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Abstract: The imminent rise of autonomous driving, slated for realization by
2030, promises a transformative era marked by enhanced safety, comfort, and oper-
ational efficiency. The journey from driver assistance to fully autonomous systems
presents challenges, with LiDAR technology playing a crucial role. In this paper,
we explore cooperative perception strategies for LiDAR point clouds, addressing
challenges like occlusion and limited data sharing. Current cooperative perception
works propose a framework in which each vehicle shares the position of the detected
objects. These methods experience significant estimation errors and noise due to
insufficient local observation. Other studies develop neural networks to compress
and reconstruct entire point clouds, minimizing the reconstruction error. Even
though these studies prove to be effective, the correct functioning of the algorithm
requires its deployment on all connected vehicles. The purpose of this paper is
to investigate an alternative approach where raw data can be transmitted without
relying on the latter requirement. We design and test a point selection algorithm
based on a graph neural network that aims to identify which points belonging to a
point cloud acquired by a vehicle are worth to be transmitted to another vehicle.
Our experiments are conducted in a simulated vehicular urban scenario relying on
realistic LiDAR and Vehicle-to-vehicle communications simulators. Experimental
results show that our algorithm can detect important areas that cannot be per-
ceived by the receiver vehicle with mean 81% validation accuracy over different
communication bandwidths, reducing the redundant transmitted data. Challenges
in training convergence speed and hyperparameters search are acknowledged, sug-
gesting avenues for further developments.

Key-words: cooperative perception, LiDAR, autonomous vehicles, point cloud segmentation, graph
neural networks

1. Introduction

The imminent advent of autonomous driving, a technological milestone slated for realization by 2030, promises to
usher in a transformative era characterized by substantial societal benefits, notably regarding safety, comfort,
and operational efficiency. The Society of Automotive Engineers (SAE) [1] systematically categorizes this
paradigm shift in transportation, distinguishing autonomous driving into six distinct levels. In the initial
three levels (0-2), while maintaining complete control of the vehicle, human drivers find themselves assisted by
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elementary functionalities such as lane-changing detection, blind spot warnings, and emergency braking. As we
progress through levels 3 to 5, a visionary landscape emerges, wherein a fully driverless system eliminates the
requirement for human intervention even in over-driving scenarios.

The current landscape of the self-driving revolution is marked by the development of Autonomous Vehicles
(AVs) tailored for specific, controlled environments, including industrial fleets dedicated to logistics, farming,
and operations within airport precincts. This nascent stage, however, is merely the precursor to a forthcoming
decade that holds the promise of a monumental paradigm shift. A profound transformation awaits consumers
as they are poised to reimagine their travel time, utilizing it for work-related activities, moments of relaxation,
or accessing various forms of entertainment.

Within the intricate tapestry of sensing technologies pivotal for realizing autonomous driving, LiDAR emerges
as a standout, earning recognition as the "eyes" of driverless vehicles [2]. This technology distinguishes itself
through its markedly superior spatial resolution. However, the journey toward achieving seamless autonomy
is accompanied by inherent challenges. These challenges include occlusion, a confined perception horizon from
a limited field of view, and the lower density of data points in distant regions, as shown in Fig. 1. Failing
to overcome these limitations can lead to dangerous situations: in the Hyundai competition, one of the AVs
crashed because of bad weather conditions [3], Tesla’s Autopilot failed to detect a white truck and crashed with
it, killing the driver [4], and Google’s AV collided with a bus during a lane change due to its inability to estimate
the bus’s speed [5].

To tackle these impediments head-on, a compelling solution emerges through vehicle-to-vehicle (V2V) com-
munications to exchange sensory information between vehicles [7]. This exchange of information can enhance
the perception of the environment for each vehicle: such process takes the name of cooperative perception [8, 9].
However, the pursuit of cooperative perception introduces its own set of challenges. For instance, a standard
commercial LiDAR system with 64 laser diodes produces a staggering 2.8 million data points per second, cov-
ering a 360° horizontal field of view, a 26.8° vertical field of view, and a range extending beyond 70m in all
directions. While this precise three-dimensional mapping capability is commendable, sharing even a fraction
of this voluminous data imposes significant challenges due to the impracticality of transmitting raw data with
existing communication technologies.

In this paper, we explore the cooperative perception of point clouds, aiming to uncover novel strategies to
address the limited perception offered by LiDARs and communication constraints. We explore the potential
application of a graph neural network, specifically opting for a Grid-GCN [10] in the context of point cloud
segmentation. This aims to determine the points within a point cloud that merit transmission to another vehicle.

The main contributions of this paper are the following:
• We present a novel deep learning-based cooperative perception method that, differently from the existing

cooperative perception approaches, proposes to use a graph neural network to identify which points
belonging to a point cloud acquired by a vehicle are worth to be transmitted to another vehicle. This
approach allows the transmission of valuable raw data without overloading the network.

• We develop a simulation framework for testing our cooperative perception algorithm. Differently from
works, e.g., [11, 12], that have already provided a simulator based on SUMO [13] and CARLA [14], we
integrate these simulators with the GEMV2 [15] to simulate the V2V communication channel accounting
for the geometry of the urban scenario.

The remainder of this paper is organized as follows. In Section 2, we give an overview of the state of the art
for cooperative perception methodologies. Furthermore, we list and describe the advantages and disadvantages
of the current techniques available for object detection and semantic segmentation on point cloud based data.
Section 3 defines the system model taken into consideration. The problem formulation is provided in Section 4,
while in Section 5, we propose our deep learning-based cooperative perception method. In Section 6, we specify
the simulation framework and provide experimental results. Finally, the conclusions are drawn in Section 7.

2. Related works

In this section, we provide an overview of the related works. In Section 2.1, we list and discuss different
approaches used in the literature to address cooperative perception. In Section 2.2, we investigate which are
the most suitable methods and architectures that can take as input a point cloud. Finally, in Section 2.3,
we describe in detail the properties of the model we recognize as most suitable for the cooperative perception
scenario.

2.1. Cooperative perception using point clouds

In cooperative perception, vehicles acquire raw data through their sensors and share relevant information to
increase environmental awareness. The pipeline of cooperative perception can have different implementations
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Figure 1: Example of point cloud from simulated LiDAR within a random vehicular scenario. Two
sensing limitations of LiDAR can be seen here, i.e., the point cloud density decreases with the distance
from the sensor, and dynamic obstacles (e.g., vehicles) can occlude regions of the environment (black
regions). Different colors represent different point heights.

and differ in what information is shared. Based on the bandwidth constraints, the principal cooperative method-
ologies are late collaboration, early collaboration, and mixed collaboration. In this section, we discuss the most
relevant works for each of them and analyze their advantages and disadvantages.

Late collaboration Late collaboration conducts cooperation in the output space, which encourages the
fusion of the perception result output by each agent. As an example, each agent performs object detection tasks
on their own perceived data and sends the detected objects’ positions to the other agents. Aoki et al. [11] are
the pioneers in this research area. The authors propose to model the cooperative perception task as a control
problem and to solve it using a Deep Q Network (DQN) [17]. The agent’s state is modeled as a grid, and a label
is associated to each grid’s cell to indicate if the agent has identified an object in that position. Furthermore, the
receiver’s spatial information and the communication channel information are added to the sender’s state. For
each cell, the agent can choose whether to send that cell to the paired agent. The agent receiving the new data
returns a reward that indicates the level of satisfaction based on the quality and novelty of the received data.
Even though this approach shows an overall perception improvement, scaling with the resolution is limited.
Indeed, given that each grid’s cell corresponds to an action, the number of possible actions is proportional to
the level of grid resolution. Unfortunately, in a DQN, the number of discrete actions that must be explicitly
represented grows exponentially with increasing action dimensionality.

Abdel et al. [18] propose to overcome this issue by replacing the DQN with a Branching Dueling Q Network
(BDQ) [19]. In this architecture, the represented actions linearly increase with the action dimensionality.
Moreover, they use the quadtree data structure to compress grid information cleverly, reducing bandwidth
overload.

Even though late collaboration saves bandwidth, it is susceptible to agent positioning mistakes and experiences
significant estimation errors and noise due to insufficient local observation.

Early collaboration Early collaboration occurs in the input space, where infrastructure and vehicles com-
municate unprocessed sensory data. The early collaboration approach compiles raw measurements from every
vehicle and piece of infrastructure to support an integrated viewpoint. As a result, every car may carry out
the subsequent processing and complete perception from a holistic viewpoint, which can effectively resolve the
long-range and occlusion problems that arise in single-agent perception. With the aid of rich information,
Arnold et al. [20] demonstrate how early fusion can be highly beneficial with respect to late fusion models in
cooperative perception scenarios. The results demonstrate that early cooperative perception fusion can recall
more than 95% of the objects, contrasting with the 30% for single-point perception in the most challenging sce-
narios. Nevertheless, exchanging raw sensory data necessitates extensive connection and can quickly overload
the communication network with large amounts of data, which makes it impractical for most applications.
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Mixed collaboration To benefit from both the early collaboration and late collaboration approaches,
mixed collaboration methods have been proposed. Arnold et al. [20] suggested exchanging low-level information
(early collaboration) in situations where visibility is inadequate and high-level information (late collaboration)
in situations where the sensor has high visibility. The authors notice that objects in close proximity to a sensor
exhibit a high point density, thereby increasing the likelihood of detection through observations from a single
sensor.

