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Abstract

Motivated by the crucial implications of Ground Motion Prediction Equations in

terms of seismic hazard analysis and civil protection planning, this work extends to

a functional framework the model proposed by Lanzano, Luzi, Pacor, et al. (2019)

in the Italian context, for the estimation of ground motion conditionally on a given

seismic scenario. In particular, from the inherent characteristic of seismic data to

be incomplete over the domain, comes the necessity to develop a novel methodol-

ogy for the analysis of partially observed functional data. The approach consists

in combining pre-existing techniques of data reconstruction with the definition of

observation-specific weights. The latter enter the estimation process by defining cri-

teria that give less weight to the errors in the reconstructed parts of the curves, and

full weight to those made on the observed values. This work extends the classical

methods of smoothing and function-on-scalar regression to this weighted functional

approach. The entire analysis results in a functional model that is effective in cap-

turing the seismological features underlying its formulation, and in producing results

that are physically explainable. This model is complementary to the functional geo-

statistical model proposed by Menafoglio et al. (2020), since the two, combined,

allow one to obtain maps of ground shaking that are inserted in a fully functional

context.

Keywords: weighted functional analysis, partially observed functional data, ground

motion prediction equations
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Sommario

Motivato dai risvolti applicativi dei modelli di previsione del movimento del suolo

(Ground Motion Prediction Equations) in termini di analisi del rischio sismico e di

protezione civile, questo lavoro estende a un contesto di analisi funzionale dei dati

il modello proposto da Lanzano, Luzi, Pacor, et al. (2019) per l’Italia, che stima

lo scuotimento del terreno condizionatamente alle caratteristiche di un dato evento

sismico. In particolare, poiché i dati del caso studio risultano incompleti nel proprio

dominio, è proposto un nuovo approccio per l’analisi dei dati funzionali parzialmente

osservati. Tale approccio consiste nel combinare le tecniche di ricostruzione dei dati

incompleti, presenti in letteratura, con l’introduzione di pesi che siano associati ad

ogni osservazione. Questi ultimi intervengono nei processi di stima assegnando un

peso minore agli errori commessi sulle parti ricostruite di una curva, e peso pieno

agli errori commessi sulle parti di curva effettivamente osservate. Il lavoro estende

all’approccio funzionale pesato i metodi classici di smoothing e di regressione fun-

zionale a predittori scalari. L’intera analisi ha come risultato un modello funzionale

efficace nel cogliere le caratteristiche sismologiche alla base della sua formulazione, e

capace di produrre risultati interpretabili a livello geofisico. Questo modello è com-

plementare al modello geostatistico funzionale proposto da Menafoglio et al. (2020),

dal momento che i due, combinati insieme, consentono di ottenere delle mappe di

scuotimento del terreno che in questo modo risultano inserite in un contesto com-

pletamente funzionale.

Parole chiave: analisi funzionale pesata, dati funzionali parzialmente osservati,

equazioni di previsione del movimento del suolo
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Introduction

The present work is in the context of the assessment of seismic hazard, related to

the occurrence of an earthquake and to the ground shaking that the release of elastic

energy causes. Through the introduction of intensity measures to quantify ground

motion, this area of research, that goes by the name of Probabilistic Seismic Hazard

Analysis, aims to determine the probability that a certain risk threshold will be

exceeded. In this field, a practical tool for the prediction of ground motion at a site

is provided by Ground Motion Prediction Equations (GMPE), that estimate the

median value of an intensity measure and the associated uncertainty, conditionally

on a set of seismic parameters, including the magnitude of the event, the distance

of the site from the epicentre, the faulting mechanism and the characteristics of soil

at the site.

As a building can effectively be assimilated to a single-degree-of-freedom oscil-

lator with a natural period of vibration, it is convenient for the assessment of the

seismic risk related to architectural damages to quantify ground motion in terms of

measures of intensity that are period-dependent. From this inherent characteristic

of the intensity measures comes the threefold possibility of embedding the model in

a univariate, multivariate or functional setting. In the literature of GMPEs, many

ground motion models are proposed in univariate (Bindi et al., 2011, Lanzano, Luzi,

Pacor, et al., 2019, Kotha, Bindi, and Cotton, 2016, Boore et al., 2014) and multi-

variate (Worden et al., 2018, Huang and Galasso, 2019) formulations. Conversely,

little work has been put in the development of functional ground motion models

(Menafoglio et al., 2020). Compared to univariate or multivariate analysis, a func-

tional approach exploits the natural dependency of the intensity measures on the

vibration period, and allows one to shift the focus from a period-specific estimate

to its profile over the whole period domain. Additionally, it has the double advan-

tage of considering the correlations among different periods, overcoming the intrinsic

limitations of multivariate approaches that suffer from the curse of dimensionality.

This work stems from the need to provide an extension to the framework of

Functional Data Analysis (FDA, Ramsay and Silverman, 2005) of the scalar ground
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motion model for the median, proposed in Lanzano, Luzi, Pacor, et al. (2019) and

hereafter referred to as ITA18. More precisely, a functional estimate for the median

is intended to combine with the functional geostatistical model for the residuals of

Menafoglio et al. (2020), to allow for a fully functional approach to address the anal-

ysis of soil motion. Indeed, the median estimate would complement the event- and

site-related systematic corrective terms for the residuals, identified in Menafoglio

et al. (2020), for the formulation of a functional model that includes spatial depen-

dence in the predictions. Eventually, these methods jointly provide a convenient

tool for the construction of reliable, period-continuous seismic shaking maps.

Classical techniques of FDA develop under the assumption that the observations

are recorded over a common domain. Specifically for the case study analysed in

this work, data have the peculiarity of being manually processed, with the result

that a non-negligible number of intensity measure profiles are recorded only partly,

and not over the whole period domain. Since many methodologies of classical FDA

fail for observations of this kind, and the removal of incomplete observations would

imply an undesirable loss of information, the necessity arises to develop convenient

strategies for the handling of partially observed functional data. The literature on

this topic proposes to reconstruct the incomplete data, using the estimates of mean

and covariance defined specifically for this context (Kraus, 2015, Kneip and Liebl,

2020). Doing so, the idea is to maximize the information provided by the recorded

data, by inferring the values of the missing observations.

