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1. Introduction
During the last years, the use of Machine Learn-
ing (ML) in fluid mechanics has really grown,
thanks to the improvement in terms of available
computational power and, most importantly, to
the potential in a big number of applications.
ML is usually exploited to represent the non-
linear relation between input and output (both
CFD quantities) embedded in the highly non-
linear equations of motion, but connecting a
CFD input to a non-computable output of more
general and abstract nature is truly challenging,
since the label of a non-computable output does
not allow a simple mathematical definition. One
such problem is the classification of geometries
through their effect on the flow field, and an ex-
ample is the classification of nasal pathologies
through their effect on the internal flow. The ear
and throat surgeons face an impressive anatom-
ical variability and can only rely on visual anal-
ysis via CT scan, while they cannot take ad-
vantage of fluid dynamics information that cer-
tainly hides the effect of the patholgies. The
rate of success of the diagnoses can be surely
improved if fluid dynamics information would be

made available to ENT doctors.
However, CFD data is not immediately inter-
pretable, sometimes even for a CFD expert,
hence a tool able to analyze these data and re-
turn useful information to a surgeon would be
hugely interesting. In this respect, ML could be
vital.
The combination of ML with CFD is really chal-
lenging as the latter produces a huge amount of
data that also show an enormous variability with
respect to small changes in the geometries. This
has also to be matched to the immense variabil-
ity in intensity and shape that a pathology can
show.

2. Objective
This work presents a possible and valid pipeline
aimed to combine CFD with Machine Learn-
ing, adopting a Computational Geometry ap-
proach in dealing with geometries. The combi-
nation relies on a dimensionality reduction ap-
plied to CFD data to extract informative and
compact features which feed the ML model, and
on the data augmentation procedure applied to
the available dataset.
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The ultimate goal is to design a method able to
effectively diagnose nasal breathing difficulties
based on CFD data.

3. Method
In this section the pipeline that creates the
dataset of the ML model is briefly described
while applied to a new patient P1. This pa-
tient will be used to assess the performance of
the model, trained on a 7-patients dataset, for
which this procedure has been repeated.

3.1. Anatomy from CT-Scan
The starting point of the work is the geome-
try of the nasal cavities of a healthy patient,
namely, a patient that shows no pathologies.
With the help of Dr. Antonio Bulfamante (Hos-
pital San Paolo in Milan), a database of roughly
150 patients, provided by Azienda Ospedaliera
San Paolo, has been revised with the aim of
finding such a patient. Eventually, patient P1
has been diagnosed to show no pathologies and
chosen for the purpose.
Starting from the CT-Scan of patient P1 (see
Figure 1), a segmentation is applied using the
Slicer TresholdEffect tool, which allows to set
the Hounsfield Unit (HU), distinguishing be-
tween air and biological tissues.

Figure 1: CT-Scan of patient P1.

The resulting STL geometry is then elaborated
in Blender and MeshLab to correct small errors,
such as non physical small edges and missing
parts. The correct number of vertices and faces
is set using MeshLab, taking into account the

maximum amount of RAM memory available,
resulting in a ≈ 25K vertices geometry.
An important intermediate step, is the align-
ment of this geometry with respect to a reference
one, for which all the following steps were car-
ried out by hand by experts. This reference ge-
ometry is the patient P2 one. The alignment is
performed thanks to the Matlab procrustes func-
tion, which implements the minimization of the
sum of squared elements. This function mini-
mizes the sum of the distances between land-
marks, important and relevant points identified
on the geometries. The alignment obtained us-
ing 17 landmarks is shown in Figure 2 and Figure
3.

Figure 2: Geometries before the alignment. In
green patient P1. In purple patient P2.

Figure 3: Geometries after the alignment. In
green patient P1. In purple patient P2.

3.2. Shape registration and simplifi-
cation

Fluid dynamics simulations are in general very
computational expensive whereby the simplest
possible geometry is required in order to re-
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Figure 4: The paranasal sinuses are visible in
green.

duce the running time and the computational
resources needed. Patient P1 still has unnec-
essary parts for a CFD simulation that are
the paranasal sinuses (green parts in Figure 4),
where the flow is so slow that can be neglected.
A tool able to automatically identify and remove
the sinuses would be of great help, avoiding do-
ing that by hand for each patient, that would
be incredibly time consuming. This tool is the
functional correspondence and comes from the
computational geometry.
The problem formulation is that of deformable
object detection and dense correspondence in
cluttered 3D scene presented in 2016 by Cosmo
et al.[1] . The idea is to identify a linear opera-
tor (a functional map) between functional spaces
defined over the shapes, enforcing descriptors
preservation, along with landmarks and segment
correspondences.
Input to the method are the P2 shape (the
model) and the P1 shape (the scene) in which
the model may appear up to deformation. The
scene may contain additional clutter (here the
sinuses); the model is clutter-free.
The goal is to determine a subset of the scene
that is approximately isometric to some sub-
region of the model. The output of the method
consists of the approximately isometric parts
and a functional map encoding the correspon-
dence between the parts. The two parts are rep-
resented as a binary indicator function on the re-
spective shape, called segmentation function or
segmentation mask. The result of the segmenta-
tion can bee seen in Figures 5 and 6, where the

Figure 5: P2 reference shape.

Figure 6: Registered P1 shape. The segmenta-
tion masks contains zero values for the vertices
depicted in black.

two nearly isometric parts are the colored ones.

3.3. ZoomOut
The next step is to compute a much higher res-
olution map between two shapes with respect
to the one retrieved through shape registration.
The map computed in Section 3.2 was in fact
good for the matching of a shape into a clut-
tered one, well recognizing the model scene in-
side the target scene, but locally was not very
accurate. The method considered is the one pre-
sented by Melzi et al.[2], based on spectral iter-
ative up-sampling technique for non-rigid shape
correspondence called ZoomOut method. The
method receives as input a functional map C0
and at each step extends it to a new map C1,
introducing additional frequencies and thus, in-
tuitively adding samples for representing a map
in the spectral domain.
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Figure 7: The scalar map defined on the P2
shape (top) is mapped on the P1 shape (bot-
tom) through the point to point map resulting
from the ZoomOut method.

The results of the ZoomOut method can be
seen in Figure 7 and Figure 8.

3.4. Pathologies insertion
The idea now is to use the "diseased" geometries
of the patient P2 for which the pathologies has
been inserted by hand by ENT doctors, to map
pathologies on the P1 shape, aiming to extend
the available "labeled" set of geometries, i.e. the
diseased patients for which the pathologies are
known. This procedure is called Data Augmen-
tation and helps in improving the accuracy of a
ML model, promoting variability in the training
data. A deformation function is defined between
the diseased and the healthy P2 shapes, as the
difference between the vertices coordinates (one
should recall in fact, that a pathology is noth-
ing more than a geometry deformation). This
leads to a vectorial deformation function whose
scalar component are mapped on the P1 shape
via the ZoomOut functional map, computed
previously.
Repeating the mapping for 17 different patholo-
gies (hypertrophies and septal deviations), new
labeled diseased shapes of patient P1 are ob-
tained.

Figure 8: A high frequency sinusoid creates some
bands that are mapped on the P1 shape. The
accuracy of the correspondence can be evaluated
by looking at how these bands get deformed.

3.5. LES simulations
LES simulations are carried out on the result-
ing geometries, as accurate information of the
internal is required. The simulations have been
ran in OpenFOAM on a 0.65 seconds inspira-
tion. The starting geometries are the P1 STL
files (with and without pathologies) and the STL
of a cut sphere positioned to create a "closed
mask" around the nostrils, necessary to enforce
the inlet boundary conditions. 3 patches are
generated, one for the sphere where the volu-
metric flow rate is imposed, one for the head
representing the walls and one for the throat.
The mesh is created thanks to the blockMesh
and the snappyHexMesh utilities. The first cre-
ates a background hexahedral mesh specifying
the number of cells in all directions for each
block generated; the two main blocks contain-
ing the background mesh can be seen in Figure
9. The second generates 3-dimensional meshes
containing hexahedra that approximately con-
forms to the surface by iteratively refining.
The snappyHexMesh meshQualityControls sub-
dictionary helps in controlling the quality of the
mesh, setting important values, as minimum de-
terminant allowed, the maximum non orthogo-
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Figure 9: Main blocks exploited in the blockMesh
utility.

