POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE
E DELLINFORMAZIONE

TinyML UWB-Radar based fall detection

TESI DI LAUREA MAGISTRALE IN

COMPUTER SCIENCE ENGINEERING - INGEGNERIA INFORMATICA

Amedeo Carrioli, 953778

Advisor:
Prof. Manuel Roveri

Co-advisors:

Massimo Pavan

Academic year:
2022-2023

Abstract: Fall detection is the process of identifying human falls; this is an in-
creasingly important task in various fields, specifically in healthcare and elderly
care, where falls happen frequently. Falls can lead to important injuries, which of-
ten remain unnoticed for long periods of time, hence the need for an automated fall
detection method. This project presents an algorithm that solves the problem of
fall detection using an Ultra-Wideband (UWB) radar and an advanced neural net-
work model, which is deployed on an Internet of Things (IoT) device. The model
makes inference directly on the device, an Arduino microcontroller with limited
resources. The model’s training is computed on several UWB-radar recordings of
falls and other human activities, from which it learns to recognize typical patterns
of human falls. UWB radar brings numerous benefits to the fall detection field
compared to traditional technologies such as accelerometers, gyroscopes, and cam-
eras. Indeed, it is a non-intrusive system that preserves the user’s privacy (UWB
radars do not capture or record visual images, individuals’ faces, and physical ap-
pearances).

This thesis emphasizes the role of Tiny Machine Learning (TinyML), which enabled
the optimization of the algorithm for devices with limited computational resources,
leading to a compact and energy-efficient solution.

In summary, this research successfully integrates UWB radar technology, deep neu-
ral networks, and TinyML to develop an innovative, privacy-conscious fall detection
solution. These technologies hold great potential to improve the life quality of el-
derly people and beyond, acting as a benchmark for future advancements in this
critical health and safety field.

Key-words: Tiny Machine Learning, Ultra-Wideband Radar, Fall Detection, Internet of Things, Deep

Neural Networks




1. Introduction

Tiny Machine Learning (TinyML) is a fast-emerging field that combines Machine Learning (ML) with compact,
low-power devices, embedded systems, and Internet of Things (IoT) technology. As the trend towards edge
computing grows, the demand for TinyML is rapidly increasing due to its ability to bring artificial intelligence
to devices without needing continuous cloud connectivity. The revolutionary ability of TinyML is its ability to
process data on the spot where it’s generated, ensuring enhanced privacy and security.

The aim of this thesis is to develop an algorithm that, exploiting UWB radars, detects falls of people by making
inference directly on a microcontroller.

Since the inference process is performed locally on the device, there’s no need to send data to a central server
and then wait for a response. This reduces the round-trip time substantially, ensuring real-time or near-real-
time responses, and guaranteeing low latency, which are crucial for certain applications like health monitoring.
Furthermore, by running machine learning models locally, TinyML eliminates the need for a continuous internet
connection and can thus operate offline.

The targets of the proposed algorithm are IoT devices because they are more affordable than other devices such
as cameras, and they can be precisely deployed in controlled environments.

UWB radars, on the other side, are gaining traction due to their versatility. They offer centimeter-level precision
in determining the location between a transmitter and receiver (ranging); and they can detect movements and
targets using a single device, by calculating the time-of-flight of radar pulses sent and bounced back from the
object (radar). This thesis makes use of the latter functionality. UWB radars are becoming increasingly precise
while their costs are decreasing. Given the advantages they offer, including privacy and low power consumption,

coupled with their vast application potential, UWB radar technology is undeniably of great significance.

Figure 1: UWB radar module produced by Aria Sensing

The combination of TinyML and UWB radars can lead to the development of new, low-power and low-memory
consumption, on-device, and privacy-preserving applications, exemplified by this project.

The fall-detection solution, hereby proposed, could be applied to multiple environments such as private houses,
industrial environments, or even hotels or cruises; Nonetheless, the thesis has been developed for deployment
in nursing homes, where falls happen frequently, often leading to significant injuries on delicate patients.

To develop this algorithm, a novel neural network architecture has been designed, which is especially efficient for
the data collected. Indeed, none of the well-studied neural networks in literature were suited for this application
given their size (too big for deployment on IoT devices, a crucial component of this proposed solution).

The results achieved are promising: 0.98 accuracy on the original model (no quantization applied) and 0.78
accuracy on the quantized model (which means the data types of the network are reduced from 32 to 8-bit)

deployed on a microcontroller, and the memory footprint is only 44KB.



The model used for these achievements is trained on an ad-hoc collected dataset of radar recordings capturing
the most common human activities, such as sitting on a chair, walking around, or even picking up something
from the ground (an activity specifically chosen because is similar to a fall).

Not only so, but a new radar model has been used for the very first time for a problem of this nature - the
whole algorithm is designed to exploit the self-collected data at its best.

The attention is focused on the dataset, which was collected in controlled environments (different rooms) with
the help of different contributors; Then, a preprocessing sequence was applied to extract significant information
from those data. The preprocessing step includes a series of operations and a decluttering method, whose aim
is to remove static noise and highlight the relevant movements of subjects.

An important step was the deployment of the solution on an IoT device, an Arduino microcontroller with only
256 KB of SRAM. The microcontroller used is a placeholder for the final UWB radar that will be used in real
applications, for example in nursing homes. Bringing the solution on a very limited memory microcontroller
shows that the proposed solution works on limited-resource devices, hence bringing it to the final radar is a
feasible next step. This proves the model’s adaptability and scalability, highlighting the way for its integration
with sophisticated UWB radars.

Many experiments have been conducted to finetune not only the preprocessing part but also the network itself
since a balance between network performance and its dimensions is essential for its deployment on microcon-

trollers.

1.1. Thesis structure

e Chapter 2 presents the state of the art and some required background.

e Chapter 3 contains a formal description of the problems that this thesis solves.

e Chapter 4 describes the devices used for the development of this research.

e Chapter 5 delineates the proposed solutions to the problem.

e Chapter 6 introduces the dataset used, describing the data-collection process.

e Chapter 7 reports the deployment of the solution on a small, memory-constrained device.
e Chapter 8 focuses on the experiment and subsequent results reached by this work.

e Chapter 9 draws the conclusions, presenting the future developments that are planned.



2. Background and state-of-the-art

This section gives an overview of topics related to this thesis.

2.1. Fall detection

At its core, fall detection refers to a mechanism that automatically identifies when an individual experiences a
fall. It is often paired with alert systems to notify caregivers or medical professionals. This process becomes
particularly crucial in settings like nursing homes, where residents face a higher risk of falling and might not have
immediate access to assistance. Fall detection has grown increasingly important in various sectors, especially
in healthcare and elderly care, as falls can potentially lead to excruciating injuries and can hence reduce the
quality of life [34].

Historically, fall detection systems were based on wearable sensors or cameras [25]. Wearable-based systems,
often in the form of pendants or wristbands, rely on accelerometers and gyroscopes to detect changes in motion
and orientation. When abnormal patterns are detected that align with a fall, an alert is sent out. On the other
hand, camera-based systems use visual data to analyze human posture and detect falls. Both these methods,
while effective, come with challenges: wearables require individuals to consistently wear the device, let it be a
wristband or a pendant, and camera systems pose privacy concerns.

Numerous studies sought to refine these methods and propose alternative solutions. A growing body of research
has investigated the potential of neural networks to solve the fall detection problem. Neural networks, with
their ability to discern patterns in large and complex datasets, offer a promising path for accurate and timely
fall detection, especially when paired with new data-collection tools.

One emerging tool in this field is the Ultra-Wideband (UWB) radar. UWB radars, known for their high precision
and low power consumption, have shown great potential for human activity recognition. Unlike cameras, UWB
radars preserve privacy by not capturing identifiable visual data, and unlike wearables, they do not require
user compliance. These radars send out signals that reflect off of objects, including humans. By analyzing
the returned signals, it is possible to discern human activities, including falls. Preliminary research in this
field indicates promising results [24], highlighting the potential of UWB radars, in conjunction with neural
networks, to revolutionize fall detection, especially in high-risk environments like nursing homes. Although
numerous studies propose algorithms that solve this problem, none of them combine TinyML with UWB radar
technology, deploying the solution on a low-power and limited resources device, like the algorithm proposed in
this thesis.

2.2. Human Activity Recognition

Human Activity Recognition (HAR) is the process of identifying and categorizing human motions or actions
using data acquired from sensors or other sources. Human Activity Recognition stands at the forefront of
advancements in areas such as health monitoring, surveillance, and smart environments. By recognizing and
analyzing human motions and postures, HAR systems can provide detailed insights into individual behaviors,
making them suitable for a multitude of applications.

Historically, HAR was implemented using camera-based systems [47]. These systems, equipped with advanced
computer vision algorithms, were adept at processing visual data to identify and categorize various human activ-
ities. However, while effective, these systems were often criticized for potential invasions of privacy, especially in
personal or sensitive environments. Parallelly, wearable sensors, embedded with accelerometers and gyroscopes,
offered an alternative [32]. These devices could monitor the user’s movements, interpreting them to recognize
specific activities. Yet, they come with the need for consistent user wearability and battery maintenance.
With the ever-growing demand for non-intrusive and accurate HAR systems, researchers began exploring inno-
vative techniques and tools, such as Ultra-Wideband (UWB) radars. Unlike traditional methods, UWB radars

could capture human activities without any direct visual identification or the need for wearables.



Moreover, the application of UWB-based HAR is vast. In healthcare, it can aid in patient monitoring without
the constraints of wearables or the privacy concerns of cameras. In smart homes, it can enhance automation by
recognizing user activities and adjusting the environment accordingly.

In summary, as the field of Human Activity Recognition evolves, the integration of UWB radars, especially when
paired with advanced neural networks, offers a promising path. This combination respects individual privacy
while ensuring detailed and accurate activity recognition, paving the way for smarter, more intuitive systems
across various sectors. Even if this thesis’s main focus is fall detection, we will explain that the collected dataset
used in this project is composed of different human activities, and the experiments on it have been extended to
the HAR field.

2.3. TinyML

Tiny machine learning (TinyML) represents an exciting frontier in the field of artificial intelligence because it
concerns the deployment of machine learning solutions on low-resource embedded devices. These kinds of devices
have been considered incompatible with ML solutions because of their limited memory and computational power;
Thanks to model compression methods, however, machine learning algorithms can be successfully deployed on
such devices despite their limitations. This area of study is gaining traction due to its potential to revolutionize
real-time analytics in various applications, one of which is fall detection.

Integrating machine learning solutions with fall detection systems poses unique challenges primarily due to the
resource limitations of the embedded devices. These devices often lack the memory and processing power that
typical machine learning models demand, and yet they need to run these models in real-time. Furthermore, fall
detection, by its very nature, requires high accuracy and reliability to be effective.

Despite these challenges, innovative techniques have emerged that make it possible to deploy complex machine
learning models on the aforementioned low-resource devices. Model compression, for instance, plays a crucial
role by trimming down the size of the machine learning model without significant impact on its performance. For
example, pruning of channels and layers of Convolutional Neural Networks (CNNs) has proven to be successful
in reducing the memory and computational demand of the model [17]. Another approach is quantization,
through which data is stored in a limitedly precise way, consequently reducing the memory required to store
CNNs models, for example, weights and activation functions can be converted from 32-bit to 8-bit [7].

