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Abstract

In this thesis we focus on the problem

u′(t) = Au(t) + J(u(t)) when t > 0 and u(0) = u0, (1)

where u : [0, T ] → E is a curve in a Banach space E, A is the infinitesimal generator of
a C0 ω-contractive semigroup etA on E, J : EJ → E is a nonlinear function, EJ being a
Banach space dense in E and continuously embedded into E.
In chapter I, we introduce the basic notions in semigroup theory.
In chapter 1 we address problem (1).
A useful way to study problem (1) is through its corresponding integral equation

u(t) = etAu0 +

∫ t

0

e(t−s)AJ(u(s)) ds. (2)

In the following θ is a real number with θ ≥ 1.
We give some sufficient conditions for the existence of solutions to (2), when E = Lθ(Ω)

and EJ = Lpθ(Ω) with p > 1.

In the second and third chapters we focus on a particular case where in problem (1)
we have A = ∆ and J(u(t)) = |u(t)|p−1u(t) for some p > 1. More precisely, the second
chapter examines existence of local solutions with u0 in Lθ(Ω) to the following problem:

u′(t) = ∆u(t) + |u(t)|p−1u(t) x ∈ Ω, t > 0

u = 0 x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) x ∈ Ω.

(3)

We discuss existence and uniqueness of solutions to problem (3) in an interval [0, T ) with
T > 0.
In the third chapter we search for global non-negative solutions u : [0,∞) → Lθ(Rn) sat-
isfying problem (2) for all t ≥ 0. In particular we give sufficient conditions for existence
and non-existence of non-negative global solutions.
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Abstract in lingua italiana

In questa tesi affrontiamo il problema

u′(t) = Au(t) + J(u(t)) when t > 0 and u(0) = u0, (4)

dove u : [0, T ] → E è una curva in uno spazio di Banach E, A è il generatore di un
semigruppo C0 ω-contrattivo etA definito su E, J : EJ → E è una funzione non lineare,
con EJ uno spazio di Banach denso in E e con immersione continua in E.
Nel capitolo I, introduciamo le nozioni basilari di teoria dei semigruppi.
Nel capitolo 1 affrontiamo il problema (4).
Un modo utile per studiare (4) è attraverso la sua corrispondente equazione integrale

u(t) = etAu0 +

∫ t

0

e(t−s)AJ(u(s)) ds. (5)

Nel prosieguo θ è un numero reale con θ ≥ 1.
Forniamo alcune condizioni sufficienti per l’esistenza di soluzioni a (5) quando E = Lθ(Ω)

e EJ = Lpθ(Ω) con p > 1.

Il secondo e terzo capitolo sono dedicati allo studio di un caso particolare dove nel prob-
lema (4) poniamo A = ∆ e J(u(t)) = |u(t)|p−1u(t) con p > 1. Il secondo capitolo prende
in esame l’esistenza di soluzioni locali con u0 in Lθ(Ω) al seguente problema:

u′(t) = ∆u(t) + |u(t)|p−1u(t) x ∈ Ω, t > 0

u = 0 x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) x ∈ Ω.

(6)

Discutiamo esistenza e unicità delle soluzioni al problema (6) in un intervallo [0, T ) con
T > 0.
Nel terzo capitolo ricerchiamo soluzioni non negative globali u : [0,∞) → Lθ(Rn) che
soddisfino il problema (5) per ogni t ≥ 0. In particolare vengono fornite condizioni per
esistenza e non esistenza di soluzioni globali non negative.



Parole chiave: Equazioni di evoluzione, Edp non lineari, Teoria semigruppi, Soluzioni
globali in Lθ(Ω)
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Introduction

In this thesis we focus on the problem{
u′(t) = Au(t) + J(u(t)) (t > 0)

u(0) = u0,
(7)

where u : [0, T ] → E is a curve with values in a Banach space E with norm || ||, A
is the infinitesimal generator of a C0 ω-contractive semigroup etA on E, moreover A is
assumed to be linear closed and densely-defined on E with domain D(A). J : EJ → E is
a nonlinear function from a dense subset of E, let us call it EJ , continuously embedded
into E. The set EJ is a Banach space itself with norm | |J .
A useful way to study this problem is through its corresponding integral equation

u(t) = etAu0 +

∫ t

0

e(t−s)AJ(u(s)) ds (8)

The first thing to understand is the meaning of a semigroup and of its infinitesimal
generator.
Referring to problem (7) we get rid of the nonlinear function J to get{

u′(t) = Au(t) (t > 0)

u(0) = u0.
(9)

If the operator A is the infinitesimal generator of a C0 semigroup, let us call it etA then

u(t) = etAu0.

The semigroup etA applied to the initial datum gives for every t ≥ 0 the solution of
problem (9) at time t.
For densely-defined, linear and closed operator A we have the following characterization
(see Theorem I.4):
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let ω ∈ R, A is a generator of an ω-contractive semigroup {etA}t≥0 if and only if

(ω,∞) ⊂ ρ(A) and ||Rλ|| ≤
1

λ− ω
for λ > ω, (10)

where ρ(A) = {λ ∈ R : λI − L : D(A) → E is bijective} and Rλ : E → E is such that:

Rλu = (λI − A)−1u ∀u ∈ E.

We can now return to problem (7) and study it through the integral equation (8) knowing
the meaning of the semigroup etA.
In particular in the first chapter we study existence of solutions to the integral equation
(8) for t ∈ [0, T ] for T > 0 small enough, these are called local solutions.
In order to guarantee existence of local solutions to the equation (8) we need some hy-
pothesis on the nonlinear function J : EJ → E.
More precisely, we ask J to be locally Lipschitz on bounded sets in EJ in other words:

||Jϕ− Jψ|| ≤ l(r)|ϕ− ψ|J ∀ ϕ, ψ with |ϕ|J ≤ r and |ψ|J ≤ r,

where l(r) is the Lipschitz constant restricted to the closed ball of radius r in EJ .
The abstract theorem for existence of local solutions of the integral equation (8) requires
two different conditions which l(r) can satisfy:∫ ∞

τ

r−
1
a l(r) dr <∞ for some τ > 0, (11)

l(r) = O(r
(1−a)

b ) as r → ∞; (12)

with a, b be such that 0 < b < a < 1. Moreover, we suppose additional constraints on the
semigroup etA:

• ∀t > 0, etA is a bounded map E → EJ such that

for any T > 0 there exists N > 0 such that |etAϕ|J ≤ Nt−a||ϕ|| for t ∈ (0, T ].

• t→ etAϕ is continuous into EJ for t > 0.

Under such conditions, Theorem 1.1 ensures existence of local solutions to (8) in the case
where l(r) behaves like in (11) and (12), respectively.
Then we study problem (7), with E = Lθ(Ω),EJ = Lθp(Ω) with p > 1 and 1 ≤ θ <∞, u0
is in Lθ(Ω) with Ω ⊂ Rn a bounded domain; furthermore,
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• etA is an analytic C0 semigroup on all Lθ(Ω) spaces for 1 < θ < ∞. Dθ(A) is the
domain of its generator in Lθ(Ω);

• there exists an integer m > 0 such that ∂Ω is of class Cm;

• for each θ Dθ(A) with its graph norm is continuosly embedded in Wm,θ(Ω).

Theorem 1.2 ensures existence of local solutions with initial datum u0 ∈ Lθ(Ω), for care-
fully chosen θ, to problem (7) in the case where l(r) = O(rp−1) as r → ∞. In particular we
have two conditions for which problem (7) admits solutions with initial datum in Lθ(Ω):

• θ > n(p−1)
m

and θ > 1 (θ ≥ 1 if A = ∆).

• n(p−1)
mp

< θ < n(p−1)
m

and θ > 1, (θ ≥ 1 if A = ∆).

Notice that until now we have not given a particular expression to A and J .
In the second chapter we study in detail problem (7) when A = ∆ and J(u(t)) =

|u(t)|p−1u(t) for some p > 1.
Indeed, we investigate existence of solutions to problem

u′(t) = ∆u(t) + |u(t)|p−1u(t) x ∈ Ω, t > 0

u = 0 x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) x ∈ Ω.

(13)

The advantage of facing this particular case is that we know further properties of et∆

that is the Dirichlet heat semigroup in Ω. In particular, one fundamental property is the
following
if 1 ≤ p < q ≤ ∞ and 1

r
= 1

p
− 1

q
, then ||et∆ϕ||q ≤ (4πt)−n/(2r)||ϕ||p for all t > 0.

Solutions to problem (13) are meant in the following sense.

Definition 0.1. Given a Banach space X of functions defined on Ω, u0 ∈ X and T ∈
(0,∞], we say that u ∈ C((0, T ], X) is a classical X-solution of (13) in [0, T ) if u ∈
C2,1(Ω × (0, T )) ∩ C(Ω × {t = 0}), u(0) = u0 and u is a classical solution of (13) in
(0, T ). If Ω is unbounded we also require u ∈ L∞

loc((0, T ), L
∞(Ω)). If X = L∞(Ω) instead

of requiring u ∈ C((0, T ], X) we require u ∈ C((0, T ), X) and ||u(t)− etAu0||∞ → 0 when
t→ 0, where etA is the heat semigroup.

Theorem 2.1 gives sufficient conditions for existence of solutions with initial datum in
Lθ(Ω).
Let p > 1, u0 ∈ Lθ(Ω), 1 ≤ θ < ∞, θ > θc =

n(p−1)
2

. Then there exists T = T (||u0||θ) > 0

such that problem (13) possesses a unique classical Lθ-solution in [0, T ) and the following
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estimate holds:

||u(t)||r ≤ C||u0||θt−αr , αr =
n

2

(
1

θ
− 1

r

)
(14)

for all t ∈ (0, T ) and r ∈ [θ,∞], with C = C(n, p, θ) > 0. Moreover u ≥ 0 whenever
u0 ≥ 0.

In the third chapter we focus on trying to find global solutions to problem (7), this
means that the solution u(t) satisfies (7) for all T ≥ 0.
Thus we want to find global non-negative solutions to the problem:{

u′(t) = ∆u(t) + u(t)p (t > 0)

u(0) = u0,
(15)

where p > 1, the solution u(t) will be a non-negative curve in Lθ(Rn) for some θ ≥ 1.
We deal with problem (15) through its corresponding integral equation

u(t) = et∆u0 +

∫ t

0

e(t−s)∆(u(s)p) ds. (16)

Since here we are in Rn, we have

(et∆ϕ)(x) =

∫
Rn

Gt(x− y)ϕ(y) dy

with
Gt(x) ≡ G(x, t) = (4πt)−n/2e−|x|2/4t.

Theorem 3.1 gives sufficient conditions for non-existence of non-negative solutions to the
integral equation (16). More precisely we have the following:
suppose p ≤ 1 + 2

n
and u0 ≥ 0 in Lθ(Rn) with u0 non identically zero. Then there is no

non-negative global solution u : [0,∞) → Lθ(Rn) to the integral equation (16) with initial
value u0.
On the other hand, Theorem 3.2 gives conditions for global existence of non-negative
solutions.
Let u0 ≥ 0 be in Lθ(Rn), with 1 ≤ θ <∞. Suppose the following holds

(p− 1)

∫ ∞

0

||es∆u0||p−1
∞ ds ≤ 1.

Then there exists a non-negative continuous curve u : [0,∞) → Lθ(Rn) which is a global
solution to (16) with initial datum u0.
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Suppose instead p > 1 + 2
n
. If u0 ≥ 0 and ||u0||n(p−1)/2 is sufficiently small, then there

exists a non-negative continuous curve u : [0,∞) → Ln(p−1)/2 which is a global solution
to problem (16) with initial value u0.
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I.1. Unbounded operators

Let us consider a linear operator L defined on a domain D(L) dense in the Banach space
X:

L : D(L) ⊂ X → X

We do not assume the boundedness of L this implies that, in general the relation:
||Lx|| ≤M ||x|| for some M > 0 ∀x ∈ D(L) does not hold.
One could ask wether it is useful to study those kind of operators, with the next example
we see how unbounded operators naturally arise in a standard environment.
Let D(L) = C1([0, 1]) and X = L2([0, 1]):

L : D(L) ⊂ X → X with Lu :=
d

dt
u

||L|| = sup
u∈D(L)

||Lu||
||u||

Consider now the sequence {uk}k∈N ⊂ D(L) with uk(t) = ekt.
We have:

||Tuk||2 =
∫ 1

0

k2e2kt dt =
k

2
[e2k − 1]

On the other hand:

||uk||2 =
∫ 1

0

e2kt dt =
1

2k
[e2k − 1]

Summing up:
||Tuk|| = k||uk||

Hence:
||L|| ≥ ||Luk||

||uk||
≥ k ∀k ∈ N

Hence L is an unbounded operator.
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I.1.1. Extension of unbounded operators

We notice that in the case of unbounded operators the domain plays a crucial role. We
can ask if there is a way to find the "natural" domain in some sense, consistent with the
definition of the unbounded operator.
In other terms, given an unbounded operator L : D(L) ⊂ X → X we want to find a
procedure to find an extension of the operator L let’s call it L̂ such that D(L) ⊂ D(L̂)

and L̂|D(L) = L.

There exists a standard procedure to find an optimal extension of an unbounded operator
L, and the procedure consists in the closure of the operator.

Definition I.1. Given an operator L : D(L) ⊂ X → X we say that L is closable if there
exists L̂ which extends L and such that L̂ is a closed operator.

We now give a characterization of closability:

Proposition I.1. L is closable if and only if for every {xn} ⊂ D(L) such that xn → 0

and Lxn → y we necessarily have y = 0.

I.2. Semigroup theory

Semigroup theory is the study of first-order ordinary differential equations defined in
Banach spaces, where we have linear bounded or unbounded operators acting on the
system.
For the treatment of this argument we follow the scheme presented in [2].

I.2.1. Definitions and basic properties

Let X be a Banach space, consider the following ordinary differential equation:

{
u′(t) = Lu(t) (t ≥ 0)

u(0) = u.
(I.1)

Where u ∈ X is given, and L is a linear operator.
Let D(L) be the domain of the operator L, we have:

L : D(L) → X (I.2)
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We didn’t impose any restriction on L except for the linearity, L can also be unbounded.
Our aim is to study existence and uniqueness of a solution:

u : [0,∞) → X

of ODE (I.1).
In particular we want to find reasonable conditions for the operator L so that for every
u ∈ X the differential system (I.1) has a unique solution.

I.2.2. Semigroups

Assume u : [0,∞) → X is the unique solution of (I.1) when the initial condition u ∈ X

has been fixed.
We need some notation:

u(t) = S(t)u (t ≥ 0) (I.3)

(I.3) gives us the solution of (I.1) for each time (t ≥ 0) when the initial datum is u ∈ X.
It is important to notice that ∀t ≥ 0 the operator S(t) has as its domain the entire Banach
space X since in our hypothesis we have a solution of (I.1) for each initial datum u ∈ X.
In other words for any fixed t ≥ 0 we have S(t) : X → X.