Mesh characteristic values

Parameter value
Points 16788901
Faces 42114279
Cells 12954489

Min determinant cells 108

Table 1: Characteristic values for the "healthy"
P1 mesh. The Min determinant cells indicates
the number of cell with determinant lower than
the minDeterminant value of the meshQuality-
Controls sub-dictionary.

nality, the minimum face area, etc... Some of the
mesh characteristic values are reported in Table
1 for the P1 "healthy" geometry.
The WALE turbulence model is set inside
the turbulenceProperties dictionary, as requiring
only local information, it is well-suited for LES
in complex geometries; the solver is the pimple-
Foam transient solver for incompressible, turbu-
lent flow of Newtonian fluids.
The simulations are performed in remote ssh
access to the server of the HPC infrastruc-
ture GALILEO100 of the CINECA system in
Bologna on 2 out of the 528 total nodes for each
simulation. Each node has 48 cores for a total
of 96 cores and 160 GB’s of RAM.

3.6. Features exctraction
Given the amount of data that CFD returns
(around 40 GB’s per simulation), feeding a neu-
ral network with such a huge dataset reveals cur-
rently an infeasible way to proceed, hence a se-

Figure 10: Sections extracted from LES results.

lection and dimensionality reduction of the data
is required. In particular, one can look for im-
portant and relevant values for the CFD, able
to compactly encode the flow field properties,
called features in a Machine Learning jargon.
The extraction of the features from the LES re-
sults is crucial. Features must contain informa-
tion on the pathologies and at the same time
should be easy to retrieve and to interpret. The
features used within this work are inspired by
engineering practice in the analysis of flow fields
[3], namely regional averages values of time-
averaged quantities. Six sections are identified
on the P1 shape (see Figure 10) on which such
values are retrieved for the enstrophy, the turbu-
lent kinetic energy, the velocity magnitude and
the magnitude of the pressure gradient, distin-
guishing between left and right sub-region. The
regional average is computed taking into account
the uneven dimension of the cells, weighting the
values on the cells area.
This results in 12 values per simulation for each
CFD quantity previously mentioned. These val-
ues are used as input to a classification neural
network.

3.7. Neural network classification
A classifier is a particular Neural Network ar-
chitecture able to predict if something belongs
to one class or not. Specifically, the classifier
built in Matlab for this project is trained to per-
form a binary classification, evaluating if a given
set of features associates to a septal deviation
or to a hypertrophy. The NN takes as input a
12-features vector, corresponding to the 12 re-
gions extracted from each geometry, 2 regions
per section. The output layer consists of one
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Figure 11: Classifier architecture.

Performance of the classifiers

Network Score Accuracy
|U|-based 13/17 77%
|∇p|-based 14/17 82%
E-based 12/17 71%
k-based 11/17 65%

Table 2: Performance of the classifiers. E in-
dicates the enstrophy, k the turbulent kinetic
energy.

neuron returning a value between 0 (associated
to a hypertrophy) and 1 (associated to a septal
deviation). Three fully connected hidden layers
link the input to the output, having respectively
30, 20 and 10 neurons each (see Figure 11) for a
total of 1231 trainable parameters.
The neurons implement the hyperbolic tangent
activation function and the Loss function is the
classical binary cross-entropy. The training is
is managed by the Scaled Conjugate Gradient
Backpropagation that updates the network pa-
rameters considering the sensitivity that the loss
function shows with respect to each parameter.
The tests are conducted on a never-seen-before
patient, that is the P1, to evaluate the per-
formance in the inference on never-seen-before
data. 4 different networks are considered, each
one trained on the values of the 4 CFD quanti-
ties previously cited. The results can be seen in
Table 2.

4. Conclusions
Given the limited available dataset, the perfor-
mance achieved with this pipeline is quite good,
up to a ∼ 80% of accuracy in the best case. This
demonstrates that ML can effectively predict
functional properties (here the type of pathol-
ogy) from complex CFD data, even if the flow
field does not provide direct high-level diagnos-
tic information. The potential is huge, as with
such a tool, ENT doctors could rely on new rel-
evant information directly conveyed by the flow
field, that can improve the rate of success of their
diagnosis.
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Abstract

The present Thesis is carried out within the framework of a standing collaboration, pro-
visionally named OpenNOSE, led by PoliMi, which includes UNIMI with the Santi Paolo
e Carlo University Hospitals.

The work presents the pipeline that has been developed during the recent years, aimed at
diagnosing nasal breathing difficulties through a Machine Learning (ML) model. Specifi-
cally, the ML model is designed to exploit CFD information extracted from simulations of
patient-specific anatomies with pathologies. In dealing with shapes, a Computational Ge-
ometry (CG) approach has been adopted to automate some complicated procedures, and
to perform Data Augmentation (DA) of the available dataset while ensuring consistent
and well defined pathologies with unique labels.

The work is structured in three parts. In the first, starting from the complete CT scan of
a healthy patient, a simplified geometry of the nasal cavities is extracted thanks to a CG
tool, known as functional maps. The ability of the functional maps to create functional
correspondences helps in performing DA, by increasing the number of available anatomies
for which LES simulations are carried out. The second part describes the computational
procedure for the LES simulations; the third part describes how CFD results can be
compacted into a handful of values (called features) and used as input on a (pre-trained)
Neural Network (NN), which performs inference on the pathologies.

The pipeline has been previously trained on a database built with DA from 7 patients.
The present work has provided data based on a 8th patient, used to test for the first time
the accuracy of the classifier. Although the number of observations is still rather limited,
the achieved accuracy of 80% is already satisfactory, and demonstrates the viability of
the proposed approach.

Keywords: CFD, LES, Machine Learning, Computational Geometry, Functional Maps,
Data Augmentation, Nasal Cavities Flow





Abstract in lingua italiana

Collocato all’interno del progetto OpenNOSE, una collaborazione aperta tra PoliMI,
UNIMI e l’Ospedale San Paolo polo universitario di Milano, il lavoro che segue presenta
la pipeline sviluppata negli ultimi anni con l’obbiettivo di diagnosticare difficoltà respira-
torie attraverso l’utilizzo di un modello Machine Learning (ML). In particolare il modello
utilizza dati CFD estratti da simulazioni condotte sulle geometrie delle cavità nasali dei
pazienti. Nel trattare le geometrie, viene adottato un approccio basato sulla Geometria
Computazionale (GC) per automatizzare delle procedure altrimenti complicate, e per fare
Data Augmentation (DA) sul dataset disponibile.

Il lavoro è strutturato in 3 parti: nella prima, partendo dalla TAC di un paziente sano
viene estratta una geometria semplificata delle vie nasali tramite l’utilizzo di mappe fun-
zionali, uno strumento appartenente alla GC; la corrispondenza funzionale permette in-
oltre di fare DA, ovvero incrementare il numero di geometrie disponibili su cui lanciare
simulazioni, promuovendo la variabilità anatomica, operazione fondamentale per miglio-
rare l’accuratezza di una rete neurale, sopratutto in ambito CFD. Nella seconda parte,
simulazioni LES sono lanciate sulle geometrie risultanti dalla DA. Nella parte finale, par-
ticolari valori chiamati features vengono estratti dai risultati delle LES e utilizzati per
testare una rete neurale (NN) di classificazione, addestrata a fare inferenza sulle patologie
associate alle geometrie dei pazienti.

La pipeline ha prodotto finora un database di 7 pazienti e con questo lavoro ne viene
inserito un ottavo, dopo essere stato utilizzato per testare l’accuratezza del classificatore,
che si assesta attorno ad un buon 80%.