Edge processing signifies another significant leap in this direction. By executing machine learning models on
the device itself, where data is generated, it eliminates the need to transmit data to the cloud for processing.
This results in less latency and enhanced privacy, a key advantage in sensitive applications like fall detection.
Importantly, these approaches apply to model evaluation only, which is the testing of an already trained model;
The training of the model itself is a much more complex topic since it requires memory to store intermediate
activations, and it relies on precise derivative calculations.

The research is in the nascent stages, but the prospects are encouraging. With ongoing advancements, TinyML
holds the potential to significantly improve the safety of those at risk of falls, opening new possibilities for
deploying robust fall detection models on a wide array of devices, including UWB radars, smartphones, and

wearables.

2.4. Ultra-Wideband Radars

Ultra-wideband (UWB) radars are a type of radar that uses radio waves with a wide bandwidth. This allows
UWB radars to achieve high accuracy in distance and speed measurements, as well as high-resolution images of
objects in the environment. UWB radars emit low-power radio waves, another characteristic that differentiates
them from traditional radars, which makes them less likely to interfere with other devices and more suitable for
use in crowded environments.

UWB radars emit short-pulses radio waves, typically in the order of a few nanoseconds, at an arbitrary frequency
[44]. These pulses are reflected off of objects in the environment and the time it takes for the pulses to return
to the radar is used to determine the radar-object distance. The wider the bandwidth of the UWB radar, the



more accurate the distance measurements can be [11].

In addition, UWB radars can be used to measure the speed of objects by comparing the time it takes for the
pulses to travel to the object and back to the radar. This is done by using a technique called Time of Flight
(ToF) [33].

What sets UWB radars apart from conventional radar systems is their precision. Not only can they detect
subtle shifts in movement, but they have also showcased their prowess in specialized applications like fall
detection. This becomes priceless for vulnerable groups such as the elderly, providing a safety net against
potential accidents.

Delving into the technical aspects, UWB radars utilize a spectrum spanning 3.1 to 10.6 GHz, giving them an
expansive frequency range to work with. Consequently, their wide bandwidth facilitates rapid data conveyance.
Despite their promising features, UWB radars present some challenges. Indeed, they can be sensitive to environ-
mental elements such as walls or bulky furniture, and their deployment might be costly compared to traditional
sensors. The big tech industry, however, is betting on them. Companies like Apple have integrated UWB radar
technology into flagship products like iPhones (ever since iPhone 11) and AirTags [2]. The potential applications
of this emerging technology are vast: from pinpointing indoor locations, and actively tracking both stationary
and mobile targets, to monitoring physiological parameters like breathing and heart rate.

With their ability to operate in both Line of Sight (LoS) and Non-Line of Sight (NLoS) conditions, UWB radars
exhibit versatility in various settings. LoS refers to direct transmission pathways between the transmitter and
receiver, and NLoS indicates paths where signals are obstructed or reflected by obstacles. The reason for
this capability, especially in NLoS conditions, is that the pulses used by UWB can penetrate through certain
obstacles such as walls, foliage, and other non-metallic barriers. This penetration ability allows UWB radars
to detect and measure signals even when there’s an obstruction between the radar and the target [12|. For
instance, UWB radars are employed in search and rescue operations to locate survivors trapped under rubble
or behind walls, capitalizing on their NLoS detection capabilities.

There are only a few scientific papers that leverage UWB technology in the TinyML domain. An example is
the one by Pavan, which showcases a presence detection algorithm based on UWB radar, executing it on tiny
devices such as Internet-of-Things units, setting new standards for this technology [31].

There is growing interest in the utilization of UWB radars for fall detection, with companies developing UWB-
based systems and an expanding body of research on the topic. With ongoing exploration and advancements,

UWB radars hold the potential to become a standard technology for fall detection.

2.5. CNN

Convolutional neural networks (CNNs) are a type of deep learning neural network commonly used for image
classification and other computer vision tasks. CNNs are central in deep learning because their architecture
excels at processing spatial hierarchies, making them especially qualified at tasks like image and speech recogni-
tion. By leveraging convolutional layers, they can detect intricate patterns in data with fewer parameters than
traditional neural networks. CNNs are composed of a series of convolutional layers, each of which performs
a convolution operation on its input data. The convolution operation extracts features from the input data,
which are then used by subsequent layers to classify the data.

Convolution is a mathematical operation that takes two functions as input and produces a third function. In
the context of CNNs, the first function is the input data, and the second function is a filter. The filter is a
small matrix of weights that is applied to the input data to extract features. The convolutional layers of a CNN
are arranged in a hierarchical fashion. The first convolutional layer extracts simple features, such as edges and
corners. The subsequent convolutional layers combine these simple features to extract more complex features,
such as shapes and objects.

CNNs have been shown to be very effective for several tasks, including image classification, object detection,
and face recognition. They are now state-of-the-art for many computer vision tasks.

A study by Park et al., for example, used a CNN to make human Activity Recognition (HAR) of people using
cameras. The CNN was able to achieve an accuracy of 99.55% [30].



Fully

Connected
Convolution

Qutput

Feature Extraction Classification

Figure 2: Convolution neural network

Binary classification is a type of supervised machine learning task where the goal is to predict a categorical
outcome with two possible classes, such as "dog" or "cat", "yes" or "no". The input data for a binary clas-
sification problem is typically a set of features that describe the object being classified. The output data is a
single binary value, such as 0 or 1.

Multi-classification, by contrast, is a type of supervised machine learning task where the goal is to predict a
categorical outcome with more than two possible classes. The input data for a multi-classification problem is
typically a set of features that describe the object being classified. The output data is a vector of values, one
for each possible class.

The work of CNNs with UWB radars is still in its early stages, but it has the potential to be a powerful tool
for a variety of applications. For example, CNNs could be used to classify the activities of people in a room, to
detect falls in elderly people, or to track the movement of objects in a factory.

The importance of CNNs for the development of UWB radar data cannot be overstated. UWB radar systems
generate high-dimensional datasets rich with information about the environment, including the detection of
movements like human falls. Given the complexity of these datasets, it’s often challenging to interpret them
using traditional machine learning methods. CNNs, however, with their ability to recognize and learn intricate
patterns in data, can be highly effective in analyzing UWB radar signals.

In essence, CNNs represent a promising tool for UWB radar data processing. Their potential, although explored
to some extent, calls for more extensive investigations. These neural networks may indeed unlock new dimensions
in the development of effective, real-time fall detection systems, significantly contributing to the safety and well-

being of vulnerable individuals.

2.6. Tensorflow lite micro

TensorFlow Lite Micro (TFLM) is a specialized extension of TensorFlow crafted for running neural network
models on tiny, resource-constrained devices. This framework is tailored to be deployed on embedded systems,
specifically microcontrollers, and compact integrated circuits designed to govern a specific operation in an
embedded system. A typical microcontroller includes a processor, memory, and input/output (I/O) peripherals
on a single chip [13]. A noteworthy feature of TFLM is its ability to run without dependencies on standard
libraries or dynamic memory allocation.

TFLM is fundamentally constructed around two pivotal components: the converter and the interpreter. The
converter is the tool that transforms this model into the .tflite format, which can further be transformed
into a hex string which, in turn, can be uploaded directly to the microcontroller. The interpreter, juxtaposed to
the converter, resides on the microcontroller. Its primary function is to interpret and execute inferences based

on the model definition handed over by the converter. A noteworthy point here is that TFLM is strictly an



inference engine; it does not support training capabilities on-device.
Given the nature of TinyML, memory optimization is essential. In the quest for conserving memory, TFLM

incorporates techniques like pruning and quantization.

2.7. Quantization

Quantization, in the context of machine learning, is the process of reducing the number of bits that represent
the weights, biases, and in some cases input and output of a neural network model. Instead of using 32-bit
floating-point numbers to represent these values, quantization might use fewer bits, such as 8 bits (known as
8-bit quantization). This can be done by rounding or truncating the value to a smaller number of bits. By
doing so, the model size shrinks significantly, which can lead to faster computation and decreased memory
usage, making it highly suitable for resource-constrained environments.

To achieve accurate activation quantization, the framework necessitates representative input examples. These
input samples play a pivotal role in gauging the range of activation values, ensuring the quantized model remains
robust and accurate.

It has been shown that with quantization-aware training, networks can achieve comparable performance to their
floating-point counterparts, even with significantly reduced precision [3]. The importance of quantization can’t
be overstated, especially for on-device machine learning, because it allows models to fit into tiny microcontrollers.
Devices like smartphones, IoT gadgets, and particularly microcontrollers, which don’t possess the computational
firepower of cloud servers, greatly benefit from quantized models. They can run models locally, saving on both
time and energy that would have been expended in communicating with larger servers.

TensorFlow Lite Micro heavily relies on quantization. The memory constraints of microcontrollers make running
typical deep learning models impossible, but with quantization, especially 8-bit full quantization, TensorFlow
Lite Micro can bring the power of machine learning to these tiny devices.

In summary, quantization, and in particular 8-bit full quantization, is revolutionizing the deployment of machine
learning models. Machine learning is not merely concerning colossal servers crunching numbers; Thanks to
techniques like quantization, machine learning exists right in our pockets, our homes, and our everyday gadgets.

With advancements like these, the future of on-device intelligence looks not just promising but inevitable.

2.8. Decluttering

Decluttering is an essential procedure in signal processing, especially in the context of radar systems. It refers
to the removal or reduction of unwanted interference or noise, ensuring that the primary signal is as clear and
interpretable as possible. This technique is especially important for radar technologies that operate in densely
populated spectral environments, where numerous signals can interfere with the target signal, making the signal
of interest hard to delimit [42].

Ultra-wideband radars, known for their high resolution and wide bandwidth, present unique challenges for
signal processing. The wide bandwidth provides UWB radars with exceptional detection capabilities, even in
cluttered environments. However, this sensitivity also makes them more prone to environmental interference,
emphasizing the need for advanced decluttering techniques.

Several established decluttering methods have been studied to suit different applications and environments. One
of these is "moving average filter", a widely recognized method that computes the average of data points over
a specified interval, thereby reducing short-term fluctuations and emphasizing longer-term trends, resulting in
particularly clear signals with a constant mean [5]. Exponential smoothing, by contrast, employs a weighted
average where more recent data points have a higher weightage, making it adaptive to rapid changes in the signal
environment [20]. The Butterworth filter, another noteworthy technique, is characterized by its flat frequency
response in the passband. It serves to minimize frequency distortions, making it particularly adaptable for
radars that operate over a broad frequency range, such as UWB radars [10].

The next figure shows the spectrum of different decluttering techniques applied to a radar sample.



Exponential Smoothin:

Original Gaussian Smoothing

Intensity

onteesaz 28RRR903TT

Wiener Filter Moving Average Moving Median

Figure 3: Spectrum of decluttering methods of a fall

2.9. Related work

Fall detection has been widely studied in the literature, Yu described a tripartite division of fall detection
methods: wearable device-based, ambiance device, and vision-based [46]. Each category has its advantages
and disadvantages. Wearable devices, including accelerometers and gyroscopes, are cheap and easy to set up
and operate, but they have the main problem of being intrusive: the individual has to constantly wear them.
Ambiance devices use pressure to detect a fall, such as vibration sensors on the floor or bed sensors under
mattresses. They are cheap and non-intrusive yet often inaccurate - it’s impossible to know if the pressure on
the device is caused by the patient falling or by another object.

Vision-based methods, as the word suggests, leverage cameras, and have the advantages of being non-intrusive,
the accuracy depends on the algorithm, but the installation process is complex, the devices used can be expensive
and there is an intrinsic privacy problem.