We now focus on the properties of the family of operators {S(t)}t≥0:

S(0)u = u (u ∈ X) (I.4)

S(t+ s)u = S(t)S(s)u = S(s)S(t)u (t, s ≥ 0, u ∈ X) (I.5)

We analyze (I.5), consider for example the first equality, and we fix s ≥ 0, if we expand
both sides we get:

u(t+ s) = v(t) (t ≥ 0) (I.6)

Where:

{
u′(t+ s) = Lu(t+ s) (t ≥ 0)

u(0) = u.
(I.7)
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{
v′(t) = Lv(t) (t ≥ 0)

v(0) = u(s).
(I.8)

If we perform the substitution w(t) = u(t + s) in (I.7), we clearly see that w(t) = v(t)

since they solve the same differential system, which is (I.6). We now understand that
(I.5) is a property that naturally arises from the uniqueness of system (I.1).
The final assumption we make is:

t→ S(t)u is continuous from [0,∞) into X (I.9)

Definition I.2. A family {S(t)}t≥0 of bounded linear operators mapping X into X is
called a semigroup if (I.4),(I.5),(I.9) hold.
If moreover {S(t)}t≥0 is such that ||S(t)|| ≤ 1 we say that the family {S(t)}t≥0 is a
contraction semigroup.

Definition I.3. A semigroup for which property (I.5) and (I.9) holds with arbitrary sign
of s, t is called a C0 semigroup.

If {S(t)}t≥0 is a contraction semigroup we have:

||S(t)u|| ≤ ||u|| (t ≥ 0, u ∈ X) (I.10)

From now on {S(t)}t≥0 is a contraction semigroup on X.

Definition I.4. D(L) := {u ∈ X| limt→0+
S(t)u−u

t
exists in X}

Definition I.5. If L is defined as follows: Lu := limt→0+
S(t)u−u

t
(u ∈ D(L)) we say that

L : D(L) → X is the (infinitesimal) generator of the semigroup {S(t)}t≥0. In particular
D(L) is the domain of defintion of L.

Theorem I.1. (Differential properties of semigroups).
Let u ∈ D(L) then:

1. S(t)u ∈ D(L) ∀t ≥ 0

2. LS(t)u = S(t)Lu ∀t > 0
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3. The map t→ S(t)u is differentiable ∀ t > 0

4. d
dt
S(t)u = LS(t)u ∀t > 0

Proof. 1) and 2):

S(t)u ∈ D(L) ⇐⇒ lim
s→0+

S(s)S(t)u− S(t)u

s
exists in X

lim
s→0+

S(s)S(t)u− S(t)u

s
= lim

s→0+

S(t)S(s)u− S(t)u

s
where we have used (I.5)

= S(t) lim
s→0+

S(s)u− u

s
valid because of the boundedness of S(t)

= S(t)Lu ∈ X

So S(t)u ∈ D(L) and 2) has been proven from the previous computations.
3) and 4):

Let u ∈ D(L) we need to compute lim
h→0

S(t+ h)u− S(t)u

h
We observe that:

lim
h→0

S(t+ h)u− S(t)u

h
exists ⇐⇒ lim

h→0+

S(t+ h)u− S(t)u

h
and lim

h→0−

S(t+ h)u− S(t)u

h
both exists.
In particular:

lim
h→0−

S(t+ h)u− S(t)u

h
= lim

k→0+

S(t− k)u− S(t)u

−k

where we performed the change of variables k = −h

lim
h→0−

S(t+ h)u− S(t)u

h
= lim

k→0+

S(t)u− S(t− k)u

k
= lim

h→0+

S(t)u− S(t− h)u

h

We now show that lim
h→0+

S(t)u− S(t− h)u

h
exists and is equal to S(t)Lu. Indeed,

lim
h→0+

{S(t)u− S(t− h)u

h
− S(t)Lu} = lim

h→0+
{S(t− h)

(
S(h)u− u

h

)
− S(t)Lu}.

We now add and subtract S(t− h)Lu. So

lim
h→0+

{S(t)u− S(t− h)u

h
− S(t)Lu} = lim

h→0+
{S(t − h)

(
S(h)u− u

h
− Lu

)
+ (S(t − h) −

S(t))Lu}

Now (S(t− h)− S(t))Lu approaches 0 since (I.9) holds. Moreover,
||S(t− h)(S(h)u−u

h
−Lu)|| ≤ ||S(t− h)|| ||S(h)u−u

h
−Lu|| ≤ ||S(h)u−u

h
−Lu|| → 0 as h→ 0+
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Hence we showed that lim
h→0−

S(t+ h)u− S(t)u

h
= S(t)Lu ∀t > 0.

A similar argument proves that lim
h→0+

S(t+ h)u− S(t)u

h
= S(t)Lu ∀t > 0.

Since in 2) we proved S(t)Lu = LS(t)u also point 4) has been proved.

Theorem I.2. (Properties of generators).
Let u ∈ D(L) then:

1. the domain D(L) is dense in X;

2. L is a closed operator.

Proof. 1)Let u ∈ X be fixed, define:

ut :=

∫ t

0

S(s)u ds (I.11)

Since we know that (I.9) holds, we can apply the fundamental theorem of calculus:

lim
t→0+

ut − u0

t
= S(0)u = u.

In particular ∀ u ∈ X ut

t
→ u as t→ 0+.

If we are able to prove that ut ∈ D(L) we have automatically the density of D(L)

into X.
We claim ut ∈ D(L) (t > 0):
Let h > 0. We have

S(h)ut − ut

h
=

1

h
{
∫ t

0

S(h)S(s)u ds−
∫ t

0

S(s)u ds} =
1

h

∫ t

0

(S(h+ s)u ds− S(s)u) ds

S(h)ut − ut

h
=

1

h

∫ t

0

(S(h+ s)u− S(s)u) ds =
1

h

∫ t+h

h

S(s)u ds− 1

h

∫ t

0

S(s)u ds

=
1

h

∫ t+h

t

S(s)u ds− 1

h

∫ h

0

S(s)u ds→ S(t)u− u as h→ 0+.

Hence D(L) is dense in X.
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2) Let {uk}k∈N ⊂ D(L). Suppose that uk → u and Luk → v in X. We have to prove:
u ∈ D(L) and v = Lu.
In part 1) of the proof we saw that:

∀u ∈ X : Lut = S(t)u− u. (I.12)

Changing u with uk in (I.12), we get:

Lutk = L

∫ t

0

S(s)uk ds =

∫ t

0

LS(s)uk ds =

∫ t

0

S(s)Luk ds = S(t)uk − uk

We obtain: ∫ t

0

S(s)Luk ds = S(t)uk − uk. (I.13)

Passing to the limit as k → ∞ in (I.13) we get that the right hand side becomes:
S(t)u− u.

While for the left hand side:

|
∫ t

0

S(s)Luk ds−
∫ t

0

S(s)v ds| = |
∫ t

0

(S(s)Luk − S(s)v) ds| ≤
∫ t

0

||S(s)(Luk − v)|| ds

≤
∫ t

0

||Luk − v|| ds→ 0 as k → ∞.

Summing up from (I.13), letting k → ∞ we have:∫ t

0

S(s)Lv ds = S(t)u− u. (I.14)

From (I.14) we can deduce:

Lu = lim
t→0+

S(t)u− u

t
= lim

t→0+

1

t

∫ t

0

S(s)Lv ds = v.

The equation above tells us that u ∈ D(L) and v = Lu, this completes the proof.

Definition I.6. 1) Given a real number λ ∈ R we say that it belongs to ρ(L) if the
operator:

λI − L : D(L) → X

is bijective.
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2)Whenever λ ∈ ρ(L) we define the resolvent operator Rλ : X → X in the following way:

Rλu = (λI − L)−1u ∀u ∈ X.

Remark I.1. Rλ : X → D(L) ⊂ X is a bounded linear operator in fact:
Since Rλ is defined on the whole banach space X and Rλ is linear, by the closed graph
theorem we have that:
Rλ is continuous ⇐⇒ the graph of Rλ is closed ⇐⇒ graph of (λI − L) is closed
⇐⇒ L is closed.
We proved that L is closed, hence Rλ is bounded.

Remark I.2. Observe that whenever u ∈ D(L) we have:

LRλu = lim
t→0+

S(t)Rλu−Rλu

t
= RλLu. (I.15)

Notice that (I.15) holds for all operators L, not only for the specific one we are considering.
In fact:

(λI − L)Rλu = u ∀u ∈ D(L),

Rλ(λI − L)u = u ∀u ∈ D(L).

Summing up the above two equations we get:

∀u ∈ D(L) LRλu = RλLu. (I.16)

Theorem I.3. (Properties of resolvent operators).

1. If λ,µ ∈ ρ(L) then:

Rλ −Rµ = (µ− λ)RλRµ (I.17)

and also:

RλRµ = RµRλ (I.18)

2. If λ > 0 then λ ∈ ρ(L) and:

Rλu =

∫ ∞

0

e−λtS(t)u dt (I.19)

and ||Rλ|| ≤ 1
λ
.
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Proof. 1)

(Rλ −Rµ) = Rλ(µI − L)Rµ −Rλ(λI − L)Rµ = Rλ(µ− λ)Rµ = (µ− λ)RλRµ

In order to prove (I.18) we use (I.17), we sum to this equation, the same expression
inverting the role of λ and µ, we obtain

Rλ −Rµ + (Rµ −Rλ) = (µ− λ)RλRµ + (λ− µ)RµRλ.

So
(µ− λ)RλRµ = (µ− λ)RµRλ,

which gives us the thesis, since the case λ = µ is trivial.
2) Since λ > 0 and ||S(t)|| ≤ 1 the integral on the right hand side of (I.19) is well defined.

Let R̃λu :=

∫ ∞

0

e−λtS(t)u dt, and let h > 0:

S(h)R̃λu− R̃λu

h
=

1

h
{
∫ ∞

0

e−λt(S(t+ h)u− S(t)u) dt} =

=
1

h
{
∫ ∞

h

e−λ(y−h)S(y)u dy −
∫ ∞

0

e−λ(y)S(y)u dy} =

=
1

h
{
∫ ∞

0

e−λ(y−h)S(y)u dy −
∫ h

0

e−λ(y−h)S(y)u dy −
∫ ∞

0

e−λ(y)S(y)u dy} =

= −1

h

∫ h

0

e−λ(y−h)S(y)u dy +
1

h

∫ ∞

0

(e−λ(y−h) − e−λy)S(y)u dy =

= −eλh 1
h

∫ h

0

e−λyS(y)u dy +
eλh − 1

h

∫ ∞

0

e−λyS(y)u dy

Taking the limt for h→ 0+ we get:

LR̃λu = −u+ λR̃λu ∀u ∈ X.

So
∀u ∈ X (λI − L)R̃λu = u.

If we prove that
∀u ∈ D(L) R̃λ(λI − L)u = u,

we have that R̃λ is the inverse of (λI − L) that is the resolvent operator.
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Let u ∈ D(L) we have

LR̃λu = L

∫ ∞

0

e−λtS(t)u dt =

∫ ∞

0

e−λtLS(t)u dt =

∫ ∞

0

e−λtS(t)Ludt = R̃λLu.

So
∀u ∈ D(L) R̃λ(λI − L)u = λR̃λu− R̃λLu = (λI − L)R̃λu = u.

Hence ∀λ ∈ R, λ > 0 R̃λ is the resolvent operator Rλ.
We only need to compute an estimate on ||Rλ||:

||Rλ|| = sup
u∈X

||Rλu||
||u||

≤ sup
u∈X

||u||
∫∞
0
e−λt dt

||u||
=

1

λ
.

Definition I.7. Let ω ∈ R we say that a semigroup {S(t)}t≥0 is ω-contractive if:

||S(t)|| ≤ eωt.

If in theorem I.3 point 2) we have an ω-contractive semigroup we obtain

Rλu is well defined whenever λ > ω,

(ω,∞) ⊂ ρ(L) and ||Rλ|| = supu∈X
||Rλu||
||u|| ≤ supu∈X

||u||
∫∞
0 e(ω−λ)t dt

||u|| = 1
λ−ω .

Theorem I.4. (Hille-Yosida Theorem). Let L be a closed, densely-defined linear operator
on X and let ω ∈ R.Then L is a generator of an ω-contractive semigroup {S(t)}t≥0 if and
only if

(ω,∞) ⊂ ρ(L) and ||Rλ|| ≤
1

λ− ω
for λ > ω. (I.20)

Proof. We already know that if L is a generator of a ω-contractive semigroup (I.20) holds.
It remains to prove that, given an operator L closed and densely-defined on X and such
that (I.20) holds, we have that L generates an ω-contractive semigroup.
To this end, we introduce

Lλ := −λI + λ2Rλ = λLRλ.

Let D(L) be the domain of L, we know it is dense in X for hypothesis.
We claim

Lλu→ Lu as λ→ ∞ ∀u ∈ D(L).
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Exploiting the fact that
(λI − L)Rλu = u ∀u ∈ D(L).

We obtain the following relations

λRλu− u = LRλu = RλLu ∀u ∈ D(L).

In particular

||λRλu− u|| = ||RλLu|| ≤ ||Rλ|| ||Lu|| ≤
1

λ− ω
||Lu|| → 0 as λ→ ∞ ∀u ∈ D(L).

Let now u ∈ X and δ > 0 , there exists uδ ⊂ D(L) such that ||u− uδ|| < δ in X.
Fix λ > ω, we have

||λRλu− u|| ≤ ||λRλ(u− uδ)||+ ||λRλuδ − uδ||+ ||uδ − u|| ≤

≤ λ

λ− ω
||u− uδ||+ ||λRλuδ − uδ||+ δ.

Letting λ→ ∞ we get

lim
λ→∞

||λRλu− u|| ≤ ||u− uδ||+ δ = 2δ.

Choosing δ < ϵ/2 we proved the following fact

λRλu→ u as λ→ ∞ ∀u ∈ X.

If u ∈ D(L)

Lλu = λLRλu = λRλLu.

Letting λ→ ∞
lim
λ→∞

Lλu = Lu ∀u ∈ D(L).

We define

Sλ(t) := etLλ = e−λteλ
2tRλ = e−λt

∞∑
k=0

(λ2t)k

k!
Rk
λ.

From the properties of the exponential of an operator (I.4) , (I.5) and (I.9) follow imme-
diately.
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Since ||Rλ|| ≤ 1
λ−ω

||Sλ(t)|| ≤ e−λt
∞∑
k=0

λ2ktk

k!
||Rλ||k ≤ e−λt

∞∑
k=0

λ2ktk

(λ− ω)kk!
= e−λteλ

2t/(λ−ω) = eλωt/(λ−ω).

In particular {Sλ(t)}t≥0 is an λω
λ−ω -contractive semigroup.

We now prove that for every t ≥ 0 and u ∈ D(L), {Sλ(t)u}λ>ω has the Cauchy property
as λ→ ∞.
Let t > 0, u ∈ D(L) and define ϕ : [0, t] → X by setting

ϕ(s) = e(t−s)LλesLµu for 0 ≤ s ≤ t.

We have
ϕ(t)− ϕ(0) = etLµu− etLλu = Sµ(t)u− Sλ(t)u.

Let λ,µ > ω

LλLµ = λLRλ µLRµ = λLµRλRµL = λLµRµRλL = LµLλ.