The aim of this work is to provide a functional extension of the model for the

median proposed in Lanzano, Luzi, Pacor, et al. (2019), by embedding the problem

in the framework of partially observed functional data. The benefits of such novel

approach are manifold. First, the choice of a suitable functional space enables us

to capture the smoothness and the regularity underlying the discrete observations

recorded along the grid of period points. Second, the reconstruction of incomplete

data avoids the loss of information that the removal of missing values would involve.

Third, the extension over the whole domain provides spectra of ground motion for

a wider range of vibration periods, consisting in an effective tool for probabilistic

seismic hazard assessment.

The intent is pursued by proposing a novel methodology for the handling of in-

complete data, that couples each reconstructed curve with a weight function, taking

value 1 where the datum is observed and decreasing to 0 the further the recon-

struction gets from the last recorded value. The rationale of the method consists in

associating less confidence to the parts of a curve that undergo reconstruction, with

respect to those that are observed originally. The classical techniques of penalized
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smoothing and penalized function-on-scalar regression are extended to include the

weights, which enter the estimation process by defining criteria that give less weight

to the errors committed on the reconstructed values of the curves, and full weight to

those committed on the observed values. A methodology that quantifies the point-

wise variance associated to the estimates is developed in this weighted functional

framework, and a bootstrap procedure is outlined for the construction of simultane-

ous confidence bands for the regression coefficients estimates. The soundness of the

weighted methodologies is tested on the data of our case study, by assessing whether

the introduction of the weights is effective in stabilizing the results with respect to

the adopted reconstruction method. The reconstruction methods over which the

technique is tested are those present in the literature, and mentioned above in this

introduction. Eventually, the proposed methodologies are applied to data of the En-

gineering Strong-Motion (ESM) database for Italy (Lanzano, Sgobba, Luzi, et al.,

2018), over which ITA18 is calibrated. The results are commented by combining di-

agnostic techniques with the seismological interpretation of the phenomenon under

study.

The dissertation is developed in five chapters, the general structure of which is

as follows:

Chapter 1: A review of Ground Motion Prediction Equations. This chapter in-

troduces the reader to Ground Motion Prediction Equations. First, it provides an

overview of the state-of-the-art of ground motion models and defines the context

from which this work arises. Then, it presents the quantities involved in the formu-

lation of the equations, as categorized in source-, path- and site-related parameters,

and clarifies their seismological meaning. At the end of the chapter, the functional

form of the model of Lanzano, Luzi, Pacor, et al., 2019 is introduced and commented.

Chapter 2: Introduction to Functional Data Analysis. This chapter consists of two

sections. The first reviews the fundamental notions of Functional Data Analysis

and provides the formal definitions of functional random variable and functional

datum. Separable Hilbert spaces are identified as suitable spaces in which to em-

bed the analysis, and their basic properties are presented. Then, the definitions of

mean and covariance operators are introduced, both in a general separable Hilbert

space and with a focus on the L2 embedding. The second section is devoted to the

illustration of the state-of-the-art techniques employed for the analysis of partially

observed functional data. In particular, three methodologies for the reconstruction

of incomplete data are presented.
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Chapter 3: Weighted analysis for functional data. This chapter gives the theoret-

ical and methodological foundations to extend the techniques of penalized smooth-

ing and penalized function-on-scalar regression to context of weighted functional

analysis. The procedure that quantifies the variability associated to the regression

coefficients estimates is extended to this context. Finally, a bootstrap procedure

is outlined for the construction of simultaneous confidence bands for the functional

regression coefficients.

Chapter 4: Case study: A functional Ground Motion Model for Italy. This chapter

is devoted to a preliminary analysis of the case study. It includes the formulation

of the functional extension of ITA18, and an in-depth exploration of the dataset

of calibration. Then, the overall workflow is outlined, by completing the methods

proposed in Chapter 3 with some crucial intermediate steps of the analysis, con-

cerning the calibration of the penalization parameters for smoothing and regression.

Finally, the soundness of the entire procedure is validated through a comparison

with state-of-the-art techniques for the reconstruction of incomplete data.

Chapter 5: Case study: Results and diagnostic. Here, the results of the conducted

analysis are discussed. The classical techniques of model diagnostic are combined

with a seismological interpretation of the quantities involved in the model, based on

the literature on the topic. First, we comment on the estimates of the regression

coefficients and conduct an analysis of goodness-of-fit. Then, the focus moves on the

ground motion predictions and on a sensitivity analysis on the hyperparameters of

the model. Finally, the novel functional model is compared to its scalar counterpart,

ITA18.

Appendix A: Theoretical results. This appendix reports two theoretical arguments

that lead to some fundamental results discussed in Chapter 3. Appendix A1 shows

the calculations leading to a closed form of the Weighted Functional Penalized Least

Squares criterion, employed for the fitting of the regression model. Appendix A2

deploys the educated reasoning behind the estimation of the degrees-of-freedom of

the regression model.

Appendix B: Additional figures. Here are some additional figures, which aim to

complement the information used for the comments on results and diagnostics in

Chapter 5.
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Appendix C: Codes. This appendix briefly explains the structure of the GitHub

repository, containing the main R scripts and R functions that have been imple-

mented for the application of the methodologies proposed in this work.
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Chapter 1

A review of Ground Motion

Prediction Equations

1.1 Introduction to GMPEs

Engineering seismology serves as linkage between geology and engineering, and arises

from the need to exploit the knowledge that comes from earth science for an anti-

seismic design of structures. The engineer deals with the trade-off between a costly

seismic-resistant design and the risks of economic loss that may occur after an earth-

quake, e.g. in the form of architectural damage in buildings. Therefore, it is crucial

for a well-balanced, earthquake-proof planning to assess the seismic hazard and the

risk that the motion of the ground exceeds a certain threshold.