An example of a fall detection solution with wearable sensors is the work conducted by Ozcan et al [29] in which
wearable devices such as smartphones and tablets are equipped with cameras and accelerometers, utilizing data
collected by both to detect a fall. This solution is advantageous in that the detection of a fall is not limited to a
controlled environment, contrary to UWB radars. Moreover, the fall can be detected anywhere, as long as the
subject carries the device. Other studies use accelerometers; Kulurkar et al. for example, developed an ad-hoc
low-power device with embedded three-axis accelerometers and reached 95% of accuracy in detecting falls [23].
A solution to the problem using pressure devices has been conducted by Jeon et al [22] who employed a pressure-
sensing system using a triboelectric nanogenerator (TENG) array, which exploits a nanostructure to convert
ambient mechanical energy into electrical output. In the research study, 15 nano cells were collocated next to
the bed on which the individuals fell. This system achieved a classification accuracy of 95.75% in identifying
real falls.



Remarkable studies using cameras include a fall detection method using k-nearest neighbor and camera [16]. In
particular, a "motion history image" of the movement is constructed from the images and then the fact that the
shape of the body changes when a person falls is leveraged. Hence, the ratio between the minor and major axes
of the body is used to decide if a fall occurs, along with a pre-determined threshold. Another worthy study uses
dynamic images, which are an amalgamation of a number of sequential frames in a video. These images have
the ability to simultaneously capture both the appearance and temporal evolution of information in a video by
employing a rank learning method [14].

Another study uses a combination of neural network and radar data to make fall detection. The microwave
radar operates at 24GHz and is attached at a height of 1.5m from the floor. The linear frequency modulation
continuous waves (LFMCW) are transmitted and received by the radar. An optical camera (1920x1080 resolu-
tion, 60 fps) captures images of human motions frame by frame. The detection results of the radar and optimal
camera are then fused to ensure low false alarms, which makes the fall detection system more efficient and
robust. Furthermore, CNN is adopted for classification and recognition. Two kinds of CNNs based on Alex-Net
and single shot multi-box detector Net (SSD), which uses bounding boxes, are employed to classify the features.
This study has outstanding results in a controlled environment with an ad-hoc dataset, reaching 99% accuracy
[48].

All the studies previously mentioned use different devices than the ones exploited for the proposed solution.
More recently, UWB radars have already been used to develop solutions to the problem of detecting falls. It’s
worth mentioning the work from M. Noori et al [26], who use UWB radar data collected through a robot
to monitor and observe subjects from a specific distance (1.5-2.0m) and a special type of recurrent neural
network, long short-term memory (LSTM). The results are exceptional, reaching an accuracy of 99.6%. Another
interesting study using UWB technology [4] reaches 80% accuracy using the random forest method on an ad
hoc dataset, collected with 10 people performing 15 different ADLs (activities of daily living), such as bathing
or showering, dressing, getting in and out of bed or a chair, walking, using the toilet, and eating, in a 40 meters
apartment.

Although all these solutions demonstrated that fall detection can be effectively automatized, none of them
studied and developed a solution aimed at IoT (hence privacy-centric, cost and computationally efficient),

deployed it on a microcontroller with limited resources, and used UWB radar data, as in the proposed algorithm.

10



3. Problem formulation

The primary objective of this thesis is to develop a neural network for fall detection using UWB radar data for
IoT, and deploying it on a microcontroller with limited resources.

More formally, this problem can be reformulated as the design of a classifier able to map a radar recording into
its label: let s, € RV*M with M, N € N, be the signal received by the receiving antenna of the UWB radar,
being N the number of scans or pulses emitted by the UWB radar and M the number of spatial "bins", which
is the number of "quantized" distances in the acquisition range, and s; € S, where S is the set of all radar
acquisitions. Furthermore, s:[i,j] with ¢ € {1,..., N} and j € {1, ..., M} is the energy acquired by the receiving
antenna at the ¢-th scan at the j-th bin. The problem aims to map s; to its label y;, where ¢t € T is the set
of labels, being T' = { fall,non — fall}. In particular, the classifier has to occupy a memory M with M <= A

where A is the available memory on the microcontroller.

0 mnon-fall
1 fall

yr = f(st) =

4. Devices used

For the development of the whole project three devices have been used: two different UWB radar models, each
one used to collect a dataset, and an Arduino microcontroller, on which the proposed solution has been deployed.
It’s worth mentioning that the microcontroller is used as a placeholder for the UWB radar, to demonstrate that
is possible to deploy the solution on a limited resources device, hence proving the feasibility of bringing the

solution on the radar that will be used in real-world application as in nursing homes.

4.1. NXP Semiconductors UWB radar

This UWB radar used is produced by NXP Semiconductors [35], and has been used to collect the main dataset
of this thesis, used to develop the proposed solution. It works on UWB bands from 6.24GHz to 8.24GH z and
supports the detection and relative location of moving objects based on the changes in the reflected signal,
measured by means of channel impulse response (CIR) estimates.

A sequence of modulated pulses is transmitted and the receiver is continuously listening to any reflections from
objects in the surroundings for the duration of the frame. The length of the computed CIR estimate is a function
of the time taken for the pulse to reflect back from the object. The magnitude of the received signal is a measure
of the strength of the signal reflected by the object and depends on the reflected object’s properties such as size,
material, and angle of incidence. Moving objects cause a change in the phase if the reflected carrier due to the
Doppler effect. Furthermore, it has an average power consumption of 185mW. At a hardware level, this radar
module presents one transmit channel and two receive channels. The transceiver is operated in a full-duplex

mode, meaning that the receivers are active while the transmitter is sending the pulses.

4.2. Aria Sensing UWB radar

This device has been used to collect the dataset used for the first part of the development of the thesis; it is
a UWB radar produced by Aria Sensing [36]. It’s called LT1030OEM and is a high-precision, compact, and
lightweight ultra-wide radar module developed for indoor applications, integrating high-end antennas, the signal
processing unit, and the communication interface. It operates at frequencies between 7.3G H z and 8.5GH z, the
maximum detection range is 10 meters, and has a maximum power consumption of 150mW, furthermore, the
embedded antenna has an aperture of £60° on the azimuth and +60° of elevations, resulting in a cone of 120°
[37]. The LT1030EM is a highly configurable UWB radar. This module combines a full UWB transceiver

and an onboard microcontroller unit (MCU). The module is targeted for applications like presence detection,

11



position tracking, breath detection, and analysis. The operating principle of the system is based on the direct

readout of the backscattered pulse. The transmitter emits pulses that travels into space and hit the targets

that are in an active area of the radar. The targets reflect part of the incoming energy (echoes) backward to

the radar module (as shown in image 4). The receiver converts the incoming signal to digital data, these data

are provided to the MCU and processed according to the application.

DEVICE

TARGET

ECHO
TARGET

ECHO

ECHO.

ECHO

0s 1 B
x10*

‘GENERATED WAVEFORM RECEIVED WAVEFORM

Figure 4: The basic principle and the waveforms.
generated echoes from targets (right)

4.3.

Arduino nano 33 BLE sense

Generated pulse at the transmitter (left) and

The microcontroller used, on which the proposed solution has been uploaded, is the Arduino nano 33 BLE
sense, it has an ARM Cortex M4 MCU running at 64MHz and only 256KB of SRAM [43].

008-00 1908
MODEL:NINA-8306

Figure 5: Arduino nano 33 BLE sense

12



4.4.

Research direction

The problem of detecting falls has been previously studied in the literature, but in the specific considered case,

it presents multiple challenges. At first, the developed solution needs to meet the requirements of the chosen

microcontroller, such as the computational load and memory footprint. Then, there are challenges concerning

the environments in which the neural network is trained since the UWB radar can become extremely attached

to environments.

Moreover, the dataset has extreme importance in the development of these solutions, in particular, the bigger the

dataset, the more the network can learn the characteristics of different types of falls, in different environments,

of different subjects. This aspect doesn’t concern only fall patterns, but also other human activities.

Another challenge on this problem is the regards the data preprocessing and the model architectures. The

studies on these aspects can be further extended and optimized.

Therefore, the following research questions can be posed:

Is it possible to exploit TinyML to analyze more complex UWB data at an IoT level?

What is the best decluttering method?

What is the best model architecture?

How can the solution be extended not only to detect falls but any human activity and deploy it on an
IoT device?

What are possible pre-processing techniques that enable deep learning for this task?

What are the environmental limitations?

What is the best trade-off between memory required (possible device used) and model architecture?

What is the best quantization process (at a training and evaluation level)?

13



5. Proposed solution

The proposed solution is an algorithm that takes the UWB radar data as input, preprocesses them, and subse-
quently gives them as input to a pre-trained neural network model which classifies them as "fall" or "non-fall".
More formally, let s; € R¥*M and s, € S, where S is the set of all radar acquisitions, with M, N € N, the
signal received by the receiving antenna of the UWB radar, being N the number of scans or pulses emitted
by the UWB radar and M the number of spatial "bins", which is the number of "quantized" distances in the
acquisition range. This signal is the input to a preprocessing function ©,,, and its output, ©,(s;) is the input to
the classifier ® which is composed by a feature extraction ¢ block and a classification block ¢, which classifies
the input to the output class y;, with ¢ € T being T the set of classes, furthermore T = { fall, non — fall}.
The constraints about ® are imposed by the microcontroller for on-device implementation, in particular, the
size of ® + ©,(S5) <= M, with M the memory available on the microcontroller.

)

Op(st)
—_t o, AN 6 = & ot

Figure 6: Proposed solution process

5.1. Preprocessing and decluttering

The proposed solution utilizes data collected with the NXP Semiconductors radar. The preprocessing stage for
these data is particularly relevant because the significant signal received by the radar was subtle, and the noise
received from the static environments was relevant. Each data sample S has initial dimensions of 256x128.
One could also view it as 128x128x2 given that each pulse provides 256 values, comprising both amplitude and
phase for every spatial bin. As part of the preprocessing, the norm of every value is determined, resulting in a
128x128 matrix, denoting time-space dimensions. Decluttering, a common technique in signal processing aimed
to remove or reduce of unwanted interference, is then applied. Different decluttering techniques were employed
and tested out, to find the best possible solution to the problem, but the proposed solution uses decluttered
data with moving average filter [40].

Moving average filter calculates the average value of a predefined window of data points and then subtracts
this average from the current data point. This technique emphasizes sudden changes in value which deviate
significantly from their local average. This filter is applied over both dimensions, but the operation is inherently
local, operating on a window defined by window_size. Thus, for every data point, it considers its neighboring
points in both time and space dimensions before determining its new value. This ensures that any significant

spatial-temporal event that deviates from its local mean gets highlighted. More formally:

1 i—1 j—1
Miyj(R,"UJ) = RiJ - E Z Z Rm,n

m=i—wn=j—w

where M; ; is the moving average filter function applied on the it" time point at the j** spatial bin of the radar
matrix R, and w is the window size, set as 3. Moving average filters are widely recognized for their simplicity
and effectiveness in removing short-term fluctuations.

Post-decluttering, the absolute value is applied to radar data, this is done because we want to highlight the

movements of the individual and not its direction. In fact, before computing the absolute value, a subject

14



moving away from the radar would result in a diminishing intensity signal, instead, we want to highlight these
patterns, since falls can happen also in the opposite direction with respect to the radar.

