
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Matematica

Scuola di Ingegneria Industriale e dell’Informazione

Easy Sequential Games With More Than

Two Players

Relatore: Prof. Nicola Gatti

Correlatore: Dott. Alberto Marchesi

Tesi di Laurea di:

Andrea Luigi Maggi

matricola 883312

Anno Accademico 2019-2020

A Nonna Eugenia,

che da lassù mi sei sempre stata vicina

e che oggi saresti stata orgogliosissima

Abstract

In Game Theory field, one of the most interesting cases of study is

the model of two-player zero-sum games: there are two players and in

every outcome of the game one gets the opposite of the other. The two-

person strictly competitive games have a similar idea: one gets more

if the other one gets less. The class of two-player zero-sum games is

appealing since equilibria have an easy resolution because they can be

found in polynomial time in the size of game. This property does not

hold for the class of three-player zero-sum games. The aim of the work

is to find and to study classes of game with generic n players that have

an equilibrium strategy easy to find in the dimension of the game. We

study the unilaterally competitive games and the Polymatrix games.

Sommario

In Teoria dei giochi, uno dei casi più interessanti da studiare è il modello

dei giochi a somma zero: due giocatori e ad ogni possibile risultato del

gioco uno ottiene l’esatto opposto dell’altro. I giochi a due giocatori

strettamente competitivi hanno una idea simile: un giocatore ottiene

di più se l’altro ottiene di meno. La classe dei giochi a somma zero è

interessante perché di facile risoluzione dato che gli equilibri possono

essere trovati in tempo polinomiale rispetto alla dimensione del gioco.

Quest’ultima proprietà non vale quando si tratta di giochi a somma

zero con tre giocatori. L’obiettivo di questo lavoro è trovare e studiare

classi di gioco a tre o più giocatori che cui si possa trovare un equilibrio

in modo facile. Studiamo quindi i giochi unilateralmente competitivi e

i giochi Polimatrice.

Ringraziamenti

Il mio primo grazie va al Prof. Nicola Gatti e al Dottor Alberto March-

esi per il sostegno e per gli input fondamentali per questo lavoro, so-

prattutto in una fase difficile come quella del lockdown.

Un altro grazie va ai professori e alle professoresse incontrati in

questo carriera universitaria: al di là delle nozioni, molti di voi me li

porto nel cuore, per avermi ispirato, per avermi fatto capire cosa mi

piace (e cosa non) e per avermi stimolato.

Voglio ringraziare la mia famiglia, per avermi accompagnato e sostenuto

in questa fase universitaria e per ogni volta che c’è stato uno sforzo nel

comprendere cosa stessi facendo.

Ringrazio chi nel mio percorso universitario mi è stato vicino. A

Giulia L. per avermi fatto ragionare; ad Alessia che mi ha ricordato

di essere pazzeska sempre; a Giulia B. e Luca, che mi sono stati vicini

quotidianamente in questi ultimi due anni (definirvi preziosi è riduttivo,

sappiatelo); a Guendalina, vicina di banco di ARF; ad Alice con cui

ho potuto parlare delle nostre passioni politiche e non con cui non ho

passato ARF (”prego”); a Luca, Valeria e Ilaria perchè mi avete sempre

ascoltato; a Elena ed Eleonora, per avermi fatto sentire sempre accolto

nelle mie ansie e preoccupazioni. E poi a Elisa, Samuele, Lorenzo,

Davide, Giuseppe, Giulia. A Mikael, ”ai” Valerio, Riccardo, Luigi,

Giorgia, Vittorio, Martina, Valeria e tutte le persone conosciute in

Erasmus. E, infine, un grazie a tutti quei compagni di corso che tramite

una parola o una chiacchiera in pausa mi hanno saputo dare una dritta,

un consiglio, che mi hanno stimolato e fatto sentire meno inadeguato.

Un grazie alle associazioni dove ho militato, Associazione Bir e

PoliEdro, per avermi fatto crescere umanamente e scoprire storie a

cui mai sarei arrivato.

Un grazie agli amici che hanno avuto grande pazienza, sperando di

non dimenticare nessuno: a Giorgio, Emanuele e Ala che ci sono stati fin

dalla scelta della facoltà; a Chiara, in te ho trovato sempre una persona

intelligente e con cui confidarmi; a Francesca perchè se mi sono iscritto

in questa facoltà forse lo devo soprattutto ad una birra insieme; a Sole

e Anna per il divertimento; a Elisa perchè dopo più di 20 anni siamo

ancora qua; a Giulia perchè dopo 20 anni siamo ancora qua; a Federico,

prova vivente che i milanesi esistono; a Stefano e Angelica, con cui

abbiamo ridisegnato le durate degli audio di Whatsapp e provato che

si può stare vicini anche a centinaia di km di distanza; a Giovanni

e Alessandro per le serate leggere; a Giulio che mi ha costantemente

rallegrato con leggerezza; a Riccardo e Luca per avermi ascoltato; alle

”due Silvie” per avermi scritto in pieno lockdown; grazie ad Alberto

e Chiara, per me siete parte della mia famiglia; un grazie a Daniele,

perchè ci sentiamo poco ma ogni volta è come ritrovarsi; a Federico,

Gabriele, Matteo e tutto quel mondo sul web che ci ha unito nelle

nostre passioni e nei nostri interessi.

Alla Bialetti, perchè la moka è stata una fedele compagna di viaggio;

alla AS Roma per avermi fatto divertire e a volte anche arrabbiare; ai

Vama, perchè la loro canzone mi ha accompagnato in tutti questi anni.

Infine, un grazie enorme a mia mamma che, anche con tantissime

difficoltà (io le conosco) c’è sempre stata, e a mio fratello Simone, un

amico, un compagno di scherzi, di giochi, un confidente, che mi ha

sempre spronato e appoggiato in tutto.

Contents

1 Introduction 3

1.1 Scientific domain . 3

1.2 Aim of the work . 4

1.3 Structure of the thesis 4

2 Preliminaries 7

2.1 Introduction to Game Theory 7

2.2 Game representation form 7

2.2.1 Extensive-form representation 7

2.2.2 Normal-form representation 11

2.2.3 Sequence-form representation 13

2.3 Solution concepts . 16

2.4 Game classes . 19

3 UC games with two players 23

3.1 Characterization in Utility Space 23

3.1.1 Zero-sum, Constant-Sum and Strictly Competi-

tive games . 23

3.1.2 Two-player UC games 25

3.1.3 Example . 26

3.2 Modularity between two games 31

3.2.1 Zero-sum games 35

3.2.2 Constant-sum games 36

3.2.3 Strictly Competitive games 36

3.2.4 UC games: counterexample 38

3.2.5 Decomposability 39

3.3 Perturbation of a zero-sum game 39

3.4 Add a player . 41

1

Contents

4 Poly Sequence-Matrix Games 45

4.1 Definition . 45

4.2 Algorithms that maps a poly sequence-matrix game into

a tree . 47

4.2.1 Finding a poly sequence-matrix games 47

4.2.2 Mapping any poly sequence-matrix game into an

extensive-form game 48

4.2.3 Another point of view 51

4.2.4 Pruning algorithm 55

4.2.5 The final algorithms 59

4.3 Properties of Poly sequence-matrix games 62

4.3.1 Finding Nash Equilibria 63

4.3.2 Properties . 65

5 Conclusions and future works 69

Bibliografia 71

2

Chapter 1

Introduction

1.1 Scientific domain

The thesis belongs to two fields: Game Theory and Algorithmic Game

Theory.

A game is an elegant model of interactions between agents, called

players. They can execute some actions and take a revenue during and

at the end of the game. They have two basilar characteristics: they

are selfish and rational. The term ”selfish” means that each one will

play in a way that can maximize her revenue, without caring of the

satisfaction of other agent. The term ”rational” means that she will

take the best option for herself in every decision and she knows all

the consequences of every choice. Often, a game describes situations

with strategic interactions in which optimal decisions have to be taken

in presence of multiple players. In order to find the optimal decision,

there is the field of Algorithmic Game Theory comes to help. This field

combines mathematical models and algorithmic. One of the situation

mostly studied is the microeconomics scenario.

In particular, recently, a number of concrete applications based on

Algorithmic Game Theory tools were deployed. We mentions just a

few: in the field of physical and cyber security, non-cooperative models

are commonly used to prescribe the best strategies to patrollers [5,

3, 31, 24, 1]; in the field of automatic negotiations, game theoretic

models are used to find the best negotiation strategies [16, 19, 2]; in

the telecommunication networks, selfish resource allocation problems

are commonly orchestrated by means of game theory tools [28, 26].

Chapter 1. Introduction

1.2 Aim of the work

We focus on the study of classes of not cooperative game computation-

ally easy to solve. We say computationally easy to solve because we

focus on classes of games where getting more utility for a player means

that the others get less utility so what it the best for someone, it is the

worst for others. It is something related with maxmin solutions. Some-

thing very similar are the known game class of Zero-sum, Constant-sum

and strictly competitive with two players. Basically these three classes

are equivalent because their payoffs are obtainable through an oppor-

tune affine transformation. Moreover, strictly competitive games sat-

isfy important properties like uniqueness of the equilibrium value and

interchangeability of the equilibrium strategies. Moreover, the maxmin

solution and the Nash solution coincide.

These properties do not hold in n-player zero-sum game. Thus,

we aim to study the class of unilaterally competitive games that are a

generalization of the previous classes and they can be used also for a sit-

uation with more than two players. We study a characterization of this

class with two players. Then, we study another class of games, the Poly

Sequence-matrix, and we see if this class can be represented through

an unique game tree and if the equilibria of this class of games preserve

the same properties of equilibria of Zero-sum Polymatrix Games.

1.3 Structure of the thesis

The thesis is structured in the following way:

� In Chapter 2 we provide the preliminaries about game theory,

which are the game models that we use and the main solution

concepts. Moreover we present some classes of games.

� In Chapter 3 we analyse unilaterally competitive game with two

players. We study a characterization of them, starting from some

property that holds in two-player zero-sum games.

� In Chapter 4 we study a general class of games with a number of

players larger than two. We call this class Poly sequence-matrix

games. We provide two representations and we study their rela-

tions. We also show that the equilibria of a Poly sequence-matrix

4

1.3. Structure of the thesis

game preserve the same properties satisfied by the equilibria of

zero-sum polymatrix games.

� In Chapter 5 we present our conclusions and some possible paths

that future work may follow.

5

Chapter 1. Introduction

6

Chapter 2

Preliminaries

2.1 Introduction to Game Theory

This thesis resorts to the mathematical field of Game Theory. Most of

the notions discussed in this chapter can be found in [30]. A game is

an elegant model of interactions between agents, called players. They

can execute some actions and take a revenue during and at the end of

the game. They have two basilar characteristics: they are selfish and

rational. The term ”selfish” means that each one will play in a way

that can maximize her revenue. The term ”rational” means that she

will take the best option for herself in every decision and she knows all

the consequences of every choice.

2.2 Game representation form

Game theory provides several representations of a game. In the follow-

ing, we present some of them.

2.2.1 Extensive-form representation

We start from the most general game representation: the extensive-

form. This model captures the situation in which players play sequen-

tially on a game tree (that collects all the information about the game).

Initially, we focus on the case of games with perfect information and

then we generalize with the ones of imperfect information. In a perfect

information game, all the players know their position in the game. This

form is defined as follows:

Chapter 2. Preliminaries

Definition 2.2.1. The extensive-form representation of a perfect-information

game is a tuple (N,A, V, T, ι, ρ, χ, U), where:

� N = {1, 2, ..., n} is the set of players;

� A = {A1, ..., An} is the set of actions: each Ai = {ai1, ai2, ..., aimi
}

is the set of actions of player i;

� V = {V1, ..., Vn} is the set of decision node: each Vi = {ωi1, ωi2, ..., ωiki}
is the set of decision nodes of player i;

� T is the set of terminal nodes;

� ι : V → N is the function returning the players that acts at a

given decision node;

� ρ : V → ℘(A) is the function returning the set of actions available

to player i(ω) at that decision node ω;

� χ : V × A → V ∪ T is the function assigning the next node to

each pair (ω, a) such that a ∈ ρ(ω). Note that the node can be a

terminal or a decision node and that χ is not defined for the pairs

such that a /∈ ρ(ω);

� U = (U1, ..., Un) is the set of utility functions, in which Ui : T → R
is the utility of player i.

In Figure 2.1, there is an example of perfect-information game with

two players.

1.1

(3, 1)

L1

2.1

1.2

(4,4)

L2

(6,1)

R2

l1

1.3

(2, 4)

L3

(3, 3)

R3

r1

R1

Figure 2.1: Example of perfect-information game in extensive-form representation.

8

2.2. Game representation form

1.1

(3, 1)

L1

2.1

1.2

(4,4)

L2

(6,1)

R2

l1

1.2

(2, 4)

L2

(3, 3)

R2

r1

R1

Figure 2.2: Example of imperfect-information game in extensive-form representation.

A concrete example of perfect information game is chess: the players

play sequentially and all the available moves are visible by both players.

There can exist situations in which the players do not have all the

information of the game (card game like Poker, for example): this is a

situation in which there is not a perfect information. Let introduce the

concept of information set, useful to capture the situation in which a

player may not distinguish some nodes in which she plays:

Definition 2.2.2. An information set h of player i is a subset of Vi
such that, for all ω, ω̂ ∈ h, the property ρ(ω) = ρ(ω̂) holds.