As a building can be assimilated to an oscillator with one degree-of-freedom

and a certain natural period of oscillation, it is reasonable to quantify the level

of ground motion in terms of intensity measures that are defined over a period

domain. One common approach to estimate such measures employs Ground-Motion

Prediction Equations (GMPE), that infer the median value of ground shaking and

its associated uncertainty, conditionally on some parameters, like the magnitude of

the earthquake, the style of faulting of the crust, and the epicentral distance of the

site.

GMPEs are formulated as sum of a median term and a standard deviation in

the form

Y = µ(X,β) + σ,

where Y is typically a logarithmic transformation of the measure of intensity of the

ground motion, µ is the median term described by a functional form that provides

a simplified representation of the underlying seismological phenomenon, and σ is

1



the standard deviation. In the estimation for µ, which is going to be discussed

later in the chapter, X is the collection of all parameters that are descriptive of the

earthquake and of the site conditions, and β is the vector containing the coefficients

of the functional form.

It is common finding in the literature that the magnitude of the standard devi-

ation heavily affects the outcomes of probabilistic seismic hazard analysis (Al-Atik

et al., 2010). Therefore, a great deal of effort is put in finding a formulation of GM-

PEs that is associated to lower values of standard deviation. One way to achieve

this reduction is through the formulation of non-ergodic models.

Historically, the scarcity of available data has led to the widespread use of models

formulated under the ergodic assumption. The latter states that the spatial averages

over a single realization of the ground motion parameter of interest converge to the

average value over time of the random field at any site (Anderson and Brune, 1999).

In more recent years, a greater availability of data provided the conditions to drop

this assumption, in the form of a decomposition of the residuals of the model into

systematic source-, path- and site-specific effects. In particular, multiple record-

ings of a number of different earthquakes measured at many different sites made it

possible to compute such effects and include them as systematic corrections to the

median term in the GMPE. In this new framework, many studies (P.-S. Lin et al.,

2011, Anderson and Uchiyama, 2011, Stafford, 2014) have shown how the drop of

the ergodic assumption in the formulation of a GMPE implies a reduction of the

standard deviation.

In addition to this, recent works have exploited the spatial correlation of the

residuals of the model, with the aim of making inference on ground motion values

at locations where observations are not available. As the majority of studies adopts

univariate (Lanzano, Luzi, Pacor, et al., 2019, Sgobba, Lanzano, et al., 2019) or mul-

tivariate (Worden et al., 2018) geostatistical approaches to the analysis of spatial

correlation, little to no work has been put to develop a geostatistical approach from

the perspective of functional data analysis. The work of Menafoglio et al. (2020)

fits into this context. In fact, the authors provide a functional extension of the work

of Sgobba, Lanzano, et al. (2019), by handling the source-, path- and site-specific

effects as period-dependent functions that vary over space and are spatially corre-

lated. The functional datum Ys ∈ H is assumed to be a realization of a stationary

Gaussian random field {Ys, s ∈ D}, where D is the domain over which the obser-

vations are sampled. In order to complete the aforementioned work and build a

non-ergodic geostatistical model that is fully functional, this thesis provides a func-

tional extension of the Lanzano, Luzi, Pacor, et al. (2019) scalar regression model

2



for the median µ, hereafter referred to as ITA18. Instead of separately fit a number

N of models for the different ordinates of intensity measure (Y (T1), . . . , Y (TN )), we

deal with the function representing its profile {Y (T ), T ∈ T }.

Before going into details in the explanation of the functional form for the median,

we list the dependent and independent parameters that appear in the ITA18 model,

introducing their definition and geological meaning.

1.2 Ground motion parameters

GMPEs are formulated to predict the value of some intensity measure (IM) of in-

terest, that quantifies the level of ground shaking at a given site. Of all intensity

measures, peak ground acceleration (PGA) and spectral acceleration (SA) are most

often used to describe ground motion. The definition of these quantities requires

the preliminary introduction of the response spectrum.

The response spectrum is a plot that shows the peak acceleration response of a

damped linear oscillator, when stressed by a seismic forcer, as function of its natural

vibration period T.

Figure 1.1: Oscillator that models the response of a structure in presence of ground shaking.
ü and ẍ are the acceleration of the soil and of the mass m, respectively. k is the stiffness of
the spring and c is the coefficient of viscous damping of the system.

A damped one dimensional oscillator may be represented by the single-degree-

of-freedom system illustrated in Figure 1.1, attached to a base that is moving with

displacement u. In the figure, c is the viscous damping of the system and k the

stiffness of the spring. The motion x of the mass is described by the equation

mẍ+ c(ẋ− u̇) + k(x− u) = 0.
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If divided by m, the equation above becomes

ẍ+ 2ξω0ẋ+ ω2
0x = 2ξω0u̇+ ω2

0u, (1.1)

where ω0 is the undamped natural frequency of the system, ξ the damping ratio and

they are defined as

ω2
0 =

k

m
,

ξ =
c

2
√
km

.

The natural period of the system is given by

T =
2π

ω0
.

Hence, a mathematical definition of the response spectrum, as function of the

natural oscillation period T of the system, is in the form

RS(T ) = max
t
|ẍT (t)|,

xT being the solution of (1.1) where we set ω0 = 2π
T .

We are now ready to provide a definition of the ground motion parameters.

Spectral acceleration at period T , SA(T ), is defined as the value of the response

spectrum at T , namely

SA(T ) = RS(T ).

In Douglas (2003), the author defines the peak ground acceleration as the ampli-

tude of the largest peak acceleration recorded on an accelerogram at a site during a

particular earthquake. Mathematically, it is defined as

PGA = max
t
|ü(t)|.

In the argument below, we highlight the link between SA and PGA.

Let xT be the solution of equation (1.1), describing the absolute displacement x of

the mass. We may introduce the relative displacement sT of the mass as

sT = xT − u.

For systems that are very rigid, i.e. with natural oscillation period that tends

to 0, the relative displacement, velocity and acceleration of the mass are very small.
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Namely, as T → 0,

|sT (t)| → 0, |ṡT (t)| → 0, |s̈T (t)| → 0.