Then, the radar data is subject to normalization, which adjusts each radar data sample, ensuring that the values
lie between 0 and 1. This is a foundational step when preparing data for neural network training. In the context
of deep learning with UWB radar data, the importance of normalization becomes more pronounced due to the
intricate and subtle patterns these data might contain. Neural networks rely on gradient-based optimization
methods, such as gradient descent, to adjust their weights. When features across different input dimensions are
of varying scales, the gradients can oscillate and diverge, leading to wrong and inefficient learning. Moreover, in
deep networks with multiple layers, excessively large or small data values can result in very large or very small
activations. As the data propagates through layers, this can lead to the phenomenon of exploding or vanishing
gradients, making the network challenging to train or even causing training to fail. Additionally, normalization
ensures a more symmetrical error landscape, enabling optimization algorithms to converge faster to the loss
function’s global minimum. For networks utilizing activation functions like sigmoid or tanh, normalization
prevents the saturation of these functions. In the saturation regions, the derivatives are nearly zero, which can
drastically slow down or even halt the learning.

Each data matrix is then cut to consider only the relevant part of the recording, in particular, the closest and
furthest spatial bins didn’t carry relevant information about the subject’s movements, resulting in a [56, 107]

shape, where 56 denotes the space dimension and 107 the time dimension.

5.1.1 Model architectures

It’s worth remembering that one of the main goals was to develop a small, low parameters network and deploy
it on microcontrollers with very limited memory. This was a main constraint on the possible architectures
employable for this research because all of the well-studied neural networks in literature are too complex and
their sizes are too big for deployment on IoT devices. Hence, the need to create a network from scratch
specifically studied for this project.

Among the numerous architectures tested, the ones in which an inception module, inspired by InceptionNet
but simplified, performs well [41]. An inception module is an element where multiple parallel branches with
different convolutional and pooling operations are present, which are then concatenated. It allows the network
to learn multi-scale features simultaneously at each layer.

Furthermore, different activation functions were implemented and tested. In particular, an interesting ex-
periment that showed good results was the juxtaposition of ’tanh’ and ’relu’ activations within the same
network.

Batch normalization, employed in multiple networks, also helped to develop the best network. The use of
BatchNormalization brings several benefits to the training process. Normalizing activations can smooth the
optimization landscape, leading to faster convergence during training. It also allows the use of higher learning
rates, which could be problematic without normalization due to issues such as exploding or vanishing gradients.
Furthermore, BatchNormalization can also have a mild regularizing effect, sometimes reducing the need for
other regularization methods like dropout [21]. This process of finetuning the network, yet keeping it simple,
brought to the creation of a few networks that had good performances.

The proposed solution uses Fall-Net, a neural network with 45.601 parameters with an "Inception Module"
characterized by parallel branches of different convolutional operations. Within this module, there’s a 1x1
convolution, a 3x3 convolution following a 1x1 convolution, a 5x5 convolution following a 1x1 convolution, and
a 1x1 convolution following a max-pooling operation. These branches are then concatenated to form the module’s
output. The intention behind this parallel structure is to allow the model to learn different spatial hierarchies
in the input data simultaneously. The 1x1 convolution in the Inception module reduces dimensionality while
preserving spatial information, aiding to computational efficiency and allowing the model to learn cross-channel
correlations. After the Inception module, the network flattens the output, passes it through a dense layer,

includes a dropout for regularization, and finally outputs through a sigmoid activation function.

15



A network worth mentioning is Fall-Net-2, a traditional-style CNN with 15.297 parameters. It has an Input

layer designed to accept 2D UWB radar data, represented as a 56x107 2D matrix. The architecture then has

its convolutional phase with a ConvlD layer that utilizes 8 filters of size 3 and the >tanh’ activation function,

followed by another convolutional layer which leverages 16 filters of size 6, this time with a >relu’ activation

function, enhancing the model’s ability to extract more intricate patterns based on preceding layer outputs.

To maintain the stability and accelerate the training, BatchNormalization layers have been introduced post

each convolution. Then, MaxPooling1D layers have been added, which serve to down-sample the feature maps,

compressing the spatial dimensions. After the convolutional operations, the data is transformed into a 1D

format via the Flatten() layer, preparing for the fully connected phase. The architecture ends in the output

layer, a single dense neuron with a sigmoid activation function. The next images show the architectures of

Fall-Net.

mput_48

mput:

[(None, 56, 107)]

InputLayer

output:

[(None. 56. 107)]

—

o

convld 127 | mput: | (None, 56, 107) convld 129 | mput: | (None, 56, 107) max_poolingld 47 | input: | (None, 56, 107)
ConvlD output: | (None, 56, 8) ConvlD output: | (None, 36, 4) MaxPooling 1D output: | (None, 56, 107)
convld 128 [ iput: | (None, 36, 8) convld 130 | input: | (None. 56, 4) convld 131 | mput: | (None, 56, 107) convld 126 | mput: | (None. 56, 107)
ConvlD output: | (None, 56, 8) ConvlD output: | (None, 56, 8) ConvlD output: | (Nomne, 56, 4) ConvlD output: [ (Nomne, 56, 4)

PN

——

concatenate_11 | mput: | [(None, 56, 4), (None, 56, 8), (None, 56, 8), (None, 56. 4)]
Concatenate output: (None, 56, 24)
flatten 47 | mput: | (None, 56, 24)
Flatten | output: | (None. 1344)
dense 94 | input: | (None. 1344)
Dense output: | (Nomne. 32)
dropout_47 | mput: | (None, 32)
Dropout output: | (None, 32)
dense 95 | mput: | (None, 32)
Dense output: | (None, 1)

Figure 7: Structure of Fall-Net (proposed solution)

16




6. Dataset

For the development and assessment of a fall detection algorithm with UWB radar, two tailored datasets were
utilized. The main one, collected with the NXP Semiconductor’s radar, encapsulates recordings from various
room settings, highlighting the algorithm’s adaptability to diverse environments. Each entry consists of a matrix
representation which is the received signal by the radar’s antenna. The specific challenges introduced by certain
room characteristics offer valuable nuances, ensuring the dataset’s depth and applicability for this research. A
secondary dataset, which will be presented, has been used exclusively to conduct experiments that helped with
the development of the final proposed solution. In particular, this secondary dataset was used in the first part of
the development of the thesis, and had various limitations, for example, only a few fall recordings were present
and were collected in one environment only. The need for another ad-hoc, improved dataset was present, hence,

the following one.

6.1. NXP Semiconductors radar dataset

The primary dataset used for this research was collected by me, with help from various people, which gave an
important help, especially because the dataset became more heterogeneous, from the movement of the people
falling and doing different activities to the dimensions and shapes of the bodies themselves. This dataset was
instrumental in our study and consistently yielded optimal outcomes.

For the data collection process, the UWB radar from NXP Semiconductors was used, which operated at a
frequency of 10Hz and each recording had a duration of 12.8 seconds. This gave us 128 distinct pulses per
recording. The radar is able to capture both the real and imaginary components of a complex number. In the
context of radar signals, these components provide insights into the amplitude and phase of each signal for each
of the 128 spatial bins. To put it in perspective, each spatial bin roughly covers a distance of 5cm, allowing our
radar to perceive up to a distance of 6.4 meters in a 120-degree conical sweep.

In terms of data representation, each of our recordings can be interpreted as a 128212822 matrix, where 1282128
denote the spatial bins (distance) and the number of radar pulses (time), and 2 represent the amplitude and
the phase of each.

It’s a general practice in radar signal processing to represent signals as complex numbers, as they effectively
capture amplitude (magnitude) and phase (directional) information. The real component typically encapsulates
the amplitude, while the imaginary component conveys the phase. The overall strength or "loudness" of the
radar’s return signal can be understood through the magnitude calculated by the formula |¢| = Va2 + b2, which
is what has been computed in this case.

To be clear, each spatial bin returned the real and imaginary components of an imaginary number, hence each
imaginary number corresponds to a specific instant and distance of the recording.

Each recording, after the norm between each real and imaginary part of each complex number has been calcu-
lated, converges to a 128x128 matrix, demarcating time and space. In UWB radar data analysis, preprocessing
often entails decluttering to remove undesirable static noise or interference. This not only refines the quality of
data but also ensures precision in subsequent analysis. Once decluttered, the data is trimmed to emphasize the
relevant spatial and time intervals.

Our dataset is diverse, consisting of four distinct room environments. Each room brings its unique architectural
structure, varying in terms of size, layout, and building materials.

In particular, one room is narrow without the wall facing the radar, resulting in the radar signal returns more
precise since the static component of the wall is not present.

Another environment presents glass and metal elements that could induce significant interference in radar
signals.

Cumulatively, the dataset collected consists of 1656 recordings, divided into eight different classifications. A
comprehensive breakdown of these categories is presented in the following image.

For the collection of this dataset, the radar was positioned in different positions in the room, pointing to different

directions. Furthermore, the radar was never pointing in the vertical direction and was always positioned on

17



Figure 8: Radar positioning in one of the dataset environments

top of a tripod. The purpose of moving the radar multiple times was to make the network learn the interesting
features of the radar signals, and not some useless ones such as the architecture of the room, becoming too
attached to the environment.

As you can notice in the image, the activities in the datasets can be divided into 8 classes: non-presence,
sitting and moving around, standing and moving, chair still, standing still, fall, pick up something,
laying on the ground. These classes were chosen accurately to represent the most common activities of a

person, with special consideration to the activities of elderly people in nursing homes.

Count of Each Activity Type

Number of Recordings

Activity Type

Figure 9: Class division of the dataset

18



The class labeled as "laying on the ground" was initially thought of as the subject sleeping on the bed, but since
for some recordings were collected using yoga mats, which eventually evolved into a bed mattress positioned on
the floor, the class was labeled so.

A class worth mentioning is "pick up something", it was chosen because the act of picking up something from
the ground, which was in some cases a quick gesture towards the floor, has many commonalities with a fall. The
recordings of this class consist of the subject walking around or standing at some point in the room and then
crouching down to pick up an object. This class was of significant importance because the networks trained
learned the difference between a subject picking up something and a fall, which otherwise could have led to
false alarms.

Concerning the falls, the corresponding recordings were conducted falling in multiple directions: falling away
from the radar, toward the radar, from the right to the left of the radar, and vice-versa. Furthermore, both
falls from standing and falls from sitting on a chair were conducted. In this way, the solution proposed is able

to detect the most heterogeneous types of falls.

6.1.1 Environments

As previously mentioned, the environments in which the dataset has been collected have been chosen to test
our algorithm on different environments to prove it can generalize.

Even though all the recordings are from rooms, each room is unique. They vary in size, shape, and the materials
they’re made of. One room, for example, is quite narrow. It also doesn’t have a wall that would be in front
of the radar. This means the radar doesn’t get back the usual signals from that direction, making a person’s
movement in the room seem more accentuated to the radar.

A second room, instead, introduces difficulties in terms of refraction, since its presence of materials such as
metal and glass.

Metal is a highly conductive material, which means it strongly reflects electromagnetic waves, such as those
emitted by UWB radars. When a UWB radar signal hits a metal object, it can result in a phenomenon known
as "multipath propagation." This is where the signal reflects off the metal and travels in various paths before
reaching the radar receiver. These multiple reflected signals can interfere with each other and with the direct
line-of-sight signal, causing distortion and reducing the radar’s ability to distinguish between true and false
targets.