Now, we can define an extensive-form representation game with

imperfect information:

Definition 2.2.3. The extensive-form representation of an imperfect-

information game is a tuple (N,A, V, T, ι, ρ, χ, U,H), where:

� (N,A, V, T, ι, ρ, χ, U) is a perfect information game in extensive

form;

� H = {H1, ..., Hn} is the set of information set: each Hi is a par-

tition of Vi.

We provide an example of imperfect-information game in extensive-

form representation in Figure 2.2: the game is very similar to the one

in perfect-information of Figure 2.1 but, after the execution of R1 by

player 1, both players have to decide simultaneously which action play

instead of play actions in a sequential way.

9

Chapter 2. Preliminaries

Nature

1.1

(3, 1)

L1

2.1

1.2

(4,4)

L2

(6,1)

R2

l1

1.2

(2,4)

L2

(3,3)

R2

r1

R1

α

1.3

2.2

(0,0)

l2

(1,2)

r2

L3

2.3

(0,4)

l3

(5,1)

r3

R3

1− α

Figure 2.3: Example of game in extensive-form representation with Nature.

A game may have a player that choose her action according to a

fixed probability distribution instead of following her utility (she is

said non-strategic). This player is called Nature. A practical example

of Nature is, for example, a toss of a coin.

In Figure 2.3 it is reported an example of imperfect-information

game in extensive form with Nature.

Imperfect information does not mean that the the players forget

the past actions and the past observations (on her own or about the

others). This case is capture by perfect-recall property. More precisely:

Definition 2.2.4. In an imperfect-information extensive-form game,

player i has perfect recall if for any pair of decision nodes ω and ω̂ that

are in the same information set h of player i, for any path < ω0, a0,

ω1, a1, ..., ωk, ak, ω > from the root ω̄0 of the game to ω and for any

path < ω′0, a
′
0, ω

′
1, a
′
1, ..., ω

′
l, a
′
l, ω
′ > from the root of the game to ω′ it

must be the case that:

� k = l;

� for all 0 ≤ j ≤ k, ωj and ω′j are in the same information set for

player i;

� for all 0 ≤ j ≤ k, aj = a′j.

A game is with perfect-recall if every player has perfect recall.

10

2.2. Game representation form

1.1

(3, 1)

L1

2.1

1.2

(4,4)

L2

(6,1)

R2

l1

1.1

(2, 4)

L1

(3, 3)

R1

r1

R1

Figure 2.4: Example of game with imperfect recall.

A game that is not with perfect recall is said with imperfect recall.1

All the examples seen in this chapter are with perfect-recall. In Figure

2.4, an example of game with imperfect recall is provided.

2.2.2 Normal-form representation

The extensive form is not the only available representation. When

there is a ’static’ situation and not a sequential game, the normal-form

is a better way to represent a game (the Rock-Paper-Scissor game, for

example).

Definition 2.2.5. The normal-form representation of a game is a triple

(N,A,U) where:

� N = {1, 2, · · · , n} is the set of players;

� A = {A1, · · · , An} is the set of actions: eachAi = {ai1, ai2, · · · , aimi
}

is the set of actions of player i;

� U = (U1, · · · , Un) is the set of utility functions, in which Ui :

A1 × A2 × · · · × An → R is the utility of player i.

A classical example of game in normal form is Battle of Sexes. There

are two players, a couple of lovers, that have to decide what they want

1We point an interested reader to this recent work on imperfect-recall games [13].

11

Chapter 2. Preliminaries

to do during evening: cinema or dinner at the restaurant. Player 1

wants to go to the cinema and player 2 prefers eating at restaurant.

Each one wants to do what she prefers but doing something separately

is bad for everyone. The model is:

� N = 1, 2 are the players (the two lovers);

� A = {A1, A2} is the set of actions. A1 and A2 contains the same

action: C (cinema) and R (restaurant);

� The utility matrix U (at the first spot there is the utility of Player

1 U1 and at second spot the utility of Player 2 U2) is:

Player 2

C R

Player 1
C (2,1) (0,0)

R (0,0) (1,2)

We will use the concept of strategy to capture the behaviour of the

player during game.

Definition 2.2.6. A strategy σi is a vector that define the probability

of play an action in Ai by player i so, for each aik ∈ Ai, σi(aik) ≥ 0

and it is a simplex over Ai so
∑

aik∈Ai
σi(aik) = 1.

An example of strategy in Battle of Sexes game can be that Player

1 will play C with probability 0.9:

σ1 =

{
0.9 C

0.1 R

And Player 2 the same but preferring R so:

σ2 =

{
0.1 C

0.9 R

These are examples of mixed strategy. If there is an action a ∈
Ai such that the probability of play it is 1 (σi(a) = 1), and so the

probability of play all the others action is zero, the strategy is said

pure.

The vector σ that collects the strategies of all the players is said

strategy profile and we can call the strategy set of each player Xi. The

strategy profile of all players is X =
∏

i∈N Xi.

12

2.2. Game representation form

The strategy affects the utility of player. Since a player strategy

is a probability distribution over her own action, we can define the

expected utility as follows:

Definition 2.2.7. The expected utility Ea∼σ[Ui(a)] returns the ex-

pected value of utility of player i given strategy profile σ. The formula

can be written:

Ea∼σ[Ui(a)] =
∑
a1∈A1

∑
a2∈A2

...
∑
an∈An

σ1(a1)σ2(a2)...σn(an)Ui(a1, ..., an)

Instead of Ea∼σ[Ui(a)], we can write U(σ1, σ2, ..., σn).

2.2.3 Sequence-form representation

The sequence-form representation is a computationally efficient repre-

sentation for extensive-form games. These notions can be found in [32]

and [25].

Definition 2.2.8. Given a node ω, that belongs to player i (ι(ω) =

i), a sequence q is an ordered set of actions of player i in the path

< ω0, a0, ω1, a1,, ωk, ak, ω > from the root ω̄0 of the game to ω.

We denote the set of all sequences by Q and the set of sequences

of player i with Qi. A sequence profile q is a tuple that specify one

sequence for each player.

We identify some sequences with specific properties. If no action

of player i is present on the path, the sequence is said empty and we

denote it with q∅. If a sequence profile is such that qi leads player i to

a terminal node, the sequence is said terminal.

Also over the sequences, we can define a strategy profile. Contrary

on the previous ones, it is not a probability distribution over all the

sequences of the player (so it is not true that
∑

q∈Qi
ri(q) = 1).

Definition 2.2.9. A sequence-form strategy ri : Qi → [0, 1] is a func-

tion returning the probability with which each sequence q ∈ Qi, is

played by player i, with the constraints that ri(q∅) = 1 and that

ri(q) =
∑

a∈ρ(h) extend(q, a) 2 for each h ∈ lead(q) 3 and for each

q ∈ Qi that is not terminal.

2extend is a function Qi × Ai,h → Qi that returns the sequence obtaining by adding

the action given in input to the sequence given in input
3lead is a function Qi → ℘(Hi) that returns the set of information sets directly achiev-

able from the sequence in input

13

Chapter 2. Preliminaries

The constraints that a sequence-form strategy requires are more

similar to the flow constraints. Indeed, it can be interpreted as a uni-

tary flow, with source on the root of the game (ri(q∅) = 1) that moves

along the nodes in order to end to the terminal nodes. The flow can be

replicated multiple times (and it happens when a sequence may lead

to multiple information sets).

The constraints over the strategies can be formulated in matrix

notation. We define Fi a matrix with as many rows as the cardinality

of the set of information sets plus 1 (|Hi|+ 1) and as many columns as

the cardinality of her own sequences (|Qi|). We define fi as a vector of

|Hi|+ 1 positions. If we see ri as a column vector, the constraints can

be formulated as:

Firi = fi

A vector r that collects the sequence-strategies of all the players is

said sequence-form strategy profile.

Now, we can give the definition of a sequence-form representation

of an extensive-form game:

Definition 2.2.10. Given an extensive-form representation game (N,A,

, V, T, ι, ρ, χ, U,H), the corresponding sequence-form representation is

a tuple (N,Q,U ′, C), where:

� N is the set of players;

� Q = {Q1, ..., Qn} is the set of sequences of all the players (Qi are

the sequences of player i);

� U ′ = (U ′1, ..., U
′
n) is the set of utility functions, in which Ui :

Q1×Q2× ...×Qn → R is the utility of player i at node ω reached

by a profile of terminal sequences (the payoff is not defined when

the sequence profile contains at least a non-terminal sequence);

� C = {(F1, f1), (F2, f2), ..., (Fn, fn)} is the set of the matrix formu-

lation constraints of all the players.

As an example of sequence form game we will use the one in extensive-

form in Figure 2.1. The players are 1 and 2 (N = {1, 2}). The se-

quences of Player 1 are Q1 = {q∅, L1, R1, R1L2, R1R2, R1L3, R1R3} and

the sequences of Player 2 are Q2 = {q∅, l1, r1}.
The utility matrix U ′1 is:

14

2.2. Game representation form

Player 2

q∅ l1 r1

Player 1
q∅ - - -

L1 3 - -

R1 - - -

R1L2 - 4 -

R1R2 - 6 -

R1L3 - - 2

R1R3 - - 3

The utility matrix U ′2 is:

Player 2

q∅ l1 r1

Player 1
q∅ - - -

L1 1 - -

R1 - - -

R1L2 - 4 -

R1R2 - 1 -

R1L3 - - 4

R1R3 - - 3

As you can see, there a lot of empty spaces due to the fact that not

all the sequence profiles lead to terminal nodes.

The set C contains the strategy constraints of the players. We start

from Player 1, remembering that each column represents a sequence

(the order is in Q1) and each row an information set (the first row

represents the root of game, then 1.1, 1.2 and 1.3). So:

F1 =


1 0 0 0 0 0 0

−1 1 1 0 0 0 0

0 0 −1 1 1 0 0

0 0 −1 0 0 1 1

 f1 =


1

0

0

0

 where r1 =



r1(q∅)

r1(L1)

r1(R1)

r1(R1L2)

r1(R1R2)

r1(R1L3)

r1(R1R3)


The constraints over Player 2 are very similar, there are less rows

and less columns because of the few information sets and sequences:

F2 =

[
1 0 0

−1 1 1

]
f2 =

[
1

0

]
where r2 =

r2(q∅)

r2(l1)

r2(r1)


15

Chapter 2. Preliminaries

Another interesting example is the sequence representation of an

extensive form with moves of Nature player. We are writing the util-

ity function in sequence form for the game represented in Figure 2.3

(we consider α = 0.5). First of all, we start by mention the se-

quence of each player so Q1 = {q∅, L1, R1, L3, R3, R1L2, R1R2} and

Q2 = {q∅, l1, r1, l2, r2, l3, r3}.
The utility matrices are:

U ′1 =



− − − − − − −
1.5 − − − − − −
− − − − − − −
− − − 0 0.5 − −
− − − − − 0 2.5

− 2 1 − − − −
− 3 1.5 − − − −


U ′2 =



− − − − − − −
0.5 − − − − − −
− − − − − − −
− − − 0 1 − −
− − − − − 2 0.5

− 2 2 − − − −
− 0.5 1.5 − − − −


In the cell corresponding to the second row and first column in U ′1,

there is an utility of 1.5. This number is not readable by any terminal

node of the game in Figure 2.3. From where does 1.5 come out? The

spot in the utility matrix is the one that corresponds to q1 = L1 and

q2 = q∅: with this sequence profile we reach the node with payoff (3, 1)

but, in order to reach it, there is a move of Nature with probability

value of 0.5. This move has to be considered in the computation of

utility matrix (and for this reason 3 is multiplied by 0.5).

Also with the sequence-form representation, we can write the ex-

pected utility of a player, defined as follows:

Definition 2.2.11. The expected utility Eq∼r[Ui(q)] returns the ex-

pected value of utility of player i given strategy profile r. The formula

can be written:

Eq∼r[Ui(q)] =
∑
q1∈Q1

∑
q2∈Q2

...
∑
qn∈Qn

r1(q1)r2(q2) · · · rn(qn)Ui(q1, ..., qn)

We should remember that Ui(q) = 0 when the sequence profile q

does not lead to a terminal node.

2.3 Solution concepts

We have not mentioned anything about the optimal strategy, that is a

strategy that maximizes the player’s expected payoff for a given envi-

16

2.3. Solution concepts

ronment in which the agent plays. There are different ways of maxi-

mizing its own utility and we call them solution concepts.

We start from the maxmin solution:4

Definition 2.3.1. The maxmin strategy is argmaxsimins−i
Ui(si, s−i)

for player i, where si and s−i are strategy of player i and of players

N \ {i}. The maxmin value for player i is maxsimins−i
Ui(si, s−i).

We recall also the notion of Nash equilibria, that we define for

simplicity for two players, as reported in [27]:5

Definition 2.3.2. A two-player not-cooperative game in normal form

is a quadruplet (X, Y , f : X × Y → R, g : X × Y → R). A Nash

equilibrium for the game is a pair (x̄, ȳ) ∈ X × Y such that:

� f(x̄, ȳ) ≥ f(x, ȳ) for all x ∈ X;

� g(x̄, ȳ) ≥ f(x̄, y) for all y ∈ Y ;

where X and Y are the strategy spaces of the two players.