Hence,

lim
T→0

SA(T ) = lim
T→0

max
t
|ẍT (t)| = lim

T→0
max
t
|s̈T (t) + ü(t)| = max

t
|ü(t)| = PGA.

It is now clear that we can think of the PGA as the acceleration endured by a parti-

cle placed on the ground, or by a stiff structure that has no relative movement with

respect to the ground, while SA(T ) is the acceleration experienced by a building, as

approximated by a unidimensional oscillator with natural period T .

1.3 Introduction to ITA18

As mentioned above in the chapter, this work focuses on the functional extension

of ITA18, the scalar ground motion model for shallow crustal earthquakes in Italy,

proposed in Lanzano, Luzi, Pacor, et al. (2019). In their work, the authors revise

and solve the shortcomings of the ground motion model introduced in Bindi et al.

(2011). In particular, the seismic sequences happened in Italy in 2012 and 2016–

2017 allowed for an enlargement of the dataset to a greater magnitude range and

to vibration periods up to 10 s. Moreover, as additional information to the data

used for ITA10, seismic events are now associated to their fault mechanism and

the a parameter characterizing site conditions (VS30) is introduced. Taking advan-

tage of the availability of a richer dataset, ITA18 is calibrated on a discrete set of 37

periods (T1, . . . , T37), and resorts to a linear ordinary least-squares regression to sep-

arately fit N models for the different ordinates of ground motion intensity measure

(Y (T1), . . . , Y (T37)). For the median prediction of each Yj = Y (Tj), the functional

form is

log10 Yj = a+ FM (Mw,SoF) + FD(Mw, R) + FS(VS30) + ε. (1.2)

Above, a is the offset, ε is the error associated with the median prediction and

FM (Mw,SoF), FD(Mw, R), FS(VS30) are the source, path and site terms respectively.

The latter are specified as follows:
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FM (Mw) =

b1(Mw −Mh) Mw ≤Mh

b2(Mw −Mh) Mw > Mh

,

FM (SoF) = fjSoFj ,

FD(Mw, R) = [c1(Mw −Mref) + c2] log10(R) + c3R,

FS(VS30) = log

(
V0

800

)
,

where Mh is the hinge magnitude, Mref is the reference magnitude and V0 is defined

as V0 = VS30 is VS30≤1500 m/s, V0 = 1500m s otherwise. An in-depth discussion over

this formulation and its seismological meaning is taken on in Chapter 4 and Chapter

5. For now, formulation (1.2) stands as benchmark for the extension of ITA18 in an

infinite dimensional setting.

In this context, it is necessary to discuss some additional details about the re-

sponse variable of the model. Most accelerograms report the values of three mutually

orthogonal components of the intensity measure, i.e. two horizontal and one verti-

cal. On the other hand, the interest of many ground motion models – and ITA18

falls among these – is on predicting values of the intensity measure that are indepen-

dent of the in situ orientation of the recordings. Among all orientation-independent

intensity measures introduced in the literature, ITA18 considers the one discussed in

Boore (2010) and denoted RotD50, which is computed as the median of the distribu-

tion of the intensity measures, obtained from the combination of the two horizontal

components across all non-redundant azimuths (Lanzano, Luzi, Pacor, et al., 2019).

Additionally, it is convenient to open a parenthesis on an important feature of

the data of our case study, which will be taken up again in Chapter 4, in the sections

devoted to dataset exploration (Section 4.2.1).

The recording of soil motion at accelerometric station makes use of high-pass filters.

Hence, since the processing is handled manually, high-pass frequencies may differ

from site to site, and from component to component of spectral acceleration. This

latter peculiarity of our data implies the need to identify, for each observation, the

periods at which the recording is not valid. The idea behind the procedure is trivial.

Each observation of RotD50 is coupled to the high-pass frequency values of the two

filters that recorded the horizontal components of SA. If we refer to these two values

as uh and vh, then the observation of RotD50 at period T is valid if 1/T is greater

than both uh and vh. If an observation is not valid, then it is considered as a missing

value.
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It is crucial to point out that this preprocessing generates a number of missing values

that varies with the registration periods. Figure 1.2 shows for each registration

period T the percentage of curves that are observed at T . The dashed orange line

signs the 75%. The number of unobserved curves is low and stable up to a period

of 6 s, and then rapidly increases up to 25% at period 10 s.

Figure 1.2: Period-specific ratio of the observed records over the total records. At each
period T , the green dots represent the percentage of data that are observed at T . The
yellow dashed line corresponds to 75 %.

Notice that both discarding the partially observed curves and reducing the anal-

ysis over a lower period range would imply a substantial loss of information. Rather,

we decide to embed the problem in the context of partially observed functional data,

and to reconstruct the records in the unobserved part of their domain. More pre-

cisely, the reconstruction is done via extrapolation, that linearly extends the curves

from their last valid recording up to 10 s, with a slope equal to the mean slope of all

complete curves from that point to 10 s. This peculiarity of our data justifies the

embedding of the problem in a very specific functional space, namely in a separable

Hilbert space equipped with a weighted norm, that weights differently the observed

and the reconstructed parts of an incomplete curve. We further support the choice

of such space and provide an introduction to it in Chapter 3.

The extensive discussion about how the ITA18 model is embedded in a period-

continuous framework is necessarily preceded by the description of the theoretical

and statistical tools that are going to be used for this purpose. The argument is

developed in Chapter 2 and Chapter 3. Here, we continue the introduction to the

context of ground motion prediction equations, by moving the focus to the seismo-
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logical meaning of the parameters that enter source-, path- and site-related terms

in formulation (1.2).

1.4 Source, path and site parameters

In the literature, source-, path- and site-related parameters are identified as the

three categories of quantities on which the measures of ground motion depend. This

split is rather simplistic, both because a separation between the parts is not clearly

identifiable, and because it does not reflect how parameters belonging to different

groups affect each other. Nonetheless, this representation is commonly adopted,

since it reveals intelligible dependencies between variables that are descriptive of

the phenomenon and its consequences.

1.4.1 Source

The source of the earthquake is characterized by two features: magnitude and mech-

anism of faulting.

