child c in the explosion tree; each is composed of
mp

i , i ∈ {1..n} and mc
i , i ∈ {1..l} parts respectively. To connect them, we are going to

proceed in an iterative fashion.

Graph constraints

Working with a tree, by definition, guarantees working with an acyclic graph and hence guar-
antees that no impossible dependencies like Figure 1.3 occur. However, converting our tree to a
generic graph, we need to make sure that this property holds, but checking that the graph is not
acyclic is not enough, as it can be seen in Figure 2.18.

Figure 2.18: A graph that is not acyclic, but still not acceptable
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In this step, we are going to attach one node at a time, and we need to verify that the graph is
at least acyclic before the new node is inserted. To do this, we can use a label for each node to
store its (temporary) depth (distance from the root). Every time there is the intention to connect
a node c to a node p, we need to check their labels (lc and lp respectively) and whether they
belong to another sub-graph or not. When c is the root of another sub-graph (or a disconnected
node) or lc = lp − 1, it is accepted (and the labels of its sub-graph updated), otherwise rejected
(Figure 2.19). In Appendix .1 is presented the demonstration that this procedure reduces the
possibility of inconsistencies and shows its limitations.

Figure 2.19: In solid green arrows, some valid arcs, in dashed red some arcs that are discarded

Algorithm

We are now going to show the procedure we use to connect each component to the others. The
idea behind the procedure is that, in general, the objects in the child node (mc

i ) will be attached
to some mp

j ; however this is not always the case, as there may be some mc
i connected to some

other mc
k, when the node is not (only) collecting symmetric parts, but representing different

parts of a bigger component. An example from PartNet is provided by Figure 2.20, where the
leg of the chair (our child node c) is composed of multiple parts, but only one mc

i is connected
to a mp

j , and the others are connected with other parts in the same node.
We are going to prefer external connections (mc

i −mp
j ) to the internal ones (mc

i −mc
j), however,

if two internal components touch and are not in contact with any part of the parent node, an
internal connection is established. To avoid loops or disconnected parts, we are going to attach
the nodes in an iterative way and every time we pick a node to be connected and attach it to
another which is already part of the graph (has a parent).

In practice, this is implemented as:

1. Define the set C = {mp
i : i ∈ {1..n}} which will contain a subset of the nodes that are

already attached to the connection graph (the last ones that have been connected);

2. Define the set D = {mc
i : i ∈ {1..l}} of the disconnected nodes to connect to the
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Figure 2.20: In PartNet, the leg of this chair is composed of several pieces. Only one of them is con-
nected to the seat, the rest are connected between themselves

connection graph;

3. Until C and D are both not empty, loop on the following steps:

a) Define the set T = ∅, which will contain the newly connected nodes;

b) For each pair d ∈ D, c ∈ C, if they are in touch, and are compatible with the graph
constraints, set c as parent of d and insert c in T ;

c) Set C = T ;

d) Define D′ = d ∈ C ∧ d /∈ D, the set of all the nodes still disconnected. Then update
D = D′;

Figure 2.21: On the left, a tree where the nodes are made by several components, on the right the tree
has been extended to a graph in which the parts are connected in 1:1 relationships
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2.3.5 Explosion propagation

Up to now, we have discussed the explosion of one node of the explosion tree with respect to
another. We must also notice that each part will have not only an explosion vector relative to the
parent, vp, but also an inherited displacement th, which represents the translation of its parent,
so that its translation is t = vp + th. If we treated only linear explosions, we could calculate
the translations directly on the explosion tree, but, because there may be central explosions, we
must do this on the final graph.

As the last step, we are then going to perform a BFS on the graph and assign the total translation
of each node by inheriting the total translation of its parent.

2.4 Ground truth

Other than producing the images, we must also provide their respective data in order to be able
to feed our dataset to a supervised learning model. A lot could be said about each diagram, but
we will focus on the task of reconstructing the connection graph.
The dataset has been created with a certain structure which may need adaptations according to
its application field, so we are going to discuss what is currently implemented but also what
may be included. For the same reason, the hints on the structure of the data do not precisely
reflect the practical implementation but represent a more readable simplification.