Glass, on the other hand, can sometimes be transparent to certain frequencies but reflective or even absorptive
to others, depending on its composition and the frequency of the radar signal. This can lead to partial reflections
or signal attenuation, hence introducing complexities to the radar signal interpretation. For UWB radars, which
operate over a wide range of frequencies, this behavior can be particularly unpredictable.

This room, where a glass and metal table and a metal column are present, creates an environment where the
radar signal is scattered, refracted, or absorbed in unpredictable ways. This complicates the task of accurately
interpreting the signals and can reduce the radar’s effectiveness in detecting the intended target, be it a moving

person or any other object.

6.2. Aria Sensing radar dataset

On this dataset, the first experiments were conducted and it wasn’t collected by me.

The recordings were 18, with different durations based on the activity conducted by the subject. Furthermore,
most of the recordings have a duration of 5 minutes but present also a few registrations with 1, 10, and 15
minutes durations for different activities involved. The few ones where one or more falls are present have 1
minute length.

In this dataset, the activities conducted are none’, >come-and-go’, >fall’, >agitazione’, ’attivita-normale’,
where ’none’ represents the empty environment, ’come-and-go’ the subject entering and exiting the area of
detection of the radar, >fall’ the subject falling, even multiple times in one recording, ’agitazione’ the

subject sat and moving, and ’attivita-normale’ the subject stood up and moving, for example walking

19



around.

The radar had a sample frequency of 10Hz and had a sight of 106 spatial bins. Considering that the radar has
a maximum sight of 10 meters, each spatial bin spans for approximately 9c¢m.

The precision was limited since each recording was then dissected into small 20 seconds windows. The main
problem with this dataset was that the whole length of each recording was classified with one label, hence,
all its sub-windows were classified the same, resulting in some miss-labeled samples. Consider the 1 minute
recordings of the falls; each fall has a very short duration, around few seconds, and knowing that only a few
falls are present in each registration, there must be some 20 seconds windows without the presence of any fall,
therefore miss labeled.

Instead, the labels that corresponded to continuous activities didn’t influence the research much; for example,
’attivitd-normale’, or ’none’ recordings were loyal to their labels since all the other classes are continuous
movements.

Multiple problems were raised with the use of this dataset, especially for the inconsistency and lack of data, in

fact, the whole dataset results in 210 independent, 20 seconds recordings, and only 12 represent falls.

20



7. On-device deployment

The solutions have been tested on the Arduino nano 33 BLE sense lite [43]. It has an ARM Cortex M4 MCU
running at 64M H z clock and 256 KB or SRAM.

The process of deploying the trained models on the microcontroller requires first saving the models as .tflite,
then converting it into a header file, model.h.

A .tflite modelis a file format used by TensorFlow Lite, which is a lightweight version of TensorFlow designed
for mobile and embedded devices. The .tflite model represents a streamlined version of a TensorFlow model
that has been converted and optimized for size, performance, and platform compatibility.

Converting a .tflite model to a .h file means transforming the model from its regular serialized format into
a format that can be directly included and compiled with a C or C++ program, especially on platforms where
standard filesystems might not be available or practical to use, like microcontrollers.

The .h model is uploaded to the device using the Arduino IDE framework, in particular, the C+-+ code
developed for it specifies a setup() function which establishes a serial connection to communicate with the
device. The model is then loaded into memory, and a check is made to ensure the schema version of the model
matches what TensorFlow Lite expects. Next, an interpreter is initialized; this is the component that runs the
TensorFlow Lite model.

Then, a loop() function runs indefinitely, typical of Arduino sketches, and waits for data to become available
over the serial connection. When data arrives, the neural network’s input is populated, and the model is invoked
to perform inference. After the inference is executed, the prediction (output of the model) is sent back over the
serial connection.

Once the model is uploaded on the Arduino microcontroller, a Python script establishes a serial connection to
it and starts the communication, sending the samples to predict and receiving back the prediction of each.
Both Fall-Net and Fall-Net-2 have been uploaded on the microcontroller. The time of execution for the prediction

for each sample on device is 19 milliseconds for Fall-Net and 35 milliseconds for Fall-Net-2.

* input = interpreter->input(@)->data.uints;
for ( k = 0; k < 56 * 107; k++) {
input[k] = data[k / 187][k % 107];
}

Serial.println("Invoking the model...");

if (interpreter->Invoke() != kTfLiteOk) {

error_reporter->Report("Invoke failed");

return;

}

output_value = interpreter->output(e)->data.uintg[e];
Serial.print("Prediction: ");
Serial.println(output_value);

Figure 10: Snippet of Arduino sketch that invokes the model and makes prediction on device

7.1. Quantization

The models and the data used for this process were quantized. In particular, an 8-bit full quantization has
been performed. The quantization process was conducted to reduce the model’s size to make each model fit
into the microcontroller [3|. Since Arduino only accepts full-quantization models, which means that input,
output, activation functions and weights need to be quantized, a full 8-bit quantization was introduced. The

initial structure of the networks and size of the data were reduced drastically, from 32 bits to 8 bits. In fact,

21



initially, the data were of type float32, and have been quantized to UINT8. This process inevitably reduced
the performance of the networks but was a forced decision for the on-device deployment.

Fall-Net-2 reduced its memory occupation from 68KB to 12KB, while Fall-Net from 186 KB to 44 KB.

Next, is the Python function used to quantize the model. It’s worth mentioning that also the dataset used for

testing has been converted to UINTS.

def save_quantized_model(model, representative_data, path):
# Convert the model to the TensorFlow Lite format with quantization
converter = tf.lite.TFLiteConverter.from_keras_model (model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
# Use representative_dataset to calibrate quantization
converter.representative_dataset = representative_data
# Ensure that <f any ops can't be quantized, the converter throws an error
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INTS8]
# Set the input and output temsors to uint8
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_model = converter.convert()
# Save the model to disk
open(path, "wb") .write(tflite_model)

Noteworthy of the reported code is the representative dataset which is a subset of samples used to better
calibrate the quantization process. Furthermore, the following unix command is used to generate a C source

file that contains the converted TensorFlow Lite model as a header file.

xxd -i model.tflite > model.h

22



8. Experiments and results

This section shows and explains the experiments conducted, describing multiple preprocessing techniques, model
architectures and tasks that helped to develop the proposed solution.

8.1. NXP Semiconductors dataset

The next tables report the results of the proposed solution (row highlighted in green) alongside other interesting
results obtained with Fall-Net and Fall-Net-2 with different decluttering techniques on the NXP Semiconductors
dataset. In particular, the columns of the table, from left to right represent, the model name and decluttering
technique, the accuracy of the original model, the quantized accuracy using the quantized model and making
inference directly on the microcontroller, memory occupation of the model, execution time to invoke the model,

and make inference on device.

Accuracy Quantized accuracy Memory Exec. time

Fall-Net + MM 0.93 0.73 44KB 19ms
Fall-Net-2 + Raw data 0.94 0.76 12KB 35ms
Fall-Net-2 + MA 0.98 0.72 12KB 35ms

Table 1: Fall detection results

Multiple experiments have been conducted using different decluttering methods and model architectures. It’s
interesting to analyze the results accomplished. The following decluttering techniques have been tested on the

radar data, which are briefly explained:

e Exponential smoothing [9]: the key idea behind this technique is to give more importance to the
recent measurements and gradually decrease the weightage as we move backward in time. The smoothing
factor alpha determines the weight of the present data point versus the historical data. It is applied in a
progressive manner; it begins with the initial measurements and proceeds through the matrix, adjusting
each value based on its immediate predecessor and the smoothing factor. As a result, the data in each
spatial bin evolves smoothly over time, where sudden jumps or drops are mitigated, and gradual trends
become more pronounced. Exponential smoothing is commonly used in time series forecasting due to its
ability to adapt to sudden changes without being overly sensitive to random fluctuations. Formally, the

exponential smoothing decluttering function F is:
E(zt, -1, ) = 2 — (axi—1 + (1 — a)xy)

where x; is the energy acquired by the receiving antenna at time ¢, x;_1 is the smoothed value from the
previous step and « is the smoothing factor, set to 0.9. This function is applied row-wise, meaning that

aims to smooth over space, considering each row (time) independently.

e Moving median filter [38]: similar to the moving average filter in operation, the moving median filter
subtracts the median value of a window of data points from the current point, rather than the mean.
The median, being a robust statistic, can be more resistant to outliers. Thus, this filter can retain sharp
changes or transitions in the data that might otherwise be smoothed out by a mean-based approach. As

with the moving average filter, the operation of the moving median filter in the code spans both time and

23



space dimensions. For the radar matrix R, the formula is:
Mpij(R,w) = R j — median { R(;_ )i (j—w)s |

where R; ; signifies the it" time point at the j** spatial bin and w is the window size. The window is of

size 3, which means the median is computed using a 3x3 neighborhood around each matrix element.

e Gaussian smoothing [15]: when applied to images, can be viewed as blurring. In essence, each data
point (or pixel, in image processing terms) is replaced by a weighted average of its neighbors, where the

weights are determined by a Gaussian function, it is performed using the equation:
G(R) = Rxg(o)

where R is the radar matrix, * denotes the convolution operation, and g(c) is a 2D Gaussian function

with standard deviation o.

e Wiener filter [8]: it aims to estimate the most probable "true" radar return at each time point within
every spatial bin, based on the observed data and the statistical characteristics of the noise and the
underlying signal. Its equation is:

Wiyj(R, w) =mpg + (Ri,j — mR)

ok
0%+ 0%
where R; ; represents the value at the it" time point at the j** spatial bin of the radar matrix, mp is the
local mean of the radar matrix computed within a window w around the coordinate (i, j), 012% represents
the local variance of the radar matrix within the same window w, 0% denotes the variance of the noise,
which can be estimated from regions in the radar matrix known to only contain noise or based on prior

knowledge, and w is the window size used to estimate the local statistics.
It’s reasonable to agree that the filters that had the most consistency over the models and the tasks are

exponential smoothing, moving average, and moving median. The next figure shows a comparison of the

decluttering techniques reporting the accuracies on the test set of Fall-Net.

0.91 0.91
0.89
0.80 0.83
0.8 - 0.79
06
0.4
0.2

0.0
Raw data Exponential Smoothing Gaussian Smoothing Moving Average Moving Median Wiener Filter

Accuracy

Decluttering Method

Figure 11: Comparison over decluttering methods

24



For Fall-Net and Fall-Net-2 trainings, Adam optimizer has been used with an initial learning rate of 0.001
and binary_crossentropy loss. To ensure effective training, early stopping is implemented, monitoring
the validation loss and halting if no improvement is seen for 100 epochs. Alongside, a ’learning rate scheduler’
adjusts the learning rate based on performance, reducing it by a factor of 0.2 if the validation loss stagnates for
10 epochs, with a floor set at 0.0001. The training runs for 5000 epochs using batches of 32 samples.

Although the primary goal of this research is fall detection, experiments have initially been done for presence
detection, a binary classification task on the same dataset where all the classes in which an individual is present
have been given a presence label. Also for this task, both Fall-Net and Fall-Net-2 have been deployed on device,
and inference was made directly on it, to have a comparison between different tasks, model architectures, and
decluttering techniques. The next table shows the results of this task. In particular, the best result is achieved
with Fall-Net-2 using exponential smoothing decluttering technique, reaching 0.79 accuracy on the test set on
device (highlighted in green).