An alternative and promising work is V2VNet [21]. Each vehicle in the V2VNet system transforms its acquired
point cloud data into a bird’s-eye-view (BEV) representation [22]. This BEV data is then processed by a 2D
convolutional neural network (CNN) to learn new features and compress the representation to meet bandwidth
constraints. The compressed data is then broadcast to other vehicles. Upon receiving compressed messages from
neighboring vehicles, each vehicle decompresses these messages using a 2D CNN. The aggregated information
from multiple vehicles is fused into a unified BEV representation of the entire scene using a Graph neural
network (GNN). This approach enables efficient data sharing and fusion among vehicles, enhancing overall
perception and prediction capabilities in complex driving scenarios. However, it is important to note that this
method assumes that all vehicles use the same compression and decompression algorithms. This could pose
challenges, particularly in establishing communication between diverse vehicular equipment, as the latter may
embed different cooperation models.

For this reason, we are interested in learning how to identify and transmit only the pertinent points from the
acquired point cloud to the receiver.

2.2. Deep learning for point cloud analysis

Following [23], we define a point cloud as an irregular data structure that represents a subset of points from an
Euclidean space, and it has the following main properties:

• Unordered. In contrast to voxel arrays in volumetric grids and pixel arrays in images, a point cloud is a
collection of points in any sequence. Put differently, a network that feeds data in order and consumes N
3D points must be invariant to the N ! permutations of the input set.

• Spatial correlation among points. The points come from a distance-metric space, therefore, nearby points
constitute a significant subset, and points cannot be considered isolated. As a result, the model must be
able to represent local structures from adjacent points as well as the combinatorial interactions between
local structures.

• Invariance under transformations. The learned representation of the point set should be invariant to spe-
cific transformations since it is a geometric object. For instance, neither the segmentation of the points
nor the global point cloud category should be altered by rotating and translating the points altogether.

Given the just mentioned properties, it is clear that the point cloud data structure shares some features with
image data, for instance, the invariance under transformations and the spatial correlation between close regions.
Nevertheless, unlike images, point clouds are non-structured data, raising new research challenges. Different
approaches have been proposed to deal with such data. In the following, we list and briefly describe the most
widespread ones.

Voxel-based methods Voxel-based methods try to solve the challenges related to the disposition of un-
structured points by transferring the point cloud to a new well-structured data structure. Thus, they usually
bring point clouds to spatially quantized voxel grids. As these methods take inspiration from traditional 2D
CNNs, once the point cloud is voxelized, a 3D CNN is applied to the volumetric point cloud representation to
leverage the spatial correlation among close regions of the point cloud.

Grid data structures have proven effective. However, to maintain the granularity of the data placement, high
voxel resolution is necessary. Processing massive point clouds is expensive because of the cubic growth in com-
puting and memory requirements with voxel resolution. Furthermore, as most point clouds have approximately
90% empty voxels [24], processing no information may waste a large amount of computing resources. The
work by Riegler et al. [25] introduces the use of octrees to represent non-empty voxels, effectively reducing the
processing of noninformative space. This approach offers efficient data structuring but necessitates reducing the
voxel resolution to achieve computational speed. This limitation hinders its scalability when dealing with dense
point clouds. Since scalability is a paramount concern in cooperative sensing, voxel-based methods appear less
suitable.

Pointwise MLP-based methods Standard deep learning methods for 2D images cannot be directly
applied to 3D point clouds due to the unstructured form of the latter. PointNet [23] is the first model that
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directly takes point clouds as its input without any structural preprocessing. Not relying on an ordered data
structure requires that the model is invariant to the input order.

Given an unordered point set {x1, x2, . . . , xn}, the core idea behind PointNet is to achieve such invariance by
defining a set function f : χ→ Rk that maps a set of points to a k-dimensional vector:

f(x1, x2, . . . , xn) = λ (Ai=1,...,n{M(xi)}) (1)

where λ and M are usually multi-layer perceptrons (MLP), and A is a symmetric function, e.g., MaxPooling,
AveragePooling, or sum functions. With this approach, M is used to extract pointwise features independently,
whereas A, since it is a symmetric function, is used to aggregate the features achieving order invariance.

Since PointNet learns features independently for each point, the local structural information between points
cannot be captured, leading to poor results on segmentation tasks [26, 27]. Therefore, Qi et al. [26] proposed
to extend PointNet with a hierarchical network PointNet++ to learn fine geometric structures from the neigh-
borhood of each point. The set abstraction level, which forms the foundation of the PointNet++ hierarchy,
is divided into three layers: the sampling layer, the grouping layer, and the PointNet-based learning layer.
The sampling layer uses the farthest point scaling (FPS) algorithm to downsample the point cloud. Then, the
grouping layer leverages the K nearest neighbor (kNN) search algorithm to partition the point cloud subset
into subsets of close points, each representing a local region. Finally, the PointNet layer is applied to each local
region to extract the encoding of each neighborhood. PointNet++ learns features from a local geometric struc-
ture by stacking several set abstraction levels and abstracts the local features layer by layer. Many networks
have been constructed based on PointNet because of its robust representation capability and simplicity. The
computation cost in point-based methods grows linearly with the number of input points, making it appealing
for cooperative perception purposes. However, Liu et al. [28] show that the algorithms used to downsample and
perform range queries in three of the most popular point-based models [29–31] take up to 88% of the overall
computational time, making them difficult to scale to large point clouds.

Graph-based methods Among graph-based deep learning methods, the use of Graph Convolutional Neu-
ral Networks (GCNN) has been proposed in the literature to better exploit the geometric information brought
by each point. Simonovsky et al. [33] are the pioneers of this approach as they claim point clouds can be seen
as a graph G(V,E) with vertices V and edges E. Each point of the point cloud is a vertex of the graph G,
and its features usually are its geometric coordinates, laser intensities, or colors associated with the points.
Furthermore, a directed edge connects each point to all its neighbors in the geometric space.

Different is the Dynamic Graph CNN (DGCNN) proposed by Wang et al. [31]. As the name suggests, in
contrast to standard GCNNs, the graph’s topological structure is not fixed but rather is dynamically updated
after each layer of the network. The main reason is that the neighborhood of each point is computed in
the feature space, which changes after each layer, instead of the geometric space, which is static. Even though
learning new graph topologies can lead to better feature extraction, since kNN suffers the curse of dimensionality,
increasing the feature dimensionality can lead to meaningless neighborhoods. Moreover, the kNN algorithm is
computationally expensive, and running this algorithm for each layer can result in an inefficient model.

Graph-based methods prove to be effective in segmentation tasks as they can leverage the spatial information
intrinsic to the graph data structure. Moreover, these methods have a low memory footprint with respect to
voxel-based models. Nevertheless, as pointwise-based MLP methods, data structuring poses a computational
bottleneck for these algorithms.

To tackle the issue of current data structures and algorithms employed in graph-based methods (e.g., neighbor
points querying and FPS) taking a long time, Xu et al. [10] propose Grid-GCN (GGCN), which combines the
memory footprint efficiency of graph-based methods and the data structuring of volumetric-based methods to
increase computing efficiency. Tests conducted on the ModelNet classification task [34] reveal that the suggested
GGCN network has a computational efficiency that is five times quicker on average than other models. Whereas,
on ScanNet segmentation task [35], GGCN achieves a 10× speed-up on average over other models. Moreover,
GGCN shows a competitive accuracy, with 93.1% overall voxel labeling accuracy (OA) on ModelNet40 and
85.4% on Scannet.

In this paper, we adopt this architecture, given its structural advantages and its remarkable performance on
the point cloud segmentation task. Therefore, we dedicate the following section to a thorough specification of
the GGCN model.

2.3. Grid-GCN

Since we employ the GGCN model in our proposed method and experiments, we dedicate this section to a
detailed description of the GGCN’s architecture. The GGCN model is based on the composition of multiple
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Figure 2: Architecture of GridConv layer. The GridConv layer takes as input a set of N points: each
point has f + 3 features, where f is the number of semantic features. The layer’s output is a set of M
points having f ′ semantic features.

GridConv layers. Each GridConv processes information carried out by N input points and maps them to M
points. There are two types of GridConv layers: downsampling GridConv and upsampling GridConv layers.
The downsampling GridConv layers can extract important point cloud features by reducing the number of
points (N > M). By stacking multiple downsampling GridConv layers, it is possible to achieve a compressed
representation of the point cloud also called latent representation that represents in a low dimensional space
the input point cloud properties useful for the downstream task of interest.

To address the segmentation task, once we have achieved the point cloud’s latent representation, we can
apply a sequence of upsampling GridConv layers, which recovers the original dimension space of the point cloud
(N < M). Each GridConv layer is composed of two main submodules: Coverage Aware Grid Query and Grid
Context Aggregation. An example of the GridConv layer is illustrated in Fig. 2.

Coverage-Aware Grid Query module Given a point cloud, the Coverage-Aware Grid Query (CAGQ)
module’s goal is to structure the point cloud effectively and ease the process of querying the neighboring points.

