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Abstract

COMPUTER architectures field is facing technological and architec-
tural obstacles that are limiting the general-purpose processor scal-
ing in the delivered performance at a reasonable energy cost. There-

fore, computer architects have to follow novel paths to harvest more energy-
efficient computations from the currently available technology, for instance,
by employing domain specialized solutions for a given scenario. Indeed,
domain-specialized architectures can deliver extremely high performance
at a relatively low energy profile and even more whenever combined with
high-level abstractions for designing and programming it. Domain-Specific
Architectures (DSAs) generally are the prominent exponent for domain
specialization. Moreover, DSAs are programmable software architectures
designed for few tasks, with the minimal amount of advanced CPU-based
microarchitectural techniques, and to be efficiently implemented as Ap-
plication-Specific Integrated Circuits (ASICs), or part of System on Chip
(SoC). However, developing custom silicon devices is a time-consuming
and costly process that is not always compatible with the time-to-market
and fast evolution of the applications. Thus, adaptable computing platforms
represent the most viable alternative for these scenarios. Field-Programma-
ble Gate Arrays (FPGAs) are the candidate platforms for their on-field re-
configurable heterogeneous fabric. On top of the reconfigurability, FPGAs
can implement large spatial computing designs and are publicly available
on cloud computing platforms.

Therefore, this dissertation focus on Domain-Specific Reconfigurable
Architectures (DSRAs): domain-specialized architectures with adaptable
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datapaths implemented on FPGAs. The design of such architectures de-
mands a clear view of system-level trends and FPGAs’ abstraction lay-
ers. On top of that, advanced design methodologies enable domain-tailored
energy-efficient architectures, and design automation toolchains open the
path to apply iterative development cycles and reproducibility of results.
Moreover, usability layers that span from the hardware-software interfac-
ing to ways of programming the architecture are necessary for a user base
creation and deploying usable hardware. For these reasons, this dissertation
explores these crucial issues and presents relevant takeaways of the domain
specialization role of reconfigurable computing systems. It begins with two
Chapters that provide a bird’s-eye view of the latest reconfigurable comput-
ing trends and the main ways of programming FPGAs and how to interact
with them. Then, the dissertation dives into two relevant computing do-
mains: image registration and regular expressions. For each domain, the
dissertation includes design methodologies, design automation, and usabil-
ity layers (with a particular focus for each of them), three critical aspects of
implementing a DSRA.

II
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Sommario

IL campo delle architetture dei calcolatori sta affrontando ostacoli tecno-
logici e architetturali che limitano la scalabilità dei processori generici
nelle prestazioni fornite ad un costo energetico ragionevole. Pertanto,

i progettatori di architetture devono seguire nuovi percorsi per ottenere cal-
coli più efficienti dal punto di vista energetico con la tecnologia attualmente
disponibile, ad esempio impiegando soluzioni specializzate in particolari
domini. In effetti, le architetture specializzate nel dominio possono forni-
re prestazioni estremamente elevate con un profilo energetico relativamente
basso e anche di più se combinate con astrazioni di alto livello per la proget-
tazione e la programmazione. Le architetture specifiche del dominio (DSA)
sono generalmente, oltre all’esponente di spicco per la specializzazione del
dominio, architetture programmabili a livello software progettate per esse-
re implementate in modo efficiente come circuiti integrati specifici per le
applicazioni (ASIC) o parte di Sistema su un Chip (SoC), per pochi compi-
ti, e con la minima quantità di tecniche microarchitetturali avanzate basate
su CPU. Tuttavia, lo sviluppo di dispositivi in silicio personalizzati è un
processo lungo e molto costoso che non è sempre compatibile con il tempo
per andare sul mercato e la rapida evoluzione delle applicazioni. Pertanto,
le piattaforme informatiche adattabili rappresentano l’alternativa più pra-
ticabile per questi scenari. Gli FPGA (Field-Programmable Gate Arrays)
sono le piattaforme candidate per il loro tessuto eterogeneo riconfigurabi-
le sul campo. Oltre alla riconfigurabilità, gli FPGA possono implementare
grandi architetture di calcolo spaziale e sono disponibili pubblicamente su
piattaforme di calcolo cloud.

III



i
i

“thesis” — 2022/1/23 — 18:33 — page IV — #8 i
i

i
i

i
i

Pertanto, questa tesi si concentra sulle Architetture Riconfigurabili a Do-
minio Specifico (DSRA): architetture specializzate nel dominio con data-
path adattabili implementate su FPGA. La progettazione di tali architetture
richiede una visione chiara delle tendenze a livello di sistema e dei livelli
di astrazione degli FPGA. Inoltre, le metodologie di progettazione avanza-
te consentono architetture efficienti dal punto di vista energetico su misura
per il dominio e le toolchain di automazione della progettazione aprono la
strada all’applicazione di cicli di sviluppo iterativi e alla riproducibilità dei
risultati. Inoltre, i livelli di usabilità che vanno dall’interfaccia hardware-
software alle modalità di programmazione dell’architettura sono necessari
per la creazione di una base di utenti e l’implementazione di hardware uti-
lizzabile. Per queste ragioni, questa tesi esplora questi argomenti cruciali
e presenta importanti spunti sul ruolo dei sistemi di calcolo riconfigurabile
nella specializzazione del dominio. Inizia con due capitoli che forniscono
una panoramica delle ultime tendenze del calcolo riconfigurabile e delle
principali modalità di programmazione degli FPGA e di come interagire
con essi. Quindi, la tesi si tuffa in due domini di calcolo rilevanti: regi-
strazione di immagini ed espressioni regolari. Per ogni dominio, la tesi
includerà metodologie di progettazione, automazione della progettazione e
livelli di usabilità (con un focus particolare per ciascuno di essi), tre aspetti
chiave dell’implementazione di un DSRA.

IV
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CHAPTER1
Introduction

In recent years, there has been a shift in the computer architecture land-
scape. Moore’s Law [2] and Dennard’s Scaling [3] have driven for almost
50 years the research on general-purpose architectures (i.e., Central Pro-
cessing Units (CPUs)) and their optimizations, thanks to scaling in tran-
sistor count and power budget, respectively. However, the end of these
laws [4–8] pushes the researchers close to the boundary for technological
and architectural reasons. Figure 1.1 shows 48 years of trends in commer-
cial microprocessors for relevant metrics: from the number of cores within
each chip to the achieved operational frequency, from the single-thread per-
formance to transistor count, and the typical power budget. The reader can
notice how the trends reach a plateau for each considered metric, showing
a scaling interruption. Similarly, Figure 1.2 focuses on the performance
improvement based on the SPECint CPU benchmark and better highlights
the trends in the general-purpose processor field. In general, the charts
clearly show that the performance improvements offered by the CPUs can
not rely anymore only on technological advancements such as transistor
doubling by Moore’s Law or the constant power consumption for the same
chip area by Dennard’s scaling. Hence, computer architects have to con-
sider a new way to conceive architectures, for example, by narrowing the

1
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Figure 1.1: 48 Years of Microprocessor Trend Data [1] (logarithmic scale). Original Data
(up to 2010) from M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond,
and C. Batten. Data after 2010 from K. Rupp.

domain of the targeted computations. This domain narrowing is one of the
most promising approaches to harvest more energy-efficient calculations
unless a new disrupting technology appears on the panorama [5]. For these
reasons, the current architectural focus is shifting from general-purpose to
domain-specific engines.

In this scenario, the domain specialization path builds on a compre-
hensive environment where hardware and software are both specialized to-
wards a particular application domain rather than being general purpose [8].
On the one hand, the software-centric approaches devise at their core the
so-called Domain-Specific Languages (DSLs). DSLs offer a straightfor-
ward approach to the considered domain while retaining code portability
and delivering noteworthy performance. Usually, DSLs leave the burden of
optimizing the overall process, including tailoring the code to the underlin-
ing architecture, to extremely powerful compilers, which may not always be
enough to deliver the needed performance. On the other hand, hardware-
centric approaches focus on conceiving domain-specialized architectures
to improve execution time and energy efficiency from Application-Specific
Integrated Circuit (ASIC) to Application-Specific Instruction-set Proces-
sor (ASIP), from Domain-Specific Architecture (DSA) to Coarse Grain
Reconfigurable Architecture (CGRA) or even simple domain accelerators.

2
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Figure 1.2: About 50 Years of processor performance improvement based on the SPECint
CPU benchmark. Image adapted from [9] based on [5].

Among these approaches, DSAs perform only a few tasks extremely ef-
ficiently, rather than being designed for general workloads, and are often
combined with an open software ecosystem [5, 6]. DSAs are considered as
the primary path towards the domain specialization [5,8,10–13], even more,
if combined with the usage of a DSL. The combination of hardware- and
software-centric approaches delivers skyrocketing gains against general-
purpose processors, which are slowly facing an insurmountable obstacle
(i.e., technological and architectural reasons). A DSA usually is software-
programmable, hence it presents an abstraction layer such as an Instruction
Set Architecture (ISA), Turing complete, and employs the easiest yet ad-
vanced computer architecture techniques to build a fixed datapath. In this
way, a DSA generally comprehends the most straightforward data type and
size, as well as the most suitable form of parallelism required by the do-
main. Moreover, it employs the simplest microarchitectural techniques and
the most fitting memory hierarchy such that designers can exploit saved
area for bigger functional units or memories. These are the general DSA
guidelines presented by Hennessey and Patterson during their Turing Award
Lecture [8] towards the design of ASICs-based DSAs [5]. Nonetheless, for
a long time, developing a full custom ASIC has been a time-consuming pro-
cess where the time to market and the Non-Recurring Engineering (NRE)
costs were, and currently are, critical and not negligible. Indeed, in this
scenario, productivity becomes a crucial point to keep pace with the fast-
evolving nature of the applications. For these reasons, both companies and

3
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Figure 1.3: Contrasting the agile and waterfall models of hardware design for desired
feature(s) F#. Adapted from [14].

the academic world are trying to apply iterative approaches (e.g., Agile rep-
resented in Figure 1.3-B./C.) to fast hardware development [14–16] along
with a software stack for complete usability for both design and communi-
cation perspectives [17, 18]. In this scenario, adaptable computing plat-
forms are becoming essential for iterative hardware lifecycles, dynamic
workloads, and the composable data center infrastructure [19].

Field Programmable Gate Arrays (FPGAs) are the state-of-the-art plat-
form for Reconfigurable Computing (RC) and the foundations of the adapt-
able computing paradigm [20]. They can provide a generic system with a
heterogeneous fabric, reprogrammable at the circuit level after manufactur-
ing along with comprehensive software development tools and Application
Programming Interfaces (APIs). Traditionally, FPGAs were employed only
for glue logic design, ASIC prototyping, sensor fusion, and fields, such
as the telecommunication one, where field-(re)programmable architecture
(i.e., adaptable after deployment) are crucial [21]. However, thanks to their
spatial computing characteristics, FPGAs, and more in general RC systems,
have proven their effectiveness against CPUs in terms of performance and
energy efficiency [22–31], and their acceleration potential even in a large
scale data-center infrastructure [32, 33]. All these reasons, along with the

4
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1.1. Problems Statement

public availability of FPGAs in the cloud [32, 34–37], make these devices
the candidate platforms for devising fast-evolving domain-specialized ar-
chitectures without incurring in ASIC NRE costs and providing adaptable
computing platforms thanks to the heterogeneous reconfigurable fabric.

1.1 Problems Statement

Despite being the commercial platform closest to the ideal adaptable com-
puting paradigm, FPGAs (and all reconfigurable systems) deserve a deeper
analysis of their role in the domain specialization path. Indeed, they can
implement domain-specialized architectures that can be updated after field
deployment, delivering variable datapaths which are adaptable almost an
infinite number of times. These architectures are called in this dissertation
Domain-Specific Reconfigurable Architectures (DSRAs).

Employing RC systems, such as FPGAs, opens a wide variety of ar-
chitectural organizations (different from traditional CPUs with their fixed
datapath) to design DSRAs, and requires a precise classification. However,
one of FPGAs’ drawback has always been their programmability process,
that usually requires low-level abstractions and system-level knowledge,
which is incredibly time-consuming. Hence, having a clear view of how
to design these domain-specialized architectures is paramount to deliver a
design process that keeps pace with applications’ quickly evolving nature
and exploit ready-to-use programmability abstractions.

In these regards, the language and the design methodology for DSRAs
represent key elements. The aforementioned design guidelines [8] are cru-
cial also for the design of DSRAs, but their employment introduces design
issues. Some of them are shared with the ASIC ecosystem whenever con-
sidering a fixed datapath, and others are inapplicable given the deeper ASIC
physical-design requirements and post-silicon verification, rarely applied in
the FPGA-based designs. For instance, frequently adapting a DSRA datap-
ath to the most simple and reduced precision, or employing different arith-
metic, for a given computational domain, might introduce unconsidered
problems, incurring efficiency worsening and not domain-specialization
improvements. Additionally, particular domains may present more than
a single form of parallelism or computational pattern that fits the design
process of a domain-specialized architecture and different applications. As
an example, the Regular Expressions (REs) domain, which is intrinsically
sequential, can adopt both a depth-first or a breadth-first execution model
for a DSRA. Therefore, exploring the computational models for the same
domain is paramount to devise an effective architectural solution and regu-
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How to Design a DSRA? How to Interact with Them?

Which DSRA Organization Choose? What are the System-Level Trends?

How to Quickly Adapt 
a DSRA to Evolving 

Workloads?

Which Computational 
Model or Parallelism 

Form Choose for a 
Domain?

What if Domain 
Requires to Adapt to 
Different Workloads?

Figure 1.4: Graphical representation of this dissertation considered problems.

larly adapt to the considered workloads. Finally, the architecture software-
programmability is another remarkable issue to build a success DSRA (as
well as for ASIC-based DSA), grant a user-base, and build a community.

On top of these issues, DSRAs, or even traditional FPGA-based accel-
erators, require the support of Computer Aided Design (CAD) toolchains
or high-level generators to enable the usability of the architectures, the de-
ployment to different FPGAs, and an automatic process to adapt to the
changing workload. Without such automation toolchains, designers can not
exploit the intrinsic adaptability of reconfigurable systems for fast and iter-
ative hardware developments and deployments as well as fast prototyping
purposes. Figure 1.4 summarizes the problems considered in this disserta-
tion.

1.2 Contributions

This dissertation defines and analyzes specialized computer architecture
organizations based on reconfigurable platforms called DSRAs. Starting
from an analysis of the latest system-level trends and ways of program-
ming FPGAs, I will address three main topics in specific domains: design
methodologies, automation, and usability. The first one (i.e., the design
methodologies) is crucial for designing highly energy-efficient architec-
ture; while automation is essential for fast iterative approaches to newer
solutions development and reproducibility of achieved results; the last one
(i.e., usability) comprehends software programmability in a complete view
that spans from hardware-software interfacing to ways of programming the
architecture. This dissertation builds on top of these three main topics and
presents them comprehensively for each discussed work.

Generally, the first yet most crucial task for domain-specialized architec-
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tures design methodologies is domain identification. This dissertation will
consider as domain a class of algorithmic problems that share computa-
tional or memory access patterns. Then, starting from John Hennessey and
David Patterson’s general design guidelines on DSAs [5], I identify three
prominent architectural organizations of DSRAs and classify them depend-
ing on two orthogonal characteristics: level of software programmability
and datapath configurability. The first architecture organization, the most
traditional reconfigurable DSA1, is based on a “fixed” datapath with a ded-
icated ISA that communicates with instructions and data memories. The
second one, the so-called streaming architecture, has a fixed datapath cre-
ated for each class of problems, generally devised from a high-level tool
that automates the whole process. Finally, the third architecture organiza-
tion is a hybrid version between traditional DSAs and streaming architec-
tures with a semi-fixed datapath, i.e., a CGRAs [38]. Being CGRAs mainly
a theoretical platform that is either simulated or leverages FPGAs [38], al-
though there are many interesting research efforts [38, 39], I will focus on
traditional DSAs, similar to general-purpose processors and streaming ar-
chitectures. If the reader is interested in domains widely explored in these
directions, Machine Learning and Neural Networks domains present sev-
eral examples of these architectures [6, 8, 11, 40–42], though a scalability
study on multi-FPGA devices has been done only recently [43].

Within the context of specialization, the domain and its workloads are
among the top driving factors for designing a DSRA. Inspired by Asanovic
et al.’s work, where they identified thirteen dwarfs, or key computational
kernels, and discuss the full-spectrum of the computing landscape [44],
I found relevant computational kernels that deserve an in-depth analysis:
linear algebra and finite state machines. This dissertation analyzes two
main domains with computations affine to some of the dwarfs identified
as key computational kernels [44]: image registration (an imaging tech-
nique based on linear algebra computations for optimization methods), and
regular expressions (finite state machines).

Image Registration (IRG) is an essential pre-processing step of several
image processing pipelines. However, it is often neglected for its context-
specific nature [45–47]. I present and discuss an open-source framework
that provides a domain-specific streaming-based architecture [30]. The pro-
posed design methodology based on a dataflow MapReduce computations
enables the engineering of a highly customizable Mutual Information (MI)
accelerator [30], one of the most computationally intensive parts of IRG
procedures. In this way, the IRG procedure is extremely optimized from a
1 From now on, the term DSA is used to refer to the first category of the identified DSRAs
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performance and energy efficiency perspective.
The regular expression domain falls in the Finite State Machine (FSM)

dwarf kernel. While the literature provides several exciting approaches for
streaming/in-memory architectures, what we are missing today is a DSA
able to tackle this problem with high performance and flexibility in the pat-
tern to search. For these reasons, I provide an extensive analysis of DSA for
the regular expression domain, showing two different architectures that pro-
vide different levels of solutions. These two architectures explore different
computational models based on a depth-first like approach [48] and one the-
oretically expressed by Russel Cox based on a breadth-first approach [49].

Additionally, designing DSRAs, or architectures in general, requires a
CAD infrastructure to support replicability, fast exploration, and quick it-
erations. For these reasons, all the proposed architectures exploit a shared
design automation methodology for easing their replicability and verifica-
tion.

In summary, the contributions of this dissertation are:

• an analysis of the latest reconfigurable system-level trends with a tax-
onomy of domain-specific reconfigurable computer organizations;

• a survey with taxonomies and timelines of the most prominent digital
design abstractions for FPGAs;

• an open-source design automation framework for highly customiz-
able streaming-dataflow domain specialized accelerators proven on
the IRG domain;

• an exploration of different computational model and form of paral-
lelism for the REs (or equivalently Finite State Machines) domain for
traditional DSAs;

1.3 Sources

This dissertation refers to and possibly extends the following publications:

• “Reconfigurable architectures: the shift from general systems to do-
main specific solutions”. D’Arnese, E., Conficconi, D., Santambro-
gio, M. D. and Sciuto, D., Springer Book chapter [18];

• “Pushing the Level of Abstraction of Digital System Design: a Survey
on How to Program FPGAs”. Del Sozzo, E.,Conficconi, D., Zeni, A.,
Salaris, M., Sciuto, D., and Santambrogio, M. D. (Submitted to ACM
Computing Surveys (CSUR) [17]);
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• “Optimizing bit-serial matrix multiplication for reconfigurable com-
puting”. Umuroglu, Y., Conficconi, D., Rasnayake, L., Preusser, T.
B., and Själander, M. 2019. ACM Transactions on Reconfigurable
Technology and Systems (TRETS) [50];

• “A Framework for Customizable FPGA-based Image Registration Ac-
celerators”. Conficconi, D., D’Arnese, E., Del Sozzo, E., Sciuto, D.,
and Santambrogio, M. D. 2021 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays (FPGA21), Awarded with
ACM Artifacts of Available, Reusable, Reproduced [30];

• “TiReX: Tiled regular expression matching architecture.” Comodi, A.,
Conficconi, D., Scolari, A., and Santambrogio, M. D. In 2018 IEEE
International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW) [48];

• “An Energy-Efficient Domain-Specific Architecture for Regular Ex-
pressions.” Conficconi, D., Del Sozzo, E., Carloni, F., Comodi, A.,
Scolari, A., and Santambrogio, M. D. (Submitted to IEEE Transac-
tions on Emerging Topics in Computing (TETC)) [51];

• “CICERO: A Domain-Specific Architecture for Efficient Regular Ex-
pression Matching.” Parravicini, D., Conficconi, D., Del Sozzo, E.,
Pilato, C., and Santambrogio, M. D. 2021. ACM Transaction on Em-
bedded Computing Systems (TECS) as part of the International Con-
ference on Compilers, Architecture, and Synthesis for Embedded Sys-
tems (CASES) proceedings [52];

• “Enhancing the Scalability of Multi-FPGA Stencil Computations via
Highly Optimized HDL Components.” Reggiani, E., Del Sozzo, E.,
Conficconi, D., Natale, G., Moroni, C., and Santambrogio, M. D.
(2021). ACM TRETS [43];

• “Dovado: An Open-Source Design Space Exploration Framework.”
Paletti, D., Conficconi, D., and Santambrogio, M. D. 2021 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW) [53];

1.4 Thesis Organization

The dissertation Chapters’ division is organized to reflect Figure 1.4 prob-
lems and ease the reader access to the content based on a specific domain
or a given architectural organization.

9
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3) How to Conceive a System-Level Design onto an FPGA
An overview of Digital Design Abstractions with Taxonomies and Timelines

7)  Conclusions and Future Work
Wrap-up of this Dissertation, Summary of Contributions  and Open Research Paths

2)  System Level Trends for Reconfigurable Systems
A Focus on the Shift Towards Domain Specialization

1) Introduction
Context Definition, Problem Statements and Contributions

4)  A Framework for 
Highly Customizable 

Image Registration 
Accelerators

On Open-Source  Automation 
Framework and Optimized Stream 

Architectures on Image Registration

5)  A Depth-first 
Domain-Specific 
Architecture for 

Regular Expression
On  Energy-efficient DSA for RE 
Based on the Depth-first Fashion

6)  A Breadth-first 
Domain-Specific 
Architecture for 

Regular Expression
On  Energy-efficient DSA for RE 

Based on the Breadth-first Fashion

Figure 1.5: Graphical dissertation outline: Chapter 2 and 3 describe the main trends
towards domain specialization of Reconfigurable Systems; then the dissertation de-
scribes two computational kernels dissected in different aspects of the specialization
(design automation, computational pattern); finally, it concludes, focusing on open
research paths.

As Figure 1.5 highlights, the organization is the following.

• Chapter 2 provides background on FPGA architectures and analyzes
the latest system-level trends of reconfigurable computing systems.

• Then, Chapter 3 presents the three relevant digital abstractions for
FPGAs surveying the main exponent of each abstraction according
to a proposed taxonomy and a timeline.

• Chapter 4 presents an open-source framework for highly customizable
streaming-dataflow domain specialized architecture for MI calculus
and IRG.

• Chapter 5 and Chapter 6 analyze two traditional DSAs employing dif-
ferent execution models based on a depth- or breadth-first approach
respectively.

• Finally, Chapter 7 concludes this dissertation while highlighting the
most important takeaways.
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CHAPTER2
Reconfigurable architectures: the shift

from general systems to domain specific
solutions

This Chapter analyzes the system-level trends of reconfigurable architec-
tures starting from the early democratization efforts with the abstraction
level rise to the recent domain specialization. It begins with brief back-
ground knowledge on Field Programmable Gate Arrays (FPGAs)’ compo-
nents. Then, it depicts the never stopping efforts on FPGAs’ democrati-
zation through the constant development of design automation toolchains
and newer abstraction layers, which overall ease the design development
and their usage. Afterward, it shows the main recent trends in which Rec-
onfigurable Computing (RC) saw its explosion. Examples are the public
cloud availability, which enables the paradigm of Hardware-as-a-Service
for these platforms, and the increasing heterogeneity even at the system
level. As one of the most exciting newer trends for RC-systems, there is
the domain specialization one, in which this Chapter depicts a possible
taxonomy of Domain-Specific Reconfigurable Architectures (DSRAs)’ or-
ganizations. Finally, the Chapter concludes with open questions and future
research directions of system-level trends.
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Chapter 2. Reconfigurable architectures: the shift from general systems to
domain specific solutions

Reconfigurable computing is an expanding field that, during the last
decades, has evolved from a relatively closed community, where hard-
skilled developers deployed high-performance systems, based on their know-
ledge of the underlying physical system, to an attractive solution to both
industry and academia. With this Chapter, we explore the different lines
of development in the field, with a specific focus on those based on Fi-
eld Programmable Gate Arrays (FPGAs), namely the need for new tools to
shorten the development time [25], the creation of heterogeneous platforms
that couple hardware accelerators with general-purpose processors [54], the
differentiation of the paradigms employed and applicative scenarios [55],
and the demand to move from general to domain-specific solutions. Start-
ing with the identification of the main limitations that have led to improve-
ments in the field, we explore the emergence of a wide range of Computer
Aided Design (CAD) tools that allow the use of high-level languages and
guide the user in the whole process of system deployment. This opening
to a broader public and their high performance with relatively low power
consumption facilitate the spreading in data-centers, where, apart from the
undeniable benefits, we have explored critical issues. We conclude with the
latest trends in the field, such as using hardware as a service and shifting
to Domain-Specific Architectures (DSAs) based on reconfigurable fabrics,
i.e., Domain-Specific Reconfigurable Architectures (DSRAs).

Considering the magnitude of the topics, we will cover the time-span
between a period when only a restricted elite of people knew and exploited
reconfigurable systems and the current days where they are often integrated
into data centers and provided as services to a broader audience. Follow-
ing this path, we can identify three main trends that helped the adoption
of reconfigurable fabrics, specifically FPGAs, in a variety of computa-
tion systems: a programming paradigm democratization, a development
of heterogeneous platforms, and new accessibility solutions. In a first in-
stance, reconfigurable fabrics were primarily employed in telecommunica-
tions thanks to the possibility of easy and fast reconfiguration and signal
processing for speeding up the computation of specific algorithms [56].
At that time, the deployment time was quite long and limited to a few
skilled developers [57]. Although the computational benefits were undeni-
able compared to general processors [22, 23], the development bottlenecks
limited such platforms’ potential. For these reasons, a considerable effort
was put in developing toolchains and abstraction layers to help developers,
not necessarily hard-skilled on the topic, to benefit from reconfigurable fab-
rics [58–61]. The second attempt to increase the usage of reconfigurable
systems by a larger number of users was combining them with general-
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purpose processors and, later on, with software-programmable vector en-
gines. The coupling with micro-controller and hard-processors opens to
different applicative scenarios but also introduces new challenges on in-
terconnections and memory coherency [54]. Indeed, the aforementioned
heterogeneity and high connectivity favor the adoption of reconfigurable
systems in the cloud computing ecosystem, where the power wall hit with
the dark silicon [4] makes the providers craving for energy-efficient so-
lutions, such as reconfigurable systems. Finally, the newest trend in the
reconfigurable system field is to further promote their use by users closer
to the software world. In this sense, we are witnessing an increasing num-
ber of providers of reconfigurable platforms in the cloud as services for the
final users [55]. Combined with the opening to the broader public, vari-
ous efforts have been put in the development of DSAs, which enable the
user to develop applications that run on a reconfigurable system using a
Domain-Specific Language (DSL).

Based on all these considerations, our review will start by describing
background knowledge on FPGAs architectures (Section 2.1) and the State
of the Art around 2010, highlighting the main limitations that pushed for
the improvements that we have anticipated (Section 2.2). The reader in-
terested in dynamic reconfiguration and low-level technological details can
refer to [26, 62–64], or for detailed trade-offs analysis in Reconfigurable
Computing (RC) systems [22–26]. Hence, following the different lines of
development in the past ten years (Section 2.3), we will end by describ-
ing the current trends with their paradigm shift (Section 2.4) and, finally,
the possible trends we will see in the following years (Section 2.5). Fig-
ure 2.1 summarizes the main system-level trends this Chapter deals with:
from more structured CAD tools to the rise of heterogeneous architectures
and the shift to new paradigms such the FPGA-as-a-Service (FaaS) and the
spread of DSRA in the domain specialization direction.

2.1 Background on FPGA Architecture

FPGAs are an array of heterogeneous programmable blocks (e.g., logic,
storage, high-speed arithmetic, hardened memory controllers, I/O) that can
be flexibly connected through routing switches usually based on Static Ran-
dom Access Memory (SRAM)1. Figure 2.2 shows an example of FPGA ar-
chitecture of the early days, in which Xilinx pioneered FPGA in 1984, and
modern heterogeneous architecture with multiple hardened blocks. FPGAs
1 Several other FPGA technologies exist, and the interested reader can have a look an overview of them at other
references [25, 26, 65].
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Figure 2.1: Timeline of a selection of some relevant works following the taxonomy pro-
posed in this Chapter.

are called field-programmable since they can be configured after manufac-
turing an almost infinite amount of times to implement any digital hard-
ware design. The users describe the desired functionality in several digi-
tal abstractions, such as Hardware Description Languages (HDLs), High-
Level Synthesis (HLS), and DSLs (more details in Chapter 3), which CAD
toolchains then translate into a bitstream to configure the FPGA. These
toolchains synthesize HDL designs into a circuit netlist, map them to het-
erogeneous fabric blocks, and route their connections through the routing
layer. Employing a ready-to-use FPGA to implement a system enables
the lowering of Non-Recurring Engineering (NRE) costs and the short-
ening of time-to-market (by skipping physical design, layout, fabrication,
and verification chips stages) against an Application-Specific Integrated
Circuit (ASIC). In this way, FPGAs represent the candidate solution for
medium (or small) volumes and fast-paced product cycles markets. More-
over, their adaptable reconfigurable fabric avoids the drawbacks of fixed
systems such as Central Processing Units (CPUs) and Graphics Processing
Units (GPUs). It enables designers to achieve better efficiencies from both
the execution times and energy efficiency perspectives. However, FPGAs’
flexibility delivers worst area and frequency achievements compared to a
full custom ASIC while retaining incredibly higher adaptability.

2.1.1 Programmable Logic

The base FPGA architecture builds on top of an array of Look-Up Ta-
bles (LUTs) superseding traditional Complex Programmable Logic De-
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Figure 2.2: Early FPGA architecture with programmable logic and I/Os against mod-
ern heterogeneous ones with BRAMs, Digital Signal Processings (DSPs), and other
hardened components.

vices (CPLDs), Programmable Logic Arrays (PLAs), Programmable Ar-
ray Logics (PALs) technologies. Moreover, it contains Flip Flops (FFs) to
provide small local storage and adders for simple mathematical functionali-
ties. A K-LUT can implement boolean functions with K-input. It stores the
truth table of desired functionality and selects one of the 2K output values
by employing the K input as multiplexer select signals. A Basic Logic Ele-
ment (BLE)2 traditionally constitutes of a K-LUT, an output register, and a
bypassing multiplexer [64]. In this way, BLE implements either a K-LUT
with registered or unregistered output (thanks to the multiplexer) or a FF.
Multiple BLEs cluster in Logic Blocks (LBs) with its local interconnect
within BLE outputs or LB inputs and a target destination. Therefore, an LB
contains N BLEs of K-LUTs. Increasing K enables more functionalities
packed in a single LUT, reducing the critical path while increasing the area
exponentially and decreasing the speeds linearly. Moreover, increasing N
decreases the demand for inter-LB routing at the cost of increasing the area
quadratically and degrading linearly the speeds with the number of BLEs
(i.e., N) [64]3. A significant improvement comes with the introduction of
fracturable LUTs by Altera in 2003 with the Stratix II [66] that combines
the performance of larger LUTs with the area-efficiency of smaller LUTs.
A fracturable {K,M}-LUT can implement a single K-LUT or two K − 1
2 The term BLE is general enough to cover at least both Intel and Xilinx terminologies of the smallest config-
urable element Adaptive Logic Module (ALM) and Configurable Logic Block (CLB) respectively. 3 The first
Xilinx LUT-based FPGA in 1984 had an LB with two 3-LUTs (i.e., N = 2, K = 3).
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Figure 2.3: 6-LUT fracturable into two 5-LUTs with (a) no additional input ports (5
shared inputs) or (b) two additional input ports and steering multiplexers (3 shared
inputs). Image adapted from [64].

LUTs that use at most K +M distinct inputs. Figure 2.3 shows the struc-
ture of a fracturable 6-LUT built with two 5-LUTs and a 2:1 multiplixer.
Early non-fracturable LUT were coupled with a single FF. However, the
fracturable LUTs add a second FF to register both outputs. Arithmetic op-
erations, such as addition and subtraction, are widespread in FPGA-based
designs. Although they can be implemented with LUTs, each ripple carries
adder’s bit requires two LUTs (one for the carry and one for the output),
increasing the utilization and slowing the critical path. Therefore, mod-
ern FPGAs include hardened arithmetic in their LBs. They reuse LUT
routing ports or LUT outputs to avoid expensive routing ports. Moreover,
the carry bits have specific interconnect with almost no programmability
for a fast carry path. Indeed, Xilinx Versal hardens the carry logic for 8-
bit carry look-ahead adders (enabling an addition every eighth BLE) [67],
while Intel Agilex delivers 2 arithmetic bit per BLE and a dedicated carry
interconnect [68].