So
ϕ′(s) = e(t−s)LλesLµ(Lµu− Lλu) for all s ∈ [0, t].

||ϕ′(s)|| ≤ eλω(t−s)/(λ−ω)eµωs/(µ−ω)||Lµu− Lλu||,

since the function λ→ λ/(λ− ω) is decreasing we have

||ϕ′(s)|| ≤ eλωt/(λ−ω)||Lµu− Lλu|| for all µ > λ > ω for all s ∈ [0, t].

Hence

||Sµ(t)u− Sλ(t)u|| = ||ϕ(t)− ϕ(0)|| = ||ϕ′(c)||t ≤ teλωt/(λ−ω)||Lµu− Lλu|| ∀u ∈ D(L)

(I.21)
where c ∈ (0, t).

Since Lλu→ Lu as λ→ ∞ we proved that the family {Sλ(t)u}λ>ω is Cauchy as λ→ ∞,
in particular for every t ≥ 0 there exists a linear map S(t) : D(L) → X with

S(t)u = lim
λ→∞

Sλ(t)u for all u ∈ D(L).

Sending µ→ ∞ in (I.21) keeping λ fixed we obtain

||S(t)u− Sλ(t)u|| ≤ teλωt/(λ−ω)||Lu− Lλu|| for all u ∈ D(L).
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And this tells us that Sλ(t)u → S(t)u uniformly with respect to t ∈ [0, T ] as λ → ∞ for
u ∈ D(L), so that t→ S(t)u is continuous on [0,∞) for u ∈ D(L).
Since ||Sµ(t)u|| ≤ eµωt/(µ−ω)||u|| for every u ∈ X, we have ||S(t)|| ≤ eωt. From this we
deduce that Sλ(t)u → S(t)u for all u ∈ X and t → S(t)u is continuous on [0,∞) for all
u ∈ X. Properties (I.4) and (I.5) hold since they hold for each Sλ with λ > ω and we
have pointwise convergence of Sλu to Su as λ → ∞. It remains to show that L is the
generator of the semigroup {S(t)}t≥0.
Let B be the generator of {S(t)}t≥0. Since B is the generator of the semigroup {S(t)}t≥0

B is a closed operator with domain

D(B) = {u ∈ X : Bu = lim
t→0+

S(t)u− u

t
exists in X}.

Moreover (ω,∞) ⊂ ρ(B). Consider that

Sλ(t)u− u =

∫ t

0

d

ds
Sλ(s)u ds =

∫ t

0

Sλ(s)Lλu ds ∀u ∈ D(L). (I.22)

We also have the following inequality

||Sλ(s)Lλu− S(s)Lu|| ≤ ||Sλ(s)|| ||Lλu− Lu||+ ||(Sλ(s)− S(s))Lu|| → 0 as λ→ ∞.

Passing to the limit for λ→ ∞ in (I.22) we obtain

S(t)u− u =

∫ t

0

S(s)Luds ∀u ∈ D(L).

Bu = lim
t→0+

S(t)u− u

t
= Lu ∀u ∈ D(L).

In particular we have D(L) ⊂ D(B).
Moreover (ω,∞) ⊂ ρ(L) ∩ ρ(B) and if λ > ω

(λI −B)(D(L)) = (λI − L)(D(L)) = X.

The above equality holds since in D(L) the operator B and L coincide and λ ∈ ρ(L).
But this means that (λI − B)|D(L) is a bijection, also (λI − B)|D(B) is a bijection, hence
D(L) = D(B) but this implies that L = B and L is the generator of {S(t)}t≥0.

We need an additional definition that will be used in the following chapters:

Definition I.8. We say that S(t) is an analytic semigroup if it is a C0 semigroup and
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• For some ϕ ∈ (0, π/2), S(t) can be extended to ∆ϕ, where

∆ϕ = {0} ∪ {t ∈ C : |arg(t)| < ϕ}.

• for all t ∈ ∆ϕ − {0} S(t) is analytic in t in the uniform operator topology.

I.2.3. Applications

Consider the following parabolic problem


ut + Lu = 0 in UT

u = 0 on ∂U × [0, T ]

u = g on U × {t = 0}.

(I.23)

Where U is assumed to be an open bounded set in Rn, UT = U × (0, T ] and T ∈ R with
T > 0. We assume L to have the divergence structure, moreover we ask L to satisfy the
strong ellipticity conditions and to have smooth coefficients not depending on t, that is

Lu := div(A(x)∇u) +
−→
b (x) · ∇u+ c(x)u,

with A(x) = [aij(x)]i,j=1..n satisfying

n∑
i,j=1

aij(x)ψiψj ≥ θ|ψ|2,

for some θ > 0 and for all x ∈ R and ψ ∈ Rn.
A(x),

−→
b (x), c(x) are all smooth coefficients.

Our aim is to find solutions of (I.23) using the theory of semigroups.
Define the operator A in the following way:

Au := −Lu if u ∈ D(A),

where D(A) = H1
0 (U) ∩H2(U).

Setting X = L2(U), if we are able to show that A generates a γ-contraction semigroup
{S(t)}t≥0 on X, we can apply theorem (I.1) point (4):

∀ u ∈ D(A) :
d

dt
S(t)u = AS(t)u ∀ t > 0.
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In particular, substituting u(t) = S(t)u, we obtain

∀u ∈ D(A) :
d

dt
u(t) = −Lu(t) ∀ t > 0 and u(0) = u.

We can extend the result above by density, consider {uk}k∈N ⊂ D(A) with uk → u in X.
So,

lim
k→∞

d

dt
uk(t) = lim

k→∞

d

dt
S(t)uk = lim

k→∞
AS(t)uk = AS(t)u.

In other words we have the following result:

∀u ∈ X :
d

dt
u(t) = −Lu(t) ∀ t > 0 and u(0) = u,

where u(t) = S(t)u as usual.
In particular for every u ∈ X as initial condition, we have found a solution of problem
(I.23).
We only have to show that the operator A generates a γ-contraction semigroup.

Theorem I.5. The operator A generates a γ-contraction semigroup on X = L2(U).

Proof. We have to verify the hypothesis of the Hille-Yosida theorem.
D(A) is obviously dense in L2(U).
We now prove that A is closed.
Let {uk}k∈N ⊂ D(A) with uk → u in X and Auk → y in X, we want to show that
u ∈ D(A) and y = Au.
According to the regularity estimates (see for example [2] section 6.3.2) we have:

||uk − ul||H2(U) ≤ C(||Auk − Aul||L2(U) + ||uk − ul||L2(U))

Hence, u ∈ D(A) since uk is a Cauchy sequence in H2(U) and this also implies Auk → Au

in L2(U).
We proceed to check the resolvent conditions.
First of all we show (γ,∞) ⊂ ρ(A).In particular:

∀λ ≥ γ (λI − A) : D(A) ⊂ X → X is a bijection.

Notice that
(λI − A)u = Lu+ λu ∀u ∈ D(A).



22 I| Preliminary results

From the theory (see [2] section 6.2.2) it is well known that the boundary value problem:{
Lu+ λu = f in U

u = 0 on ∂U
(I.24)

admits a unique solution u ∈ H1
0 (U) for each f ∈ L2(U). So in principle the operator

(λI −A)−1 associates to each function f ∈ X = L2(U) the unique solution u ∈ H1
0 (U) of

(I.24). Thus, without knowing anything else, we wouldn’t be able to say that the range of
this map is D(A). From regularity theory we know that actually u ∈ H2(U) ∩H1

0 (U) =

D(A). Hence
∀ λ ≥ γ (λI − A) : D(A) → X. is bijective.

It remains to prove that

||Rλ|| ≤
1

λ− γ
∀λ > γ.

Consider now the weak form of (I.24):

B[u, v] + λ(u, v) = (f, v) ∀v ∈ H1
0 (U).

Where B[u, v] :=
∫
U

∑n
i,j=1 aijuxivxj + (

−→
b · ∇u)v + cuv dx.

Recalling the energy estimate (see [2] subsection 6.2.2)

β||u||2H1
0 (U) ≤ B[u, u] + γ||u||2L2(U),

we have

||f ||L2(u) ||u||L2(U) ≥ |(f, u)| ≥ (f, u) = B[u, u]+λ(u, u) ≥ β||u||2H1
0 (U)−γ||u||

2
L2(U)+λ||u||2L2(U).

This implies

||f ||L2(u) ||u||L2(U) ≥ β||u||2H1
0 (U) − γ||u||2L2(U) + λ||u||2L2(U) ≥ −γ||u||2L2(U) + λ||u||2L2(U).

Hence
(λ− γ)||u||2L2(U) ≤ ||f ||L2(U)||u||L2(U).

Since u = Rλf we obtain

||Rλf ||L2(U) ≤
1

λ− γ
||f ||L2(U) ∀ λ > γ, ∀f ∈ L2(U).
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Finally

||Rλ|| ≤
1

λ− γ
∀λ > γ.

Hence A generates a γ-contractive semigroup and the proof is complete.
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1| Local existence

In the following chapter we focus our attention on the problem{
u′(t) = Au(t) + J(u(t)) (t > 0)

u(0) = ϕ,
(1.1)

where u : [0, T ] → E is a curve with values in the Banach space E, A is the infinitesimal
generator of a C0 semigroup etA on E and J is a nonlinear function from a subset of E
into E.
We will study the existence of solutions of problem (1.1) through the corresponding inte-
gral equation

u(t) = etAϕ+

∫ t

0

e(t−s)AJ(u(s)) ds (1.2)

In particular we will follow the work of Weissler, see [5].

1.1. Abstract existence theorem

To further investigate problem (1.2) we need some definitions.

Definition 1.1. Given a Banach space E with norm || ||, a family of transformation Wt

with t ≥ 0 is called a semiflow on E with domains D(Wt) if:

1. W0ϕ = ϕ ∀ϕ ∈ E.

2. If one between Wt+sϕ or WtWsϕ is defined, then also the other is defined and they
coincide.

3. For every ϕ ∈ E the map t→ Wtϕ is continuous into E.

4. Every ϕ ∈ E is in D(Wt) for some t > 0.

Definition 1.2. Given a semiflow Wt on the Banach space E, the curve u(t) = Wtϕ is
called the trajectory of ϕ and is defined on [0, Tϕ) where Tϕ = sup{t > 0 : ϕ ∈ D(Wt)}.
Tϕ is called the existence time of the trajectory.
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In this section we will ask particular properties to the nonlinear function J in (1.1); in
particular

1. J : EJ → E where EJ is a Banach space with norm | |J and EJ is dense in the
banach space E, and also EJ is continuously embedded into E.

2. J is locally Lipschitz on bounded sets in EJ , in other words:

||Jϕ− Jψ|| ≤ l(r)|ϕ− ψ|J ∀ϕ, ψ with |ϕ|J ≤ r and |ψ|J ≤ r,

where l(r) denotes the Lipschitz constant restricted to

Br(EJ) = {ϕ ∈ EJ : |ϕ|J ≤ r}.

3. J(0) = 0

In the next theorem we want to prove one of the fundamental components to be taken
into account is the growth of the Lipschitz constant l(r) associated to the function J as
r → ∞ (notice that l(r) is a nondecreasing function in r).
Let 0 < a < 1 be a fixed constant.
We give two different conditions which l(r) can satisfy:∫ ∞

τ

r−
1
a l(r) dr <∞ for some τ > 0 (1.3)

l(r) = O(r
(1−a)

b ) as r → ∞ for some 0 < b < a (1.4)

Notice that condition (1.3) is stronger than (1.4). In fact∫ 2r

r

s−
1
a l(s) ds ≥ l(r)

∫ 2r

r

s−
1
a ds ≥ l(r)(2r)−

1
a

∫ 2r

r

1 ds = r l(r)(2r)−
1
a

Now

r l(r)(2r)−
1
a ≤

∫ 2r

r

s−
1
a l(s) ds ≤

∫ ∞

r

s−
1
a l(s) ds <∞.

But this implies
l(r) rr−

1
a is bounded as r → ∞,

which means
l(r) r

a−1
a is bounded as r → ∞,

and this implies (1.4).
Moreover, we ask further properties to the C0 semigroup etA on E:
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1. ||etAϕ|| ≤Meγt||ϕ|| ∀ϕ ∈ E and t ≥ 0, with γ ≥ 0,

2. ∀t > 0, etA is a bounded map E → EJ and, for any T > 0 there exists N > 0:

|etAϕ|J ≤ Nt−a||ϕ||, t ∈ (0, T ], (1.5)

where a is the same number used for the Lipschitz constant growth control.

3. t→ etAϕ is continuous into EJ for t > 0.

We need an additional lemma regarding a basic integral inequality.

Lemma 1.1. Let f, g : [a, b] → R. Assume f to be increasing and g to be decreasing in
the entire interval [a, b]. The following inequality holds∫ b

a

f(x)g(x) dx ≤ 1

b− a

∫ b

a

f(x) dx

∫ b

a

g(x) dx.

Proof.

[f(x)− f(y)][g(x)− g(y)] ≤ 0 for all x, y ∈ [a, b] (1.6)

Let R := [a, b]2. Integrating (1.6) over R we get

0 ≥
∫∫
R

[f(x)− f(y)][g(x)− g(y)] dx dy =

= (b−a)
∫ b

a

f(x)g(x) dx+(b−a)
∫ b

a

f(y)g(y) dy−
∫∫
R

f(y)g(x) dx dy−
∫∫
R

f(x)g(y) dx dy =

= 2

[
(b− a)

∫ b

a

f(x)g(x) dx−
∫ b

a

f(x) dx

∫ b

a

g(x) dx

]
.

Hence

(b− a)

∫ b

a

f(x)g(x) dx−
∫ b

a

f(x) dx

∫ b

a

g(x) dx ≤ 0,

which is the thesis.

We can now state the following theorem.

Theorem 1.1. Let E, J,EJ and etA have the properties defined above.
a) Suppose that condition (1.3) holds. Then there exists a unique semi-flow Wt on E such
that:
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1. If we set u(t) = Wtϕ then the curve u : (0, Tϕ) → EJ is continuous, moreover
lim sup
t→0+

|tau(t)|J <∞ and:

u(t) = etAϕ+

∫ t

0

e(t−s)AJ(u(s)) ds (1.7)

(1.7) holds for the entire trajectory of ϕ. The integral is both an E and EJ valued
Bochner integral.

2. If v : (0, T ] → EJ is strongly measurable with |tav(t)|J bounded and satisfies (1.7)
then v(t) coincides with the semiflow Wt on (0, T ].

3. Given α, β > 0 with αM < β and αN < β, there exists T > 0 such that:
Bα(E) = {ψ ∈ E : ||ψ|| ≤ α} ⊂ D(WT ) and the maps Wt : Bα(E) → Bβ(E) and
taWt : Bα(E) → Bβ(EJ) are uniformly Lipschitz for t ∈ (0, T ].

4. If the existence time Tϕ is finite then: ||Wtϕ|| → ∞ as t → Tϕ moreover we have
lim sup
t→Tϕ−

|tau(t)|J = ∞.

b)Suppose instead that (1.4) holds for some b ∈ (0, a). It follows that for sufficiently small
K > 0, if ϕ is in E and lim supt→0+ |tbetAϕ|J < K then there exists T > 0 and a curve
u : [0, T ] → E satisfying:

6. u : [0, T ] → E is continuous and u(0) = ϕ.