Now, we describe the algorithm the CAGQ module relies on. First, the input space is voxelized by defining a
voxel size (vx, vy, vz) and the maximum amount of points nv a voxel can contain. Then, each point pi is mapped
to the coordinates (xi, yi, zi) to a voxel having voxel index:

Vid(xi, yi, zi) =

(⌊
xi
vx

⌋
,

⌊
yi
vy

⌋
,

⌊
zi
vz

⌋)
. (2)

Points having the same Vid belong to the same voxel, and V is defined as the set of all the voxels containing
at least one input point pi. Each voxel vi, with voxel index Vi = (xi, yi, zi), is characterized by its voxel
neighborhood π(vi) which can be formally defined as the following set:

π(vi) = {vj ∈ V | ∥Vi − Vj∥ ≤
√
3}. (3)

Here, the points belonging to π(vi) define the context points of voxel vi.
Once the point cloud has been voxelized, M non-empty voxels, also called center voxels, are sampled from

V such that they can cover the most occupied space. Finally, for each center voxel vi, K points nj , also called
node points, are sampled from the context points π(vi) and the group center g(vi) coordinates of the center
voxel are computed as:

g(vi) =
1

K

K∑
j=1

nj . (4)

Grid Context Aggregation module The Grid Context Aggregation (GCA) module’s goal is to extract
meaningful features from the structured space provided by the CAGQ module.

For each group center g(vi), the GCA module builds a local graph G(V,E), where V consists of the group
center g(vi) and its K node points provided by CAGQ, and E is the set of edges that connect each node point
to the group center. For a given group center, GCA computes its features f̃c from its node points pi as:

f̃c,i = e(χi, fi) ∗M(fi)

f̃c = A({f̃c,i}, i ∈ 1 . . .K)

(5a)

(5b)
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where fi and χi are respectively the features and (x, y, z) coordinates location of the node point pi, while
f̃c,i is the contribution of node point pi to its center group. M is a multi-layer perceptron, e is an edge
attention function, and A is an aggregation function. The edge attention function designed by the GGCN’s
authors considers both geometrical and semantic relations between the group center and the node point pi.
Furthermore, the authors believe that the underlying contribution of each node point from the previous layers
should also be taken into account. As a matter of fact, they claim that points carrying more information
from previous layers should be more critical and, thus, they should be given more attention. As a result, they
introduce the notion of coverage weight, which is defined as the count of points aggregated to a node in previous
layers.

As mentioned before, the attention function is modeled to consider the semantic relation between the center
group and the node point, which requires both node point features fi and group center features fc. Nevertheless,
since the group center is just a virtual point that does not necessarily belong to the set of N input points, no
semantic features are available. To solve this problem, let g(vi) be the group center of the voxel vi, the semantic
feature fc can be replaced by the context semantic feature fcxt:

fcxt = Acxt({fpj
}, pj ∈ vk | vk ∈ π(vi)), (6)

where Acxt is any aggregation function. In other words, the context feature of g(vi) is computed as the
aggregation of the voxel vi’s context points features.
Finally, the edge attention function can be summarized with the following:

e = Matt(Mgeo(χc, χi, wi),Msem(fcxt,M(fi))), (7)

where χc is the geometrical location of the group center computed with the Equation 4, wi is the coverage
weight of point pi and fcxt is the contextual feature of the group center.

Sampling strategies Among the main contributions provided by the GGCN’s authors are the algorithms
used to sample the M center voxels from V and the k nodes from the context points in π(vi). The first algorithm
includes two complementary methods:

1. Random Voxel Sampling (RVS): each occupied voxel has the same probability of being drawn. The
authors demonstrate that the center voxels are more uniformly distributed than the centers sampled from
the input points by the Random Point Sampling (RPS) method; as a matter of fact, the RVS is more
resilient to point density imbalance.

2. Coverage-Aware Sampling (CAS): each drawn center voxel can cover up to λ non-empty voxel neighbors.
The goal of CAS is to find a set of M center voxels Vc ∈ V such that their neighborhood can maximize the
covered space. To optimally solve this problem, an exhaustive enumeration of all the possible combinations
is required, which is computationally impractical. Thus, a greedy algorithm is used to approximate the
optimal solution. First, RVS is employed to select M voxels from V, also called incumbent voxels. Then,
CAS iteratively selects one point at a time, also called the challenger, from the unpicked ones to challenge a
random incumbent. If replacing the incumbent with the challenger improves the coverage, the incumbent
is discarder, and the challenger becomes a new incumbent. For a challenger vc and an incumbent vi, the
coverage improvement is computed with the following heuristics:

δ(x) =

{
1 if x = 0.

0 otherwise.

Hadd =
∑

v∈π(vc)

δ(Cv)− β · Cv

λvc

Hrmv =
∑

v∈π(vi)

δ(Cv − 1)

(8a)

(8b)

(8c)

where λv is the number of neighbors of voxel v and Cv is the number of incumbents covering voxel v. As
a result, Hadd represents the coverage improvement by adding vc to the incumbents, whereas Hrmv is the
coverage aggravation by removing vi. If Hadd > Hrmv, the challenger vc replaces the incumbent vi.

The authors claim CAS is more effective and efficient than RPS and FPS, which are the main sampling
algorithms used by other models. According to the experiments, on average, CAS covers 75.2% of the occupied
space, whereas RPS and FPS respectively occupy 45.6% and 65%. FPS is shown to be competitive in terms of
coverage; nevertheless, its time complexity is O(N log(N)), in contrast, CAS is linear in time.
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For what concerns the node points querying, GGCN uses a modified version of kNN. GGCN relies on the
voxelized structure to find the k nearest neighbors. Assuming the vanilla k-NN relies on a KD-tree data
structure, its time complexity to find all the k neighbors for a given point is O(k log(N). In contrast, the
proposed kNN restricts the search of the neighbors only to the voxel neighborhood π(vi), dramatically reducing
the search space, and achieving a computational time of O(k log(V )), where V is the number of points of the
neighborhood.

3. System Model

We consider a vehicular urban setting covered and served by a single Road Side Unit (RSU), i.e., a commu-
nication node deployed along a road or on the roadside providing connectivity with the infrastructure to the
vehicles crossing the scenario.

Let Vt = {1, · · · , Vt} be the set of vehicles served by the RSU at time step t. Each vehicle v ∈ Vt is assumed to
be equipped with a communication transceiver to enable vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication. In Section 3.1, we provide a description of the communication system model, while in
Section 3.2, we describe the LiDAR sensor model.

3.1. Communication system model

In our setting, V2I communication between the vehicles crossing the urban scenario and the RSU is used to
provide two kinds of information from the vehicle infrastructure:

1. inter-vehicle association, i.e., which vehicles are matched for communication among the available ones at
a given time step;

2. communication resources selection, i.e., which transmission power and bandwidth resources have to be
used by the vehicles during communication.

For the considered V2I setting, communication between a vehicle and the RSU is performed with frequency
1/τRSU . Therefore, association and resources selection information is received by each vehicle every τRSU .

We assume that the RSU has sufficient computational and communication resources to achieve the centralized
tasks required for vehicles association and resource selection, while in the following we focus on V2V sensory
data exchange, where the contributions proposed in this work are centered.

For inter-vehicle sensory data exchange, communication is performed with frequency 1/τv, with τv = τRSU/L,
for a positive integer L. Therefore, the vehicle association and resource selection procedures are here assumed
to be performed every L inter-vehicle communication slots, over which the same vehicles’ pairs and the same
communication resources are selected—which is a common assumption in the literature, e.g., [18]. We consider
a time-slotted communication with temporal slots of duration ∆t < τv to allow sensory data processing at the
receiving vehicle.

Vehicle association At a given time step t = i · τRSU , i ∈ N, the association between vehicle v ∈ Nt and
vehicle v′ ∈ Vt for communication is represented by the Boolean variable avv′ , which is 1 the communication
link between v and v′ is used during time slot t, and 0 otherwise. We assume that, at each time slot, a vehicle
can communicate only with up to a single vehicle, i.e., for all v ∈ Vt,∑

v′∈Vt

v′ ̸=v

avv′ ≤ 1. (9)

Resources selection Each vehicle v is assumed to have a maximum bandwidth Bv,max and a transmit power
Pv for communication, which are assumed to be the same for all vehicles. The communication bandwidth is
partitioned in resource blocks (RBs) of size ω. The set of RBs is denoted as K, and its cardinality is Bmax/ω,
where Bmax is considered to be a multiple of the RB bandwidth ω. The selection of the bandwidth resources
to be used by a vehicle v is managed through the Boolean variable νkvv′ , which is 1 if RB k ∈ K is used for
communication between vehicle v and vehicle v′, and 0 otherwise.

Data points exchange Following the modeling in [18], the number of points that can be effectively sent in
the communication between the vehicles v and v′ at time slot t is given by:

Rvv′(t) =
τv
D

∑
k∈K

νkvv′ ω log2(1 + γkvv′), (10)

where γkv′ is the Signal to Interference plus Noise Ratio (SINR) at the v′ equipment, and D is the total number
of bits needed to represent the data to be sent. In the following, we consider the transmission of a set of N
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data points, associated to F q-bit features each. Therefore, the total number of data points that can be sent
over the communication link is given by:

N =

⌊
D

F q

⌋
. (11)

The communication SINR γkvv′ is defined as:

γkvv′ =
P k
R,vv′

N0ω + Ikv′(t)
, (12)

with P k
R,vv′ the received power at vehicle v′ from vehicle v, and Ikvv′(t) the communication interference at vehicle

v′. The received power P k
R,vv′ is provided by:

P k
R,vv′ =

Pv

|Kv|
|hkvv′ |2, (13)

where hkvv′ is the complex-valued communication channel gain that models mixed Line-of-Sight (LoS) and
Non-Line-of-Sight (NLoS) electromagnetic propagation between the transmitter vehicle v and the receiver v′.