2.1.2 Programmable Routing

The programmable routing is an essential part of the reconfigurable fabric
of pre-fabricated wiring segments and programmable switches to connect
any function block. Hierarchical and island-style FPGAs are the two main
routing classes. However, hierarchical classes suffer from very long wires
connections that become troublesome with the node process scaling. The
island-style (shown in Figure 2.4) is inspired by the regular structure of the
2D layout with horizontal and vertical wires. It includes routing wire seg-
ments, connection blocks for logic-routing wires connection, and switch
blocks to form longer routes by connecting routing wires. A good rout-
ing architecture has to balance the number of programmable switches and
wiring segments and their area costs. Indeed, modern routing fabrics con-
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Figure 2.4: Island-style routing architecture. Thick solid lines are routing wires while
dashed lines are programmable switches. Connection and switch blocks are shaded in
light and dark green, respectively. Image adapted from [64].

tain wiring segments of multiple lengths (both short and long) to match
different application requirements. For instance, Intel’s Stratix FPGAs cre-
ate a sort of hierarchical structure in an island-style FPGA since they enable
long wires connection only with short ones [69].

2.1.3 Programmable I/O

Traditionally, FPGAs were used as glue logic components or sensor fu-
sion platforms for the presence of programmable I/O banks. Indeed, these
I/O interfaces can flexibly adapt to different standards, electrical charac-
teristics, voltage levels, timing requirements, and protocols, and they oc-
cupy a significant amount of FPGA’s area. These I/O blocks generally con-
tain additional hardened circuitry to simplify communication between the
outer world and the reconfigurable fabric (e.g., capture registers, double- to
single-data rate conversion registers, serial-to-parallel converters). Modern
FPGAs now contain high-speed I/O banks to implement serial protocols,
such as Ethernet and PCIe, that embed the clock in data transitions and run
at about 28 Gb/s. Overall, also the FPGA I/O architecture must balance the
high speeds required with the flexible programmability purpose.

The data exchange between different chips or boards is divided into two
main transmissions types: parallel and serial. In the former, data is sent
simultaneously from a Transmitter (TX) to a Receiver (RX) on separate
communication lines and synchronized with a common clock. In the latter,
data are bit-wise serialized and transmitted sequentially on the same chan-
nel. The communication can be either synchronous when the transmission
clock is provided by RX and sent to TX, or asynchronous, when TX trans-
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mits data asynchronously to RX (i.e., there is not a communication media
containing a synchronization clock), which takes care of recovering data
and clock. Historically, parallel buses were the standard for chips com-
munication since they avoid the overhead of serialization/deserialization.
However, the ever-increasing bandwidth demand imposes bigger parallel
data buses and clock rates, which, along with signal degradation over long
distances, made room for serial transmission. Therefore, serial transmis-
sions have become advantageous for off-chips, board communications, as
they can provide higher performance while minimizing pin counts, simul-
taneous output switching noise, and overall system costs. A perfect data
transmission among TX and RX interfaces would require an ideal clock
synchronization in terms of both frequency and phase. Hence, a Syn-
chronous Serial Interface may seem the way, as the same clock is forwarded
from RX to TX. However, non-idealities introduced by the communication
media add jitter, distortions, and attenuation to the transmitted clock.

FPGAs include dedicated hardware for serial links, known as Seriali-
zer/Deserializer (SerDes), which provides a high-speed Asynchronous Se-
rial Interface. In this context, Multi-Gigabit Transceivers (MGTs) are spe-
cial SerDes capable of reaching bit rates above 1 Gigabit/second, used for
for high-speed data communications. The MGT main building block is a
Parallel In Serial Out (PISO)/Serial In Parallel Out (SIPO) couple, where
parallel data coming from the data bus are serialized by the PISO and trans-
mitted through a communication media to the SIPO, which is in charge
of recovering serial data in its original form. A method to correctly re-
cover data at the receiver side of the transmission link is the Clock Data
Recovery (CDR) circuit. This circuit creates a recovered clock that is
phase-aligned with the input transition position and samples the incom-
ing data stream. The CDR is usually composed of a Phase Locked Loop
(PLL), a negative feedback circuit that, through a Voltage Controlled Os-
cillator (VCO), generates an output frequency locked to the incoming data
streams in both frequency and phase. The Phase Detector (PD) output
a signal proportional to the phase difference of its inputs, averaged by a
low-pass filter, and, finally, the VCO generates a clock whose frequency
is proportional to its input amplitude. The negative feedback loop reacts
to generate a stable recovered clock, which is locked to the input stream
in phase and frequency. To ensure correct CDR operations, enough transi-
tions are paramount, thus requiring the usage of line encoding scheme such
as 8b/10b or 64b/66b. Thanks to their high working frequency, modern
MGTs allow extremely high-throughput communications and are widely
used to interconnect FPGAs [32, 33, 36, 70, 71].
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Table 2.1: Different reading/writing ports BRAMs configuration and their required rout-
ing ports number (W: data width, D:BRAM depth).

BRAM Ports Mode #Routing Ports

1read Single-port ROM log2(D) +W
1read/write Single-port RAM log2(D) + 2W

1read+1write Simple dual-port RAM 2log2(D) + 2W
2read/write True dual-port RAM 2log2(D) + 4W

2read+2write Quad-port RAM 4log2(D) + 4W

2.1.4 On-Chip Memory

As highlighted in Section 2.1.1, the first on-chip memories were FFs within
LB. Nevertheless, with the growing implementable systems on FPGAs and
the continuously growing logic capacity, more data locality became needed,
and LUT-based Random Access Memory (RAM) were inefficient. More-
over, there is not a universal RAM configuration (in terms of capacity, word
width, number of ports) in FPGA-based designs. Therefore, Altera intro-
duced in 1995 the Block RAMs (BRAMs) [72]. Typically, a BRAM builds
on an SRAM-based memory with additional modules to configure the com-
ponent and connect to the routing fabric. Balancing the BRAMs’ capacity,
data width, and the number of read/write ports means to control the lin-
ear area usage of SRAM cells and the sublinear growth of the rest of the
components. Moreover, ever-changing application needs demand for new
components to configure BRAMs’ width and depth through multiplexing
circuitry [73–76]. BRAMs present an interface toward the programmable
routing similar to the one of the LBs to favor regular interconnections. De-
pending on requirements of reading/writing ports, the BRAMs can be con-
figured accordingly, as shown in Table 2.1. Interested designers can exploit
as another source of on-chip memories the K-LUTs, which are native 2K

1-bit read-only memories, by adding the missing write circuitry. These
memories are called LUT-RAMs. Usually, the vendors make eligible only
50% of the logic fabric to LUT-RAMs, since, for efficiency purposes, it
requires an entire LB for a LUT-RAM.

Nowadays, vendors employ a medium size of BRAMs, e.g., Intel FPGAs
employ 20kb BRAMs, while Xilinx ones employ 18kb BRAMs (combin-
able two by two to form 36kb memories) However, there is no general
agreement on the BRAMs’ size since, for example, Xilinx high-end de-
vices include large 288kb memories called Ultra RAMs (URAMs).
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2.1.5 DSP Blocks

The initial arithmetic circuits in commercial FPGAs were the additional
logic of adders and carry chains. Therefore, multiplication operations were
implemented through soft logic, which is very inefficient. Given the rel-
evance of signal processing and telecom applications for FPGAs, FPGA
architects devised new hardened components, namely DSP Blocks. DSPs,
or hardened multipliers, were introduced by Xilinx Virtex-II [77]. An N-
bit multiplier builds on N2 logic elements and 2N inputs and outputs. DSP
designers introduced new configurability support throughout the years, en-
abling the DSP fracturability and their tailoring for different applications
and precision requirements. Additionally, vendors introduced input regis-
ters, adders, and output blocks to perform additional operations such as sum
and accumulations. Overall, although DSP blocks were configurable, they
natively support mainly fixed precision multiplication. Though telecom-
munication applications were (and still are) among the driving DSP fac-
tors, High Performance Computing (HPC) drove FPGA vendors to add na-
tive single-precision floating-point support to their DSPs. On a different
direction, Deep Learning inference demands reduced precision computa-
tions, which strongly candidate FPGAs’ datapath adaptability to this field.
Researchers propose solutions to fracture DSP blocks to integer multiply
further and accumulate operations at 9, 4, 2 bits. In this way, the DSP
arithmetic requirements span from low-precision fixed-point/integer for in-
ference, to medium fixed-point for telecommunication, to high-precision
floating-point for HPC. It is up to the FPGA architect to design DSP blocks
and eventually tailoring them to the specific application domain, e.g., Intel
Stratix 10 NX [78], Speedster7t from Achronix [79].

2.1.6 System-level Interconnects, Interposers, and Others

The continuous growth of heterogeneity in the FPGA reconfigurable fab-
ric goes hand in hand with the increasing external I/O interfaces bandwidth
and capacity (e.g., DDR, PCIe). However, handling such a high volume and
frequency traffic with soft fabric requires wider soft buses. For instance, a
channel of High-Bandwidth Memory (HBM) is 128 bit wide and operates
a 1GHz in a double data rate interface [64]. Thus, a soft bus that runs at
250 MHz must be 1028 bits wide. Given that the increasing number of
high-speed interfaces can consume a massive portion of FPGA logic and
routing fabric, new hard system-level interconnects became paramount.
Indeed, latest Versal [80] and Speedster7t [81] embed a hard Network on
Chip (NoC). The former employs a mesh-based NoC to connect the differ-
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ent components such as I/O transceivers, CPU, programmable logic, and
vector engines. The latter exploits the NoC as the primary communication
among the external interfaces and the reconfigurable fabric. One of the
logic growth has been the early adoption by FPGAs of interposer technol-
ogy to enable dense interconnection of multiple silicon die at a reasonable
cost [67,82,83]. A passive interposer is a silicon die with metal layers form-
ing routing connections and several microbumps on its surface to connect
more die flipped on top of it. This alternative technology achieves a higher
yield compared to large monolithic single die systems. Moreover, inter-
poser technology enables the integration of specialized chiplets with dif-
ferent technology nodes into a single device. The largest interposer-based
FPGA has more than twice the logic elements of the largest monolithic-
based FPGA (considering the same technology node). The next gener-
ation Xilinx Versal NoC further enhances this process connecting multi-
ple die. Conversely, Intel-based FPGAs employ smaller interposers called
Embedded Multi-die Interconnect Bridges (EMIB), which are carved into
package substrate. They employ the EMIB to decouple design and technol-
ogy nodes of smaller I/O transceiver or HBM chiplets.

Another crucial component of FPGAs is the clock distribution net-
work. Indeed, FPGAs present special clock routing interconnections and
on-chip clock generators (such as PLLs, Delay Locked Loops (DLLs), and
CDR circuits) to offer programmable logic regions working under differ-
ent clock domains. The clock routing networks employ a similar principle
to those of Section 2.1.2. However, they aim at building low skew net-
works (e.g., H-trees) with reduced crosstalk and jitter effects. Last but
not least, the FPGA configuration circuitry is responsible for configur-
ing all the previously described programmable components. A configura-
tion controller loads a defined bitstream on the device power-up. This cir-
cuitry can be exploited to enable the so-called Dynamic Partial Reconfigu-
ration (DPR) of the soft logic. This functionality allows reconfiguring only
a region of the programmable logic while running the rest of the circuit.
Moreover, FPGA-based applications (i.e., the final bitstream) represent in-
tellectual property, hence must be protected. Indeed, FPGA toolchains al-
low the creation of encrypted bitstreams that are decryptable only at run-
time with many security implications [31].

2.2 Early Days Overview

Though RC provide a high level of flexibility and good performances [22],
those systems require the body-of-knowledge from a wide mixture of fields
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[25]. Therefore, the development of FPGA-based solutions was confined
to few groups strongly specialized in hardware development due to both
flaws in the development tools, the relatively low use of these fabrics, and
the time-consuming process. Hence, the main users of RC systems were
mainly those that developed system-wide competencies, from the high-
level software down-to the single LUT [25]. Therefore, this gap among
software and hardware productivity opens to a huge portion of research in-
vestments in CAD tools and the raising of abstraction levels for RC [84].
At the dawn of reconfigurable computing, HDLs were the first attempts
to move from schematics to a higher productivity approach, but, to reach
satisfactory results, the developer needs an in-depth knowledge of the un-
derlying physical architecture of the fabric [25]. The required knowledge,
indeed, prevents the accessibility to the field to a broader audience, for this
reason, new environments were developed. AutoPilot, from 2013 Vivado
HLS, succeeded in introducing the HLS, or programming the hardware
with a high-level language such as C, in the RC industry [58]. Unfortu-
nately, the efforts from the RC community were not enough, as demon-
strated by a heterogeneous group of researchers [59]. The results of their
analysis show that, with the current status of HLS tools, a software devel-
oper could not program FPGAs by simple software paradigms but must be
aware of the considerable difference between the software optimizations
and the hardware one [59].

While HLS represents an impressive step to increase the audience of re-
configurable systems, the computing world was shaken by the first version
of the Project Catapult [32], a reconfigurable fabric in a custom data-center
to accelerate large-scale software services, further extended in 2016 [33].
This example of success from a big corporation such as Microsoft broke
the cliché of reconfigurable systems for a tiny niche. Nevertheless, the
gap between hardware and software programming was still far from be-
ing filled up. Indeed, platforms such as GPUs have gained traction with
the community and have been adopted as the standard way to acceler-
ate computational workloads. The main reason is the ease of program-
ming those devices, thanks to the abstraction offered by the Application
Programming Interfaces (APIs) such as the Compute Unified Device Ar-
chitecture (CUDA) [85]. The parallel computation power and the easy-to-
use programming models have made GPUs the de-facto winner in several
applications fields, such as machine learning model training.
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2.3 Towards Reconfigurable System Democratization

The aforementioned huge productivity gap between reconfigurable systems
and CPUs, pushed neither software programmers nor ASIC developers to
embrace the RC world. Though the flexibility of reconfigurable systems
opens to FPGA-based wireless sensor networks for tasks spanning from
sensor fusion to small co-processor [56], the device complexity was in-
creasing. Indeed, in 2011 the two main players in the FPGA market, i.e.,
Xilinx and Altera, introduced two heterogeneous systems composed of an
FPGA tightly coupled with a hard-processor. Xilinx presents the Zynq tech-
nology [86], where an ARM processor and an FPGA are on the same chip,
whereas Intel presents a Xeon coupled with an Altera FPGA [87] through
the Intel QuickPath Interconnect (QPI) [88]. Additionally, technology ad-
vancements were on the roadmap for 2015 [89, 90], but the productivity
gap, and the increasing device complexity, keep the reconfigurable devices
for a niche. To increase their adoption, the research community has worked
along two main lines of development. One line describes the democratiza-
tion of reconfigurable systems with the improvement of CAD tools and the
abstraction level provided to the final users, which move its first steps to-
wards a domain specialization (Section 2.4.3). The second line focuses on a
shift on how reconfigurable systems are employed, starting from Hardware-
as-a-Service (HaaS), moving to increase specialization through heterogene-
ity, and finishing with DSAs.

2.3.1 Design Automation tools for FPGAs

One of the primary efforts in the RC world was centered on CAD tools
for FPGAs. The increasing complexity of the available platforms, and the
increasing demand for efficiency in computations, foster the research on
CAD for RC systems. Many tools have been developed both at the aca-
demic and industrial levels. We will provide an overview of some of the
most significant ones, clustering them into industrial and academic tools
and closed and open sources.

The commercial tools are currently almost all closed source for obvi-
ous market reasons. Here we report some of the most relevant vendors on
the market, such as Xilinx and Intel FPGAs, known as Altera up to 20154.
Starting from 2012, Xilinx released the Vivado design suite to support the
latest released platforms [91]. Vivado, with Intel Quartus [92] as its coun-
terpart, performs the system design task such as the synthesis, the place

4 What follows it is not to be intended as, neither it is a complete commercial tools list.
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and route, and the final bitstream generation, as shown in the left-hand
side of Fig. 2.5. Both these companies provide their commercial version
of HLS tool to enable fast prototyping and deployment, namely Vivado
HLS [58] and Intel HLS Compiler [93]. Finally, both Intel FPGAs and
Xilinx provide support for OpenCL language with the Altera FPGA SDK
in 2012 [94, 95] and Xilinx SDAccel in 2014 [96], which has been uni-
fied in Xilinx Vitis [97]. One of the peculiarities of SDAccel, for example,
is the complete abstraction from the underlying system, leaving the final
user’s only duty to develop the custom accelerator. This custom comput-
ing accelerator will be, in the end, integrated by the tool with a basic shell
of logic blocks, thanks to a partial reconfiguration of the FPGA. On the
other hand, the academic community continuously work to push further the
research on CAD tools. One great effort has been put in HLS toolchains, re-
viewed in [59]. Among those, in the survey, there are two open-source solu-
tions, such as BAMBU [98] and LegUp [99], and another one closed source
named DWARV [100]. As mentioned in Section 2.2, the results show that,
for a software developer, it is still discouraging to approach HLS tools.
Indeed, newer alternative solutions continue to emerge, such the usage of
custom Intermediate Representation (IR) [101], to push the development of
Coarse Grain Reconfigurable Architectures (CGRAs) [102–105]. Further-
more, many research groups focus on the effective usage of the polyhedral
model [106], widely used in software compilers, for the efficient automatic
code generation targeting reconfigurable systems [107–110]. Other works
try to overcome some limitations of many HLS tools, such as the expres-
sion of static parallelism and static scheduling [59]. An example comes
from LegUp [111] that provides support to express multi-core hardware
systems through multi-threading executions. Another body of work lever-
ages existing toolchains to provide a testing environment for custom al-
gorithms for the HLS phase, such as new architectural templates or new
programming models, and for the design flow, such as new place and route
algorithms. An example is the CAOS platform [112] that aims at increas-
ing the adoption of RC systems in the HPC community, through a semi-
automated hardware-software co-design flow [113] with a modular and ex-
tensible structure [114].

Following this trend, other open-source projects aimed at encourag-
ing the development of custom algorithms within the FPGAs flow. Rapid
Smith in 2011 proposed a set of tools and APIs for creating “your own
custom CAD toolchain” on top of the so-called Xilinx Design Language
(XDL) [115]. In 2018, Lavin and Kaviani presented RapidWright [116], a
toolchain from Xilinx Research Labs. RapidWright is an open-source plat-
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Figure 2.5: Overview of the main blocks of design flows from source code down to recon-
figurable system configuration

form for custom module plug-in an FPGA-flow that aims to increase pro-
ductivity and the design performance combined with the Vivado toolchain.
Thanks to the proposed gateway to Vivado, called design checkpoints, the
authors want to create an ecosystem around CAD tools for FPGAs [116].
On the wave of development of CAD for FPGAs, there is an interest in cre-
ating an ecosystem of open-source hardware tools. The Symbiflow project
[117] aims at providing a fully free and completely open-source toolchain
for commercial FPGA, with a flow from HDL down to bitstream genera-
tion, as in Fig. 2.5. Thanks to its first sub-project, named Ice-storm [118],
they can reproduce a bitstream for Lattice iCE40 FPGAs, while currently,
they are documenting the Xilinx 7-Series bitstreams [119]. In [120], the
authors present their toolchain along with custom-computing machines,
such as a low-power neural network and a Linux-bootable RISC System
on Chip (SoC). Given the increasing complexity of reconfigurable plat-
forms and the struggles related to the time-to-market, these open-source
CAD tools can either improve the commercial tools with community con-
tribution or democratizing reconfigurable systems.

2.3.2 The abstraction level rise towards Domain Specific Languages

Another important improvement of reconfigurable computing systems fo-
cuses on the rise of the abstraction level. Given the first CAD efforts that
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Table 2.2: Examples of research works in the abstraction level rise towards DSLs

Language Hardware design Run-time mangament
Python PYNQ [61]

OpenCL Altera [121], Xilinx [122] Altera [121], Xilinx [122]
Java MaxJ [123] Max run-time [123]
Scala Chisel [124]

Halide FROST [125], Pu et al., [126] Pu et al., [126]
Darkroom Hegarty et al., [60]

exploit C/C++-based HLS, the software community starts to approach the
reconfigurable ecosystem while seeing an explosion of higher-level lan-
guages, such as Python, or to using more and more DSLs, such as Halide.
Table 2.2 shows an overview of some of the relevant works in this trend.
Indeed, a large amount of work aims at embodying high-level languages,
different from C/C++, for new hardware-software co-design techniques, left-
hand side Fig. 2.5, and run-time management, right-hand side Fig. 2.5,
enabling a wider set of users.

For instance, the PYNQ project [61] is an open-source framework that
enables Python programmers to use complex SoCs, or accelerator boards,
supported by a set of predefined libraries and drivers. Another great ef-
fort by Altera comes from the integration of the OpenCL language in the
FPGA-based design flow, first presented in 2011 [121]. In 2012 Altera re-
leased an official compilation framework for OpenCL-based designs along
with a library for PCIe-based host-FPGA communication [94, 127] with
encouraging results. Indeed, also Xilinx follows these efforts and pro-
vides integration in its HLS toolchain [122]. Both Altera and Xilinx ex-
ploit the versatility of the OpenCL standard for managing the run-time of
the target platform and the hardware design, opening effectively to the idea
of integrating PCIe-based reconfigurable accelerators in a server rack. A
different approach is adopted by The Maxeler technologies, which pro-
vides integrated server-class CPUs with accelerators based on the dataflow
model [128]. Moreover, they provide a design language called MaxJ, based
on Java, which, compiled by the MaxCompiler tool [123], enables applica-
tions such as the development of design tools for CGRAs as in [101].

On the design side, several efforts have aimed at improving hardware-
software co-design, although not all designed for RC systems.Chapter 3
will discuss more in detail these efforts, that refers to the RC stack in Fig-
ure 2.5. An example is Chisel [124], employed in the Edge Tensor Process-
ing Unit (TPU) [129] or RC projects [130]. Among the DSLs, Halide [131]
has been particularly attractive for the reconfigurable computing field, for

26



i
i

“thesis” — 2022/1/23 — 18:33 — page 27 — #39 i
i

i
i

i
i

2.4. Recent Trends in the Reconfigurable Systems Spotlight

its focus on image processing (an exciting domain for RC) and for its abil-
ity to decouple execution and scheduling codes. Inspired from this lan-
guage, several tools present framework for a DSL-to-FPGA design experi-
ence [60, 125, 126, 132, 133]

As highlighted in this Section, all these steps aim at opening the RC
world to a broader public through tools that provide a more user-friendly
use of these devices and pave the way for the first attempt of a paradigm
shift, such as domain specialization. The following Section will guide
the reader through the evolution towards the second line of development,
namely the shift in the use of reconfigurable systems.

2.4 Recent Trends in the Reconfigurable Systems Spotlight

Aim of this Section is to provide an overview of the latest trends in the re-
configurable computing community. Specifically, reconfigurable comput-
ing systems have become one of the standard commodities available in the
cloud and even more heterogeneous, with increasing problems linked to the
communication infrastructure. Last but not least, there still is an open ques-
tion on which is the most suitable use of reconfigurable systems. Should
we tailor the reconfigurable system for a single domain with a wide range
of applications, or should we exploit a single reconfigurable DSA engine,
or is it better an automated tool to rule them all?

2.4.1 Reconfigurable computing in the cloud: Hardware-as-a-Service

Starting from 2014, a turning point changed the model of employing FPGAs
in the cloud, when Microsoft [32] deployed Altera, and both IBM [34,134,
135] and Baidu [35] deployed Xilinx FPGAs to improve their services. The
idea of reconfigurable accelerators for cloud computing was gaining more
and more traction, and in 2016, while Microsoft deployed a renewed and
improved version of Catapult [33], with FPGAs attached directly to the
network, one of the first surveys on this topic was published [55].

The year after the second version of Catapult, the terms of FaaS, or
HaaS, become a steady reality. In 2017, Amazon presented the AWS F1
instances [36] with 1, 2, and 8 FPGAs devices attached, and Huawei pre-
sented its F1 instances of the FACS cloud service [37]. At that time, that
meant that everyone could develop and deploy its FPGA-based service, sys-
tem, and application without the need of owning the device per se and let
a cloud provider manage and maintain the infrastructure. The FaaS revolu-
tion opens to new business models, new markets, and reality like Nimbix
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Figure 2.6: Three classes of heterogeneous reconfigurable systems. While the first two,
(a) and (b), devise a tight integration with/without a (private) shared memory, e.g.,
DRAM, the third one, (c) exploits (or not) memory coherency through interconnections
or even directly attached to the network interface card.

started to deploy its own HPC solution based on reconfigurable accelera-
tors [136, 137], while it arises critical issues in the virtualization of recon-
figurable fabrics [138]. Moreover, a project as FireSim [139] could rely on
the FPGAs publicly available in the cloud. FireSim is an FPGA-accelerated
hardware simulated environment that enables a more accurate representa-
tion of new data-center-like contexts to test either hardware or software de-
sign iterations without the need for a real deployment [140], and therefore
limiting the cost for the final user.

2.4.2 Increasing heterogeneity in reconfigurable systems

Following the aforementioned improvements and considering that homo-
geneous multi-core processors, especially in data centers, fail to provide
the desired energy efficiency and performance, new devices have been de-
ployed, specifically heterogeneous architectures [54]. The integration in
these architectures of hardware accelerators is gaining interest as a promis-
ing solution. Considering the different possibilities, FPGA-based hetero-
geneous devices apply to a wide range of fields thanks to their reconfig-
urability and high performance with low power consumption [141]. Based
on these advantages, various platforms have been produced by the indus-
try, with each of them employing different physical integration and mem-
ory coherency. Although these solutions are appealing, they pose different
challenges to the developers, such as the choice of the most suitable one to
a specific application [54]. As a result, we can identify not only different
resolutive approaches for coupling CPU and FPGA, but also the integra-
tion of the FPGA with both CPU and software programmable accelerators,
e.g., with Xilinx Versal ACAP [67], right-hand side Fig. 2.6. Looking
at the pure CPU-FPGA coupling Choi et al., in [54], have provided an
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exciting classification of platforms on the market. They have guided devel-
opers to decide which platform is most suited for a specific computational
paradigm. For the scope of this work, we present some characterizing ex-
amples for the various approaches. Traditionally, the FPGA is connected
to the CPU utilizing the PCIe interface with both of them with their pri-
vate memories, such as Microsoft Catapult in its first version [32]. Other
examples, which also allow the final user to use high-level languages for
implementing its custom accelerator, are the Amazon F1 instances [36] and
the Alpha Data FPGA boards [142]. These solutions enable the spread of
reconfigurable fabrics as services to the final users and, allowing the use of
high-level languages, open to a wider public. Also, based on PCIe inter-
face, other vendors have proposed coherent shared memory between CPU
and FPGA, such as IBM with its Coherent Accelerator Processor Interface
(CAPI) for POWER8 [143]. Following the path of the coherent shared
memory, but aiming at a tighter connection CPU-FPGA, the first version
in 2011 of the Intel Xeon+FPGA platform exploits a QPI [87]. This idea
evolved throughout the years, and in 2016 a further improvement of the
Intel Xeon+FPGA platform was presented [144], center of Fig. 2.6. The
version presented is a System in Package (SiP) where one, or more, recon-
figurable accelerators are tightly coupled on the same package through the
usage of a hybrid connection CPU-FPGA based on PCIe and QPI [144].

Though the improvements of the communication infrastructure were
fostering the potential of these devices, as highlighted in [54], a coherent
interconnection was still impractical because of the insufficient bandwidth
and high latency cache designs. To this purpose, two consortiums of com-
panies were born: the OpenCAPI group in 2016 [145], and the CCIX con-
sortium in 2017 [146]. Their work produced two coherent communication
standards, called OpenCAPI and CCIX, where the CCIX is compatible and
built on top of the PCIe stack, while OpenCAPI is an open and new inter-
face right-hand side of Fig. 2.6. Indeed, the OpenCAPI aims at being an
open interface architecture that allows different ranges of accelerators, from
smart NICs to reconfigurable-/ASIC-based systems, to be connected to the
same high performance and coherent bus in an agnostic way concerning the
processor architecture [147].

2.4.3 Towards domain-specialization

With the approach of physical technology limits, such as the end of Den-
nard Scaling [4] and slow down of Moore’s law [8], computer architects
have to face the growing computing demand differently. Unless a new dis-
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rupting technology appears on the market, CPUs have reached a limit, and
DSAs are the most viable way for energy-efficient computations [8].

In these regards, reconfigurable computing systems represent one of
the possible solutions that enable custom-domain-specific computing plat-
forms. Indeed, the literature presents many works that focus on a single
domain, intended as a wide range of problems solvable with a common ap-
proach. However, the major problem now resides in an open question. Is it
better to have a single DSA, a single computation engine to rule them all,
or a tool able to generate an application-specific architecture for a target al-
gorithm? Besides, the DSAs have different meanings in the reconfigurable
computing world: is a DSA a “fixed” architecture and datapath that exploit
the adaptability of a reconfigurable platform, or is it an architecture that
is coarsely grained reconfigurable at the datapath/processing element level,
more like a CGRA? Though CGRAs could impact remarkably, thanks to
their low reconfiguration time compared to FPGAs, and their high special-
ization, “they are still immature in terms of programmability, productivity,
and adaptability”, as advocated in [38]. The paper presents a comprehen-
sive and in-depth analysis of CGRA. To avoid misleading definitions, we
refer to FPGAs as fine-grained reconfigurable architectures, or at the time
of writing, devices available on the market. Instead, we refer to CGRA as
reconfigurable computing platforms at a coarse- , or processing element-
level [38]. Finally, we refer to reconfigurable processors, or Application-
Specific Instruction-set Processor (ASIP), to a programmable CPU with
custom logic, i.e., an ASIP, with a portion of reconfigurable logic devoted
to implementing reconfigurable functional units [148, 149].

Among the several possible domains, Machine Learning (ML) has found
its application in several fields, from computational theory to software engi-
neering, from fraud detection to video segmentation, and many companies
are born to address several problems within this domain. The reconfig-
urable computing world contributes to the growth of the machine learn-
ing world, especially considering Neural Network (NN), or Deep Neural
Networks (DNNs), inference. Among the startups born from this con-
text, DeePhi, now acquired by Xilinx, focuses its proposition on an ef-
ficient hardware-software co-design methodology to efficiently map NN-
based computations on either an FPGA-based Deep Processing Unit (DPU)
or an ASIC-based DPU [150]. Several works proposing a methodology to
build efficient NN inference accelerators based on an FPGA have been pro-
posed in the literature, and we suggest the reader interested in more details
to look at [40]. Indeed, Guo et al., present a survey of efficient techniques
to build NNs accelerators to focus on the design of the architecture, on how
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to compress the model, and on how to design the system. A particular ex-
ample not reported in the survey is the Neural Processing Unit (NPU) archi-
tecture of the Brainwave project [151], which aims at serving in real-time
DNNs-based applications at the cloud-scale. A different example of a DSA
for the ML world is described in [42]. The authors propose a methodology
for stream-dataflow execution model based on a CGRA architecture organi-
zation. The reconfigurable datapath of the Softbrain microarchitecture has
shown both comparable performance and energy efficiency results against
state-of-the-art ASIC, whereas it keeps enough flexibility to reduce design
and verification time, thus costs and time to market. Alongside all these
considerations, Venieris et al., propose an extensive survey of toolchains
for mapping Convolutional Neural Networks (CNNs) on FPGAs [41], that
we suggest as reference for the topic. Specifically, the survey analyzes in-
depth all the software-hardware automation tools used for CNNs mapping
on FPGAs and proposes an interesting classification among the consid-
ered architectures. The target hardware of these toolchains can be divided
into streaming architectures, that builds on top of a highly optimized basic
block composed differently for each CNN, such as FINN [152], and sin-
gle computation engines, a fixed architecture that generally varies software
instruction sequences for different CNNs, such as FP-DNN [153]. Finally,
both [40] and [41] conclude demanding an increased effort for hardware-
software co-design tools in such domain.