2.4.1 Components identification

In Section 2.2.5 we explained how distinguishing each part from the others is needed to produce
the exploded diagram in its classic drawn-like style. The image we used encodes a label for
each pixel, corresponding to a distinct colour for each part (or to the background) and, for
convenience, it is stored as a colour image in which one colour channel holds the data. We are
going to refer to this as instances image.

Components isolation

When we are going to need some semantic information about the diagram, we first need to iden-
tify and isolate each component. To do this, it is sufficient to store a map with the association
of the information of a node and its correspondent colour on the instances image.
We can use this image also to generate other images, for example by treating it as a mask for
the diagram.

[
{id: 0, color: 1},
{id: 1, color: 4},
...

]
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Segmentation-oriented information

For the segmentation task, typically we are provided with a map containing pixels labelled
according to the class they represent. Since we already have the instances image, we are not
going to create an ad-hoc one, but rather specify the class for each instance and locate it thanks
to the mapping specified above.

If we are not interested in isolating the components precisely, we may prefer to discard the
instances image and keep only the bounding boxes of the object. A rough estimate of those
may be extracted directly from the instances image, although it does not show the overlaps. We
could more rapidly project the bounds of the 3D model and project it in the 2D space using
the same camera matrix used to get the diagram, but it may also be more convenient to render
all the objects separately so that we can use these images to study the edges hidden by other
components.

[
{id: 0,
color: 1,
class: ’leg’,
bounds: [301, 523, 324, 579]},
...

]

2.4.2 Relationships

To understand how the components are connected to form an object, we need to have a ground
truth for the explosion directions and the parent-child relationships.

One approach to represent all the data is to collect all the data in a nested fashion:

{
id: 0,
<properties...>,
children: [

{
id: 3,
<properties...>,
children: [...]

},
{...}

]
}

To ease the access to the data we chose a different approach, which consists in splitting the
information about the individual components and their relationships into two separate chunks.
In the chunk of data relative to the individual pieces we are going to list all the parts and
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their properties, while to show the connections we list the pairs of connected nodes and their
relationship:

{
parent: 3,
children: 6,
explosion_axis: ’x’,
versus: ’negative’,
explosion_distance: 4.5

}

2.4.3 3D reconstruction

To reconstruct the image in 3D we are going to use the information relative to the camera
used, the translation applied to the components and their 3D model. We are also including the
information about the axes of explosion, as they may be useful in the reconstruction.

scene:{
camera_matrix = [[1, 0, 0, -1],

[0, 1, 0, 4],
[0, 0, 1, -5],
[0, 0, 0, 1]],

explosion_axes = [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
}
components: {

1: {
translation: [-4, 0, 0],
model: ’models/leg_5.obj’

},
...

}

According to the strategy adopted, it may be very useful to include also the face normals and
depth with respect to the camera, which can be provided through two additional render images.
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Dataset Results

In this chapter, we are going to discuss the points of strength and the weaknesses of the dataset
generated.

3.1 Connections

To visualize the connections between the components of a diagram, we have drawn some lines
that connect the pieces according to the graph of connections. Some examples are shown in
Figure 3.1, and in most of the cases the results we obtain are coherent with what we could
expect from reality.

Strengths

The strength of the algorithm lies in the preliminary collection of symmetric or alike compo-
nents, which are considered as separate entities only in the end. By creating first a graph where
the nodes are constituted of groups of objects and then expanding it into one which distinguishes
each individual part, we create two different refinement layers which increase the precision in
the solution and the symmetry of both the objects and their connections.
This technique allows also to solve more easily the problems of possible loops, which could
be potentially very expensive to solve in highly connected objects (depending on the technique
used). A simplified example is provided by the chair of Figure 3.1.a, where from the top we see
a horizontal bar, several vertical bars, a seat and the legs. In this case, the vertical bars vbi are
grouped together, which assigns them all the horizontal bar hb as a common parent. Yet, if they
weren’t, there could be some loops that we would need to solve: defining the symbol p −→ c as
p is parent of c, we could have seat −→ vb1 −→ hb −→ vb2 −→ seat. To solve this loop we could
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Some examples to show how the pieces have been connected. A red line connects the centres
of two objects which are connected.
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break a link, for example vb2 −→ seat, but this would be semantically wrong, as such a con-
nection does actually exist. Another option would be to try flipping the arc (seat −→ vb2), but
this could cause other loops that would need to be handled as well and would probably require
anyway to break some arcs to break the loops. Grouping first of all simplifies the graph, thus
reducing the possible loops, but most importantly is proven effective when we get to the point
in which we must choose which arcs to cut, because removing a connection between groups
affects the elements contained in them in the same way.