We assume that inter-vehicle communication happens at millimeter wave (mmWave) frequencies, where both
the transmitter and the receiver can employ directive communication beams, perfectly pointed to each other.
In this case, we can safely neglect the interference term Ikv′(t) in (12) for the computation of the SINR at the
receiver.

3.2. LiDAR sensor model

In addition to the communication equipment, each vehicle is endowed with an ideal rotating LiDAR sensor to
perceive the environment and make informed decisions. This sensor is characterized by a horizontal field of view
(FOV) θh, a vertical FOV θv, a rotation frequency flidar, and a resolution of ψ planes.

During each rotation period δ = 1/f , the LiDAR mounted on vehicle v captures a point cloud defined as a
set of points Pv = {p1, p2, . . . , pn}.

Each point pj ∈ Pv is associated with a tuple:

pj = (x, y, z, ι), (14)

where x, y, and z are the x, y, and z Cartesian coordinates of the detected point with respect to the coordinate
system Ov, i.e., the Cartesian coordinate system centered at the LiDAR position, integral with to the vehicle
v, so that the positive X axis aligns with the vehicle’s heading, the positive Y axis is 90 degrees anticlockwise
relative to the positive X axis, and the positive Z axis extends out of the XY plane composing a right-handed
triplet.

On the other hand, ι defines the laser intensity for the hit point and is computed as follows:

ι = e−a·d, (15)

where a is a constant attenuation coefficient depending on atmospheric conditions, and d is the distance of the
hit point from the LiDAR. Consequently, the intensity serves as a proxy for distance and does not consider the
material properties of the point. Therefore, the ι value does not provide additional information with respect to
the point position and is not considered as a feature in our experiments.

4. The cooperative point selection problem formulation

In this section, we formulate the cooperative point selection problem, which is the focus of this paper and for
which we propose our solution in Section 5.

Let Vt be the set of vehicles v served by the RSU at time step t with the properties defined in Section 3.
Assuming that the ground is plane, at time t, each vehicle v ∈ Vt is positioned at:

lv(t) = (xv, yv), (16)

where xv and yv represent the longitude and latitude of the vehicle’s barycenter. Given the reduced spatial
extent of the urban scenario, xv and yv are approximated to the X and Y coordinates on a Euclidean plane with
a chosen local Cartesian coordinate system Ogps where the x-axis points towards East and the y-axis towards
North.
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(a) Vehicle orientation. The vehicle orienta-
tion is defined by the angle hv it forms with
the OGPS x-axis.

(b) LiDAR placement on a sedan. The sensor is installed on the
rooftop, in a position with high visibility in the front area of the vehi-
cle. In this figure, the LiDAR position is highlighted with a blue circle.

Figure 3: Vehicle orientation and LiDAR placement on a sedan.

Each vehicle v moves at a speed of sv in a direction defined by angle hv ∈ [0, 2π] as in Fig. 3a.
We assume that each vehicle v ∈ Vt is equipped with a LiDAR sensor. All LiDARs are assumed to be of the

same type and to have the same hardware equipment. As illustrated in Fig. 3b, the sensor is installed on top of
the roof at height zv with respect to the street level. Moreover, each vehicle is equipped with a communication
transceiver to support inter-vehicle communication. As for the sensors, we assume all vehicles share the same
technical specifications for the installed antennas. A thorough description of this communication system and of
the LiDAR sensor model is provided in Section 3.

4.1. Problem formulation

In the considered vehicular cooperative perception scenario, each vehicle vrx is interested in pairing with another
vehicle vs to extend its environment perception by receiving information from vs. The easiest approach would
be to make vs send its own point cloud Ps to vrx. However, the maximum amount of points that can be sent
is constrained by the available communication resources summarized by eq. (10).

Assuming that vehicle vrx at timestep t has a position l(t), speed s and heading h, we aim to determine
if, given this information, vs can learn which are the points Pmax = {p1, p2, . . . , pm} ⊂ Ps that maximize the
satisfaction of vrx.
Given a point p ⊂ Pmax, we formulate the satisfaction of vrx as:

S(p) = Rvrx(p) · α(p) · η(p), (17)

where Rvrx : R5 → [0, 1] is the function measuring the spatial interest on point p manifested by vehicle vrx
moving with speed s and heading h, while α : R → [0, 1] is a decreasing function of elapsed time from the
acquisition of point p, representing the temporal interest on p. Finally, η(p) : R3 → [0, 1] is the novelty score
associated with p, measuring how much information p adds to the vrx’s point cloud Prx.

Assuming that the vrx position, heading, and speed are known to vehicle vs and that all vehicles use the same
functions R and α, vs can easily compute both Rvrx(p) and α(p). Hence, the problem reduces to learning the
function η(p). The design of Rvrx , α and η functions is defined in Section 5.1.

5. Proposed method

Cooperative perception introduces several challenges. When a vehicle vs transmits information to vehicle vrx,
it is crucial to determine the most relevant information for the receiver. This ensures that bandwidth is not
wasted on transmitting non-relevant or redundant data. In this section, we describe the proposed method for
cooperative LiDAR sensing in V2V communication scenarios.

We define which points we consider important in Section 5.1. Furthermore, when vehicles communicate for
consecutive steps, it is crucial to avoid transmitting the same data sent in the previous steps. We address this
issue in Section 5.2.
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In Section 5.3, we extend the Grid-GCN architecture [10] to address the cooperative LiDAR points selection
problem introduced in Section 4.

Having a functioning algorithm that recognizes the most important points for transmission is futile if we
cannot associate vehicles that share points of interest or are obstructed from communication due to occlusions.
To address this, we discuss how to effectively associate communicating vehicles in Section 5.4.

5.1. Point importance metrics

In this section, we formalize how to quantify a vehicle’s interest in a point p belonging to a point cloud P.
This interest can be divided into three distinct types: spatial, temporal, and novelty. The following paragraphs
provide a detailed description of each.

Spatial point interest In the domain of autonomous driving, the Region of Interest (RoI) refers to a
specific area within the field of view of sensors where the system concentrates its attention on critical decision-
making tasks like object detection, lane tracking, and obstacle avoidance. Hence, given a point cloud P, the
vehicle shows varying degrees of interest for each point p ∈ P based on its position relative to the vehicle.

Given a point p and its coordinates (x, y, z), we model the RoI score function Rv(p) that measures the interest
of a vehicle v for point p as:

Rv(p) = rω(p) · rd(p) · rz(p) · rn(p), (18)

where rω(p) measures the interest along a given direction represented by an angle ω ∈ [0, 2π] on the XY plane,
and rd(p) measures the interest with respect to the distance between the vehicle and the point. Complementarily,
rz(p) computes the interest of a point with respect to its height, i.e., along the Z axis. Regarding rd(p), we
assume that the vehicle has its main interest along its heading direction, and the interest slowly decays as
the direction departs from the vehicle’s heading. For this reason, we model rω(p) with the scaled Von Mises
probability density function:

rω(p) =
1

2πI0(κ)Rω
exp (κ cos(ω)) , (19)

where ω is the angle of the point p with respect to the X axis in the XY plane, I0(κ) is the modified Bessel
function of the first kind of order 0, and Rθ is the maximum value of rω, so that the function can distribute
values in the range [0, 1].

Regarding rd(p), we assume that the vehicle is more interested in points close to it. Nevertheless, it is realistic
to assume that the RoI’s range increases with the vehicle’s speed s. For this purpose we can model rd(p) with
a smooth exponential function:

rd(p) = λde
−λdd

d =
√
x2 + y2 + z2

λd =
γ

s
,

(20a)

(20b)

(20c)

where γ > 0 is a hyperparameter that controls the dependency of rd(p) on s, and λd > 0 is a hyperpeparameter
that regulates the function smoothness.

Finally, we model rz(p) so that the vehicle focuses more on the street level. Thus, the interest decays as the
height of the points increases:

rz(p) = λze
−λz(z+z0), (21)

where λz > 0 is a hyperparameter and z0 is the height of the lidar. A 2D representation of an example of RoI
function is shown in Fig. 4.

Temporal point interest In an urban environment, the presence of static or low-dynamic objects, such
as pedestrians, can be occluded by highly dynamic objects like vehicles. In such scenarios, the LiDAR’s high
acquisition frequency might result in the detection of a low-dynamic object in one time step, only to have it
occluded by a highly dynamic object in the next time step, causing the vehicle to overlook the initial object.
This issue can be mitigated by preserving all recent points instead of discarding them and tracking the time
elapsed from the acquisition of each point.

Given a point p acquired at time t0, we define its Age of Information (AoI) at time t as follows:

α(p) = e−λAoI(t−t0). (22)
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Figure 4: Heatmap of Rvi for a vehicle cruising with a speed of 3.6m/s, computed on plane z = 0.

Figure 5: Heatmap of Rvi · α for a vehicle cruising at a speed of 3.6m
s on the plane z = 0. The

highlighted region of interest has a score Rvi · α > 0.55.

Here, λAoI > 0 is a decay factor and serves as a hyperparameter to control the decay of the AoI. As a result,
the higher the AoI, the more recent—and so, also more reliable—is the acquired point. Instead of discarding
points of past acquisitions, we can use the AoI to define the temporal interest in old data. As the Age AoI for
a point p decreases, the vehicle’s interest in that point also reduces. Fig. 5 illustrates this concept.

Novelty point interest We assume that the points in the set Prx are realizations of an unknown probability
distribution U , and that dense regions in Prx contains noteworthy information. In contrast, low-density regions
do not provide enough information to the vehicle vrx. We can model the amount of information a new point p
adds to the knowledge of vrx as:

η(p) =


1− fU (p) · 1

c if 0 ≤ fU (p) ≤ 1.