7. u : (0, T ] → EJ is continuous and |tbu(t)|J ≤ 2K.

8. u(t) satisfies (1.7) for t ∈ [0, T ] with the integral be both an E and EJ valued integral.

9. If v : (0, T1] → EJ is strongly measurable with T1 ≤ T and |tbv(t)|J ≤ 2K and also
satisfies (1.7) then v(t) = u(t) ∀ t ∈ (0, T1].

Proof. We will start proving part a).
We will prove existence of a solution to (1.7) through a contraction mapping argument
on a specific Banach Space.
Fix ϕ ∈ E and let X be the space of curves u : [0, T ] → E satisfying:

I u : [0, T ] → E is continuous and u(0) = ϕ.

II ||u(t)|| ≤ β for all t ∈ [0, T ].

III u : (0, T ] → EJ is continuous.

IV |tau(t)|J ≤ β for all t ∈ (0, T ]
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We equip X with the metric d(u, v):= max[sup[0,T ] ||u(t)− v(t)||, sup(0,T ] |u(t)− v(t)|J ].
In fact, suppose {uk}k∈N ⊂ X is Cauchy in X, we want to show that uk → u ∈ X.
Exploiting the definition of the metric d, we see that uk(t) → u(t) in E uniformly with
respect to t ∈ [0, T ], moreover uk(t) → u(t) in EJ for t ∈ (0, T ] uniformly with respect to
t. Hence u which is the limit is continuous in both E and EJ . The other properties are
obvious.
Let u ∈ X. Define

(Fu)(t) = etAϕ+

∫ t

0

e(t−s)AJ(u(s)) ds.

Notice that Fu is well defined ∀ u ∈ X since
u : (0, T ] → EJ is strongly measurable and |tau(t)|J ≤ β for t ∈ (0, T ] and this implies
that the function s→ e(t−s)AJ(u(s)) is strongly measurable into both E and EJ .

If we show that Fu ∈ X for all u ∈ X and that Fu is a contraction. We have that there
exists a unique fixed point u ∈ X such that Fu = u which is (1.7).
Observe that Fu : [0, T ] → E is continuous. In fact
Let 0 ≤ t2 ≤ t1. We have

||Fu(t1)−Fu(t2)|| = ||
∫ t2

0

(e(t1−s)A − e(t2−s)A)(J(u(s)) ds+

∫ t1

t2

e(t1−s)AJ(u(s)) ds|| ≤

≤
∫ t2

0

||(e(t1−s)A − e(t2−s)A)(J(u(s))|| ds+
∫ t1

t2

||e(t1−s)AJ(u(s))|| ds.

We will see later in the proof that the term ||(e(t1−s)A − e(t2−s)A)(J(u(s))|| is bounded
hence for the dominated convergence theorem we can pass to the limit inside the integral.

lim
t2→t1−

||Fu(t1)−Fu(t2)|| ≤
∫ t2

0

lim
t2→t1−

||(e(t1−s)A−e(t2−s)A)(J(u(s))|| ds+ lim
t2→t1−

C(t1−t2) = 0.

Hence Fu : [0, T ] → E is continuous and condition I) for Fu in order to belong to X

holds. Similar reasoning can be applied to show condition III) in the requisites for Fu to
belong to X.
It remains to prove properties II) and IV) for Fu.

||Fu(t)|| ≤ ||etAϕ||+
∫ t

0

||e(t−s)AJ(u(s))|| ds

We focus on the second term:∫ t

0

||e(t−s)AJ(u(s))|| ds ≤MeγT
∫ t

0

||J(u(s))|| ds ≤MeγT
∫ t

0

l(|u(s)|J)|u(s)|J ds
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We can now use the fact that u ∈ X, in particular: |tau(t)|J ≤ β and also that r → l(r)

is nondecreasing. Thus

MeγT
∫ t

0

l(|u(s)|J)|u(s)|J ds ≤MeγT
∫ t

0

l(βs−a)βs−a ds ≤

≤MeγT
∫ βT−a

+∞
l(y) yβ

1
a (−1

a
)y

−a−1
a dy =MeγT

∫ +∞

βT−a

(
1

a
)β

1
a l(y) yy

−a−1
a dy =

=MeγT (
1

a
)β

1
a

∫ +∞

βT−a

l(y) y−
1
a dy <∞.

Hence

||Fu(t)|| ≤MeγT [α + (
1

a
)β

1
a

∫ +∞

βT−a

l(y) y−
1
a dy]

Choosing T sufficiently small,
∫ +∞
βT−a l(y) y

− 1
a dy and MeγT can be as small as we want.

Hence
||Fu(t)|| ≤ β ∀u ∈ X, t ∈ [0, T ].

We repeat the same process for |taFu(t)|J :

|taFu(t)|J ≤ ta|etAϕ|J + ta
∫ t

0

|e(t−s)AJ(u(s))|J ds

We focus on the second term:

ta
∫ t

0

|e(t−s)AJ(u(s))|J ds ≤ Nta
∫ t

0

(t− s)−a||J(u(s))|| ds ≤

≤ Nta
∫ t

0

(t− s)−al(βs−a)βs−a ds ≤ Ntat−1

∫ t

0

(t− s)−a ds

∫ t

0

l(βs−a)βs−a ds,

where in the last step we used Lemma 1.1 with f = (t− s)−a and g = l(βs−a)βs−a.
Now

Ntat−1

∫ t

0

(t−s)−a ds
∫ t

0

l(βs−a)βs−a ds = Ntat−1

∫ t

0

t−a(1−s
t
)−a ds

∫ t

0

l(βs−a)βs−a ds =

= Ntat−1

∫ 1

0

t−a(1− y)−at dy

∫ t

0

l(βs−a)βs−a ds =

= N

∫ 1

0

(1− y)−a dy

∫ t

0

l(βs−a)βs−a ds = N(1− a)−1

∫ t

0

l(βs−a)βs−a ds ≤

≤ N(1− a)−1(
1

a
)β

1
a

∫ +∞

βT−a

l(y) y−
1
a dy.
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Hence

|taFu(t)|J ≤ Nα +N(1− a)−1(
1

a
)β

1
a

∫ +∞

βT−a

l(y) y−
1
a dy

Choosing T sufficiently small, we obtain

|taFu(t)|J ≤ β ∀t ∈ (0, T ].

In other words we proved that, given u ∈ X then Fu ∈ X. So, taking T sufficiently small
F : X → X is a strict contraction. In fact

sup
[0,T ]

||
∫ t

0

e(t−s)A(J(u(s))−J(v(s))) ds|| ≤Mβ−1eγT
∫ T

0

l(βs−a)βs−a ds sup
(0,T ]

sa|u(s)−v(s)|J ,

while

sup
(0,T ]

|
∫ t

0

e(t−s)A(J(u(s))−J(v(s))) ds|J ≤ Nβ−1ta
∫ t

0

(t−s)−al(βs−a)βs−a ds sup
(0,T ]

sa|u(s)−v(s)|J .

For the choice we made of T , bothMeγT
∫ T
0
l(βs−a)βs−a ds andNta

∫ t
0
(t−s)−al(βs−a)βs−a ds

are strictly less than β.
Now for u, v ∈ X, we have

d(Fu,Fv) = max[sup
[0,T ]

||Fu(t)−Fv(t)||, sup
(0,T ]

|Fu(t)−Fv(t)|J ] ≤

≤ 1

β
max[MeγT

∫ T

0

l(βs−a)βs−a ds ,NT a
∫ T

0

(t−s)−al(βs−a)βs−a ds ] sup
(0,T ]

sa|u(s)−v(s)|J <

< sup
(0,T ]

sa|u(s)− v(s)|J ≤ d(u, v).

Hence, F is a strict contraction. This implies that there exists a unique fixed point i.e. a
solution of the integral equation (1.7).Point 1) of the theorem has been proved.
We shall prove point 2).
For any ϕ ∈ E, let Wtϕ be the maximal continuous curve u(t) in E such that for positive t
it is also continuous in EJ with lim supt→0+ t

a|u(t)|J <∞ satisfying the integral equation
(1.7), then the Wt form a semiflow on E.Notice that we know Wt defined as above exists
since for hypothesis u = Fu and both ||Fu|| and ta|Fu|J are bounded by β since ta|u(t)|J
is bounded, hence u(t) = Wtϕ ∈ X and is the unique solution to (1.7).
We proceed in proving point 3).
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Let ϕ and ψ ∈ Bα(E), let t ∈ (0, T ]. We have

ta|Wtϕ−Wtψ|J = ta|etA(ϕ− ψ) +

∫ t

0

e(t−s)A(J(Wsϕ)− J(Wsψ)) ds|J ≤

≤ N ||ϕ− ψ||+ ta
∫ t

0

N(t− s)−al(βs−a)|Wsϕ−Wsψ|J ds =

= N ||ϕ− ψ||+ ta
∫ t

0

N(t− s)−al(βs−a)s−asa|Wsϕ−Wsψ|J ds ≤

≤ N ||ϕ− ψ||+ ta
∫ t

0

N(t− s)−al(βs−a)s−a ds sup
(0,T ]

sa|Wsϕ−Wsψ|J ≤

≤ N ||ϕ− ψ||+ (1− δ) sup
(0,T ]

sa|Wsϕ−Wsψ|J .

Where the last inequality holds for some δ > 0.
In particular we have

ta|Wtϕ−Wtψ|J ≤ N ||ϕ− ψ||+ (1− δ) sup
(0,T ]

sa|Wsϕ−Wsψ|J .

Taking on both sides the supremum on (0, T ] and rearranging the terms we obtain

sup
(0,T ]

ta|Wtϕ−Wtψ|j ≤ Nδ−1||ϕ− ψ||

In other words, since ta|Wtϕ|J ≤ β we have that the mapping

taWt : Bα(E) → Bβ(EJ)

is uniformly Lispchitz.
With an identical argument, we get

||Wtϕ−Wtψ|| ≤MeγT (||ϕ− ψ||+
∫ T

0

l(βs−a)s−a ds sup
(0,T ]

sa|Wsϕ−Wsψ|J ≤

≤MeγT ||ϕ− ψ||+ (1− δ) sup
(0,T ]

sa|Wsϕ−Wsψ|J .

But we already know that sup(0,T ] s
a|Wsϕ−Wsψ|J ≤ Nδ−1||ϕ− ψ||.

Hence
sup
(0,T ]

||Wtϕ−Wtψ|| ≤ (MeγT + (1− δ)Nδ−1)||ϕ− ψ||

Point 3) has finally been proved. We can now prove point 4).
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Let {tk}k∈N be a sequence such that tk → Tϕ suppose now by contradiction ||Wtkϕ|| ≤
C ∀k ∈ N.
Wtkϕ ∈ E, let uk(t) be the unique solution, uk(t) : [0, T ] → EJ to problem (1.7) with
initial datum Wtkϕ, notice that T is independent of k since ||Wtkϕ|| ≤ C ∀k ∈ N.
By uniqueness of Wtϕ we have: uk(t) = Wt+tkϕ for t sufficiently small.
Fix now k such that tk ∈ (Tϕ − T, Tϕ), set:{

ũ(t) = Wtϕ t ∈ [0, tk]

ũ(t) = uk(t− tk) t ∈ [tk, tk + T ].
(1.8)

Note that ũ(t) is a solution on [0, tk + T ] and tk + T > Tϕ but this is absurd since Tϕ is
the maximal time for the existence of a solution.
Hence ||Wtkϕ|| → ∞ as tk → Tϕ.
With a similar argument by contradiction we also obtain that lim supt→Tϕ

|Wtϕ|J = ∞.
We can now pass to part b) of the theorem.
Choose C such that l(r) ≤ Cr

1−a
b .

Since
lim sup

t→0+
|tbetAϕ|J < K,

there exists T > 0 such that

|tbetAϕ|J ≤ K ∀t ∈ (0, T ].

Let now Y be the space of curves u : [0, T ] → E satisfying I and III above and also
|tbu(t)|J ≤ 2K ∀t ∈ (0, T ]. We equip Y with the same metric d of X.(Y,d) is a complete
metric space (you can see the proof for the metric space X).
Let u ∈ Y define Fu as above. We have

||Fu(t)|| ≤MeγT (||ϕ||+
∫ t

0

l(|u(s)|J)|u(s)|J ds) ≤MeγT (||ϕ||+
∫ t

0

l(2Ks−b)2Ks−b ds)

We now further assume that T b ≤ 2K in such a way l(2Ks−b) ≥ 1 ∀s ∈ (0, T ]. So

||Fu(t)|| ≤MeγT (||ϕ||+
∫ t

0

C(2Ks−b)
1−a
b 2Ks−b ds) =MeγT (||ϕ||+C(2K)

1−a+b
b

∫ t

0

sa−1−b ds).

Moreover,

|tbFu(t)|J ≤ K + tb
∫ t

0

N(t− s)−al(2Ks−b)2Ks−b ds ≤

≤ tbNC(2K)
1−a+b

b

∫ t

0

(t− s)−asa−1−b ds = K +NBC(2K)
1−a+b

b ,
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where B =
∫ 1

0
(1− s)−asa−1−b ds

Notice that Fu satisfies condition I and III. We now choose K in such a way that

NBC(2)
1−a+b

b K
1−a
b ≤ 1.

This ensures that |tbFu(t)|J ≤ 2K,hence Fu ∈ Y . Requiring additionally that

MeγTC(2K)
1−a
b

∫ t

0

sa−1−b ds < 1,

ensures that F : Y → Y is a strict contraction. This proves Theorem 1.1, since the
technicalities regarding measurability and continuity are analogous at the ones in the first
part of the proof.

At this point we make an additional assumption. We require that etA restricts to a C0

semigroup on EJ . Then the maps etAJ : EJ → EJ satisfy the hypotheses of theorem 1
in [4].This implies that there is a semi-flow Vt on EJ whose trajectories v(t) = Vtϕ satisfy
the integral equation (1.7) in EJ ; moreover, the following corollary is true.

Corollary 1.1. Suppose that etA restricts to a C0 semigroup on EJ . Let Vt be the semi-
flow on EJ described above.
a)If (1.3) holds in theorem (1.1) then Vt is the restriction of Wt on EJ . In particular if
ϕ ∈ EJ , the existence time of the trajectory of ϕ is the same in EJ and in E, and if ϕ ∈ E

with Tϕ <∞, then both ||Wtϕ|| and |Wtϕ|J approach ∞ as t→ Tϕ.
b)If (1.4) holds, then then the curves u(t) satisfying 6-9 in theorem (1.1) extend Vt, in
the sense that u(t) = Vt−su(s) ∀ 0 < s < t ≤ T and also for s = 0 if ϕ ∈ EJ . In
particular u(t) can be continuously extended in EJ as a solution to (1.7) until |u(t)|J →
∞.This extension is also continuous in E.(We denote the extension of u(t) by Wtϕ and
the existence time by Tϕ.Thus Wt is a densely defined semi-flow on E which extends Vt).
c)If etA is an analytic semigroup on both E and EJ then in both cases above, the trajectory
u(t) = Wtϕ is continuously differentiable on (0, Tϕ) in E and satisfies:

u′(t) = Au(t) + J(u(t)), t ∈ (0, Tϕ)

i.e. u(t) is in the domain of A in E for t ∈ (0, Tϕ).