Parole chiave: CFD, LES, Machine Learning, Geometria Computazionale, Mappe Fun-
zionali, Data Augmentation, Corrente Nelle Cavità Nasali
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1

Introduction

In the recent years, the use of Machine Learning (ML) in fluid mechanics has grown
exponentially, thanks to the improvement in terms of available computational power and,
most importantly, to the potential in a number of applications [1]. ML is usually exploited
to represent the non-linear relation between input and output (both CFD quantities)
embedded in the highly nonlinear equations of motion. Within this approach, a host
of works have proposed: turbulence model improvement through ML [2]; reconstruction,
estimation and super-resolution using Convolutional Neural Networks (CNN) [3]; physics-
informed deep learning [4], and several others. The field is really blooming. In all the
aforementioned applications, fluid dynamics quantities are used as input and output of
the ML algorithm. Connecting a CFD input to a non-computable output of more general
and abstract nature (that is a high functional property) is more challenging, since the
label of a non-computable output does not allow a simple mathematical definition. One
such problem is the classification of geometries through their effect on the flow field: an
example is the classification of nasal pathologies through their effect on the internal flow,
which is the original application where the approach was first conceived [5].

ML in rhinology is almost unexplored, being so far limited mainly to the classification
of paranasal sinuses based on radiological information. In the last two decades, the
number of patient-specific CFD studies has seen a sudden growth; however, very little
is flowing back to clinical practice in terms of improved patient treatment, better surgery
planning, reduced failure rate of surgeries. The ear and throat surgeons face an impressive
anatomical variability and can only rely on visual analysis via CT scan, while they cannot
take advantage of fluid dynamics information, and ground their diagnosis on experience
and on the reported symptomatology. This entails a very subjective clinical path that
often leads to unsatisfactory surgical maneuvers: as an example, for the surgical correction
of the septal deviations the majority of patients reports an unsatisfactory outcome after
surgery [6]. The rate of success of the diagnoses can be surely improved if fluid dynamics
information would be made available to ENT doctors.

However, the native form of CFD data is not immediately interpretable [7], sometimes
even for a CFD expert, hence a tool is required to analyze these data and return useful
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information to a surgeon. In this respect, ML could be vital.

The combination of ML with CFD is really challenging as the latter produces a huge
amount of data that also show an enormous variability with respect to small changes
in the geometries. This has also to be matched to the immense variability in intensity
and shape that a pathology can show. Thus, a valid Machine Learning model should
be trained on a really big dataset of simulations, difficult to gather given the lack of
annotated data. A possible walk around could be to perform data augmentation on the
available dataset, namely, increasing the number of geometries on which a network is
trained. These aspects, will be further deepened in the following pages.

Therefore, this work wants to present a possible and valid pipeline (schematized in Figure
1) aimed to combine CFD with Machine Learning, adopting a Computational Geometry
approach in dealing with geometries. The combination relies on a dimensionality reduction
applied to CFD data to extract informative and compact features which feed the ML
model, and on the data augmentation procedure applied to the available dataset.

The ultimate goal is to design a method able to effectively diagnose nasal breathing
difficulties based on CFD data.

Figure 1: Scheme of the work.
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1.1. CT-scan

The starting point of this work is the geometry of a healthy patient (i.e. with no patholo-
gies), on which the method presented in this work will be applied; whereby a database
of roughly 150 CT-scans provided by Ospedale San Paolo polo universitario in Milan has
been revised with the aim of finding such a patient. Under the supervision of Dr. Antonio
Bulfamante (hospital San Paolo), patient P1 has been diagnosed to be healthy and chosen
for the purpose (Figure 1.1).

Figure 1.1: CT scan of patient P1. Top left: transversal plane; top right: 3D model;
Bottom left: coronal view; Bottom right: sagittal view.
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The generation of the preliminary STL geometry is achieved as follows: The DICOM
data is imported in Slicer and a segmentation is applied with the help of the Treshold-
Effect tool, which allows to set the Hounsfield Unit (HU), distinguishing between air and
biological tissues. This value of threshold has been fixed to −220 HU [8]. After that,
the segmentation created is checked looking for non physical small edges that are critical
for the CFD analysis, for missing parts and for filled parts that needs to be excluded by
hands. Once adjusted, the STL can be exported and it’s ready for further corrections in
Blender and MeshLab.

The Blender environment helps in removing unnecessary parts of the geometry, in remov-
ing small edges and adjusting errors. MeshLab allows to get a good number of faces and
vertices for the following steps developed in Matlab. In particular, as 16 GB’s of RAM
were available, a surface mesh with a maximum of ≈ 25000 vertices were allowed to be
stored in the Matlab workspace.

1.2. Alignment with reference patient

In order to "insert pathologies" and remove the paranasal sinuses with the help func-
tional maps, the alignment of the patient’s geometry with a reference one for which the
procedure has already been applied is help full to reduce the probability of errors in
the correspondence between geometries. The alignment is carried out in Matlab taking
as reference the patient P2, patient with a particularly good CT-scan and to which all
the pathologies have been carefully inserted by hand by surgeons that also removed the
paranasal sinuses.

(a) Patient P2. (b) Patient P1.

Figure 1.2: Some of the landmarks are visible in red.
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A total of 17 Landmarks for the alignment have been selected as important and remarkable
points for each geometry, such as the first vertex on the nose, the last on the throat,
heads and tails of the turbinates, vertices referred to the nasal valve, to the olfactory
region, to the septum and to the nostrils. Some of the landmarks are visible in Figure
1.2. The minimization of the sum of the distances between landmarks implemented in the
procrustes function, returns a linear transformation (translation, reflection and orthogonal
rotation) used to move the entire geometry. Figures 1.3 and 1.4 show the landmarks and
the complete geometries before and after the alignment.

(a) Landmarks before alignment. (b) Landmarks after alignment.

Figure 1.3: The figure shows in green the landmarks of patient P2 and in red patient
P1 ones.

(a) Geometries before alignment. (b) Geometries after alignment.

Figure 1.4: The figure shows in violet patient P2, in green patient P1.
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2| Shape registration and

simplification

2.1. Removal of the paranasal sinuses through shape

registration

Fluid dynamics simulations are in general very computational expensive whereby the
simplest possible geometry is required in order to reduce the running time and the com-
putational resources needed. Patient P1 still has unnecessary parts for a CFD simulation
that are the paranasal sinuses (visible in green in Figure 2.1), where the flow is so slow
that can be neglected [9][10]. Since the whole procedure is thought to be applied to dif-
ferent patients, a tool able to automatically identify and remove the sinuses would be of
great help, avoiding doing that by hand for each patient, that would be incredibly time
consuming. This tool is the functional correspondence and comes from the computational
geometry.

Figure 2.1: Paranasal sinuses.
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The problem formulation is that of deformable object detection and dense correspondence
in cluttered 3D scene presented in 2016 by Cosmo et al.[11]. The idea is to identify a linear
operator (a functional map) between functional spaces defined over the shapes. Choosing
appropriately the bases (such as the Laplace-Beltrami eigenfunctions proposed by Ovs-
janikov et al. [12]), the operator admits a matrix representation that compactly encodes
the map relating the two shapes. The shapes are modelled as 2D Riemannian manifolds
M equipped with an intrinsic distance dM and area element dµ. In this framework, the
Laplace-Beltrami operator ∆M admits eigen decomposition:

∆Mϕi(x) = λiϕi(x) x ∈ int(M),

⟨∇Mϕi(x), n̂(x)⟩ = 0 x ∈ ∂M.

(2.1)

(2.2)

Equation 2.2 indicates the Neumann boundary conditions, where n̂(x) is the normal vector
to the boundary, λi are the eigenvalues and ϕi the corresponding eigenfunctions. Since
the eigenfunctions of the Laplacian form an orthonormal basis of L2(M) = {f : M →
R |

∫
M f 2dµ <∞}, any function f ∈ L2(M) can be Fourier expanded

f(x) =
∑
i≥1

⟨f, ϕi⟩Mϕi(x), (2.3)

where ⟨f, ϕi(x)⟩ is the L2(M) inner product defined as ⟨f, g⟩ =
∫
M fgdµ.