1 if fU (p) ≥ 1.

0 otherwise.
(23)

where fU is the probability distribution function for the distribution U and c is a normalization constant to
distribute the η(p) values in the interval [0, 1]. Since c is an empirical value, there are no guarantees that
fU (p) < c. Thus, we need to explicitly limit η(p) to the interval [0, 1]. Since the distribution U is unknown—
and so is the probability distribution function—to approximate fU , we rely on a non-parametric estimator [36]
based on the k-nearest neighbors (kNN) algorithm defined as follows:
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Parameter Value Parameter Value

κ 0.4 λz 0.03

γ 0.01 c 0.0006607

k 8 β 0.5

λAoI 0.2 λAoT 0.2

c̄ 4.189

Table 1: Hyperparameters for the RoI, AoI, AoT and η.

Figure 6: Heatmap for the η(p) function computed on plane with z=0.5m. Here, z=0.5m means 0.5
meters above the level of the street. Brighter colors of the heatmap indicate a high density of points
and, consequently, a low value for η. In contrast, darker colors indicate a lack of information, hence,
a high value of η.

f̂U (p) =
k

mc̄ρk(p)
, (24)

where k is the kNN’s hyperparameter, m is the number of points in Prx, c̄ is the volume of a d-dimensional
unit ball, and ρk(p) is the distance between the point p and its k-nearest neighbor in Prx. The efficacy of the
estimator f̂U (p) used to compute η(p) is illustrated in Fig. 6.

5.2. Age of transmission

As mentioned in Section 3, we assume that two associated vehicles can exchange sensory data, with a frequency
1/τv, where the duration τv can be very short (≈ 0.05 s). Hence, the environment does not change abruptly
between two consecutive communication slots. In this situation, we want to avoid that the sender vehicle vs
sends to vrx the same data sent in the previous time steps. A naive approach is to take track of the sent data.
By doing so, the model no longer considers the already sent data as input. Nevertheless, we are not considering
the spatial correlation between sent and not sent points. Considering the example provided in Fig. 7, the vehicle
vs might send at time step t0 several points Pr belonging to a specific object O, represented by the red points.
At the next timestep t1, the vehicle vs can still have other points Py relative to object O, which were not sent
the time step before illustrated as yellow points. If the points Pr at time step t0 are dense enough for the vehicle
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Figure 7: Example supporting the need for AoT. Red points represent sent points semantically belong-
ing to object O, while yellow points semantically belong to O but have not been sent yet. Blue points
are non sent points that do not semantically belong to object O.

vrx, points Py are redundant and should not be sent. Instead, we believe the vehicle vs should be incentivized
to send points that do not semantically belong to the object O (blue points), increasing the overall perception
of the environment. This is also supported by the fact that we expect the vehicle vrx to return a low novelty
score η(p) for the points belonging to Py.

For this purpose, we introduce the Age of Transmission (AoT) feature, which is assigned to each point of the
vehicle’s point cloud. The AoT of a point p is a proxy for the time elapsed from the last time the point p was
sent to vrx. A vehicle assigns the AoT to the point p acquired or received at time t0 with the following:

αAoT (p, t) =


0 if t = t0.

1 if p is sent to vrx at time t.
e−λAoT (t−t0) otherwise.

(25)

5.3. Cooperative points selection via Grid-GCN

In this section, we propose to use a graph neural network (GNN) to address the cooperative point selection
problem formulated in Section 4. GNNs are architectures that can capture spatial relations between points
belonging to a set, keeping the permutation invariance of the input. Among the different GNN architectures,
we propose to use the Grid-GCN (GCNN) architecture due to its computational efficiency, which is an essential
aspect when dealing with situations in which high throughput is needed. For further details about the GGCN
architecture, the reader can refer to Section 2.3.

From Section 4 emerges the need to use contextual information to extract meaningful insight from the input.
In GNNs, it is common to incorporate such information in a global node [38]. Nevertheless, GGCN does not
provide such functionality. For this reason, we adapt the GGCN implementation to our needs.

In a standard GNN framework, a directed graph is defined as a tuple G = (u, V, E). The u is a vector
representing global attributes, which can embed contextual information about the graph. The V = {vi}i=1:|V |
is the set of nodes, where each vi is a vector representing the node’s features. Finally, E = {ei,j} is the set of
edges, where each ei,j is a vector representing the attributes of the edge connecting the sender node vi to the
receiver node vj .

Provided a graph G as input, a traditional GNN layer executes the following steps:
1. It updates the value of each edge ei,j to:

e′i,j = ϕe(ei,j ,u), (26)

where ϕe is a nonlinear function. The set of updated edges going towards a node vi is denoted as E′
i,

whereas the set of all updated edges is E′.
2. It applies to each set E′

i the symmetric aggregation function ρe→v to extract the aggregated value ēi of
the edge updates, which is used for the node update.
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3. It computes for each node vi the updated node value as:

v′
i = ϕv(ē′i,vi,u), (27)

where ϕv is a nonlinear function. The set of updated nodes is denoted as V ′.
4. It extracts the aggregated value v̄′ of the nodes in V ′ with the symmetric aggregation function ρv→u.
5. It extracts the aggregated value ē′ of the edges in E′ with the symmetric aggregation function ρe→u.
6. Finally, the global node u is updated to:

u′ = ϕu(ē′, v̄′,u), (28)

where ϕu is non linear function.

We adapt the GGCN architecture to this framework by introducing the global node. In a GridConv layer, the
output graph is composed of the barycenters of the node points belonging to the input graph. This means the
nodes in the output do not belong to the input graph, and the input nodes do not belong to the output graph.
For this reason, there is no update rule applied to the input nodes but only to the barycenters, which are virtual
points and do not have real features. From eq. (5b), we can notice that the node update rule coincides with the
edge aggregation function ρe→v defined at point 2. As a result, we can eliminate the ϕv function without loss
of expression. To adapt the edge update attention function to the global node framework, we can modify the
eq. (7) into:

e = M(Mgeo(χc, χi, wi),Msem(fcxt, fi),u). (29)

Furthermore, given that:

v′
i = ρe→v(E′

i) = e′i, (30)

we can rewrite:

v̄′ = ρv→u(V ′)

= A({v′ | v′ ∈ V ′})

= A({̄e′i | ē
′
i ∀i = 1 · · · | V ′ |})

= ρe→u(E′)

= ē′.

(31)
(32)

(33)
(34)
(35)

Thus, assuming to use the same aggregation function, v̄′ and ē′ encode the same information in the GGCN
architecture. As a final result, we can rewrite the global node with the following update function:

u′ = ϕu(ē′,u). (36)

We model the cooperative point selection problem as a binary segmentation problem. We aim to learn a
function M : Rm×h ∪R4 → {0, 1}m, where m is the number of input points and h is the number of features per
point. The function M should approximate the function u representing which points are improvements for the
receiving vehicle vrx:

∀p ∈ Ps, u(p,G) =

{
1 if η(p) > β,

0 otherwise,
(37)

where G is a vector containing contextual information on the position and heading of vehicle vrx, while β is a
tunable threshold. To learn such a function, we aim to minimize the binary cross-entropy loss:

L = − 1

| Ps |
∑
p∈Ps

u(p,G) · log(M(p,G)) + (1− u(p,G)) · log(1−M(p,G)). (38)

To capture the relationship between the point cloud and the geometric information of the receiver and the
sender, we incorporate the sender’s position in the input. This is implicitly achieved since the coordinates of
the points are relative to the reference system with the origin in the sender’s LiDAR position, as discussed
in Section 3.2. Still, the position lgrx and the heading hgrx of the receiver are with respect to the global refer-
ence system. Therefore, we bring such information to the sender’s local reference system. Let lgs and hgs be,
respectively, the sender’s position and heading with respect to Ogps, then:
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llrx = lgrx − lgs ,

hlrx = hgrx − lgs .

(39a)

(39b)

Moreover, once the points Pmax have been selected, we must rototranslate them to get the points Prx
max in

the receiver reference system Ovrx . Then:

Rrx =

cos(hgrx) − sin(hgrx) 0
sin(hgrx) cos(hgrx) 0

0 0 1


Rs =

cos(hgs) − sin(hgs) 0
sin(hgs) cos(hgs) 0

0 0 1


Pg
max = Pmax ×RT

s + ls

Prx
max = (Pg

max − lrx)×Rrx.

(40a)

(40b)

(40c)
(40d)

Assuming that the learned model M captures the spatial relation between the input points, we also aim the
function M to learn that points having low AoT close to points with high AoT should not be sent because the
receiver already has enough information about that specific region.

5.4. Centralized vehicle association

For retrieving sensory data, we assume that each vehicle can form an association with a maximum of one
other vehicle over a period τRSU , as defined in Section 3.1. Furthermore, we assume that communications
are unidirectional. Consequently, in the scenario where vehicles v and v′ are paired for communication, only
one ot the two is transmitting information, while the other is solely receiving information. Since we focus on
determining what the vehicles we opt for a heuristic method to pair the vehicles.

We assume that the RSU, responsible for vehicle pairing, possesses comprehensive knowledge of the urban
scenario, i.e., the RSU can ascertain the position and heading of each vehicle, identify all available communication
pairs, and determine the associated estimated received power for the communication link.