Regarding magnitude, Lanzano, Luzi, Pacor, et al. (2019) along with the majority

of publications adopt as measure the moment magnitude Mw, which quantifies the

size of an earthquake based on the amount of energy released. Its value is frequently

used as the most adequate criterion for ranking seismic events by their strength.

The advantage in adopting such parameter is twofold. On the one hand, it has a

very clear physical and seismological meaning. On the other hand, it does not satu-

rate for large magnitudes, meaning that it is able to provide a good measure of the

energy released over the entire magnitude range (Douglas, 2003).

As for the faulting mechanism, it can be of three types depending on the sense of

slip of the rock layers along the fracture plane: (i) strike-slip fault (SS), (ii) nor-

mal fault (NF), (iii) thrust (reverse) fault (TF). Even if it is generally found that

the style-of-faulting has little impact on the standard deviation of a GMPE, it is

still considered as a useful parameter to be included, since the fault mechanism of

a future earthquake can easily be identified through techniques of remote sensing

and landscape interpretation (Bommer, Douglas, and Strasser, 2003). To the end of

producing a more accurate estimate of the seismic hazard, a GMPE that accounts

for the style-of-faulting and the identification of the rupture mechanism of a future

earthquake efficiently combine to become a practical and convenient tool for seismic

hazard analysis.
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1.4.2 Path

The parameter that characterizes the path term is the distance from the source of

the earthquake to the accelerometric station. Such distance may be defined in many

alternative ways, but the one used in the ITA18 formulation and that we report here

is the Joyner-Boore distance (or surface projection distance).

Joyner-Boore distance is defined as the distance to the projection on the surface of

the rupture plane of the fault.

Distance d is typically not used such as it is, since it leads to improbably high

predictions of ground motion values. Alternately, the pure value d is corrected by

a term h that represents the depth of the location of the source, and the quantity

R =
√
d2 + h2 is preferred to d.

1.4.3 Site

The necessity of characterizing the local site conditions where ground motion is mea-

sured stems from the heavy impact that these conditions may have on the records.

Two approaches that integrate GMPEs with site effects are predominantly adopted

in the literature.

One resorts to the EC8 site classification, which defines a number of soil categories

and associates to each category a multiplicative factor, that enters the equation

as a new categorical variable (Eurocode8, 2003). It is worth noticing that, as the

boundaries between soil categories are blurry, such method presents an intrinsic sub-

jectivity issue.

A second approach, adopted in ITA18, introduces the near-surface shear-wave ve-

locity (VS) as a measure of the characteristics of the soil. The use of this parameter

has the double advantage of having a physical sense and of being defined regardless

of any soil categorization. Particularly in the GMPE that we are going to discuss in

this work, we use the parameter VS30, which is the average shear-wave velocity com-

puted at a reference depth of 30 m. High values of shear-wave velocity are measured

at rock and stiff sites and are expected to correspond to lower amplitudes of the

spectral acceleration, while low values are associated to soil sites and imply higher

amplitudes of SA (Douglas, 2003).
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Chapter 2

Introduction to Functional Data

Analysis

In recent years, there has been a fast increase in the availability of high-dimensional

data coming from the observation of a phenomenon along a continuous domain, e.g.

time, space or frequency domains. The ever-growing need of analysing data of this

kind, characterized by an inherent functional nature, is at the root of the develop-

ment of the field of Functional Data Analysis (FDA). In this framework, data are

observations of functions collected over a discrete grid domain, and are referred to as

functional data. It is convenient to think of Functional Data Analysis as a general-

ization of the univariate analysis, where the datum is not a point in the space of real

numbers but a function in a functional space. The benefits of adopting a functional

approach are manifold. First, the choice of a suitable functional space enables us

to capture the smoothness and the regularity underlying the discrete observations

recorded along the grid. Second, the embedding of data in an infinite-dimensional

setting solves the shortcomings that classical multivariate methods have when the

number of variables is larger than the sample size (Ramsay and Silverman, 2005).

Third, it allows to extend the focus to differential properties of data, overcoming

the limitations of a point-wise analysis.

Generally, Functional Data Analysis takes its steps under the assumption that all

functions are observed on the same domain, but in the reality of practitioners it

may happen to deal with data that are observed on different sub-domains. For this

reason, it has become necessary to develop techniques that are valid and reliable for

the manipulation of data of this kind.

Concerning our case study, the adoption of a functional approach allows us to

exploit the intrinsic functional nature of the problem, by moving the focus from
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a period-specific value of intensity measure, to its profile over a period domain T .

Through the formulation of a functional regression model, we provide predictions

for the median of the intensity measure ordinates that are continuous with respect

to the vibration period. The dependent variable of the model is assumed to be a

point of a convenient functional space, with a geometrical structure that captures

its key features and natural regularity. The peculiarity of the data analysed in

this work is that their processing is manual. The non-automatic handling of the

recordings results in high-pass corner frequencies that differ from datum to datum,

generating the problem that a non-negligible number of curves are not observed on

the whole domain but on different parts of it. This motivates the need to analyse

and reconstruct the incomplete curves, extending them into the unobserved part of

the domain.

This chapter is organized as follows. First, we consider the classical case of

completely observed data and provide a formal definition of random variable with

values in an infinite dimensional space. Then, we introduce the space that is a

suitable embedding of our analysis; in such framework, we give the formal definitions

of mean and covariance operator and recall their main properties. Secondly, we give

a brief overview of the analysis of partially observed functional data, developed

through the presentation of the state-of-the-art techniques for the reconstruction of

the incomplete observations and the estimation of operators.

2.1 Functional data analysis in separable Hilbert spaces

Suppose to observe the values taken by a random variable X (·) on an interval T . In

particular, assume to observe the values of X at an increasing sequence of sampling

instants {tj}Nj=1, tj ∈ T . Instead of looking at the data as realizations of N distinct

random variables {X (tj)}Nj=1, we think of the collection of values as the observation

of a continuous random variable {X (t), t ∈ T }. Below, we provide a formal definition

to this intuition.