A solution concept that generalizes the Nash equilibria is the cor-

related equilibria. A device (an external mediator between players)

draws strategy profile from a known joint probability distribution and

privately communicates them to each player ex ante (so before the

starter of the game). The probability distribution induced an equilib-

rium if each player gets less by deviating, assuming that everyone will

follow the recommendation [11]. The correlated equilibria in normal

form is defined as follow, as reported in [36]:6

Definition 2.3.3. Let X =
∏

i∈N Xi and z ∈ ∆(X) 7 be a distribution

over pure strategy profiles, where z(x̄) denotes the probability of pure

4We remember that the maxmin solution with two-player games can be computed

efficiently in polynomial time. With three or more players, the problem is much more

involved and it does not admit any polynomial-time algorithm. We mention some recent

works in this field: [8, 17, 4]. Furthermore, a variant of the maxmin solution that has

recently received a big attention is the concept of Stackelberg equilibrium [7, 6, 7].
5We recall that computing a Nash equilibrium with two-player games cannot be done

in polynomial time unless the computational class PPAD is included in the computational

class P, but it is unlikely that this holds. We mention some recent results on the compu-

tation of Nash equilibria [9, 21, 20, 33, 15].
6Recent works on the computation of correlated equilibria in extensive-form games are

provided in [14, 10, 12].
7z ∈ ∆(X) is a simplex over X

17

Chapter 2. Preliminaries

strategy x̄ ∈ S. z is a correlated equilibria (NFCE) if and only if

for every player i and strategies r, t ∈ Xi,∑
x̄−i∈X−i

Ui(r, x̄−i) · z(r,x̄−i) ≥
∑

x̄−i∈X−i

Ui(t, x̄−i) · z(r,x̄−i)

If we require that the suggested action is a best response in ex-

pectation before the recommended action is revealed we have a coarse

correlated equilibria.

Definition 2.3.4. z is a coarse correlated equilibria (NFCCE) if

and only if for every player i and strategies t ∈ Xi,∑
x̄∈X

ui(x̄) · z(x̄) ≥
∑

x̄−i∈X−i

pi(t, x̄−i) · z(x̄−i)
−i (2.1)

where z
(x̄−i)
−i =

∑
r∈Xi

z(r,x̄−i) is the marginal probability that the pure

strategy profile sampled by z for players N \ {i} is x̄−i.

It is known that every NFCE is also a NFCCE, as reported in [36].

The concept of correlated equilibria can be adopted even in games

in extensive form. The so-called device, instead of communicate with

players before the beginning of the game, a message to them is sent for

each information set reached during the game [34].

Definition 2.3.5. Given a correlation device µ (so a probability dis-

tribution on set of all strategy profiles), consider the extended game

in which a chance move first selects a strategy profile π according to

µ. Then, whenever a player i reaches an information set h in Hi, he

receives the move c at h specified in π as a signal, interpreted as a

recommendation to play c. An extensive-form correlated equilib-

rium (EFCE) is a Nash equilibrium of such an extended game in

which players follow their recommendation.

Also the definition of coarse correlated equilibria can be extended

in extensive form [18]:

Definition 2.3.6. An extensive-form coarse-correlated equilib-

rium (EFCCE) is similar to EFCE in that each recommended move

is only revealed when the players reach the decision point for which the

recommendation is relevant. However, unlike EFC, the acting player

must choose whether or not to commit to the recommended move be-

fore such a move is revealed to them, instead of after.

18

2.4. Game classes

2.4 Game classes

The games can be classified with respect to their utility functions.

The most famous one is the class of Zero-sum games.

Definition 2.4.1. A zero-sum game is a game in which, for each termi-

nal node ω in the game tree, the following property holds:
∑

i∈N Ui(ω) =

0.

An easy example in normal form is the Rock-Paper-Scissors game.

Two players, each one has to choose simultaneously Rock (R), Paper

(P) or Scissors (S). If both choose the same action there is a tie (0 as

utility for both), otherwise Rock beats Scissors that beats Paper that

beats Rock. When there is no tie, the winner gets 1, the loser −1.

Player 2

R P S

Player 1
R (0,0) (-1,1) (1,-1)

P (1,-1) (0,0) (-1,1)

S (-1,1) (1,-1) (0,0)

We remark that in each spot of the matrix, the sum is equal to 0.

An equivalent class is the one of the constant-sum game.

Definition 2.4.2. A constant-sum game is a game in which, for each

terminal node ω in the game tree, the following property holds:
∑

i∈N Ui(ω) =

constant.

An example in normal form of a constant sum game is the Rock-

paper-Scissors game (shown before) once a constant is added to the

payoffs of each player:

Player 2

R P S

Player 1
R (1,1) (1,1) (2,0)

P (2,0) (1,1) (1,1)

S (1,1) (2,0) (1,1)

Some two-player games can have the following property. For every

change of strategy profile, if a player increases her expected utility, the

other reduces hers. This class of games are called strictly competitive

game. There will be reported the definition in [23]:

19

Chapter 2. Preliminaries

Definition 2.4.3. The two-person game Γ is called strictly competitive

(SC) if for each i, j = 1, 2 i 6= j and for all strategy profile σ′ σ′′, we

have Ui(σ
′
1, σ

′
2) ≥ Ui(σ

′′
1 , σ

′′
2) if and only if Uj(σ

′
1, σ

′
2) ≤ Uj(σ

′′
1 , σ

′′
2).

An example in normal-form is the following:

Player 2

R P S

Player 1
R (3,1) (1,2) (5,0)

P (5,0) (3,1) (1,2)

S (1,2) (5,0) (3,1)

A candidate type of game suitable for our goal are the Unilaterally

Competitive games. They can have more than two players and any uni-

lateral change of strategy take a vantage (disadvantage, respectively)

in terms of utility to her, take a disadvantage (vantage, respectively)

to the others.

Definition 2.4.4. The game Γ is called Unilaterally Competitive (UC)

if for each i ∈ N for all strategy profile σ′i σ
′′
i of player i and σ′−i of player

N \ {i} we have Ui(σ
′′
i , σ

′
−i) ≥ Ui(σ

′
i, σ
′
−i) if and only if Uj(σ

′′
i , σ

′
−i) ≤

Uj(σ
′
i, σ
′
−i), for all j ∈ N , j 6= i.

These classes of game will be studied in detail in Chapter 3.

Another class of game that we will use in the thesis is the one of

the Polymatrix games. In [36], they are defined as follows:

Definition 2.4.5. A Polymatrix game G consists of the following:

� A finite set V = {1, ..., n} of players (sometimes called nodes),

and a finite set E of edges, which are taken to be unordered pairs

[i, j] of players, i 6= j;

� for each player i ∈ V , a finite set of strategies Si;

� for each edge [i, j] ∈ E, a two-person game (pij, pji) where the

players are i,j, the strategy set Si, Sj, respectively, and the payoffs

pij : Si × Sj 7→ R, and similarly for pij;

� for each player i ∈ V and strategy profile s̄ = (s1, ...sn) ∈
∏

j∈V Sj,

the payoff of player i under s̄ is pi(s̄) =
∑

[i,j]∈E p
ij(si, sj)

The Polymatrix games can be represented through a Graph (in

Figure 2.5 we have an example with 4 players) where Ai is the space of

20

2.4. Game classes

A1 A2

A3 A4

U1,3

U1,2

U2,3

U3,4

U2,4

Figure 2.5: Graphical example representation of Polymatrix game: each edge is a two-

player game. Here, player 1 (with a set action A1) plays against player 2 and player 3

but not against player 4.

actions of each player. Any player can play potentially against all the

players and for each game has a different utility function. Every edge

is a two-person game. The player’s strategy is unique, the games are

different.

Finally, we introduce the definition of treeplex [29]:

Definition 2.4.6. A treeplex can be see as a tree whose nodes are sim-

plexes. The tree structure endows the complex with a certain kind of

sequential characteristic. In particular, treeplexes include the types of

polytopes that arise in the computation of Nash equilibria of sequential

games. The class of complexes is recuversely defined as follows:

1. Basic sets: Every standard simplex ∆m := {x ∈ [0, 1]m :
∑k

j=1 xj =

1} is a treeplex.

2. Cartesian product: if Q1, ..., Qk are treeplexes, then Q1× ...×Qk

is a treeplex.

3. Branching: if P ⊆ [0, 1]p and Q ⊆ [0, 1]q are treeplexes and i ∈
{1, ..., p} then:

P i Q := {(x,y) ∈ Rp+q : x ∈ P,y ∈ xi ·Q}

is a treeplex.

21

Chapter 2. Preliminaries

22

Chapter 3

UC games with two players

In this chapter, we study the two-player UC games.

3.1 Characterization in Utility Space

The UC games constitute a class of games where the utilities of players

are somehow restricted. When the number of players is two, a game

is UC if any unilateral change of strategy by one player results in a

increase in that player’s payoff if and only if this change in strategy

results in a decline in the payoffs of the other player. This is not the

same property of SC games and in the next section we will show the

difference.

3.1.1 Zero-sum, Constant-Sum and Strictly Competitive games

The classes of Zero-sum games, the Constant-sum games and SC games

are restricted in their utilities and they follow the same idea of UC

games (when one improves after her strategy change, the others get

less utility).

It is known that a zero-sum game is equivalent to a constant-sum

game (once a constant has been subtracted from the utility of a player)

and any SC game is equivalent to a zero-sum game once an affine

transformation, in principle different for any player, is applied. The

property that defines the SC games is different to the one that defines

the UC games. In fact, in a SC game the relative changes in the

payoffs have to be satisfied for any pair of strategies and not only for

the unilateral changes. The condition in SC games is more restrictive.

Chapter 3. UC games with two players

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Utility Player 1

U
til

ity
 P

la
ye

r
2

Zero−sum games

Figure 3.1: Graphical representation of Zero-sum game’s payoff with two players: the

points lie on U1 + U2 = 0.

●

●

●

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Utility Player 1

U
til

ity
 P

la
ye

r
2

Costant−sum games

Figure 3.2: Graphical representation of Constant-sum game’s payoff with two players

and constant = 2.

In [23], it is claimed that the class of SC games is a subset of the class

of UC games. How these game are represented in the Utility Space?

Given the space of players’ utilities (U1, U2, · · · , Un) in Rn, each

terminal node of a zero-sum game can be mapped as a point in such

a space and all these points lie on a hyperplane
∑

i∈N Ui = 0. All the

points of segment in Figure 3.1 are reachable by mixed strategies.

In a constant-sum game, since they are equivalent to a zero-sum

game, given the space of players’ utilities (U1, U2, ..., Un) in Rn, each

terminal node can be mapped as a point in such a space and all these

points lie on a hyperplane
∑

i∈N Ui = constant. All the points of the

segment in Figure 3.2 are reachable by mixed strategies.

In a two-person SC game, given the space (U1, U2) in R2, each ter-

minal node can be mapped as a point in such a space and all these

24

3.1. Characterization in Utility Space

●

●

●

0 1 2 3 4 5

−
1

0
1

2
3

4

Utility Player 1

U
til

ity
 P

la
ye

r
2

Strictly−competitive game

Figure 3.3: Graphical representation of SC game’s payoff.

points lie on a hyperplane
∑

i∈N αiUi = constant where αi ∈ (0, 1].

Also in this case, the line has negative slope as in Figure 3.3.

3.1.2 Two-player UC games

The characterization idea for UC games is very similar: every change

of strategy of a player has to be represented by a negative line slope.

In this class of games, we do not have a unique line (as in the previous

classes) but a bundle of straight line: each line is a unilateral change

of strategy by one single player while it is fixed the opponents’ strat-

egy. These relative changes in the payoff have to be satisfied only for

unilateral changes and not for all pairs of strategies (as underlined in

[23]).

If all the straight lines have negative slope, we have exactly the

meaning of the definition: the change of strategy of a single player takes

an advantage (disadvantage, respectively) to her and a disadvantage

(advantage, resp.) to the others. This is true because a positive straight

line means an improvement for both player as a consequence of change

of strategy profile (and this is against the definition of UC game).

To verify this condition, we write the utilities of each player in terms

of their mixed strategies and study the rate with respect to the change

of strategy (and this can be done through the analysis of derivative’s

sign). In this chapter, we are studying the case with only two players

so we are requiring that, while a utility of a specific player increases

(decreases, resp.) its value thanks to a change of strategy, the utility of

the other player decreases (increases, resp.). So the derivatives of the

utility function with respect to the strategy profile must have different

25

Chapter 3. UC games with two players

1.1

2.1

(50, 18)

a

(60, 10)

b

A

2.1

(30, 21)

a

(31, 20)

b

B

Figure 3.4: Extensive-form of the Example in 3.1.3.

signs.

An example is shown below.

3.1.3 Example

Let the strategy set of player 1 be X1 = {A,B} and the strategy set

of player 2 be X2 = {a, b}; the payoff matrix is:

Player 2

a b

Player 1
A (50,18) (60,10)

B (30,21) (31,20)

Each player has an unique information set. In Figure 3.4, is shown

the game in extensive form.

We define the mixed strategy of each player. We denote with vari-

able z the probability that player 1 will play action A and the her

strategy is:

σ1 =

{
z A

1− z B

And with variable x the probability that player 2 will play action a

and her strategy is:

σ2 =

{
x a

1− x b

x and z are real numbers contained in [0, 1]. Defining the strategies

in this way helps us in capturing any payoff, given any strategy profile.

26

3.1. Characterization in Utility Space

Once defined the strategies, the utility functions of each player in

terms of mixed strategy are:

U1 = 50xz + 60(1− x)z + 30x(1− z) + 31(1− x)(1− z)

U2 = 18xz + 10(1− x)z + 21x(1− z) + 20(1− x)(1− z)

Now, we study how the unilateral change of strategies affects the

utility function in terms of increasing and decreasing their payoff. To

do this, we study the derivative of U with respect to x and z. In fact,

the derivative is the measure of the increase (or decrease) owing to the

change of strategy. We are interested only on its sign.