Moving to a completely different domain, such as communication net-
works, where reconfigurable computing plays a crucial role, many works
in the literature are torn between two approaches: a mapping DSL-to-
hardware or a single DSA to rule them all. In these regards, a Reconfigurable
Match Tables (RMT) architecture was proposed in 2013 [154]. Even if
the authors tend to an ASIC-based DSA, the architecture proposed is a re-
configurable packet processing architecture that is software programmable.
This work leads to the birth of a DSL in the field of switch architecture for
packet processing that nowadays is widely recognized in the community
and known as P4 [21]. As DSL, P4 is designed to be "reconfigurable", or
software programmable, and protocol independent. Moreover, it abstracts
completely from whatever specific packet format, and it is architecture-
agnostic, meaning that the burden of targeting the underline architecture is
left to the compiler. The first work that provides automation of generating
HDL from high-level P4 programs is presented from Benacek et al., [155],
and then expanded in further parallelism levels from Wang et al., [156]
reaching outstanding throughput of Tbits/s on an FPGA. On the other
hand, Pontarelli et al., present their DSA, called FlowBlaze [157]. The ab-
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Table 2.3: Summary of different approaches to the domain-specialization of reconfig-
urable systems

Domain\Approach DSA Tool Hybrid

"Fixed" architecture
software programmable

One architecture for
each problem to tackle

"Semi-fixed" architecture
with a reconfigurable datapath

NPU [151]
Machine
Learning FP-DNN [153] FINN [152] Softbrain [42]

Deephi [150]

Networking Flowblaze [157] P4-to-VHDL [155, 156] N/A

Regular
Expressions TiReX [48], CICERO [52] REAPR [159], FlexAmata [160] N/A

straction model they built upon is different from the one of P4, instead, it
uses the same abstraction of the RMT architecture, called OpenFlow [158],
and therefore can be considered as the RMT extension. Table 2.3 summa-
rizes the division of the approaches adopted to domain-specialization, but
Chapter 3 gives more insights on this topic.

2.5 Final Remarks

In this Chapter, we have summarized the evolution of the RC world, mainly
focusing on FPGA-based systems and the concurrent development of new
tools for helping the spreading of these technologies to recent days. In our
journey in the reconfigurable fabric world, we have gone through different
paradigms of use, and through the improvement of the support tools to de-
velopers, starting from the first attempts addressed to an already skilled au-
dience till the more recent solutions that opens to a new user base, like soft-
ware engineers. In these attempts, we have moved from solutions that can
reach top performance only with an in-depth knowledge of the underlying
system to the latest tools which guide the users during the entire process,
from high-level code to the deployment of an entire system. In the wake
of the opening to different audiences, reconfigurable fabrics have become
a valuable option in data centers, given their reconfigurability, high per-
formance, and lower power consumption than general-purpose multi-core
architectures. On the other hand, thanks to their entry into the cloud market,
a new paradigm that has become popular, is the concept of HaaS, where the
final users exploit hardware resources of a cloud provider, which takes care
of the maintenance and management costs of the physical board.
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CHAPTER3
On the Abstraction of Digital System

Design: How to Program FPGAs

This Chapter describes the three digital abstractions on how to program
Field Programmable Gate Arrays (FPGAs), spatial architectures with a
heterogenous reconfigurable fabric. Since FPGA’s adoption found limita-
tions in programmability and required skills, many researchers are devoted
to abstractions and automation tools. Therefore, for each of the considered
abstractions (Hardware Description Language (HDL), High-Level Synthe-
sis (HLS), and Domain-Specific Language (DSL)), this Chapter presents
a taxonomy (programming models for HDLs; IP-based or System-based
toolchains for HLS; application, architecture, and infrastructure domains
for DSLs), and describes the prominent exponent with a timeline. Finally, it
concludes with six relevant takeaways identified throughout this Chapter.
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Figure 3.1: FPGA Design Flow with reference Sections numbered

As Section 2.1 introduced, Field Programmable Gate Arrays (FPGAs)
are reconfigurable heterogeneous circuits able to implement custom digital
systems, unlike fixed data paths and topologies Central Processing Units
(CPUs). Their main usage was limited to prototyping and the telecom-
munication field, however, the internal complexity of FPGAs is incredibly
growing [26, 64] Hence, academic researchers and companies started in-
vesting in FPGAs and adopting them also as accelerators [30, 32, 41, 161],
providing a good trade-off between the flexibility of general-purpose CPUs
and the performance and energy efficiency of Application-Specific Inte-
grated Circuits (ASICs) [22–25]. Despite the great opportunities, the funda-
mental drawback of FPGAs has always been their challenging design pro-
cess, profoundly impacting their programmability and steeping the learn-
ing curve. The hardware design flow for FPGAs resembles the one avail-
able for ASICs (Physical Design block of Figure 3.1). Historically, the
primary way to develop hardware design for FPGAs and ASICs consisted
of using Hardware Description Languages (HDLs), especially Verilog and
VHDL, for standard Register Transfer Level (RTL) design. Indeed, many
commercial Electronic Design Automation (EDA) tools [92,162–164], and
open-source tools [165], take RTL description in input and, from that, per-
form a sequence of steps towards the generation of the circuit. However,
to efficiently leverage these languages, the user requires significant knowl-
edge and experience in hardware design. Besides, despite the architectural
evolution of FPGAs, the features and abstractions offered by Verilog and
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Domain Specific 
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Figure 3.2: Proposed taxonomy for the considered digital abstractions

VHDL did not evolve as fast. Thus, over the last years, new solutions
have emerged to cope with the current limitations. In this scenario, we can
identify three main categories of novel digital design abstractions: high-
level HDLs, High-Level Synthesis (HLS) tools, and Domain-Specific Lan-
guages (DSLs), as the numbered blocks in Figure 3.1. Modern HDLs offer
features not available in traditional HDL, while providing a design experi-
ence close to the hardware. HLS tools enable designers to rely on high-level
languages to design hardware architectures. Finally, DSL tools represent
newer trends to increase further productivity, performance, and ecosystem
exploration thanks to domain narrowing. Independently from the category,
the goal of such tools is to: increase the level of abstraction and productiv-
ity for hardware design; enable high reuse and customization of IPs; reduce
verification effort and design errors; make FPGAs accessible to a broader
audience of users. This Chapter describes the research efforts on digital de-
sign abstractions for FPGA programming divided into HDLs (Section 3.1),
HLS (Section 3.2), and DSLs (Section 3.3). For each of the three abstrac-
tion efforts, we consider the review few examples of active languages and
tools1. Besides, we provide: a timeline (Figures 3.3, 3.5 and 3.6), report-
ing the first available dates of the tool appearance; a taxonomy, reported in
Figure 3.2, based on trends that we identified, such as Programming Model
(Figure 3.3), Synthesis Target (Figure 3.4) or Target Domain (Figure 3.6);
a review of the main characteristics of each analyzed work (Tables 3.1
to 3.3); insights on possible future trends (Section 3.4).

3.1 Hardware Description Languages

An HDL aims at describing the behavior of digital logic circuit designs both
for ASICs and FPGAs2. In the 1980s, VHDL and Verilog emerged as HDLs
introduced to help the electronic designers in the simulation and verification

1 Some of the excluded are available at [17] 2 Excluding analog and mixed analog-digital circuit design.
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of Integrated Circuits (ICs), still needing the human for HDL to schematic
translation [65, 166–168]. With the advent of logic synthesis and digital
circuits’ growth, EDA vendors pushed HDLs from just simulation and ver-
ification languages to design languages. However, for the most prominent
HDLs from the 1980s (i.e., Verilog and VHDL), a significant portion of
the language is not thought for synthesizing the circuit itself but for sim-
ulation purposes. Indeed, we speak of synthesizable or non-synthesizable
constructs when speaking of VHDL and Verilog [65, 166–168]. Currently,
VHDL and Verilog, now merged in SystemVerilog, are IEEE standards,
part of commercial EDAs tools, and the de facto standard for many FPGA
and ASIC designers, though not the only alternative. The impressive tech-
nology improvements increased the complexity of the hardware devices
(e.g., in terms of logic gates and heterogeneity [26, 64, 65] as highlighted
in Figure 2.2) demanding continuous research on tools able to handle such
complexity and support the designers. Meanwhile, both academic and in-
dustrial users found limitations in the two standard HDLs and their pro-
ductivity, hence proposing new programming paradigms. Some of these
HDLs have their own syntax and constructs, while others are embedded
in high-level languages like Scala and Python. Eventually, each of these
HDLs translates into VHDL or (System)Verilog3, as they remain the only
languages supported by modern synthesis tools.

We propose an HDL taxonomy based on the characteristics of the pro-
gramming model employed in the input languages. Our taxonomy has three
main clusters: HDLs based on functional languages (Section 3.1.1), HDLs
based on imperative languages (Section 3.1.2), and SystemVerilog exten-
sions (Section 3.1.3). Figure 3.3 shows the taxonomy of modern HDLs,
their year of birth, and their input and output languages.

3.1.1 Functional-based HDL

The first category of HDLs derives from functional programming languages
and embeds the characteristics of such a paradigm within the low-level
hardware development flow. There are two different languages employed
by HDL developers: Haskell [169] and Scala [170]. While the first lan-
guage is mainly devoted to functional features, Scala provides abstractions
for object-oriented style, making it very appealing for new languages [124]
and represents the current wave of functional-based HDLs. The great va-
riety of abstractions and support from a growing community are essential
factors that continuously push the development of these languages to em-
bed low-level design features of native HDLs such as multi-clock domains.
3 This means both Verilog and SystemVerilog
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Chisel: Chisel [124] is an HDL embedded in Scala, which offers a
more straightforward approach to HDL design compared to Verilog. For
instance, the designer can define functions using Scala conventions, build
and nest data structures, design components as classes, and redefine op-
erators. Chisel specific libraries permit the designer also to employ cus-
tom data types. A key for embedding Chisel in Scala is to support highly
parametrized circuits generators, a weakness of traditional HDLs. In this
way, designers can declare parameterizable classes and recursively create
hardware subsystems. For instance, RocketChip System-on-Chip Genera-
tor [171] is a Chisel-based framework. As another exciting feature, Chisel
abstracts the memory representation. The designers can first define it and
then create ports for it. Chisel offers a fast C++ simulator for RTL debugging
and a Verilog translator, which permits fine changes and integration with al-
ready designed Verilog modules as black-boxes. Additionally, Chisel sup-
ports multi-clock domain designs, and it is used for a plethora of FPGA and
ASIC designs [171–173], though it lacks in verification features [172].

3.1.2 Imperative HDL

The second category of HDLs relies on imperative paradigms, such as
those offered by Java and Python. These languages’ programming model is
closely related to hardware description where components are reused across
hierarchical and, whenever possible, decoupled designs. Although Scala-
based HDLs adopt object-oriented features, they provide many functional
constructs that collide with this category. This class of HDLs mainly ex-
ploit objects and classes along with polymorphism features. These features
are at the basis of an easy-to-use and extend language [174–176] and tight
integration with the target host machine [177, 178].

MyHDL: MyHDL [174] is a language that exploits the Python infras-
tructure to implement HDL specifications to open hardware development to
beginners. Its HDL description is similar to Verilog, but with a more man-
ageable approach to verification; indeed, it is possible to convert MyHDL
code into Verilog/VHDL through specific built-in libraries and use con-
structs to verify the designs easily. MyHDL supports waveform viewing
as well. MyHDL models hardware as interactive light-weight threads that
communicate with each other. In particular, MyHDL description structure
is based around generators, namely modules that wait for a specific signal
to perform specific actions, that communicate through generator functions.
Moreover, generator functions allow to keep the state of the employed func-
tions and resume them if needed, making them usable as ultra-light threads.
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In this way, it is possible to pass control information to the dedicated run-
time simulator. Finally, MyHDL supports co-simulation via other HDL
simulators by translating MyHDL code into Verilog.

3.1.3 SystemVerilog Extension HDL

First appeared in 2002 [179], SystemVerilog represents a significant im-
provement over his predecessor Verilog. Thanks to many features bor-
rowed from the object-oriented world, SystemVerilog increases the abstrac-
tions for hardware developers (both design and verification people). The
third category of HDLs based its power on extending SystemVerilog syn-
tax for different purposes: from a new design experience to highly cus-
tomizable hardware generators [180], and new design paradigms, such as
the transaction-level paradigm.

BlueSpec SystemVerilog: BlueSpec SystemVerilog (BSV) [181, 182]
is an HDL that aims to provide a general-purpose language for hardware
design using atomic transactions to deliver concurrent execution and easy
reconfigurability. Atomic transactions are rules that dictate the behavior of
the described hardware to enable a high level of parallelism and smoothly
refinable designs. The designer develops modules in BSV and implements,
for each module, both methods and rules. The modules represent the out-
wards interfaces, while the rules update and modify the module’s internal
state. Both rules and methods have guards, and they can fire only if the
guards are true and there are no conflicts concerning the considered rule,
preserving atomicity. The designer can change the application order of the
rules without modifying the rules themselves, differently from SystemVer-
ilog. The BSV synthesis tool compiles parallel hardware for the rules,
which is always logically equivalent to a serialized execution. Module
interfaces are components of atomic transactions and derive from C++ and
Haskell interfaces. BSV permits polymorphism to easily create complex,
overloaded, and fully type-checked interfaces in a bottom-up approach by
constructing templates. Designers can easily design reusable components
to build a more complex architecture. Indeed, the generation mechanism of
micro-architectures supports conditionals, parametrization, loops, and even
recursion, making the design process more comfortable and more customiz-
able. Moreover, BSV modules can coexist with SystemVerilog blocks, thus
giving the developer the possibility to use already existing ones. Finally,
BSV supports design with positive clock edge and reset asserted low by de-
fault, multiple clock domains, and DDR designs, i.e., logic active on both
positive and negative clock edges. Despite this possibility, BSV does not
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support timing verification, which requires a standard Verilog simulator.

3.1.4 Summary

Table 3.1 summarizes the presented HDLs, clustered by programming model
(functional, imperative, SystemVerilog-based) and then ordered by date
of appearance. The first two HDLs clusters present many languages in
contrast to the reduced number of SystemVerilog extensions. Functional
and imperative clusters leverage high-level languages constructs and for-
malisms to enhance the language expressivity to design parallel hardware
architectures. Conversely, the third cluster, which is smaller, extends an
HDL such as SystemVerilog through language features that further ease the
hardware development, e.g., BSV rules or TL-Verilog transactions.

All three clusters contain open-source languages, and their majority re-
ports updates in the last two years (2020-2021). This fact introduces a com-
munity building around languages that come even before 2010 (e.g., Clash)
and interests beyond the single research manuscript. Each of these lan-
guages outputs standard HDL language, either VHDL or (System)Verilog.
However, the majority of the considered HDLs exploit only one of the two
standards as the output language, especially Verilog. Indeed, only Clash,
SpinalHDL, and MyHDL support both VHDL and Verilog outputs.

As HDL relevant characteristics, we highlight if the target language sup-
ports parametrization and polymorphism, two essential features for abstrac-
tion improvements. Moreover, Table 3.1 displays the simulation support (if
any) with a custom tool or if they leverage third-party tools, and other fea-
tures we believe relevant in the last column. However, without some of
the traditional HDLs features these languages are not considered ready for
production purposes [172]. Finally, among the presented HDLs, we see a
promising direction from novel languages, such as TL-Verilog [190]. How-
ever, we believe that the most promising and mature languages are the ones
that provide standard HDL features (e.g., BlackBox IP, Verification), addi-
tional ones (e.g., higher abstraction constructs), a continuous development
throughout the years, and a consistent ecosystem. Examples are Chisel,
SpinalHDL [184], and BSV.

3.2 High-Level Synthesis

After discussing relevant HDLs in State of the Art, we now focus on HLS
tools [191,192], which increase the abstraction level of digital design flow.
HLS aims to enabling users, not necessarily expert in the hardware domain,
to develop a digital custom architecture for FPGAs or ASICs starting from
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a high-level language. Given an algorithmic/functional specification (un-
timed description) of a system (often decorated with directives/pragmas),
the HLS tool translates it into an intermediate representation (usually a
control and data flow graph). From this point, the HLS tool determines
the types of operators and memory elements the specification needs and al-
locates the resources. Then, the next step schedules the operations within
the specification to clock cycles. Later on, the tool binds each operation
and variable to a specific functional unit and a memory element, respec-
tively, and circuit interfaces (control and data signals) to peripherals (such
as memory interfaces). Finally, the HLS tool generates a fully timed RTL
design. Thanks to this approach, HLS improves the design productivity and
facilitates the exploration of the design space through source code and di-
rectives tweaking. Besides, HLS tools may reduce the verification time
with automatic testbench generation. Despite the advantages, an HLS-
based design flow has some relevant flaws. First of all, the user has less
control over the resulting RTL design [193], significantly depending on the
tool internals and optimizations, Moreover, the majority of HLS tools offer
little to no support for specific kinds of RTL designs, e.g., cross-clocking
domains, and it mainly focuses on datapath applications [194]; thus, it may
not be the best choice for control ones. According to Martin et al. [194],
we are currently in the third generation of HLS tools that leverage the two
previous generation failures (e.g., immaturity of tools, improper input lan-
guages). For instance, most HLS tool vendors employs familiar high-level
languages, like C variants (C/C++/SystemC) instead of specific languages.
Thanks to their features, modern HLS tools boosted FPGA programmabil-
ity and helped reduce the steepness of the learning curve, especially when
the user’s goal is the acceleration of a given application.

The efficient design of an accelerator is only a part of the whole FPGA
design process. Indeed, the next step, usually called system-level design,
involves integrating the resulting IP within a more extensive system. There-
fore, the proper connection of the produced IP with on-board components
is paramount to deploy the accelerator, allowing the user to interact with
the IP from the host processor However, HLS tools focus on designing
an IP and do not cover/automatize the system-level design step, which is
usually up to the user. For this reason, in recent years, FPGA vendors
started developing toolchains embedding both the HLS step and automatic
system-level integration of the resulting IP oriented to the hardware acceler-
ator design. We name such toolchains Accelerator-Centric Synthesis (ACS)
tools: they represent a further step in the FPGA development panorama
and offer a CPU/GPU-like development experience. We categorize them as
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the fourth and latest generation of HLS, extending the previous classifica-
tion [194]. Figure 3.4 depicts the tight integration between HLS and ACS
flows. Throughout this Section, our analysis focuses on the most relevant
HLS tools in literature, whether they just perform the RTL synthesis step
(Section 3.2.1) or the entire flow towards the bitstream generation (Sec-
tion 3.2.2), excluding toolchains that leverage such tools [195–197].

3.2.1 High-Level Synthesis Tools

This Section describes the current status of the most relevant third genera-
tion HLS tools ordered by date of appearance.

Vivado/Vitis HLS: Vivado HLS [198], formerly AutoPilot by AutoESL
and then acquired by Xilinx in 2011. Vivado HLS accepts C, C++, or Sys-
temC as input specification languages and can generate Verilog or VHDL
hardware descriptions. The designer can specify the target FPGA and pro-
vide constraints on the clock period, clock uncertainty and optimization
directives to better control the HLS process. Vivado HLS accepts most of
the constructs of C/C++ while applying the usual restrictions, such as recur-
sion and dynamic memory allocation. The designer can leverage multiple
directives to improve the final design, such as loop transformations, bind-
ing to specific resources, hardware interfaces definition, and dataflow exe-
cution model. Vivado HLS supplies tools for functional verification of the
resulting design at both software and hardware level with the same software
testbench along with various reports on timing, usage, and scheduling. Fi-
nally, thanks to the integration with the other Xilinx tools, the designer can
invoke synthesis and place & route steps within Vivado HLS to assess the
design quality. From the 2020 release of its developer tools, Xilinx substi-
tuted Vivado HLS with Vitis HLS [199], which automatically applies more
optimizations and relies on AMBA AXI4 interface protocol to communi-
cate with the off-chip memory by default.

Dynamatic: Dynamatic [200] is an academic open-source HLS frame-
work [201].This tool converts C/C++ code into synchronous dataflow cir-
cuits. The main feature of Dynamatic is its ability to schedule the resulting
circuit dynamically. Usually, most HLS tools tend to schedule the out-
put circuit statically, forcing worst-case assumptions and, consequently,
reaching suboptimal results. Conversely, Dynamatic’s approach supports
the design of dataflow circuits able to adjust the schedule at runtime. Be-
sides, Dynamatic leverages performance modeling to optimize the through-
put through optimal buffers placement and sizing. Finally, thanks to its
open-source nature, developers can extend Dynamatic by adding custom
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features, pragmas, and optimization passes.

3.2.2 Accelerator-Centric Synthesis Tools

This Section analyzes ACS tools in chronological order, as depicted in Fig-
ure 3.5. These tools provide a unified environment where the user can de-
sign both the host and accelerator code and integrate them via high-level
APIs. The ACS tool takes care of both the HLS process and the system-
level integration according to the target scenario, i.e., host-to-IP communi-
cation via shared memory (embedded) or PCIe (high-end/cloud).

Intel FPGA SDK for OpenCL: Intel FPGA SDK for OpenCL [202],
previously known as Altera SDK for OpenCL (AOCL) [94], is a devel-
opment environment that enables software developers to accelerate their
applications targeting heterogeneous platforms with Intel CPUs and Intel
FPGAs. The designer develops both the kernel and host code within the
same environment on top of the OpenCL computational paradigm. The
tool inserts performance counters in the FPGA design, and the result ob-
tained can then be reviewed by the designer using the Dynamic Profiler
tool. Moreover, it provides analysis on the resources and performance,
a fast FPGA-based emulation, what-if kernel performance analysis, and
support for symbolic debugging. Once the host application and the kernel
match the expected performance, Intel FPGA SDK for OpenCL performs a
complete compilation towards the bitstream.

TAPAS: Built on top of a parallel Intermediate Representation (IR)
called Tapir [203], TAPAS is a three stage open-source toolchain from Si-
mon Fraser University [130]. The first one analyzes the IR and extracts task
dependencies and the top-level Chisel (Section 3.1.1) module that instanti-
ates the DRAM interface, a shared L1 cache coherent with the L3 cache of
the core processor, and the task units. Then, stage 2 analyzes the program
graph for each task and generates each unit’s RTL dataflow. Finally, stage
3 configures a set of parametric components and generates the bitstream.

Vitis Unified Software: Vitis [204] is a unified software released by
Xilinx in 2019, which incorporates the functionalities of previous tools like
SDAccel (for datacenters) [205] and SDSoC (for embedded systems) [206],
adding new ones. In particular, Vitis supports the development of acceler-
ated applications and embedded software, targeting both high-end and em-
bedded FPGA-based platforms. Also, Vitis relies on Vitis HLS [199] to
synthesize C/C++ and OpenCL code into RTL. One of the key components
available within Vitis is Vitis AI. This development environment permits
users to accelerate the inference of Artificial Intelligence models on FPGA.
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Starting from a high-level description in TensorFlow, PyTorch, or Caffe,
Vitis AI optimizes and compiles the model into a binary for Xilinx’s Deep
Learning Processing Units (DPUs). Another relevant features are the set of
open-source out-of-the-box accelerated libraries [207] and the improved in-
tegration with the Xilinx Runtime library (XRT) [208] for host-accelerator
communications.

3.2.3 Summary

Table 3.2 reports the key characteristics of the analyzed HLS/ACS tools.
Both companies and academia contributed to the growth and success of
the third generation of HLS. In particular, a significant initial effort came
from academia (Figure 3.5), whose research products, like LegUp, AutoPi-
lot (now Vivado HLS), turned into commercial tools. Another pivotal factor
that made this generation successful is the adoption of C-based languages.
Indeed, most tools rely on C-based languages with specific restrictions, e.g.,
recursion, dynamic memory allocation.

Moving to the output of the HLS process, multiple tools generate RTL
code suitable for more than one FPGA vendor, as well as ASICs. On the
other hand, most ACS tools target just one vendor, which is also their de-
veloper. Indeed, since ACS tools perform both HLS and system-level in-
tegration steps, it is easier for an FPGA vendor to integrate different prod-
ucts within a unified environment and provide designers with a complete
toolchain.

Considering other relevant aspects, we believe that functional verifica-
tion of a hardware design is one of the essential features HLS tools should
implement since it enables checking the correctness of the produced RTL
code. However, various tools, especially “pure” HLS ones, offer partial
functionalities for design verification, as they just supply one type of sim-
ulation (SW or HW). In contrast, most ACS tools provide a more compre-
hensive experience, implementing SW and HW simulation and even perfor-
mance analysis via profiling tools. Similarly, modern ACS/HLS tools are
now general and mature enough to enable the hardware design of applica-
tions belonging to different domains. Nonetheless, domain specialization
has its advantages, and Section 3.3 analyzes research efforts in that direc-
tion.

In the future, we foresee that vendors will keep furthering their toolchains,
especially ACS ones, to make FPGAs more appealing to software devel-
opers. Indeed, these tools, which we consider the fourth generation of
HLS [194], resemble the software development experience more than the
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hardware one, hiding and automating low-level technicalities like system-
level integration. Besides, they represent the ideal entry point to both ac-
celerating and deploying compute-intensive workloads vendors’ accelera-
tor cards. However, if, on the one hand, this approach helps the designer
as it offers automated system-level integration and runtime APIs to manage
the interaction with the FPGA, on the other, it constraints the development
to a specific flow. For this reason, we believe that “pure” HLS tools, i.e.,
the third generation, will continue to exist as they enable fast software-like
development of IPs for custom systems out of the scope of ACS tools.

3.3 Domain-Specific Languages for FPGA Design

Although they have been around for several decades [223], DSLs, and do-
main specialization in general, gained a lot of popularity in recent years [8,
11, 38, 42, 50, 224] for many reasons. First of all, modern DSLs enable
developers to quickly and easily develop portable code for multiple archi-
tectures, especially CPUs and GPUs, increasing productivity. Then, the do-
main restriction allows DSL compilers to explore the design space quickly,
identify the typical computational patterns of the target domain, and pro-
duce highly optimized implementations with unnecessary constructs [225].
Consequently, DSL applications may reach remarkable performance with
a relatively minor design effort than other more general languages and fre-
quently outtake hand-tuned libraries [131, 133].

Similar to CPUs and GPUs, DSLs are particularly convenient also for
FPGAs. Thanks to domain specialization, the compiler can quickly explore
the design space and leverage the FPGA features. In this way, the compiler
relieves the burden of manually exploring various solutions, permitting de-
signers to just focus on the functional description of the target algorithm
and further reducing the learning curve steepness. This aspect is highly
beneficial in the FPGA scenario, where the development of new solutions
is highly time-consuming.

In this Section, we describe the most relevant DSLs targeting FPGAs
available in the literature. Our analysis only examines languages of limited
expressiveness developed for a specific domain or intermediate frameworks
upon which such languages can build to target FPGAs. Therefore, we ex-
clude other domain-specific tools that do not directly involve the usage of
a DSL. For instance, although they perform a similar task, we exclude the
various machine learning frameworks available in literature as they require
as input a high-level description in a given format (e.g., JSON, Protocol
Buffers) that does not fall under the DSL definition [223]. However, an in-
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terested reader may look at other specific literature surveys for more details
about such tools [41].

We group the DSLs in three main clusters according to a taxonomy
based on the DSL features and purpose. The first cluster considers DSLs
that focus on a particular application domain (Section 3.3.1), while the
second contains the ones tailored to a specific architectural model (Sec-
tion 3.3.2). Finally, the third cluster comprises intermediate languages and
infrastructures for DSLs (Section 3.3.3).

3.3.1 Application Domain

This Section examines DSLs focusing on a given application domain. Such
languages implement specific constructs and abstractions that ease the de-
velopment of efficient code for image processing, packet processing, nu-
merical solvers, and so on.

P4 Frameworks: P4 [21] is a high-level language for programming
packet processors born in 2014 to answer the increasing demand for adapt-
able switches. Thanks to the wide employment of FPGAs in the networking
field, many P4-to-FPGA frameworks were born after its release.

P4-to-VHDL is an experimental framework developed in 2016 that, start-
ing from a P4 program, produces a VHDL-based architecture for packet
parser at 100 Gbps [155]. Based on this work, Cabal et al. propose a new
version of the target packet parser architecture that achieved even better
throughput [226]. P4FPGA is a framework that provides a P4-to-BSV (Sec-
tion 3.1.3) translation [156]. P4FPGA starts by taking standard P4 IR [21],
performs an IR-to-IR transformation, then composes the basic blocks of
the programmable pipeline, and finally emits the pipeline as BSV code
for standard FPGA flow. Besides, P4FPGA produces a runtime system
that provides hardware-independent abstractions for functionalities such as
transceiver management, and host/control plane communication.

Darkroom: Darkroom [60] is an image processing DSL and a compiler
embedded in the Terra language [227]. Designers can exploit Darkroom
to realize image processing pipelines for FPGAs, ASICs, and CPUs. Dark-
room expresses image processing algorithms as direct acyclic graphs of im-
age operations, restricting them to fixed-size stencils. In particular, Dark-
room implements such pipelines based on the line-buffering architectural
pattern, which consists of storing intermediate data between the pipeline
stages This pattern permits minimizing the memory bandwidth and improv-
ing performance and power efficiency. Given an input pipeline, Darkroom
finds the minimal buffer size via an integer linear programming formulation
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and automatically schedules the computation.

3.3.2 Architectural Domain

The second cluster of DSLs shifts the focus from the application level to
the architectural one. Indeed, they implement a particular architectural
model/template and offer features and constructs to support classes of al-
gorithms that benefit from it. Eventually, the compiler takes the input code
and customizes the underlying architecture to better fit it.

Spatial: Spatial [228, 229] is an open-source DSL and compiler for
the design of spatial accelerators targeting FPGAs, Coarse Grain Recon-
figurable Architectures (CGRAs), and ASICs. Spatial compiles the code
to C++ (host) and Chisel (accelerator) through target-agnostic abstraction.
According to the target device, Spatial relies on either Xilinx and Intel’s
toolchains, Plasticine CGRA [102], or Synopsys tools. Spatial builds upon
four criteria that the developers considered necessary to offer a good bal-
ance between productivity and performance, namely control, memory hier-
archy, host interfaces, and Design Space Exploration (DSE). First, Spatial
provides multiple control structures to enable the designers to describe the
accelerator architecture briefly, e.g., finite-state machines, streaming, par-
allel. Then, the memory hierarchy supplies various memory templates to
abstract and yet control data allocation on both on-chip and off-chip memo-
ries. A designer can implement with Spatial code both accelerator and host,
abstracting the underlying communication interfaces. Finally, even though
the Spatial compiler automatically optimizes the control and memory con-
structs according to statically inferable information, Spatial also provides a
DSE engine based on the HyperMapper [230] machine learning framework.

3.3.3 Intermediate Infrastructure for DSLs

The third and last cluster covers those solutions that propose an intermedi-
ate layer lying between the DSL and the RTL/HLS code. Developers can
rely on such a layer to design new DSLs or extend existing ones to support
FPGAs as target devices. In this way, the intermediate infrastructure further
decouples the code development from the hardware-related translation and
optimization, increasing the compilation flow modularity.

Calyx: Aiming at combining abstraction and control flow details of im-
perative HLS and HDL structural details and high performance, Calyx is
an intermediate language that provides a shared compilation infrastructure
to quickly design and deploy accelerators in Verilog [231]. Calyx provides
a higher level of abstraction than IR for RTL languages [232] and grants
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precise control over scheduling logic generation, borrowing the decoupling
of algorithm and scheduling from Halide [131] while explicitly represent-
ing low-level resources. Calyx is not tied to any specific hardware design
methodology, and it provides a general infrastructure to let new DSL-to-
RTL be fastly prototyped. However, Calyx does not provide any target-
specific optimizations, e.g., mux cost in ASIC or FPGA designs [231], and
does not guarantee any feasibility on the design implementation.

3.3.4 Summary

Table 3.3 summarizes the main features of the tools. As in the second col-
umn, most owners are universities, which usually developed such DSLs for
internal research projects or collaborations with other institutes/companies.
However, some of these languages are currently not maintained anymore,
according to the last updates on their repositories. In terms of the input
language, while some developers designed a new language from scratch
(e.g., Rigel, RIPL), the majority leverage existing languages and adapt their
structure to target FPGAs, especially when considering the first two clus-
ters. On the other hand, developers can exploit the intermediate infrastruc-
ture of the third cluster to either build a new language that directly supports
FPGAs or add FPGA support to multiple existing languages. Moving to
the domain, the first cluster of DSLs mainly focuses on image and packet
processing domains, in which FPGAs are particularly effective. The same
holds for the second cluster, shifting the specialization from the application
level to the architectural one. Finally, the third cluster broads the supported
domains thanks to their agnostic approach. After processing the input code,
most DSLs generate either RTL or code for HLS/ACS tools, whereas just
one DSL offers a full flow that produces the bitstream as output. Therefore,
they all need to interact with commercial tools. Consequently, the DSL in-
frastructure may require continuous updates to keep pace with FPGA tool
changes. In this scenario, a modular approach similar to the third DSL
cluster eases maintaining the language.