2.1.1 Aleatory variable in an infinite dimensional space

Let (Ω,F ,P) be a probability space and let H be an infinite-dimensional vector space

with σ-algebra H. The following definitions, present in Ferraty and Vieu (2006), are

given in this context.

Definition 2.1.1 (Functional random variable)

A functional random variable X is a random element on a probability space (Ω,F ,P)

in the space H, i.e. X : Ω→ H
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Definition 2.1.2 (Functional datum)

A functional datum X is a realization of a functional random variable, i.e. for ω ∈ Ω

X = X (ω) : T → R

Definition 2.1.3 (Functional dataset)

A functional dataset is a collection of functional data.

For the sake of analysis, this work takes H to be a separable Hilbert space, the

definition of which is quickly recalled in the next section.

2.1.2 Separable Hilbert spaces

Working in an infinite dimensional space implies the need to appropriately extend the

statistical tools used in univariate and multivariate analysis. As the inner product

exports to a functional space the Euclidean notions of distance, angle and projection,

a Hilbert space may be thought of as the generalization to an infinite-dimensional

setting of Euclidean spaces. In this peculiarity of Hilbert spaces lies the choice to

adopt them as functional spaces in which to embed our analysis. Following the

discourse proposed in Horváth and Kokoszka (2012), we recall the definition of

Hilbert space and the fundamental notions and properties of operators in Hilbert

spaces 1.

Definition 2.1.4 (Hilbert space)

A Hilbert space H is a space equipped with an inner product 〈·, ·〉, that is complete

in the distance induced by the inner product.

Recall that the distance between two elements u and v in H is given by the norm

of their difference, i.e. dist(u, v) = ||u− v||.
Every Hilbert space H is connected to its dual by an isometry. Such connection is

guaranteed by the Riesz representation theorem.

Theorem 2.1.1 (Riesz representation theorem)

Let (H, 〈·, ·〉) be a Hilbert space. For every continuous linear functional L ∈ H∗, ∃! y ∈
H such that Lx = 〈x, y〉, ∀x ∈ H.

Let (H, 〈·, ·〉) be a separable Hilbert space 2 and let K be the space of compact

linear operators on H.

1Later in the chapter, these notions will provide important background knowledge for under-
standing the discussion on incomplete functional data and the state-of-the-art of reconstruction
methods.

2A Hilbert space is separable if it contains a dense countable subset.
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Definition 2.1.5 (Hilbert-Schmidt operator)

An operator Ψ ∈ K is Hilbert-Schmidt if
∑∞

j=1 λ
2
j < ∞, where λj ∈ R are the

coefficients appearing in its singular value decomposition 3.

A symmetric 4 and positive-definite 5 Hilbert-Schmidt operator Ψ in a Hilbert

space H admits the decomposition

Ψx =
∞∑
j=1

λj〈x, ϕj〉ϕj , x ∈ H,

where (λj , ϕj) are the eigenvalue-eigenfunction pairings of Ψ 6.

As claimed in Definition 2.1.4, the inner product 〈·, ·〉 induces on H a norm, and

hence a metric. Therefore, the choice of the inner product – i.e. the choice of the

space H – is a crucial step of the analysis and inherently depends on the kind of

investigation to be carried out. With an eye toward our analysis, we are interested

in exploiting the properties of the space of square integrable functions on a bounded

domain 7. Henceforward, let H be the L2(T ) space, T ∈ R being a bounded interval.

The inner product of two elements x, y ∈ L2(T ) is defined as

〈x, y〉 =

∫
T
x(t)y(t)dt,

and the induced norm is

||x|| =
(∫
T
x2(t)dt

)1/2

.

Hilbert-Schmidt operators on L2(T ) are introduced through the notion of kernel.

Let k(·, ·) ∈ L2(T × T ) and set

Ψkx(t) =

∫
T
k(t, s)x(s)ds.

Then Ψk is a Hilbert-Schmidt operator on L2(T ) and k(·, ·) is called kernel of Ψk.

For a Hilbert-Schmidt operator on L2, the representation stated by Mercer’s theorem

holds (Bosq, 1998).

3For all x ∈ H, a compact operator Ψ on a separable Hilbert space admits the singular value
decomposition Ψx =

∑∞
j=1 λj〈x, ϕj〉ψj , where {ϕj} and {ψj} are two orthonormal bases in H.

4An operator Ψ ∈ K is symmetric if 〈Ψx, y〉 = 〈x,Ψy〉, for all x, y ∈ H.
5An operator Ψ ∈ K is positive-definite if 〈Ψx, x〉 ≥ 0, for all x ∈ H.
6(λj , ϕj) are the solutions of Ψϕj = λjϕj .
7The reason behind this choice will be made clear later in the chapter, when we introduce the

covariance operator and discuss its properties in such space.
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Theorem 2.1.2 (Mercer lemma)

Let Ψk is a symmetric positive-definite Hilbert-Schmidt operator on L2(T ) and let k

be its associated kernel. Then there exists a sequence (ϕj) of continuous functions

and a decreasing sequence (λj) of positive numbers such that∫
T
k(t, s)ϕj(s)ds = λjϕj(t), t ∈ T , j ∈ N, (2.1)

and ∫
T
ϕi(s)ϕj(s)ds = δij , i, j ∈ N.

Moreover,

k(t, s) =
∞∑
j=1

λjϕj(t)ϕj(s), t, s ∈ T , (2.2)

where the series converges uniformly on T , hence

∞∑
j=1

λj =

∫
T
k(s, s)ds <∞.

Furthermore, the following result holds.

Theorem 2.1.3 (Karhunen-Loève expansion)

Let X be a zero-mean square-integrable random function with continuous covariance

function c. Then

X (t) =
∞∑
j=1

βjϕj(t), t ∈ T , (2.3)

where (βj) is a sequence of real zero-mean random variables such that

E[βiβj ] = λiδij , i, j ∈ N,

and where the sequence (λj , ϕj) is defined in Mercer lemma. The series in (2.3)

converges uniformly in L2(T ).