So the idea is to identify a correspondence between shapes encoded in a linear operator
T : L2(M) → L2(N ) that maps functions from M to N . Furthermore, T holds matrix
representation C = (cij) such that

Tf(x) = T
∑
i≥1

⟨f, ϕi⟩Mϕi(x) =
∑
i≥1

⟨f, ϕi⟩MTϕi(x) =
∑
i,j≥1

⟨f, ϕi⟩M ⟨Tϕi, ψj⟩N︸ ︷︷ ︸
cji

ψj, (2.4)

where {ϕi}i>1 and {ψi}i>1 are orthogonal bases on L2M and L2N , and f ∈ L2(M) is
an arbitrary function. The Fourier series is then truncated to the first k coefficients,
leading to a k × k matrix C. One can expect a near-isometry to have a matrix C close
to the identity matrix, while Rodolà et al.[13] showed that for partial matching, matrix
C presents a slanted-diagonal structure (Figure 2.2).
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Figure 2.2: Slanted diagonal structure of the functional map C(last figure on the right)
from M(cat on the left) to N (cat on the right) [13].

On the other hand, in case of partial correspondence in presence of clutter, only a sparse
subset of eigenfunctions on the scene N have an approximately corresponding eigenfunc-
tion on the model M. In the context of interest, the aim is firstly to identify the paranasal
sinuses in a complete nose geometry, reflecting exactly the last of the aforementioned pos-
sibilities. In particular, the model here is represented by patient P2, the scene by patient
P1 and contains additional "clutter" that is the paranasal sinuses. Hence, the goal is
to determine the part of patient P1 ’s geometry that is approximately isometric to pa-
tient P2 ’s one. The output of the method consists of the approximately isometric parts
M′ ⊆ M, N ′ ⊆ N and the functional map T . Each part is represented as binary indicator
function on the respective shape called segmentation function or segmentation mask.

In such a problem, descriptors preservation along with landmarks and segment corre-
spondences are implemented [14]. The landmarks are the aforementioned ones and the
segments are the paths linking these landmarks, computed as shortest geodesic path
through the Dijkstra’s algorithm [15] both on the P2 and on the P1 shapes (Figure 2.3).

Figure 2.3: Geodesic paths link the landmarks on the P2 shape on the left hand side
and on the P1 shape on the right hand side.

Together with the 17 landmarks already cited, additional 50 descriptor points have been
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Figure 2.4: Additional descriptor points as K-means clustering centroids. On the left,
patient P2 ; on the right patient P1.

added (Figure 2.4), considering the K-means clustering partitions on the P2 shape, min-
imizing the sum over all clusters of the within-cluster sums of point-to-cluster-centroid
Euclidean distances, and looking in shape P1 for the nearest points to the P2 ones.

The following unconstrained problem is therefore considered:

min
C,θ,u,v

∥ CA(η(u))− B(η(v)) ∥2,1 + ∥ CΦTη(u)−ΨTη(v) ∥22 +ρcorr(C, θ) + ρpart(u, v),

(2.5)

where Φ ∈ R|M|×k and Ψ ∈ R|S|×k are two matrices containing as columns the first k
Laplacian eigenfunctions of M and S respectively (computed as shown in Section 3.1);
A(η(u)) and B(η(v)) contain the spectral coefficients of F ∈ R|M|×d and G ∈ R|S|×d

(matrices holding the descriptors fields on model and scene), masked by the respective
segmentations u : M → [0, 1] and v : S → [0, 1]; η(t) = 1

2
(tanh(2t−1)+1) is a saturation

function that keeps u and v between 0 and 1.

ρcorr is a regularizer for C, explicitly:

ρcorr(C, θ) = µ1

∑
i ̸=j

(CTC)2ij + µ2

∑
i

|CTC|ii + µ3 ∥ C ◦ W(θ) ∥2F , (2.6)
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where, ∥ . ∥F is the Frobenius or Euclidean norm, defined as:

∥ A ∥F=

√√√√ m∑
i=1

n∑
j=1

|aij|2 =
√
Tr(AAH), (2.7)

being AH the conjugate transpose of A.

The µ1- and µ2-terms require CTC to be as diagonal as possible and promote area preser-
vation. The µ3− terms requires C to have a slanted diagonal form with angle θ.

ρpart is a regularizer for u and v, such that:

ρpart(u, v) =µ4

(∫
M

∥ ∇Mη(u) ∥ dx+
∫
S
∥ ∇Sη(v) ∥ dx

)
+µ5

(∫
M
η(u)dx−

∫
S
η(v)dx

)2

−µ6

(∫
M
η(u)dx+

∫
S
η(v)dx

)
,

(2.8)

where the µ4-term derives from the Mumford-Shah functional [16] and promote the pro-
duction of contiguous regions, penalizing boundary length; the µ5-term requires the same
area for M and S and the µ6-term control the size of the parts.

The values of the parameters used for this work are summarized in Table 2.1.

Values of the parameters

Parameter value
µ1 5
µ2 1
µ3 0.1
µ4 1
µ5 2
µ6 40

Table 2.1: Value of the parameters in Equation (2.5).
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2.2. Results: match object in clutter
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The result given by the functional correspondence
is visible in Figure 2.5 and Figure 2.6, where ver-
tices whose mask value is 0 are depicted in black
and vertices whose mask value is 1 are colored cre-
ating a scalar map both on the P2 shape and the
P1 one. While the functional map obtained can
be seen in the figure on the right as scaled colored
image: note the slightly visible slanted diagonal
structure of the map.

The segmentation mask is very accurate and re-
duces the number of vertices from ≈ 25K to ≈ 12K, leaving only small parts of the
aimed shape, probably associated to parts of the surface far from both the geodesic path
and the landmarks. Hence, some "holes" in the geometry are present and need to be
corrected. A filter is applied checking for every vertex the "neighbour" vertices up to a
given distance and changing the mask value to 1 if necessary.

Figure 2.5: Result of the matching.
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Figure 2.6: Result of the matching.

Once the final shape is obtained, an up-scaling to a finer mesh is required. Exploiting
the FLANN (Fast Library for Approximate Nearest Neighbour, https://github.com/
flann-lib/flann), the nearest neighbour of each vertex of a mesh of ≈ 50K vertices is
retrieved in the 25K mesh, and is given the same value of the mask. In this way, the
registered shapes will have again ≈ 25K vertices, exploiting all the available RAM.

Before exporting the very final geometry, a good idea could be to keep the whole face
of the patient, useful to set boundary conditions in the CFD simulations. Whereby, the
mask is converted in RGB code for black ([0 0 0]) and white ([255 255 255]) and exported
as .ply file (Figure 2.7).

Blender is used to "paint" the face in white and the .ply is imported again in Matlab,
where the RGB code is converted back to [0 1] values. Now the final geometry can be
obtained, keeping only the vertices associated to a mask value of 1, modifying properly
the triangulation matrix. The final result can be seen in Figure 2.8.

https://github.com/flann-lib/flann
https://github.com/flann-lib/flann
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Figure 2.7: Blender view of the segmentation mask in black and white.

Figure 2.8: Final geometry obtained with the segmentation.
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3| Shape matching: ZoomOut

method

3.1. ZoomOut

The geometry shown in Figure 2.8 is a healthy one, meaning that has been diagnosed
to exhibit no pathologies. The goal is now to find an automatic way to precisely map a
given pathology inserted by hand in the P2 geometry onto the P1 shape, recalling that a
pathology can be seen as a geometry deformation of a healthy shape. The map computed
in Section 2.1 was in fact good for the matching of a shape into a cluttered one, well
recognizing the model scene inside the target one, but locally was not very accurate [11].

The method exploited in this section to compute a much higher resolution map with
respect to the Section 2.1’s one is the one presented by Melzi et al.[17] in 2019, which
is based on spectral iterative up-sampling technique for non-rigid shape correspondence
called ZoomOut method.

Given a pair of shapes M and N represented as triangular meshes, one can associate
the positive semi-definite Laplacian matrices LM and LN , discretized via the standard
cotangent weight scheme [13] recalled here below.

Let M a manifold sampled in n points x1, ..., xn which are connected by interior and
boundary edges E = Ei ∪ Eb and faces F , forming a manifold triangular mesh, the
discretization of the Lapalcian takes the form n× n sparse matrix

LM = S−1
MWM, (3.1)

where
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wij =



− (cotαij + cotβij)

2
ij ∈ Ei;

− cotαij

2
ij ∈ Eb;∑

k ̸=i

wik i = j;

0 else,

(3.2)

is the cotangent weight matrix, SM = diag(si, ...sn), si =
1
3

∑
jk:ijk∈F sijk is the local area

element at vertex i, sijk denotes the area of the triangle ijk, and αij,βij denote the angles
∠ikj, ∠jhi of the triangles sharing the edge ij (see Figure 3.1).