First of all, we analyse the derivative of U1 with respect to z: study

this derivative means study how the change of strategy in terms of

increasing the probability of play A by player 1 affects her own utility

while player 2 fixes her strategy. If the derivative is positive, it means

that the change of strategy improves her utility, if it is negative she

gets worse. The same computation has to be done for U2 with respect

to z.

If a game is UC, we expect to have derivatives of opposite sign for

the two players while they are referring to the same derivation variable.

If they have the same sign, this means that, owing to a change of

strategy of one specific player, both increase or decrease their utility

(increase if both positive, decrease if both negative).

We compute them, starting from variable z for the first player we

have:

∂U1

∂z
= 50x+ 60(1− x)− 30x− 31(1− x) =

= 50x+ 60− 60x− 30x− 31 + 31x = −9x+ 29

and for the second player:

∂U2

∂z
= 18x+ 10(1− x)− 21x− 20(1− x) =

= 18x+ 10− 10x− 21x− 20 + 20x = 7x− 10

Fixed x and for any of its possible value, ∂U1

∂z
is positive and ∂U2

∂z
is

negative. So, after a change of strategy by Player 1, one improves her

utility and the other not. In Figure 3.5, it is represented the unilateral

27

Chapter 3. UC games with two players

30 35 40 45 50 55 60

10
12

14
16

18
20

22

Utility Player 1

U
til

ity
 P

la
ye

r
2

Strategy of player 2 is fixed

x=0
x=1/3
x=2/3
x=1

Figure 3.5: This picture represents the utility payoff of games, when player 2’s strategy

is fixed. For a better representation, we put only some value of x: the straight lines

have negative slope.

28

3.1. Characterization in Utility Space

change of strategy of Player 1 for different value of x. It is clear that

all the lines have negative slope.

Now, we should verify the condition also for the change of strategy

of Player 2 and so we compute the derivative of U1 and U2 with respect

to x:

∂U1

∂x
= 50z − 60z + 30(1− z)− 31(1− z) =

= 50z − 60z + 30− 30z − 31 + 31z = −9z − 1;

∂U2

∂x
= 18z − 10z + 21(1− z)− 20(1− z) =

= 18z − 10z + 21− 21z − 20 + 20z = 7z + 1;

Fixed z and for any of its possible value, ∂U2

∂x
is positive while ∂U1

∂x

is negative. The graphical representation is on Figure 3.6 and the

interpretation is the same of the previous case (all lines have negative

slope).

Now, we want to show a counterexample that can be easily mistaken

with a UC game but it is not. We will show why.

We have the same action space of the previous example but U1

and U2 are different. In Figure 3.7 it is represented in extensive form

representation, while in the normal-form is:

Player 2

a b

Player 1
A (10,20) (12,10)

B (9,24) (7,26)

Looking at the pure strategies, the game seems UC. For example,

consider that Player 2 will play b and Player 1 changes from B to A:

the latter will improve her utility (from 7 to 12) while the other will

get worse (from 26 to 10). The same argument can be repeated for the

other pure strategies.

Taking the same mixed strategy profile for each player of the pre-

vious example, the utility functions are:

U1 = 10xz + 9x(1− z) + 12z(1− x) + 7(1− z)(1− x)

U2 = 20xz + 24x(1− z) + 10z(1− x) + 26(1− z)(1− x)

29

Chapter 3. UC games with two players

30 35 40 45 50 55 60

10
12

14
16

18
20

22

Utility Player 1

U
til

ity
 P

la
ye

r
2

Strategy of player 1 is fixed

z=0
z=1/3
z=2/3
z=1

Figure 3.6: This picture represents the utility payoff of games, when Player 1’s strategy

is fixed. For a better representation, we put only some value of z. The straight lines

have negative slope.

30

3.2. Modularity between two games

1.1

2.1

(10, 20)

a

(12, 10)

b

A

2.2

(9, 24)

a

(7, 26)

b

B

Figure 3.7: Counterexample in Section 3.1.3.

The game is not UC because of the following strategy profile: sup-

pose Player 1 plays (1
3
,2
3
) while Player 2 moves from profile (1

3
,2
3
) to

(1
2
,1
2
). In the first scenario, the payoff is (80

9
, 64

3
) while in the second

one is (9, 65
3

): these last values are both greater than the first ones so

we have found a strategy profile that is in contradiction with the defi-

nition of UC. The graphical representation in utility space is on Figure

3.8. This is sufficient to prove the non-unilaterally competitive of the

game.

It is also interesting see the geometrically representation in Utility

space (Figure 3.9) for more values of x. Graphically, it is clear that

there are a lot of positive slope lines and so, a changing of strategy of

Player 2 for some specific value of Player 1’s strategy, take an increase

of payoff for both players.

3.2 Modularity between two games

The previous method is not easy to verify and we are looking for some

easier and more immediate properties in order to verify that a game is

UC. One is the Modularity between two games : taking two games with

same restriction in utility function, we unify them through a node of

Nature, do they preserve the payoff matrix constraints?

31

Chapter 3. UC games with two players

8.90 8.92 8.94 8.96 8.98 9.00

21
.3

5
21

.4
0

21
.4

5
21

.5
0

21
.5

5
21

.6
0

21
.6

5

Utility Player 1

U
til

ity
 P

la
ye

r
2

●●

●

y=1/3
y=1/2

Figure 3.8: This is the representation of the positive slope line in the change of strategy

of Player 2 from (1
3 , 23) to (1

2 , 12).

0 5 10 15 20

0
5

10
15

20
25

30

Utility Player 1

U
til

ity
 P

la
ye

r
2

x=0
x=0.1
x=0.2
x=0.3
x=0.4
x=0.5
x=0.6
x=0.7
x=0.8
x=0.9
x=1

Figure 3.9: Graphical representation of different strategy profiles of Player 2: it is clear

that in the rate from 0 to 1 there are some positive slope lines.

32

3.2. Modularity between two games

Let define two general games (Γ1 and Γ2) with two players and a

strategy set of two actions for each one described by:

Γ1 :

Player 2

r1 s1

Player 1
R1 (a11,b11) (a12,b12)

S1 (a13,b13) (a14,b14)

Γ2 :

Player 2

r2 s2

Player 1
R2 (a21,b21) (a22,b22)

S2 (a23,b23) (a24,b24)

We denote with U11 and U12 the utility matrices of player 1 and

player 2 regarding the game Γ1 and U21 and U22 regarding Γ2. The

action space of player 1 and player 2 in Γ1 is X1 and Y1 respectively. In

Γ2 the spaces are X2 for player 1 and Y2 for player 2. The probability

given by the Nature is α for the first game and 1−α for the other one.

First of all, we need to understand the meaning of Modularity. We

can identify two cases.

The first one is when the action’s space are equal between Γ1 and

Γ2 (X1 ≡ X2 and Y1 ≡ Y2). The payoff matrix is a weighted sum

between the utility matrices of games. In Figure 3.10, the extensive-

form representation while in the following the normal-form (we remove

the subscript by calling, for sake of simplicity, S instead of S1 and S2

and the same for R):

Player 2

r s

Pl.1

R (αa11 + (1− α)a21, (αa12 + (1− α)a22,

αb11 + (1− α)b21) αb12 + (1− α)b22)

S (αa13 + (1− α)a23, (αa14 + (1− α)a24,

αb13 + (1− α)b23) αb14 + (1− α)b24)

The second case is when the actions’ space between games are not

equal. So the the root of the game (in extensive form) is a Nature

node that gives a probability α to play game Γ1 and 1− α to play Γ2,

with α ∈ [0, 1] (as shown in Figure 3.11). In this way, we are going

to modify the action’s space of each player: after the combination, the

actions’ space of each player is the Cartesian product of the previous

ones (so X = X1 ×X2 and Y = Y1 × Y2).

33

Chapter 3. UC games with two players

Nature

1.1

2.1

(a11,b11)

r

(a12,b12)

s

R

2.1

(a13,b13)

r

(a14,b14)

s

S

α

1.1

2.1

(a21,b21)

r

(a22,b22)

s

R

2.1

(a23,b23)

r

(a24,b24)

s

S

1− α

Figure 3.10: Composition of a game when the actions’ spaces of the players coincide.

Nature

1.1

2.1

(a11,b11)

r1

(a12,b12)

s1

R1

2.1

(a13,b13)

r1

(a14,b14)

s1

S1

α

1.2

2.2

(a21,b21)

r2

(a22,b22)

s2

R2

2.2

(a23,b23)

r2

(a24,b24)

s2

S2

1− α

Figure 3.11: Composition of a game when the actions’ spaces of the players do not

coincide beetween games.

34

3.2. Modularity between two games

This way of combining two games is representable in normal form

with the following utility matrix:

Player 2

r1r2 r1s2 s1r2 s1s2

Pl.1

R1R2 (αa11 + (1− α)a21, (αa11 + (1− α)a22, (αa12 + (1− α)a21, (αa12 + (1− α)a22,

αb11 + (1− α)b21) αb11 + (1− α)b22) αb12 + (1− α)b21) αb12 + (1− α)b22)

R1S2 (αa11 + (1− α)a23, (αa11 + (1− α)a24, (αa12 + (1− α)a23, (αa12 + (1− α)a24,

αb11 + (1− α)b21) αb11 + (1− α)b24) αb12 + (1− α)b23) αb12 + (1− α)b24)

S1R2 (αa13 + (1− α)a21, (αa13 + (1− α)a22, (αa14 + (1− α)a21, (αa14 + (1− α)a22,

αb13 + (1− α)b21) αb13 + (1− α)b22) αb14 + (1− α)b21) αb14 + (1− α)b22)

S1S2 (αa13 + (1− α)a23, (αa13 + (1− α)a24, (αa14 + (1− α)a23, (αa14 + (1− α)a24,

αb13 + (1− α)b23) αb13 + (1− α)b24) αb14 + (1− α)b23) αb14 + (1− α)b24)

3.2.1 Zero-sum games

If Γ1 and Γ2 are zero-sum games, is the combination of the two games

a zero-sum game? In other words, does the combination of the two

games preserve the property? We study the answers at these questions

in both cases.

Considering the first case. Each outcome is at zero-sum: in fact,

each node of game Γ1 is U11 + U12 = 0 and for each node of game Γ2

we have U21 + U22 = 0. Also the convex combination of them:

α · (U11 + U12) + (1− α) · (U21 + U22) = α · 0 + (1− α) · 0 = 0

is equal to 0.

Also in the second case it remains a zero-sum game because we

are combining through a weighted average two results that summed

together are at zero-sum. More specifically, let consider the sum of a

general payoff of the previous utility function:

α · a1j + (1− α) · a2i + α · b1j + (1− α) · b2i =

= α(a1j + b1j) + (1− α)(a2i + b2i) =

= α · 0 + (1− α) · 0 = 0

for any value of α from 0 to 1. So the combination of two different

zero-sum games is a zero sum game since all the spots in the utility

matrix have sum at zero.

35

Chapter 3. UC games with two players

3.2.2 Constant-sum games

And what if the Γ1 and Γ2 are constant-sum games? Suppose K1 and

K2 the constants of the Γ1 and Γ2.

If K1 = K2, it is trivial because the case is very similar to the zero

sum case.

If K1 6= K2, the new game is a game with constant αK1 +(1−α)K2.

For what concerns the first case, in each node of Γ1 we have U11 +

U12 = K1 and in each node of Γ2 we have U21 + U22 = K2: also the

convex combination of them (α · (U11 + U12) + (1− α) · (U21 + U22)) is

equal to a constant (that is α · (K1) + (1− α) · (K2)).

For the second case, for each terminal node ω we can say:∑
j=1,2

∑
i∈N

Uij(ω) = constant⇒α · a1i + (1− α) · a2j + α · b1i + (1− α) · b2j =

= α · (a1i + b1i) + (1− α) · (a2j + b2j) =

= α · (K1) + (1− α) · (K2) = constant

So:

constant = α · (K1) + (1− α) · (K2)

3.2.3 Strictly Competitive games

Arguing about combination of SC games, it is less immediate. We know

that (from [22]), mathematically, a game (A,−B) (where A and −B
are the payoffs of the players) is strictly competitive if for any two pairs

of mixed strategies (x, y) and (x′, y′), xTAy−x′TAy′ and xTBy−x′TBy′
have the same sign: the characterization is that B is an affine variant

of A, so there exist some λ > 0 and µ real number such that:

B = λA+ µU

where U is a matrix of 1.

For simplicity, we suppose that each player has two actions and the

payoffs for Γ1 are (A1,−B1), defined as follows:

A1 =

r1 s1

R1 a11 a12

S1 a13 a14

B1 =

r1 s1

R1 b11 b12

S1 b13 b14

36

3.2. Modularity between two games

And for Γ2 are (A2,−B2), defined as follows:

A2 =

r1 s1

R1 a21 a22

S1 a23 a24

B2 =

r2 s2

R2 b21 b22

S2 b23 b24

for Γ2.

If these two games are SC, there exist λi and µi such that: Bi =

λiAi + µiU for i = 1, 2.