2.1.3 Mean and covariance operator in separable Hilbert spaces

Definitions of mean and covariance operator are introduced below, both in the gen-

eral framework of separable Hilbert spaces and with a focus on the L2 embedding.

Let (Ω,F ,P) be a probability space and let H be a separable Hilbert space with

σ-algebra H. Let 〈·, ·〉H be the inner product of H and || · ||H the induced norm.

Let X : Ω→ H be a functional random variable.
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Definition 2.1.6 (Fréchet mean)

We define the Fréchet mean of X the (unique) element µ ∈ H that solves

arg inf
x∈H

E
[
||X − x||2H

]
.

Additionally, let X : Ω→ H be zero-mean.

Definition 2.1.7 (Covariance operator)

The covariance operator of X is the operator C : H → H defined as

Cx = E [〈X , x〉X ] , x ∈ H.

As for the case of real-valued random variables, a functional counterpart of the

central limit theorem holds. Here, we report the version of the theorem that is stated

and proven in Bosq (1998).

Theorem 2.1.4 (Central limit theorem)

Suppose {Xi, i ≥ 1} is a sequence of iid mean zero random elements in a separable

Hilbert space, such that E[||Xi||2] <∞. Then

1√
n

n∑
i=1

Xi
d→ Z,

where Z is a Gaussian random element with covariance operator

C(x) = E[〈Z, x〉Z] = E[〈X1, x〉X1].

In Bosq (1998), the author also states and proves a functional version of the law

of large numbers.

Theorem 2.1.5 (Law of large numbers)

Suppose {Xi, i ≥ 1} is a sequence of iid random elements in a separable Hilbert space

such that E[||Xi||2] >∞. Then µ = E[Xi] is uniquely defined by 〈µ, x〉 = E[〈X,x〉],
and

1

n

n∑
i=1

Xi
a.s.→ µ

.

Now let X be a random variable that takes values in L2(T ), equipped with the

Borel σ-algebra. If X is an integrable random variable8, then the Fréchet mean of

8X is said to be integrable if E[||X ||H ] <∞
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X coincides with the point-wise mean

E[X (t)] = µ(t) a.e. in T .

If X is zero mean and square integrable9, then, for all x ∈ L2(T ), the covariance

operator can be defined as

Cx(t) =

∫
T
c(t, s)x(s)ds, c(t, s) = E[X (t)X (s)]

It is possible to show that the covariance operator in L2 is symmetric and positive-

definite, and consequently that it has non-negative eigenvalues. Additionally, since

c(·, ·) ∈ L2(T × T ), the covariance operator is Hilbert-Schmidt on L2(T ).

2.1.4 Estimation of mean and covariance operators

Suppose to observe a sample X1, . . . , Xn of independent realizations of a functional

random variable X . For any choice of the Hilbert spaceH, the empirical counterparts

of the mean operator and of the covariance operator are respectively

X̄ =
1

n

n∑
i=1

Xi,

Sx =
1

n

n∑
i=1

〈Xi, x〉Xi, x ∈ H.

If X is assumed to be a random element of L2(T ), then the sample mean coincides

with the point-wise sample mean

µ̂(t) =
1

n

n∑
i=1

Xi(t),

and the covariance kernel coincides with the point-wise sample covariance

ĉ(t, s) =
1

n

n∑
i=1

(Xi(t)− µ̂(t))(Xi(s)− µ̂(s)), (2.4)

so that the sample covariance operator is evaluated as

Ĉx =
1

n

n∑
i=1

〈Xi − µ̂, x〉(Xi − µ̂), ∀x ∈ L2. (2.5)

9X is said to be square integrable if E[||X ||2H ] <∞
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Under the assumption that the observations are iid in L2(T ), µ̂ is proven to be a

consistent estimator of µ. In the same way as in the scalar case, it is possible to

show that ĉ is a biased estimator for c 10, but that the bias is negligible for large

sample sizes. As the use of the sample estimate µ̂ introduces in equations (2.4) and

(2.5) an additional – although asymptotically negligible – bias in the estimate for

C, it is common practice to assume that X is zero mean. Following this line, the

covariance estimators that we will refer to in this work are defined as

ĉ(t, s) =
1

n

n∑
i=1

Xi(t)Xi(s),

Ĉx =
1

n

n∑
i=1

〈Xi, x〉Xi

2.2 Analysis of partially observed functional data: State

of the art

Many techniques and methodologies of classical Functional Data Analysis fail in

cases when observations are registered only on subintervals of the domain. For

instance, estimators for the mean and the covariance operator cannot be used as they

are generally defined, and hence a functional principal component analysis cannot

be performed and it is not possible to identify the Karhunen-Loève expansion as in

(2.3). We may think to adopt the strategy of deleting the incomplete curves from the

dataset, or to restrict the analysis only to the part of the domain in which the curves

are all entirely observed. But either option would imply a loss of information that

we are not willing to allow. For this reason, several techniques have been developed

to manage partially observed data, de facto maximizing the information available.

These methodologies are effective for the estimation of the mean, of the covariance

operator and of the principal component scores, and for the reconstruction of an

incomplete recording in the missing part, by borrowing the information from curves

that are observed in the missing part.

In this section we provide an overview of the state-of-the-art of such techniques,

referring mainly to the two papers Kraus (2015) and Kneip and Liebl (2020), in

which alternatives for handling partially observed data are proposed.

10The unbiased estimator being

1

n− 1

n∑
i=1

〈Xi − µ̂, x〉(Xi − µ̂)
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2.2.1 Reconstruction of partially observed functional data

Let X1, . . . , Xn be an iid sample of random variables in L2(T ), with T ⊂ R. Assume

that E
[
||Xi||4L2

]
< ∞. Typically, in functional analysis X1, . . . , Xn are assumed to

be curves observed on the whole interval T . Now, we assume that the curve Xi is

observed on Oi ⊂ T and that Xi(tj), tj ∈ Oi, j = 1, . . . , N are the observed data

for the i-th curve.

Let X be a random function with zero mean and covariance operator C, and assume

that X has been observed on O and missing on M 11.