Weaknesses

However, we can also see how some non-detected symmetries, combined with some impre-
cision, can lead to wrong connections. For example, in Figure 3.2 we are presented with the
diagram of an armchair whose armrests were not in the same node in the PartNet tree. While the
connections d− e and b− c are correct and symmetrical, armrest b has an additional connection
to a, which creates an asymmetry which we can consequently find also in the explosion phase.
Other issues arose from specific classes of objects, such as the plants. In their case, we decided
not to explode the leaves which, however, we are still treating as single objects anyway. Because
many leaves are close to others, often in a chaotic fashion, it can happen that in some objects
the reconstruction of the connections fails, such as in Figure .9.

3.1.1 Conclusions about the scene graph construction

The phase of connections detection is generally accurate but suffers from some problems which
mainly arise when the PartNet tree relative to an object varies its shape with respect to the
standards and when the objects are particularly complex and dense.

One solution could be to (at least partially) drop the reliability of the system on the grouping of
objects provided by PartNet, which could be substituted by an iterative procedure of corrections
to remove optimally the loops or by a real object symmetry detection. While these solutions
would be more reliable than the one chosen, they come at the cost of computational complexity
and have not been adopted for scalability reasons, for the goal is to generate many images.

3.2 Explosion

The explosion phase is primarily governed by the connections that have been detected, and
the main issue of this step consists in identifying the explosion direction of a component with
respect to its parent. Some examples from different object categories are shown in Section .2.

This section of the work has been proven to be the most critical part, because it is both funda-
mental and hard to generalize. With the key idea of preparing a generator the most general as
possible, we worked trying not to focus too much on a single category of objects but focusing
on an algorithm capable of working on all the subjects in PartNet and possibly extendable to
other datasets. This impacted the quality of some simple objects, such as the knives, which in
their simplicity still sometimes fail in exploding correctly.
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Figure 3.2: An example of bad connections, which lead to asymmetries and a harder to understand
diagram

(a) A positive example of connections in a
plant

(b) In some cases, plants suffer from important
mistakes

Figure 3.3: Two examples of connections from the plant class

The PartNet dataset was the best fit for our needs at the time of writing but, not being made for
our scope, it offers poor information about how some pieces lock into others and this forced
us into looking for the new heuristics we have shown in the previous chapter. Generalizing
these rules and keeping them efficient has been more challenging than expected, especially in
presence of curved or branched shapes: we can see how these irregular shapes affect the results
more than the almost rectangular ones (Figure .5.e, the filter of the faucet is exploded in the
wrong direction).

The different heuristics of explosion have been assigned an importance factor which is indepen-
dent of the class of object represented, and have been assigned the priority:
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1. If the component is inside its parent, try escaping from it along the axis and directions
that allow getting farther from the parent without crossing it;

2. If the two components appear to share a face, push the children away along the normal of
such face (to be more precise, its principal component along the axes);

3. If the centroids of two components are enough aligned along one axis, use that for the
explosion;

4. Otherwise, go away along the normal of the biggest face of the parent.

This sequence of rules has been established to balance the quality between all the classes of
objects, but it could be modified to suit better a specific one: for example, the bottles (Figure
1.3) and knives (Figure .6) are more likely to have components exploded along the vertical
direction, and we could first of all check whether this is likely to be a solution. Furthermore,
due to the mesh complexity (Figure .9) and the problem of scalability to multiple models (to
generate a big enough dataset), we chose to simplify some checks by sometimes approximating
the objects, and this affects the quality as well.