Accuracy Quantized accuracy Memory Exec. time
Fall-Net-2 + EXP 0.86 0.79 12KB 35ms
Fall-Net-2 + MA 0.98 0.74 12KB 35ms
Fall-Net + MA 0.91 0.69 44KB 19ms
Fall-Net + MM 0.83 0.77 44KB 19ms

Table 2: Presence detection results

The confusion matrix below shows the results on the testing set of Fall-Net-2 using exponential smoothing on

presence detection task.

Confusion Matrix
160

140

120

Actual
Non presence

Presence

Non presence Presence
Predicted

Figure 12: Presence detection confusion matrix of Fall-Net-2

25



Furthermore, the next table reports the results of different networks, which brought outstanding results, but
since the sizes of these networks were too big, requiring more than 256 KB on the microcontroller, they couldn’t

be deployed on device.

Parameters Accuracy Deployable on device

CNN-Skip + Raw data 422.152 0.96 No
Inception-DenseNet + Raw data 10M 0.98 No

Table 3: Presence detection results on too complex networks to be deployed on device

In particular, CNN-Skip is a traditional-style CNN with 422.152 parameters, presenting identity skip connec-
tions [45], in which the output to a layer is concatenated and given as input to some further layers. The skip
connections, achieved through concatenation, facilitate a shortcut for the gradient to flow during backpropaga-
tion. This helps in mitigating the vanishing gradient problem, leading to improved convergence during training.
Moreover, these connections allow the network to retain fine-grained features from earlier layers, making the
network more expressive.

Inception-DenseNet, instead, has 10 million parameters and is a combination of an Inception-style network
(with multiple branches) and Dense-net, a particular network architecture that presents dense blocks, where
the output of each layer is concatenated and given as input to all the subsequent layers in the dense block [19].
Inception modules, as previously mentioned, process data at multiple scales, capturing diverse features efficiently
with reduced computational cost. Dense modules, by contrast, enhance feature reuse and improve gradient flow,
resulting in efficient learning and reduced overfitting. By merging Inception and Dense modules, the architecture
captures multi-scale features and reuses them, offering both efficiency and versatility in recognizing complex
patterns.

The results reported with these two more complex networks are achieved on raw data, meaning that no declut-
tering is applied. All the decluttering techniques previously explained have been tested on these more complex
networks, but the results were similar to raw data, and in some cases worse. This is reasonable and can be ex-
plained because CNNs, through convolutional operations, extract non-linearity from the data, and these bigger
networks have more convolutional layers, allowing them to learn more complex patterns. Essentially, they can
"filter out" the noise or irrelevant information through the convolutional operations. This ability is lost with
smaller networks like Fall-Net, making decluttering an essential step for a trade-off between good performance
and deployability on device.

It’s worth mentioning some hyperparameters of these model’s trainings: binary crossentropy is used as
loss function. The optimizer chosen is ’Adam’, known for its efficiency and adaptability in adjusting learning
rates. To enhance the training process, two callbacks, namely 'EarlyStopping’ and 'ReduceLROnPlateau’, are
integrated. 'EarlyStopping’ monitors the validation loss and halts training if it doesn’t improve after 100 epochs,
ensuring that the model doesn’t overfit and saves computational resources. 'ReduceLROnPlateau’ watches the
validation loss and reduces the learning rate by a factor of 0.2 if no improvement is seen over 10 epochs. This
allows the model to make finer adjustments when it’s close to converging, avoiding overshooting the global
minimum. Training the model is set for a maximum of 1000 epochs, using batches of 32 samples each.

The following images show the architectural characteristics of CNN-Skip and Inception-DenseNet.

26



convld 22 | mput: | (None, 98, 128)
ConvlD output: | (None, 98, 32)

convld_23 | mput: | (Nomne, 98, 32)

ConvlD output: | (None, 98, 32)

concatenate 12 | input: | [(Nomne. 98, 32). (None, 98. 32)]

Concatenate output: (Nomne. 98. 64)

A 4
max_poolingld 7 | iput: | (None. 98. 64)

MaxPoolng1D output: | (None. 49, 64)

convld_24 | mput: | (None, 49, 64)
ConvlD | output: | (Nomne, 49, 64)

concatenate 13 | input: | [(None, 49, 64), (None, 49, 64)]

Concatenate | output: (None, 49, 128)

Figure 13: Skip connections of CNN-Skip

input_4 input: | [(None. 98, 128)]
InputLayer | output: | [(None. 98, 128)]

— ~. .

input: | (None, 98. 128) convld_18 | mput: | (None, 98, 128) max_poolingld 6 | input: | (None, 98. 128)

convld_15

ConvlD | output: | (Nomne, 98, 64)

/

7 | imput: | [(None, 98, 128). (None, 98, 64)]

Concatenate | output: (None, 98, 192)

/

convld_16 | mput: | (None, 98, 192)
ConvlD | output: | (None, 98, 64)

/

ConvlD output: | (Nomne, 98, 64) MaxPooling 1D output: | (None, 98, 128)

N\

concatenate_9 | input: | [(None, 98, 128), (None, 98, 64)]

concatenate_

Concatenate | output: (None, 98, 192)

convld_19 | iput: | (Nomne, 98, 192) convld 21 | iput: | (None, 98, 128)
ConvlD output: | (Nomne. 98, 64) ConvlD | output: | (None, 98, 128)

concatenate_8 | input: | [(None, 98, 128), (None, 98, 192), (None, 98, 64)] concatenate_10 | input: | [(None, 98, 128), (Nomne, 98, 192), (None, 98, 64)]
Concatenate | output: (None, 98, 384) Concatenate output: (None, 98, 384)
& l
convld 17 | input: | (None, 98, 384) convld_20 | input: | (None, 98, 384)
ConvlD output: | (None, 98, 128) ConvlD output: | (None, 98, 128)

.

concatenate_11 | input: | [(None, 98, 128), (None, 98, 128), (None, 98, 128)]

Conc atenate output: (None, 98, 384)

Figure 14: Inception and Dense module present in Inception-DenseNet

The dataset used, as previously mentioned, has been collected on subjects doing 7 different activities plus
recordings of empty environments; for the fall detection task, the activities that weren’t falls have been grouped
under the "non-fall" label. For presence detection, all the activities were considered as "presence" and the
empty environments as "non-presence".

Since the dataset was already categorized in different activities, we extended the task to Human Activity
Recognition (HAR), which is a multi-class classification problem whose goal is to classify correctly the different
activities, which are non-presence, sitting and moving around, standing and moving, chair still,
standing still, fall, pick up something, laying on the ground.

The next table shows the results for Fall-Net, which reached 0.65 accuracy, and other tested architectures. The
quantization process, in this specific case, made the performance drop, and this can be explained in multi-

classification, softmax activation function is used, then, the argmax() among the probabilities is computed to

27



find the output class. These probabilities are often relatively close to each other, and converting from float32
to UINTS8 inevitably transforms similar floating point numbers into the same int numbers. The next table reports
the results of Fall-Net compared to more complex network architectures that resulted extremely precise on this

problem, the activity-type detection task.

Parameters Accuracy Quantized Deployable
accuracy on device

Fall-Net + EXP 45.832 0.65 0.36 Yes
CNN-Skip + Raw data 422.152 0.91 - No
Inception-DenseNet + Raw 10M 0.94 - No
data

Table 4: Activity-type detection results

These results are reasonable and can be explained because bigger networks, with more parameters, are able
to learn more complex and subtle patterns of the radar recordings and distinguish better between all different
activities. For this task, Fall-Net has too few parameters to learn the relevant features of all the classes. The

following confusion matrix shows the results of Fall-Net on HAR task.

Confusion Matrix

chair still 10 1 2 1 5 o 1 2 0

fall 2 23 7 5 9 6 4 7 60

laying on the ground 2 o 10 0 1 1 o o

non presence 0 1 3

40
T
=1
o
<
pick up something 0 1 1 1 i 2 1] 1]
- 30
sitting and moving around 0 1 1] 1 0 8 1 1]
-20
standing and moving 3 2 o 1 0 1 1 o
-10
standing still 3 1 o 3 0 1 1 14
-0
= = -] o« EFF) = f= E
= = o o o
2 ) ] 2 ] £ £
o © a 11 =3 o 2
£ b= & c c T
c <] a 3 © 17
=] c 3 (=]
o = £ £
c Q h=] E
5 - 5 g
L} o ®
5
G

Figure 15: Activity-type detection confusion matrix of Fall-Net

28



8.2. Aria Sensing radar dataset

Although the proposed solution to this problem is based on the dataset collected with the NXP Semiconductors
radar, the initial stage of this research employed another dataset, collected with a different radar, on which
multiple experiments have been conducted. This dataset, which will be called Aria sensing dataset, consists
of radar recordings collected with a frequency of the transmitting pulses is 10H z and each pulse returned 106
complex values, one for each spatial bin. From these complex values, which enclose the amplitude and the phase
of the radar return, their norm is calculated and considered for the subsequent process. Each recording ended
up in a 562200 shape, where 56 represents the spatial dimension (the 106 initial spatial bins were cut to retrieve

only the useful information of the movements) and 200 represents the time dimension (20 seconds).

8.2.1 Preprocessing

The preprocessing stage leverages the Butterworth low-pass filter. It is known for its maximally flat frequency
response in the passband. Its primary purpose is to allow frequencies below a certain threshold to remain unal-
tered while attenuating or diminishing those frequencies above this threshold. This method is especially useful
in filtering out high-frequency noise. By employing this filter, the data is rid of high-frequency perturbations,
emphasizing the underlying genuine radar reflections and ensuring they are presented in their most unobstructed
form [6].

When designing digital filters, such as the Butterworth filter, parameters are typically specified in the frequency
domain, indicating desired behaviors like the cutoff frequency. The design process results in filter coefficients
that dictate the filter’s behavior in both time and frequency domains. These coefficients essentially serve as a
set of weights. When applied to a time-domain signal, they emphasize or de-emphasize certain patterns in the
data. High-frequency components, which represent rapid changes in a time-domain signal, can be recognized
and attenuated based on these coefficients [39]. On the other hand, low-frequency components, manifesting
as slower, more gradual changes, remain largely unaffected. Even though the design and understanding are in
the frequency domain, the actual application of these filters frequently occurs in the time domain, leveraging
the inherent frequency information found within the structure of time-domain data. There’s no strict need
to transform the data to the frequency domain to filter it, as time-domain filtering methods, like convolution,
effectively address undesired frequencies by attenuating rapid temporal changes [28§].

The Nyquist frequency also plays a pivotal role in this preprocessing [27]. Representing half of the sampling
rate of the data, it’s a fundamental concept that ensures no aliasing occurs, a phenomenon where higher signal
frequencies become indistinguishable when sampled, and by considering the Nyquist frequency during filtering,

the data integrity is upheld, preventing potential misinterpretations.

fall fall

w
w

Distance

545148454239363330272421181512 9 6 3 0
Intensity
Distance

5451 48454239363330272421181512 9 6 3 0
Intensity

]
]

=

(a) Spectrogram of radar signal of a fall (b) Spectrogram of filtered radar signal of a fall

29



Post-filtering, the data are normalized, scaling them in the interval [0, 1]. This is a common process for data
used to train neural networks: it allows faster convergence and avoids saturation of the activation functions,
which can lead to vanishing gradient. The data is then subject to clipping. During this process, a threshold
derived from a percentage of the maximum value within each radar data sample is set. Any values that fall
below this threshold are effectively set to a baseline, zero in this case. This technique is especially valuable when
emphasizing stronger signals. By setting to zero weaker signals, which might be seen as noise or less significant,
the analysis can focus on the most crucial and prominent features of the data, thereby offering clearer insights.
Each transformation, from filtering out high-frequency noise, considering the Nyquist principle, normalizing
the data, and emphasizing dominant signals through clipping, transforms the data such that only the relevant

information is passed to the neural networks.