If the players have the same action’s space in the two games, it is

necessary arguing about the payoff matrices, that are:

Aα = αA1 + (1− α)A2

Bα = αB1 + (1− α)B2

If there exist λα and µα such that:

Bα = λαAα + µαU

also the composition of two games is a SC game. We do some compu-

tation:

Bα = αB1 + (1− α)B2 = α(λ1A1 + µ1U) + (1− α)(λ2A2 + µ2U) =

= λ1(αA1 + (1− α)
λ2

λ1

A2) + (αµ1 + (1− α)µ2)U

So, if λ1 = λ2, the composition of two SC games is an SC game and

λα = λ1

µα = αµ1 + (1− α)µ2

If we are in second case, the payoff matrix A of player 1 is:

Player 2

r1r2 r1s2 s1r2 s1s2

Pl.1

R1R2 αa11 + (1− α)a21 αa11 + (1− α)a22 αa12 + (1− α)a21 αa12 + (1− α)a22

R1S2 αb11 + (1− α)b23 αa11 + (1− α)a24 αa12 + (1− α)a23 αa12 + (1− α)a24

S1R2 αa13 + (1− α)a21 αa13 + (1− α)a22 αa14 + (1− α)a21 αa14 + (1− α)a22

S1S2 αa13 + (1− α)a23 αa13 + (1− α)a24 αa14 + (1− α)a23 αa14 + (1− α)a24

And the payoff matrix of Player 2 is −B, where B is:

Player 2

r1r2 r1s2 s1r2 s1s2

Pl.1

R1R2 αb11 + (1− α)b21 αb11 + (1− α)b22 αb12 + (1− α)b21 αb12 + (1− α)b22

R1S2 αb11 + (1− α)b21 αb11 + (1− α)b24 αb12 + (1− α)b23 αb12 + (1− α)b24

S1R2 αb13 + (1− α)b21 αb13 + (1− α)b22 αb14 + (1− α)b21 αb14 + (1− α)b22

S1S2 αb13 + (1− α)b23 αb13 + (1− α)b24 αb14 + (1− α)b23 αb14 + (1− α)b24

37

Chapter 3. UC games with two players

So, a general outcome in A is:

α · a1j + (1− α) · a2i

and a general outcome in B is:

α · b1j + (1− α) · b2i

where i and j are natural numbers from 1 to 4.

We know, since Γ1 and Γ2 are SC games, that there exist λ1 and µ1

such that b1j = λ1a1j + µ1 and λ2 and µ2 such that b2j = λ2a2j + µ2.

So:

α · b1j + (1− α) · b2i =

=α · (λ1a1j + µ1) + (1− α) · (λ2a2j + µ2) =

=λ1(α · a1j + (1− α)
λ2

λ1

a2i) + αµ1 + (1− α)µ2

Also in this case the composition between different games preserves

the property if λ1 = λ2 and:

λα = λ1

µα = αµ1 + (1− α)µ2

Finally, only a little class of SC game can be composed by Nature

in a stochastic way and its composition is a SC game too.

3.2.4 UC games: counterexample

In fact, in general, the composition of two UC games is not an UC

game and now we show a counterexample.

We compose through nature, two UC games with the same action

space (one sub-game is the one that we see in Section 3.1.3):

The game linked to the move with probability p is a UC game and

the game linked to the move with probability 1−p too. The modularity

is not UC. In fact, considering p = 0.5 and as first scenario player 1

plays A and player 2 plays a. Their utility functions are:

U1 = 50p+ 50(1− p) p=0.5−−−→ 50

U2 = 18p+ 46(1− p) p=0.5−−−→ 32

38

3.3. Perturbation of a zero-sum game

Nature

1.1

2.1

(50,18)

a

(60,10)

b

A

2.1

(30,21)

a

(31,20)

b

B

p

1.1

2.1

(50,46)

a

(60,16)

b

A

2.1

(55,31)

a

(52,40)

b

B

1− p

Figure 3.12: Extensive representation of the counterexample.

If player 1 decides to change her strategy and play B (instead of A),

the utility functions of the players are:

U1 = 30p+ 55(1− p) p=0.5−−−→ 42.5 [< 50]

U2 = 21p+ 31(1− p) p=0.5−−−→ 26 [< 32]

So both players have less utility, so this is not a UC game.

3.2.5 Decomposability

If we decompose a game into two games, these new games preserve the

property of the ”total” game? A zero-sum game can be decomposed

into two zero-sum games? About zero-sum and constant-sum games

the answer is obvious and it is yes. About SC and UC games the answer

is yes, since we are restricting the constraints about the strategy. So,

if the property holds in a bigger group of constraints, it continues to

hold in a more restricted group.

3.3 Perturbation of a zero-sum game

Since composing together two UC games gives not a UC Games, we

would like to understand how to obtain a UC game. If we start from

a game that is zero-sum, with x1, x2 and x3 known, which properties

has to have x4 in order to obtain a UC game?

39

Chapter 3. UC games with two players

●

●

●

●

−2 −1 0 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Utility Player 1

U
til

ity
 P

la
ye

r
2

Initial situation

Figure 3.13: Graphical representation of example payoff.

Player 2

a1 b1

Player 1
A1 x1 x2

B1 x3 x4 ?

In order to obtain a zero-sum game, it is obvious that the outcome

x4 should lie on the bisector of the second and the fourth quarter.

What we can looking for is, more in general, try to understand which

condition the unknown payoff x4 has to respect in order to have a SC

or a UC game. We can start with the following example:

a b

A (0, 0) (1,−1)

B (−1, 1) (−2, 2− ε)

In Figure 3.14 there is the graphical representation and how to ε

effects the payoff.

Therefore, we perturbate one payoff of one player of a zero-sum

game. Is it still a zero-sum game? No. Is it a UC game? No and we

are going to show a strategy profile that is a counterexample: suppose

that Player 1 plays indifferently A or B (so her profile is (1/2, 1/2))

and we denote with p the probability of action b to be played and 1−p

40

3.4. Add a player

●

●

●

●

−2 −1 0 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Utility Player 1

U
til

ity
 P

la
ye

r
2

pertubation

Figure 3.14: It is the game in the example but with the payoff (−2, 2− ε) perturbed.

the probability of action a. The utilities of each player are:

U1 =
1

2
p− 1

2
(1− p)− 2(

1

2
p) = −1

2

U2 = −1

2
p+

1

2
(1− p) +

1

2
p(2− ε) =

1

2
− εp

2
=

1

2
(1− εp)

The utility of Player 1 is constant while the Player 2’s utility can

increase or decrease changing the value of p. There is no unilateral

change.

Another example is that player 1 plays (1
3
, 2

3
). So:

U1 =
1

3
p− 2

3
(1− p)− 4

3
p = −2

3
− 1

3
p

U2 = −1

3
p+

2

3
(1− p) +

2

3
p(2− ε) =

2

3
+ p(

1

3
− 2

3
ε)

And it is clear that increasing p does not take to a unilateral change of

payoff (with ε small enough).

3.4 Add a player

In this section we want to extend the number of players of this class of

games.

41

Chapter 3. UC games with two players

To do that, we start from a two-player Strictly Competitive Game

and we add a dummy player to it. A dummy player is a player with

no action that participates to the game without doing anything. How

the utility of the third player has to be in order to have a UC game?

The answer is that it is not possible build that type of game, especially

when there is no dominated actions.

Let see this through an example.

The initial SC game is the following one:

Player 2

a b

Player 1
A (1,2) (0,4)

B (0,4) (2,0)

The third player is dummy so she has no action and the game, in

three-player version, is:

Player 2

a b

Player 1
A (1,2,x) (0,4,y)

B (0,4,z) (2,0,w)

where we just add the payoff of the third player to the existing one.

Which values of x, y, z and w are valid in order to make the SC

game into an UC game?

First of all, let see the pure strategy profiles. Suppose player 1 will

play B: if player 2 moves from playing a to playing b, she is reducing

her utility (while player 1 is improving). Also player 3 has to improve

her utility so z < w. For the same reason, y < x while player 1 plays

A. Now, suppose that player 2 will play b and player 1 changes from A

to B. Since player 1 will improve her utility, both players 2 and 3 have

to decrease their utility so 0 < 4 and w < y. So the following chain is

formed:

z < w < y < x (3.1)

But z has to be greater than x: in fact, if Player 2 plays a and Player

1 switch from A to B, the latter is losing utility and so Player 2 and

3 have to gain from this change. So z > x but this is a contradiction

with Equation 3.1.

So we cannot construct, from a two-person SC game, a UC game

even if the third player is dummy.

42

3.4. Add a player

One of the goal is find classes of game solvable computationally

easily. Initially we thought that the only class was the one of the UC

games. But the games of this class are very hard to find. Also in

[35] it is claimed that the competitive property is very restrictive when

randomized strategies are permitted.

43

Chapter 3. UC games with two players

44

Chapter 4

Poly Sequence-Matrix

Games

In this chapter we will present a class of game suitable for our goal

with a generic number n of players.

4.1 Definition

We have to find and see if there is a class of game with a general number

of players.

A zero-sum game with more than two players is something with

no meaning. In fact, consider a game with a generic number n − 1 of

player: it can be easily transformed in a zero-sum game by taking the

nth player dummy and with payoff, for each terminal node ω, equals to

−
∑

1≤i≤n−1 Ui(ω).

We can look for the zero-sum Polymatrix games. A normal-form

game has a utility matrix that is a tensor with dimension equal to

the number of players. If we are considering a Polymatrix game, the

dimensionality of utility matrix is reduced since, instead of a tensor,

we have a list of two-dimension matrices.

We introduce the following class of games:

Definition 4.1.1. A Poly sequence-matrix game G consists of the

following:

� A finite set V = {1, . . . , n} (where n ∈ N) of players and a collec-

tion of treeplexes for each one;

� for each player i ∈ V , a finite set of sequence strategy ri;

45

Chapter 4. Poly Sequence-Matrix Games

� A finite set E of unordered pairs [ij] with i 6= j and a collection

of sparse utility functions {Uij}[ij]∈E;

� For each player i and strategy profile r∗ = (r1, ..., rn), the payoff

of player i under r∗ is pi(r
∗) =

∑
[i,j]∈E Uij(ri, rj);

Furthemore G is zero-sum game if for all strategy profiles r∗ = (r1, ..., rn),∑
i∈V pi(r

∗) = 0.

A treeplex defines the order and the sequences of each player. A

polymatrix game is a list of two-player games: the idea is the same so

a player plays against not all the players (just a few) and the list of

two-player games is contained in E. Each player will play the same

strategy in each game.

Now we ask if the Poly sequence-matrix game is a unique game. If

yes, we should able to extend it as a unique game in extensive-form

game: the resulting tree has to have the property for which, in each

path from the root of the game to a terminal node, it plays at most

two players and Nature.

The idea is something similar to the one in Figure 4.1.

Nature

1.1

x1

A

2.1

x2

a

x3

b

B

p

3.1

2.1

x4

a

x5

b

α

2.1

x6

a

x7

b

β

q

3.1

2.2

x8

c

x9

d

α

2.3

x10

e

x11

f

β

1− p− q

Figure 4.1: Each payoff xi is reachable from information sets of at most two players.

As a real-world scenario, we can imagine a multinational corpora-

tion that has to decide his economic strategy in different countries. For

a sake of simplicity, suppose that in each country can co-exist at most

two companies that produce a specific item. Suppose there are 3 coun-

tries (for example, Italy, Brazil and US). In each one of these countries,

there is a national company that produces the item made also by the

46

4.2. Algorithms that maps a poly sequence-matrix game into a tree

multinational corporation. The multinational company is in competi-

tion in these countries against each one of the national company but

they have to decide a unique strategy (that is the business plan). The

Italian company is not influenced in what happens in US and Brazil:

the same applies for the others national companies.

In order to prove that playing a poly sequence-matrix game is equiv-

alent to playing a unique extensive-form game, we need to find an algo-

rithm that maps a representation of game into the other representation

type of game in equivalent way. It is what we will do in the continuation

of the chapter.

4.2 Algorithms that maps a poly sequence-matrix

game into a tree

4.2.1 Finding a poly sequence-matrix games

First of all, we want to be able to obtain the treeplex of player, knowing

her strategy constraints (Fi, fi) from a sequence representation. Here

it is presented the algorithm:

Algorithm 1 From Matrix to Treeplex

1: procedure From Matrix to Treeplex(Fi, fi)

2: Check the feasibility of (Fi, fi)

3: for all row of Fi do

4: the column-sequence with -1 correspond to the one father-node

(call it P)

5: the column-sequence with 1 correspond to the one son-node (call

them S = (S1, S2, ...))

6: generate sons S from parent P (as in figure 4.2)

Some comments about the algorithm: with feasibility of matrix and

vector, we mean the property that Fi and fi have to have in order to

respect a strategy profile Firi = fi. The tree structure of each player

has to be in perfect recall in such a way as to be able to built the order

of the sequence.

47

Chapter 4. Poly Sequence-Matrix Games

P

N

S1 S2

Figure 4.2: Representation of how from a node can be generated the son nodes in a

treeplex.

4.2.2 Mapping any poly sequence-matrix game into an extensive-

form game

In order to prove that playing a poly sequence-matrix game is equiva-

lent to play a unique extensive-form game, we need to find an algorithm

that map a representation of game into the other representation of

game. We start from casting a two-player game into an extensive-form

game. This initial work will be used then for the poly sequence-matrix

games with more than two players.

As input we have a poly sequence-matrix game. We know that a

treeplex defines the sequences of each player. We should also have an

element called ”layout”: given two sequences of two different players,

”layout” defines the order of information sets. Moreover we will use a

Pointer: for each payoff of matrix U , we go through the tree from root

to the leaf. The pointer is useful because it is a way to add nodes and

actions to the tree. Every movement of the pointer stops on a Nature

Node (it is useful in the case a sequence takes to a leaf but it is not

necessarily a terminal sequence).