3.2.1 Conclusions and future improvements regarding the
explosion

Trying to generalize the algorithm to fit many classes of objects has opened the exploration of
different techniques that are valid for multiple types of objects. However, it is hard to truly
generalize without affecting specific classes and, for this reason, it would be better to balance
the techniques giving priority to some over the others depending on the object represented, or
considering the classification of each component.
If we want to consider the class of the whole object, we will look for which explosion criteria
work best (e.g., explode a knife along the vertical axes most of the time). A more refined result
can instead be obtained by studying the relationship between each possible pair of types of
components and how a couple is likely to be exploded based on what they represent (e.g., the
legs of a chair are likely to be exploded vertically with respect to the seat).
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Applications and future work

In this chapter we are going to discuss some application fields of the dataset, proposing a
pipeline of semi-independent blocks that could be of interest for future works.

4.1 Clean up

This work started from the necessity of recovering old exploded-view diagrams so, with this in
mind, we can assume that we are not given a clean digital image, but rather a photograph of a
piece of paper, possibly even hand-drawn.

4.1.1 Noise

Noise in pictures

As presented by [VA], when we deal with pictures obtained by a camera we can not avoid the
presence of unwanted noises, which we can classify as:

• Impulse (or salt and pepper) noise: caused by sudden and sharp changes in the signal (for
example, caused by dust). It appears as some isolated pixels of different colour intensity;

• Gaussian noise: adds a Gaussian distributed value to each pixel, independently from its
intensity;

• Poisson: caused by the lack of lighting of the camera sensor, depends on the intensity of
the pixels;

• Speckle (which is a major issue in other types of images, such as radar)
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The presence of noise is going to affect the subsequent steps of our work if we did not take
it into account when learning through synthetic data. To solve this problem we may choose
to filter it out, as suggested by [VA], or to analyze it through deep learning methods as done
by [TFZ+]. For the latter strategy, we have multiple possible solutions to choose from, but
we must also consider that, because of the nature of our images, we won’t need too complex
models: indeed, we expect to find many contiguous high-signal (dark) pixels in the edges and
isolated dark pixels are very likely noise.

Figure 4.1: The different types of noises, from [VA].
a. Original
b. Salt and pepper
c. Gaussian
d. Poisson
e. Speckle

Testing on black and white images

We conducted a small test to show how the procedure of deletion of noise is simplified in the
case of pictures of black and white images.
First, we took a grayscale picture in good lighting conditions of a printed diagram of a washing
machine from a well-kept instruction book (Figure 4.2, left). It can be seen that everything
is well visible and readable, but the lighting is not uniform and it would be helpful to restore
the image in its black and white version. Because of the light not being homogeneous in the
whole picture (see for example the upper-left corner), global thresholding is not recommended,
instead, we use a binarization procedure which consists of stretching the histogram to increase
the contrast and then thresholding. We can see that the obtained image (Figure 4.2, right) keeps
the most important lines in the image and removed the paper texture and camera noise.
We can consider this picture a good representation of the noise that an image taken in recent
years may suffer, however, we may want to study what would happen to images taken with
much older cameras or taken on old, ruined paper. We preferred to not investigate too far on the
restoration of these images, as tools have already been made available for this purpose, but we
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will show anyway a trivial solution for the problem to show how we can solve it when having
black contours.

To the same image, we applied additional pepper noise (affecting 10% of the image), obtaining
the second picture of Figure 4.3. We proceeded to apply the same binarization operation as
before but, as can be seen in the third picture of the same figure, it was not enough to clean all
the noise. Therefore, we applied an additional step consisting of:

1. Application of a median filter: a non-linear filter whose response is the median of the
pixels to which it is applied. This results in the reduction of noise, however, produces
bolder lines than the initial ones, which can be a problem if we wish to distinguish an
object’s lines and guides;

2. Masking: to restore a more faithful image we can calculate the logical and between the
binary image and the median filtered one; this will set the thin lines to their original
thickness, but restore as well the holes in the lines caused by 0-valued noisy pixels;

3. Closure: the closure operation consists in dilating and then eroding the lines, and it can
be useful to fill small holes. According to the size of the image, it may useful but it could
also cause the merge of close parallel lines, so it may be skipped if not needed.