We model vehicle association as a matching problem on a directed, weighted non-bipartite graph G(V,E,W ).
The nodes V = {1 · · · | V |} represent vehicles served by the RSU. The edges E = {(i, j) | i, j ∈ V } denote
communication links between vehicles, and the weights W = {wi,j | ∃(i, j) ∈ E} signify the estimated received
power for each communication link. The RSU’s objective is to find a match that maximizes the overall estimated
received power:

Maximize
∑

(i,j)∈E

wijxij (41)

Subject to:
xij +

∑
k∈V

xjk ≤ 1 ∀i ∈ V∑
j∈V

xij ≤ 1 ∀i ∈ V

∑
i∈V

xij ≤ 1 ∀j ∈ V

xij ∈ {0, 1} ∀(i, j) ∈ E

(42)

(43)

(44)

(45)

where xi,j are binary decision variables indicating whether the vehicles i and j are matched or not.
We employ the Edmonds-Blossom algorithm [39] to solve this problem. Once the RSU establishes communi-

cation links, it must decide the direction of each communication.
Referring to Fig. 8, multiple situations can arise, and determining the proper roles for communicating vehicles

significantly impacts the quality of transmitted information. We discuss the considered heuristics:
1. In Fig. 8a, vehicles travel in opposite directions with non-intersecting Regions of Interest (RoIs). Here,

the likelihood that vehicles possess relevant information for each other is low. Consequently, the RSU
excludes these communications when solving the matching problem.

2. In Fig. 8b, vehicles travel in opposite directions, and their RoIs intersect. In this case, both vehicles
are expected to have meaningful information to send. Thus, the RSU randomly assigns the sender and
receiver roles.
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(a) (b) (c)

Figure 8: Various case scenarios of potential paired vehicles. The blue areas represent the vehicles’
Regions of Interest (RoI).

3. In Fig. 8c, vehicles travel in the same direction. Here, it is anticipated that the leading vehicle (A)
possesses more relevant information for the trailing vehicle (B). Consequently, the sender is designated
as the leading vehicle (A).

6. Simulation results

In this section, we provide simulation results showing the effectiveness of the proposed GGCN-based point
selection method. In Section 6.1, we provide implementation details of the developed simulation framework.
Section 6.2 specifies the adopted training procedure. The experimental results on the generated simulation
datasets are finally discussed in Section 6.3.

6.1. Simulation setup

To the best of our knowledge, the literature lacks a sizable open-source dataset for V2V cooperative perception.
By treating the ego vehicle at various timestamps as many AVs, some work [40, 41] adapted the Kitti [42]
dataset to mimic V2V settings. Due to the unpredictable appearance of dynamic agents at various locations,
which causes temporal and spatial inconsistencies, such a synthetic approach is inappropriate and impractical
for the setting addressed in this paper. Wang et al. [21] create a sizable V2V dataset by using a high-fidelity
LiDAR simulator [43]. However, the dataset and the LiDAR simulator are inaccessible to the general public.
Chen et al. [40, 41] propose the T&J dataset, a dataset based on real data by equipping two golf carts with
16-channel LiDAR to collect data. Nevertheless, the released version only includes 100 frames that lack ground
truth labels and cover a limited range of road types.

Xu et al. [12] bring a significant contribution to the V2V open datasets by providing OPV2V, a V2V multi-
modal dataset that contains different scenes involving multiple cooperative vehicles taken from the CARLA [14]
open source simulator. To the best of our knowledge, this is the most complete V2V multimodal dataset available
in the literature. However, it lacks scene extensibility and provides no information about vehicle communication
links.

For the above reasons, we implement a new simulator providing sensor and communication data. Our sim-
ulator relies on the SUMO [13] simulator for the microscopic traffic simulation. We employ the CARLA [14]
simulator to simulate the LiDAR acquisitions. Finally, we exploit GEMV2 [15] to compute comprehensive
information regarding the communication channels between vehicles. All the mentioned simulators are open
source.

The diagram in Fig. 9 illustrates the simulator comprises multiple components. Here we briefly describe the
simulation process:

1. We start from an OpenDRIVE file (xodr file extension) [44], a standardized format used to describe the
logic of a street network.

2. Starting from the OpenDRIVE file, the SumoSimulationGenerator module generates a sumocfg file
(SUMO configuration file), which describes the micro traffic logic of the simulation. SUMO then uses
such a file to simulate the vehicular traffic.
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3. We develop the sumo_synchronization module, which is an extension of the Sumo_simulation module
provided by the CARLA’s developers. The Sumo_simulation synchronizes the CARLA simulator and
the SUMO simulator, using their APIs—respectively, the CARLA API and the Traci module.

4. The sumo_synchronization module manages the synchronization of the sensors and the actual simula-
tion, ensuring consistency between the sensor acquisitions and the simulation—since is not guaranteed
by the Sumo_simulation module.

5. The Traci module produces a fcd output file, which contains all the spatial information about each
vehicle for each simulation timestep. Among the others, it provides each vehicle’s position, heading, and
speed.

6. Both opendrive and fcd output files are given as input to the GEMV2 simulator. By utilizing this
information, we can determine the potential communication partners for each vehicle at each timestep.
Furthermore, for each potential communication, GEMV2 generates information regarding the communi-
cation channel (V2V communication dataset), essential to determine the maximum data rate available.

7. The V2V communication dataset, the fcd output and the sensor acquisitions are then processed by the
Environment module. Such module is responsible for the simulation of the system formalized in Section 3.

We build a synchronized LiDAR-V2V communications dataset by retrieving data from a simulation of 180
seconds and a step size of 0.05 seconds.

Selected evaluation scenario The simulation occurs around CARLA’s map TOWN10, involving 60
vehicles of 4 different types. To recreate a realistic vehicle’s type distribution, we include two sedans (Audi TT
and Tesla Model 3), an SUV (Audi e-tron), and a truck (Mercedes Sprinter) from the vehicle types available in
CARLA.

Vehicular traffic simulation The TOWN10 map is based on a close network. Therefore, it is much easier
to generate a traffic jam, which might introduce a high redundancy in the data, inducing a bias. We identify
the junction marked with a circle in Fig. 10 as a possible cause of traffic jams. More precisely, we observe that
the road outlined by the blue box features limited space for vehicles awaiting the traffic light. This implies that
it only accommodates a few vehicles before the entire space is occupied. Consequently, if a vehicle approaching
from the junction intends to proceed toward that street, it will get stuck behind the existing vehicles, resulting
in a queue even when the traffic light is green. For this reason, we decide to turn off the traffic lights at the
junction in the circled area, making the queue to clear more efficiently in the blue rectangle. The parameters
set up in SUMO to achieve the vehicular traffic simulations are reported in Table 2.

LiDAR simulation LiDAR simulation is performed in CARLA. Each vehicle mounts a LiDAR 20 cm
above the vehicle’s roof, as depicted in Fig. 3b. This sensor emulates a rotating LIDAR through ray-casting.
The computation of points involves adding a laser for each plane distributed within the vertical field of view.
The simulated rotation is achieved by calculating the horizontal angle through which the LiDAR rotates in a
frame. The point cloud is generated by performing a ray-cast for each laser during each step. The simulation
parameters used for the LiDAR simulation in CARLA are provided in Table 3. For further details, we refer the
reader to the official CARLA documentation [45].

V2V communication channel simulation The simulation of the communication channel is achieved
by means of the Geometry-based, efficient propagation model for vehicle-to-vehicle communication (GEMV2)
software [15]. GEMV2 allows to directly import vehicular mobility information from the SUMO simulator
floating car data (fcd). In order to perform V2V channel simulation, GEMV2 requires the 2D outline of the
buildings on the ground, assuming that the buildings are sufficiently tall with respect to the transmitters and
receivers’ positions—as it commony happens when considering vehicle-to-vehicle communications. To fulfil this
condition, we extracted the mesh of buildings from CARLA Unreal Engine interface and we processed the
mesh to represent the buildings by means of 3D bounding boxes. We then extracted the 2D building outlines
intersecting with the ground plane and we used a modified version of GEMV2 to import the generated outlines
and to perform V2V channel simulation.

GEMV2 distinguishes three kinds of links: (i) line of sight (LOS), i.e., direct communication paths between
transmitter and receiver, (ii) non-LOS due to vehicles (NLOSb), and (iii) non-LOS due to buildings (NLOSb).
Moreover, it allows to deterministically compute large-scale signal variations owing to path-loss and shadowing,
and provides an approximation of small-scale signal variations using the number and the size of the objects that
are around the communicating vehicles [15].

In a communication link where vehicle v is the transmitter and vehicle v′ is the receiver, we retrieve through
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Figure 9: Block diagram for the simulator pipeline. A block colored with purple indicates an already
implemented block. The green blocks are the components we implemented. The blue circles indicate
a data type that can be an output or an input of a component. The blue arrows indicate that two
components are communicating.

Parameter Value Parameter Value

laneChangeMode 512 lcLookaheadLeft 10000

lcOpposite 1 sigma 0.5

lcSigma 0 departPos random_free

jmIgnoreKeepClearTime -1 departSpeed max

jmIgnoreFoeProb 1 departLane best

impatience 0 seed 3

Table 2: Vehicular generation settings in the SUMO traffic sumulation.

GEMV2 the received power Pv′,R at v′:

Pv′,R = P l
v′,R + P s

v′,R, (46)

obtained as the sum (in dB) of a large-scale signal variation term P l
v′,R (depending on path-loss and shadowing)

and a small scale signal variation term P s
v′,R (owing to the geometry of the environment).