Proof. Suppose that (1.3) holds. then if ϕ ∈ EJ the curve v(t) = Vtϕ satisfies condition 2)
in theorem (1.1) on every closed subinterval of the trajectory. Thus Vtϕ = Wtϕ throughout
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the EJ -trajectory of ϕ. The only thing is that the EJ -trajectory could be smaller than
the E-trajectory since EJ ⊂ E,but this cannot happen since we proved in theorem (1.1)
that u : (0, Tϕ) → EJ is continuous, throughout the E-trajectory. Thus Tϕ is the same in
both E and EJ .
The same reasoning holds for point b).
For point c) it is sufficient to prove the result with ϕ replaced by ψ = Wϵϕ for every
ϵ > 0. Wϵ/2ϕ ∈ EJ and by proposition 1.2 in [4] we have that u(t) = Wt(Wϵϕ) is Höelder
continuous on [0, T ] into EJ for T < Tψ. This implies that J(u(t)) is Höelder continuous
from [0, T ] into E. The result follows from page 491, theorem 1.27 of [1].
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1.2. A class of examples

Let Ω ⊂ Rn be a bounded domain. Suppose etA is an analytic C0 semigroup on all Lp(Ω)
spaces for 1 < p <∞.
We will denote Dp(A) the domain of its generator in Lp(Ω). Moreover, assume there
exists a positive integer m such that ∂Ω is of class Cm and that for each p, Dp(A) with
its graph norm is continuously embedded in Wm,p(Ω).

Proposition 1.1. Let 1 < p < q ≤ ∞. Let r ∈ R be such that 1
r
= 1

p
− 1

q
. Then for

t > 0, etA : Lp → Lq is a bounded map. Moreover, for any T > 0 there is a constant N
(depending on p, q,Ω) such that:

||etAϕ||q ≤ Nt
−n
mr ||ϕ||p for all t ∈ (0, T ],

If A = ∆, then p = 1 is also allowed with m = 2.

We don’t see the proof of this proposition; we will prove it in a particular case later.

Theorem 1.2. Let ν > 1 and suppose for some p with 1 ≤ p < ∞, J : Lpν → Lp is
locally Lipschitz satisfying l(r) = O(rν−1) as r → ∞.
a)
Suppose p > n(ν−1)

m
and p > 1 (p ≥ 1 if A = ∆).Then there exists a semi-flow Wt on

Lp(Ω) satisfying

Wtϕ = etAϕ+

∫ t

0

e(t−s)AJ(Wsϕ) ds, (1.9)

and having all the properties described in theorem (1.1) part a) and corollary (1.1) parts
a) and c) with E = Lp and EJ = Lpν. In particular, if ϕ ∈ Lp then Wtϕ ∈ Lpν ∩Dp(A)

for t > 0; and if Tϕ < ∞ then ||Wtϕ||p → ∞ as t → Tϕ. Moreover Wt restricts to a
semi-flow on Lpν and the existence time of the trajectory of ϕ ∈ Lpν is the same in Lpν

and in Lp. Furthermore, for all ϕ ∈ Lp the curve u(t) = Wtϕ is continuously differentiable
(0, Tϕ) → Lp and satisfies

u′(t) = Au(t) + J(u(t)), u(0) = ϕ. (1.10)

b)
Suppose n(ν−1)

mν
< p < n(ν−1)

m
and p > 1,(p ≥ 1 if A = ∆).

Let b = 1
ν−1

− n
mpν

. There exists K > 0 such that if ϕ ∈ Lp and lim supt→0+ ||tbetAϕ||pν <
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K, then there exists a continuous curve u : [0, T ] → Lp satisfying

u(t) = etAϕ+

∫ t

0

e(t−s)AJ(u(s)) ds,

and having all the properties of theorem (1.1) part b) and corollary (1.1) part b) and c)
with E = Lp and EJ = Lpν. In particular, the semi-flow Wt on Lpν satisfying (1.9) as
described in theorem 4 of [4] extends to include such ϕ and u(t) = Wtϕ for t ∈ [0, T ].
Thus, if Tϕ <∞, ||Wtϕ||pν → ∞ as t→ Tϕ. For all such ϕ the extended curve u(t) = Wtϕ

is continuously differentiable (0, Tϕ) → Lp and satisfies (1.10). In addition, if such a ϕ is
in Lq with p < q < pν, then u(t) = Wtϕ is continuous (0, Tϕ] → Lq. Furthermore, the set
of ϕ satisfying lim supt→0+ ||tbetAϕ||p < K includes every ϕ ∈ L

n(ν−1)
m , and so Wt extends

to a continuous semi-flow on all of L
n(ν−1)

m .

Proof. If we set E = Lp and EJ = Lpν , in particular we have, using the notation for the
Banach spaces in the previous section:

|etAϕ|J = ||etAϕ||pν ≤ Nt
−n
m

( 1
p
− 1

pν )||ϕ||p = Nt
−n(ν−1)

mpν ||ϕ||p

We have that (1.5) holds with a = n(ν−1)
mpν

.If p > n(ν−1)
m

then (1.3) holds.
In fact let τ > 1, choose C > 0 such that for all r > 1, l(r) ≤ Crν−1. Then∫ ∞

τ

r−
1
a l(r) dr ≤

∫ ∞

τ

r−
1
aCrν−1 dr.

Now we consider the exponent in the integral:

−1

a
+ ν − 1 =

−mpν + n(ν − 1)2

n(ν − 1)
<
ν(−n(ν − 1)) + n(ν − 1)2

n(ν − 1)
= −1,

where in the next to last step we used p > n(ν−1)
m

. In this way we can apply the Theorem
1.1 and its corollary 1.1. Therefore part a) of the theorem is proved.
For part b) of the theorem, we first show that 0 < b < a. Indeed,
b > 0 since

b =
1

ν − 1
− n

mpν
>

1

ν − 1
− 1

ν − 1
= 0,

because n(ν−1)
mν

< p implies − n
pmν

> − 1
ν−1

. Moreover,
b < a, since

b =
1

ν − 1
− n

mpν
<

n

mp
− n

mpν
= a.

This follows from the fact that p < n(ν−1)
m

which implies 1
ν−1

< n
mp

. Hence 0 < b < a.
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It remains to prove that l(r) = O(r
1−a
b ). I indeed, note that

1− a

b
= ν − 1

And for hypothesis l(r) = O(rν−1) = O(r
1−a
b ).

To complete the proof, we first claim that if q < pν and ϕ ∈ Lq, then we have

lim
t→0+

||tcetAϕ||pν = 0

with c = n
mq

− n
mpν

. By Proposition 1.1, the maps tcetA : Lq → Lpν are uniformly bounded
for t ∈ (0, T ]. In fact,

||tcetAϕ||pν ≤ Ntct−
n
mq

+ n
mpν ||ϕ||q = N ||ϕ||q.

We also have:
lim
t→0+

||tcetAϕ||q = lim
t→0+

||tcϕ||q = 0,

and converge strongly to 0 on the dense subset Lpν . This by the way shows that for every
ϕ ∈ L

n(ν−1)
m :

lim sup
t→0+

||tbetAϕ||pν < K.

In fact,
||tbetAϕ||pν ≤ Ntbt−

n
m
( 1
q
− 1

pν
)||ϕ||q.

Choosing q = n(ν−1)
m

, we obtain

||tbetAϕ||pν ≤ N ||ϕ||q.

Hence, there exists K > 0 such that

lim sup
t→0+

||tbetAϕ||pν < K,

for all ϕ ∈ L
n(ν−1)

m .
Let now ϕ ∈ Lq with p < q < pν be such that lim supt→0+ ||tbetAϕ||pν < K.

Let u(t) be the solution to (1.7) described in part b) of theorem (1.1).
We claim that for small T we have

sup
(0,T ]

||tbu(t)||pν ≤ 2 sup
(0,T ]

||tbetAϕ||pν . (1.11)
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In fact

||tbu(t)||pν ≤ ||tbetAϕ||pν + tb
∫ t

0

||e(t−s)AJ(u(s))||pν ds ≤

≤ ||tbetAϕ||pν +Ntb(2K)
1−a
b

∫ t

0

(t− s)−asa−1s−bsb||u(s)||pν ds ≤

≤ ||tbetAϕ||pν +N(2K)
1−a
b CB sup

(0,T ]

||sbu(s)||pν .

Now, if we choose K such that NBC2
1−a+b

b K
1−a
b ≤ 1, we have

||tbu(t)||pν ≤ ||tbetAϕ||pν +
1

2
sup
(0,T ]

||sbu(s)||pν .

Taking the supremum on both sides we get (1.11).
We already know from Theorem 1.1 that u(t) is continuous into Lpν for t > 0.
This implies that for t > 0, u(t) is continuous into Lq, since

||u(t)− u(s)||q ≤ D||u(t)− u(s)||pν ∀ t, s ∈ [0, T ]

It remains to prove that u(t) is continuous in Lq up to t = 0:
We only need to show that

lim
t→0+

∫ t

0

e(t−s)AJ(u(s)) ds = 0 in Lq

||
∫ t

0

e(t−s)AJ(u(s)) ds− 0||q ≤
∫ t

0

||e(t−s)AJ(u(s))||q ds ≤

≤ N

∫ t

0

(t− s)
−n
mr l(||u(s)||pν)||u(s)||pν ds,

where in the last step we applied the estimate of Proposition 1.1. Now:

N

∫ t

0

(t−s)
−n
mr l(||u(s)||pν)||u(s)||pν ds ≤ NC(2K)

1−a
b

∫ t

0

(t−s)
−n
mr s−b

1−a
b s−bsb||u(s)||pν ds ≤

≤ NC(2K)
1−a
b

∫ t

0

(t− s)
−n
mr s−b

1−a
b s−b ds sup

(0,t]

||sbu(s)||pν =

= NC(2K)
1−a
b

∫ t

0

(t− s)
−n
mr s−b(ν−1)s−b ds sup

(0,t]

||sbu(s)||pν =

= NC(2K)
1−a
b

∫ 1

0

(1− y)
−n
mr y−nν dy t

−n
mr

−bν+1 sup
(0,t]

||sbu(s)||pν =
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= Dt
−n
mr

−bν+1 sup
(0,t]

||sbu(s)||pν ,

where we put D = NC(2K)
1−a
b

∫ 1

0
(1− y)

−n
mr y−nν dy.

Summing up

||
∫ t

0

e(t−s)AJ(u(s)) ds− 0||q ≤ Dt
−n
mr

−bν+1 sup
(0,t]

||sbu(s)||pν (1.12)

Now if q < n(ν−1)
m

, then n
mr

+ bν < 1. In fact

n

mr
+ bν =

−n
mq

+
ν

ν − 1
< 1,

where last step holds since q < n(ν−1)
m

, which implies −n
mq

< −1
ν−1

.
Hence, whenever q < n(ν−1)

m
, letting t → 0+ in (1.12) and noticing that for small t

sup(0,t] ||sbu(s)||pν is bounded we obtain the continuity.
If q ≥ n(ν−1)

m
we can use the following argument:

||
∫ t

0

e(t−s)AJ(u(s)) ds− 0||q ≤ Dt
−n
mr

−bν+1 sup
(0,t]

||sbu(s)||pν ≤ Dt
−n
mr

−bν+12 sup
(0,t]

||sbetAϕ||pν =

= Dt
−n
mr

−bν+12 sup
(0,t]

||sb−cscetAϕ||pν ≤ Dt
−n
mr

−bν+1tb−c2 sup
(0,t]

||scetAϕ||pν = D2 sup
(0,t]

||scetAϕ||pν .

Summing up

||
∫ t

0

e(t−s)AJ(u(s)) ds− 0||q ≤ D2 sup
(0,t]

||scetAϕ||pν .

Taking the limit for t approaching 0 we have the continuity in Lq at t = 0.

Corollary 1.2. Suppose etA is positivity preserving and that J takes non-negative func-
tions into non-negative functions.Then the semi-flows constructed in theorem (1.2) are
positivity preserving.

Proof. Let ϕ ≥ 0 a.e. in Ω, if we require that the curves in the spaces X and Y defined
in theorem (1.1) are positive for a.a t ∈ [0, T ] this implies that Wtϕ = u(t) = etAϕ +∫ t
0
e(t−s)AJ(u(s)) ds ≥ 0.

Corollary 1.3. If for every p, 1 ≤ p < ∞, J : Lpν → Lp is locally Lipschitz with l(r) =
O(rν−1) as r → ∞ then the semi-flow Wt exists on all Lp spaces with n(ν−1)

m
< p < ∞
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and (p ≥ 1 if A = ∆) as well as p = n(ν−1)
m

if n(ν−1)
m

> 1. (This happens in particular if
J is a polinomial of degree ν).
Furthermore, for all ϕ in L1(Ω) for which existence of a solution u(t) = Wtϕ to the
integral equation (1.9) has been shown above, this solution is continuously differentiable
in in all Lp, 1 < p < ∞ for t > 0 and satisfies (1.10) throughout the entire trajectory.
The existence time of the curve is the same in all Lp, and if Tϕ <∞ and p > n(ν−1)

m
then

||u(t)||p → ∞ as t → Tϕ. Lastly, u(t) is continuous in Lq at t = 0 whenever ϕ ∈ Lq,
1 ≤ q <∞.
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semilinear evolution equation

We will now shift our focus to one particular case where in (1.1) A = ∆ and J(u(t)) =

|u(t)|p−1u(t) for some p > 1.
We will follow [3] chapter II.

u′(t) = ∆u(t) + |u(t)|p−1u(t) x ∈ Ω, t > 0

u = 0 x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) x ∈ Ω,

(2.1)

where Ω ⊂ Rn is a domain, not necessarily bounded.
For a given domain Ω we introduce:
QT := Ω× (0, T ),
ST := ∂Ω× (0, T ) (lateral boundary),
PT := ST ∪ (Ω× {0}) (parabolic boundary).
We are interested in finding solutions (in some precise sense defined below) with the initial
datum u0 belonging to Lq with 1 ≤ q <∞.

Definition 2.1. Given a Banach space X of functions defined on Ω, u0 ∈ X and T ∈
(0,∞], we say that u ∈ C((0, T ], X) is a classical X-solution of (2.1) in [0, T ) if u ∈
C2,1(Ω × (0, T )) ∩ C(Ω × {t = 0}), u(0) = u0 and u is a classical solution of (2.1) in
(0, T ). If Ω is unbounded we also require u ∈ L∞

loc((0, T ), L
∞(Ω)). If X = L∞(Ω) instead

of requiring u ∈ C((0, T ], X) we require u ∈ C((0, T ), X) and ||u(t)− etAu0||∞ → 0 when
t→ 0, where etA is the heat semigroup.

Definition 2.2. We say that problem (2.1) is well-posed in X if given u0 ∈ X, there exist
T > 0 and a unique classical X-solution of (2.1) in [0, T ].