The result is in the last picture of Figure 4.3.

Following this procedure we can avoid studying separately the other types of noise, as after
the binarization phase we find ourselves with the same problem we had with the pepper noise,
confirming that ours is indeed a simplified case of denoising.

Figure 4.2: On the left, is a grayscale picture of a diagram. On the right, its binary correspondent is
obtained by increasing the contrast and hard-thresholding

4.1.2 Notes and lines - Future work

Elements that we didn’t include in our dataset are guidelines and notes that add information to
the diagram or help in interpreting it correctly. We decided to not add this type of information
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Figure 4.3: From left to right, the original image, the image affected by pepper noise, its binarization
and its cleaned version

to avoid polluting the image with lines which do not belong to the object, but they could be
added in the future to improve the dataset. However, even in that case, it is necessary to mask
them away if we want to reconstruct the object’s components.

This problem can be reconducted to a binary segmentation in which one class is representative
of the useful information and the other of the notes we need to remove. One simple possible
solution is to implement a U-Net [RFB], a network composed of an encoding and a decoding
module which will classify each pixel as either useful or not. We also need to consider the
imbalance problem of the classes, because, depending on how the background is classified,
one class will be dominant over the other and if this is not taken into account it would lead to
disregarding the dominated one.

4.2 Super-resolution and vectorization - Future work

Always keeping in mind that our goal is to be able to apply our algorithms to old images, it is
likely that these will have a low resolution. Having as a goal to be able to handle these images,
the dataset we created is already not in high resolution, to be more faithful to the images we
will likely have to deal with.
Increasing the quality of the image could both be our goal or a tool to increase the precision of
the following steps, but, it could as well be replaced by the vectorization of the diagram. We
will now briefly illustrate the advantages and disadvantages of the two methods, to help decide
which is the best solution relative to the desired application.

Raster vs. vectorial

In the raster representation of an image, it is shown as composed of a matrix of pixels which
represent the colour and optionally the transparency. This is the traditional way in which pho-
tographs are represented. The quality of the image is dependent on its size, hence on its space
occupancy, and is reduced when zooming in.
Producing a high-resolution raster image of a diagram can be helpful to refine its details, how-
ever, we must consider that this comes to a cost for possible future steps: if we are using
super-resolution as an intermediate tool, we must take into account that increasing the size of
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the image affects negatively the training times of a learning process. On the other hand, raster
images are better than vector ones to understand local information, as access to neighbouring
pixels is a cheap operation.

The vector representation of an image is better suited to digital images, as it is based on the
decomposition of an image into basic shapes and curved lines. In images like ours, this type
of representation is a very good fit, as it allows us to reduce a lot of space occupancy and has
the great advantage of being scale independent: we can zoom on the image without loss of
quality. The images produced by the dataset, in line with what we expect to have in practice,
are however raster, so we would need to convert them. This representation is optimal if we want
to use this as our final output, but it is less practical when we want to use it as an intermediate
step.

4.3 Object detection and segmentation - Future work

It is fundamental for the reconstruction of the object represented by the diagram to first be
able to distinguish one piece from the others. According to the application, we may choose to
identify them with two levels of granularity, by distinguishing each part from the others or by
limiting to recognizing which class each component belongs to.

The segmentation task consists of classifying each pixel as belonging to one of the possible
classes (e.g., leg, seat and back for a chair), and does not distinguish between individual objects.
While in general this is not sufficient to be able to reconstruct the object in its compact form,
it is an important step to understanding its semantics. This step could be carried out in parallel
with the individual instances recognition to proceed with the following tasks having both this
information.

4.4 Connections

To understand how to compose the object from its parts, we need to learn how they have been
exploded. The first step in this regard is to learn which components are connected, and along
which axes they are exploded one from the other.