Summing up, the domain specialization introduces an additional ab-
straction layer that impacts the design for FPGAs at multiple levels. On
the one hand, it reduces the steepness of the FPGA learning curve, mainly
requiring domain knowledge to write the algorithm. On the other hand, it
automates various analyses and optimizations that, otherwise, would take
too much time in a multi-domain scenario, relieving the designer from this
burden. Nonetheless, making a DSL successful is no easy task as, at first
glance, many DSLs look similar, especially when considering the same do-
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main. We believe that maintaining a language and building a community
around it, especially if open source, is paramount for its success. Likewise,
being a vendor-agnostic DSL and supporting heterogeneous architectures
help cover a broader range of designers. Even though this aspect poten-
tially implies a higher complexity, a modular structure may ease addressing
it thanks to the decoupling of the internal components. Finally, despite the
automatic optimizations, we believe that a DSL would be more comprehen-
sive if it exposed a manual optimization flow (e.g., a scheduling language
like in Halide) that expert designers may exploit to hand-tune their designs.

3.4 Final Remarks

FPGAs are becoming increasingly pervasive in the computing landscape,
from small low-power embedded systems to large-scale datacenters [25,64,
247]. Similar to what happened with programming languages and frame-
works for CPUs [248], tools for FPGA hardware design evolved accord-
ing to the developer’s needs and target contexts. Indeed, modern HDLs
and HLS tools offer a new level of abstraction and productivity than (Sys-
tem)Verilog and VHDL. On the one hand, hoisting of abstraction level al-
lows to reduce the design time, and facilitate IP reuse, customization, and
verification. On the other hand, it makes the FPGA learning curve smoother
for non-hardware designers. The possibility to use high-level languages
like C, C++, and OpenCL is for sure advantageous over HDLs; however,
such languages are not natively designed to describe hardware. Therefore,
DSLs emerge to overcome these drawbacks and exploit the narrowing of the
domain specialization. In this way, hardware developers benefit from spe-
cialized toolchains and infrastructures, optimized architectural templates,
and expressing computations more simply and intuitively.

Overall, the community efforts push towards a constantly increasing ab-
straction of FPGAs’ programmability to ease their usage and open to a
broader public. Indeed, many of the described toolchains and other domain-
specific toolchains that do not leverage a DSL as this Chapter intend (such
as machine learning ones [41, 152] or general IR [249]) push the FPGA
democratization. Although these toolchains cover several application fields
— acceleration mainly —, we believe a low-level component (HDL) is still
necessary to devise a complete design experience. In conclusion all these
three abstraction efforts are necessary as they cover different aspects of
digital design; thus, we believe the community will push the research in
the FPGA programmability field, from low-level RTL design to domain-
specific abstractions
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CHAPTER4
A Framework for Customizable

FPGA-based Image Registration
Accelerators

This Chapter describes a design automation framework for highly spe-
cialized and optimized stream-dataflow accelerators for Image Registra-
tion (IRG). The following Chapters exploit this design automation method-
ology and overall abstraction framework at the foundation of their design
and deployment process.
IRG is a highly compute-intensive optimization procedure that determines
the geometric transformation to align two images given their time instance,
angle acquisitions, and sensor types differences. Though hardware accel-
erators are a promising solution for this domain, most implementations
are either closed-source or tailored to a specific context, limiting their ap-
plication to different fields. For these reasons, this Chapter proposes an
open-source hardware-software framework to generate a configurable ar-
chitecture for the most compute-intensive part of registration algorithms,
namely the similarity metric computation Mutual Information (MI). It com-
prehends a complete stack, from the hardware layer to the software one,
that enables easy application interfacing to an iterative design process.
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Image Registration (IRG) is the process of identifying the parameters
of the geometrical transformation matrix that allows the correct overlap of
two or more images acquired in different conditions or time instants [250].
It always relies on a three-block structure: the transformation model, the
optimization method, and the similarity metric [251]. The transformation
model is clustered in rigid, which allows rotranslations, scaling and shear-
ing, and non-rigid, which allows object deformation [252]. The optimizer
searches the transformation space to find the optimal parameters of the geo-
metric transformation with different strategies [253,254]. Finally, the most
used similarity metric is the Mutual Information (MI) [255–257] due to
its robustness and reliability [258]. The achievement of a correct registra-
tion is strictly correlated to multiple iterations of the three blocks, where
the similarity metric has proven to be the most compute-intensive, working
directly with all the data contained in the employed images [259]. Unfor-
tunately, even though improvements have been done, the majority of the
hardware-available solutions are closed-source and, generally, tailored to a
specific scenario, highly reducing, if not completely preventing, the users
from customizing them.

Within this context, this Chapter proposes an open-source hardware-
software framework for multi-modal IRG [260]. The proposed framework
automates the design and synthesis of a customizable FPGA accelerator
that targets the compute-intensive MI calculus. Thanks to the various cus-
tomization parameters the framework exposes, the user can quickly explore
the design space, tune the features of the MI accelerator, and tailor it to mul-
tiple case studies with different requirements. On the other hand, our solu-
tion offers high-level Application Programming Interfaces (APIs) based on
the PYNQ framework [61] to easily integrate the accelerator within Python
applications. We evaluated various versions of our accelerator on multi-
ple Field Programmable Gate Arrays (FPGAs) achieving a speedup up to
2.86× against an optimized MATLAB implementation, and remarkable per-
formane and energy efficiency results against literature approaches.

4.1 Background

IRG is a highly employed procedure in various fields [45, 261–263] and,
therefore, different implementations have been proposed during the years.
This procedure processes data ranging from satellite images of the Earth to
medical images both anatomical and functional [259]. Based on the image
types, we can distinguish between mono- and multi-modal registration; the
former works with images taken from the same device, while the latter em-
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ploys images taken from different sensors [250]. An additional distinction
can be done between feature-based and intensity-based approaches [255].
The first one requires the identification of relevant features from the im-
ages, giving a higher visual certainty of the reached correspondence, but it
is not applicable when the landmark points identification is not trivial [250],
as in multi-modal applications. Intensity-based algorithms exploit heuristic
solutions that compare the intensity distribution of the images and decide
whether or not the images are correctly aligned according to a similarity
metric [255]. In this work, we consider a multi-modal intensity-based reg-
istration solution that can exploit either the (1+1) Evolutionary or Powell’s
optimization methods with the MI similarity metric to find the optimal pa-
rameters of the affine transform between medical images.

A wide range of algorithms employs MI quantity. In imaging, it is an
essential similarity metric for IRG [264], in the genomics field it is ex-
ploited in phylogenetic [265] and relevance networks [266], as well as in
the training of Hidden Markov Models and features selection [267, 268].

MI is a concept borrowed from the Information Theory that relates to
the concept of entropy, and it is a measure of the statistical dependence of
two random variables X and Y [269]. In the proposed scenario, the two
variables are represented by images, where we can identify a reference and
a floating one. In particular, we want to align the floating image to the refer-
ence image. From a mathematical point of view, MI describes how similar
the joint entropy H(X, Y ) is to the two single entropies H(X) and H(Y ),
as in MI(X, Y ) = H(X) + H(Y ) − H(X, Y ). Therefore, an essential
step is the definition and computation of the different entropies, as defined
by the Shannon’s equation: H(X) = −

∑
x∈X P (x) logP (x);H(X, Y ) =

−
∑

x,y∈X,Y P (x, y) logP (x, y), where P (x) and P (y) are the marginal
probabilities, and P (x, y) is the joint probability. In the imaging field, the
probabilities come from the histograms of the images, while the joint one
from the joint histogram. Starting from the input images, we compute the
joint histogram, which is a square matrix of N × N , where N is the num-
ber of gray levels in the images [270]. The value of each element of the
joint histogram hist(x, y) is equal to the total number of voxels of X with
intensity x corresponding to the voxels of Y with intensity y [269].

As shown in Fig. 4.1a, it is possible to exploit the joint histogram to
efficiently obtain the single histograms of the input images. Indeed, by
summing the rows and the columns of the joint histogram we obtain the
reference and the floating histograms, respectively [269]. For the entropy
calculation, we need to obtain the marginal and joint probabilities, which
can be easily extracted by dividing each value of the single and joint his-
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tograms by the image dimensions in voxels. Referring to entropy equation,
the last step is to apply the equations, hence, to multiply each probability by
its logarithmic value, and, by accumulating them, we obtain the entropies.
Finally, we combine all the entropy values to extract the MI, as in the equa-
tion.

4.2 Related Works

This Section contains an overview of the current literature with an in-depth
focus on hardware-based solutions for multi-modal registration, being the
scope of the proposed case study. In a pure software scenario we should
mention SimpleITK [271,272], OpenCV, and the MATLAB Image Process-
ing Toolbox [273]. While the first two are open-source, the last one is a
licensed closed-source product. On the other hand, MATLAB is easy to
use, while OpenCV provides fewer functionalities for IRG compared to the
others, and SimpleITK, even though it can be easily used with Python, pro-
vides, like all the others, little control on small details. The literature con-
tains several works exploring FPGA- and GPU-based solutions for multi-
modal IRG to overcome the limits of pure CPU implementations [253].
From an algorithmic point of view, based on [259,274], it is possible to con-
clude that the most compute-intensive part is typically the calculus of the
similarity metric. For this reason, in [259], the authors develop an FPGA-
based accelerator to compute the similarity metric, namely the correlation,
and the transformation model, an affine one, to register iris eye images
through the Simplex optimizer. Besides, [274] proposes an FPGA-based
approach, based on [275], to compute the MI value for multi-rigid registra-
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tion, with a single computation of the MI for 7-bit 256 × 256 images tak-
ing around 0.26 seconds. The authors explored such an approach through
an extensive design space exploration in [276]. On the other hand, [277]
exploits GPUs to accelerate the sole joint histogram for brain images regis-
tration, based on MI, with a presorting strategy of the pixels. In [278], au-
thors present a 3D MI-based IRG algorithm, using bitonic sort and count,
which they tailor for GPU to achieve the best performance out of rigid
transformation and Powell optimizer. Based on [278], [279] develops a
CUDA-based optimization strategy for deformable registration fashion that
aims at optimizing joint histogram – and then Normalized MI – and gradi-
ent computation, though exploiting some pre-computation mechanisms and
dataset-specific techniques that reduce the computational requirement.

As discussed so far, hardware-based solutions are desirable in IRG,
given the high-intensity workload. However, FPGA-based solutions are
generally closed-source and not customizable by the final user, while GPUs
are not customizable architectures at all, and are known to be power hun-
gry devices. Based on these considerations, with this work, we propose
an open-source hardware-software framework for IRG that exploits a cus-
tomizable FPGA-based accelerator for the computation of MI, easily reusa-
ble in several IRG algorithms or even different fields of applications, such
as phylogenetic [265] and features selection [268]. Moreover, being based
on the PYNQ framework, our APIs are easily employable through Python,
resulting transparent to the end-users. Finally, the overall hardware-software
system is deployable on different FPGAs from embedded to high-end.

4.3 Proposed Design Methodology

The IRG procedure we consider in this work is an intensity-based multi-
modal algorithm, and its three main building blocks are affine transfor-
mation, Powell’s and (1+1) Evolutionary optimization methods, and mu-
tual information similarity metric. Since the similarity metric is the most
compute-intensive part [259, 274] and multiple fields of application ben-
efit from a MI accelerator (e.g., genomics computations), we present a
framework to produce an architecture able to perform the MI computation.
Fig. 4.1b shows the steps of the whole workflow to register two images and
which part is offloaded to the hardware accelerator (Evaluate MI).

4.3.1 Framework Overview

This work proposes a framework to assist users in the generation of differ-
ent versions of a hardware accelerator for MI calculation according to their
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needs. It is important to note that, even though this work focuses on IRG,
the MI calculation is an essential part of many fields of application. There-
fore, other contexts, where users may have different requirements, could
benefit from MI acceleration. For instance, the final user might choose
to sacrifice performance to save resources or to target a high-end scenario
where performance is the main goal. For this reason, we devised our frame-
work as an open-source solution capable of guaranteeing a high level of
flexibility in the generation of the MI accelerator.

Our framework provides different customization parameters to assist the
user in the exploration of the design space and to tune the multiple features
of the MI accelerator. In particular, such parameters have a direct impact on
the performance the resulting accelerator can achieve, as well as its resource
consumption. Section 4.3.3 accurately describes the customization param-
eters. After selecting the parameters, the framework applies the requested
customizations to the base structure of our FPGA-based accelerator (more
details in Section 4.3.2). The result is a tailored design devised to perform
MI calculation suitable for High-Level Synthesis (HLS) tools. Besides, the
framework generates specific scripts to automate both the HLS process and
the synthesis flow. In particular, given an either embedded or high-end tar-
get device, the framework determines all the required steps towards the bit-
stream generation. Finally, once the synthesis process is over, the user can
leverage on the transparent Python APIs the framework supplies, and eas-
ily integrate the accelerator usage within applications based on the Xilinx
PYNQ framework [61]. Indeed, we provide Python APIs able to handle all
the accelerator configurations independently, e.g., caching or not caching
(see Section 4.3.3), hiding the differences of the embedded or high-end de-
vice, and in some cases to measure the power directly on-board. A new
IRG procedure, or an algorithm that employs MI computation, can exploit
our accelerator with four simple additional steps: prepare the buffers with
the data, start the MI computation, collect the results, and free the buffers.

4.3.2 Accelerator Architecture

Our accelerator adopts a dataflow computational model for en efficient
multi-stage pipeline. Fig. 4.1a depicts the proposed pipeline and reports the
coarse grain latency of each Stage, which we will analyze in Section 4.3.4.
In particular, we identified two macro Stages within the pipeline. The first
macro Stage (Stage 1 to 3) mainly consists of the joint histogram computa-
tion, while the second one (Stage 4 to 9) regards the entropy computations
for MI calculation. Finally, each Stage is internally pipelined and streams
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Figure 4.1: A generic Processing Element optimized for histogram computation. In the
case of a joint histogram, curr is the current index computed for a flattened 2D array.

the data to the following one through FIFOs.
Input fetching: At the very beginning of the execution, the architecture

fetches the two input images (reference and floating). This step depends on
the device physical memory ports and the available bandwidth. Since not
all the FPGA-based devices offer multiple memory ports, to be as generic
as possible, we consider a case with a single memory port that is multi-
plexed (in case of multiple ports available, accelerator can be replicated
according to the number of ports). However, this scenario may harm the
accelerator performance, especially in the case of memory-bound designs,
as the current one. Hence, it is paramount to properly design the acceler-
ator according to the bitwidth of the memory ports and the memory band-
width. A solution to alleviate such a problem could be to prefetch one or
both images on the local memories. This is particularly suitable for algo-
rithms, like IRG. Indeed, to register two images, the reference image does
not change throughout the whole optimization procedure, while the float-
ing one continuously changes. Therefore, if the target FPGA has enough
on-chip memory and we apply this feature, our architecture first prefetches
the reference image and then reads the floating one in a streaming fashion;
otherwise, it reads both images simultaneously.

Stage 1-3: Assuming an input image bitwidth (IBW ) of 8-bit, and a
32-bit memory port bitwidth (MBW ) on the target device, we can pack
more data (MBW/IBW ) per single memory transfer, i.e., 4 pixels (8-bit
wide each). Thus, this Stage takes the data coming from either the off-chip
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Table 4.1: Customization Parameters of our Architecture

Parameter Description

CACHE support caching of one input image
IBW input bitwidth of the single data, e.g., pixel

MBW input port bitwidth, or memory port bitwidth
ISS maximum input stream size value
HS single histogram size

HPE number of parallel histogram PEs, depending on MBW value
EPE number of parallel entropy PEs
ET data type precision of entropy computation

NCORE number of parallel cores

memory or the on-chip one and splits them to multiple Processing Elements
(PEs) performing the joint histogram. HPE defines the number of parallel
PEs.

Stage 2 and Stage 3 compute the joint histogram of the two images with
a map-reduce approach [280]. During Stage 2, the PEs receive two streams
of unpacked data, from both the reference and floating images. As shown
in Fig. 4.1, each PE creates its local histogram (in this case, a joint one) and
stores the histogram values in BRAM. The input streams generate the joint
indices of the joint histogram positions in which an increment by one oc-
curs. As stated in Section 4.1, the joint histogram counts how many times
a couple of intensities i, j appears, with i, j belonging to the reference,
and the floating images, respectively. Practically, the images flow through
Stage 2, which increments the intensity at position i, j. To avoid RAW
hazard in the computation, each PE is optimized to accumulate the current
intensity on a register while i, j are the same, on the contrary, if the cur-
rent i, j are different from the previous ones, the PE reads the new value
to accumulate from BRAM and writes back the previous one. As soon as
the joint histogram is ready, this Stage subsequently sends it out to the fol-
lowing one. The output stream contains multiple histogram values packed
together. EPE indicates the number of packed values. Stage 3 reduces the
parallel computed joint histograms by summing the values within theHPE
input streams. The adopted map-reduce approach improves parallelism of
the joint histogram computation, therefore the latency, at the cost of storing
HPE different joint histograms.

Stage 4-9: As stated in Section 4.1, once the joint histogram is com-
puted, it is possible to derive the separate histograms of the input images
and their relative probabilities. This is crucial for the entropy computa-
tions, as the Shannon’s formula of the entropy revolves around the sum of
the probability times the logarithm of the probabilities (see section 4.1).
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For this reason, Stage 4 replicates the joint histogram stream three times,
so that Stage 5 extracts the histograms of the reference and floating images
by reducing per rows or columns, respectively.

Stage 6 unpacks each input stream to EPE ones. Stage 7 is in charge
of computing the entropy, starting from the three histograms. This Stage
computes Shannon’s entropy for the single input (section 4.1), and it is the
only one that requires floating-point values. To limit the number
of floating-point operations, we defer the scaling of each input (to retrieve
the probability) to Stage 9. Thus, we only need floating-point val-
ues for log operations. In particular, this Stage relies on either IEEE 32-bit
floating-point or custom bitwidth fixed-point values as the re-
quired data type. Stage 8 accumulates the partial entropy and computes the
final ones. Finally, Stage 9 receives the three entropy values, computes the
MI value for the two input images, and writes it back to the host.

4.3.3 Assisted Exploration of Design Configuration Parameters

Our whole design is highly customizable according to the target scenario,
different application requirements, and the target platform. CACHE pa-
rameter indicates whether the architecture can cache one image (like the
reference) into BRAMs (or URAMs when available). Considering the input
memory port bitwidth (MBW ) and the input data type bitwidth (IBW ),
the joint histogram part is parallelizable through HPE = MBW/IBW
PEs, which impacts on the architecture memory footprint. Indeed, each PE
stores a joint histogram whose size is HS · HS, where HS = 2IBW is
the size of a single histogram. Besides, a user can deploy the architecture
configuration that fetches a maximum input stream size (ISS) per itera-
tions of different sizes, e.g., a 512× 512 reference and 512× 512 floating.
Likewise, the datapath is customizable to different input data types, as 8-bit
pixel or 16-bit pixel. It is worth noticing that scaling to larger images, e.g.,
ISS = 2048 × 2048, influences resource usage and image transfer times
from the main memory. In particular, ISS slightly impacts the bitwidth
of joint histogram elements, while it significantly affects BRAM/URAM
usage of caching designs. Different parameters affect the design of the sec-
ond macro Stage. EPE describes the number of histogram values coming
from Stage 2 packed together and, consequently, the number of parallel
entropy modules per histogram. Another parameter is the data type (ET )
used for the entropy computation. The data type can be either 32-bit IEEE
floating-point or custom bitwidth fixed-point, which may in-
troduce errors in the entropy due to the precision loss. In particular, the

64



i
i

“thesis” — 2022/1/23 — 18:33 — page 65 — #77 i
i

i
i

i
i

4.3. Proposed Design Methodology

EPE=1
EPE=2
EPE=4
EPE=8
EPE=16
EPE=32

C
lo

ck
 C

yc
le

s

0

5×104

10×104

15×104

20×104

25×104

30×104

35×104

HPE
0 1 2 4 8 16 32

Figure 4.2: Estimation of the proposed architecture latency according to the HPE and
EPE parameters.

bitwidth of fixed-point values depends on ISS. Finally, it is possi-
ble to deploy a multi-core version of the architecture to increase run-time
performance. More specifically, we can instantiate NCORE accelerators
and connect each one to a different memory port (one per port to avoid
contention). This permits us to perform multiple IRGs in parallel. Tab. 4.1
summarizes all the customization parameters, along with their description,
as proposed in this Section.

4.3.4 Architecture Latency

The parameters in Tab. 4.1 enable to tune the proposed architecture ac-
cording to the user’s requirements. Starting from these parameters, we can
analyze the latency of a given instance of our architecture and evaluate its
theoretical performance. Fig. 4.1a reports the latency breakdown of each
Stage of our design, while its formulae model latency at a steady-state for
a coarse grain clock cycles estimation (without accounting pipeline warm
up and off-chip memory bandwidth). However, the memory port bit-width
(MBW ) is a relevant parameter of our design, since it impacts on Stage 1
and 2 latencies and HPE parameter. In particular, given HPE and ISS,
each block of Stage 1 takes ISS/HPE clock cycles to read the input from
the off-chip memory and split it in HPE streams of data. Similarly, each
block of Stage 2 receives a stream of data and computes a partial joint his-
togram in ISS/HPE clock cycles. Then, these blocks write the partial
joint histogram to the output FIFO in HS ·HS/EPE clock cycles. Since
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these two computations within Stage 2 cannot overlap, the latency of each
block of Stage 2 is the one reported in Fig. 4.1a. Stage 3 reads the incoming
HPE streams, sums the partial joint histograms, and writes the complete
joint histogram to the output FIFO in HS · HS/EPE clock cycles. The
following Stage 4 takes the same amount of clock cycles to read the joint
histogram and replicate it three times. The computations performed in the
two blocks of Stage 5 differ, but they share the same coarse grain latency.
Starting from Stage 6, the latency of each block varies, even though they
are identical internally, as reported in Fig. 4.1a. Indeed, the blocks directly
connected to Stage 5 read a smaller amount of data than the one directly
connected to Stage 4. In particular, the blocks of Stage 6 directly connected
to Stage 5 receive a single histogram, while the one directly connected to
Stage 4 the joint one. Consequently, the same holds for the blocks in Stage
7. The output of each block of Stage 7 is a single ET value. Thus, the
latency of the blocks of Stage 8 is almost negligible, as they only sum the
incoming values. Likewise, Stage 9 reads the three input entropies and
outputs the mutual information in few clock cycles.

The proposed architecture works in a dataflow fashion, and each stage
is internally pipelined. Hence, the coarse grain latency of a given instance
of our architecture is ISS/HPE+HS ·HS/EPE. This value mainly de-
pends on both the joint histogram calculation and its entropy computation.
Specifically, considering a specific ISS and HS, both HPE and EPE
provide a theoretical performance boost that scales as 1/x. Fig. 4.2 shows
how the coarse grain latency scales with ISS = 512× 512 and HS = 256.
We extracted these values via the cycle-accuracy cosimulation of Vivado
HLS. Fig. 4.2 does not take into account the memory bandwidth, for it does
not illustrate the effects of caching. The values of HPE and EPE are
a power of 2 for the sake of simplicity. In this case, HPE has a greater
impact on the estimated latency than EPE, as ISS > HS ·HS.

4.4 Experimental Setup and Results

The proposed framework generates a C++ accelerator architecture suitable
for HLS tools for Xilinx Vivado HLS 2019.2 toolchain. We target four
boards from different scenarios: A Pynq-Z2 board based on the Xilinx
Zynq SoC, an Ultra96 v2 board powered by a Xilinx MPSoC Ultrascale+
ZUEG3, a Zynq UltraScale+ MPSoC ZCU104, and an accelerator card,
namely an Alveo u200 board with a Xilinx Ultrascale+ XCU200. These
boards range from low-power embedded devices (Pynq-Z2) to high-end ac-
celerator cards (Alveo u200). Through the scripts generated by the frame-
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work, we employ the Xilinx Vitis and Vivado HLx toolchains to generate
the bitstream, both version 2019.2. The IRG application is implemented
in Python in a multi-threaded version, and the hardware-software inter-
facing part is handled through our Python APIs, which interact with the
PYNQ [61] framework v2.5 for both the embedded and the high-end de-
vices. The host processors are a dual-core ARM A9 (Pynq-Z2), a quad-core
ARM A53 (Ultra96 and ZCU104), and a quad-core Intel i7-4770 (Alveo
u200). While the first three reconfigurable fabrics are on the same chip
with the host and share the DDR, the Alveo is connected through PCIe to
the host device. We evaluated the proposed solution with a stack of 247
Computed Tomography (CT) images, with a dimension of 512 × 512 pix-
els, and a corresponding number of Positron Emission Tomography (PET)
ones, resized from 128 × 128 pixels to a dimension of 512 × 512 pixels,
from the medical field, each down-scaled to 8-bit wide1 [281, 282]. Each
image has various misalignments depending on the patients’ movements
or acquisition protocols. We compare our solutions against both works
available in the literature and an optimized state-of-the-art MATLAB im-
plementation [273], i.e., the one available in the MATLAB 2019b Image
Processing Toolbox, which exploits as many cores as are available, and can
be further optimized thanks to the Parallel Computing Toolbox, running
on a dual-core Intel i5-7267U CPU and a 40 core Intel Xeon Gold 6148
1 Patient: C3N-00704, Study: Dec 10, 2000 NM PET 18 FDG SKULL T, CT: WB STND, PET: WB 3D AC)
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Figure 4.4: ZCU104 resource utilization. Resources: 230400 LUT, 460800 FF, 624
BRAM 18k, 1728 DSP, 96 URAM

CPU. Our solution and the MATLAB implementation share the transfor-
mations, the similarity metric, and the input dataset. With respect to the
optimizer, we exploit both Powell and (1+1) Evolutionary, while MATLAB
the (1+1) [254]. Powell optimizes one parameter at a time in a given range
using MI, while the (1+1) evolves genetically from a parent transformation
vector to a child using MI and a normal random generator.

4.4.1 Experimental Evaluation

We first evaluate the target hardware-software framework through a design
parameter exploration across the several customization parameters of the
proposed architecture on the Ultra96, ZCU104, and Alveo board. Then, we
compare the execution times of our hardware designs to MATLAB, with and
without the Parallel Computing Toolbox. Finally, we analyze the best per-
formance of the four boards against state-of-the-art works. Given the target
case study, the framework allows us to quickly produce several designs
adopting IBW = 8 and ISS = 512 for all the considered devices. We
consider MBW as the product of IBW and HPE, thus it is not reported
in any of the following analyses. We describe a configuration as the con-
catenation of the following parameters: NCORE (if missing, we assume
1), CACHE (if missing, no caching, otherwise C for BRAM caching, CU
for URAM caching), ET (FLT for 32-bit floating-point, FX for
fixed-point), HPE, EPE. For instance, FLT-2-1 describes a design
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with 1 core, no caching, 32-bit floating-point, 2 HPE, and 1 EPE.

4.4.1.1 Resources Design Space Exploration

Fig. 4.3, 4.4, and 4.5 report the most relevant synthesis results for Ultra96,
ZCU104, and Alveo we achieved throughout several runs. While we can
see that the amount of LUTs and FFs used generally remains reasonably
low, BRAMs and DSPs usage varies a lot based on the configuration. From
the several single core versions, we can appreciate how BRAMs usage
mainly comes from HPE scaling or the reference image caching, mak-
ing BRAMs the critical resources of the proposed accelerator. Indeed, the
devised PE for the joint histogram requires a local, though smaller, par-
tial joint histogram memory. Therefore, increasing the level of parallelism
dramatically boosts the performance, as we will discuss in the following
Section, at the cost of higher impact on memory footprint. On the other
hand, caching requires an on-chip memory able to fit 512 × 512 × 8 bits.
Besides, designs on Ultra96 using caching require a significant amount of
BRAMs, while ZCU104 and Alveo board not only have more BRAMs but
also URAMs in the reconfigurable fabric. Thus, all the configurations ex-
ploiting URAMs (the ones with the U ), drastically reduce the BRAM us-
age and pave the way to configurations that otherwise would not fit the
FPGA. On the other hand, EPE mainly impacts on the amount of re-
quired DSPs (particularly when using 32-bit floating-point values)
due to the usage of logarithms (we rely on the implementation available
within Vivado HLS) and floating-point multiplications. In the case
of fixed-point, the integer and decimal parts are a function of ISS,
and here are 23 and 19 bits. We analyzed the impact of fixed-point
precision on the MI calculation and measured an MSE of 3.46E-10 com-
pared to floating-point (100 tests with random inputs). Consid-
ering the multi-core version, we should notice how the Ultra96 scales to
few cores, while ZCU104 and Alveo fabrics can scale to multiple cores
with different combinations of HPE and EPE. Upscaling the core de-
sign number is limited by BRAM, DSP, and the number and wideness of
physical DRAM ports. For this reason, increasing the number of cores on
Ultra96 or ZCU104, which have a single DDR with a 32-bit port, creates
contention and leads to performance degradation, as there are no more log-
ical resources. On the other hand, the Alveo u200 has 4 DDR memory
banks, each of which has a capacity of 16GB and 64-bit ports. Thus, on the
Alveo, we exploit one core per memory bank whenever it is possible, and,
as such, the HPE value multiplied by 8 gives the resulting bit-width the
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Figure 4.5: Alveo u200 resource utilization. Resources: 1019968 LUT, 2128354 FF, 3532
BRAM 18k, 960 URAM, 6833 DSP

cores would require. It is worth noticing that, in this case, the data transfer
via PCIe between the host and the Alveo board may become a bottleneck
when using multi-core designs. Finally, while, for the Alveo designs, Vitis
automatically scales all the design at the maximum frequency it can handle,
and thus does not require manual intervention, Vivado does not. Hence, we
synthesize Pynq-Z2, Ultra96, and ZCU104 designs at 100MHz, but then we
exploit the PLL of the Processing System to hand-tune at run time the fre-
quency and check the consistency of our results. As a result, Alveo designs
run at the frequency reported in Fig. 4.5, while all the others at 200MHz.

4.4.1.2 Performance Analysis

We evaluate the architecture performance for an IRG application on the ex-
ecution time of the single value of MI, the single IRG, and the overall stack
of images. Fig. 4.6 shows how the single MI computations vary according
to ET , HPE, EPE, and CACHE while keeping a single core (multi-
core would not impact the single MI computation), on the Ultra96 running
at 200MHz. We can notice how, by increasing either HPE or EPE or en-
abling CACHE, we reduce the average execution time for a single compu-
tation. In particular, we can notice howHPE andEPE parameters impact
the performance scaling in line with the latency analysis of Section 4.3.4.
Conversely, when CACHE is available, we have to account for both the
caching time and MI computation time. Fig. 4.6 reports both the single MI
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Figure 4.6: Average execution time and resource usage scaling according to the main
parameters that affect the architecture, i.e., latency HPE, EPE, ET, and CACHE. Stan-
dard deviation not reported as negligible (from 2.61E − 03 to 3.12E − 02).

execution time and the aggregate one. Although this solution may be ineffi-
cient for a single MI computation, it helps to decrease the overall time when
one of the two images does not change for several iterations, e.g., during
the IRG process. On the other hand, Fig. 4.6 shows the direct connection
between HPE and BRAM usage and between EPE and DSP usage. It
is interesting to highlight that it is possible to distribute the level of par-
allelism between HPE and EPE and partially reduce performance while
balancing resource usage (configurations FLT-4-1 and FLT-2-2). Finally,
Fig. 4.6 shows that the FX data type significantly reduces DSP usage, as
well as slightly improving both the average computation time and BRAM
usage , hence enabling EPE = 8 or EPE = 16 configurations.

We also measured the average execution time per image, and the over-
all registration time for the entire stack of images. Fig. 4.7, 4.8, and 4.9
show how these times scale for the most significant configurations on Ul-
tra96, ZCU104, and Alveo, respectively. We sorted the configurations in
decreasing order according to the overall registration times of the (1+1)
Evolutionary. In general, the most impacting factor in the execution time
comes from the HPE value, which impacts the bandwidth and the time
required to process and compute the joint histogram (one of the biggest
bottlenecks). Another relevant factor is caching. Indeed, most of the con-
figurations exploit caching to reduce the execution time required by the
application. The entropy data type ET affects the execution time of the

71



i
i

“thesis” — 2022/1/23 — 18:33 — page 72 — #84 i
i

i
i

i
i

Chapter 4. A Framework for Customizable FPGA-based Image Registration
Accelerators

Table
4.2:

C
om

parison
w

ith
R

elated
W

orks
w

ith
Perf.

m
easured

as
[m

s/M
Voxels/iterations],

as
proposed

by
[253],

and
E

nergy
E

ff.
as

[(M
Voxels

·iterations)/(m
s

·kW
att)]

A
rch.

W
ork

Transform
M

etric
O

ptim
izer

H
ardw

are
Perf.