We can now give other definitions of solution:
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Rewriting (2.1) with a general J(u(t)) we obtain:
u′(t) = ∆u(t) + J(u(t)) x ∈ Ω, t > 0

u = 0 x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) x ∈ Ω

(2.2)

Definition 2.3. Any function u ∈ C((0, T ], Lq(Ω)) with J(u) ∈ L1
loc((0, T ), L

1(Ω) +

L∞(Ω)) and u(0) = u0 and such that:

u(t) = e(t−τ)Au(τ) +

∫ t

τ

e(t−s)AJ(u(s)) ds for all 0 < τ < t < T

is called a mild Lq-solution of (2.2).

Definition 2.4. Consider problem (2.2) with J nonnegative and u0 ≥ 0.
We say that u is an integral solution of (2.2) in (0, T ] if u : Ω × [0, T ] → [0,∞] is
measurable finite a.e. and:

u(x, t) =

∫
Ω

G(x, y, t)u0(y) dy +

∫ t

0

∫
Ω

G(x, y, t− s)J(u(y, s)) dy ds

For a.e. (x, t) ∈ QT , where G is the heat kernel in Ω.

Definition 2.5. Assume Ω is bounded and u0 ∈ L1
δ(Ω). A function u ∈ C([0, T ), L1

δ(Ω)) is
called a weak solution of (2.2) in [0, T ) if the functions u,δJ(u) belong to L1

loc((0, T ), L
1(Ω)),

u(0) = u0 and: ∫ t

τ

∫
Ω

J(u)ϕ = −
∫ t

τ

∫
Ω

u(ϕt +∆ϕ)−
∫
Ω

u(τ)ϕ(τ)

for any 0 < τ < t < T , for any ϕ ∈ C2(Ω × [τ, t]) such that ϕ = 0 on ∂Ω × [τ, t] and
ϕ(t) = 0.

Since we are now considering the case where we have the Laplace operator, we can shift
our focus on some estimates on the heat semigroup, this estimates will be fundamental in
the proof of existence of classical Lq-solutions of problem (2.1).

Proposition 2.1. Let etA be the heat semigroup in Rn and Gt(x) = G(x, t) the Gaussian
heat kernel. We have the following:

1. ||Gt||1 = 1 for all t > 0.
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2. If ϕ ≥ 0, then etAϕ ≥ 0 and ||etAϕ||1 = ||ϕ||1.

3. If 1 ≤ q ≤ ∞, then||etAϕ||q ≤ ||ϕ||q for all t > 0.

4. If 1 ≤ p < q ≤ ∞ and 1
r
= 1

p
− 1

q
, then ||etAϕ||q ≤ (4πt)−n/(2r)||ϕ||p for all t > 0.

5. For an arbitrary domain Ω ⊂ Rn points 3) and 4) remain valid if we replace etA

with the dirichlet heat semigroup in Ω .

Proof. 1) We know that Gt(x) = (4πt)−n/2e−|x|2/4t. Since∫
Rn

e−a|x|
2

dx = (π/a)n/2 ,

we have
||Gt||1 = (4πt)−n/2(π/(

1

4t
))n/2 = 1.

2)

||etAϕ||1 =
∫
Rn

∫
Rn

Gt(x− y)ϕ(y) dy dx =

∫
Rn

∫
Rn

Gt(x− y) dx ϕ(y) dy =

=

∫
Rn

||Gt||1ϕ(y) dy = |||ϕ||1.

3)
Since etAϕ = Gt ∗ ϕ we can use Young inequality for convolutions:

||etAϕ||q = ||Gt ∗ ϕ||q ≤ ||Gt||1||ϕ||q = ||ϕ||q.

4)
Now etAϕ = Gt ∗ ϕ. We can use Young inequality for convolutions:

||etAϕ||q = ||Gt ∗ ϕ||q ≤ ||Gt||m||ϕ||p, (2.3)

where 1 + 1
q
= 1

m
+ 1

p
,

But:

||Gt||m = (4πt)−n/2
(∫

Rn

e
−m|x|2

4t dx

)1/m

=

= (4πt)−n/2
(
4πt

m

) n
2m

≤ (4π)−
n
2r t−

n
2
(1− 1

m
) = (4π)−

n
2r t−

n
2
( 1
p
− 1

q
).

Substituting in (2.3), we obtain:

||etAϕ||q ≤ (4πt)−
n
2r ||ϕ||p.
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5)
Denote by etAΩ the Dirichlet heat semigroup in Ω. Let ϕ̃(x) = ϕ(x) if x ∈ Ω, ϕ̃(x) = 0

otherwise. We have:
|etAΩϕ| ≤ etAΩ|ϕ| ≤ etA|ϕ̃|

Now points 3) and 4) easily follow from the fact that ||ϕ̃||Lp(Rn) = ||ϕ||Lp(Ω).

In the next theorem we will see that in order to guarantee the well-posedness of (2.1) in
Lq the exponent:

qc =
n(p− 1)

2
(2.4)

will play a crucial role.

Theorem 2.1. Let p > 1, u0 ∈ Lq(Ω), 1 ≤ q < ∞, q > qc (qc defined in (2.4)). Then
there exists T = T (||u0||q) > 0 such that problem (2.1) possesses a unique classical Lq-
solution in [0, T ) and the following estimate holds:

||u(t)||r ≤ C||u0||qt−αr , αr =
n

2

(
1

q
− 1

r

)
(2.5)

for all t ∈ (0, T ) and r ∈ [q,∞], with C = C(n, p, q) > 0. Moreover u ≥ 0 whenever
u0 ≥ 0.

Proof. Step 1. Fixed point argument.
Let T > 0 be small and introduce the Banach space

YT = {u ∈ L∞
loc((0, T ), L

pq(Ω)) : ||u||YT <∞},

with
||u||YT = sup

0<t<T
tα||u(t)||pq,

where α = n(p−1)
2pq

. Since for our hypotheses q > qc we easily have that α < 1
p
< 1.

Choose M > ||u0||q and let

BM = BM,T = {u ∈ YT : ||u||YT ≤M}.

We consider in the same way as Theorem 1.1 the mapping:

Φu0(u)(t) = etAu0 +

∫ t

0

e(t−s)A|u(s)|p−1u(s) ds
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Exactly in the same way as before we show that this mapping is a contraction in YT ,
therefore has a unique fixed point.
In the next steps we will use the estimates in Proposition 2.1 point 4.
For sake of clarity we report here the estimates which are repeatedly used.
For all 1 ≤ p < q ≤ ∞ and 1

r
= 1

p
− 1

q
we have:

||etAϕ||q ≤ (4πt)−
n
2r ||ϕ||p for all t > 0. (2.6)

Now
tα||Φu0(u)(t)− Φv0(v)(t)||pq ≤

≤ (4π)−α||u0 − v0||q + tα
∫ t

0

(4π(t− s))−α||(|u(s)|p−1u(s)− |v(s)|p−1v(s))||q ds,

where we have used (2.6) with q substituted with pq and p substituted with q.
Let us focus momentairily on the term

||(|u(s)|p−1u(s)− |v(s)|p−1v(s))||qq =
∫
Ω

||u(s)|p−1u(s)− |v(s)|p−1v(s)|q dΩ ≤

≤
∫
Ω

( p|u(s)− v(s)| (|u(s)|p−1 + |v(s)|p−1) )q dΩ ≤

≤ pq||u(s)− v(s)||qpq||(|u(s)|p−1 + |v(s)|p−1)q|| p
p−1

=

= pq||u(s)− v(s)||qpq(
∫
Ω

((|u(s)|p−1 + |v(s)|p−1)q)
p

p−1 dΩ)
p−1
p ≤

≤ pq||u(s)− v(s)||qpq(
∫
Ω

(|u(s)|p−1 + |v(s)|p−1)
qp
p−1 dΩ)

p−1
p =

= pq||u(s)− v(s)||qpq|| |u(s)|p−1 + |v(s)|p−1 ||qqp
p−1

≤

≤ pq||u(s)− v(s)||qpq
(
||u(s)p−1|| qp

p−1
+ ||v(s)p−1|| qp

p−1

)q
=

= pq||u(s)− v(s)||qpq
(
||u(s)||p−1

qp + ||v(s)||p−1
qp

)q
Summing up

||(|u(s)|p−1u(s)− |v(s)|p−1v(s))||qq ≤ pq||u(s)− v(s)||qpq
(
||u(s)||p−1

qp + ||v(s)||p−1
qp

)q
This implies

||(|u(s)|p−1u(s)− |v(s)|p−1v(s))||q ≤ p||u(s)− v(s)||pq
(
||u(s)||p−1

qp + ||v(s)||p−1
qp

)
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After some computations we obtain

tα||Φu0(u)(t)− Φv0(v)(t)||pq ≤

≤ (4π)−α||u0 − v0||q + C(p)Mp−1tα
∫ t

0

(t− s)−αs−(p−1)α||u(s)− v(s)||pq ds (2.7)

Choosing v0 = 0 and v = 0 we can estimate

||Φu0(u)||YT ≤ (4π)−α||u0||q + C(p, α)Mp−1T 1−pα||u||YT .

Choose T0 such that C(p, α)Mp−1T 1−pα
0 < min(1− (4π)−α, 1

2
), then

||Φu0(u)||YT < M for all t < T0.

If we choose in (2.7) u0 = v0 and C(p)Mp−1T 1−α
0 < 1

2
we obtain

||Φu0(u)− Φv0(v)||YT ≤ 1

2
||u− v||YT

Hence Φu0 is a strict contraction and has a unique fixed point belonging to BM let us call
this fixed point u.
Note, for any T ≤ T0,
u is the unique solution of Φu0(u) = u such that u ∈ YT . In fact
given u1, u2 solutions they both belong to BM,T

′
0

for some large M and small T ′
0 hence

they coincide for small time, let’s say for all t < t1. Let now E be the set of points of
(t1, T ) such that u1 ̸= u2.
By contradiction let E be non-empty, let t0 be its inferior limit. We have t1 ≤ t0 < T and
that u1(t0) = u2(t0) since the solutions are continuous and for t < t0 they coincide.
The problem Φu1(t0)(w) = Φu2(t0)(w) = w has a unique solution, but u1 and u2 are solutions
in all of (0, T ) and they satisfy Φui(t0)(ui) = ui, i = 1, 2. Hence they coincide near t0 from
the right, but this contradicts the fact that t0 is the infimum of E.
Step 2. Regularity.
We can now study the regularity of the solution. We have that
|u(t)|p−1u(t) ∈ L1((0, T ), Lq(Ω)). In fact∫ t

0

|||u(t)|p−1u(t)||q dt =
∫ t

0

||u(t)||ppq dt ≤
∫ t

0

Mpt−αp dt <∞.
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Now let t ≥ s:

||Φu0(u)(t)−Φu0(u)(s)||q ≤
∫ s

0

||(e(t−y)−e(s−y))|u(y)|p−1u(y)||q dy+
∫ t

s

||e(t−y)|u(y)|p−1u(y)||q dy.

Now

||(e(t−y)−e(s−y))|u(y)|p−1u(y)||q is bounded. I can pass under the integral sign as t goes to s.

The same holds for ||e(t−y)|u(y)|p−1u(y)||q. Hence we can pass to the limit as t → s,
proving continuity. In other words u ∈ C([0, T ], Lq(Ω)).
Choose ϵ > 0 small and let γ1 = pq. Obviously, u ∈ L∞([ϵ, T ], Lγ1(Ω)) since u ∈
L∞
loc((0, T ), L

pq(Ω)). We also have

u(t+ ϵ) = etAu(ϵ) +

∫ t

0

e(t−s)A|u(s+ ϵ)|p−1u(s+ ϵ) ds.

Choose γ2 > γ1 such that β1 = n
2
( p
γ1

− 1
γ2
) < 1 and set β2 = n

2
( 1
γ1

− 1
γ2
). We have,

for all t ∈ [ϵ, T − ϵ],

||u(t+ ϵ)||γ2 ≤ t−β2||u(ϵ)||γ1 +
∫ t

0

(t− s)−β1||u(s+ ϵ)||pγ1 ds ≤

≤ ϵ−β2Mϵ−α +

∫ t

0

(t− s)−β1(s+ ϵ)−αp dsMp ≤

≤ ϵ−β2Mϵ−α + t−β1+1

∫ 1

0

(1− y)−β1(ϵ)−αp dyMp ≤ C(ϵ).

Hence u ∈ L∞([2ϵ, T ], Lγ2(Ω)). A bootstrap argument shows that u ∈ L∞
loc((0, T ], L

∞(Ω)).
Now standard existence and regularity results for linear parabolic equations imply that u
is a classical Lq-solution.
Let us explain in the case where we are in bounded domains.
Fix δ > 0 small and let ψ : R → [0, 1] be a smooth function satisfying ψ(t) = 0 for t ≤ δ

and ψ(t) = 1 for t ≥ 2δ. Since u is a mild solution it is also a weak solution (see corollary
48.11 of [3]). Hence ψu is a weak solution of the following linear problem:

ut −∆u = f x ∈ Ω, t > 0

u = 0 x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) x ∈ Ω

(2.8)

With f = ψtu + ψ|u|p−1u ∈ L∞(Q) where Q = QT . Theorem 48.1 (iii) of [3] guarantees
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that this problem has a strong solution v ∈ W 2,1;q(Q) for any q ∈ (1,∞). This strong
solution is also a weak solution, and uniqueness of weak solutions implies ψu = v. This
means that also u ∈ W 2,1;q(Ω × (2δ, T )). Fixing q > n + 2 we see that f(u) is Hölder
continuous in Ω × (2δ, T ). Now we use theorem 48.2 (ii) considering the function ψ(t −
2δ)u(t) of [3] to obtain that u is a classical solution for t > 4δ.
Step 3. Continuous dependence.
Let us denote U(t)u0 the solution constructed above. We know that U(·)u0 is defined and
belongs to BM,T for ||u0||q < M and T ≤ T0. Moreover starting from (2.7):

||U(·)u0−U(·)v0||YT ≤ ||u0−v0||q+ sup
0<t<T

C(p)Mp−1tα
∫ t

0

(t−s)−αs−(p−1)α||u(s)−v(s)||pq ds ≤

≤ ||u0 − v0||q + sup
0<t<T

C(p)Mp−1tα
∫ t

0

(t− s)−αs−pα ds||U(·)u0 − U(·)v0||YT ≤

≤ ||u0 − v0||q + sup
0<t<T

C(p)Mp−1t1−pα
∫ 1

0

(1− y)−αy−pα dy||U(·)u0 − U(·)v0||YT ≤

≤ ||u0 − v0||q + sup
0<t<T

C(p, α)Mp−1t1−pα||U(·)u0 − U(·)v0||YT =

= ||u0 − v0||q + C(p, α)Mp−1T 1−pα||U(·)u0 − U(·)v0||YT

Summing up

||U(·)u0 − U(·)v0||YT ≤ ||u0 − v0||q + C(p, α)Mp−1T 1−pα||U(·)u0 − U(·)v0||YT

But C(p, α)Mp−1T 1−pα < 1
2
, hence

||U(·)u0 − U(·)v0||YT ≤ 2||u0 − v0||q.