Table 4 reports the parameters selected for V2V channel simulation in GEMV2. In particular, as assumed in
Section 3.1, we notice that we employ a 28 GHz carrier frequency for simulation, which is set in the mmWave
frequencies range.

6.2. Training procedure

We discuss here the procedure adopted to train the GGCN-based model assumed in Section 5.3. We split the
training task into two complementary subtasks:

• Spatial task: the aim is to learn the relationship between the position of the sender vehicle, the receiver
vehicle’s position, and the sender’s acquired points. In other words, we are interested in learning which,
among the sensed points by the sender, are the points the receiver is spatially interested in.

• Temporal task: the goal is to learn the influence of points with high AoT on close points with low AoT.
Thus, the sender vehicle should learn to avoid sending points belonging to the same spatial regions for
consecutive steps.
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Figure 10: Town10 CARLA scenario viability. The circle indicates the junction where traffic lights are
turned off.

Parameter Value Parameter Value

channels 64 horizontal fov 360◦

rotation frequency (1/δ) 20 Hz atmosphere attenuation rate 0.004

points per channel 300 drop off general rate 0

range 50 m drop off intensity limit 0

upper fov 10◦ drop off zero intensity 0

lower fov −30◦ noise standard deviation 0

Table 3: LiDAR settings in the CARLA simulation.

In the following, we will refer to the whole training task as joint task.
We split the model training into two distinct training phases: the first phase involves performing offline

training to learn the spatial task; during the second phase, we perform online fine-tuning to learn the joint task.
The reasons behind this decision are multiple. First, learning to solve the main task can be harder than its

subtasks. Thus, the model can slowly converge when trained to solve the former. Furthermore, learning the
main task can be time-consuming because the model must be trained online. In online training, the simulator
introduces a nonnegligible overhead, which slows down the training procedure—a simulation step can require
up to 4 times the time needed for our model forward pass. However, learning the spatial task does not require
online training, as it does not demand a dataset capturing the temporal correlation between two consecutive
timesteps of a communication.

It is essential to highlight that the simulator overhead is only due to the simulation of the environment and
the computation of the novelty score η(p). In contrast, the preprocessing on the point cloud is a set of vectorized
operations that are computationally negligible. The computation of η(p) does not represent a critical operation,
as we assume our goal is to train the model in a simulated environment where the computation time is a soft
constraint. Therefore, if the model is deployed in a real scenario, it would not require further training, meaning
that no novelty scores must be computed.

We fine-tune our model in an online manner. For this purpose, the simulation is split into n episodes of
horizon h. Each episode is composed of several trajectories, each representing a communication between two
vehicles. For each episode, we predefine the vehicle pair communications. Vehicles can communicate only with
the predefined paired vehicle for the entire episode. At the end of the trajectory, the state of the point cloud is
reset, which means, at the beginning of each trajectory, acquired points of each vehicle are the ones acquired at
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Parameter Value Parameter Value

Max. communication range 100 m Max. NLOSv range 90 m

Max. NLOSb range 80 m Antenna height (on top of the vehicles) 0.1 m

Carrier frequency 28 GHz Antenna pattern isotropic

Tx power 12 dBmW Use reflections and diffractions true

NLOSf 2.7 NLOSb 2.9

NF 6 dB ∆t 0.001 s

τRSU 0.5 s τv 0.05 s

Table 4: GEMV2 simulation settings.

the beginning of that trajectory, i.e., points from previous timesteps are forgotten, and the AoT of each point
is set to 0.

The sender vehicle sends data to the paired vehicle using an ϵ-greedy policy. Thus, given the points Ps

owned by the sender vehicle, it will send a set of points Pϵ−max with cardinality ν given by eq. (10), such that
100 · (1− ϵ)% of them maximizes:

S̄(p) = Rvrx(p) · α(p) · M(p,G), (47)

where M is the proposed model, which approximates the function defined by eq. (37). We employ an ϵ-greedy
policy to improve the exploration of the agents.

To build our offline dataset, we collect the data from a simulation where trajectories have a horizon h = 2
and no bandwidth constraint, meaning all the points are sent. We believe that the first step of the trajectory
is important to make the model learn the spatial task. In contrast, the second step aims to alert the model
to the significance of AoT as a relevant feature. Consequently, we aim to prevent the model from setting all
parameters related to AoT to 0.

We can predefine the matched vehicle communication pairs for each episode, as stated in Section 5.4. Since all
trajectories come from the same simulation, a high spatial correlation exists between two temporally contiguous
episodes. Hence, maintaining the same matched vehicles across temporally contiguous episodes can result in
highly correlated trajectories, which can have a negative impact during the training procedure. Indeed, having
two highly correlated trajectories in the training set reduces the variety of data, which is essential for the
training process. At the same time, having one trajectory in the training set and one highly correlated to it in
the validation set must be avoided, as the metrics measured on the validation set would not be reliable.

On the other hand, if we force to have a communicating pair assigned only to a single episode, we risk having
several trajectories involving matches between vehicles that are too far to transmit meaningful information.
For this reason, we adopt the following heuristic to minimize the correlation among trajectories without losing
relevant data:

1. We split the simulation into n episodes of h timesteps without overlaps.
2. We iterate over all the episodes in temporal order.
3. For each episode, by exploiting the Edmonds-Blossom algorithm, we compute the maximum matching,

which defines the trajectories for the analyzed episode.
4. Once the matching is determined, we remove all the involved pairs from the available pairs for the following

ten contiguous episodes.
5. Finally, we insert two trajectories involving the same pair less distant than 15 seconds (300 timesteps

in our setting) into the same set. This heuristic further reduces the correlation between trajectories
belonging to different datasets.

6.3. Experimental results

After validating the GGCN architecture on a segmentation task based on data from our simulator (see Ap-
pendix A), we believe the hyperparameters used by the GGCN’s authors are a good starting point for our
experiments. For what concerns the hyperparameters of ϕu multilayer perceptrons (MLPs), we decide to use
the same hyperparameters used for the MLPs M defined by eq. (5), which are used to extract point features.
We report all the architecture hyperparameters in Table 5.
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Offline training For offline training, the Adam optimizer is employed with β1 = 0.9, β2 = 0.999, weight
decay 10−5, and a learning rate of 10−3. Furthermore, we perform data augmentation to improve the generaliza-
tion. Data augmentation involves random rotations along the z-axis on the point clouds, maintaining geometric
consistency by applying a corresponding rotation on the position and heading of the receiver embedded in the
global node.

As shown in Fig. 11, the model exhibits fast learning in the initial epochs, with a slowdown in progress after
epoch 5. The training accuracy gradually increases from 85% to 90% over nearly 50 epochs, while the validation
accuracy peaks at 87%, indicating minimal overfitting despite the model’s moderate performance on the training
set.

Online training For online training, the learning rate of the Adam optimizer is set to 10−4, and training
is conducted on episodes with a horizon of h = 10. As we can see from Fig. 12, learning the joint task starting
with a model pre-trained on the spatial task is easier than training a model only on the joint task. Indeed, the
fine-tuned model achieves an 83% accuracy after a few epochs of online training. On the other hand, the model
trained from scratch shows slow learning, which is prohibitive, given the computation constraints.

Joint task relevance To illustrate the significance of learning the joint task as opposed to just the spatial
task, we compare the Transfer Learning (TL) model (trained only on the spatial task) against the model fine-
tuned on the joint task. Fig. 12 shows that a model trained to learn the spatial task drops in accuracy by
about 13% if used to solve the full task. Nevertheless, the pre-trained model is a decent start as it shows 74%
accuracy in the main task before the fine-tuning. Fig. 14a shows the main drop in accuracy is caused by the
following steps of the communication, as we expect. In contrast, in Fig. 14b, the fine-tuned model shows almost
the same accuracy for all the steps during the communication. This is also confirmed by Fig. 13a. Indeed, the
accuracy drop is induced by the fact that the number of redundant points sent increases with the simulation
steps. Furthermore, as we can see from Fig. 13b, it is interesting to note that the TL model proves to be
more effective than the fine-tuned model during the first step of communication. This phenomenon indicates a
catastrophic forgetting problem during the fine-tuning.

Training for different bandwidths Finally, we compare the training in a simulated scenario for different
communication bandwidths. From Table. 6, we assess that as the band used in the simulation varies, the
performance of the models does not vary significantly. The maximum accuracy in the validation set is 0.83%,
achieved with a bandwidth of 5 MHz, while a little drop in the performance is perceived for higher bandwidths.

Computation time We notice that the primary challenges involve the speed of convergence and the time
required for training. Training the model using a Nvidia Quadro RTX 6000 GPU takes approximately one
hour per epoch for offline training and up to four hours per epoch for online training. The difference in
computation time between the online and offline train highlights the heavy overhead introduced by the simulator.
Computational constraints prevent exhaustive research over hyperparameters to be performed by means of
heuristic approaches.
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Figure 11: Accuracy curve during the offline training.

Figure 12: Accuracy curve during the online training. The dashed purple line indicates the performance
of the model trained exclusively on the spatial task. The learning curves compare the fine-tuning against
a model directly trained for the complete task.
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(a) Percentage of redundant points sent per communication
step. The percentage is computed as the ratio between
redundant points sent and the total points sent.

(b) Winsored error bars measuring the accuracy. Error
bars are not perfectly aligned to their corresponding step
tick. This is intended to make more clear the comparison
of the two models for the same tick.