Pow
erE

ff.
(low

eris
better)

(higheris
better)

FX
-4-4

A
ffine

M
I
†

Pow
ell

PY
N

Q
-Z

2
(28nm

)
49.90

8.02

FPG
A

2FLT-2-2
A

ffine
M

I
†

Pow
ell

U
ltra96

(16nm
)

11.02
12.52

2C
FLT-2-1

A
ffine

M
I
†

Pow
ell

Z
C

U
104

(16nm
)

9.34
8.56

FX
-32-8

A
ffine

M
I †

Pow
ell

A
lveo

u200
(16nm

)
1.78

18.52
FX

-4-4
A

ffine
M

I
†

1+1
PY

N
Q

-Z
2

(28nm
)

0.42
979.76

2FX
-2-4

A
ffine

M
I
†

1+1
U

ltra96
(16nm

)
0.09

1534.00
3C

U
FX

-2-8
A

ffine
M

I
†

1+1
Z

C
U

104
(16nm

)
0.08

981.60
FX

-32-8
A

ffine
M

I †
1+1

A
lveo

u200
(16nm

)
0.02

2058.98
[275]

R
igid

M
I †

N
/A

2xA
ltera

1K
100

(n.a.)
101

?
N

/A
[274]

M
ultiR

igid
M

I †
Sim

plex
A

ltera
E

P2S180
(90nm

)
13.4

?
N

/A
[259]

A
ffine †

C
orr. †

Sim
plex

Z
ybo

(28nm
)

9.15
�

N
/A

G
PU

[277]
N

/A
M

I †
N

/A
FX

5800
(55nm

)
39.04/1.07

5
•

0.13/4.94
‡

[278]
R

igid
M

I †
Pow

ell
G

T
X

280
(65nm

)
4.06

?
1.04

‡

[279]
N

onrigid
N

M
I †

G
rad.D

esc. †
G

T
X

580
(40nm

)
0.13

5
�

31.52
‡

C
PU

M
A

T
L

A
B

A
ffine

M
I

1+1
Inteli5-7267U

(14nm
)

0.24
⊗

176.97
‡

M
A

T
L

A
B

A
ffine

M
I

1+1
IntelX

eon
G

old
6148

(14nm
)

0.14
⊗

48.37
‡

M
A

T
L

A
B

P
A

R.
T

O
O

L
A

ffine
M

I
1+1

IntelX
eon

G
old

6148
(14nm

)
0.05

⊗
145.93

‡

Sim
ple

IT
K

R
igid

M
I

G
rad.D

esc.
IntelX

eon
G

old
6148

(14nm
)

0.25
⊗

27.01
‡

Sim
ple

IT
K

R
igid

M
I

Pow
ell

IntelX
eon

G
old

6148
(14nm

)
2.51

⊗
2.65

‡

Sim
ple

IT
K

R
igid

M
I

1+1
IntelX

eon
G

old
6148

(14nm
)

0.89
⊗

7.46
‡

†Im
plem

ented
in

hardw
are

?C
om

puted
from

[253]
‡C

om
puted

w
ith

Term
alD

esign
Pow

er(T
D

P)as
pow

er
�

A
ssum

ing
m

axim
um

iteration
of500

5
E

xploits
the

binning
to

reduce
jointhistogram

sizes
•

T
he

firstnum
berincludes

presorting
tim

e
⊗

W
ith

m
axim

um
100

iterations
�

T
his

value
is

the
resultofseveraldataset-specific

approxim
ations

and
preprocessing

thatreduce
the

com
putation

to
1/6

and
lead

to
m

isregistrations
[279]

72



i
i

“thesis” — 2022/1/23 — 18:33 — page 73 — #85 i
i

i
i

i
i

4.4. Experimental Setup and Results

(1+1) Evolutionary * 0.01
Powell * 0.01
MATLAB on Intel i5 * 0.01

(1+1) Evolutionary AVG Single Image
Powell AVG Single Image
MATLAB on Intel Xeon * 0.01

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

0

1

2

3

4

5

6

CFX-2-
2
FX-2-

8

CFLT
-2-

2

FLT
-2-

4

CFX-4-
1

CFLT
-2-

4
FX-2-

4

CFX-2-
4

CFX-2-
8

FLT
-4-

1

CFLT
-4-

1
FX-4-

2

CFX-4-
2

FLT
-4-

2

CFLT
-4-

2
FX-4-

4

FLT
-4-

4

CFLT
-4-

4

CFX-4-
4
FX-4-

8

CFX-4-
8

2F
LT

-2-
2

2F
X-2-

2

2F
X-2-

4

Figure 4.7: Ultra96 against MATLAB on both an Intel i5 and an Intel Xeon.

registration process as well. Finally, we can notice how the NCORE pa-
rameter has a limited effect on the execution times, due to both the unique
physical port (on embedded boards) and the run-time overhead of Python
when managing multithread applications. Thus, a careful balance of these
parameters enables to optimize the application run-time. Considering (1+1)
Evolutionary, Ultra96 and ZCU104 easily outperform the MATLAB refer-
ence on the Intel i5, reaching speedups up to 2.66× and 3.21×, respectively.
Similarly, both boards result faster than the MATLAB on the Intel Xeon
without the Parallel Computing Toolbox enabled, and the best speedups
are 1.49× and 1.80×, respectively. On the other hand, the selected de-
signs running on the Alveo u200 outtake the Intel Xeon by a factor up to
2.86× (Parallel Computing Toolbox enabled) and 8.62× (Toolbox not en-
abled), and 15.36× against the Intel i5 (here not reported in the chart to
ease the visualization). Moving to Powell’s optimization method, we no-
tice that this procedure is more sensitive to the entropy data type. Indeed,
the configurations employing fixed-point data type take more iterations to
converge Nonetheless, various designs of the Ultra96 and ZCU104 surpass
MATLAB on the Intel i5. The same holds for multiple Alveo configura-
tions against MATLAB on the Intel Xeon. However, it is crucial to note
that we are considering two different optimization methods; indeed, Powell
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Figure 4.8: ZCU104 execution times of the whole application using both Powell and (1+1)
Evolutionary, and their average time per image, compared against MATLAB on both
an Intel i5 and an Intel Xeon. We scaled the execution times of MATLAB and our IRG
applications by a 0.01 factor.

optimizes a parameter at a time within a given range per iteration, while
(1+1) generates a new child vector, comprehensive of all parameters, per
iteration, hence the evolutionary algorithm requires fewer computations.

4.4.1.3 Accuracy Analysis

We compare the accuracy of our solutions against the MATLAB procedure
with the Dice score metric, which evaluates how good is the overlap be-
tween two region of interests. Figure 4.10 shows a visual comparison exam-
ple of the considered registrations and the gold standard We extracted the
gold standard with a supervised semi-automatic procedure, based on the
interactive MATLAB Registration Application exploiting the multi-modal
registration model. To evaluate the Dice score, and hence the accuracy,
we binarize both the gold standard and output images. As a consequence,
if the border of registered structures are correctly overlapped to the gold
standard, also the internal structures will be correctly registered, as the em-
ployed geometric transformation does not insert deformations. Based on
this analysis, our top-performing Alveo implementation reached a mean
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Figure 4.9: Alveo u200 execution times of the whole application using both Powell and
(1+1) Evolutionary, and their average time per image, compared against MATLAB on
an Intel Xeon. We scaled the execution times of MATLAB and our IRG applications by
a 0.01 factor.

Dice score of 94% and 78% with Powell and (1+1) respectively in line with
both the optimized MATLAB implementation of 85% and the gold standard.

4.4.1.4 State-of-the-Art Comparison

In the IRG field, comparing against state of the art is extremely hard given
the absence of a standard dataset, the availability of the source codes, the
broad combinations of the IRG methodologies, and the different hardware
platforms. For these reasons, we open-source our solution at this link
[260]. FPGA-based approaches in the literature [259, 274, 275] all com-
pare against their single-thread software implementation only. Besides,
they mainly perform mono-modal IRG on 256 × 256 images, using Sim-
plex as the optimizer. While [274, 275] use MI as similarity metric and
deformable transformations, [259] uses correlation and affine ones. Con-
versely, we use a 512x512 multi-modal IRG with Powell as the optimizer,
MI as the similarity metric, affine transformations, and we compare against
a multi-threaded MATLAB optimized software. [253] shows the struggle
to provide a standard performance metric to compare different works, and
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Figure 4.10: A visual example of IRG results. From left to right, the gold standard, the
overlap between gold standard (represented in green) and the registered image wih
Powell, (1+1), and MATLAB (all in yellow)

proposes ms/MV oxels/iterations as a solution (the lower, the better).,
where these parameters refer to the overall registration process of N im-
ages. Tab. 4.2 reports the metric proposed from [253], where we took
numbers for [274, 275, 278], and we compute the same metric for this
work and other works reported in Section 4.2. For many of those works,
we have computed the performance according to the information avail-
able in [253] and to be as much fair as possible. We exploit the perfor-
mance metric to compute the energy efficiency, last column of Tab. 4.2, as
1/(Perf. × PowerConsumption). Considering Alveo and GPUs solu-
tions, we account for the board power only, while the others also account
for the CPU power, especially our embedded boards.

Regarding the FPGA-based solution, this work achieves better perfor-
mance against all the selected FPGA approaches, reporting 0.02 and 1.78
ms/MV oxels/iterations, with FX-32-8 as configuration for the Alveo
u200, respectively for (1+1) and Powell. By looking at the GPU-based ap-
proaches reported in Tab. 4.2, most of them rely on both precomputation
techniques and binning strategies to reduce the computational load of the
algorithm. While the former is mainly algorithmic and dataset dependent,
exploiting binning levels makes the joint histogram computation, and the
following ones, less time consuming, by sacrificing the accuracy. In this
context, [279] reports encouraging numbers, though it seems they apply
many precomputation and dataset-specific techniques without which the
computation would be way more expensive. The authors also report vari-
ous cases where the registration process fails to align the images. Indeed,
our best performance result with the (1+1) on all the boards but PYNQ-Z2
are better than [279], without computation reduction techniques. Moreover,
we outtake all the considered GPU implementation in terms of energy ef-
ficiency, with maximum of 65× (Alveo (1+1) versus [279]). Finally, we
have compared our implementations against MATLAB Image Processing
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Toolbox and SimpleITK. As we can see from Tab. 4.2, MATLAB achieves
better results compared to SimpleITK, and in particular it reaches results
in line with our (1+1) top implementations, when the Parallel Computing
Toolbox is enabled on the Xeon Gold. However, considering the energy
efficiency, all the MATLAB implementations prove to be less efficient than
our solutions with similar performance.

4.5 Final Remarks

In this Chapter, we presented an open-source hardware-software framework
to automate the design and synthesis of a configurable architecture for mu-
tual information calculus oriented to the possible constraints for the end use
case. We evaluated our framework in both the embedded and high-end sce-
narios through the given transparent APIs, showing how our designs scale
according to the parameters and how it provides remarkable performance.
Indeed, we compared our accelerators against an optimized MATLAB ver-
sion on an Intel Xeon Gold reaching a speedup of up to 2.86× for the reg-
istration of 247 images and a Dice score of 94% and 78% with Powell and
(1+1) respectively. We compared our performance with state-of-the-art ap-
proaches employing different techniques, overwhelming FPGA-based solu-
tions, with the metric proposed in [253], and achieving remarkable power
efficiency results.
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CHAPTER5
A Depth-First-based Domain-Specific

Architecture for Efficient Regular
Expressions Matching

This Chapter presents the background knowledge on Regular Expressions
(REs), the literature of this domain, and the first of the two Domain-Speci-
fic Architectures (DSAs) for RE matching. In particular, this architecture,
called TiReX, exploits an execution model similar to a Deterministic Finite
Automata (DFA) with a depth-first approach and a backtracking mecha-
nism. Although flexible on the set of searched REs, software-based solu-
tions cannot fulfill latency or throughput requirements to analyze massive
data volumes at a given power budget. Hence, many fields exploit hardware
accelerators as an offloading engine for REs matching. However, various
solutions rely on Field Programmable Gate Array (FPGA) reconfigurabil-
ity to embed automata into the reconfigurable fabric exploiting so-called
Stream-Dataflow Architectures (SDA) or In-Memory Architectures (IMA),
leading to time-consuming updates of the REs to search. This Chapter ex-
ploits REs as sequences of basic instructions and the TiReX DSA for RE
matching on FPGAs, employing the flexibility of a Software-Programma-
ble Architectures (SPA) with specialized hardware mechanisms.
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Regular Expressions Matching

Many applications rely on determining whether a string obeys a specific
text-based pattern, expressible in a compact and specialized way through
Regular Expression (RE). RE matching determines whether a sequence of
input characters belongs to the set of strings described by the pattern. It is
an essential kernel [44] widely used in several fields: genome-protein anal-
ysis [283], text analytics [284], Intrusion Detection Systems (IDSs) [285],
signature based detection [286–289]), natural language processing [290,
291], database queries [292,293]. This domain would benefit from a pattern
matching engine with a good ratio of performance-per-watt and easy adapt-
ability to address stringent time analysis requirements (e.g., IDSs [294]),
fastly evolving fields (e.g., “Personalized Medicine” [295–297]).

Many researchers address these challenges by efficiently representing
the automata that accept the RE-defined language [298, 299]. In contrast,
others exploit specialized hardware (e.g., Application-Specific Integrated
Circuits (ASICs), such as Ternary Content Addressable Memory (TCAM),
Power Edge of NetworkTM (PEN), or spatial architectures, such as Graphics
Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs) or
Automata Processor (AP) [284, 300]) to build effective domain-specific
solutions [301]. Given the computing and energy efficiency advantages
over Central Processing Units (CPUs) [22, 25], and the higher adaptability
against ASICs, several methodologies embed automata into the reconfig-
urable fabric of an FPGA. In this way, they leverage the reconfigurability
to change the RE(s) to find [159, 160, 302]. Generally, the reconfiguration
time of an FPGA is in the order of milliseconds, while generating a new
bitstream requires from one to several hours, making real-time adaptation
unfeasible [303, 304]. Thus, the embedding requires a database of ready-
to-use bitstreams or bitstream regeneration if the pattern is new. On the
one hand, sacrificing the run-time adaptability with automaton embedding
achieves remarkable performance [305], on the other, flexibility carries a
performance cost [306]. However, easily changing the searching pattern is
an essential feature in many application fields [303, 304], where wasting a
few microseconds leads to unsustainable performance degradation [307].

This Chapter proposes TiReX [48], a software-programmable Domain-
Specific Reconfigurable Architecture (DSRA) for reconfigurable systems
tailored to the REs domain. The DSRA overcomes the reconfigurabil-
ity embedding issue exploiting the idea of using REs as a programming
language for our custom Instruction Set Architecture (ISA) [48, 308–310].
This domain narrowing leads to an optimized microarchitecture for multi-
character analysis easily adaptable at run-time to the REs to analyze (Sec-
tion 5.3.3). The multi-core architecture can be software programmed to op-
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Table 5.1: Some meta-characters for Regular Expressions.

Meta-Character Description

xy concatenation of x and y, same as writing x&y
x|y alternation of x or y
() priority encoding
x* repetition of zero or more x
x+ repetition of one or more x

x{n,m} repetition of x from n times to m times
. any alphanumeric character

[x− y] character ranging from x to y

a|b

b a|b

(a) Non-deterministic

a
b b

bb

a a

a

(b) Deterministic

Figure 5.1: Different Automaton represen-
tation of the RE “(a|b)∗b(a|b)”.

a

a

b

b

b

a

b

b

abbb|abab

a b

b

a

b

b

Figure 5.2: From a RE “abbb|abab”
(top) to its NFA (mid) and, finally, to
DFA (bottom).

erate in a multi-pattern single-stream of data or single-pattern multi-stream
of data (Section 5.3.5). Moreover, our DSRA is easily deployable on dif-
ferent FPGA-based platforms depending on the target workload, e.g., em-
bedded or high-performance (Section 5.5). The domain-specialization of
TiReX pushes towards the energy efficiency required to address current
computing challenges [301, 311].

5.1 Background on Regular Expression Matching and DFA-
NFA Comparison

REs and Automata are a general execution engine for a wide variety of
applications ranging from simple text searching to random forest execu-
tion [290].

REs are a declarative way of describing sets of character strings used to
define Regular Languages [312], with meta-characters for specifying oper-
ations. Table 5.1 presents some of the most used RE operators in all the
typical application scenarios (e.g., text-editors search functionality, soft-
ware libraries for REs, web search engines). There are advanced operators
on top of these symbols, which are nowadays involved in pattern match-
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ing but not related to Regular Languages, such as backreference. In this
work, we focus on classical REs. Finite State Automaton (FA) is a descrip-
tive way of defining an abstract finite state machine that accepts particular
string(s) defined by regular languages [312], hence also representable as
(class of) RE(s). FA splits in Deterministic Finite Automata (DFA) or Non-
deterministic Finite Automata (NFA) based on the possibility of being in
one or more states simultaneously, i.e., deterministic vs. non-deterministic
execution model. The DFA model requires only to keep track of the current
state and moves into a new state every time it reads a character, resem-
bling a depth-first exploration. However, some REs intrinsically carry a
certain level of non-determinism. For example, the RE “(abbb|abab)”
describes two alternative patterns that both start with the sub-string “ab”.
Therefore, the matching process does not know which pattern is match-
ing until it evaluates the last two characters (either “bb” or “ab”). Even
though it is always possible to move from NFA into a deterministic version
via the power-set construction algorithm, this conversion can exponentially
increase the number of states. Figures 5.1a and 5.1b show a simple exam-
ple where the NFA representation (Figure 5.1a) requires less states. Though
the NFA’s execution model relies on a breadth-first-like approach and pro-
vides the best theoretical performance, it is equivalent to a DFA, which
usually adopts a depth-first-like approach, on the class of acceptable lan-
guages [312]. Consequently, we need to adapt the matching algorithm to
manage the states with alternative paths associated with the same character
when using an NFA. A recursive implementation selects an alternative and,
if wrong, it backtracks to the most recent “decision state” to evaluate a dif-
ferent path. This approach also requires reverting the portion of the string
that was processed in the wrong path. In this way, the backtracking algo-
rithm is simple but requires processing the input string multiple times. In
the worst case, if the string does not match the RE, the algorithm must try
all possible execution paths, leading to an exponential execution time [49].
An alternative approach with linear execution time has been proposed by
Thompson [313] and used by Google in RE2 [314], a RE software library,
which is in use in many Google products like BigQuery1 and Google Suite2.

Software libraries, like the ones available in programming languages
such as Python2.4 or Perl5.8, divide the RE into sub-expressions until the
matching problem becomes manageable and then use a backtracking algo-
rithm to evaluate the alternative paths [49]. Example: When applied to
our example (top part of Figure 5.2), they first divide the pattern into two
sub-expressions, namely “abbb” and “abab”. This decomposition can be
1 https://tinyurl.com/cloudgooglecicero 2 https://tinyurl.com/googleregexsuite
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easily represented as the non-deterministic finite-state automaton shown in
the mid part of Figure 5.2. When a character (e.g., ‘a’) is compatible with
two or more sub-expressions (e.g., “abbb” and “abab”), the machine con-
siders one sub-expression (e.g., “abbb”), keeping track of the possible al-
ternatives. If the machine does not match the string (i.e., the RE does not
accept the string), it needs to backtrack to the most recent alternative and
considers other paths (e.g., sub-expression “abab”). This process repeats
until the machine either accepts the string in one path or rejects it after ex-
ploring all the alternatives without finding a match. This algorithm becomes
extremely inefficient when the number of alternative paths grows exponen-
tially. Consider the case of RE-based Denial of Services [315], where we
may need to match the string “aaaa” and the RE “a?a?a?a?aaaa.” In-
deed, the backtracking approach has a time complexity of O(2m), where m
is the number of alternative paths to be evaluated [49].

Thompson observed that the backtracking algorithms are mostly ineffi-
cient because they need to scan the input string multiple times [313]. To
avoid this, he built a Virtual Machine (VM), implementing a multi-threaded
execution model. The VM can handle simple operations like scheduling a
thread, executing a thread for a specific time quantum, or a finite number
of steps. Each thread executes code to match a single RE expression or
sub-expression. Whenever a parallel or non-deterministic path occurs, it
spawns additional threads to explore the alternatives with a breadth-first
approach. In this way, the new threads do not require analyzing parts of the
string already elaborated again. Moreover, we can avoid saving the whole
thread context by executing the threads in “lockstep”: all of them process
the same character of the string and then move forward to the next [310].
Example: When applied to our example with the input string “abbb”,
Thompson’s algorithm creates two threads for the sub-expressions “abbb”
and “abab”, respectively. All threads process the same input character in
parallel, so they do not need to look backward in the string. After pro-
cessing the first two characters ‘a’ and ‘b’, the third character of the input
string is ‘b’, while the second thread is expecting the character ‘a’. So it
fails the matching and stops. The other thread can continue, consumes the
remaining characters, and accepts the string. This approach offers an exe-
cution time that grows linearly with the number of string characters, while
the degree of alternatives in the RE impacts the number of running threads
per character and their relative cost.
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5.2 Related Work

Previous researches explore either the algorithmic part of RE matching [313]
or the efficiency of the execution platform [300]. The RE matching pro-
cedure usually executes through an approach based on DFA or NFA and
their state transition table. While DFA suffers from the exponential mem-
ory footprint explosion [299,305], NFA requires high bandwidth to execute
in parallel all possible active states [316]. Other solutions mix DFA-NFA
characteristics to achieve the best complexity from both time and space re-
quirements [298]. An example CPU-based engine is Intel Hyperscan [317],
which overcomes main deep-packet inspection limitations with a novel
regex decomposition mechanism and a CPU SIMD pattern matching for
multi-string divided in a shift-or part and a verification of the false-positive
part, at the cost of high preprocessing mechanisms. Nonetheless, mod-
ern automata processing benchmarks, such as ANMLZoo [290] and Au-
tomataZoo [283], allowed designers to demonstrate the efficiency of FPGA
implementations over general-purpose processors, spatial architectures like
the AP, and GPUs [316].

A possible taxonomy of hardware execution engines considers the ar-
chitectural type (Stream-Dataflow Architectures (SDA), In-Memory Ar-
chitectures (IMA), Software-Programmable Architectures (SPA)), and ap-
proach/execution mode at their foundation (DFA, NFA, Hybrid, others),
which are two orthogonal features. SDAs usually exploit spatial architec-
tures, particularly reconfigurable ones, and focus on efficiently represent
the considered (set of) Automaton(a). IMAs exploit the high bandwidth of
their architectural design to perform an efficient lookup process of the Au-
tomaton(a) transition table. SPAs exploit a particular architectural style
(even an IMA or an SDA) in a software-programmable way instead of
regenerating a configuration bitstream with a time-consuming procedure.
This Section gives an overview of these approaches and presents some
state-of-the-art techniques applied in pattern matching engines, focusing
on FPGAs. It will review the approaches starting from the execution mode
features.

DFA hardware approaches, though they achieve better time complex-
ity, generally suffer the memory footprint explosion for state transition table
representation [303]. For this reason, many approaches focus on compres-
sion techniques such as states and transition clustering [305]. BFSM [299]
encodes state transitions as rules, and groups similar transitions into a rule,
achieving a very short and predictable memory lookup latency on an IBM
PEN. Differently, Gogte et al. [284] implement a solution in ASIC, based
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on the Aho-Corasick algorithm, overcoming its high memory requirements
by splitting each input character in single bits. Tang et al. [318] propose a
flexible real-time update Finite State Machine (FSM) and optimized DFA
encoding scheme sacrificing the performance. Moreover, DFA’s original
execution scheme is limited to single character analysis. Hence, to tackle
this issue, PiDFA [319] parallelizes character processing with the first com-
putation of all the possible input character transitions, which is then merged
in a pipelined fashion. Meiners et al. [285] propose a solution based on
TCAM, which encodes the transitions of the DFA to improve the lookup
process. Another body of work leverages hardware parallelism to increase
the number of REs concurrently analyzed. Vasiliadis et al. [294] leverage
the characteristics of GPUs to match multiple REs in parallel, encoding
each RE as a separate DFA. Other solutions, like Sitaridi et al. [320], ex-
ploit GPUs to analyze known string matching algorithms, or embed in the
FPGA logic many REs for Network-IDS [321].

NFA-based hardware approaches start with Sidhu et al. [302], that
were the first to implement an NFA embedded in the FPGA logic, show-
ing a flexible self-reconfigurable device, paving the way to further solu-
tions directly synthesizing NFA [322] or exploiting dynamic reconfigura-
tion [323]. Different solutions exploit either a partially reconfigurable solu-
tion based on a multi-character NFA [324] or a fully flexible structure with
some patterns expression limitations [325] trying to overcome the run-time
adaptability of approaches based on the fabric embedding. Other FPGA-
centric approaches focus on specific applications, such as database query
with fixed parametrizable operation [292,293] and signature-detection with
YARA rules [287], which achieve remarkable performance results while
sacrificing the time required for unknown REs at compile time. Instead,
REAPR [159] is a tool that translates NFA into RTL implementations. The
authors expand their work to support AWS F1 instances [36] and to allow
a fast reconfiguration of different REs that exploit the same NFA struc-
ture [304]. On top of these approaches, other authors propose a compiler
framework for spatial architectures called FlexAmata that aims at optimiz-
ing the automata representation also considering different alphabet sym-
bols bitwidth [160], further extended to exploit either LUT- or BRAM-
based designs [326]. The AP was an outstanding spatial reconfigurable
architecture that embedded a target automaton into the reconfigurable fab-
ric [300, 327, 328]. While it was a promising solution with high perfor-
mance [160, 291], only simulation results of the AP were reported [304]3.
Nourian et al. [316] provide a comprehensive analysis of NFA solutions
3 At the time of writing, the AP SDK is not available anymore
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for different platforms (e.g., GPUs, FPGAs, Micron’s AP) with different
workloads and a partitioning scheme aimed at large NFA handling, show-
ing that NFA-parallelism is not well suited to GPUs or vector architectures.
In contrast, reconfigurable architectures are the most promising ones.

Hybrid approaches mix DFA and NFA to tackle their individual dis-
advantages. For example, Atasu et al. [306] use NFA to tackle traditional
DFA limitations like repeating the matching process for each possible initial
character or verifying an unbounded number of possible initial positions. It
activates a new DFA for each first matching character, which significantly
improves the performance at the cost of not scaling to complex or multiple
RE. Others present a hybrid approach called Decomposed automata for ef-
ficient FPGA on-chip memories usage [329], or exploit multiple DFA based
engines, called B-FSM [299], for a flexible NFA-like approach in an het-
ereogenous system [330], or build unique FA for wildcard pattern matching
on TCAMs [331].

Different approaches do not rely on the use of Finite Automata but
focus on achieving an efficient lookup process. For example, Agarwal
et al. [332] propose a hash-based encoding scheme for text patterns (not
specifically REs) that generates a dictionary matching engine. Instead,
Nguyen et al. [333] employ bitmap index structures to encode the strings to
match against, achieving multi-character lookups on FPGA.

Other methodologies consider REs as instructions, such as Google’s
library RE2 [334], which is mainly based on the Thompson’s NFA and
detailed by Russ Cox [310], exploits the VM approach (Section 5.1). Sim-
ilarly, ReCPU [308] explores RE matching by translating a RE into a set
of instructions executed on a “dedicated CPU” offering the run-time adapt-
ability of a CPU with the performance efficiency of an ASIC solution, or on
an FPGA [309]. However, its application to real scenarios is limited, and
the absence of a communication subsystem prevents its adoption.

Employing REs as instructions provides an attractive alternative method-
ology to the automata embedding for building an efficient accelerator that
can execute new “programs” without necessarily regenerating the hard-
ware. Moreover, this methodology avoids the employment of explicit au-
tomata transition tables by exploiting the REs declarative language, similar
to a Domain-Specific Language (DSL). This Chapter, and the following
one, take inspiration from these approaches, seeing REs as a programming
language, where each RE is a set of instructions repeated over a set of char-
acters. Thanks this approach these Chapters present two DSRAs based on
the two prominent execution modes (i.e., DFA and NFA) for the REs do-
main. These architectures rely on a custom compiler and ISA to represent
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REs belonging to Regular Languages and on optimized microarchitecture
and multi-core/-engine designs. In this way, these DSRAs deliver remark-
able performance at higher energy efficiency. This Chapter mainly focuses
on a DSRA based on a DFA execution mode (i.e., depth-first), showcasing
its strengths and limitations. Finally, Table 5.2 summarizes the presented
state-of-the-art approaches.

Table 5.2: Related Work Summary based on platform, architectural type, compilation
framework availability, and compilation time required (i.e., if closer to the software
time or to the bitstream/hardware regeneration time)

Work Architecture Execution Compilation Compilation Time
Type Mode Framework Required

TiReX-FPGA SPA DFA Yes SW like
CICERO-FPGA SPA NFA Yes SW like

FPGA [309] SPA DFA Yes SW like
ASIC [308] SPA DFA Yes SW like

CPU [335] SPA DFA Yes SW like
CPU [317] SPA NFA Yes SW like
CPU [334] SPA NFA Yes SW like

GPU [294] SPA DFA Yes SW like
GPU [320] SPA DFA Yes SW like

FPGA [305] SDA DFA No HW like
FPGA [319] SDA DFA No HW like

FPGA/ASIC [284] SDA DFA No HW like/N.A.
FPGA [159] SDA NFA Yes HW like
FPGA [304] SDA NFA Yes HW like

FPGA [160, 326] SDA NFA Yes HW like
AP [160, 290, 304, 327] IMA NFA Yes HW like

FPGA [306] IMA Hybrid No HW like
FPGA [329] IMA Hybrid No HW like

Heterogeneous [330] IMA Hybrid Yes SW like
FPGA [331] IMA Hybrid N.A. HW like
FPGA [332] IMA Other No HW like
FPGA [333] IMA Other No HW like

FPGA [318] SPA/IMA DFA N.A. SW like
TCAM [285] SPA/IMA DFA N.A. SW like

PEN [299, 336] SPA/IMA DFA Yes SW like
FPGA [48] SPA DFA Yes SW like
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ACGT(A|C)*

Compiler

1 & ACGT
2 OKP -
3 |)* AC
4 EOP -

Instruction Set

ACGTCGGGGCGTGCAAATGCCCCGTGCGATTTGCGTGACGTCGGGGCGTGCAAATGCCCCGTGCGATTTGCGTGACGT
CGGGGCGTGCAAATGCCCCGTGCGATTTGCGTGACGTCGGGGCGTGCAAATGCCCCGTGCGATTTGCGTGCGTGCGAT
TTGCGTGACGTCGGGGCGTGCAAACGTGCGATTTGCGTGACGTCGGGGCGTGCAAAGCTCGATCGATCGATCGA…

Data

Match results

1) IR pass:
a) Opcode&Literal
b) Label Insertion

2) Architecture pass

Figure 5.3: TiReX flow for a Regular Expression.

5.3 Design Methodology and Approach

This research work deals with REs as a programming language where REs
are a sequence of operations repeated over a set of characters. The RE trans-
lates into a custom-defined ISA, on top of which we build our custom DSA
called TiReX. The current ISA does not comprise advanced primitives of
pattern matching that do not belong to Regular Languages or are derivable
from the ones considered. Our DSA is not a general-purpose engine but is
a software-programmable architecture tailored to the REs domain.

Figure 5.3 represents the workflow for executing RE matching on our
DSA. The user provides both a RE (or a set of REs), the “program” TiReX
will execute, and the data to analyze. The TiReX compiler translates the
input RE(s) down to our low-level representation, i.e., the ISA. Then, the
DSA takes as input the compiled code, which is loaded in the instruction
memory. Finally, the architecture retrieves the data to analyze and outputs
the matching procedure results. The next Sections first describe the com-
piler, then the ISA (Section 5.3.2), and finally the single- and multi-core
architecture (Section 5.3.3 and Section 5.3.5), along with a performance
model (Section 5.3.6).

5.3.1 Regular Expression Compiler

The compiler is a custom Python-based component that performs RE-to-
ISA transformation. The compiler follows a Very-Long-Instruction-Word
(VLIW) approach, where it is aware from the beginning of the underlin-
ing architecture characteristics and it produces the binary according to the
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hardware features, e.g., the reference size determined by Execute parame-
ters (Section 5.3.3.2). The compiler builds on two main passes: the Inter-
mediate Representation (IR) pass and the architecture-aware pass. On the
one hand, the IR level pass divides into two phases. The first one performs
opcode and literal recognition and detects the need for a second pass for
jump address insertion. The second (and optional) pass deals with labeled
locations from the first pass and inserts the addresses for absolute jumps.
On the other, the architecture-aware pass accounts for character parallelism
abilities and word alignments.