Figure 3.1: Discretization of the Laplace-Beltrami operator on a triangular mesh for
interior edges (green, left) and boundary edges (red, right).

Figure 3.2 shows the first 4 Laplace-Beltrami eigenfunctions on the P1 and on the P2
shapes.

The ZoomOut method takes as input a kM × kN functional map C0 (see Section 2.1)
or a point to point correspondence T : M −→ N and extends it to a new map Ci of size
(kM + i)× (kN + i) by the following two-steps procedure applied n−times:

For i from 0 to n do

(1) Compute a point-to-point map T via Equation 3.4 and encodes it as matrix Π such
that:

C = (ΦkM
M )+ΠΦkN

N , (3.3)

where ΦkM
M = [ϕ1, ϕ2, ..., ϕKM ] and ΦkN

N = [ϕ1, ϕ2, ..., ϕKN ] are the matrices having
the eigenfunctions of M and N as columns, and + denotes the Moore-Penrose
pseudo-inverse [18].



3| Shape matching: ZoomOut method 17

Figure 3.2: first 4 Laplace-Beltrami eigenfunctions computed with the cotangent
method. Top row: P1 shape. Bottom row: P2 shape.

(2) Set C1 = (ΦkM+1
M )+SMΠΦkN+1

N .

To compute a pointwise map T from a given C in step (1) the following problem is solved:

T (p) = argmin
q

∥ C(ΦN (q))T − ΦM(p))T ∥2, ∀p ∈ M, (3.4)

where ΦM(p) denotes the pth of the matrix of eigenvectors ΦM. This procedure return a
point-to-point map T : M −→ N and is implemented using the FLANN library already
cited in Section 2.2.

The term “up-sampling” in the description of this method is related to the fact that at
every iteration ZoomOut introduces additional frequencies and thus intuitively adds
samples in the spectral domain for representing a map.

The pipeline is initialized with a 2 × 2 identity functional map C0, as one can notice in
Figure 3.2 that the first two Laplace-Beltrami eigenfunctions align with each other. The
map is then refined up to a 120× 120 with a step size of 1.
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3.2. Results: ZoomOut

Figure 3.3: Some of the ZoomOut method results, starting from a 4 × 4 functional
map, to a 120 × 120 one. In the top row: matrix representations of the map C. In the
bottom row: the mapping of the scalar map created on source though the correspondent
functional map in the first row.

The results of the ZoomOut method are visible in Figure 3.3, Figure 3.4, Figure 3.5 and
Figure 3.6.

One can notice from Figure 3.3 that the correspondence between the 2 shapes is quite
accurate starting from a functional map size of 50 eigenfunctions; moreover, the functional
map matrix representation becomes almost diagonal, reflecting the fact that, despite the
two shapes are actually different, they look alike and the structure of the functional map
is similar to a near-isometric one. Figure 3.4 and Figure 3.5 show the results in terms of
scalar map on the surface: a scalar map is created on the reference shape of P2, and then
mapped using the point-to-point form of the map C to the P1 shape. The correspondence
is very precise and a possible way to evaluate how good is the mapping is shown in Figure
3.5: a high frequency sinusoidal is plotted in the y−direction, creating some visible bands
that are transported on the P1 shape by the mapping. Therefore, the accuracy of the
correspondence can be evaluated by looking at how these bands get deformed on the P1
shape with respect to the P2 ones. The bands keep very regular while the slight lack of
definition at the borders may be due to the small number of vertices of the P1 shape with
respect to the P2 one.
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Figure 3.4: The scalar map defined on the P2 shape (left) is mapped on the P1 shape
(right) through the final 120× 120 map.

Figure 3.5: The high frequency sinusoidal plotted in the y−direction shows how good
is the correspondence between the two shapes.
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Figure 3.6: The high frequency sinusoidal plotted in the y−direction shows how good
is the correspondence between the two shapes.



3| Shape matching: ZoomOut method 21

3.3. Pahologies insertion

Taking advantage of the correspondence computed in Section 3.1 through the ZoomOut

method a function defined on the P2 reference shape can be mapped on P1 preserving its
well definition. Hence, the idea now is to use the "diseased" geometries of the patient P2
for which the pathologies has been inserted by hand by ENT doctors, to map pathologies
on the P1 shape, aiming to extend the available "labeled" set of geometries, i.e. the
diseased patients for which the pathologies are known. This is a fundamental step for the
training of a Machine Learning model, as it will be described in Chapter 5.

Figure 3.7: Left: section of the P2 shape used to visualize the pathology. Center: P1
"healthy" shape. Right: P2 "diseased" shape.

The procedure is the following: the P2 "healthy" shape together with the "diseased"
geometries are considered and their "shape difference" is computed, being the difference
between the coordinates of all the "diseased" vertices and the "healthy" ones; a vectorial
difference function is thus obtained. Each of the three scalar maps for ∆x,∆y and ∆z, can
be now mapped on the P1 shape using the point-to-point form T of the 120×120 functional
map C assessed through the ZoomOut method in the previous section. The point-to-
point map is retrieved solving Problem 3.4. Knowing the point-to-point correspondence
between the two shapes, one can associate to each point of the P1 shape the deformation
of the corresponding point in the P2 "diseased" shape. Finally, the mapped ∆-functions
are added to the P1 vertices coordinates, leading to the P1 "diseased" geometries. An
example can be seen in Figure 3.8 and Figure 3.9 with the hypertrophy of the head of the
middle turbinate shown in Figure 3.7.

The procedure is repeated for different shapes of septal deviations and hypertrophies,
occurring in different locations and having different levels of severity, for a total of 17
different cases shown in Appendix A.



22 3| Shape matching: ZoomOut method

Figure 3.8: The hypertrophy is visible on the P2 shape as deformation function on the
surface.

Figure 3.9: The mapped hypertrophy is visible on the P1 shape as mapped deformation
function on the surface.
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4| LES simulations

Accurate information on the internal flow in the nasal cavity is now required, whereby
Computational Fluid Dynamics (CFD) plays a central role in this section. First of all, the
choice of the CFD model is fundamental. Given the complexity of the geometry, a Direct
Numerical Simulation (DNS) would be hugely expensive and practically infeasible. On the
other hand, a RANS simulation, despite the immensely lower computational cost, would
return not sufficiently accurate results. For these reasons a LES model has been chosen
and performed on each geometry, being LES simulations a good compromise between
RANS and DNS.

4.1. Background

The Large Eddy Simulation approach [19] relies on the concept of large and small scales,
and in practice, the LES technique consists in solving the set of ad-hoc governing equations
on a computational grid which is too coarse to represent the smallest physical scales, that
are instead modelled as follows.

Starting from the incompressible unsteady Navier-Stokes equations,


∂uj
∂xj

= 0

∂uj
∂t

+
∂uiuj
∂xi

= − ∂P

∂xj
+ ν

∂2uj
∂xi∂xi

(4.1)

a decomposition is applied such that

u(x, t) = ũ(x, t) + u ′(x, t) (4.2)

where .̃ is a low-pass filter operator or bandwidth ∆ of cutoff wavenumber κc = π
∆

, with

ũ(x, t) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
G(r,x)u(x − r, t)dr, (4.3)
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being G(r,x) the filter kernel with
∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞ G(r,x)dr = 1, usually a box, gaussian

or sharp spectral filter.

Applying the filter in Equation 4.3 to Equations 4.1 one can retrieve the filtered Navier-
Stokes equations:


∂ũj
∂xj

= 0

∂ũj
∂t

+
∂ũiũj
∂xi

= − ∂P̃

∂xj
+ ν

∂2ũj
∂xi∂xi

− ∂τij
∂xi

,

(4.4)

where the effect of the small scales upon the resolved scales of the turbulence appears in
the sub-grid scales stress tensor τij = ũiuj − ũiũj, which needs to be modelled to close the
equations (see Section 4.2).