Now

||U(t)u0−U(t)v0||q ≤ ||u0−v0||q+
∫ t

0

p(||U(s)U0||p−1+||U(s)v0||p−1
qp )||U(s)u0−U(s)v0||qp ds ≤

≤ ||u0 − v0||q + C(p)Mp−1

∫ t

0

(s−α(p−1))||U(s)u0 − U(s)v0||qp ds ≤

≤ ||u0 − v0||q + C(p)Mp−1

∫ t

0

(s−α(p)) ds||U(·)u0 − U(·)v0||YT ≤

≤ ||u0 − v0||q + C(p)Mp−1T 1−α
0 ||U(·)u0 − U(·)v0||YT ≤

≤ 2||u0 − v0||q.
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Hence the map from Lq(Ω) into Lq(Ω) v0 → U(t)v0 is Lipschitz continuous in a neigh-
bourhood of u0.
Step 4. Uniqueness.
We can now show uniqueness of the Lq-classical solution.
Let v be a Lq-classical solution of (2.1) in an interval [0, T1), we have v ∈ C([0, T1), L

q(Ω))∩
L∞
loc((0, T1), L

∞(Ω)), v(0) = u(u) and v is a classical solution of (2.1) in (0, T1).
It is enough to show that v(t) = U(t)u0 for small t for the uniqueness property described
above. We may assume T1 ≤ T0 and ||v(s)||q < M in [0, T1). Let T = T1

2
and τ ∈ (0, T ),

define vτ = v(·+ τ), notice vτ ∈ YT .
Note that vτ satisfies:

vτ (t) = etAvτ (0) +

∫ t

0

e(t−s)A|vτ (s)|p−1vτ (s) ds,

and it is the only solution in YT such that the above equality holds. Hence:

vτ (t) = U(t)vτ (0).

That can also be rewritten as

v(t+ τ) = U(t)v(τ) for all t ∈ (0, T ).

Passing to the limit as τ → 0 and using the Lipschitz continuity we obtain:

v(t) = U(t)u0 for all t ∈ (0, T ).

Hence the solution u is unique.
Step 5. Smoothing estimates.
We shall now prove the smoothing estimates.
Fix M = 2||u0||q and notice that T0 = T0(||u0||q), choose r ≥ q we have already proved
the estimate in (2.5) for the case r = q and r = pq in fact for the case r = q it is enough
to choose v0 = 0 in the estimate for the local Lipschitz continuity, while the case r = pq

follows immediately from ||Φu0(u)||YT < M .
Assume now that for some m ≥ max(p, q)

||u(t)||m ≤ C||u0||qt−αm (2.9)

and αm is defined in (2.5). Notice that if we choose m = pq, we have max(p, q) ≤ pq = m,
so we have at least one m satisfying (2.9). Now, if we let r > m the following estimate
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holds:

||u(t)||r ≤ ||e
tA
2 u(t/2)||r +

∫ t

t
2

||e(t−s)|u(s)|p−1u(s)||r ds,

where the inequality above holds since u is also a mild-solution.
We can now proceed with the chain of inequalities:

||e
tA
2 u(t/2)||r +

∫ t

t
2

||e(t−s)|u(s)|p−1u(s)||r ds ≤

≤ t−
n
2
( 1
m
− 1

r
)||u(t/2)||m +

∫ t

t
2

(t− s)−
n
2
( p
m
− 1

r
)|| |u(s)|p−1u(s) ||m

p
ds =

= t−
n
2
( 1
m
− 1

r
)||u(t/2)||m +

∫ t

t
2

(t− s)−
n
2
( p
m
− 1

r
)||u(s)||pm ds ≤

≤ Ct−αr ||u0||q + Cp||u0||pq
∫ t

t
2

(t− s)−
n
2
( p
m
− 1

r
)s−αmp ds

We focus only on the second term, we have

Cp||u0||pq
∫ t

t
2

(t− s)−
n
2
( p
m
− 1

r
)s−αmp ds =

= Cp||u0||pqt−
n
2
( p
m
− 1

r
)t−αmpt

∫ 1

1
2

(1− y)−
n
2
( p
m
− 1

r
)y−αmp dy =

= Cp||u0||pqt−αrt−
n
2
( p
q
− 1

q
)t

∫ 1

1
2

(1− y)−
n
2
( p
m
− 1

r
)y−αmp dy

Putting all together

||u(t)||r ≤ Ct−αr ||u0||q + Cp||u0||pqt−αrt−
n
2
( p
q
− 1

q
)t

∫ 1

1
2

(1− y)−
n
2
( p
m
− 1

r
)y−αmp dy ≤

≤ Ct−αr ||u0||q

(
1 + t1−

n
2
( p
q
− 1

q
)

∫ 1

1
2

(1− y)−
n
2
( p
m
− 1

r
)y−αmp dy

)
≤

≤ C||u0||qt−αr ,

where C can change from line to line and depends on ||u0||q and the value of the finite
integral

∫ 1
1
2
(1− y)−

n
2
( p
m
− 1

r
)y−αmp dy, the important point is that it doesn’t depend upon r.

Summing up we proved that for any r > m (this condition is due to (2.6)) we have

||u(t)||r ≤ C||u0||qt−αr for any r > m
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We need to prove the result for any r ∈ [q,∞] but this follows immediately since:
u(t) ∈ Lq(Ω) ∩ L∞(Ω) for all t > 0 hence

||u(t)||r ≤ ||u(t)||
q
r
q ||u(t)||

1− q
r∞ ≤ 2

q
r ||u0||

q
r
q C

1− q
r ||u0||

1− q
r

q (t−
n
2
( 1
q
))1−

q
r ≤ C||u0||q ≤

≤ C||u0||qt−αr .

We finally proved (2.5).
Step 6. Positivity.
We shall now pass to the positivity property, we know that etA is positivity preserving, if
u0 ≥ 0, we can construct a solution using the Banach fixed point theorem as the limit of
the sequence:

uk+1 = Φu0(uk)

with u1(t) = 0, now u2(t) ≥ 0 for all t since u2(t) = etAu0 ≥ 0, now, given uk(t) ≥ 0 for
all t we have:

uk+1(t) = etAu0 +

∫ t

0

e(t−s)Auk(s)
p ds ≥ 0

Hence u found as the limit of k → ∞ in YT of uk(t) is still greater than or equal to 0.

Given a measurable function Φ : Ω → [0,∞] we set:

(etAΦ)(x) =

∫
Ω

G(x, y, t)Φ(y) dy

Where G is the Dirichlet heat kernel in Ω.

Lemma 2.1. Let u0 : Ω → [0,∞] and u : Ω× [0, T ] → [0,∞] be measurable functions and
such that:

u(t) ≥ etAu0 +

∫ t

0

e(t−s)Au(s)p ds a.e. in QT (2.10)

Moreover assume that u(x, t) < ∞ for almost every (x, t) ∈ QT . Then the following
inequality necessarily holds

t
1

p−1 ||etAu0||∞ ≤ kp = (p− 1)−1/(p−1) for all t ∈ (0, T ] (2.11)
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Proof. We preliminary notice that

etAΦp ≥ (etAΦ)p for all measurable Φ : Ω → [0,∞] (2.12)

In fact, letting p′ be the conjugate exponent of p we have

etAΦ =

∫
Ω

G(x, y, t)1/pΦ(y)G(x, y, t)1/p
′
dy ≤

≤ ||G(x, ·, t)1/pΦ||p||G(x, ·, t)1/p
′||p′ =

(∫
Ω

G(x, y, t)Φ(y)p dy

)1/p(∫
Ω

G(x, y, t) dy

)1/p′

.

Using the fact that
∫
Ω
G(x, y, t) dy ≤ 1 we have

etAΦ ≤ (etAΦp)1/p.

Elevating both sides to the power p implies (2.12).
We redefine u on a null set in such a way that (2.10) holds in the entire QT = Ω× (0, T ).
We also have for a.e. τ ∈ (0, T ), u(·, τ) <∞ a.e. in Ω.
Fix such τ , let: Ωτ = {x ∈ Ω : u(x, τ) <∞}.
Let now t ∈ [0, τ ], we have

e(τ−t)Au(t) ≥ eτAu0 + e(τ−t)A
∫ t

0

e(t−s)Au(s)p ds ≥ eτAu0 +

∫ t

0

e(τ−s)Au(s)p ds ≥

≥ eτAu0 +

∫ t

0

e(τ−s)Au(s)p ds ≥ eτAu0 +

∫ t

0

(e(τ−s)Au(s))p ds := h(·, t).

We see from the second inequality that h(·, t) ≤ u(·, τ) hence: h(x, t) <∞ for all (x, t) ∈
Ωτ × [0, τ ], this is true since u(·, τ) <∞ in Ωτ .
We fix now x ∈ Ωτ , then the function of one variable ϕ(t) = h(x, t) is absolutely continuous
hence

ϕ′(t) = (e(τ−t)Au(t))p(x) ≥ ϕp(t).for a.a. t ∈ [0, τ ] (2.13)

Moreover ϕ(t) ≥ eτAϕ > 0 since both u and u0 are non-negative.
We can thus rewrite (2.13) in the following way

(ϕ1−p)′ ≤ −(p− 1).

We can now integrate over the interval [0, τ ] the inequality to obtain:

ϕ1−p(τ) ≤ ϕ1−p(0)− (p− 1)τ
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Hence
[(eτAu0)(x)]

1−p = ϕ1−p(0) ≥ ϕ1−p(τ) + (p− 1)τ ≥ (p− 1)τ.

In other words we obtained

for a.e. τ ∈ (0, T ) for all x ∈ Ωτ we have τ 1/(p−1)[eτAu0](x) ≤ (p− 1)−1/(p−1) = kp,

and this implies
for a.e. τ ∈ (0, T ) : τ 1/(p−1)||eτAu0||∞ ≤ kp.

In particular, we have that for a.e. t ∈ (0, T ) etAu0 ∈ L∞(Ω).
The function t→ ||etAv||∞ is continuous for all t > 0 and v ∈ L∞(Ω), choose s such that
esAu0 ∈ L∞(Ω) then: ||etAu0||∞ = ||e(t−s)AesAu0||∞, so t → ||etAu0||∞ is continuous for
t > 0, but this implies:

t→ t1/(p−1)||etAu0||∞ is continuous for t > 0.

Let now t0 ∈ (0, T ] we can choose a sequence {tk}k∈N ⊂ (0, T ) such that t1/(p−1)
k ||etkAu0||∞ ≤

kp, letting tk → t we have (2.11). And this concludes the proof.

Theorem 2.2. Let p > 1 + 2
n

and 1 ≤ q < qc:

1. There exists a nonnegative function u0 ∈ Lq(Ω), such that (2.1) doesn’t admit any
nonnegative classical Lq-solution in [0, T ) for any T > 0.

2. Assume p < pS,Ω = BR, let u0 ∈ L∞(Ω) and u0 ≥ 0, be radial nonincreasing. Then
there exists a time T > 0 such that problem (2.1) possesses infinitely many positive
radial nonincreasing classical Lq-solutions in [0, T ). Here pS = 2n

n−2
if n ≥ 2 and ∞

otherwise.

Proof. 1) Fix α ∈ (0, n
q
), assume that B(0, 2ρ) ⊂ Ω, ρ > 0.

Let u0(y) = |y|−αχB(0,ρ)(y), with this choice of α we have: 0 ≤ u0 ∈ Lq(Ω).
using the heat kernel estimates in 49.10 of [3] we obtain for t > 0 small:

(etAu0)(0) =

∫
|y|<ρ

G(0, y, t)|y|−α dy ≥ c1t
−n

2

∫
√
t/2<|y|<

√
t

|y|−α dy ≥ ct−α/2

If we take α/2 close enough to n/q we have α/2 > 1/(p− 1).
We can now see that the inequality (2.11) is not respected, hence there cannot be any
integral solution to problem (2.1).
2) We skip the proof of the second point.
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3| Global solutions

We have seen in chapter 1 that under proper conditions we can ensure existence of local
solutions to problem (1.1). In the following chapter we want to see wether we can find
appropriate conditions to guarantee existence of global solutions. The idea is the following:
given that we have found a local solution up to time T we want to see if the maximal
existence time for carefully chosen initial datum is infinite. For this chapter we mainly
refer to the work of Weissler, see [6].
We set ourselves in the following environment.
We want to find non-negative solutions to the problem:{

u′(t) = ∆u(t) + u(t)γ (t > 0)

u(0) = ϕ,
(3.1)

which are global in time i.e. they exist for all t ≥ 0. In problem (3.1) γ is assumed to be
greater than one, the solution u(t) will be a non-negative curve in Lp(Rn) for some p ≥ 1.
As usual we treat problem (3.1) through its corresponding integral equation

u(t) = et∆ϕ+

∫ t

0

e(t−s)∆(u(s)γ) ds (3.2)

We remind that
(et∆ϕ)(x) =

∫
Rn

Gt(x− y)ϕ(y) dy

with:
Gt(x) = G(x, t) = (4πt)−n/2e−|x|2/4t.

Before considering existence of global solutions to problem (3.2), it is natural to ask if
there are cases in which we are sure there is not non-negative global solution to problem
(3.2). The following theorem gives us a positive answer.

Theorem 3.1. Suppose γ ≤ 1+ 2
n

and ϕ ≥ 0 in Lp(Rn) with ϕ non identically zero. Then
there is no non-negative global solution u : [0,∞) → Lp(Rn) to the integral equation (3.2)
with initial value ϕ.
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Proof. In the proof of theorem 5 in [5] for the case γ < 1+ 2
n
, the crucial estimate is that

if u(t) is a non-negative solution to problem (3.2) on [0, T ) then:

t1/(γ−1)et∆ϕ ≤ C (3.3)

for all t ∈ [0, T ), with C being a fixed constant depending on γ but not on ϕ and T .
If ϕ ≥ 0 we have:

lim
t→∞

(4πt)n/2(et∆ϕ)(x) = lim
t→∞

(
(4πt)n/2

∫
Rn

Gt(x− y)ϕ(y) dy

)
=

= lim
t→∞

∫
Rn

e−|x−y|2/4tϕ(y) dy =

∫
Rn

lim
t→∞

e−|x−y|2/4tϕ(y) dy = ||ϕ||1.

Hence for all x ∈ Rn we have

lim
t→∞

(4πt)n/2(et∆ϕ)(x) = ||ϕ||1.

This means

lim
t→∞

(4πt)n/2et∆ϕ = ||ϕ||1 pointwise in Rn. (3.4)

Now if n(γ − 1)/2 < 1, we have for sufficiently large t,

tn/2et∆ϕ ≤ t1/(γ−1)et∆ϕ = t1/(γ−1)−n/2tn/2et∆ϕ.

Taking the limit for t→ ∞:

||ϕ||1
(4π)n/2

= lim
t→∞

tn/2et∆ϕ ≤ lim
t→∞

t1/(γ−1)−n/2tn/2et∆ϕ = lim
t→∞

t1/(γ−1)−n/2 lim
t→∞

tn/2et∆ϕ = ∞.