5.3.2 Instruction Set Architecture

Table 5.3: Opcode encoding of the operations.

opcode RE Description

000000 EOP End of Pattern
010000 AND/& And of cluster matches
001000 OR/| Or of cluster matches
011000 . Match any character
100000 ( Function call/sub-RE start
000100 ) Function return/sub-RE end
000001 )* Match any number of sub-RE
000010 )+ Match one or more sub-RE
000011 )| Match previous sub-RE or next one
000101 OKP Open Kleene Parenthesis
000111 JIM Jump If Match

The TiReX ISA approach relies on a VLIW-like machine, where mul-
tiple operations are bound together to form a bundle. Table 5.3 shows the
primary operations that compose the TiReX ISA primitives. These primi-
tives are composable operators to form different REs, with their literal part,
and are at the basis of all the complex REs, such as repeating n times the
string x, i.e., x{n}. The compiler decomposes advanced REs into TiReX
primitives. Complex REs carry the cost of a bigger program size; there-
fore, the instruction memory has to accommodate a reasonable amount of
instructions or to provide an adequate memory hierarchy. For example,
the RE a{3} translates into a sequence of aaa, hence turned into a simple
concatenation of three ‘a’ characters. Each instruction is divided into two
fields: the opcode field, where we encode different pluggable operations,
and the remaining part, which is called reference or instruction operands.
The reference field usually contains the number of parallel characters a
TiReX core can crunch, or, in case of particular operators, it contains help-
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ful information such as the branch target address. In our implementation,
the instruction word is 38-bit long, and it has 6 bits for representing the
opcode field, while the remaining 32 bits represent the reference field, i.e.,
at most four parallel standard ASCI characters. TiReX operations divide
into three main groups: Character Match, Control Flow, and Support.

Character Match Operators represent the basic operations on REs to
match characters with boolean logic, like the AND instruction to match a
fixed sequence of characters or the OR instruction to accept several alter-
native characters.

Control Flow Operators represent an advanced class of operators to
compose advanced REs against the Character Match operators. In particu-
lar, these operators control the flow of the instructions (e.g., jump), perform
a “function” call preserving the “context” (e.g., matching process status,
current data and instruction address, prefetching hints). These operators
are described as follows. The EOP operator is a special instruction whose
purpose is to signal the end of the program (i.e., the end of the RE match-
ing procedure). The open parenthesis or ) operator represents a “function
call”, or sub-RE, and translates to context preservation. The closed paren-
thesis or ) operator represents a “function return”; therefore, it instructs
the processor to restore the previous context. The )* and )+ operators rep-
resent the Kleene operators, at the end of a function call, which, like a for-
loop, re-execute the loop body of the matching code until either a mismatch
occurs or the string ends. The )| operator composes chains of OR-ed REs:
the sequence of functions matches when any of the REs matches, in which
case the hardware can skip the remaining functions in the chain.

Support Operators are instructions to support the Control Flow ones
and increase performance. Indeed, they are needed to inform the architec-
ture of the instruction memory location to jump. In particular, the function
call operator “(” can ambiguously lead to a function with the Kleene oper-
ators or an OR chain: in the former case, the architecture has to re-execute
the function, hence jumping to a previous instruction, while, in the latter
case, the flow of instructions goes forward and the architecture can skip the
following REs in case of a match. For this reason, we specialize the “(” op-
erator to discriminate the two cases and inform the architecture prefetchers
on which instructions and data TiReX has to load in the next cycle for all
the possible comparisons results. The OKP operator hints the architecture
about the presence of a for-loop-like sequence, hence showing a possible
backward jump in a matching case or a forward jump in a mismatch case.
The JIM operator gives the flow-controller a hint of the presence of OR-
chained function calls, therefore preparing for a possible forward jump in
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Figure 5.4: Details of the core logic, with the pipeline components and the reference to
Section 5.3.3 subsections.

the flow whenever match. In contrast, a mismatch causes the architecture to
load the next instruction and re-read previous data (which can be cached).

5.3.3 Single-Core Architecture

TiReX DSA has a two-stage pipeline divided into Fetch/Decode and Exe-
cute stages. The core tracks the RE procedure status, and it can be in two
different states (i.e., match or not match state), which determine different
execution flows. Figure 5.4 shows the block design of the microarchitec-
ture. The main components of the core are the Instruction Memory (IM),
which stores the program instructions, the Fetch/Decode Units (FDUs) for
the homonymous stage, the Data Buffer (DB), which stores a portion of the
input data necessary for the matching process, the Clusters and the Engine,
which form the Execute Unit (EU), and the Control Unit (CU), devoted to
the control of the whole matching process.

A general flow of the matching process starts with the loading of the
compiled RE into the IM, then the FDU loads one instruction at a time,
decodes it, and propagates the control signals (e.g., the valid_ref signal,
which indicates how many valid characters are in the reference in one-hot
encoding scheme) and the instruction operands to the EU and the CU. The
EU loads the input characters from the DB and searches for patterns accord-
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ing to what received from the FDU, emitting a match to the CU when the
current input characters match the pattern encoded in the current instruc-
tion. Finally, the CU exposes signals to the external logic to indicate the
completion of the matching process and the presence of a match. The basic
RE matching is an intrinsically sequential control dominated flow that ana-
lyzes a single character per clock cycle [44]. We now describe how TiReX
deals with control hazards within a RE instruction flow (Section 5.3.3.1)
and how we increase the number of characters analyzed in a single clock
cycle (Section 5.3.3.2) showing remarkable performance (Section 5.5.3.1).

5.3.3.1 Fetch/Decode stage

The Fetch/Decode stage consists of three copies of an FDU, exploited to
prefetch every possible instruction flow. An FDU takes the bundled word
from the IM and unpacks it in the three pieces of information needed for
the RE matching procedure: the opcode, the reference, and how many ref-
erences are really in that field, i.e., the signal valid_ref, as shown in Fig-
ure 5.4. Thanks to the Control Flow Operators, which we tailored to change
the instruction flow, we exploit different instruction-pre-fetching mecha-
nisms. By instantiating three different and specialized FDUs (marked A to
C in Figure 5.4), the core can avoid cycle losses in the case of not match
or case of special instructions such as the JIM or the OKP. The identified
flows are mainly three.

Sequential Execution: The RE matching process can run in the simple
sequential execution flow. Indeed, the FDU-B continuously prefetches the
next instruction, essential when a match is found. Thus, we cover the basic
sequential execution flow of a “program”.

Instruction Rollback: The “program” can find a false initial match up
to a certain point. Indeed, discovering a false partial submatch requires to
rollback the execution to the first “program” instruction. Since restoring
everything in case of a false match leads to large cycle loss, FDU-A keeps
a copy of the very first instruction and its control signals.

Special Jump: Another possible performance degradation source comes
from jump instructions. Indeed, as in general-purpose processor, control
flow modifications that depend on run-time computations, such as a com-
parison result, require special hardware components (e.g., branch resolution
anticipation, dynamic branch predictors) or clock cycle stalls for control
resolutions. Jumping back and forward in the “program” leads to control
hazards. Considering a backward jump, as for the Kleene operations, or
a forward jump, as for OR-chain, we need to know the target instruction.
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To handle this, the second pass of the compiler hints at the core by insert-
ing this target jumping address. The FDU-C leverages compiler hints to
prefetch instruction located after the sequence of OR-ed REs (in case of
JIM) or the initial instruction of a sub-RE (in case of an OKP).

5.3.3.2 Execute stage

The other datapath portion is the EU, and it consists of two parts: the Clus-
ters and the Engine.. The Clusters are the components that compare input
data against input reference; hence, the more the Clusters, the more the
characters the core can analyze. The most basic primitive in the RE match-
ing process is a comparator for single character-to-character comparison.
More “advanced" primitives are AND, or concatenation of characters, and
OR, or alternation that in our ISA corresponds to the Character Match op-
erations. These primitives correspond to TiReX Clusters, and each of them
takes as input the reference characters and the data characters. The EU has
two orthogonal design parameters that determine the parallelism degree in
the character analyzable per clock cycle. The first one is the width of the
Clusters, called ClusterWidth parameter. Figure 5.5 shows a ClusterWidth
equal to 4. Hence, that Cluster performs at most four character compar-
isons in a clock cycle. Depending on the opcode, we feed the Cluster with
different data characters. In the case of an AND, the four comparators will
receive different characters, as in Figure 5.5. In the other case, i.e., the OR,
each comparator will receive the first data character of the substring (e.g.,
the first C in the CCGT substring), and compare against all the reference
characters. In this way, the ClusterWidth determines the maximum amount
of characters the core can analyze with the AND opcode.

The other design parameter regards how many Clusters the EU has,
called NCluster. Considering Figure 5.5, NCluster is equal to four. Fol-
lowing the previous data feeding scheme, each Cluster will receive a sub-
string shifted by one of the data characters, i.e., Cluster one will receive
CCGT, Cluster two CGTA, etc. Hence, considering an OR, we feed each
Cluster with a single data character, while, with AND, we feed them with
four characters. The Clusters then compare such characters against the ref-
erence ones. In this way, the NCluster parameter determines the maximum
number of characters the core analyzes with an OR opcode.

The Engine collects all the intermediate results from the Clusters, knows
the current Character Match operation, and combines them to produce an
aggregate result for the Control Unit. The Engine works in two different
ways, depending on being in matching or not matching state, and it controls
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Figure 5.5: Detailed view of the EU during
the first AND instruction execution.

Instruction Cycles EU Data
#1 #2 #3 #4 #5 #6 #7

& ACGT FD EX CCGTACG
& ACGT FD EX ACGTATT
OKP FD EX ATTGCAC
|)* AC FD EX ATTGCAC
|)* AC FD EX TTGCACT
EOP FD EX TTGCACT

Match found
Instruction: ACGT(A|C)*
Data: CCGTACGTATTGCACTA

Table 5.4: Execution example of a Regular
Expression on a single core (the effective
data analyzed are underlined).

which Cluster is active or not, stalling the execution if necessary. All these
components are almost combinational; hence, balancing the EU parallelism
is crucial to avoid unused or small resources.

Overall, the architecture might have different inputs feeding schemes
depending on the instruction result (match/not match) and the number of
matching characters (from 1 to ClusterWidth). For this reason, we adopt
different data-shifting mechanisms for the DB, where we use registers to
store possible inputs for the next instruction.

5.3.3.3 Control stage

While the EU handles the Character Match operations, the CU handles all
the other complex operations, e.g., Kleene ones. Indeed, this unit is a cen-
tralized controller that synchronizes the different prefetching and prediction
mechanisms. It is aware of the current RE matching procedure status, e.g.,
match or not match, enabling dynamic scheduling of the proper instruction,
keeps track of the instruction and data pointers, and generates the proper
addresses for the memories. Moreover, whenever the Control Unit finds a
function call, e.g., the “(” operation, it pushes the current RE matching con-
text to the Stack Buffer, our context memory, and synchronizes the datapath
to work in this new context.

5.3.4 Regular Expression analysis example

Table 5.4 shows an example of the matching process on the TiReX core.
First, the FDU-A retrieves the very first instruction producing the AND
opcode, ACGT as reference, and valid_ref signal equal to 1111, since every
character in the reference is valid. Then, the EU performs the comparison,
resulting in a mismatch. Indeed, as shown in Figure 5.5, the reference is
matched against the input stream in NCluster exact starting positions, given
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the initial not-matching state. Thanks to the presence of multiple FDUs,
the CU does not flush the pipeline as the first instruction is still present in
FDU-A. The data pointer jumps four characters ahead (due to the presence
of four Clusters), and the next batch of characters is checked against the
first instruction. This process is executed until a valid intermediate match
is found (this happens at cycle #3 in the example), which moves the CU
to a matching state and increments the program counter and data pointer
by one and four, respectively. This offset is computed from the Engine
and depends on which is the matching Cluster. The core continues until it
reaches the last instruction (EOP) and reports the final result, in this case a
match found.

5.3.5 Multi-Core Architecture

The proposed single-core DSA adopts improved parallelism at the charac-
ter level. Although we could consider it similar to a SIMD architecture,
the domain requirements (i.e., real-time analysis and flexibility) are not yet
satisfied. Hence, we propose a multi-core architecture based on the replica
of the same tile described previously. Each tile has its private memories,
separate for data and instruction, and it is software programmable to work
in two different ways depending on the needed parallelism level, as shown
in Figure 5.6. According to the application, we tailor the system to the
RE recognition process, which can operate in two different modalities, i.e.,
MISD- and SIMD- like.

Multiple REs Single Data Stream. Considering a scenario where there
is a need to analyze a wide range of patterns simultaneously, e.g., Signature-
Based Detection [289], we designed a dedicated multi-core architecture
based on the TiReX tile described previously. Each core is equipped with
its private instruction memory, i.e., different REs that it has to deal with,
while the data stream is the same for every core. In this way, we can in-
crease the number of patterns processed per single execution while keeping
a similar data crunching ability. However, this execution mode requires
further investigation in the topology of the architecture, in the interconnec-
tion logic, and can lead to data divergence and issues related to memory
coherency when considering terabytes of data, such as in the genomic case.
We will not address this issue here because we think it is out of the scope
of this work, and we think that exploiting memory coherent protocols (e.g.,
OpenCAPI [145], CCIX [146], or CXL [337]) is a sufficient solution.

Single RE Multiple Data Stream. In contrast to the previous ver-
sion, this operational way aims to exploit the parallel core to increase data
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crunching rates. Indeed, a fast scan rate is essential when considering
a vast amount of data to analyze, such as the Human Genome, or big
database. To improve our single tile abilities, we fill each tile IM with
the same RE while providing different data stream portions. These chunks
of data are not independent a priori, and potential matches in the cross-
ing regions may happen. Therefore, we do not consider a sharpened cut,
but we adopt a simple heuristic to provide an overlapping region to avoid
false mismatch at a negligible overhead cost. The data splitting task is
currently handled at the software level and relies on a domain-expert spec-
ified threshold that indicates the maximum length of a match, translating
into the overlapping region. We compute the batch size, or Bsize, for each
of the i-th core of the N ones, through Bsize = Sdata

Ntc
, which divides the

size of the data (Sdata) by the number of cores instantiated in the sys-
tem (Ntc). With the batch size, we compute the End of Data, or EoDi,
∀i ε N EoDi = min(Bsize · (i+ 1) + Tr, Sdata) per each i-th core by sim-
ply adding a user-defined threshold (Tr) to ensure coverage of a possible
matching sequence of Tr maximum length. Finally, we compute the new
Start of Data, or SoDi, except for the first core, which computes from the
very beginning, ∀i ε N − {0} SoDi = EoDi−1 − Tr, as the difference
from the previous core ending point minus the domain-specific threshold,
ensuring coverage of a possible matching sequence of Tr maximum length.

5.3.6 Performance Analysis

Here follows a theoretical performance model to analyze the expected thro-
ughput in both the worst and the best cases. Although the matching process
is highly data-dependent, the time required to process a single character is
the main critical parameter measured in ns

char
. This time-per-char metric

(the lower, the better) is mainly affected by the process status of the RE,
i.e., match or not match case. Being in a not matching case, the time per
char Tnm depends on the system frequency, F, and the number of charac-
ters processed per clock cycle. In the worst case, it is NCluster; in the
best case, it implies the full utilization of the Execute unit. Consequently,
Tnm = 1/F

NCluster
and Tnm = 1/F

NCluster+ClusterWidth−1 . On the other hand,
considering a matching state, we span from a single character per clock cy-
cle in case of union, or OR, Tmu = 1

F
, to a number of ClusterWidth charac-

ter processed in the concatenation case, or AND, Tmc =
1/F

ClusterWidth
. Sub-

stituting the effective design parameters, we can compute the worst and the
best case of the time per char required to analyze a character at the single-
core architecture level. Additionally, we can model the expected through-
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Figure 5.6: Multi-core modalities with multi REs single data stream, or single RE multiple
data streams, respectively.

put of the architecture, both single- and multi-core, adopting the presented
equations and estimate the bitrate of the system in Gb/s asBx = 1

Tx
·8 ·Ntc,

where Tx is the time per char obtained with the previous equations, Ntc is
the number of TiReX cores.

These equations provide an estimate of bitrate values for possible im-
plementations of TiReX with a variable number of cores and frequency,
enabling a fast performance scaling. This makes it possible to estimate
the goodness of the various TiReX implementations before going through
empirical measurements.

5.3.7 Architecture analysis summary

To summarize, the proposed architecture relies on a custom-developed ISA
for Regular Expression matching flexibly. In contrast with many of the
NFA/DFA approaches, the proposed methodology handles different run-
time tunable REs without modifying the underlying architecture. The cur-
rent execution model of the architecture is based on a depth-first-like ap-
proach, where the execution of the instructions is intrinsically sequential [44].
Though it suffers from classical backtracking issues, this model could lead
to possible future solutions based on a breadth-first-like model, similar to a
theoretical NFA, achievable through mainly NFA logic embedding. Addi-
tionally, the architecture has two levels of parallelism to increase execution
efficiency. The first level of parallelism resides in the number of characters
analyzed per clock cycle, which is a design parameter, and all the prefetch-
ing mechanisms to handle multi-flow executions. The second level of par-
allelism relies on a private memory multi-core architecture that can employ
two different theoretical execution models, i.e., MISD- and SIMD- like.
The first model increases the number of parallel REs analyzed, while the
second one increases the parallelization of vast amounts of data.
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Figure 5.7: Architectural model of the embedded and external host implementation of the
TiReX system.

5.4 Scenario-Specific Architectural Models

To demonstrate the adaptability of this work, we implement the system fol-
lowing two different architectural models. The first model targets all those
platforms in embedded-like scenarios, e.g., a System on a Chip (SoC) com-
prising a CPU and an FPGA. This model targets latency as the primary met-
ric and tries to increase energy efficiency as much as possible. This specific
architecture is called Embedded Host, given that the host application exe-
cutes on a CPU tightly coupled to the FPGA. Instead, the second model in-
volves server-like systems targeting a throughput-oriented scenario, where
tackling highly intensive data workloads is paramount. In this model, called
External Host, the host application executes on the server processor con-
nected through a PCI-e bus with the accelerating device.

5.4.1 Embedded Host

This model targets a more constrained execution environment where the
FPGA is tightly coupled with a CPU. Examples are the PYNQ platform
provided with ZYNQ technology, which embeds an ARM Cortex A-9, or a
softcore, such as the MicroBlaze, directly instantiated on the programmable
logic. The embedded processor and TiReX communicate through lightwei-
ght AXI-Lite ports for fast, small transactions of both control or data of 32
bits per transaction. We instantiate a multi-core architecture interconnected
through a crossbar, as in Figure 5.7, by a simple tile replica, each of which
has its additional private cache memory, implemented through BRAMs, to
exploit the available reconfigurable fabric fully.

The overall system starts with the processor loading the various caches
and instruction memories of all the TiReX cores instantiated in the system
following a SIMD or MISD fashion depending on the user’s needs. Once
filled, the processor enables the beginning of TiReX cores computation.
Once one of the cores produces a result, the search completes, reporting
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the outcome to the host. Section 5.5.3.1 shows the results this architectural
model can achieve in latency-sensitive scenarios.

5.4.2 External Host

Thanks to the presence of cloud FPGAs, everyone can access a high-end
cloud FPGA that communicates through a peripheral bus to an external
host processor. We devised the external host model to target such a sce-
nario. Consequently, we can implement TiReX on systems like the AWS
F1 instances, which contain high-end FPGAs equipped with four physical
DDR ports. Each physical port can transmit up to 512 bits of data per clock
cycle, for a total of 2048 bits. Moreover, we can time-multiplex each phys-
ical port for logic port interleaving and instantiate a wider number of cores.
Therefore, we decide to exploit this chance by deploying the kernel via
the SDAccel framework, as shown in Figure 5.7. The tool automates some
system design steps and provides a communication infrastructure, which re-
quires specific design interfaces and APIs for the transmission phase among
host and device through the high-bandwidth PCI-e link. Each tile has an
AXI-Lite interface for control exchange, while most of the data exchange
goes through an AXI-Master port attached to the DDR bank. The interface
requirements need additional glue logic and FSMs to handle instruction and
data transmission, and some performance counters. The Master port passes
the data through a FIFO to provide a back-pressure mechanism for DDR-
tile exchange, and the same happens in the other direction. We replicate the
tile and the additional interfaces to provide a multi-core architecture, where
each core is independent.

The final system flow starts with the RE(s) compilation. We feed the
data according to the operational way and apply the splitting heuristic if
needed. Then, the host writes the data to the DDR through the PCI-e and
starts the FPGA kernel. Each core, which has a private portion of the as-
signed DDR bank, reads and loads the instructions and then retrieves the
data to analyze. Once done, the overall kernel writes back the computation
results, while the host waits for all the cores to end and reads the match
outcome along with performance counters, such as clock cycle count and
matching position. Section 5.5.3.2 details the performance results the Ex-
ternal host architectural model achieves in throughput-oriented scenarios.

5.5 Experimental Setup and Results

We designed TiReX architecture in VHDL, with additional glue logic in
System Verilog. We targeted three different Xilinx platforms: the VC707
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and the PYNQ-Z1 boards with an embedded host model, while the ex-
ternal host model makes use of the Amazon Web Services (AWS) F1 in-
stance powered by a Virtex UltraScale+ 9 (VU9P) FPGA attached through
a PCIe connection, paving the way to deploy TiReX-as-a-Service. While
the VU9P system is a more throughput-oriented solution, thus suggested
for a server-like system use case, the PYNQ-Z1 system represents a more
constrained use case, such as embedded systems for an autonomous ve-
hicle or IoT scenarios. We use Xilinx Vivado and SDK 2016.4 to gener-
ate the bitstream and manage the bare-metal host for the embedded host
model. For the external host model, we use Xilinx SDAccel 2016.4 to im-
plement the system on the VU9P, and we exploit the OpenCL library for
the host. We employ four different state-of-the-art software to compare
against TiReX. The considered baseline is FLEX, which produces a DFA
for each RE in a C file that needs to be compiled. Then, we employ Grep,
which builds the matching NFA at run-time, Google’s RE2 [334], an opti-
mized multi-threading C++ library that builds an NFA as well, and Hyper-
scan [317] by Intel, which applies an intensive preprocessing mechanism
to decompose the RE(s) into a SIMD NFA. We compile FLEX code, RE2
library, and Hyperscan with -O3 optimization level and adapt the software
tools to stop as soon as a match is found. In particular, for RE2 we use
the RE2::PartialMatch function, while for Hyperscan we employ the
hs_compile with the HS_FLAG_SINGLEMATCH flag. For reference
CPU, we have the ARM Cortex A9 of the PYNQ-Z1 running at 650 MHz,
an Intel i7-8750H with six cores and a peak frequency of 2.2 GHz, and
a dual-socket Xeon E5-2680 v2 with a total of twenty cores and a peak
frequency of 2.8 GHz.

We focused on bioinformatics and networking to test TiReX in real-life
fields with state-of-the-art benchmarks. We divided the testbenches into
two sets: a small one, which we indicated as S, aimed at a latency-oriented
scenario, and a large one, told as L, targeting a throughput-oriented sce-
nario. For the S scenario, we used the first 16 KB of the first human chro-
mosome [338]. We matched this input against the three REs, whose com-
plexity increases to measure the internal core execution latency correctly
and stress the performance. For the L scenario, we first selected the E-
coli bacteria proteome, about 8.5 MB of data retrieved from UniProtKB
database [339], and used PROSITE [340] as the REs dataset. PROSITE
consists of a biologically significant database and patterns formulated to
reliably identify which known family of proteins the new sequence be-
longs to, including the REs. Then, we tested the throughput with the
PowerEN benchmark from ANMLZoo [290] with 1MB of data, which
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Figure 5.8: Heatmap representing ClusterWidth and NCluster space exploration consid-
ering the ratio of average bitrate and LUTs usage on a PYNQ-Z1. The darker the color
the closer (or beyond) the resource usage to the given budget for a TiReX single-core.
The (4,4) configuration reports a good trade-off while respecting the budget.

has been employed in the validation of the IBM PowerEN for networking
function embedding at the edge. We analyze both the execution time and
energy efficiency of the proposed architecture for these testbeds. We col-
lect the power consumption of the whole board, hence including the host,
through a Voltcraft 4000 energy logger for the VC707 and the PYNQ-Z1,
while we take the Thermal Design Power (TDP) for the VU9P as from
a literature work [341], i.e., 42W, excluding the host. Besides, we use
the TDP for the Intel CPUs while we measure the ARM A9 power con-
sumption using the energy logger. We compute the energy efficiency as
throughput/power consumption, where throughput is the inverse execu-
tion times.

5.5.1 Exploration of Design Parameters

Here, we explore ClusterWidth and NCluster design parameters employing
an open-source automation tool [53] and targeting a PYNQ-Z1 device. The
exploration aims at finding a trade-off of these parameters that shows note-
worthy performance while keeping a low critical resource footprint (i.e.,
LUTs). Figure 5.8 reports a heatmap with the ratio of average bitrate, and
LUTs usage. We set a maximum budget of 30% of LUTs for a single core
since we aim at scaling in the core number; hence, Figure 5.8 shows darker
configurations that are close (or beyond) this upper bound. Among the
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Figure 5.9: Resources scaling (darker to lighter: LUT, Reg, Mux) against core number on
the PYNQ-Z1 (triangles), VC707 (dots), and VU9P (stars).

lighter configurations, (4,4) and (4,16) report remarkable performance, but
the (4,4) configuration shows less resource usage. In this context, the (4,4)
represents the optimal trade-off of delivered bitrate per employed LUTs
that eases the core scaling even with resource-constrained devices.

5.5.2 Multi-core scaling synthesis results analysis

Here, we aim to exploit the reconfigurable fabric as much as we can to scale
the core number and reach comparable state-of-the-art results. Figure 5.9
shows the resource scaling with power-of-two cores (though every number
of cores is suitable) architectures; in this way, we explore a reduced por-
tion of the design space and simplify the memory traffic model. Given the
limited number of physical memory ports, those channels have to work in
interleaved mode. However, increasing the number of nodes attached in
an unbalanced way may not result in deterministic performance prediction
and load management requirements. To devise a multi-core architecture,
we first investigated the area utilization of a single core implementation,
which can provide insights into the number of cores that can fit in a multi-
core design. Figure 5.9 shows a small resource footprint of a single TiReX
core on the three target platforms in all cases. We report the most relevant
resources utilization, given the nenglibile amount of the others. Therefore,
they do not represent an issue at all. Although the numbers in Figure 5.9
suggest that it is possible to deploy a high number of cores on each plat-
form (like more than a hundred for the VC707), this is not possible due to
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routing-related issues. Indeed, a high number of cores leads to congestion
on the interconnection paths towards the processor and the communication
infrastructure, with very high fan-outs hindering the routing phase. These
issues limit the deployable cores to 16 on the VC707, given that designs
beyond 32 cores fail during the routing phase. However, on the PYNQ
platform, the number of deployable cores scales down to 8 since designs
with more cores (from 16 on) or targeting higher frequencies fail during
the routing phase, having fewer resources available than the VC707. We
envision designing a dedicated interconnection network to scale to more
cores while keeping acceptable frequencies and synthesis time. However,
this is beyond the scope of this work.

Conversely, on the AWS F1 instance, the limit of 16 cores is not due
solely to routing problems, even if the area utilization also comprises the
more significant AXI logic. In this scenario, the limitation is due to the
number of logic Advanced eXtensible Interface (AXI)-Master ports that
can be instantiated. The toolchain constraints to up to 16 different AXI-
Master logic ports. Indeed, with internal design unchanged, each core re-
trieves its data portion from the DDR banks after a setup phase from an
external host through PCIe. To instantiate a higher number of cores, it is
necessary to insert back-pressure mechanisms in the interconnection logic
and the internal logic itself for handling variable unavailability of data. The
data transfer rate is limited to 2048 bits per clock cycle, since there are at
most four-Double Data Rate Memory (DDR) ports available for each DDR
memory bank, each one capable of transmitting 512 bits per cycle.

5.5.3 Performance Analysis Against Software References

Alongside the synthesis results, we compare our system against state-of-
the-art software approaches in terms of performance, accounting for the
latency (S scenario) and the throughput (L scenario), and considering the
energy efficiency. The following experiments evaluate the multi-core ar-
chitecture presented in this paper in SIMD modality and the single-core
architecture on mainly the VU9P device. We adopted the heuristic pre-
sented in Section 5.3.5 and a threshold Tr equal to 100, which we manually
computed to be suitable for both the S and L scenarios. We analyze the
data transfer overhead from the host processor to the target FPGA on the
external host model, focusing on the L scenario. The overhead is gener-
ated both by hardware and software components. On the one hand, the data
transfer occurs via a PCIe-Gen3x16 connection, which has a transfer rate
of up to 15.6 GB/s, hence providing a latency based on the input data size.
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Table 5.5: Performance results (in bold the best) of the S scenario tests, chosen to stress
incrementally our architecture (FLEX on the i7 is the baseline, while FLEX on the A9
is omitted being far slower than Grep on A9).

Method Architecture Exec. Time [µs] Speedup Energy Efficiency [1/(ms ·W )]
Test 1† Test 2‡ Test 3? Test 1† Test 2‡ Test 3? Test 1† Test 2‡ Test 3?

Grep ARM A9 650 MHz 11963 12185 12374 0.02× 0.01× 0.02× 0.02 0.02 0.02
RE2 ARM A9 650 MHz 589 353 391 0.46× 0.34× 0.67× 0.42 0.70 0.64

FLEX Intel i7 2.2 GHz 271 121 263 1× 1× 1× 0.08 0.18 0.08
Grep Intel i7 2.2 GHz 492 805 221 0.55× 0.15× 1.18× 0.04 0.03 0.10
RE2 Intel i7 2.2 GHz 50.69 29.30 41.98 5.35× 4.13× 6.27× 0.44 0.76 0.53
Hyperscan Intel i7 2.2 GHz 78.92 53.58 35.08 3.43× 2.25× 7.50× 0.28 0.41 0.63

FLEX Xeon E5 2.8 GHz 598 136 404 0.45× 0.88× 0.65× 0.01 0.06 0.02
Grep Xeon E5 2.8 GHz 205 108 336 1.32× 1.11× 0.78× 0.04 0.08 0.02
RE2 Xeon E5 2.8 GHz 34.48 23.02 28.28 7.86× 5.25× 9.30× 0.25 0.38 0.31
Hyperscan Xeon E5 2.8 GHz 59.49 52.21 27.95 4.56× 2.32× 9.41× 0.11 0.17 0.33

TiReX VU9P 1 core 299 MHz 37.66 18.32 29.63 7.19× 6.60× 8.87× 0.63 1.30 0.80
TiReX PYNQ-Z1 8-core 70.5 MHz 7.20 8.21 30.30 37.63× 14.73× 8.67× 41.75 36.61 9.92
TiReX VC707 16-core 130.1MHz 2.07 4.54 3.36 130.9× 26.65× 78.27× 22.74 10.37 14.01
TiReX VU9P 16-core 202.7 MHz 1.03 0.75 2.96 263.11× 161.33× 88.85× 23.11 31.74 8.04

†ACCGTGGA ‡ (TTTT )+CT ?(CAGT )|(GGGG)|(TTGG)TGCA(C|G)+

For example, the E-coli bacteria protein dataset size is 8.5 MB and the re-
sulting transmission time is around 544 µs. On the other hand, the software
introduces non-negligible overheads: the time for the call to the OpenCL
Application Programming Interfaces (APIs), the CPU context switch time,
the time required for the interrupt to be served, and the additional asyn-
chronous driver time. The sum of the previous software-based overhead
times and the system setup time for the execution of the first instruction is
around 70 µs. This value has been computed by injecting empty instruc-
tions and empty data into the core, eliminating the data transfer overhead.
The transfer rate, along with the software-based overheads, provides the
base execution times of the TiReX system that has to be taken into account.

5.5.3.1 The S Scenario

This scenario evaluates the latency of the considered approaches on the first
16 KB of the first human chromosome [338]. We employ three different
tests to stress the methodology effectiveness, from string matching to more
complex RE matching tests. Table 5.5 summarizes the performance results
of the S tests run on the various platforms and compared against FLEX,
Grep, RE2, and Hyperscan without considering data transfers or I/O parts
for all the considered methods. On the other hand, we account for the pre-
processing mechanism of Hyperscan since this phase highly influences the
matching methodology and performance. Moreover, we did not evaluate
Hyperscan on the ARM A9 since it does not officially support ARM-based
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architecture. Considering TiReX multi-core implementations, we achieve
speedups ranging from a 0.92× up to 33.47× against the best software
implementations of Hyperscan and RE2. The slowdown comes from the
single-core on the VU9P and the PYNQ-Z1 with eight cores against RE2
and Hyperscan on Test 1 and 3. We must consider the differences in the ex-
ecution model, our DFA-like versus software NFA-like, and the considered
platforms. Indeed, both the software tools run on a server-class CPU, while
the PYNQ-Z1 is an embedded device, and the running frequencies are in-
credibly different, i.e., 2.8 GHz versus 70 MHz. Hence, the achievement of
performance in line with state-of-the-art tools on a server-class processor
demonstrates the remarkable benefits of our approach even when employ-
ing an embedded device. Moreover, scaling cores on the VU9P showcases a
considerable improvement (i.e., a top of ∼69×) against the state-of-the-art
software solutions, validating the proposed multi-core approach.