Here the algorithm:

48

4.2. Algorithms that maps a poly sequence-matrix game into a tree

Algorithm 2 From Poly sequence To Extensive Form

1: procedure From Poly sequence To Extensive Form(treeplex1,

treeplex2,U12,layout12)

2: T = {} . T is the tree of the extensive game

3: N = root node . A Nature Node

4: T = T + AddRoot(N)

5: for all row i of U12 do

6: for all column j of U12 do

7: if U12[i, j] 6= ∅ then
8: seq1 = seq(i)

9: seq2 = seq(j)

10: P = path(seq1, seq2) . layout12 is needed

11: pointer = root of T . pointer starts from the root

12: for all action a ∈ P do

13: info = information set of action a

14: if pointer can go on node info then

15: Move pointer on action a after info

16: else

17: createinfoset(info, a)

18: Move pointer on action a after info

19: if a is the last action of path P then

20: Add a move of Nature from pointer and put U12[i, j]

as the payoff of the leaf

21: Add 0 to the missed leaves

22: For each Nature node, if there is only one outgoing move, cut it and

unify

23: Link all the nodes that belongs to the same information set

24: Return T

When we said that ”pointer can go on node info” we mean that a

node that belongs to information set info is reachable by the pointer:

if yes, the pointer can go on it from its position, if not we have to add

the a node that belongs to information set info from the position of

the pointer.

Adding 0 to the missed leaves means that the algorithm can generate

some uncompleted information sets: thanks to the sparse matrix U , at

the end of for-cycle, it is not necessary true that all the information

sets in the tree have all the outgoing actions. So we have to add them

in order to have a well-defined tree. Since every path has to take to a

49

Chapter 4. Poly Sequence-Matrix Games

terminal node, we call these added leaves as payoff 0. We say 0 but can

be also −M (with M big enough). It is necessary that these terminal

nodes are not considered as a solution, because are not-defined nodes.

We provide an example to understand this phenomena. Suppose

that player 2 has only one sequence (the empty one), and player 1 has

the following treeplex:

1 2

Figure 4.3: Treeplex of player 1.

so the sequences of player 1 are Q1 = {∅, 1, 2}. The utility matrix

is:

Player 2

∅ a b

Player 1 ∅ - x1 -

Following the algorithm, the output after the for-cycle through the

row and columns of U is in Figure 4.4.

N

1.1

x1

1

Figure 4.4: Output after the for-cycle

The game tree cannot have this form. In fact, the information set

of player 1 is uncompleted and, in order to obtain a valid game, all the

information set’s actions have to be present at the game. So a payoff

0 has to be add at the game and at move corresponding to action 2.

So the resulting game is shown in Figure 4.5 (and we cut all the

redundant nature moves).

50

4.2. Algorithms that maps a poly sequence-matrix game into a tree

1.1

x1 0

1 2

Figure 4.5: Final output of counterexample.

From the previous example, it is clear that, if the utility matrix

defines completely a game, not any U can be a representation of a

well-defined two-person game in extensive-form.

The U matrix has to have some properties in such a way that all

the information sets in the generated tree are complete. Practically,

verifying this property is very complex. In fact, for each payoff in the

matrix, it has to be verify that one of all the possible combinations

of payoff that realize a well-defined game is present on the game. In

the previous example, since there is x1, also a payoff in (∅, 2) has to be

present. The example is simple and immediate but if there is a treeplex

with more than one level, this condition is really difficult to be checked.

In fact, for each payoff in the matrix, every possible combination of

other payoffs (in such a way to have a well-defined game) has to be

found and it has to be verified that one of them is in the matrix. This

is too complex and not useful.

So it is not true that any U of a two-player game and any treeplex

represents a game in extensive form. We can construct the tree only

if we add a-posteriori the leaves with payoff 0. In the following we are

going to propose a different solution.

4.2.3 Another point of view

We can try to see the problem from another point of view. In fact,

we can try to build the game tree starting from the full payoff matrix:

”full” means that every combination of sequences of the two players,

correspond to a payoff. Once we get the tree with all the results, we

can start to pruning the tree in such a way to cut and delete the not-

defined parts. The Nature will do the role of generating sub-games so

the distribution probability of outgoing moves will be uniform (if there

are N outgoing moves, the probability will be 1
N

for each move).

So we should find an algorithm that firstly will build the tree from

a complete matrix, and then a pruning algorithm.

51

Chapter 4. Poly Sequence-Matrix Games

Constructing a tree from a full matrix

We start from constructing a tree with all the possible results. We can

see the Nature’s move as something that, with a positive probability,

activates a sub-game and with 0 probability disables a sub-game.

Algorithm 3 Get Full tree

1: procedure Get full tree(treeplex1, treeplex2,U12)

2: T = {}
3: N = root node

4: T = T + AddRoot(N)

5: InformationSetDrawn = []

6: for all row i of U12 do

7: for all column j of U12 do

8: seq1 = seq(i)

9: seq2 = seq(j)

10: I = info(seq1, seq2) . list of inf.sets met by the two sequences

11: if I ∈ InformationSetDrawn then

12: Go to the leaf that corresponds to seq1 ∪ seq2

13: Call p the value of probability met from the root to ω

14: Put as leaf 1
pU12[i, j]

15: else

16: From root, draw a Nature’s move with probability piI
17: From that move, draw all the information sets with all the

outgoing moves of sequence seq1 ∪ seq2

18: Go to the leaf that corresponds to seq1 ∪ seq2

19: Put as leaf 1
piI
U12[i, j]

20: Put I in InformationSetDrawn

21: For each Nature node, if there is only one outgoing move, cut it and

unify.

22: From each Nature node, equalize the outgoing moves with the same

probability.

23: Link all the nodes that belong to the same information set

Before going into a concrete example, we underline the role of set

InformationSetDrawn: it is a way to put all together the terminal nodes

reachable by the same information sets (but different actions). This is

a convenient way of representing sub-games. In the next example, the

benefit will be more clear.

52

4.2. Algorithms that maps a poly sequence-matrix game into a tree

Example

Suppose we have two treeplexes as in Figure 4.6.

1 2 a b

Figure 4.6: Treeplexes of player 1 and player 2.

Each player has a unique information set (1.1 and 2.1). From them,

we obtain the sequences: Q1 = {∅, 1, 2} and Q2 = {∅, a, b}. We con-

struct the utility matrix: any row corresponds to a sequence of player

1, any column to the one of player 2. The resulting full matrix is:

Player 2

∅ a b

Player 1

∅ x0 x1 x2

1 x3 x4 x5

2 x6 x7 x8

Now, we apply the algorithm:

Step 0 T is the tree, initially empty. N is the root of the game.

Step 1: We start from reading the utility matrix U . In the first

row and first column we read x0. The two correspondent sequences are

(∅, ∅) and there are no information set needed to reach x0. So, from

node N , a move of Nature is drawn with probability p1 (Figure 4.7).

Step 2: Now we can go to the next column so we read x1 and the

two correspondent sequences are (∅, a): the information set is 1.1. It is

the first time that we meet it. So, from root N we draw a Nature’s move

(with probability p2) and from this move we draw all the information

sets of (∅, a) (so only 1.1) and we attack x1 to the correspondent leaf

multiplied by 1
p2

. We add 1.1 in the list InformationSetDrawn, useful

to have memory of which information sets are present and which not.

N

1
p1
x0

p1

Figure 4.7: Step 1.

53

Chapter 4. Poly Sequence-Matrix Games

N

1
p1
x0

2.1

1
p2
x1

p1 p2

a b

Figure 4.8: Step 2.

N

1
p1
x0

2.1

1
p2
x1

1
p2
x2

p1 p2

a b

Figure 4.9: Step 3.

From Figure 4.8 you can see that, after action b, there is no payoff:

with the following step we will fill that spot.

Step 3: In fact, we can go to the next column and we read x2: the

corresponding sequences are (∅, b) and the information set is 2.1 and

we already have it in our tree (InformationSetDrawn = {[∅], [2.1]}).
The probability to go in the single information set 2.1 is p2. We go

in the corresponding leaf and attach the payoff x2 multiplied by 1
p2

(Figure 4.9).

Step 4: all the elements of the first row have been read so we can go

to the second one. We read x3 and the sequence profile is (1, ∅). The in-

formation set is only 1.1, that is not in the set InformationSetDrawn:

we draw it from the root and we add x3 with the corrective factor to

the corresponding spot (Figure 4.10).

Step 5: In the following column we read x4: the sequences are (1, a)

and the information sets met to reach the node are 1.1 and 2.1. The

set InformationSetDrawn is composed by {∅, [2.1], [1.1]}: separately,

the information sets 1.1 and 2.1 are in the list but not as a couple.

So, in order to make the moves of Nature something that active or

deactivate sub-games, we drawn from the root N a move of Nature

with probability p4 that take to the sub-game with simultaneous actions

54

4.2. Algorithms that maps a poly sequence-matrix game into a tree

N

2.1

1
p2
x1

1
p2
x2

1
p3
x3

1.1

1
p1
x0

p1
p2

p3

a b 1 2

Figure 4.10: Step 4.

N

1
p1
x0

p1

2.1

1
p2
x1

a

1
p2
x2

b

p2

1.1

1
p3
x3

1 2

p3

1.1

2.1

1
p4
x4

a b

1

2.1

a b

2

p4

Figure 4.11: Step 5.

with the two information sets already mentioned. Then we fill the spot

(1, a) with x4 (Figure 4.11). Since insert the other payoffs is similar to

the previous steps, we go directly to the end of for-cycle.

Final for-cycle step: when we finish to read the utility matrix,

the tree is presented as in Figure 4.12.

Final step: The last step is cut the single outgoing moves of Nature

(and the only Nature node has four moves so we do nothing) and we

connect all the node that belong to the same information set. Moreover,

the only Nature node is the root that is connected to four nodes: so

p1 = p2 = p3 = p4 = 1
4
. So the final game is in Figure 4.13.

4.2.4 Pruning algorithm

Until now, we see how to built a tree from a full matrix U of two

players. In sequence form, we know that not all the combination of

sequences between different players are defined, so the U matrix has

55

Chapter 4. Poly Sequence-Matrix Games

N

1
p1
x0

p1

2.1

1
p2
x1

a

1
p2
x2

b

p2

1.1

1
p3
x3

1

1
p3
x6

2

p3

1.1

2.1

1
p4
x4

a

1
p4
x5

b

1

2.1

1
p4
x7

a

1
p4
x8

b

2

p4

Figure 4.12: Step at the end of the for-cycle.

N

4x0

0.25

2.1

4x1

a

4x2

b

0.25

1.1

4x3

1

4x6

2

0.25

1.1

2.1

4x4

a

4x5

b

1

2.1

4x7

a

4x8

b

2

0.25

Figure 4.13: Final output.

many empty slot that has to be removed by the game tree. We will do

it by a so-called pruning algorithm.

We substitute the leaves not-defined with a payoff 0 and, if a node of

nature take only to these types of payoffs, cut it (or put the probability

of that move to 0). We remember that the Nature has the role of

activate or de-activate the sub-games. Of course, if we cut one of

them, all the corrective factors must be fixed.

Before to present the algorithm, we define a useful statistics over

node: the order of a node is the number of actions played by someone

(nature or players) from the root of the game to the node. This is

useful in order to have an ordered way to read the tree.

56

4.2. Algorithms that maps a poly sequence-matrix game into a tree

Algorithm 4 Pruning

1: procedure Pruning(T,U)

2: Substitute all the payoffs that are not defined in U with a 0

3: Sort the tree nodes in ascending order

4: for all node ω ∈ T do

5: if From node ω you can reach only payoffs 0 then

6: Cut all the outgoing moves and substitute the node with a

payoff 0

7: End the for-cycle when for each node you can reach at least a payoff

different from 0

8: Rebalance all the probability of Nature moves

9: Rebalance all the payoff with the right corrective factor

10: If from a Nature node, there is only one outgoing move, cut it and

unify it with the following node.

In the following, we provide an example.

Example

We want to apply the ”pruning algorithm” to the tree provided in

Figure 4.13 and with utility table:

Player 2

∅ a b

Player 1

∅ - - -

1 - x4 x5

2 - x7 x8

Initially, we substitute all the nodes not defined in the table with

”payoff 0” (Figure 4.14)

Now we read the tree in order to delete some unnecessary parts of

it. The node of information set 2.1 leads with both action to payoff 0

since x1 and x2 are not defined in utility matrix. So we can delete the

information set and put a 0 (as in Figure 4.15).

57

Chapter 4. Poly Sequence-Matrix Games

N

0

0.25

2.1

0

a

0

b

0.25

1.1

0

1

0

2

0.25

1.1

2.1

4x4

a

4x5

b

1

2.1

4x7

a

4x8

b

2

0.25

Figure 4.14: All the nodes not-defined in the utility matrix are substituted by payoff 0

N

0

0.25

0

0.25

1.1

0

1

0

2

0.25

1.1

2.1

4x4

a

4x5

b

1

2.1

4x7

a

4x8

b

2

0.25

Figure 4.15: The node of information set 2.1 leads only to un-defined payoff so we

substitute that node with 0.

The same happens to information set 1.1. At this point, in the tree,

every node leads at least to a defined payoff. We can cut the three

moves of Nature since they lead only to payoff 0 (Figure 4.16).

Since the Node N has only one move outgoing, we can cut it and

there are no more needed to adjust with a corrective factor the payoff

in the terminal nodes. The resulting game (Figure 4.17) is the game in

normal form:

Player 2

a b

Player 1
1 x4 x5

2 x7 x8

58

4.2. Algorithms that maps a poly sequence-matrix game into a tree

N

1.1

2.1

4x4

a

4x5

b

1

2.1

4x7

a

4x8

b

2

0.25

Figure 4.16: The remaining tree after the elimination of the three Nature’s moves.

1.1

2.1

x4

a

x5

b

1

2.1

x7

a

x8

b

2

Figure 4.17: Final tree after the execution of Pruning algorithm of the example.