In this section, we are going to show the approach we used to develop this type of problem
using a deep neural network.

4.4.1 Rationale and reasoning on the prerequisites

The task the network needs to solve is to identify the relationship between two components of
the diagram which may be connected or not and, when they are, which is the direction of the
explosion. Analyzing one pair at a time loosens some constraints on the graph we are going
to reconstruct (we know that all the components must be attached to others but, in this way,
we can’t enforce this rule), but it is easier to learn the relationship between only two elements
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rather than reconstructing the whole graph in one pass.

It is fundamental to, first of all, be able to identify the two parts of interest on the image and
extract their features, and we could use a more rough estimate and identify the area of interest
with a bounding box or be more precise and use a pixel-wise classification of which one belongs
to the component or not.
The usage of bounding boxes is a natural choice if we think of the other works about scene
graphs which use object recognition as the first step [CRX+] [ZWYC] [HRC+], as we could
build a network similar to theirs and feed it with the input diagram and the bounds of the
components. However, identifying an object up to the pixel level is very helpful when we deal
with objects very close one to the other due to the perspective (which could share a big portion
of their bounding boxes but have different connections), and it is also a natural consequence
of a refinement on the segmentation step. For these reasons, we are going to use pixel-level
component detection.

To simplify our work and reduce the amplification of errors due to the pipelining of multiple
steps, for testing purposes we are going to use the instances image from the ground truth in
order to get a mask for each component.

4.4.2 Input

To decide what we necessitate in input, we need to make some observations on what is nec-
essary to understand if and how two parts are connected. We may wonder if isolating the two
components (by masking the original diagram) is enough to understand the scene, and we notice
that whether two pieces are connected or not depends on:

• if they could be aligned along one of the explosion axes;

• their distance;

• if there are other parts between them that imply they may be indirectly connected through
those.

None of these properties can be checked without the knowledge of the surroundings, so we
need to keep the information about the whole image in parallel to the one relative to the single
components.

Also looking at the next encoding step, we are going to use three different inputs for our net-
work, instead of using only one with the information about both the components, so that we can
always encode them homogeneously and independently. We use two inputs consisting of the
masked version of the diagram, keeping only one component each, and the whole diagram as
the third input (Figure 4.4).

4.4.3 Encoder

Before identifying if the components are connected, we need to extract and compact their prop-
erties, which will be stored in a feature vector. As we are dealing with images, it is important to
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Figure 4.4: One example of input of the connection classifier. On the left are the two components to
compare, on the right the original diagram (at low resolution)

keep in mind the surroundings of each pixel, as one is meaningful only together with its context;
this is the reason why we are going to use a convolutional neural network (CNN) [AMAZ].

The encoder is built of repeating blocks constituted by:

1. 2D convolution: allows mixing the information of a pixel with its surroundings. The
neurons are activated by a ReLU (Rectified Linear Unit) function.

2. Max pooling: reduces the dimensionality of the input

ReLU is an activation function defined as f(x) = max(0, x). The choice of ReLU over other
functions, such as sigmoid or hyperbolic tangent, is a popular one for its simplicity (ease of
derivation) and its zeroing of the gradient which can help the training in deeper networks.

The full encoder structure is represented in Figure 4.5

4.4.4 Merge of branches

As the inputs are in the same shape and represent the same type of information, we are going
to use the same encoder for them all. However, we need to reason on all the inputs together to
predict the connection type and for this reason, after the encoder part, we add a concatenation
layer to combine the three encodings for the images.

4.4.5 Classifier

A flatten layer prepares the concatenated features for two dense layers, which are used for pre-
dicting between 4 one-hot encoded classes: no, x, y, z, which represent no connection between
the two pieces, or connected and exploded along axes x, y or z.
One-hot encoding means associating an index to each class and assigning to a vector the value
1 to express belonging to it or zero otherwise. In our case, the vector [1, 0, 0, 0] means that the
components are not directly connected and [0, 0, 1, 0] that they are exploded along the y-axes
one with respect to the other.