Figure 13: Performance comparison of the fine-tuning model against the transfer learning model across
all the communication steps.

(a) Accuracy boxplot of fine-tuning in validation. (b) Accuracy boxplot of fine-tuning in validation.

Figure 14: Distribution of the accuracy per point cloud for each step of the communication.
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Hyperparameters L↓
1 L↓

2 L↓
3 L↑

4 L↑
5 L↑

6

vx 0.05 0.13 0.4 0.4 0.13 0.05

vy 0.05 0.13 0.4 0.4 0.13 0.05

vz 0.05 0.13 0.4 0.4 0.13 0.05

M 1024 256 24 256 1024 15000

K 64 32 32 5 5 5

ϕu output neurons [32, 32, 64] [64, 64, 128] [128, 128, 256] [128] [128] [128]

M output neurons [32, 32, 64] [64, 64, 128] [128, 128, 256] [128] [128] [128]

Msem output neurons [16] [32] [64] [32] [32] [32]

Mgeo output neurons ∅ ∅ ∅ ∅ ∅ ∅
Matt output neurons [64] [128] [256] [128] [128] [128]

Actx type max max max max max max

A type max max max max max max

ρe→u type max max max max max max

Table 5: Hyperparameters for GGCN. La
i is the i-th layer of the model and the a indicates whether

the layer is an upsampling layer (a =↑) or a downsampling layer (a =↓). For the terminology in this
table, refer to Section 2.3 and 5.3.

Total bandwidth Train accuracy Validation accuracy

100 MHz 0.86 0.82

50 MHz 0.84 0.80

20 MHz 0.84 0.79

5 MHz 0.87 0.83

Table 6: Model accuracies trained at different bandwidths. The values in the table refer to the model
performance after convergence, with patience set to 10.
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7. Conclusions

In this paper, we introduced a cooperative perception method wherein connected vehicles effectively choose
LiDAR points to transmit, mitigating network overload. Our approach involves learning by means of a graph
neural network the points that the receiving vehicle is interested in but cannot perceive due to occlusions.
Additionally, we proposed the concept of the Age of Transmission (AoT) to reduce redundant data transmission
across multiple communication steps.

We developed a simulation framework based on the SUMO vehicular simulator, the CARLA automotive
simulator, and the GEMV2 communication channel simulator to generate a realistic synchronized dataset of
LiDAR acquisitions and V2V channel data. Experimental results evaluated on this dataset show that our
algorithm can detect important areas that cannot be perceived by the receiver vehicle with mean 81% validation
accuracy over different communication bandwidths. Furthermore, it is shown that by introducing the AoT, data
redundancy is minimized as, on average, only 20% of the available redundant points are sent. Comparing the
model over different communication bandwidths, we noticed that the performance of the model does not vary
significantly, with a maximum validation accuracy of 83% achieved for a 5 MHz bandwidth and a little drop in
performance for higher bandwidths up to 100 MHz.

While the findings are promising, certain limitations highlight areas for potential improvement. Firstly, the
model is trained on data from a single simulation within the same urban scenario. Expanding the training to
encompass multiple scenes is expected to enhance the model’s performance. Additionally, the substantial over-
head introduced by the simulator prevents on exhaustive exploration of the hyperparameters. As a prospective
work, we suggest a more in-depth investigation into new hyperparameter settings and different architectures is
warranted.
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Figure 15: Accuracy curves during training of GGCN for multiclass segmentation task.

A. Grid-GCN validation on segmentation tasks

In this appendix, we present the results of training and validating the Grid-GCN model on the dataset generated
by our simulator for a semantic segmentation task. Fig. 15 and Fig. 16 illustrate the accuracy and categorical
cross-entropy during the training phase, demonstrating remarkable performance, with a peak validation accuracy
of 97%.

The confusion matrix for the best model, displayed in Fig. 17, indicates an overall good understanding
of the semantic meaning of objects. However, there are some classes where the model struggles with correct
classification, particularly confusing sidewalks with roads. Additionally, there is difficulty distinguishing poles
and traffic signs from traffic lights. Nevertheless, we consider these errors negligible as the confused classes are
quite similar.

B. Problem’s hyperparameters

In this appendix, we provide a brief discussion of how the hyperparameters for the problem have been selected.

B.1. Novelty score hyperparamters

The density estimator based on the kNN algorithm:

f̂U (p) =
k

mc̄ρk(p)
· 1
c
, (48)

depends on two hyperparameters: the k and c. In the following paragraphs, we describe how we tune these
hyperparameters.

kNN tuning The density estimator based on the kNN algorithm depends on the hyperparameter k of the
kNN algorithm. The wrong choice of the k hyperparameter can lead to a noisy and unreliable density estimation.
To understand the degree of reliability for a given k, we rely on the following heuristic. Given a point cloud P,
we compute the f̂U,k(p) estimator for each point p ∈ P for k ∈ [0, 30]. Then, for each point, we define a sliding
window of size w = 3, and we compute the estimator variance as follows:

σk(p) = Var [fk(p)] ∀p ∈ P,∀k ∈ [0, 28] ,

fk(p) = {f̂U,k+i(p) | i ∈ [0, 1, 2]}.

(49a)

(49b)
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Figure 16: Accuracy curves during training of GGCN for multiclass segmentation task.

Here, σk(p) measures how sensible is the estimator f̂U,k(p) for a value k and point p. The higher is σk(p), the
more sensible is the estimator. Finally, for each k we average σk(p):

σ̂k = E [σk] , ∀k ∈ [0, 28],

σk = {σk(p) | ∀p ∈ P}.
(50)

This average quantifies the average estimator sensibility for each value k. From Fig. 18, we note that for
k > 5, the sensibility is negligible. We decide to choose k = 8 for computational efficiency. Indeed, high values
of k increase the computation time for the estimator.

Normalization constant The normalization constant c distributes the density values in the interval [0, 1].
This is done so that points belonging to dense regions have a value f̂U (p) close to 1, while points in sparse
regions have f̂U (p) close to 0. From Fig. 19a, we notice the estimator distribution is strongly skewed, and there
is a relevant presence of outliers with high values. Setting c to the highest value risks pushes the majority of
estimations towards 0, even for points in dense regions. From our experiments, setting c to the 25th percentile
of the estimator values leads to reasonable results. As we can see from Fig. 20, for higher values than the 25th
percentile, even points close to the vehicle—which belongs to the most dense regions—are set to low-density
values.

B.2. RoI hypeparamters

The choice of the hyperparameters used to model the RoI are found empirically so that the shape of the RoI
reflects the assumption we made in Section 5.1. In Fig.s ?? we show how the RoI shape changes as the main
hyperparameters κ and γ changes.
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Figure 17: Confusion matrix of GGCN for multiclass segmentation task.

Figure 18: Representation of the density estimator variance for each k. Less variance implies more
reliability
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(a) Distribution of the estimator values. (b) Distribution of the estimator values inside the in-
terquartile range.

Figure 19

Figure 20: Point cloud plots. The color of the point is related to its estimated density. Brighter colors
are associated with high density and darker colors with low density. These plots compare the estimated
density value when the constant normalization changes.
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Figure 21: Heatmpas representing the RoI as κ and the time elapsed change.
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Figure 22: Heatmpas representing the RoI as γ and the time elapsed change.
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Abstract in lingua italiana

L’imminente ascesa della guida autonoma, la cui realizzazione è prevista entro il 2030, promette un’era trasfor-
mativa caratterizzata da maggiore sicurezza, comfort ed efficienza operativa. Il percorso che porta dall’assistenza
alla guida ai sistemi completamente autonomi presenta delle sfide e la tecnologia LiDAR svolge un ruolo cru-
ciale. In questo articolo esploriamo le strategie di percezione cooperativa per le nuvole di punti acquisite tramite
LiDAR, affrontando sfide come l’occlusione e la condivisione limitata dei dati. Gli attuali lavori sulla percezione
cooperativa propongono un contesto in cui ogni veicolo condivide la posizione degli oggetti rilevati. Questi
metodi presentano errori di stima e rumore significativi, dovuti a un’osservazione locale insufficiente. Altri
studi sviluppano reti neurali per comprimere e ricostruire intere nuvole di punti, minimizzando l’errore di ri-
costruzione. Anche se questi studi si dimostrano efficaci, il corretto funzionamento dell’algoritmo richiede la
sua implementazione su tutti i veicoli connessi. Lo scopo di questo lavoro è quello di studiare un approccio
alternativo in cui i dati grezzi possano essere trasmessi senza fare affidamento su quest’ultimo requisito. Proget-
tiamo e testiamo un algoritmo di selezione dei punti basato su una rete neurale a grafo che mira a identificare
quali punti appartenenti a una nuvola di punti acquisita da un veicolo meritano di essere trasmessi a un altro
veicolo. I nostri esperimenti sono stati condotti in uno scenario urbano veicolare simulato, basato su simu-
latori realistici di LiDAR e di comunicazioni V2V. I risultati sperimentali mostrano che il nostro algoritmo è
in grado di rilevare aree importanti che non possono essere percepite dal veicolo ricevente con un’accuratezza
dell’81%, riducendo la trasmissione di punti ridondanti. Sono state riconosciute le sfide relative alla velocità di
convergenza dell’addestramento e alla ricerca di iperparametri, suggerendo strade per ulteriori sviluppi.

Parole chiave: percezione cooperativa, LiDAR, veicoli autonomi, segmentazione di nuvole di punti, reti
neurali a grafo
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