4.2.5 The final algorithms

Now, we have all the issues to obtain a unique game tree (so a game

in extensive-form) from a Poly sequence-matrix game with generic n

players. First of all, we formalize the version with two players and then

we will use it for the n-player version.

Since a Poly sequence-matrix game can be view, like polymatrix

class, as a list of two-player games, we start from finding the extensive

version of it. The algorithm is the union of the two procedures provided

before:

Algorithm 5 Get a two-player Tree

1: procedure Get a two-player Tree(treeplexi, treeplexj , Uij)

2: U is the not-empty spot version of Uij
3: T = Get Full Tree(treeplexi, treeplexj , U)

4: T = Pruning(T ,Uij)

5: Return T

59

Chapter 4. Poly Sequence-Matrix Games

The goal is to obtain a unique game tree also when the players are

more than two. The next algorithm unifies all the two-players trees

thanks to a new root of the game, a Nature Node. In this way, the

resulting tree preserves the property of nodes (each one is reachable by

action of at most two players and Nature) and it is a unique game.

Moreover, each game tree obtained by the treeplexes and utility

matrix Uij, has terminal nodes defined for the player i and j and not for

the others. Each terminal nodes has to be extended in a way that, for

each terminal node, the utility is defined not only for i and j but also for

the other players, even if they are not involved in the game. In this way,

the resulting game tree will be composed by multiple sub-tree, each one

where 2 players interact and have some different utilities depending on

their strategy and the others have a constant payoff because they are

not involved. In absence of other information, the agents not involved

in the sub-tree will receive 0 as utility. So every terminal nodes ω has

to be transformed from a R2 vector into a R|V |, adding a constant for

the other players. This is what we do in the next pseudocode:

Algorithm 6 Extend dimension of terminal nodes

1: procedure Extend dimension of terminal nodes(ωi, i, ωj , j,N)

2: for k = 1, .., N do

3: if k == i then

4: ω̂k = ωi
5: else if k == j then

6: ω̂k = ωj
7: else

8: ω̂k = 0

9: Return ω̂

Now we have all the instruments in order to write an unique game

tree:

60

4.2. Algorithms that maps a poly sequence-matrix game into a tree

Algorithm 7 From poly sequence-matrix game to extensive-form game

1: procedure From poly sequence-matrix game to extensive-

form game({treeplex}i∈V , {Uij}[i,j]∈E)

2: for all [i, j] ∈ E do

3: Tij = Get a two-player tree [treeplexi, treeplexj , Uij]

4: Rij =root of Tij
5: for all terminal node ω ∈ Tij do
6: ω = Extend dimension of terminal node [ωi, i, ωj , j, |V |]
7: T = { }
8: Call N the Nature root node

9: Add N to tree T

10: Call K the cardinality of set E

11: Link the {Rij}[i,j]∈E to N through moves of Nature (probability 1
K)

12: Multiply each payoff by a corrective factor of K

13: Link the nodes belonging to the same information set

14: Return T

1.1

2.1

(4, 2)

a

(2, 3)

b

1

2.1

(1, 2)

a

(6, 1)

b

2

1.1

(1, 1)

1

3.1

(2, 1)

α

(1, 2)

β

2

Figure 4.18: Example: on the left the tree T12 and on the right the tree T23.

Example

Suppose to have the game trees in Figure 4.18.

In one game tree there is Player 1 that plays against Player 2 (and

we denote it with T12) and in the second one Player 1 is against Player

3 (tree T13). If we want to unify them into a unique game of tree, the

first step is modified the payoff of terminal nodes into R3 vectors. In

the game where Player 3 does not play, we add a constant (say 0) at

the end of the node, while in the second tree we add a constant for the

second player at the second slot (Figure 4.19).

Now, going on with the algorithm, we collect them through Nature.

We identify the root of the two games as R12 and R13. It is clear

61

Chapter 4. Poly Sequence-Matrix Games

1.1

2.1

(4, 2, 0)

a

(2, 3, 0)

b

1

2.1

(1, 2, 0)

a

(6, 1, 0)

b

2

1.1

(1, 0, 1)

1

3.1

(2, 0, 1)

α

(1, 0, 2)

β

2

Figure 4.19: We add the player’s missed payoff to the terminal nodes.

N

1.1 ≡ R12

2.1

(8, 4, 0)

a

(4, 6, 0)

b

1

2.1

(2, 4, 0)

a

(12, 2, 0)

b

2

0.5

1.1 ≡ R13

(2, 0, 2)

1

3.1

(4, 0, 2)

α

(2, 0, 4)

β

2

0.5

Figure 4.20: The two trees in Figure 4.18 are represented as a unique game tree.

that the set E is composed by [1, 2] and [1, 3] (Player 2 and Player 3

do not play together) and so the cardinality is 2 (K = 2). So from

root of the game we will start two moves, each one with probability
1
K

= 0.5: one will take to tree T12 and one to tree T23. Since we add a

probability distribution, we need to adjust the payoffs, multiply them

by the inverse of the probability.

The resulting output (Figure 4.20) represents an unique game tree

starting from two different two-player games. Each path from the root

to the terminal nodes preserves the property in which there are at most

actions of two players.

4.3 Properties of Poly sequence-matrix games

In [36] is presented a way to find Nash equilibria with linear program-

ming for zero-sum polymatrix games and some properties around the

62

4.3. Properties of Poly sequence-matrix games

Nash equilibria in this class of game. Do these properties hold also for

the Poly sequence-matrix games?

4.3.1 Finding Nash Equilibria

First of all we say that a game G in poly sequence matrix form is

at zero-sum if for all strategy profile r̄ = (r1, r2, ..., rn) is such that∑
i∈V pi(r̄) = 0

Then fix a zero-sum poly sequence matrix game. We shall formulate

a linear program which captures G.

Since the pairwise game in a poly sequence-matrix game are in

sequence form, we start from Best Response problem of player i against

strategy r−i of players N \ {i}:

maxri
∑
qi∈Qi

∑
q−i∈Qi

Ui(qi,q−i)
∏
j∈V

rj(qj)

s.t.
∑
qi∈Qi

Fi(h, qi)r(qi) = fi(h), ∀h ∈ Hi ∪ {h∅}

ri(qi) ≥ 0, ∀qi ∈ Qi

The variable of the problem is the strategy ri of player i. By using

strong duality, the same problem can be written in the dual form:

minvi
∑

hi∈Hi∪{h∅}

fi(hi)vi(hi)

s.t.
∑

hi∈Hi∪{h∅}

Fi(hi, qi)vi(hi)−
∑

q−i∈Q−i

Ui(qi,q−i) ∏
j∈V \{i}

rj(qj)

 ≥ 0 ∀qi ∈ Qi

These two problems are referring to player i: we know that the

Best response problem of player i against strategy r−i of players N \
{i} in sequence form can be formulated by complementarity slackness

theorem as:

63

Chapter 4. Poly Sequence-Matrix Games

ri(qi)

 ∑
hi∈Hi∪{h∅}

Fi(hi, qi)vi(hi)−
∑

q−i∈Q−i

Ui(qi,q−i)
∏

j∈V \{i}

rj(qj)

 = 0 ∀qi ∈ Qi

∑
hi∈Hi∪{h∅}

Fi(hi, qi)vi(hi)−
∑

q−i∈Qi

Ui(qi,q−i)
∏

j∈V \{i}

rj(qj)

 ≥ 0 ∀qi ∈ Qi

∑
qi∈Qi

Fi(h, qi)r(qi) = fi(h) ∀h ∈ Hi ∪ {h∅}

ri(qi) ≥ 0 ∀qi ∈ Qi

The problem of finding a Nash equilibrium in sequence from can be

formulated as a mathematical programming problem whose nature is

NLCP (Non-Linear Complementary Constraint).

ri(qi)

 ∑
hi∈Hi∪{h∅}

Fi(hi, qi)vi(hi)−
∑

q−i∈Q−i

Ui(qi,q−i)
∏

j∈V \{i}

rj(qj)

 = 0 ∀i ∈ N,∀qi ∈ Qi

∑
hi∈Hi∪{h∅}

Fi(hi, qi)vi(hi)−
∑

q−i∈Qi

Ui(qi,q−i)
∏

j∈V \{i}

rj(qj)

 ≥ 0 ∀i ∈ N,∀qi ∈ Qi

∑
qi∈Qi

Fi(h, qi)r(qi) =fi(h) ∀i ∈ N,∀h ∈ Hi ∪ {h∅}

ri(qi) ≥ 0 ∀i ∈ N,∀qi ∈ Qi

In the case of poly sequence-matrix we can remove the productory since

the payoff of each player is the sum of utility of different two-player

games (pi(s̄) =
∑

[i,j]∈E p
ij(si, sj) =

∑
[i,j]∈E Uij(qi, qj)ri(qi)rj(qj)). So

the problem can be written as follows:

ri(qi)

 ∑
hi∈Hi∪{h∅}

Fi(hi, qi)vi(hi)−
∑

[ij]∈E

∑
qj∈Qj

Ui(qi, qj)rj(qj)

 = 0 ∀i ∈ N,∀qi ∈ Qi

∑
hi∈Hi∪{h∅}

Fi(hi, qi)vi(hi)−
∑

[ij]∈E

∑
qj∈Qj

Ui(qi, qj)rj(qj) ≥ 0 ∀i ∈ N,∀qi ∈ Qi

∑
qi∈Qi

Fi(h, qi)r(qi) = fi(h) ∀i ∈ N,∀h ∈ Hi ∪ {h∅}

ri(qi) ≥ 0 ∀i ∈ N,∀qi ∈ Qi

Looking at the first equation of the problem, fixed player i and

sequence qi, if ri(qi) > 0 the expression inside the parenthesis has to be

64

4.3. Properties of Poly sequence-matrix games

equal to 0. So, in a feasible solution, if the sequence qi can be played

with strictly positive probability only if the expected utility given by

playing such sequence equals te maximum expected utility that player

can get (
∑

j∈V \{i}
∑

qj∈Qj
Ui(qi, qj)rj(qj) =

∑
hi∈Hi∪{h∅}

Fi(hi, qi)vi(hi)) so

the second equation has to be equal to 0.

4.3.2 Properties

The following question is understand which of the properties of zero-

sum two-person games also generalize to zero-sum poly-sequence ma-

trix games. We consider the following properties of zero-sum two-

person games:

1. Each player has a unique payoff value in all Nash equilibria, known

as her value in the game.

2. Equilibrium strategies are max-min strategies, i.e., each player

uses a strategy that maximizes her worst-case payoff (with respect

to her opponent’s strategies).

3. Equilibrium strategies are exchangeable, i.e., if (x1, x2) and (y1, y2)

are equilibria, then so are (x1, y2) and (y1, x2). In particular, the

set of equilibrium strategies of each player is convex, and the set

of equilibria is the corresponding product set.

4. There are no correlated equilibria (or even coarse correlated equi-

libria, see definition in Preliminaries) whose marginals with re-

spect to the players do not constitute a Nash equilibrium.

Value of a player

We show a counterexample in which two different Nash equilibria take

to different value of the game. We start with a Poly sequence-matrix

game with three players. Player 1 has no move (so only the q∅ se-

quence), while from the treeplexes of Player 2 and Player 3 we obtain

three sequences: q∅, H and T . The set E contains the couple of player

{1, 2} and {2, 3} and the payoffs are:

{1, 2}: If Player 2 chooses T receives 1 while Player 1 receives -1, if

Player 2 choose H, she receives -1 while Player 1 get -1:

65

Chapter 4. Poly Sequence-Matrix Games

Player 2

∅ H T

Player 1 ∅ - (1,-1) (-1,1)

{2, 3}: If Player 2 chooses the same strategy of Player 3, she will

receives 1 and the other -1, vice-versa Player 2 receives -1 and the other

1.

Player 3

∅ H T

Player 2

∅ - - -

H - (1,-1) (-1,1)

T - (-1,1) (1,-1)

One Nash equilibrium profile is (q∅, T,H) 1 and the value is (−1, 0, 1).

First of all, we notice that Player 1 participates at the game with Player

2 without do anything so she has only one strategy available. Of course,

Player 2 will play T because in the first game obtains more and Player

3 will choose H. There is no incentive to deviate for Player 3 that has

to choose a pure strategy different from player 2. Also Player 2 has no

incentive to deviate from her strategy, given the strategy profile of the

others players. So, (q∅, T,H) is an equilibrium.

But also (q∅,
1
2
T + 1

2
H,H) is a Nash equilibrium with value (0, 0, 0).

In fact, Player 2 can mix her strategy and she obtains 0 as before.

Player 1 is obliged to have that strategy and Player 3 has no incentive

to move from play H.

So different equilibria assign different payoff and the property does

not hold.

Max-min strategy

A max-min strategy, in a n-player game (with n > 2), is a strategy that

maximizes her worst-case payoff for any strategy of the opponents. In

the game presented in the previous section, Player 3 max-min strategy

is play with the same probability H and T . But we have seen that in

the Nash Equilibrium, she plays a different strategy profile and there

are no Nash equilibrium where she plays this one. In fact, Player 2 will

maximizes her payoff by playing strategy T (also because Player 1 has

1With an abuse of notation we write the strategy as in normal form but, since they are

sequence games, we should define the vector r, as shown in Preliminaries chapter.

66

4.3. Properties of Poly sequence-matrix games

only r1(q∅) = 1) and so Player 3 can improve her value by playing pure

strategy H instead of the maxmin strategy (1
2
T, 1

2
H).

So there can exist equilibria that are not max-min strategy.