8.2.2 Results

The samples in which a fall is recorded are only a few in the Aria dataset; this fact makes the classes extremely
unbalanced for fall detection. For this reason, the accuracy metric is not reasonable to use, since classifying
all the samples as the majority class could lead to high accuracy, even if the network is not able to extract
the relevant features. To solve this, the Area Under the Receiver Operating Characteristic Curve (AUC-ROC)
metric was used. It offers a more comprehensive view of the model’s performance across different decision
thresholds. It quantifies the model’s ability to discriminate between positive and negative classes, irrespective
of their proportions. An AUC value of 1.0 signifies perfect classification, whereas 0.5 indicates no better
performance than random guessing.

In particular, for the fall detection task, the best network was a MobileNet-style CNN with 145.000 parameters.
It is a MobileNet-style because it uses depthwise separable convolutions, consisting of a depthwise convolution
followed by a pointwise (1xl) convolution, which is a peculiarity of MobileNet. This architecture family is
computationally efficient while still enabling the model to learn features. The AUC score on the test of this
network was 0.75.

Although fall detection was a challenging task with this dataset because of the lack of samples, it’s worth noting
that, as the NXP dataset experiments, also presence detection and activity-type detection, experiments have
been conducted on this dataset. For these two tasks, the dataset was a bit more balanced, hence the following
results, shown in the next tables.

Concerning presence detection, Aria-CNN reported in the next table is a limited-size traditional-style CNN
consisting of two convolutional layers followed by pooling, a dense layer, and a dropout for regularization,
concluding with a sigmoid activation classification.

LSTM-1, instead, is an LSTM-based neural network. LSTMs are structures that present gates - namely the
forget, input, and output gates - to control the flow of information and mitigate the vanishing gradient problem
encountered by traditional CNNs. These gates ensure the network’s ability to retain or discard information
as needed, making LSTMs especially qualified at processing and remembering extended sequences. They have
been first introduced by Hochreiter & Schmidhuber [18] and are known for their capability to retain long-
term dependencies making them particularly congruent for sequential datasets like UWB radars. LSTM-1
architecture begins with an LSTM layer containing 16 units, capturing temporal dependencies in the data. This
is succeeded by a series of dense layers, which facilitate the learning of intricate patterns from the sequential
data. Dropout layers interleaved between the dense layers act as a regularization technique, reducing the risk of
overfitting. The network concludes with a dense layer using a sigmoid activation, making the model suitable for
binary classification tasks. This architecture effectively combines the power of LSTMs to process sequence data
with the flexibility of dense layers to learn complex classifications. Both models are compiled with the Adam
optimizer and binary cross-entropy loss. During training, early stopping and learning rate reduction are used
for optimization. The models address class imbalances by computing class weights, ensuring that each class is

adequately represented during training.

30



Params Test accuracy Test loss

Aria-CNN 2.863 1.0 0.0014
LSTM-1 14.305 0.96 0.1

Table 5: Presence detection model comparison on Aria Sensing radar dataset

The Aria Sensing dataset, as previously mentioned, is divided into 5 classes: ’none’, ’come-and-go’, *fall’,
’agitazione’, ’attivita-normale’, which are different subject’s activities, making this an Human Activity
Recognition problem. In the next tables are reported the results to this problem of two different model
architectures. Aria VGG-style is a VGG-inspired CNN. Its model begins with two blocks of convolutional layers,
reminiscent of the VGG’s repetitive architectural style. Each of these blocks consists of a 1D convolutional layer
with a rectified linear unit (ReLU) activation, followed by max-pooling to reduce spatial dimensions, and then a
dropout layer to mitigate overfitting. Specifically, the first block has 32 filters and the second one has 64 filters,
both using a kernel size of 3. The use of 'same’ padding ensures that the spatial dimensions are preserved after
the convolutions.

Post convolution, the model flattens its output to feed into fully connected dense layers. A larger dense layer
with 128 units is employed with ReLLU activation, again followed by dropout for regularization. Finally, a dense
layer with 5 units and softmax activation to make multi-class classification.

LSTM-2 model initiates with an LSTM layer consisting of 64 units that process the sequence input and retain
temporal dependencies, and it is set to return sequences, which means it passes the full sequence to the subse-
quent layer. This is followed by a Dropout layer to counteract overfitting. The second LSTM layer, consisting
of 32 units, processes the sequences passed from the previous layer, collapsing the sequence information into
a single vector, which is passed to the dense layers. The subsequent dense layers, interspersed with Dropout
layers, enable the model to learn complex patterns from the data. The final dense layer, with 5 units and a
softmax activation, allows the model to classify the input into one of five categories.

Both of these models have been trained using categorical cross-entropy loss which is typical for multi-class
classification scenarios, Adam optimizer, and a learning rate reduction strategy that diminishes the learning
rate when the validation loss plateaus, ensuring efficient and adaptive learning. Moreover, an early stopping
mechanism monitors the validation loss, halting training if it doesn’t improve significantly, and saving computa-
tional resources and time. To address potential class imbalances in the training data, the model is trained with
computed class weights. It’s worth mentioning the fact that architectures with more parameters with respect
to presence detection were needed. This is because the network had the necessity of learning more complex
features and understanding the differences between every class.

The following table shows the results of the activity-type detection task using these two explained architectures:

Params Test accuracy Test loss

Aria VGG-style 140.901 0.93 0.12
LSTM-2 81.447 0.90 0.38

Table 6: Activity type detection model comparison on Aria Sensing radar dataset

The following image shows the confusion matrix on the activity-type detection task of the Aria VGG-style
CNN with 140.901 parameters. It reached an impressive 0.93 accuracy on the test set, but since the number of

samples was limited, the focus of the research moved to the collection to the NXP Semiconductors dataset.

31



Confusion Matrix

18
@
c
S
N - 2 [} 0 [} o]
2 - 16
@
@
- 14
@
©
£
s
2- 0 2 0 0 0
]
g 12
®
-10
o
-2
T T
25- 0 [ 6 1 o
-
£
2
-8
-6
E 0 [} 0 [} o]
-4
1] -2
E 0 4] 0 1
| | ' ' -0
agitazione attivita-normale come-and-go fall none
Predicted

Figure 16: Activity type detection confusion matrix of Aria VGG-style

32



9. Conclusions

Operating within controlled environments, the developed algorithm shows the potential of TinyML combined
with UWB radars as powerful tools for fall detection and beyond. The conducted experiments cover the entirety
of the proposed solution, from the dataset collection to the deployment on device. Although a working solution
has been provided, the limitations on the development were multiple, such as datasets collected only in a few
environments, with few subjects doing limited activities, and low capabilities such as memory constraints on
the device on which the solution has been deployed. Still, the goal of this project is achieved, demonstrating
the effectiveness of this technology, and making it a starting point for future studies. This project shows a new
path to make fall detection, setting a new starting point in the field of study of UWB radar combined with

TinyML for fall detection and, furthermore, presence detection and human activity recognition.

9.1. Future directions

The solution proposed can be extended in various ways, an example would be to augment the dataset, including
more human activities, conducted by different subjects in many different environments, so that the neural
network could learn a wider range of human activities, understanding more precisely the difference from a fall
(or different types of falls) from any other activity.

Another interesting path to follow is to find the right trade-off between model architecture (its structure and
dimension) and memory needed on the device for on-device deployment, to find the best possible solution to
the problem.

In this research, the Arduino microcontroller was just a placeholder for the radar, used to show that it’s
possible to deploy a pre-trained neural network model on-device and make inference directly on it, but the final
application would need to deploy the model directly on the UWB radar, which would parse the recordings as
soon as they are registered, and make inference in real-time.

Another direction that can be followed would be to add an alert system, an example could be to make the
algorithm collaborate with an alarm system or domotics system which triggers an alert in case the algorithm
detects a fall of a patient.

Furthermore, the technology used for this project can expand to multiple domains and has all it takes to become
an ever-changing technology. The applications of UWB radars in collaboration with TinyML are broad. An
example of it is to monitor vital signs such as heartbeats or a person’s breath [1]. Moreover, it can be used
in work environments to make safety monitoring, perhaps understanding when a person gets too close to a
dangerous machine and behaving accordingly. It could be employed in cars, for example sending an alarm when
passengers, even kids or pets, are left alone in a car for too much time, or even in the fitness and sports field,
analyzing athlete’s movements to improve techniques or ensure safety during training, and so on. This research

is just a starting point for future studies.

33



References

1]

2]

4]

5]

[10]

[11]

[12]

[13]

[14]

[15]

Fadel Adib, Hongzi Mao, Zachary Kabelac, Dina Katabi, and Robert C. Miller. Smart homes that mon-
itor breathing and heart rate. In Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems, CHI ’15, page 837-846, New York, NY, USA, 2015. Association for Computing
Machinery.

Apple. Ultra wideband availability. https://support.apple.com/en-us/HT212274/.

Bo Chen Menglong Zhu Matthew Tang Andrew Howard Hartwig Adam Dmitry Kalenichenko Benoit Ja-
cob, Skirmantas Kligys. Quantization and training of neural networks for efficient integer-arithmetic-only

inference.

Kevin Bouchard, Julien Maitre, Camille Bertuglia, and Sébastien Gaboury. Activity recognition in smart
homes using uwb radars. Procedia Computer Science, 170:10-17, 2020. The 11th International Conference
on Ambient Systems, Networks and Technologies (ANT) / The 3rd International Conference on Emerging
Data and Industry 4.0 (EDI40) / Affiliated Workshops.

Lathi BP. Linear Systems and Signals. Oxford University Press, 2010.

S. Butterworth. On the Theory of Filter Amplifiers. FEzperimental Wireless € the Wireless Engineer,
7:536—-541, October 1930.

Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep Learning with Low Precision by

Half-wave Gaussian Quantization. arXiv e-prints, page arXiv:1702.00953, February 2017.

Jingdong Chen, J. Benesty, Yiteng Huang, and S. Doclo. New insights into the noise reduction wiener
filter. IEEE Transactions on Audio, Speech, and Language Processing, 14(4):1218-1234, 2006.

Moshfig-Us-Saleheen Chowdhury, Ahnaf Tahmid, Mahfuz Ahmed Azmain, Mooaj Sadaqat Chowdhury,
and Md Hossam-E-Haider. Exponential smoothing technique in filtration of distorted radar signal. In 2022
International Conference for Advancement in Technology (ICONAT), pages 1-5, 2022.

Carmine Clemente. ’the micro-doppler effect in radar’ by v.c. chen. Aeronautical Journal, 116(1176):5,
February 2012.

Dieter Coppens, Adnan Shahid, Sam Lemey, Ben Van Herbruggen, Chris Marshall, and Eli De Poorter.
An overview of uwb standards and organizations (ieee 802.15.4, fira, apple): Interoperability aspects and
future research directions. IEEFE Access, 10:70219-70241, 2022.

Mengyao Dong, Yihong Qi, Xianbin Wang, and Yiming Liu. A non-line-of-sight mitigation method for
indoor ultra-wideband localization with multiple walls. IEEE Transactions on Industrial Informatics,
19(7):8183-8195, 2023.