Considering the energy efficiency in Table 5.5, or ratio of throughput
over power consumption, TiReX DSA provides a higher degree of effi-
ciency than software solutions. In particular, TiReX multi-core delivers a
remarkable energy efficiency spreading from about 12× up to 95× against
the most efficient CPU implementations. Thanks to these tests, we demon-
strate TiReX advantages of specialized hardware for both execution times
and energy efficiency starting from the single-core to the highly parallel
multi-core implementations. Although the 8-core PYNQ-Z1 implementa-
tion achieves the same speedup as the VU9P single-core one, we should
consider the working frequency’s role in these results. Indeed, the two
running frequencies differ by 220MHz, which gives a non-negligible lead.
Additionally, we must consider that TiReX execution times come from the
hardware performance counters and account for the shortest matching time.
These results compare fairly with those on the CPU since we ran the whole
matching process inside a loop where the first ten iterations were used to
warm up the L1 data and instructions caches (which are, for all CPUs,
32KB in size, hence they can host the whole input and program code), and
we averaged the run-time of 30 iterations. Instead, we averaged 30 iter-
ations and subtracted a fixed amount of time for file opening to compare
fairly with Grep.

5.5.3.2 The L Scenario

In this scenario, we focus more on the throughput oriented solutions, re-
stricting our implementation to the external host model and the AWS F1
instance, as it is the most representative for a server-like environment, ac-
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Figure 5.10: Geometric means results and improvements of TiReX-16 VU9P with respect
to other solutions on L scenario.

counting for the overhead presented at the beginning. Similarly, we con-
sider the Intel Xeon CPU only. We consider different datasets from the S
scenario, as described at the beginning of the Section, for both REs and
data to analyze.

Figure 5.10a shows the geometric means of the execution times (the
lower, the better) achieved on the two benchmarks by the considered ap-
proaches, with the speedup of the 16-core version of TiReX on the VU9P
reported on top of the bar. It is noteworthy that PROSITE exhibits more
matching situations, while PowerEN reports few matches. TiReX single-
core already offers a speedup compared to tools like Grep and FLEX, show-
ing the benefits of TiReX domain specialization achievable at the single-
core level. Scaling TiReX to a multi-core architecture delivers a speedup of
1.233× and 1.585x over state-of-the-art software such as RE2. Moreover,
our DSA can reach higher performance, by further increasing the number
of cores, but, as stated in Section 5.5.2, the tools and technology limit the
number of AXI-Master ports we can instantiate on the VU9P.

Figure 5.10b shows the power efficiencies (the higher, the better) of the
considered literature software approaches and TiReX single and multi core
architectures. On top of the bars is reported the improvements of TiReX
VUP9 16-corecompared to the other approaches. We consider for all the
approaches the TDP of the respective devices, i.e., the Xeon (115W) and
VU9P (42W [341]). The 16-core design achieves energy efficiencies that
range from ∼3× to peak of ∼490×.
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5.5.4 Comparison to Related Work

Finally, we compare our work against the hardware-based solutions avail-
able in the literature, focusing on the top-performing ones and those ex-
hibiting an approach close to the proposed one, as reported in Table 5.6.
We consider the targeted benchmarks, the throughput in bitrate, the en-
ergy efficiency when available, and the run-time flexibility for replacing
the REs. The bitrate and power numbers are taken directly from results re-
ported by the respective authors since other implementations are not open-
source, hence not replicable by us, or simulated only, while ours are derived
from Section 5.3.6 best and worst case. The energy efficiency is the ratio of
throughput/power consumption, but we employ the bitrate in Gb/s re-
ported by the different approaches as throughput. Although few approaches
give importance to the power consumption for the computation, we claim
it is a relevant comparison metric also in this field. Indeed, being FSMs
among the most relevant computational kernels in computing fields [44],
and although they are intrinsically sequential, providing efficient compu-
tations is paramount [301]. Flexibility is a qualitative measurement that
refers to the mutability of the matching engine based on the RE(s). We
adopted a binary classification based on our understanding of the cited re-
search work. This means that this is not an absolute and quantitative mea-
surement but a criterion that we claim to be relevant. A non-flexible ap-
proach means that, given a different (set of) REs, the architecture needs
to be re-synthesized or changed accordingly. Indeed, the time to gener-
ate a new bitstream can range from one to several hours, depending on
the design complexity. Hence, it is often unacceptable if a database of
ready bitstreams is not available. The benchmark column reports the kind
of benchmarks used in the research work we cite. Considering the solutions
that do not provide run-time adaptability for the RE(s) to look for, their ob-
tained throughput is below or at least comparable to our high-throughput-
oriented implementation. However, jDFA [305] reaches a throughput that
is higher than all our solutions, but it is noticeable that it does not provide
a run-time pattern change. Therefore, the time to update their system is
the one required to completely regenerate the bitstream for the FPGA. It is
important to notice HARE [284], which provides two implementations tar-
geting either an FPGA or an ASIC device and proposes interesting ideas.
They reach remarkable performance with the ASIC version, though it is
an RTL-simulated-level design at 1 GHz. Indeed, their scaled-down ver-
sion, which is effectively deployed on a FPGA, achieves a throughput of
3.2 Gb/s, which is lower than our PYNQ-Z1 version, not aimed at high-
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throughput scenarios. Among the considered work, REAPR [159] repre-
sents an exciting tool for FPGA-based automata computations tested ex-
tensively on a broad set of benchmarks, and it is one of the few reporting
the power consumption. On the other hand, other solutions provide flex-
ibility as one of their main features. Indeed, Brodie et al. [321] ensure
the run-time REs change, obtaining a throughput lower than all our solu-
tions. The work by Meiners et al. [285] and the Power Edge of Network (or
PowerEN) by IBM represent the most interesting related work exposing the
software programmability on the pattern to search for and delivering good
throughput, though not reporting the power consumption.

5.6 Final Remarks

This work presents a DSA, called TiReX, based on the REs as a pro-
gram approach. The single-core delivers performance in line with the top
software with promising energy efficiencies. We provide a multi-core ar-
chitecture to increase the parallelism level at both the single RE and the
multi-RE level while providing an architectural model for different work-
loads. We show how we reach comparable results with many state-of-the-
art hardware-based solutions, providing a high degree of run-time adapt-
ability of the RE. Our testing scenarios show we can achieve top speedup
of 263× in latency, and in throughput of ∼179×. Thanks to our domain-
specialization, we deliver outstanding energy efficiency results that spans
from 3× to 490× than state-of-the-art software.
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CHAPTER6
A Breadth-First-based Domain-Specific

Architecture for Efficient Regular
Expression Matching

This Chapter describes the second Domain-Specific Architecture (DSA)
for Regular Expression (RE) in this dissertation, called CICERO, which is
based on an execution model closer to a breadth-first approach and an Non-
deterministic Finite Automata (NFA). The previous Chapter shows promis-
ing results that, however, might suffer the intrinsic nature of a backtracking
approach. Therefore, CICERO aims at overcoming the backtracking issue
with a different architecture, still able to ensure flexibility and performance.
Overall, CICERO comprehends an end-to-end framework composed of a
DSA and a companion compilation framework for RE matching. This so-
lution is suitable for many applications, such as genomics/proteomics and
natural language processing. Moreover, CICERO aims at exploiting the in-
trinsic parallelism of non-deterministic representations of the REs. On top
of this, CICERO can trade-off accelerators’ efficiency and processors’ flex-
ibility thanks to its programmable architecture and the compilation frame-
work.
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Despite significant algorithmic improvements, software solutions can-
not keep pace with the increasing size of the processed data (either in-
put strings or Regular Expressions (REs)). For this reason, hardware ac-
celeration is a valid alternative for computationally-intensive kernels such
as those for RE matching [160, 284, 293, 298, 319, 326, 336, 342]. In this
scenario, reconfigurable Field Programmable Gate Array (FPGA) devices
represent a viable solution to boost the matching process while keeping
a low energy profile. FPGAs can achieve a throughput of 100Gbps dur-
ing intrusion prevention while a CPU with 250 cores is limited only to
400Mbps [288] (almost 250× of improvement). So, FPGAs can be used
to implement specialized energy-efficient RE engines, while the device or
part of it can be turned off when unused [301, 311]. However, since fixed-
function accelerators embed custom RE matching logic for a given set of
REs, they cannot be applied for other patterns, limiting the solution flex-
ibility. Indeed, this approach requires to re-synthesize the logic for each
new RE.

To overcome these limitations, we propose CICERO, a complete so-
lution based on domain-specific programmable engines for RE match-
ing. CICERO includes a domain-specific architecture for RE matching
where each engine’s execution model is based on Thompson’s approach
(Section 6.4) and a compilation framework (Section 6.3) to create the pro-
gramming code of such engines. Indeed, given the input REs, the CICERO
compiler translates it into our architecture machine code based on a simpli-
fied Instruction Set Architecture (ISA) (Section 6.2). Moreover, it applies
optimizations to reduce the code size (i.e., number of instructions) and ex-
tract more hardware parallelism. Then, the CICERO engine executes such
instructions while processing the input string. To exploit more hardware
parallelism, we also describe a parallel architecture composed of multiple
engines, evaluating two alternative interconnection topologies. CICERO
combines the efficiency of specialized hardware accelerators and the flex-
ibility of general-purpose processors. We evaluated our single- and multi-
engine FPGA prototypes using real benchmarks from the open-source Au-
tomataZoo benchmark suite [283]. We obtained excellent results both in
terms of performance and energy efficiency: our CICERO architecture is
28.6× and 20.8× more energy-efficient than ARM and Intel processors,
respectively (Section 6.5).
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MATCH
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MATCH
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Figure 6.1: From a RE “abbb|abab” (top) to its NFA (mid) and, finally, to CICERO
instructions (bottom).

6.1 Breadth-first Regular Expression Matching Example

This work aims at implementing an architecture for RE matching with two
conflicting goals: 1) provide the efficiency of hardware accelerators thanks
to specialization and parallel execution, and 2) offer the flexibility and
reusability of general-purpose processors. Similarly to Section 5.1 example
and approach, we address alternatives and non-determinism using paral-
lel hardware execution flows similar to Thompson’s threads. In particular,
we aim at executing the threads with domain-specific engines that allow
us to process the alternatives with the efficiency of hardware accelerators.
To trade-off specialization and flexibility, our engines are domain-specific
processors based on an Instruction Set Architecture (ISA) tailored to RE
matching. Our architecture uses multiple execution flows that process the
same current character in parallel with RE-specific instructions. We also
provide a compiler-based framework to convert REs into such instructions.

Example: The bottom of Figure 6.1 shows the instructions flow gener-
ated to match the RE “(abbb|abab)”. Each node represents a specific
instruction that can either 1) proceed to the next one to continue the match
or 2) stop the analysis when the input string is not accepted. We also have
specific instructions to spawn “threads” (Split).

The following Sections dive into our approach, and in particular, Sec-
tion 6.2 details CICERO ISA, which is the tailored software/hardware in-
terface for creating domain-specific RE matching engines.
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Table 6.1: CICERO Instruction Set: PC is Program Counter (i.e., the memory address of
the next instruction to be executed), cc is the pointer to the current character, and OP
is the instruction operand.

Instruction Class Instruction Operand Description

Matching

MatchAny - PC+1 and cc+1.

Match(OP) Character
Compares OP with *cc.

In case of match, PC+1 and cc+1.

NoMatch(OP) Character
Compares OP with *cc.

In case of no match, only PC+1.

Control Flow
Split(OP) Target Addr.

Produces two parallel execution flow:
the first continues with the instruction that follows

immediately after (PC+1), while a new one
starts at the target address (OP).

JMP(OP) Target Addr. Unconditional Jump to the target address OP.

Acceptance
Accept - Accepts if at the end of the string.

AcceptPartial - Accepts at any point in the string.

6.2 CICERO Instruction Set Architecture

The CICERO ISA takes inspiration from the basic operations described
by [49], which employs parallel threads working in lockstep on a sequence
of characters [310], similar to a breadth-first exploration. For this reason,
the CICERO engine must be capable of performing simple operations such
as matching a character, creating threads, adapting the instruction flow, or
ending the execution. For example, thread creation requires generating ref-
erences to the instructions indicating the alternative execution paths’ begin-
ning.

Each CICERO instruction consists of 16 bits and is divided into two
parts: an opcode (3 bits), which identifies the instruction type, and an
operand (13 bits). The operand may have a different interpretation based
on the opcode. All instructions are stored in memory and identified by an
address. The execution of each instruction takes as input a character of the
string and determines the subsequent instructions to continue the matching.
The ISA is divided into three main classes, as shown in Table 6.1: matching
(MatchAny, Match, and NoMatch instructions), control flow (Split
and JMP instructions), and acceptance (Accept and AcceptPartial
instructions).

Matching instructions consider the current string character. MatchAny
instructions apply when the RE contains a wildcard (e.g., ‘.’). It consumes
any character and moves to the next instruction. The Match instruction
compares the current character with the instruction operand. If the two
characters match, we move to the next instruction in the sequence. Oth-
erwise, no further instruction is processed for this part of the flow. The
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NoMatch instruction represents the dual of Match operations. Indeed,
it checks if the operand and the current character do not correspond. In
that case, it moves to the next instruction in the sequence without consum-
ing the current character. Otherwise, if the characters match, it does not
need to consider any further instruction, and this part of the flow is over.
In this way, it is possible to check a single character multiple times (e.g.,
“[ˆabc]” can be represented by a sequence of three NoMatch instruc-
tions followed by a MatchAny).

Control flow instructions change the next instructions to be executed
and are the basis for creating the multiple execution flows that process the
alternative non-deterministic paths. A JMP instruction unconditionally sets
a new arbitrary point to continue the execution flow. A Split instruction
creates parallel execution flows (or threads). The first flow continues with
the next instruction, while the second one starts at the address targeted by
the operand.

Acceptance instructions conclude the RE matching algorithm. The
AcceptPartial instruction affirmatively concludes the RE matching at
any point of the input string, while the Accept instruction concludes only
at the end of the string.

6.3 CICERO Compiler

Since CICERO instructions are stateless, we can not take advantage of
state-of-the-art algorithms, such as register allocation, available in highly
optimized compiler frameworks. Therefore, we built from scratch our own
custom compiler that translates REs into executable binaries, according to
Section 6.2 format. The compiler has a standard structure with three parts:
front-end, mid-end, and back-end.

The front-end elaborates the input RE with an LR parser [343] and
produces an abstract syntax tree. The parser does not support any back-
reference operator since the expressive power required exceeds the regular
languages [49]. At that point, the front-end manipulates the abstract syntax
tree to produce our architecture-agnostic intermediate representation (IR).

The mid-end applies a sequence of architecture-independent IR opti-
mizations to enhance the RE matching code, reduce the code size, and im-
prove parallelism. Our set of optimizations includes code restructuring
and redundant instruction collapsing. These optimizations mostly target
sequences of Split instructions. The code restructuring reorganizes a
sequence of Split instructions into a tree with minimal height, while re-
dundant instruction collapsing merges equivalent instructions.
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Figure 6.2: Example of code restructuring
optimization applied to the RE
“(a | (b | (c | d)))”.

a a

... ...

SPLIT

... ...

a

SPLIT

... ...

Figure 6.3: Example of code restruc-
turing optimization applied to the RE
“(a...|a....)”.

Figure 6.2 shows an example of code restructuring. This optimiza-
tion balances the number of instructions to reduce the abstract syntax tree
height. Indeed, the left side of Figure 6.2 shows that the longest instruc-
tion path is three (up to the Match ‘d’), while the path up to the Match
‘a’ contains a single instruction. Therefore, in the worst case, i.e., when
the current character is ‘d,’ the Match ‘d’ execution happens after at least
four instructions.

On the right-hand side, we can see the code after the compiler applies
code restructuring. In this case, the longest path to each Match is equal
to two. Moreover, considering a parallel architecture that can execute nu-
merous paths simultaneously, this optimization will decrease the overall
execution time. For instance, assuming each instruction is executed in a
unit of time, the worst execution time with four cores is three time units.

The second optimization, i.e., redundant instruction collapsing, aims at
identifying and merging equivalent instructions in the code. This compres-
sion reduces both code size and execution time. This is a common situation
in case of non-deterministic representations, like the one in the bottom of
Figure 6.1 where two equivalent operations (i.e., Match ‘a’) follow a
Split instruction. The compiler repeats this operation until a fixed point
to compress equivalent CICERO code parts. Consider the example in Fig-
ure 6.1. We can anticipate the Match ‘a’ operations before the Split
and collapse them into a unique equivalent instruction without modifica-
tions on the code semantics. Figure 6.3 shows an example of how this
optimization reduces the size of the code, while Figure 6.5 shows the result
of the optimizations to the example in Figure 6.1.

The back-end emits the actual machine instructions to be executed by
the CICERO architecture. We perform code placement in memory and,
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Figure 6.4: CICERO base engine architecture.

after that,
we apply another redundant instruction collapsing to Jump instructions.

Since a chain of Jump instructions is inefficient (e.g., left-hand side Fig-
ure 6.2), we replace this chain with a unique Jump. In this way, we reduce
the number of subsequent Jump instructions to be processed.

6.4 CICERO Architecture

This section describes the fundamental building blocks of our CICERO ar-
chitecture. First, we describe the CICERO base engine that elaborates the
instructions over a single character at a time (Section 6.4.1). Then, we in-
crease the degree of parallelism in the CICERO engine enabling the ability
of processing multiple characters (Section 6.4.2). Finally, we aim at further
increasing the parallelism in instruction processing with a multi-engine ar-
chitecture (Section 6.4.3). In this context, we also explore two different
interconnection topologies that offer different scalability models.

6.4.1 CICERO Base Engine

The fundamental block of the CICERO architecture is the CICERO engine,
which processes the RE instructions with a minimal amount of resources.
The CICERO engine has two main components: the CICERO Core and the
Buffers. As shown in Figure 6.4, we combine the CICERO engine with an
Instruction Memory and a Manager module to obtain a platform that exe-
cutes the instructions described in Section 6.2. The CICERO RE matching
code requires executing all instructions related to a string character before
moving to the next one until the string is either accepted or rejected.

The CICERO Core is a 3-stage pipelined processor that executes the in-
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structions stored in the Instruction Memory. The Program Counter (PC)
refers to this memory and indicates the next instruction to be executed1.
The first pipeline stage uses the PC signal to address the Instruction Mem-
ory and loads the next instruction. Both the remaining stages decode and
execute the instruction to either indicate the next instruction (by producing
a new PC) or conclude the RE matching algorithm by raising the Accept
signal. The CICERO Core requires these two additional stages since the
Split instruction produces two PCs (corresponding to the beginning of the
two threads), while the engine has only one output port. Clearly, the third
stage is executed only for this type of instruction. The output port includes
the PC and one extra bit to specify whether the thread has to continue with
the current character or proceed with the next. This bit redirects the CI-
CERO core output into the proper first-in-first-out (FIFO) of the Buffers.
Furthermore, adding a multiplexer to the CICERO core input allows us to
insert the first thread, i.e., first instruction to be executed and first char-
acter to be processed. The Buffers are composed of two FIFOs (or more
as in Section 6.4.2). We employ them as a ping-pong buffer that contains
instructions related to the current character and the other PCs for the fol-
lowing one.

The Manager selects from which FIFO the CICERO Core gets the fol-
lowing operation to be processed. Therefore, the Manager alternates the
content of the FIFOs among current character PCs and following charac-
ter PCs. Moreover, the Manager controls the overall execution of the RE
matching algorithm. Once the CICERO Core has consumed all instructions
related to the current character, the Manager provides the new character and
changes the FIFO for the CICERO Core. The FIFO that is currently empty
becomes the FIFO for the new next character. When the CICERO Core
reaches an Accept instruction, the CICERO engine notifies that the string is
accepted. Otherwise, when both queues are empty, the Manager concludes
that the string does not match the RE.

Running Example Consider the RE “abbb|abab” in Figure 6.1 and the
corresponding optimized CICERO code in Figure 6.5, together with the in-
put string “ababcd”. The engine initialization starts with the first thread,
which has PC equal to 1, and the current character is the first ‘a’. The first
instruction is a Match ‘a’, and it is stored in the first FIFO (let us call it
FIFO 0), while the other FIFO (FIFO 1) is empty. CICERO fetches the first
input character, i.e., ‘a’. Then, it executes the first instruction (i.e., Match
1 In the following, we use the term Program Counter (PC) and instruction, interchangeably. Indeed, the PC is
the memory reference to the corresponding instruction to be executed.
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Figure 6.5: Optimized CICERO instructions for example RE in Figure 6.1.
string: a b a b c d

Clock cycles

PC Instruction C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 ...

1 match(a) S1 S2
2 match(b) S1 S2
3 split(7) S1 S2 S3
4 match(a) S1 S2
5 match(b) S1 S2
6 jmp(10) S1 S2
7 match(b) S1 S2
8 match(b)

9 jmp(10)

10 accept_partial S1 S2

Figure 6.6: Execution timing diagram of CICERO code. S1, S2, and S3 indicate the stages
of CICERO core.

‘a’), consumes the first ‘a’ of the input string, and produces the reference
to the second instruction (i.e., Match ‘b’). Since this instruction refers to
the next character, the Manager adds it in the FIFO 1. FIFO 0, which is the
FIFO of the current character, i.e., ‘a’, is now empty since all corresponding
instructions are executed; hence, we can move to the following character of
the input string, i.e., the first ‘b’, and switch to FIFO 1. CICERO executes
the second instruction (i.e., Match ‘b’) and produces the Split instruc-
tion, i.e., number 3 in Figure 6.5. Given that there are no more instructions
for the current character ‘b’, we move to the following one, i.e., the second
‘a’, and swap FIFO 1 for FIFO 0. The core executes the Split instruction
and produces two instructions: instruction 4 (Match ‘a’) and instruction 7
( Match ‘b’) . Since both refer to the current character, the Manager adds
them in the current FIFO, i.e., FIFO 0. CICERO starts executing instruc-
tions 4 and 7, but only instruction 4 (i.e., Match ‘a’) matches and produces
a new instruction , i.e., number 5 Match ‘b’, which the Manager places on
FIFO 1. We move ahead of one character in the string, i.e., the last ‘b’, and
switch to FIFO 1. CICERO executes instruction 5, i.e., Match ‘b’, which
produces the JMP instruction, number 6. As for the previous case, there are
no more instructions referring to the current character, and we move for-
ward in the input string fetching the ‘c’ character, and we swap the FIFOs,
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Figure 6.7: CICERO base engine extended with multi-character support.

i.e. FIFO 1 for FIFO 0. Since the JMP does not read any character, in-
struction 10 is pushed into the current FIFO, i.e., FIFO 0. Finally, CICERO
takes instruction 10 from the queue and executes the AcceptPartial,
ending the overall matching procedure. Figure 6.6 shows the execution
timing diagram of the described running example.

As the reader can see from this diagram, there are no instructions with
different colors (i.e., referring to different characters) executed in the same
clock cycle, even though they may be ready to execute. For instance, in-
struction 5 is ready to be executed at clock cycle 8, however, its execution is
postponed at the end of all instruction related to third character. This execu-
tion delay will play a crucial role in the following section of the manuscript.

In standard processors, supporting threads requires that the thread con-
text is saved when it moves to the idle state and reloaded once the thread is
resumed. In CICERO, the threads refer to the parallel flows processing the
current character. Since the CICERO Core does not produce any temporary
values nor stores value in a register file, the CICERO context includes only
the PC and the current string pointer. The current character is shared among
all active threads; hence, the PC provides enough information to restart the
corresponding thread.
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6.4.2 CICERO Multi-Character Engine

The engine described in the previous section has an architecture able to
process a single character with multiple threads working in lockstep on
a sequence of instructions (i.e., it consumes a character for each possible
instruction flow). In this way, CICERO works in a breadth-first style that
consumes a character at a time without backtracking, similar to a single-
stride NFA (i.e., single character [319]), with two buffers. However, though
it has noteworthy abilities, the single character consumption rate limits the
achievable throughput of characters processed per second.

Though we adopt an algorithmic approach that is more efficient than
backtracking, the system considers all the current character’s execution
paths before moving to the next. The effectiveness of this approach is high
whenever compared to backtracking or processing workloads containing
several parallel sub-expression to evaluate. As the engine utilization in-
creases, we extract the best from CICERO. However, this is not always
the kind of workloads in the RE world [290], and sequential execution is
inevitable [44]. There are two possible approaches: dealing with thread
accumulation in the next character buffer or increasing the character pro-
cessing rate.

Considering the second approach, we can enhance the architecture by
analyzing a character window of 2W characters, i.e., 2W -stride NFA, with
parallel threads in lockstep, as shown in Figure 6.7. In this way, we can
keep code portability among different windows of engines (i.e., the modifi-
cation is not visible at the ISA level), but we increase the engine character
consumption rate that can now run on 2W − 1 parallel characters. How-
ever, the thread context has to be updated to keep track of the consumption
pointer of the input string. CICERO handles this optimization by employ-
ing a W-bit ID, called CC_ID, that refers to the current character in the win-
dow analyzed. Moreover, whenever we encounter Match or a MatchAny
instructions, we should update CC_ID to reflect the fact that we moved to
the next character. Considering that the CC_ID is a natural number mod-
ulo 2W , CICERO keeps the threads of the last character of the window in
a non-ready state. Indeed, their execution might conflict with a thread with
the same CC_ID that refers to a newer character.

For instance, consider the input string “abcde”, W = 2, and a current
window “abcd” within CICERO, with running threads with CC_ID’s 0,
1, 2, 3. If the thread with CC_ID 3 goes first and finds an instruction
that consumes a character (e.g., Match or MatchAny), the thread CC_ID
increases and become 0, i.e., (3 + 1) mod 22. At this point, this thread
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would wrongly target the ‘a’ in the buffer instead of the proper ‘e’. For
this reason, we stall threads related to the last character of the window that
explains the minus one in the 2W − 1 parallel characters.

To summarize, the proposed optimization is a sliding window that the
Manager handles as a circular buffer. Indeed, we need to add a FIFO for
each character of the sliding window (i.e., if W = 3 we need a total of 8
FIFOs) to handle separate thread contexts and adopt a policy that executes
always the oldest thread. An arbiter with programmable priority will let the
proper instruction execute. Therefore, we can consider the CICERO base
engine described in the previous section as a particular case with a window
W = 1.

Finally, we need to account for the logic required to slide the window
ahead, i.e., moving ahead of one character. Indeed, the enhanced architec-
ture tracks the number of threads per CC_ID in flight in every architecture
component (e.g., Buffers, CICERO Core, engine). Practically, there is a
2W -bit wide bitmap that has an ith active bit if there exists at least an ac-
tive thread with CC_ID = ith in the architecture. The bitmaps are then
combined with bitwise OR operations to hint the Manager on sliding the
window or not. Indeed, if the character bit closest to the beginning of the
window, i.e., the oldest one, is unset, the Manager fetches another character
and slides the window.

Running Example To better illustrate the mechanism behind CICERO with
Multi-Character Engine and how it takes advantage of non-determinism,
we consider an extension to the example of Section 6.4.1. Consider the RE
“.*(abab|abbb)”, which is shown in Figure 6.8 in the form of a CICERO
code, and consider as input string “abaababd”. We chose this RE because
it also highlights how CICERO manages non-determinism conversely to a
backtracking approach. Indeed, CICERO adopts a breadth-first like execu-
tion model that explores all the alternatives at the same level. The inherent
non-determinism in the considered RE leads CICERO to execute instruc-
tions 1, 2, 3, and 4 for every character in the string to test the actual starting
point of the matching procedure, which begins at instruction 4. Moreover,
since CICERO instructions do not rely on state, it can start considering new
instructions that are ready to execute while running instructions 1,2,3 and
4. The reader can appreciate a graphical representation of this effect in
Figure 6.9, which compares the pipeline of Single-Character CICERO (i.e.,
W = 1), on the top, with a Multi-Character (i.e., W = 2) CICERO, at the
bottom. This part of Figure 6.9 shows that by supporting up to four (i.e.,
2W , where W = 2) parallel characters, CICERO avoids waiting for the
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Figure 6.8: CICERO code corresponding to ".*(abab|abbb)".

string: a b a a b a b d

W=1 Clock cycles

PC Instruction C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 ...

1 split(4) S1 S2 S3 S1 S2 S3
2 matchany S1 S2 S1 S2
3 jmp(1) S1 S2 S1 S1 S2 S2
4 match(a) S1 S2 S1 S2
5 match(b) S1 S2
6 split(10) S1 S2 S3
7 match(a) S1 S2
8 match(b)

9 jmp(13)

10 match(b)
11 match(b)
12 jmp(13)
13 accept_partial

string: a b a a b a b d

W=2 Clock cycles

PC Instruction C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 ...

1 split(4) S1 S2 S3 S1 S2 S3 S1 S2 S3
2 matchany S1 S2 S1 S2 S1 S2
3 jmp(1) S1 S2 S1 S2 S2
4 match(a) S1 S2 S1 S2 S1 S2
5 match(b) S1 S2
6 split(10) S1 S2 S3
7 match(a) S1 S2
8 match(b) S1 S2
9 jmp(13)

10 match(b) S1 S2
11 match(b)
12 jmp(13)
13 accept_partial

Figure 6.9: Comparison of CICERO execution timing diagrams with Single character
Engine (W=1) and with Multi-Character Engine (W=2). S1, S2, and S3 indicate the
stages of CICERO core.

pipeline flush before processing the new character in the input string. For
instance, instruction 6 can execute at clock cycle 7 (bottom of the Figure),
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Figure 6.10: An overview of CICERO multi-engine architecture showing the overall in-
frastructure that wraps CICERO engines.

instead of waiting for the end of the processing of character ‘b’ at clock cy-
cle 12 (top of the Figure). Thanks to this improvement, we can increase the
pipeline occupancy (in the example, we move from an instruction per clock
of 11/17=64% to 16/18=88%). Consequently, the proposed optimization
reduces execution times and increases the character processing rate.

6.4.3 CICERO Multi-Engine Architecture

In the previous sections, we described the base design of the CICERO en-
gine together with the sliding window implementation. However, with our
execution model we can exploit a further degree of parallelism related to
the instructions of the threads. Since CICERO instructions do not have side
effects, they can be safely executed in parallel by multiple CICERO engines
to increase the parallelism. The parallel version of CICERO features mul-
tiple CICERO engines with a centralized Manager and a distributed Load
Balancing Infrastructure as shown in Figure 6.10.

As discussed above, the Manager supplies the current character to the
engines and makes decisions on the overall matching process. It decides
when to move to the next string character (or slide the window), accept a RE
if one of the engines notifies an accept, and reject the RE after consuming
all the instructions. To support parallel execution, we add a private block-
based instruction cache to each engine. Since the instruction memory is
read-only, no coherency protocol is needed. If a cache miss occurs, a round-
robin Arbiter regulates the access to the Instruction Memory.

The Load Balancing Infrastructure handles the thread’s execution on
different engines without affecting the critical path. Each CICERO engine
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Figure 6.11: CICERO interconnection topologies.

features an instance of the Load Balancing Infrastructure. It consists of
a Station and a latency insensitive channel [344]. At each clock cycle,
the Station receives as input the engine output (i.e., the thread information
composed of PC and a CC_ID), the number of instructions inside the local
engine, and information from the nearby stations. At the same time, the
Station obtains the expected latency of running an instruction that might
flows to the next Load Balancing instances. Moreover, the Station can re-
ceive threads to execute from the previous stations. Based on the number
of buffered instructions in the local engine (i.e., the local latency), and the
latency coming from the next Station, each Load Balancing Infrastructure
decides where to move the CICERO output and the threads by computing
the minimum latency among the possible paths. Finally, the Load Balanc-
ing Infrastructure computes its input latency as the minimum between the
number of threads to execute in the CICERO engine and the latency coming
from the next Station. The latency information is then adjusted to consider
the number of threads in flight along the channel. To avoid any combina-
tional path, registers separate the latency on every channel.

We devise two different topologies for the multi-engine architecture.
The first topology is a ring where each engine connects with the other two
engines at most, as in Figure 6.11a. The second topology is a torus where
each engine connects with at most four other engines, as in Figure 6.11b.
While the ring is a simple topology but with limited scalability, the torus
ideally provides a more scalable interconnection topology since each en-
gine has more alternative where to send the threads. In both cases, we need
a multiplexer to initialize the multi-engine architecture with the first thread.

Considering the ring topology (Figure 6.11a), the Station modules and
the Load Balancing Infrastructure ones are equivalent to the ones described
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in the previous section. Station modules are connected through latency-
insensitive queues to form a ring. This protocol guarantees correct execu-
tion in all cases. In this way, we aim at evenly distributing the number of
threads to elaborate across the engines.