4.2. Turbulence Model

The turbulence approach proposed in this project is the WALE one [20][21][22]. The
sub-grid scales stress tensor is modelled by eddy-viscosity approach, where the turbulence
effect expressed by the latter is embedded in the eddy-viscosity νt, such that

ν = ν0 + νt. (4.5)

The WALE model (Wall-Adapting Local Eddy-viscosity) provides a particular expression
for νt as

νt = (CW∆X )2OP , (4.6)

being CW the WALE model constant, ∆X the lattice spacing and OP the WALE model
operator defined as

OP =
(Sd

ijSd
ij)

3
2

(S̃ijS̃ij)
5
2 + (Sd

ijSd
ij)

5
4

, (4.7)

where
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Sd
ij = S̃ikS̃kj + Ω̃ikΩ̃kj −

1

3
δij

(
S̃mnS̃mn − Ω̃mnΩ̃mn

)
Ω̃ij =

1

2

(
∂ũi
∂xj

− ∂ũj
∂xi

)
S̃ij =

1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

) (4.8)

The WALE approach is based on tensor invariant, meaning that it is not affected by
any coordinate translation or rotation, and reproduces the proper scaling at the wall
(νt = O(y3)). It is well-suited for LES in complex geometries as only local information
is required to build the eddy-viscosity. Finally, it is sensitive to both the strain and
the rotation rate of the small turbulent structures, improving the performance of the
Smagorinsky model [23], which takes in account only for the strain rate and leaves a νt of
O(1) at the wall.

4.3. OpenFOAM setup

The simulations have been performed in OpenFOAM on a 0.65 seconds inspiration [24].
The starting geometries are the P1 STL files (with and without pathologies) and the STL
of a cut sphere positioned to create a "closed mask" around the nostrils (see Figure 4.1),
necessary to enforce the inlet boundary conditions.

The patches of the problem are 3:

• clownose: it simulates the external air. The flow rate is imposed here.

• testa: patch representing the walls of the problem, hence the nasal cavities.

• throat: outlet patch, situated at the height of laryngopharynx.

The patches can be seen in Figure 4.2.

4.3.1. The Mesh

The mesh generation requires different steps to be completed. The two main phases
are the blockMesh backgound mesh generation and the refinement of the latter by the
snappyHexMesh utility.

blockMesh The blockMesh utility creates a background hexahedral mesh specifying the
number of cells in all directions for each block generated. Each block of the geometry is
defined by 8 vertices, one at each corner of a hexahedron. A glimpse of the blockMeshDict
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Figure 4.1: Position of the sphere on the patient P1.

Figure 4.2: Patches of the problem. In red the "clownose", in blue the "testa" patch,
in green the "throat".
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Figure 4.3: Section of the blockMeshDict file in the system−folder.

file can be seen in figure 4.3. The two main blocks containing the background mesh can
be seen in Figure 4.4.

snappyHexMesh The snappyHexMesh utility generates 3-dimensional meshes contain-
ing hexahedra that approximately conforms to the surface by iteratively refining. It
consists of different sub-phases: the Castelleted phase, the Snappy phase and the mesh
quality controls phase. To run snappyHexMesh the background mesh is required from
the blockMesh utility as well as the snappyHexMeshDict dictionary located in the system
directory.

• Castellated : splits the background cells in smaller cells. The control parameters
are:

- maxLocalCells : maximum number of cells per processor.

- maxGlobalCells : maximum number of cells.
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Figure 4.4: Main blocks exploited in the blockMesh utility. Note that the final part of
the laryngopharynx must be outside of the block to ensure that the mesh will be created
inside the nasal cavities.

- minRefinementCells : minimum number of cells to be refined.

- nCellsBetweenLevels : number of buffer cells between different refinement levels.

- refinementSurfaces : how to refine surfaces.

- resolveFeatureAngle: intersection angle between cells.

- locationInMesh: specify a point inside the mesh.

The values used for these parameters are shown in figure 4.5.

• Snappy : brings the vertices of the exahedra on the surface and iteratively reduces
the displacement of the verticed that do not meet the mesh quality parameters
required. The control parameters are:

- nSmoothPatch: number of patch smoothing iterations before finding correspon-
dence to surface.

- tolerance: ratio of distance for points to be attracted by surface feature point
or edge, to local maximum edge length.

- nSolveIter : number of mesh displacement relaxation iterations.

- nRelaxIter : maximum number of snapping relaxation iterations.

The values used for these parameters can be seen in Figure 4.6.

• meshQualityControls : subdictionary that controls the quality of the mesh. The
entries are:
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Figure 4.5: Section of the snappyHexMeshDict containing the Castelleted parameteres.

Figure 4.6: Section of the snappyHexMeshDict containing the Snappy parameteres.
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Figure 4.7: Section of the snappyHexMeshDict containing the meshQualityControls
parameteres.

- maxNonOrtho: maximum non-orthogonality allowed.

- maxConcave: max concaveness allowed.

- minTetQuality : minimum quality of the tetrahedron formed by the face-centre
and variable base point minimum decomposition triangles and the cell centre.

- minArea: minimum face area.

- minDeterminant : minimum normalised cell determinant.

The values used for these parameters can be seen in Figure 4.7.

The resulting mesh for P1 "healthy" geometry can be seen in Figure 4.8 and Figure 4.9.
Some of the mesh characteristic values are reported in Table 4.1.

4.3.2. Simulation controls

The fvSchemes dictionary in the system−directory sets the numerical schemes for terms,
such as derivatives in equations, that appear in applications being run. It contains differ-
ent sub-dictionaries for each different term and in particular:

- ddtSchemes : first time derivative numerical scheme, for this setup the backward
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Mesh characteristic values

Parameter value
Points 16788901
Faces 42114279
Cells 12954489

Min determinant cells 108

Table 4.1: Characteristic values for the "healthy" P1 mesh. The Min determinant cells
indicates the number of cell with determinant lower than the minDeterminant value of
the meshQualityControls sub-dictionary.

Figure 4.8: Resulting mesh for the P1 "healthy" geometry. On the right a coronal
section.
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Figure 4.9: Resulting mesh for the P1 ’healthy’ geometry. On the right a coronal
section.

second order, implicit scheme has been used.

- gradSchemes : numerical scheme for the gradient. In particular here the second
order Gauss scheme has been used.

- divSchemes : numerical scheme for the divergence. Here the Gauss linear second
order scheme has been used.

- laplacianSchemes : numerical scheme for the laplacian. Here the second order Gauss
linear corrected has been applied.

- interpolationSchemes : Point-to-point interpolations of values.

- snGradSchemes : component of gradient normal to a cell face.

- fluxRequired : sets the information about fields for which is required to calculate a
flux.

The fvSchemes dictionary can be seen in Figure 4.10.

The turbulenceProperties dictionary in the constant-directory is read by any solver that in-
cludes turbulence modelling. Within that file is the simulationType keyword that controls
the type of turbulence modelling, in this case LES simulations. Alongside the simulations
type, the dictionary requires the specification of the turbulence model and the cutoff
wavenumber ∆ (see Section 4.1 and Section 4.2), respectively WALE turbulence model
and cubeRootVol, for which

∆ = c(Vc)
1
3 , (4.9)
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Figure 4.10: fvSchemes dictionary in the system-directory.
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Figure 4.11: turbulenceProperties dictionary in the constant-directory.

where Vc is the cell volume and c the deltaCoeff. The turbulenceProperties dictionary can
be seen in Figure 4.11.

The controlDict dictionary in the system-directory is used to specify the main case con-
trols as the timing information, write format, and optional libraries that can be loaded at
run time. In particular here the OpenFOAM application is set, in this case pimpleFoam,
transient solver for incompressible, turbulent flow of Newtonian fluids. A section of the
controlDict dictionary can be seen in Figure 4.12.

Figure 4.12: Section of the controlDict dictionary in the system-directory.
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Figure 4.13: Section of the velocity boundary conditions file in the OpenFOAM 0-folder.

4.3.3. Boundary Conditions

Initial and boundary conditions are needed for all the physical variables of the problem:

Velocity Non-slip and non-penetration boundary conditions are imposed on the head
patch "testa", whereby the velocity is here set to zero. On the throat patch the zeroGradi-
ent condition has been applied wherease on the clownose patch the flowRateInletVelocity
has been fixed to 16 l/min corresponding to ≈ 2.6 · 10−4m3/s (in accordance with the
work by Wexler et al. [25]). (See Figure 4.13).