Exchangeability

Take as a poly sequence-matrix a game with three players, every one

with sequence q∅, H and T , and all players play against all. For each

two-player game we have:

∅ H T

∅ - - -

H - (1,-1) (-1,1)

T - (-1,1) (1,-1)

where the rows are associated to Player 1, Player 2 and Player 3

and the columns to Player 2, Player 3 and Player 1 respectively. Two

Nash equilibrium of this game are (H,H,H) and (T, T, T). But if we

take (T,H,H) is not more a Nash equilibrium since Player 3 will get

-2 and deviating to T can receive more (by getting 2). Hence, the

exchangeability property does not hold.

Correlated equilibria

Let Γ be a perfect-recall extensive-form game. In [18] a preposition

says that the correlated equilibria follow the inclusion:

EFCE ⊆ EFCCE ⊆ NFCCE

So every EFCE and EFCCE is also a NFCCE equilibrium. In [36]

the following theorem is shown:

Theorem 1. If z is a coarse correlated equilibrium, then x̂ is a Nash

equilibrium where, for every player i, x̂i is the marginal probability

distribution x̂ri =
∑

s̄−i∈Q−i
z(r,s̄−i) for all r ∈ Si

And so the result is extended to the equilibria in a game in extensive-

form. Since a poly sequence-matrix game is representable through a

game in extensive form, the extensive (coarse) correlated equilibria are

Nash equilibria of the game.

67

Chapter 4. Poly Sequence-Matrix Games

68

Chapter 5

Conclusions and future works

In our work, we study the classes of non cooperative games compu-

tationally easy to solve because their resolution is polynomial time in

the size of game. First of all, we introduce all the concepts known in

the literature that we use. The different representations of a model

game, the different kind of equilibria and some of classes of games,

like Zero-sum, Constant-sum and strictly competitive games with two

players. Motivated to the fact that the two-strictly competitive games

have some useful properties as uniqueness of the equilibrium value, in-

terchangeability of the equilibria and the maxmin strategy equilibrium

that are Nash equilibrium of the game, we want to extend the number

of players. With three players or more, these classes of games lose their

property. A candidate class of game is the one of the unilaterally com-

petitive (UC) games. This class of games is interesting because to every

unilateral change of strategy of one player, if she gets more in terms of

utility, all the others get less. We study the UC games for two players

and we find a characterization of these. Since the characterization can

be computationally difficult to be verified because the derivates are

involved, we try to see if, in some intuitive way, the UC games could

be recognize. When we study the case of three players we realize that

the UC games are really difficult to find and to construct. Moreover

the competitive property is very restrictive when mixed strategies are

involved. We look for another class of games with a generic number

of players. We formalize the concept of Poly sequence-matrix games

and see if this class of game can be represented as a unique game in

extensive-form. We provide an algorithm to make one representation

into the other. Motived to the results in [36] for the Zero-sum Polyma-

Chapter 5. Conclusions and future works

trix games, we analyse if all the properties that hold for the equilibria

of a zero-sum Polymatrix game also hold for the equilibria of zero-sum

Poly sequence-matrix game.

At the end of this thesis there are still some open questions.

In our work, we study the characterization of Unilaterally compet-

itive games with two players. We test only easy cases and we do not

talk about how much is computationally difficult the derivatives’ com-

putation. Maybe it can be develop some Matlab program in order to

have a quantity way of computing.

In the poly sequence-matrix games, we suppose to have games with

perfect recall because the sequence-form representation is defined only

for games with perfect recall. We do not discuss about the case of

games with imperfect recall and if there is a possible representation for

this class of games.

Another thing that can be done in the future is a generalization

of the extensive-form into a poly sequence-matrix game. We have not

study a way to represent an extensive form game into a poly sequence-

matrix game and so it can be interesting see if, given some properties of

the tree, there can be a way to represent it into a poly sequence-matrix

game.

70

Bibliography

[1] Bo An, Manish Jain, Milind Tambe, and Christopher Kiekintveld.

Mixed-initiative optimization in security games: A preliminary

report. In Help Me Help You: Bridging the Gaps in Human-Agent

Collaboration, Papers from the 2011 AAAI Spring Symposium,

Technical Report SS-11-05, Stanford, California, USA, March 21-

23, 2011, 2011.

[2] Bo An, Nicola Gatti, and Victor R. Lesser. Bilateral bargaining

with one-sided uncertain reserve prices. Auton. Agents Multi Agent

Syst., 26(3):420–455, 2013.

[3] Nicola Basilico, Nicola Gatti, and Francesco Amigoni. Patrolling

security games: Definition and algorithms for solving large in-

stances with single patroller and single intruder. Artif. Intell.,

184-185:78–123, 2012.

[4] Nicola Basilico, Andrea Celli, Giuseppe De Nittis, and Nicola

Gatti. Team-maxmin equilibrium: Efficiency bounds and algo-

rithms. In Satinder P. Singh and Shaul Markovitch, editors, Pro-

ceedings of the Thirty-First AAAI Conference on Artificial Intelli-

gence, February 4-9, 2017, San Francisco, California, USA, pages

356–362. AAAI Press, 2017.

[5] Nicola Basilico, Giuseppe De Nittis, and Nicola Gatti. Adversarial

patrolling with spatially uncertain alarm signals. Artif. Intell., 246:

220–257, 2017.

[6] Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti. Be a

leader or become a follower: The strategy to commit to with mul-

tiple leaders. In Sarit Kraus, editor, Proceedings of the Twenty-

Eighth International Joint Conference on Artificial Intelligence,

71

Bibliography

IJCAI 2019, Macao, China, August 10-16, 2019, pages 123–129.

ijcai.org, 2019.

[7] Matteo Castiglioni, Alberto Marchesi, Nicola Gatti, and Stefano

Coniglio. Leadership in singleton congestion games: What is hard

and what is easy. Artif. Intell., 277, 2019.

[8] Andrea Celli and Nicola Gatti. Computational results for

extensive-form adversarial team games. In Sheila A. McIlraith and

Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second

AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th

innovative Applications of Artificial Intelligence (IAAI-18), and

the 8th AAAI Symposium on Educational Advances in Artificial

Intelligence (EAAI-18), New Orleans, Louisiana, USA, February

2-7, 2018, pages 965–972. AAAI Press, 2018.

[9] Andrea Celli, Alberto Marchesi, and Nicola Gatti. On the com-

plexity of nash equilibrium reoptimization. In Gal Elidan, Kris-

tian Kersting, and Alexander T. Ihler, editors, Proceedings of the

Thirty-Third Conference on Uncertainty in Artificial Intelligence,

UAI 2017, Sydney, Australia, August 11-15, 2017. AUAI Press,

2017.

[10] Andrea Celli, Stefano Coniglio, and Nicola Gatti. Computing op-

timal ex ante correlated equilibria in two-player sequential games.

In Edith Elkind, Manuela Veloso, Noa Agmon, and Matthew E.

Taylor, editors, Proceedings of the 18th International Conference

on Autonomous Agents and MultiAgent Systems, AAMAS ’19,

Montreal, QC, Canada, May 13-17, 2019, pages 909–917. Inter-

national Foundation for Autonomous Agents and Multiagent Sys-

tems, 2019.

[11] Andrea Celli, Stefano Coniglio, and Nicola Gatti. Computing opti-

mal coarse correlated equilibria in sequential games. arXiv preprint

arXiv:1901.06221, 2019.

[12] Andrea Celli, Alberto Marchesi, Tommaso Bianchi, and Nicola

Gatti. Learning to correlate in multi-player general-sum sequential

games. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,

Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, edi-

tors, Advances in Neural Information Processing Systems 32: An-

nual Conference on Neural Information Processing Systems 2019,

72

Bibliography

NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada,

pages 13055–13065, 2019.

[13] Andrea Celli, Giulia Romano, and Nicola Gatti. Personality-

based representations of imperfect-recall games. In Edith Elkind,

Manuela Veloso, Noa Agmon, and Matthew E. Taylor, editors,

Proceedings of the 18th International Conference on Autonomous

Agents and MultiAgent Systems, AAMAS ’19, Montreal, QC,

Canada, May 13-17, 2019, pages 1868–1870. International Foun-

dation for Autonomous Agents and Multiagent Systems, 2019.

[14] Andrea Celli, Alberto Marchesi, Gabriele Farina, and Nicola Gatti.

No-regret learning dynamics for extensive-form correlated and

coarse correlated equilibria. CoRR, abs/2004.00603, 2020.

[15] Xi Chen and Xiaotie Deng. Settling the complexity of two-player

nash equilibrium. In 2006 47th Annual IEEE Symposium on Foun-

dations of Computer Science (FOCS’06), pages 261–272. IEEE,

2006.

[16] Vincent Conitzer and Tuomas Sandholm. Expressive negotiation

in settings with externalities. In Manuela M. Veloso and Subbarao

Kambhampati, editors, Proceedings, The Twentieth National Con-

ference on Artificial Intelligence and the Seventeenth Innovative

Applications of Artificial Intelligence Conference, July 9-13, 2005,

Pittsburgh, Pennsylvania, USA, pages 255–260, 2005.

[17] Gabriele Farina, Andrea Celli, Nicola Gatti, and Tuomas Sand-

holm. Ex ante coordination and collusion in zero-sum multi-

player extensive-form games. In Samy Bengio, Hanna M. Wallach,

Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Ro-

man Garnett, editors, Advances in Neural Information Processing

Systems 31: Annual Conference on Neural Information Process-

ing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,

Canada, pages 9661–9671, 2018.

[18] Gabriele Farina, Tommaso Bianchi, and Tuomas Sandholm.

Coarse correlation in extensive-form games. arXiv preprint, 2019.

[19] Nicola Gatti. Extending the alternating-offers protocol in the pres-

ence of competition: models and theoretical analysis. Ann. Math.

Artif. Intell., 55(3-4):189–236, 2009.

73

Bibliography

[20] Nicola Gatti, Giorgio Patrini, Marco Rocco, and Tuomas Sand-

holm. Combining local search techniques and path following for

bimatrix games. In Nando de Freitas and Kevin P. Murphy, edi-

tors, Proceedings of the Twenty-Eighth Conference on Uncertainty

in Artificial Intelligence, Catalina Island, CA, USA, August 14-18,

2012, pages 286–295. AUAI Press, 2012.

[21] Nicola Gatti, Marco Rocco, and Tuomas Sandholm. On the veri-

fication and computation of strong nash equilibrium. In Maria L.

Gini, Onn Shehory, Takayuki Ito, and Catholijn M. Jonker, edi-

tors, International conference on Autonomous Agents and Multi-

Agent Systems, AAMAS ’13, Saint Paul, MN, USA, May 6-10,

2013, pages 723–730. IFAAMAS, 2013.

[22] C. Daskalaskis I.Adler and C. Papadimitriou. A note on strictly

competitive game. Springer-Verlag Berlin Heidelberg, page 472,

2009.

[23] A. Kats and J-F Thisse. Unilaterally competitive games. Interna-

tional Journal of Game Theory, 21(3):291–299, 1992.

[24] Christopher Kiekintveld, Manish Jain, Jason Tsai, James Pita,

Fernando Ordóñez, and Milind Tambe. Computing optimal ran-

domized resource allocations for massive security games. In 8th

International Joint Conference on Autonomous Agents and Mul-

tiagent Systems (AAMAS 2009), Budapest, Hungary, May 10-15,

2009, Volume 1, pages 689–696, 2009.

[25] Daphne Koller, Nimrod Megiddo, and Bernhard Von Stengel. Ef-

ficient computation of equilibria for extensive two-person games.

Games and economic behavior, 14(2):247–259, 1996.

[26] Samson Lasaulce and Hamidou Tembine. Chapter 9 - medium

access control games. In Game Theory and Learning for Wireless

Networks, pages 245 – 273. Academic Press, Oxford, 2011.

[27] R. Lucchetti. A Primer in Game Theory. Società Editrice Escu-

lapio, 2011.

[28] Ilaria Malanchini, Matteo Cesana, and Nicola Gatti. Network se-

lection and resource allocation games for wireless access networks.

IEEE Trans. Mob. Comput., 12(12):2427–2440, 2013.

74

Bibliography

[29] A. Gilpin S. Hoda and J. Peña. Smoothing techiques for computing

nash equilibria of sequential games. Mathematics of Operations

Research, page 497, May 2010.

[30] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Al-

gorithmic, game-theoretic, and logical foundations. Cambridge

University Press, 2008.

[31] Arunesh Sinha, Fei Fang, Bo An, Christopher Kiekintveld, and

Milind Tambe. Stackelberg security games: Looking beyond a

decade of success. In Proceedings of the Twenty-Seventh Inter-

national Joint Conference on Artificial Intelligence, IJCAI 2018,

July 13-19, 2018, Stockholm, Sweden, pages 5494–5501, 2018.

[32] Bernhard Von Stengel. Efficient computation of behavior strate-

gies. Games and Economic Behavior, 14(2):220–246, 1996.

[33] Bernhard Von Stengel. Computing equilibria for two-person

games. Handbook of game theory with economic applications, 3:

1723–1759, 2002.

[34] Bernhard Von Stengel and Forges. Extensive-form correlated equi-

librium: Definition and computational complexity. Mathematics

of Operations Research, 33(4):1002–1022, 2008.

[35] O. De Wolf. Optimal strategies in n-person unilaterally compet-

itive games. Technical report, Université Catholique de Louvain.

Center for Operations Research, 1999.

[36] C. Daskalakis Y. Cai, O. Candogan and C. Papadimitriou. Zero-

sum polymatrix games: A generalization of minmax. Institute for

Operations Research and the Management Sciences (INFORMS),

2016.

75