Moxa Doshi and Akson Varghese. Chapter 12 - smart agriculture using renewable energy and ai-powered
iot. In Ajith Abraham, Sujata Dash, Joel J.P.C. Rodrigues, Biswaranjan Acharya, and Subhendu Kumar
Pani, editors, AI, Edge and IoT-based Smart Agriculture, Intelligent Data-Centric Systems, pages 205-225.
Academic Press, 2022.

Yaxiang Fan, Martin D. Levine, Gongjian Wen, and Shaohua Qiu. A deep neural network for real-time

detection of falling humans in naturally occurring scenes. Neurocomputing, 260:43-58, 2017.

Estevao Gedraite and M. Hadad. Investigation on the effect of a gaussian blur in image filtering and
segmentation. pages 393-396, 01 2011.

34


https://support.apple.com/en-us/HT212274/

[16]

[17]

(18]

[19]

20]

21]

22]

23]

24]

[25]

[26]

27]

(28]

29]

(30]

31]

Kishnaprasad G. Gunale and Prachi Mukherji. Fall detection using k-nearest neighbor classification for
patient monitoring. In 2015 International Conference on Information Processing (ICIP), pages 520-524,
2015.

Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding. arXiv e-prints, page arXiv:1510.00149, October
2015.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9:1735-80, 12
1997.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2261-2269, 2016.

Robin John Hyndman and George Athanasopoulos. Forecasting: Principles and Practice. OTexts, Aus-
tralia, 2nd edition, 2018.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. In International Conference on Machine Learning, 2015.

Seung-Bae Jeon, Young-Hoon Nho, Sang-Jae Park, Weon-Guk Kim, II-Woong Tcho, Daewon Kim, Dong-
Soo Kwon, and Yang-Kyu Choi. Self-powered fall detection system using pressure sensing triboelectric

nanogenerators. Nano Energy, 41:139-147, 2017.

Pravin Kulurkar, Chandra kumar Dixit, V.C. Bharathi, A. Monikavishnuvarthini, Amol Dhakne, and
P. Preethi. Ai based elderly fall prediction system using wearable sensors: A smart home-care technology
with iot. Measurement: Sensors, 25:100614, 2023.

Julien Maitre, Kévin Bouchard, and Sébastien Gaboury. Fall detection with uwb radars and cnn-Istm
architecture. IEEE Journal of Biomedical and Health Informatics, 25(4):1273-1283, 2021.

H. Nait-Charif and S.J. McKenna. Activity summarisation and fall detection in a supportive home envi-
ronment. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.,
volume 4, pages 323-326 Vol.4, 2004.

Farzan M. Noori, Md. Zia Uddin, and Jim Torresen. Ultra-wideband radar-based activity recognition using
deep learning. IEEE Access, 9:138132-138143, 2021.

H. Nyquist. Certain topics in telegraph transmission theory. Transactions of the American Institute of
Electrical Engineers, 47(2):617-644, 1928.

Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing. Prentice Hall Press, USA,
3rd edition, 2009.

Koray Ozcan and Senem Velipasalar. Wearable camera- and accelerometer-based fall detection on portable
devices. IEEE Embedded Systems Letters, 8(1):6-9, 2016.

S.U. Park, J.H. Park, M.A. Al-masni, M.A. Al-antari, Md.Z. Uddin, and T.-S. Kim. A depth camera-based
human activity recognition via deep learning recurrent neural network for health and social care services.
Procedia Computer Science, 100:78-84, 2016. International Conference on ENTERprise Information Sys-
tems/International Conference on Project MANagement /International Conference on Health and Social
Care Information Systems and Technologies, CENTERIS/ProjMAN / HCist 2016.

Massimo Pavan, Armando Caltabiano, and Manuel Roveri. Tinyml for uwb-radar based presence detection.
In 2022 International Joint Conference on Neural Networks (IJCNN), pages 1-8, 2022.

35



32]

[33]

34]

[35]
[36]

37]

[38]

39]

[40]

[41]

42]

[43]

[44]

[45]

[46]

[47]

(48]

Charissa Ann Ronao and Sung-Bae Cho. Human activity recognition with smartphone sensors using deep

learning neural networks. Fxpert Systems with Applications, 59:235-244, 2016.

Hoctor RT and Tomlinson HW. Delay-hopped transmitted-reference rf communications. pages 265 — 269,
02 2002.

Laurence Rubenstein. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age
and ageing, 35 Suppl 2:ii37-i41, 10 2006.

NXP Semiconductors. Nxp semiconductors, 2023.
Aria Sensing. Aria sensing. https://www.liftt.com/en/portfolio-item/aria-sensing-en/.

Aria  Sensing. Lt103oem  uwb  radar  module. https://usermanual .wiki/m/
£e4£8353e3139c9e5£3d71c52fbdaf3d3£5fdda84bffb91dfde7c48bc69d5c74.

Anwar Shah, Javed Igbal Bangash, Abdul Waheed Khan, Imran Ahmed, Abdullah Khan, Asfandyar Khan,
and Arshad Khan. Comparative analysis of median filter and its variants for removal of impulse noise from
gray scale images. Journal of King Saud University - Computer and Information Sciences, 34(3):505-519,
2022.

Steven W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing. California Technical
Publishing, 1997. Available at www.dspguide.com.

Steven W. Smith. Chapter 15 - moving average filters. In Steven W. Smith, editor, Digital Signal Processing,
pages 277-284. Newnes, Boston, 2003.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, D. Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1-9, 2014.

Li Tan and Jean Jiang. Chapter 6 - digital signal processing systems, basic filtering types, and digital filter
realizations. In Li Tan and Jean Jiang, editors, Digital Signal Processing (Second Edition), pages 161-215.

Academic Press, Boston, second edition edition, 2013.
The Arduino Team. Nano 33 ble sense.

M.Z. Win and R.A. Scholtz. Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless

multiple-access communications. Communications, IEEE Transactions on, 48:679 — 689, 05 2000.

Dongxian Wu, Yisen Wang, Shutao Xia, James Bailey, and Xingjun Ma. Skip connections matter: On the
transferability of adversarial examples generated with resnets. ArXiv, abs/2002.05990, 2020.

Xinguo Yu. Approaches and principles of fall detection for elderly and patient. pages 42 — 47, 08 2008.

Shugang Zhang, Zhigiang Wei, Jie Nie, Lei Huang, Shuang Wang, and Zhen Li. A review on human activity
recognition using vision-based method. Journal of Healthcare Engineering, 2017:1-31, 07 2017.

Xu Zhou, Li-Chang Qian, Peng-Jie You, Ze-Gang Ding, and Yu-Qi Han. Fall detection using convolutional
neural network with multi-sensor fusion. In 2018 IEEE International Conference on Multimedia FExpo
Workshops (ICMEW), pages 1-5, 2018.

36


https://www.liftt.com/en/portfolio-item/aria-sensing-en/
https://usermanual.wiki/m/fe4f8353e3139c9e5f3d71c52fbdaf3d3f5fdda84bffb91dfde7c48bc69d5c74
https://usermanual.wiki/m/fe4f8353e3139c9e5f3d71c52fbdaf3d3f5fdda84bffb91dfde7c48bc69d5c74

Abstract in lingua italiana

Fall detection ¢é il processo di identificazione delle cadute; si tratta di un problema di crescente importanza
in vari settori, in particolare in quello sanitario e dell’assistenza agli anziani, dove le cadute si verificano di
frequente. Le cadute possono portare a infortuni importanti, che spesso non vengono notati per lunghi periodi
di tempo; nasce quindi Iesigenza di un metodo automatizzato per il rilevamento delle cadute. Questo progetto
presenta un algoritmo che risolve il problema del rilevamento delle cadute utilizzando un radar a banda ul-
tralarga (UWB) e un modello avanzato di rete neurale, implementandolo su un dispositivo Internet of things
(IoT). I1 modello, infatti, esegue inferenza direttamente su dispositivo, un microcontrollore Arduino con risorse
limitate. L’addestramento del modello é basato su numerose registrazioni UWB-radar di cadute e altre attivita
umane, dalle quali impara a riconoscere i pattern tipici delle cadute umane. I radar a banda ultralarga offrono
numerosi vantaggi rispetto alle tradizionali tecnologie di rilevamento delle cadute, quali accelerometri, giroscopi
e telecamere. Si tratta infatti di un sistema non intrusivo che preserva la privacy dell’'utente (i radar UWB non
catturano o registrano immagini visive quindi volti e sembianze fisiche delle persone).

Questa tesi sottolinea anche il ruolo del Tiny Machine Learning (TinyML), che ha permesso di ottimizzare
I'algoritmo per i dispositivi con risorse computazionali limitate, portando a una soluzione compatta ed efficiente
dal punto di vista del consumo energetico e di memoria richiesta.

In sintesi, questa tesi integra con successo la tecnologia radar UWB, le reti neurali e il TinyML, fornendo una
soluzione innovativa e rispettosa della privacy per il rilevamento delle cadute. La combinazione degli UWB e
TinyML ha il potenziale per migliorare la qualita della vita, degli anziani e non solo, fungendo da punto di

riferimento per i futuri progressi in questo critico settore della salute e della sicurezza.

Parole chiave: TinyML, Analisi delle cadute, Analisi della presenza, Analisi delle attivitd umane, Radar

Ultrawideband

37



Acknowledgements

Questa tesi segna la fine di un lungo percorso, che con i suoi alti e bassi mi ha inevitabilmente trasformato in
cio che sono oggi. Sono qui grazie a varie figure che sono sempre state delle certezze nella mia vita. Non mi
hanno mai fatto dubitare di me stesso e delle scelte fatte. In particolare la mia famiglia: Meri, Gigi, Dami, Olli
e la nonna Ester. Senza di voi non sarei qui.

Grazie anche a Gino, mio amico e collega dal primo anno di universita, I'unico sulla mia lunghezza d’onda e
con cui paragonarsi e lamentarsi di molteplici vicende.

Ringrazio Massimo Pavan, il mio co-relatore, che & stato sempre disponibile durante lo sviluppo della tesi e
devo riconoscergli una capacita invidiabile quando ci si trova davanti ad un problema: la calma. Ringrazio il
mio relatore, il Prof. Roveri, anche lui é sempre stato disponibile durante tutta la tesi, lasciandomi grande
liberta sulle decisioni del lavoro. Ringrazio Truesense, ’azienda con cui ho lavorato e che ci ha fornito i radar:
Armando Caltabiano, Pierpaolo Lento, e Alessandro Bassi. Grazie anche a Gabriele Viscardi.

Si chiude un libro importante e questo lascia spazio per I'inizio di uno nuovo. Non temete, il futuro sara un bel

posto.

38



	Introduction
	Thesis structure

	Background and state-of-the-art
	Fall detection
	Human Activity Recognition
	TinyML
	Ultra-Wideband Radars
	CNN
	Tensorflow lite micro
	Quantization
	Decluttering
	Related work

	Problem formulation
	Devices used
	NXP Semiconductors UWB radar
	Aria Sensing UWB radar
	Arduino nano 33 BLE sense
	Research direction

	Proposed solution
	Preprocessing and decluttering
	Model architectures


	Dataset
	NXP Semiconductors radar dataset
	Environments

	Aria Sensing radar dataset

	On-device deployment
	Quantization

	Experiments and results
	NXP Semiconductors dataset
	Aria Sensing radar dataset
	Preprocessing
	Results


	Conclusions
	Future directions