While the first dense layer uses, again, ReLU, the second and last one uses softmax activation
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function:
σ(x)i =

exi∑
j=1..k e

xi

where x is a vector of size k.
This choice is fundamental to get a meaningful prediction, as softmax takes as input a vector
x and outputs a vector y = σ(x) where each element xi of y belongs to the range (0, 1) and∑

xi = 1. These properties allow to interpret the values in y as the probability of belonging to
a class (e.g., [0.1, 0.8, 0.1] means that the probability of belonging to class 1 is 80%, while it’s
10% for classes 0 and 2). If we are not interested in the probabilities, but rather wish to get a
single value (the most likely class), we can extract it with argmax(y).

The whole network structure (with the encoder compacted in one block), is shown in Figure 4.6

4.4.6 Loss

In multi-class classification problems, such as ours, the loss function used is categorical cross-
entropy. Applied to the machine learning context, it compares individually each true expected
value ŷi for the class i with its predicted value yi and gives a measure of their dissimilarity:

L = −
∑
i

ŷi · log yi

Classes imbalances

When calculating our loss metric, however, we must consider how the probability of belonging
to each class is distributed on our dataset. The distribution of being exploded along each one
of the possible axes depends on the object represented in the diagram (e.g., a chair has most of
the components stacked vertically and will be exploded mainly along the y-axes), but choos-
ing a uniform dataset balances all the three possibilities quite uniformly. However, the more
components we have in a diagram, the fewer pairs are connected with respect to all the possible
combinations, which leads to a great imbalance in the distribution of the class ’not connected’
with respect to the others.
To handle this, we need to modify our loss in order to not focus only on succeeding in predict-
ing the ’no connection’ class, but give more importance to the other events, which are more
important but also rarer. This is done by checking the frequency of each class in the dataset and
assigning a weight which is dependent on its frequency: weightc = #pairs of class c

#all pairs
.

Test

We trained this network with a small set of chairs as proof of concept. The network is given
different points of view of different chairs and adds a small random rotation and a horizontal
flip for data augmentation.

The results can be seen in Figure 4.7 and Figure 4.8. Although the results are not perfect, due to
a short train on a small dataset, we proved how this task can be performed also by a very basic
model.
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Figure 4.5: The encoder network, whose task is to extract the features from the images

Figure 4.6: The whole network, which includes the encoder one shown as a single node and the classifier

4.5 Reconstruction of hidden parts -Future work

It can happen that in the diagram we find some objects occluded behind others, and this is an
obstacle for the reconstruction, both 2D and 3D. To reconstruct the hidden parts, we can first
identify the occluded parts and their occluders ([KTT] provides a comparison between different
possible solutions to the problem), then we may complete them by using the occlusion masks
to trace the areas where we expect the continuation of the object to be (similarly to [ZCC]).
An alternative approach could be based on the work of [LLP+], which proposes a solution
to change the point of view of a 3D object having a single picture of it. This would not the
best approach if our goal is the 3D reconstruction, but it is useful if we want to change the
focus of the diagram to a different component and we don’t need to go through the whole 3D
reconstruction.
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Figure 4.7: On the left the ground truth of the connections, on the left the prediction. Green lines means
that the components have been exploded along y axis, red along x

Figure 4.8: Another example like Figure 4.7

4.6 3D reconstruction of edges and surfaces - Future
work

As for images we can either work with a raster or vector representation, the equivalent can be
said for the 3D models, in which we may work with meshes or point clouds. It is desirable
to work with meshes, as they are more scalable and easier to modify, and it would be even
better if we could trace back our shapes to elementary ones, to make the model parametric and
adjustable. For both possibilities [ZGZS] presents and compares different solutions that we can
easily adapt to our images, as the networks they present have been trained on sketches of the
same models of ours.
To improve our work we can detect and exploit the symmetries of the object but especially
identify identical components and merge the information given by them all to improve accuracy
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and solve the problem of hidden parts.

51





4

Conclusion and Outlook

In this work, we set the basis for the automatic generation of exploded diagrams and information
extraction from those.