For the torus topology (Figure 6.11b), we can reuse the ring topology’s
interconnection components to design an XY-distributed Load Balancing
station (called Torus Station) on top of the Ring Station. The Xin input
flows into a ring-based Station, and the link with CICERO engines remains
the same. The first ring-based Station’s output then passes to the second
ring-based Station via a latency-insensitive queue. In the second Station,
we have the additional input, Yin, which produces two outputs, namely Xout

and Yout. In this way, we can link the Ring Stations as in Figure 6.11b.

6.5 Experimental Validation

We implemented CICERO in SystemVerilog with a standard AXI interface
and created FPGA prototypes exploiting the Xilinx Vivado HLx 2019.2
toolchain. We targeted an embedded FPGA board, namely the Xilinx Ul-
tra96v2 (Zynq Ultrascale+ MPSoC XCZU3EG A484), on which we em-
ploy the PYNQ framework [61].

At first, we analyzed the impact of compiler and architectural optimiza-
tions on CICERO performance (Section 6.5.1). In particular, we measured
the code size and clock cycle reductions that the implemented compiler
optimizations enabled. Similarly, we investigated the matching time and
energy efficiency benefits that the multi-character and multi-engine ap-
proaches provide when targeting FPGA with running frequency of 200MHz.
Finally, we compared our best FPGA prototype against Google RE2 [334],
an optimized multi-threaded C++ library for RE, in terms of matching time
and energy efficiency (see Section 6.5.2).

In all the experiments, we used Protomata [345] and Brill [291] bench-
marks from the AutomataZoo suite [283], which represent proteomics and
natural language processing applications, respectively. We considered Pro-
tomata and Brill since they both belong to the family of “Regex” bench-
marks of the original ANMLZoo suite [290]. Therefore, their RE repre-
sentation is ready to use [283], and they target novel compelling research
fields, i.e., bioinformatics and natural language processing. Moreover, we
believe that these two benchmarks represent two opposite use cases: one
more suitable to CICERO features, i.e., with a high number of alternatives
(Protomata), against an unsuitable one with a wide variety of sequential
REs, (Brill). AutomataZoo reports an active set (i.e., the average number
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of active states in the NFA) of 712 for Protomata against 78 for Brill [283].
Indeed, most Protomata REs include many non-contiguous character sets to
test. In this way, a generic architecture has to evaluate a more significant
number of alternative paths/sub-expressions, and partial matches (part of
the string matches the initial part of the RE) are more likely to happen.
If adopting a backtracking approach, the target platform will most likely
suffer from it and obtain poor performance on Protomata. Instead, Brill
contains a mix of contiguous character sets and sequential matches. This
second benchmark brings more advantages to traditional von Neumann ar-
chitectures, which can handle these sets with simple arithmetic differences,
sequential executions, and aggressive approaches similar to backtracking.
We exclude other benchmarks since they either provide the automaton in-
stead of the RE or contain unsupported features of non-regular languages
such as backreferences. We evaluated these benchmarks on the same suite’s
input and applied the RE matching to at most 1,024 characters if the input
string was bigger. We also combined some REs in the two benchmarks to
increase the RE complexity. To do so, we used up to four operators ‘|’
to create parallel alternatives. These combined REs increase the number
of alternative paths simultaneously active and provide a scenario where the
final user aims to match a set of REs in a single input pass. We randomly
sampled 1,000 REs from both Protomata and Brill, and combined four dif-
ferent random REs together in a combinatorial manner, i.e., providing all
the possible combinations, as previously described. Then, we randomly
sampled 200 combined REs from this new set of REs and 200 possible in-
put strings from the original AutomataZoo. We will call these combined
versions Protomata4 and Brill4 benchmarks.

Throughout the evaluation, we employ three different sets of tests for
the considered benchmarks. The first one is a subset of REs and inputs ran-
domly sampled with a uniform distribution from the original benchmarks.
The second subset contains 200 REs randomly sampled with a uniform dis-
tribution from the combined benchmarks (i.e., Protomata4 and Brill4) to
increase the parallelism degree and better highlight the benefits of a multi-
engine CICERO. The third set comprises the complete benchmark tests as
published by the suite authors to provide a fair comparison with other ap-
proaches employing established test suites.

6.5.1 Evaluation of Compiler and Architectural Optimizations

This Section describes the impacts of compiler and architectural optimiza-
tions on CICERO performance. First of all, we analyze the benefits that
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Figure 6.12: Unoptimized vs optimized Lines of Code (LoC) difference normalized w.r.t.
the unoptimized LoC size ( UnoptLoC−OptLoC

UnoptLoC
) on REs sampled from Protomata4,

showing the improvements w.r.t. the original LoC.

the compiler optimizations introduce in terms of code size and process-
ing time (Section 6.5.1.1). Then, we evaluate how CICERO performance
scales according to the character window (Section 6.5.1.2) and the number
of engines (Section 6.5.1.3). Finally, we examine which is the most suit-
able interconnection topology for the CICERO multi-engine architecture
(Section 6.5.1.4).

6.5.1.1 Compiler Optimizations

Figure 6.12 shows the reduction in terms of Lines of Code (LoC), or in-
structions, among the code sizes of the Protomata’s REs compiled with
and without the optimizations. We normalized the difference between un-
optimized and optimized LoC by the unoptimized size (UnoptLoC−OptLoC

UnoptLoC
).

On average, the optimizations save 15.48% instructions for the Protomata4
combined REs, while Brill4 has an average reduction of 1 instruction, and
hence it is not plotted. Protomata code size reduction leads to a geometric
mean (geomean) speedup of 1.3× compared to the unoptimized code.

6.5.1.2 Character Window Scaling

Moving to the architectural enhancements, we start evaluating the impact
of the increment in character processing rate, i.e., the character window
(Section 6.4.2), against the base engine (Section 6.4.1). For this analysis,
we employ the standard Protomata and Brill benchmarks, and randomly
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Figure 6.13: The effects on queue scaling on a CICERO single engine (on 200 inputs and
200 REs sampled from Protomata and Brill).

sampled 200 REs and 200 possible input strings to showcase the behav-
ior on random REs. We measured the matching times of the FPGA proto-
types through CICERO performance counters after loading the code and the
string to match on CICERO memory. Besides, we extracted the board-level
power consumption with the Voltcraft Energy-Logger 4000, which mea-
sures the board voltage, current, and power directly from the plug, and then
computed the power consumption geometric means. Figure 6.13a shows
the boxplot distributions of weighted average matching times of a CICERO
single engine with windows of 2W characters, where W is equal to 1, 2,
3. We chose the weighted average because it assesses the RE process-
ing times better than raw runtimes as it also accounts for the processed
characters. For each RE, we compute the weighted average as follows:∑N

i=0 MatchingT imei·li∑N
i=0 li

, where N is the number of input strings, and li the
string length. In particular, according to the RE matching process outcome,
we weigh the matching times with different input string lengths. If the RE
does not match, we pick the whole string length; otherwise, as a match may
occur at an arbitrary point of the input string, we approximate the number
of processed characters with half of the string length.

The reader can notice from Figure 6.13a that moving from W = 1 to
W = 2 reduces both the median (the black line within the colored box)
and the height of the box, decreasing the average case and achieving stead-
ier matching times. Comparing W = 2 and W = 3, the boxplot of the
greater window (the blue one, W = 3) has a smaller length than the green
one (W = 2). Therefore, it provides a steadier weighted matching time.
However, this chart displays minimal differences among single CICERO
engines with W = 2 and W = 3; therefore, we will still consider both

129



i
i

“thesis” — 2022/1/23 — 18:33 — page 130 — #142 i
i

i
i

i
i

Chapter 6. A Breadth-First-based Domain-Specific Architecture for
Efficient Regular Expression Matching

configurations. Then, we computed the geomean of energy efficiency im-
provements when increasing the character window against the base engine
with W = 1. To do so, we use the previously employed weighted matching
time per RE, compute the energy efficiency 1

(WeightdMatchTme[ms]×Power[W ])

, and finally the geomean. Figure 6.13b highlights that the CICERO single
engine with W = 2 (i.e., the green one) is slightly more efficient than the
one with W = 3 on Protomata, while it is slightly worse on Brill. Both
Figure 6.13a and Figure 6.13b show that the increase in the window di-
mension gains practical improvements in median matching time, achieving
steadier matching times and better energy efficiency. Figure 6.14a shows
the resource utilization of the entire Ultra96v2 board, including both the
CICERO engine and the additional logic that connects the engine to the
ARM processor. We can notice that the CICERO engine is mainly LUT
and BRAM demanding. Indeed, their usage grows according to W, as the
engine needs further logic to manage the additional number of alternative
paths. On the other hand, FF growth is more restrained since CICERO
mainly employs FFs for the Manager state machine. Finally, the chart indi-
cates that a CICERO engine has a low resource usage; indeed, even when
W=3, the engine requires at most 5% of LUTs.

6.5.1.3 Engine Scaling

We analyzed the scaling effectiveness of CICERO multi-engine architec-
ture, by employing randomly sampled combined benchmarks (i.e., Pro-
tomata4 and Brill4) to increase the cores utilization. In this way, we aim
at showcasing the impact of scaling to multiple engines with a ring topol-
ogy. Figure 6.15a shows the geomean of the speedups achieved by 4, 9,
and 16 cores with W = 2 (vertical lines) and W = 3 (horizontal lines)
against the CICERO single engine with W = 2. For Both Protomata4 and
Brill4, we obtain a speedup that scales with the core number. Conversely,
Figure 6.15b displays the geomean of energy efficiency improvements at
the core scaling on the same benchmarks and shows how the efficiency im-
provements do not reflect the speedups. Indeed, considering Protomata4,
the most energy-efficient architecture has four engines with both W = 2
and W = 3. However, Brill4 indicates that the most energy-efficient archi-
tecture has nine engines with W = 3. These results prove how different
architectures provide different trade-offs from both matching time and en-
ergy efficiency perspectives, depending not only on the kind of REs, but
also on the input string. For these reasons, from now on, we will consider
only the architecture with nine engines and W = 3 as the reference one,
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Figure 6.15: The effects on CICERO engine scaling (on 200 inputs and 200 REs from
Protomata4 and Brill4).

being the optimal trade-off among matching time and energy efficiency.

Figure 6.14b reports how the resource usage scales according to the
number of engines and W. While the FF utilization remains relatively low
(almost 8% in the worst case), the number of LUTs and BRAMs signifi-
cantly increases due to the additional logic and memory required by both
the engines and the load balancing infrastructure. This behavior is particu-
larly evident when considering the sixteen-engine configuration. However,
since such a configuration does not provide relevant performance benefits
compared to a nine-engine one, there is no point in selecting it. On the
other hand, even though W = 3 requires more resources than W = 2, the
higher speedup and energy efficiency (especially on Brill4) compensates
for the additional resources. This analysis further supports our choice of
the nine-engine architecture with W = 3 as the reference one.
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Figure 6.16: Weighted avg. matching time and energy efficiency of the topologies (on 200
inputs and 200 REs from Protomata4 and Brill4).
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Figure 6.17: Resource usage when considering a 9-Engine architecture with W=3 but
with different topologies.

6.5.1.4 Topology Analysis

Before diving into the comparison with other literature approaches, we
compare the ring topology against the torus one for our reference archi-
tecture of nine engines and W = 3. We exploited the same benchmarks
as before, i.e., Protomata4 and Brill4, and compare the matching times and
energy efficiencies of both topologies. Figure 6.16a and Figure 6.16b show
the cubic fits of these measures. In this way, the reader can see that, on Pro-
tomata4 benchmark, the torus curve (the red line) always remains above
the ring one (the black line) as the RE matching time increases. Consid-
ering the efficiency curves, even though the ring (the blue line) generally
shows a better energy efficiency, the torus (the green line) performs slightly
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better over the most time-demanding subset of REs, though it is a very re-
stricted subset. Moving to the Brill4 results in Figure 6.16b, the cubic fits of
matching times and energy efficiencies demonstrate that the ring gains bet-
ter matching time (i.e., the black line stays below the red one) and achieves
a higher efficiency (i.e., the blue line stays above the green one) for all the
considered REs. In conclusion, although the torus represents a better solu-
tion in terms of scalability and a good candidate for a more suitable layout
design, these results prove that the simplicity of ring topology is enough to
keep up with both the matching time and energy efficiency of Protomata4
and Brill4 benchmarks. Besides, as shown in Figure 6.17, the ring topology
is also less resource-demanding than the torus one.

6.5.2 Comparison Against Google RE2

As mentioned before, our analysis identified the ring-based nine-engine
architecture with W = 3 as the most efficient one. This implementa-
tion requires 11,563 (16.39%) LUTs, 6,600 (4.68%) FFs, and 81 (18.75%)
BRAMs on the Ultra96v2 FPGA. We compared our implementation with
Google RE2 executed on two candidate processors: an embedded solution,
the ARM Cortex A53 (mounted on the Ultra96v2), and a mainstream one,
the Intel i9-9880H. The RE2 library was built from sources [334] with -O3
optimizations. We set the comparison on partial match operation in cold-
start conditions and measured matching time and energy efficiency for the
matching process only. As previously stated, we relied on the CICERO per-
formance counters to measure the matching time after loading the code and
the string to match on CICERO memory. We used the C++ chrono library
to measure the execution time of a RE2 code snippet that interprets the RE
by creating an RE2::RE2 object and calling the RE2::PartialMatch
function. We repeated the entire procedure 30 times for both Intel and ARM
CPUs to mitigate cache effects and acquire statistically relevant results. As
before, we measured and weighted the average execution times on the string
length analyzed. Finally, we selected the Thermal Design Power (TDP) of
the Intel CPUs as reference power consumption. For the ARM CPUs and
the CICERO FPGA prototype, we employed the Voltcraft Energy-Logger
4000 to extract the board-level power consumption.

Figure 6.18 shows the geomean values of the matching times (left-hand
side) and energy efficiency results (right-hand side) achieved by the A53,
i9, and CICERO on all the possible RE-input couples from Protomata and
Brill benchmarks. The results in Figure 6.18a show that CICERO achieves
lower matching times than the embedded processor (i.e., the A53) with
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Figure 6.18: Matching times and energy efficiency geomean of ARM A53, Intel i9, and
CICERO on the complete Protomata and Brill.

speedups of 3.526× and 2.021× on the Protomata and Brill, respectively.
However, the i9 shows matching times even better than ours in both bench-
marks. Instead, considering the energy efficiencies achieved, Figure 6.18b
highlights comparable results of CICERO and the mainstream processor
(i.e., the i9) on the Brill benchmark, i.e., values are around 3.136 and 3.119
[ 1
ms·W ], respectively. However, Protomata benchmark shows the CICERO

advantage of tailoring the architecture for a higher energy-efficient com-
putation. Indeed, CICERO delivers 1.89× and 2.851× energy efficiency
improvements than the i9 and the A53, respectively.

Overall, these results exhibit remarkable matching times and higher ef-
ficiency with the standard benchmarks as they are. However, our approach,
built on Thompson’s algorithm, which can scale linearly in the string length
without paying the cost of alternative paths backtracking. For this reason,
we collect the results of a combined version of the benchmarks as previ-
ously described. This combination increases the alternative paths simulta-
neously active and better mimics a real scenario where the final user aims
to search all the REs in a single input pass. Indeed, considering the anal-
ysis of gigabytes of data, an optimized search wants to reduce as much as
possible the number of times to scan the input data. Figure 6.19 presents
the results of these combined experiments on the considered architectures.
While the i9 matching times hold the same magnitude order as the stan-
dard benchmark and the A53 shows deterioration, CICERO reveals dra-
matic improvements as in Figure 6.19a. Indeed, the speedups achieved
by the i9 and CICERO over the A53 are 10.386× and 14.642× on Pro-
tomata and 10.144× and 35.370× on Brill. While comparing the i9 with
CICERO, our architecture delivers speedups of 6.173× and 3.487× against
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Figure 6.19: Matching times and energy efficiency geomean of ARM A53, Intel i9, and
CICERO on 200 inputs and 200 REs from Protomata4 and Brill4.

the mainstream architecture on Protomata and Brill, respectively. Mov-
ing to Figure 6.19b and the associated energy efficiency results, CICERO
FPGA-based implementation presents outstanding results. Especially, CI-
CERO achieves 8.409× and 20.798× energy efficiency improvements than
the most energy-efficient CPU (i.e., the i9) and 11.839× and 28.600× than
the A53 over Protomata and Brill, respectively. The domain specialization
of the architecture combined with Thompson’s approach leads to remark-
able speedups and energy-efficient computations against both an embedded
and a mainstream processor.

6.6 Related Work

As demonstrated in the previous chapter a quantitative comparison is unfair,
given the extremely differences in the employed approaches. Thus, we
provide a qualitative analysis, as reported in Table 6.2.

As from Section 5.2, Stream-Dataflow Architecturess (SDAs) usually
rely on spatial reconfigurable architectures and efficiently compression of
the Deterministic Finite Automata (DFA) delivering remarkable perfor-
mance at the high cost of resynthesis the hardware for new patterns [159,
160, 284, 304, 305, 319, 326]. CICERO is, instead, a specialized but flexi-
ble architecture that can support several different REs thanks to the custom
ISA and the compiler-based framework. Therefore, our approach enables
generating a new binary code with software compilation time instead of
waiting hours for generating a bitstream. Thus, comparing these two di-
verse approaches would not result in a fair apple-to-apple comparison.

Generally, In-Memory Architectures (IMA) or Software-Programmable
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Table 6.2: Related Work Summary

Work Target Device Architecture Execution Compilation Compilation Time
Scenario Type Mode Framework Required

CICERO-FPGA Embedded XCZU3EG (16nm) Software-Programmable NFA Yes Software like

FPGA [319] Datacenter XC7VX690T (28nm) Stream-Dataflow DFA No Bistream like
FPGA [305] Datacenter XC7VX1140T (28nm) Stream-Dataflow DFA No Bistream like

FPGA/ASIC [284] Embedded
Arria V SoC (28nm)/

ASIC (45nm) Stream-Dataflow DFA No Bistream like/N.A.

FPGA [159] Datacenter ADM-KU3 (20nm) Stream-Dataflow NFA Yes Bistream like
FPGA [304] Datacenter XCVU9P (16nm) Stream-Dataflow NFA Yes Bistream like

FPGA [160, 326] Datacenter XCVU9P (16nm) Stream-Dataflow NFA Yes Bistream like

TCAM [285] Datacenter N.A. Software-Programmable DFA N.A. Software like
PowerEN [299, 336] Datacenter ASIC (45nm) Software-Programmable DFA Yes Software like

FPGA [48] Datacenter XC7VX485T (28nm) Software-Programmable DFA Yes Software like
AP [160, 290, 304, 327] Datacenter DRAM (22nm) Software-Programmable NFA Yes Software like

Architecturess (SPAs) are platforms more similar to CICERO. Indeed, they
can update the set of REs without changing the underlining architecture,
nor the bitstream [48, 285, 299, 336]. All these methods are based on the
DFA representation, which grows exponentially with the complexity of the
RE. Instead, we focus on an NFA implementation to allow parallelization
of the alternatives. The algorithmic approaches are fundamentally differ-
ent, though semantically equivalent, and the NFA implementation proved
to lead execution times linear in the string length.

The Automata Processor (AP) was an outstanding spatial reconfigurable
architecture that embedd an automaton into the reconfigurable fabric [327,
328], although it was a promising solution [159, 160, 291, 316], only sim-
ulation results were reported [304], in contrast with our FPGA prototype.

6.7 Final Remarks

This Chapter presented CICERO, a software-programmable, Domain-Spe-
cific Architecture (DSA) for REs matching. CICERO exploits Thompson’s
algorithm to create a non-deterministic RE representation that can execute
on multiple engines in parallel without backtracking. We also provide an
end-to-end framework for translating REs into optimized code. We vali-
date CICERO architectural optimizations on an embedded FPGA on bench-
marks from AutomataZoo [283], showing increasing benefits in the pro-
posed solution, e.g., from the code size to the matching times and energy
efficiencies. CICERO multi-engine and multi-character architecture shows
up to 28.6× and 20.80× energy efficiency improvements against the highly
optimized Google RE2 library onto an embedded processor (the ARM A53)
and a mainstream processor (the Intel i9), respectively.
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CHAPTER7
Conclusions and Future Research

Directions

This Chapter draws the conclusions, sums up the most important takeaways
of this dissertation, highlights the limitations of the presented approaches,
and paves the way to open new research paths.

The domain-specialization direction showcases an up-and-coming al-
ternative to ever-increasing energy and performance requirements. Indeed,
many commercial Domain-Specific Architectures (DSAs) are already on
the market (e.g., Apple M1 Neural Engine [346], Pixel Visual Core [12],
Tensor Processing Unit (TPU) [11], MSR Neural Processing Unit (NPU)
[347]), and academics are pushing this research constantly [9, 17, 52, 231,
239, 241, 348, 349]. Within this context, this dissertation focuses on the
role of Reconfigurable Computing (RC) systems, especially Field Progr-
ammable Gate Arrays (FPGAs), with a focus on the architectural side and
the comprehensive software stack: the so-called Domain-Specific Recon-
figurable Architectures (DSRAs).

DSRAs represent one of the hottest trends of RC systems (Chapter 2).
They can be clustered based on the software programmability and datapath
configurability. Their three main classes are software-programmable DSA,

137



i
i

“thesis” — 2022/1/23 — 18:33 — page 138 — #150 i
i

i
i

i
i

Chapter 7. Conclusions and Future Research Directions

streaming architectures, which leverage design automation toolchains, Co-
arse Grain Reconfigurable Architecture (CGRA), which are mainly a theo-
retical platform [38]. On top of their architecture, design and programma-
bility abstractions are essential elements to account in the DSRA method-
ologies (Chapters 2 and 3) for efficient, usable, and reproducible platforms.
Given that each computational domain presents different characteristics
(e.g., computational patterns, precision requirements), this dissertation pre-
sents domain-specific results of different DSRAs in terms of design method-
ologies, automation, and usability.

Image Registration (IRG) domain usually leverages context-specific fea-
tures to decrease monster execution times of optimization procedures at
a reasonable power budget. Therefore, this dissertation presents a cross-
platform open-source1 design automation framework that exploits a highly
customizable streaming architecture for the most compute-intensive part of
IRG, the similarity metric calculation (Chapter 4). This DSRA employs
a dataflow map-reduce computational pattern to suit the requirements, the
ability to scale to different deployment devices, and a Python-based soft-
ware layer to deliver state-of-the-art performance and energy efficiencies.

Moving ahead in the considered domains, Regular Expressions (REs)
matching is an intrinsically sequential and control-intensive computation
that has a significant importance [44,160,300,316]. Nevertheless, its com-
putation nature makes this kernel extremely attractive for spatial architec-
tures [316] and especially for what this dissertation call streaming DSRAs.
However, this usually means sacrificing flexibility, which is unacceptable
for RE matching. Therefore, this dissertation presents two software-pro-
grammable DSAs that exploit the Deterministic Finite Automata (DFA)
(Chapter 5) and Non-deterministic Finite Automata (NFA)2 (Chapter 6)
computational approaches to tackle this issue, while still delivering remark-
able performance and energy efficiencies.

7.1 Limitations and Future Work

Although this dissertation advocates for the centrality of RC in the domain
specialization, not every domain and not every volume’s size can bene-
fit from reconfigurable systems adoptions. For instance, though it presents
several interesting characteristics, the database domain suffers from memory-
bandwidth and programmability problems [350]. Nevertheless, the newer
generations of reconfigurable systems will become key players in memory-
bandwidth hungry applications through the integration of hard-blocks for
1 https://github.com/necst/iron 2 https://github.com/necst/cicero
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7.1. Limitations and Future Work

interconnectivity, such as OpenCAPI [147], and powerful memories, such
as High-Bandwidth Memory (HBM) [351].

On top of this, the increasing heterogeneity, e.g., Xilinx ACAP [67],
would undoubtedly increase the performance harvestable from the same
reconfigurable system but poses enormous challenges in the hardware/soft-
ware co-design and increases the complexity of the design itself. To this
extent, we think that CGRAs [38] will achieve a key role, thanks to their
flexibility and computation capabilities. However, the reconfigurable com-
puting community would have to put a significant effort into extending to
CGRAs the work done so far for FPGAs. Along with these architectural
and use improvements, Computer Aided Design (CAD) tools and method-
ologies of software-hardware co-design must grow to make all these great
features usable. Any hardware improvement would not lead to further steps
without usability, but only new useless great hardware. Moreover, some
computational models, such as the bit-serial one [50]3, show to be more
effective whenever tightly coupled with the memory locations, such as the
cache [352] or the Dynamic RAM (DRAM) itself [353]. Indeed, this so-
called Processing In Memory (PIM) usually exploits the bit-serial nature
of main memories to bring the computation directly into the memory chip.
In this regard, as a future direction, we envision an investigation in this
ecosystem that is rapidly growing with exciting results [354, 355].

Then, this dissertation presented DSRAs and their comprehensive stack
with their limits and advantages and possible future directions for specific
domains. The design automation framework for IRG presented highly en-
couraging results, with state-of-the-art performance and energy efficiency.
Although the streaming DSRA is optimized and delivered with high-level
Application Programming Interfaces (APIs), the domain may present pe-
culiarities where other similarity metrics perform better than the Mutual
Information (MI), and a complete open-source application layer is miss-
ing. Moreover, the variety of computations required forbids the creation
of a simple DSA. However, we envision that a heterogeneous CGRA may
represent the viable compromise to tackle IRG computation challenges.

Considering the REs domain, there is no a clear computational winner
among TiReX (Chapter 5) and CICERO (Chapter 6). Although the REs as
instruction methodology showcases remarkable achievements for both the
DSAs, the architectures present their limitations. On the one hand, TiReX
suffers the algorithmic backtracking issue, and it cannot handle this issue
currently. On the other hand, CICERO demonstrates throughput limita-
tions and load balancing problems that limit the engine number scaling.
3 https://github.com/EECS-NTNU/bismo

139



i
i

“thesis” — 2022/1/23 — 18:33 — page 140 — #152 i
i

i
i

i
i

Chapter 7. Conclusions and Future Research Directions

Within this context, we envision improvements on the architectural side to
tackle both issues. We foresee the creation of co-design approaches where
software and hardware automatically collaborate to leverage shared infor-
mation and dramatically improve the overall process. On top of this, an
heterogeneous multi-core architecture combined of TiReX and CICERO
core can deliver the requested performance and run-time adaptability to the
workloads, similarly to a big.LITTLE architecture [356].

On top of these design methodologies and automation frameworks, a
Design Space Exploration (DSE) methodology might improve the design
process further while providing interesting insights on utilization and achiev-
able frequency, such as open-source frameworks4 [53]. Moreover, adding
(static) performance models (e.g., Roofline [357]) and approximation mod-
els of the physical toolchain run could give an extreme boost to DSRAs
development and continuous deployment.

7.2 Dissertation Takeaways

Overall, the main takeaways from this dissertation are the following.
Takeaway 1: RC systems, and especially FPGAs, are and will be cen-

tral to the domain-specialization direction. Their reconfigurable and het-
erogeneous features make these devices attractive for domain-specialized
adaptive architectures.

Takeaway 2: Reconfigurable systems will play a crucial role in cloud
computing and High Performance Computing (HPC). Among the ongoing
projects, IBM cloudFPGA [134, 135, 358] and MSR Honeycomb [359] en-
vision distributed systems with Central Processing Unit (CPU)-free nodes,
where FPGAs would be able to remove the burden of generalities coming
from CPUs, or collaborate in a disaggregated fashion [360].

Takeaway 3: The field of digital design abstraction for FPGAs is cycli-
cal. From a very specific language for hardware description (i.e., VHDL
and Verilog), we move to High-Level Synthesis (HLS) with the employ-
ment of generic C language, and we finally find Domain-Specific Lan-
guages (DSLs) with their extreme specificity for given computations.

Takeaway 4: Among DSL clusters in Chapter 3, the intermediate in-
frastructure one represents an exciting trend for hardware design. Indeed,
it may embody the cyclicity in this field and the back to the generality. In
this way, researchers could build general-purpose languages that can run
not only on CPUs but also on FPGAs [249]. Undoubtedly, this trend will
require a specialized compilation and toolchain flow for a hardware design
4 https://github.com/necst/dovado
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that can be vendor-agnostic and open, similar to LLVM [361].
Takeaway 5: CAD or general design automation toolchains along with

high-level generators [171] are essential to increase productivity towards
iterative lifecycles [14,15], lower the entry-level barrier, enable large-scale
emulation platforms [139], and ease the reproducibility.

Takeaway 6: A usability layer that comprehends automation/generators
and software abstractions is paramount for every kind of architecture that
would like to be used by someone beyond the developers themself.

Takeaway 7: There is no single architecture able to tackle every do-
main problem optimally. Each domain presents different characteristics
that have to be taken into account for the design of DSRAs. However, this
consideration might imply the bloom of DSAs for each domain, which is
a non-negligible effort. Therefore, applications needs will drive the real
necessity of developing such architectures.

Takeaway 8: A domain might present more than a single computational
pattern that fits the requirements of the different workloads. Based on these
needs, it is paramount to consider all of them and provide an adaptable ar-
chitecture. An example is the REs domain, where depending on the degree
of alternatives and the dataset, a NFA-like execution mode impacts dramat-
ically against a DFA-like in both positive and negative aspects.

Takeaway 9: Adaptability has a cost. From run-time resource estima-
tions to datapath modifications, from precision variations to computation
fitting. All this flexibility imposes an unavoidable tax.

Takeaway 10: Though CGRAs are mainly a theoretical platform [38],
they will become more and more relevant. On top of significant abstrac-
tion efforts, CGRAs will represent the architecture that fill the gap between
stream architectures and DSA for their coarse-grained reconfigurability na-
ture and massive (heterogeneous) parallelism degree.

Takeaway 11: What comes naturally after this dissertation is our belief
in a future open FPGA ecosystem. While the software advanced thanks to
the open-source world, the hardware community is still stuck in the closed
version, without contributing to the ecosystem growth. Similarly to the
RISC-V revolution [362, 363], we envision a open ecosystem for FPGAs5

from the architecture itself [364, 365] to the design toolchains [120, 165].
Indeed, open-source FPGA-based projects are more and more, and even
some vendors started to open their toolchains [116, 366, 367].

5 https://osfpga.org/
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List of Acronyms

ACS Accelerator-Centric Synthesis

ALM Adaptive Logic Module

API Application Programming Interface

AP Automata Processor

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction-set Processor

AWS Amazon Web Services

AXI Advanced eXtensible Interface

BLE Basic Logic Element

BRAM Block RAM
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List of Acronyms

BSV BlueSpec SystemVerilog

CAD Computer Aided Design

CGRA Coarse Grain Reconfigurable Architecture

CDR Clock Data Recovery

CLB Configurable Logic Block

CNN Convolutional Neural Network

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DDR Double Data Rate Memory

DFA Deterministic Finite Automata

DLL Delay Locked Loop

DNN Deep Neural Network

DPR Dynamic Partial Reconfiguration

DPU Deep Processing Unit

DRAM Dynamic RAM
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DSA Domain-Specific Architecture

DSRA Domain-Specific Reconfigurable Architecture

DSL Domain-Specific Language

DSE Design Space Exploration

DSP Digital Signal Processing

EDA Electronic Design Automation

EMIB Embedded Multi-die Interconnect Bridges

FA Finite State Automaton

FF Flip Flop

FPGA Field Programmable Gate Array

FaaS FPGA-as-a-Service

FSM Finite State Machine

GPU Graphics Processing Unit

HaaS Hardware-as-a-Service

HBM High-Bandwidth Memory

HDL Hardware Description Language
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List of Acronyms

HLS High-Level Synthesis

HPC High Performance Computing

HPC High Performance Computing

IC Integrated Circuit

IDS Intrusion Detection System

IMA In-Memory Architectures

IR Intermediate Representation

IRG Image Registration

ISA Instruction Set Architecture

LB Logic Block

LUT Look-Up Table

MGT Multi-Gigabit Transceiver

MI Mutual Information

ML Machine Learning

NFA Non-deterministic Finite Automata

NoC Network on Chip
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NN Neural Network

NPU Neural Processing Unit

NRE Non-Recurring Engineering

PAL Programmable Array Logic

PD Phase Detector

PEN Power Edge of NetworkTM

PISO Parallel In Serial Out

PIM Processing In Memory

PLL Phase Locked Loop

PLA Programmable Logic Array

QPI QuickPath Interconnect

RAM Random Access Memory

RC Reconfigurable Computing

RE Regular Expression

RMT Reconfigurable Match Tables

RTL Register Transfer Level
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List of Acronyms

RX Receiver

SerDes Serializer/Deserializer

SIPO Serial In Parallel Out

SiP System in Package

SDA Stream-Dataflow Architectures

SoC System on Chip

SPA Software-Programmable Architectures

SRAM Static Random Access Memory

TCAM Ternary Content Addressable Memory

TPU Tensor Processing Unit

TX Transmitter

URAM Ultra RAM

VCO Voltage Controlled Oscillator
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