Pressure As regards the pressure, a zeroGradient condtion is enforced on the head
patch "testa" and on the sphere "clownose", as the boundary conditions that sets the
flow into motion is the fixed flow rate. A reference value for the pressure is required,
whereby a zero value for the total pressure is imposed on the throat patch. (See figure
4.14).

Eddy viscosity The eddy viscosity is set to zero on the wall patch "testa", while for
the inlet and for the outlet is set the zeroGradient condition. (see Figure 4.15).
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Figure 4.14: Section of the pressure boundary conditions file in the OpenFOAM 0-
folder.
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Figure 4.15: Section of the eddy viscosity boundary conditions file in the OpenFOAM
0-folder.

4.3.4. Running the simulations

The simulations have been performed in remote ssh access to the server of the HPC
infrastructure GALILEO100 of the CINECA system in Bologna. As the the meshes
presented a huge number of cells and the flow is turbulent, important computational
resources were needed. For each simulation, 2 out of the 528 nodes have been used,
having 48 cores each, for a total of 96 cores and 160 GB’s of RAM. The decomposeParDict
dictionary in the system-directory handles the domain decomposition for the parallel
running, setting the number of subdomains to 96 (number of cores).

4.4. LES results

In this section the results of the P1 "healthy" geometry are firstly qualitative described
and compared to other works with the aim of validating the simulations. Then, as example
the results of the LES simulation of the P1 "healthy" shape and the "diseased" shape
associated to the opened anterior septal deviation of level 1 (see Figure 4.21) are briefly
compared.
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Figure 4.16: Mean pressure field on a sagittal view of the P1 "healthy" geometry.

Figure 4.16 shows the mean pressure field in a sagittal section of the P1 "healthy" geom-
etry. One can notice that the pressure reduces as the flow reaches the throat with a mean
pressure difference between the inlet and the throat of about 13Pa. This behaviour is due
to the progressive section restriction caused by the presence of the turbinates. The pres-
sure drops up to a negative value as the reference zero value of the boundary condition
imposed is associated to the total pressure on the throat patch.

Figures 4.17, 4.18, 4.19, 4.20 show the mean velocity in the same sagittal view as in Figure
4.16. It is important to stress the fact that the y-axis points towards the inlet of the nose
(this is the reason why in Figure 4.19 velocity has negative values) and that the sagittal
plane has the normal directed as the x-axis. The mean velocity magnitude shows a peak
around 3.2m/s given by the acceleration of the flow inside the nostrils. The y-component
of the velocity reaches a peak value of 2.9m/s in the negative direction of the y-axis, while
the z-component shows a peak at the height of the nostrils of about 2.5m/s.

These values are in accordance with the work by Biondi [9] and Riazuddin et al.[24],
with some small discrepancies probably due to slight differences in the definition of the
boundary conditions, in particular for the volumetric flow rate imposed.

Figures 4.22, 4.23, 4.24 show the comparison between the "healthy" P1 geometry and the
"diseased" one, for which the opened anterior septal deviation of level 1 has been inserted
(see Figure 4.21). In particular, Figure 4.22 reveals how a local deformation can change
abruptly the flow field, resulting in a completely different pressure distribution up to the
end of the olfactory region. The local effect of the deformation can be seen in Figure 4.23
and Figure 4.24: the nasal cavity restriction due to the septal deviation increases the local
velocity magnitude, and the pressure suddenly has a drop visible in the right hand side of
Figure 4.22; thus, the pressure keeps very low since the anterior part of the nasal cavity.
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Figure 4.17: Mean velocity magnitude field on a sagittal view of the P1 "healthy"
geometry.

Figure 4.18: Mean x-velocity field on a sagittal view of the P1 "healthy" geometry.

Figure 4.19: Mean y-velocity field on a sagittal view of the P1 "healthy" geometry.



40 4| LES simulations

Figure 4.20: Mean z-velocity field on a sagittal view of the P1 "healthy" geometry.

Figure 4.21: Left: section of the P1 shape used to visualize the pathology. Center: P2
"healthy" shape. Right: P1 "diseased" shape.

Figure 4.22: Comparison between the mean pressure field on the surface. LHS:
"healthy" geometry. RHS: "diseased" geometry. View from above.
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Figure 4.23: Comparison between the mean pressure field in the section shown in Figure
4.21. LHS: "healthy" geometry. RHS: "diseased" geometry.

Figure 4.24: Comparison between the mean velocity magnitude field in the section
shown in Figure 4.21. LHS: "healthy" geometry. RHS: "diseased" geometry.
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The collected LES results are the basement of a classification network described in the
next chapter, trained to infer pathologies on new patients.
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5| Machine Learning model:

classification network

Artificial Neural Networks (ANNs) [26] are mathematical models that have been moti-
vated by the functioning of the brain. They are also called data driven models as their
ultimate goal is to analyze data, taking advantage of the massive amounts of data that
the "big data era" produces every day.

5.1. General structure of a neural network

The basic entity of any neural network is a model of a neuron (see Figure 5.1) [27]. The
idea is that a vectorial input x is weighted by a vector w and added of a bias b. The result
is the argument of an activation function Φ that performs a non linear transformation
and returns the output y of the neuron.

y = Φ(wTx + b) (5.1)

Figure 5.1: Representation of a mathematical artificial neuron model.

In order to build a neural network (NN), several neurons need to be connected with each
other and structured in layers as shown in Figure 5.2. The depth of a network denotes
the number of non linear transformations between the separating layers, whereas the
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Figure 5.2: Representation of a simple neural network with 3 hidden layers denoted by
h(i).

dimensionality of a hidden layer, i.e., the number of hidden neurons, is called width.

The output of each neuron is processed by the connected neurons in the following layer
as new input value x (see Figure 5.1), whereby, in a network, the output of each neuron
is the composition of all the activation functions of the sequentially backward connected
neurons.

All the parameters that characterize a network (i.e. weights and biases) need to be
optimized in a procedure called training : the NN is given input values (training set of
values) for which the expected output is known; a cost function is defined on the outputs
yi and an optimization algorithm computes the optimal parameters by minimizing the
error for training data.

The capability of neural networks in "predicting" something is owed to this procedure;
thanks to annotated data, the model is tuned to produce expected results, and if the
training set is sufficiently wide and complete in describing a given problem, the network
will be probably good in describing inputs for which the output is unknown.

This is a key aspect in a CFD framework. CFD produces a huge amount of data, easily
in the order of tens or hundreds of Gigabytes; this data presents a huge variability and
sensitivity to small changes in the geometry. In rhinology, this has also to be combined to
the immense variability that every single pathology shows and to the difficulty in gathering
such data. For these reasons a ML approach to CFD is very challenging and the choice of
the input values of a network is fundamental. These are also the reasons why in Section
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3.3 pathologies have been inserted in a healthy patient: data augmentations allows to
promote the anatomical variability, extending the available set of labeled shapes, namely,
the diseased patients for which the pathologies are known, trying to make up for the lack
of annotated data.

Given the amount of data that CFD returns, following a deep learning approach [28] and
feeding a NN with such a huge dataset reveals currently an infeasible way to proceed,
hence a selection and dimensionality reduction of the data is required. In particular, one
can look for important and relevant values for the CFD, able to compactly encode the
flow field properties, called features in a Machine Learning jargon. These features will be
the input values of the neural network described in the next section.

5.2. Features extraction

The extraction of the features from the LES results is a crucial step. Features must contain
information on the pathologies inserted in Section 3.3 and at the same time should be easy
to retrieve and to interpret. The features used within this work are inspired by engineering
practice in the analysis of flow fields [5], namely regional averages values of time-averaged
quantities (all the quantities that will appear from here on are to be intended as time-
averaged). Regional averages mimic procedures often used in fluid dynamics experiments,
where probes like hot-wire anemometers or Pitot tubes are placed in the flow field to
retrieve measurements.