We started by observing the importance of having a well-structured object, which must consist
of logically coherent pieces and coherent connections between them. For this reason, we dis-
carded the possibility of generating images from arbitrary objects by using randomly generated
scene graphs and chose to start from existing composite 3D models. This led to the choice of
using PartNet as the basis of our work, and exploiting its segmentation of the objects to both
use its components but also to add semantic value to our diagrams.
Afterwards, we found the connections between components by looking both at physically con-
nected nodes and embedding the semantic relationships represented by the PartNet trees. By
grouping similar objects we built a tree that we use to learn the explosion vectors.
We then defined different heuristics to learn how one component can be exploded with respect
to the others, and we studied how to balance them to obtain an algorithm capable of dealing
with different types of objects.
Finally, we proposed a pipeline for the reconstruction of the objects represented in the diagrams.

In this study, we learned how challenging it can be to define an algorithm capable of working
on a very heterogeneous set of objects in an efficient way. To improve this work, before refining
the analysis of the single meshes (which is too time-consuming), we suggest incorporating
more information prior to the explosion to choose the heuristics that are expected to work best.
Nonetheless, we have also seen how the reconstruction of the object can be performed by simple
algorithms and deep neural networks, which hints at a promising future development in the field.





Appendix

.1 Demonstration of limitation of inconsistent
dependencies in graphs with arcs bound by depth
constraints

Let us define:

• G: a directed graph composed of the set of nodes N and the set of arcs A. To each arc a
is associated a translation vector ta. We restrict the possible graphs to the case in which
they have only one root (our case study) but it can be extended to multiple.

• TP =
∑

a∈P ta: the composition of the translations along a path P ⊆ A

• Inconsistency: G presents a (potential) inconsistency when there exist two paths p, q from
the root to a node n such that Tp ̸= Tq.

• Depth constraint: a node n can accept m as its child only if m is the root of a sub-
graph which without n would be disconnected to the rest of G, or if their depth respects
dn = dm − 1. Remember also that in the first case the labels of the sub-graph are updated
to update their depth accordingly to the graph they are connected to (dn = dm−1 and the
same repeats in ms children).

We observe that:

1. A tree has no inconsistencies, since there exists one and only one path from the root to
any node.

2. When the depth constraint is respected, there can’t exist a path both from m to n and
viceversa.
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3. If all the connections from m to n respect dn = dm−1, then there can’t exist loops, which
would require the existence of a path p = (n0, n1, ..., nk, n0) in which dn0 = dn1 − 1 =
dn2 − 2 = ... = dnk

− k but also dnk
= dn0 − (k + 1), which is impossible

Our graph comes originally from a tree G′ which sets some constraints on G: there can exists
an edge a = (n,m) in G only if n and m belonged to the same node of G′ or n was in the parent
node of the one containing m. Since there are no inconsistencies in G′, they can originate in G
if there exist n′,m′ ∈ G′, and n,m, l ∈ G with n and l associated with n′ and m to m′, such
that there exists both the arcs (n, l) and (n,m).
Because of this, the check of absence of inconsistencies becomes a local property (dependent on
the strict neighbours of a node) instead of being global and requiring the visit of all the graph.

.2 PartNet explosion results

Figure .1, Figure .2, Figure .3, Figure .4, Figure .5, Figure .6, Figure .7, Figure .8 and Figure .9
show some examples of generated exploded diagrams.

(a) (b)

Figure .1: Electrical appliances

.3 Software used

The generation of the diagrams has been written in python with the fundamental help of the
libraries trimesh [ea] and pyrender [noa]. The deep learning implementations have been written
in python with tensorflow and keras.
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(a) (b)

Figure .2: Bottles

(a) (b) (c)

(d) (e) (f)

Figure .3: Chairs
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(a) (b)

Figure .4: Mugs

(a) (b) (c)

(d) (e) (f)

Figure .5: Faucets
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(a) (b)

Figure .6: Knives

(a) (b)

Figure .7: Lamps
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(a) (b)

Figure .8: Computers

(a) (b)

Figure .9: Plants
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