Contradicting the estimate (3.3).
Let now n(γ − 1)/2 = 1 and suppose u : [0,∞) → Lp is a global non-negative solution to
problem (3.2). The estimate (3.3) becomes:

tn/2et∆ϕ ≤ C

for all t ≥ 0.
We also know that

lim
t→∞

tn/2et∆ϕ = ||ϕ||1/(4π)n/2.

Hence
||ϕ||1/(4π)n/2 = lim

t→∞
tn/2et∆ϕ ≤ C.
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This implies
||ϕ||1 ≤ C(4π)n/2 = C ′.

Since u(t) is a solution it belongs to Lp for almost any t ≥ 0. Hence u(t) can be regarded
for almost any t as the initial value. Hence:

||u(t)||1 ≤ C ′.

for (almost) all t ≥ 0.
We now assume that the initial value ϕ dominates some Gaussian function i.e. ϕ ≥ kGα =

k(4πα)−n/2e−|x|2/4α for some k > 0 and α > 0.
Obviously from the integral equation (3.2) we have

u(t) ≥ et∆ϕ ≥ et∆kGα.

So

||u(t)||1 ≥
∫ t

0

||e(t−s)∆(u(s)γ)||1 ds ≥
∫ t

0

||e(t−s)∆((es∆kGα)
γ)||1 ds =

= kγ
∫ t

0

||((es∆Gα)
γ)||1 ds.

For the properties of the Gaussians Gt we get:

(es∆Gα)
γ = (Gs+α)

γ

So
(es∆Gα)

γ = (Gs+α)
γ = (4π(s+ α))−nγ/2e−(|x|2γ)/4(s+α) =

= (4π(s+ α))−nγ/2G(s+α)/γ

(
4π

(s+ α)

γ

)n/2
=

= γ−n/2(4π(s+ α))−
n
2
(γ−1)G(s+α)/γ = γ−n/2(4π(s+ α))−1G(s+α)/γ.

Hence for almost all t ≥ 0

||u(t)||1 ≥ kγ
∫ t

0

||((es∆Gα)
γ)||1 ds ≥ kγγ−n/2(4π)−1

∫ t

0

||(s+ α)−1G(s+α)/γ||1 ds =

= kγγ−n/2(4π)−1

∫ t

0

(s+ α)−1 ds.

But this last term becomes arbitrarily large as t → ∞, which contradicts the fact that
for almost all t ||u(t)|| ≤ C ′.
For now we proved that if the initial datum ϕ dominates a Gaussian we cannot have global
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non-negative solutions to (3.2).
We can now prove the result in general, given a non-negative solution u(t) to problem
(3.2) with non-trivial initial value ϕ, consider v(t) = u(t+ ϵ) for some ϵ > 0. Then v(t) is
a solution to (3.2) with initial value u(ϵ). If we show that v(t) cannot be a global solution
then obviously also u(t) cannot be one.
In particular we show that v(t) has the initial datum ψ = u(ϵ) that dominates a Gaussian.

ψ = u(ϵ) ≥ eϵ∆ϕ = Gϵ ∗ ϕ

Now
(Gϵ ∗ ϕ)(x) = (4πϵ)−n/2

∫
Rn

e−|x−y|2/4ϵϕ(y) dy =

= (4πϵ)−n/2e−|x|2/2ϵ
∫
Rn

e−|x+y|2/4ϵe−|y|2/2ϵϕ(y) dy ≥

≥ (4πϵ)−n/2e−|x|2/2ϵ
∫
Rn

e−|y|2/2ϵϕ(y) dy = (1/2)n/2Gϵ/2(x)

∫
Rn

e−|y|2/2ϵϕ(y) dy =

= kGϵ/2

where k = (1/2)n/2
∫
Rn e

−|y|2/2ϵϕ(y) dy.
In other terms

ψ = u(ϵ) ≥ kGϵ/2.

Hence neither v(t) nor u(t) can be global solutions to problem (3.2).

We shall now pass to the core of the chapter that is to find suitable conditions on the
initial datum ϕ in order to guarantee global existence of solutions. We state and prove
the following theorem.

Theorem 3.2. a) Let ϕ ≥ 0 be in Lp(Rn), with 1 ≤ p <∞. Suppose the following holds:

(γ − 1)

∫ ∞

0

||es∆ϕ||γ−1
∞ ds ≤ 1 (3.5)

Then there exists a non-negative continuous curve u : [0,∞) → Lp(Rn) which is a global
solution to (3.2) with initial datum ϕ.
Furthermore, the following bound holds:

u(t) ≤ et∆ϕ

[1− (γ − 1)
∫ t
0
||es∆ϕ||γ−1

∞ ds]1/(γ−1)
(3.6)

for all t ≥ 0.
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b) Suppose n(γ − 1)/2 > 1. If ϕ ≥ 0 and ||ϕ||n(γ−1)/2 is sufficiently small, then there
exists a non-negative continuous curve u : [0,∞) → Ln(γ−1)/2 which is a global solution to
problem (3.2) with initial value ϕ.

Proof. We focus now on part a).
Let

C(t) = [1− (γ − 1)

∫ t

0

||es∆ϕ||γ−1
∞ ds]−1/(γ−1).

So C(0) = 1 and

C ′(t) = −1/(γ − 1)C(t)C(t)−1(1− γ)||et∆ϕ||γ−1
∞ =

= ||et∆ϕ||γ−1
∞ [1− (γ − 1)

∫ t

0

||es∆ϕ||γ−1
∞ ds]−γ/(γ−1) =

= ||et∆ϕ||γ−1
∞ C(t)γ.

Hence

C(t) = 1 +

∫ t

0

||es∆ϕ||γ−1
∞ C(s)γ ds.

Now, let u(t) : [0,∞) → Lp be a continuous curve such that et∆ϕ ≤ u(t) ≤ C(t)et∆ϕ for
all t ≥ 0.
Let

Fu(t) = et∆ϕ+

∫ t

0

e(t−s)∆(u(s)γ) ds.

Then

Fu(t) ≤ et∆ϕ+

∫ t

0

e(t−s)∆(es∆ϕ)γC(s)γ ds ≤

≤ et∆ϕ+

∫ t

0

e(t−s)∆(es∆ϕ)||es∆ϕ||γ−1
∞ C(s)γ ds =

= et∆ϕ

(
1 +

∫ t

0

||es∆ϕ||γ−1
∞ C(s)γ ds

)
= et∆ϕC(t).

Hence
et∆ϕ ≤ Fu(t) ≤ C(t)et∆ϕ for all t ≥ 0

Let u0(t) = et∆ϕ and for m ≥ 0, m ∈ N we define um+1(t) = Fum(t). We want to show
that the sequence {un(t)}n∈N converges to the desired solution.
We first observe that

un(t) ≤ un+1(t) for all t ≥ 0.
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This follows from the fact that if we have u(t) ≤ v(t) for all t ≥ 0 then

Fu(t) = et∆u(0) +

∫ t

0

e(t−s)∆(u(s)γ) ds ≤ et∆v(0) +

∫ t

0

e(t−s)∆(v(s)γ) ds.

Now, since u0(t) ≤ C(t)et∆ϕ and the application of F preserves this property, then

un(t) ≤ C(t)et∆ϕ for all t ≥ 0 and all n ∈ N.

Summing up, {un(t)}n∈N is an increasing sequence dominated in Lp(Rn) by C(t)et∆ϕ since

||C(t)et∆ϕ||p ≤ C(t)||ϕ||p <∞.

Hence by the dominated convergence theorem, un(t) converges in Lp(Rn) to a function
that we will call u(t) as n→ ∞.
Obviously u(t) ≤ C(t)et∆ϕ for all t ≥ 0.
Moreover the functions s → e(t−s)∆(um(s)

γ) are dominated by et∆ϕ||es∆ϕ||γ−1
∞ C(s)γ (it

can be seen in the proof of the fact that Fu(t) ≤ C(t)et∆ϕ).
But et∆ϕ||es∆ϕ||γ−1

∞ C(s)γ ∈ L1((0, t);Lp(Rn)), since∫ t

0

||et∆ϕ ||es∆ϕ||γ−1
∞ C(s)γ||p ds ≤ ||ϕ||p

∫ t

0

||es∆ϕ||γ−1
∞ C(s)γ ds ≤

≤ C(t)γ||ϕ||p
∫ t

0

||es∆ϕ||γ−1
∞ ds <∞.

Moreover, for s ∈ (0, t) e(t−s)∆(um(s)
γ) → e(t−s)∆(u(s)γ) as m→ ∞.

In fact

||e(t−s)∆(u(s)γ)− e(t−s)∆(um(s)
γ)||p = ||e(t−s)∆(u(s)γ − um(s)

γ)||p ≤ ||u(s)γ − um(s)
γ||p ≤

≤ γp||u(s)− um(s)||γp(||u(s)||γ−1
γp + ||um(s)||γ−1

γp ).

Now, since um(s) ≤ C(s)es∆ϕ and u(s) ≤ C(s)es∆ϕ,
we have that ||um(s)||γp and ||u(s)||γp are both bounded:

||C(s)es∆ϕ||γp ≤ C(s)(4πs)−
n
2
( 1
p
− 1

γp
)||ϕ||p <∞,

where we have used proposition (2.1) point 4).
Hence, by dominated convergence theorem um(s) converges to u(s) in Lpγ(Rn).
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Reminding that

||e(t−s)∆(u(s)γ)− e(t−s)∆(um(s)
γ)||p ≤ γp||u(s)− um(s)||γp(||u(s)||γ−1

γp + ||um(s)||γ−1
γp ),

we obtain that for all s ∈ (0, t) e(t−s)∆(um(s)
γ) → e(t−s)∆(u(s)γ) as m→ ∞.

Thus we can apply the dominated convergence theorem for Lp-valued functions to get

lim
m→∞

∫ t

0

e(t−s)∆(um(s)
γ) ds =

∫ t

0

lim
m→∞

e(t−s)∆(um(s)
γ) ds =

∫ t

0

e(t−s)∆(u(s)γ) ds,

where the limit is in Lp.
Letting m→ ∞ in the formula um+1(t) = Fum(t) we get

u(t) = Fu(t).

In other words u(t) is a global solution to the problem (3.2) since continuity in Lp is
proved as in Theorem 1.1.
We can now prove part b):
We use the fact that by theorem (1.2) part b) we know the existence of local solutions
to problem (3.2) for all initial data ϕ ∈ Ln(γ−1)/2. More precisely, choose p such that
1 ≤ p < n(γ − 1)/2 < pγ, then theorem (1.2) part b) and its corollary guarantee that for
every ϕ ∈ Ln(γ−1)/2 with ϕ ≥ 0, there exists a non-negative continuous curve u : [0, T ) →
Ln(γ−1)/2 satisfying (3.2) with initial value ϕ. Moreover, u(t) is continuous into Lpγ for
t > 0 and tb||u(t)||pγ is bounded near 0 with b = 1/(γ − 1)− n/2pγ.
Hence u(t) can be continued to a solution of (3.2) as long as ||u(t)||pγ doesn’t blow-up.
Let a = n(γ − 1)/2pγ then remembering Proposition 2.1 point 4):

tb||u(t)||pγ ≤ tb||et∆ϕ||pγ + tb
∫ t

0

||e(t−s)∆(u(s)γ)||pγ ds ≤

≤ tb(4πt)−
n
2
( 2
n(γ−1)

− 1
pγ

)||ϕ||n(γ−1)/2 + tb
∫ t

0

(4π(t− s))−
n
2
( 1
p
− 1

pγ
)||u(s)γ||p ds =

= (4π)−b||ϕ||n(γ−1)/2 + tb
∫ t

0

(4π(t− s))−a||u(s)γ||p ds =

= (4π)−b||ϕ||n(γ−1)/2 + (4π)−atb
∫ t

0

(t− s)−as−bγsbγ||u(s)||γpγ ds ≤

≤ (4π)−b||ϕ||n(γ−1)/2 + (4π)−atb
∫ t

0

(t− s)−as−bγ ds sup
(0,t)

||sbu(s)||γpγ =



64 3| Global solutions

= (4π)−b||ϕ||n(γ−1)/2 + (4π)−atb
∫ 1

0

t−a(1− y)−at−bγy−bγt dy sup
(0,t)

||sbu(s)||γpγ =

(4π)−b||ϕ||n(γ−1)/2 + (4π)−atb−a−bγ+1

∫ 1

0

(1− y)−ay−bγ dy sup
(0,t)

||sbu(s)||γpγ,

but b− a− bγ + 1 = 0. Hence

tb||u(t)||pγ ≤ (4π)−b||ϕ||n(γ−1)/2 + (4π)−a
∫ 1

0

(1− y)−ay−bγ dy sup
(0,t)

||sbu(s)||γpγ (3.7)

Note that bγ < 1. Let now f(T ) = sup(0,T ) ||sbu(s)||pγ.
We want to show that the function f is continuous.
Fix y > 0, we want to show:

∀ϵ > 0 ∃δ > 0 : ∀x |x− y| < δ =⇒ |f(x)− f(y)| < ϵ

Suppose w.l.o.g. that x > y and f(x) > f(y) (otherwise f(x) = f(y) and we are done).

f(x)− f(y) = max [sup
(0,y)

||sbu(s)||pγ, sup
[y,x)

||sbu(s)||pγ]− sup
(0,y)

||sbu(s)||pγ =

= sup
[y,x)

||sbu(s)||pγ − sup
(0,y)

||sbu(s)||pγ ≤ ||tb1u(t1)||pγ + ϵ/2− sup
(0,y)

||sbu(s)||pγ,

where t1 ∈ [y, x). Now

||tb1u(t1)||pγ + ϵ/2− sup
(0,y)

||sbu(s)||pγ ≤ ||tb1u(t1)||pγ + ϵ/2− ||tb2u(t2)||pγ,

with t2 ∈ (y − δ, y). Now 0 < max (t1 − t2) ≤ 2δ.
Since ||tbu(t)||pγ is continuous we have f(x)− f(y) < ϵ for δ small enough.
Moreover f(0) = 0. And taking the supremum on (0, t) in inequality (3.7) we obtain:

f(t) ≤ (4π)−b||ϕ||n(γ−1)/2 + Cf(t)γ, (3.8)

where C is a fixed constant. Thus, if we choose ||ϕ||n(γ−1)/2 sufficiently small, f(t) must
remain bounded in fact, choose α > 0 such that C2γαγ−1 < 1. If we choose ϕ such that
(4π)−b||ϕ||n(γ−1)/2 ≤ α, then f(t) can never be equal to 2α, in fact if it did we would have
using inequality (3.8)

2α ≤ α + C(2α)γ,
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that is
α ≤ C(2α)γ.

But we chose α such that C2γαγ−1 < 1, that is α > C(2α)γ. Hence f is bounded for
sufficiently small ϕ.
We can rewrite (3.7) in the following way:

tb||u(t)||pγ ≤ (4π)−b||ϕ||n(γ−1)/2 + (4π)−a
∫ 1

0

(1− y)−ay−bγ dyf(t)γ

And (4π)−b||ϕ||n(γ−1)/2 + (4π)−a
∫ 1

0
(1− y)−ay−bγ dyf(t)γ is bounded for sufficiently small

ϕ. We have now proved point b).
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