In particular, 6 sections are identified on the P1 shape taking the first one and the last
one as the end and the beginning of the olfactory region respectively (see landmarks in
Chapter 1), and the other 4 equally spaced between the previous two (see Figure 5.3).
The CFD quantities taken into account on these section are:

|U| =
√
(U2

x + U2
y + U2

z )

|∇p| =
√
(∇p2x +∇p2y +∇p2z)

E =
1

2
(ω2

x + ω2
y + ω2

z)

k =
1

2
(u′2x + u′2y + u′2z ),

(5.2)

respectively the velocity magnitude, the module of the pressure gradient, the enstrophy
(module of the vorticity ω = ∇× U) and the turbulent kinetic energy. Extracting these
values on the 6 surfaces has been possible thanks to the OpenFOAM surfaces function
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Figure 5.3: Sections extracted from LES results.

object.

Given the quantities in Equation 5.2, the regional averages on the k-region Rk are com-
puted taking into account the uneven cells dimension as follows

qk =

∑
i qiAi∑
iAi

, (5.3)

where index i includes all the cells (xi, yi, zi) ∈ Rk, and Ai denotes their areas. These
values are computed separately for the left and for the right regions of each section.

An example of regional average values can be seen in Table 5.1.

5.3. Classifier

A classifier is a particular Neural Network architecture able to predict if something belongs
to one class or not. Specifically, the classifier built in Matlab for this project is trained to
perform a binary classification, evaluating if a given set of features associates to a septal
deviation or to a hypertrophy. The NN takes as input a 12-features vector, corresponding
to the 12 regions extracted from each geometry, 2 regions per section. The output layer
consists of one neuron returning a value between 0 (associated to a hypertrophy) and 1

(associated to a septal deviation). Three fully connected hidden layers link the input to
the output, having respectively 30, 20 and 10 neurons each (see Figure 5.4) for a total of
1231 trainable parameters.
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Quantities
Sections |U| [m/s] |∇p| [Pa/m] E [m2/s2] k [m2/s2]

1
Right 1.769 268.11 6.23e+06 1.56e-04
Left 1.709 201.60 5.26e+06 2.52e-05

2
Right 1.014 129.38 3.96e+06 1.62e-04
Left 1.050 164.69 5.05e+06 2.08e-05

3
Right 1.063 127.64 5.01e+06 4.11e-05
Left 1.113 109.97 5.42e+06 3.11e-05

4
Right 1.055 162.79 6.21e+06 1.41e-04
Left 1.007 147.04 5.85e+06 8.98e-05

5
Right 1.495 177.89 7.68e+06 6.44e-04
Left 1.183 367.68 6.92e+06 6.73e-04

6
Right 1.527 389.71 8.75e+06 4.10e-03
Left 1.224 360.88 7.34e+06 9.67e-04

Table 5.1: Example of regional average values taken from one of the diseased geometry.

Figure 5.4: Architecture of the classifier.

All the neurons implements the hyperbolic tangent sigmoid [29] as activation function,
that is

y = tansig(x̃) =
2

(1 + e−2x̃)
− 1, (5.4)

where x̃ is the argument of Φ in Equation 5.1. The tansig activation function is commonly
used for the simplicity in computing its derivatives.
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The loss function considered is the classical loss function functions implemented in most of
the classification neural networks, namely the binary cross-entropy [30] [31]. In the most
general case, the binary cross-entropy returns the loss computing the following average:

Loss = − 1

N

N∑
i=1

(yi log ŷi + (1− yi) log (1− ŷi)) , (5.5)

where ŷi is the model output, yi is the actual target value and N is the output size (in
this case 1). The Loss clearly diverges when the output value is far from the expected
value, whereby a perfect model would have zero Loss value.

The binary cross-entropy loss function becomes the object function to be minimized in
the optimization problem solved during the training. The algorithm that solves this op-
timization problem is the Scaled Conjugate Gradient Backpropagation (SCG) [32], which
updates the network weights and biases considering the sensitivity that the loss function
shows with respect to each parameter.

The classifier has been trained on a roughly 300-samples training dataset, fixing the
number of complete passes through the whole dataset (epochs) to a max of 1000, until a
best score of 90% is achieved. To evaluate the score, the training set is split in two parts
during each epoch: the 85% of the samples are used for the training and the remaining
15% to assess the score.

The tests are conducted on a never-seen-before patient, that is the P1, to evaluate the per-
formance in the inference on never-seen-before data. 4 different networks are considered,
each one trained on the values of the 4 CFD quantities shown in Table 5.1.

5.4. Results

Performance of the classifiers

Network Score Accuracy

|U|-based 13/17 77%

|∇p|-based 14/17 82%

E-based 12/17 71%

k-based 11/17 65%

Table 5.2: Performance of the classifiers.
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Overall performance on the pathologies

Network Hypertrophy Septal Deviation

|U|-based 4/8 9/9

|∇p|-based 6/8 8/9

E-based 7/8 5/9

k-based 4/8 7/9

Overall score 21/32 29/36

Overall accuracy 66% 81%

Table 5.3: Overall performance of the classifiers.

The performance assessed testing the classifiers are shown in Table 5.2 and Table 5.3.

In particular, one can figure out from Table 5.2 that the best classifier seems to be the
pressure gradient based, followed by the velocity based with a similar score. Pressure
gradient magnitude and velocity magnitude appear to be more informative than turbulent
kinetic energy and enstrophy. This behaviour could perhaps be attributed to the fact that
a modification in the geometry entails certainly a change in velocity and pressure, that is
not always the case for enstrophy and turbulent kinetic energy, whose behaviour is much
more difficult to be predicted.

Table 5.3 shows that a septal deviation is much easier to be predicted than a hypertrophy.
The reason could be found in the type of deformations that they entail on the geometry.
While a hypertrophy is always related to a restriction of a portion of the nasal cavities, a
septal deviation not necessarily. This means that the hypertrophy in general influences a
smaller fraction of the global flow rate, conveying less information to the flow field.

It is interesting to notice that the velocity magnitude based classifier achieves a 100%
score in diagnosing septal deviations but the lowest score in predicting hypertrophies.
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6| Conclusions and further

developments

The results of the experiments carried out by applying the pipeline demonstrate that ML
can effectively predict functional properties (here the type of pathology) from complex
and large CFD datasets, even when the flow field does not directly provide high-level
diagnostic information. The potential of the approach is huge: by using such a tool, ENT
doctors could get access to fundamental functional information directly conveyed by the
flow field to inform their surgery decisions, thus improving the rate of success.

The training set required to achieve good results is relatively small: this is a fundamental
result, that compensates for the significant cost of CFD and the difficulties in obtaining
expert annotated data. In this process, a crucial role has been played by a CG tool, the
functional maps, which enables increasing the number of geometries obtained from a small
set of healthy patients, on which controlled, consistent and clearly defined pathologies are
injected.

A set of features, based on the concept of regional averages, is extracted from the full
CFD solution to reduce dimensionality. This is a crucial step, as feeding a ML model
with the entire set of data produced by CFD would be unfeasible. Physical insight on the
chosen features can be useful to conceive further, more informative values, and to improve
the accuracy of the procedure. This can be indeed the first direction for developments.
A alternate way to tackle the problem could be also a Deep Learning approach, namely
feeding a Deep Learning model with as much data as possible, avoiding the procedure of
extracting features, which will always loose some information in the process.

However, already at the present stage, the potential of an approach that puts together
Machine Learning, CFD and CG has been demonstrated.
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A| Appendix A

In this appendix all the pathologies inserted by hand by an ENT doctor are shown in the
coronal plane. Figures with four columns show in the right hand side the two levels of
severity considered. The shape alongside the 3D geometry shows the ’healthy’ section.

Figure 1: Septal deviation, opened, anterior, inferior.

Figure 2: Septal deviation, opened, anterior, medium.
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Figure 3: Septal deviation, opened, posterior, middle.

Figure 4: Endoscopic septal deviation, anterior, inferior

Figure 5: Endoscopic septal deviation, anterior, middle
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Figure 6: Endoscopic septal deviation, posterior, medium

Figure 7: hypertrophy, inferior, tail

Figure 8: hypertrophy, inferior, head

Figure 9: hypertrophy, medium, tail
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Figure 10: hypertrophy, medium, head
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