– XO observed part of X, i.e. XO(t) = X(t) for t ∈ O

– XM missing part of X, i.e. XM (t) = X(t) for t ∈ T \O

– COO covariance operator of XO

– CMO cross-covariance operator of XM and XO

We mentioned that one of the interests of partially observed data analysis lies

in the reconstruction of the incomplete data, through their extension into the miss-

ing part of the domain. In the following section, three reconstruction strategies

are briefly described as they appear in the literature: (i) estimation of the princi-

pal component scores, (ii) functional completion with a Hilbert-Schmidt operator,

(iii) functional completion with a reconstruction operator. Each one of these three

methods requires the use of the mean and covariance estimators. There are several

methods for evaluating these estimators, and Section 2.3 details the proposals made

in the two papers we refer to. For the moment, assume that the estimators exist,

are consistent and are usable.

2.2.2 Estimation of principal component scores

A convenient way to reconstruct a functional datum can be through the estimation

of its scores, as they appear in the Karhunen-Loève representation (2.3). Through

the composition of a functional variable as linear combination of its principal com-

ponents, it is possible to recover the datum, or - better - a fairly good approximation

of it.

11Here, O denotes a realization of O. Since we assume that the interval of observation is inde-
pendent of X, then we can consider the observation period as non-random when we make inference
on the curve, and derivations are made conditionally on it.
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Notice that when a functional datum Xi is unobserved on Mi, a direct compu-

tation of

β̂ij = 〈Xi − µ̂, ϕ̂j〉 = 〈XOi
i − µ̂Oi , ϕ̂

Oi
j 〉+ 〈XMi

i − µ̂Mi , ϕ̂
Mi
j 〉

is impossible since the latter addend 〈XMi
i − µ̂Mi , ϕ̂

Mi
j 〉 is not available. As proposed

in Kraus (2015), this section presents a strategy for an estimation from observed

data of 〈XMi
i − µ̂Mi , ϕ̂jMi〉, looking in the class of continuous linear functionals.

The goal is to identify the optimal continuous linear functional L ∈ (L2(T ))∗ that

minimizes

E
[
(βMj − L(XO))2

]
.

By Riesz representation theorem, the minimization problem may be equivalently

expressed as

min
aj∈L2(O)

E
[
(βMj − 〈aj , XO〉)2

]
. (2.6)

As the objective functional (2.6) is convex, it is minimized by deriving it in the

Fréchet sense and equalizing the derivative to 0. Then, the optimal âj is found by

solving the following linear inverse problem

COOaj = rj , (2.7)

where rj = COMϕMj and COM = (CMO)∗ is the adjoint operator of CMO.

Observe that system (2.7) is ill posed. Indeed, as COO is a compact operator with

infinite dimensional range, C−1
OO is not bounded 12 and small perturbations of rj

may imply large perturbations of ãj = C−1
OOrj . Since rj is not known and has to

be estimated, the instability implies that the solution of the inverse problem may

be far from the real solution. This is the reason why it becomes crucial to recover

stability of the solution in this setting.

To this aim, the method resorts to a ridge regularization and solves

C(α)
OOaj = rj ,where α > 0.

12Concerning the invertibility of compact operators in infinite-dimensional Banach spaces, we are
given with the following result.
Let X be an infinite-dimensional Banach space and let T be a compact operator, T : X → X.
Assume that T is invertible, with inverse T−1. If T−1 were bounded, then I = TT−1 would be
compact. This implies that the closed unit ball of X is compact, which is impossible. Indeed, one
may find an infinite sequence of points in the unit ball whose pairwise distances are bounded, no
subsequence of which is Cauchy.
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where C(α)
OO = COO + αIO and IO is the identity operator on L2(O).

Now (C(α)
OO)−1 is bounded, and the stabilized problem is formulated as

ã
(α)
j = (C(α)

OO)−1rj (2.8)

In order to choose for an appropriate regularization parameter α > 0, Kraus resorts

to a Generalized Cross-validation (GCV) procedure, optimizing with respect to the

predictive performance of the corresponding regularized continuous linear functional.

In the practice, the principal score of the i-th curve, observed on Oi, with respect

to the j-th eigenfunction is denoted βij and is estimated via

β̂
(α)
ij = β̂Oiij + β̂Mi

ij ,

with
β̂Oiij = 〈XOi

i − µ̂
Oi , ϕ̂Oij 〉,

β̂Mi
ij = 〈â(α)

ij , XiOi − µ̂Oi〉.

Above, ϕ̂Oij is the restriction on Oi of ϕ̂j and is obtained through the eigenvalue-

eigenfunction decomposition of operator Ĉ, estimated in turn through ĉ13. The term

µ̂Oi is the restriction to Oi of µ̂, and â
(α)
ij is the solution of the empirical counterpart

of problem (2.8), namely

â
(α)
ij =

(
Ĉ(α)
OiOi

)−1
r̂ij .

In the latter, Ĉ(α)
OiOi

= ĈOiOi + αIOi is the integral operator on L2(Oi), with kernel

equal to the restriction of ĉ on Oi×Oi, and r̂ij = ĈOiMiϕ̂jMi , with ĈOiMi defined by

the restriction of ĉ to Oi ×Mi.

2.2.3 Functional completion with a Hilbert-Schmidt operator

Another viable approach to data reconstruction consists in the functional comple-

tion, exploiting the properties of Hilbert-Schmidt operators on L2. The method that

is briefly explained below was first proposed in Kraus (2015) and aims to recover the

13Considering the empirical counterpart of (2.1), the eigenvalue-eigenfunction pairings (λ̂j , ϕ̂j)
are found as solutions of ∫

ĉ(t, s)ϕ̂j(s)ds = λ̂jϕ̂j(t), t ∈ O ∪M.
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whole missing part of a trajectory, looking for the solution in the class of continuous

linear operators from L2(O) to L2(M).

Assume for simplicity that the functional variable is zero-mean. Then the minimiza-

tion problem to be solved is

min
Ψ:||Ψ||B<∞

E[||XM −Ψ(XO)||2L2 ], (2.9)

where || · ||B indicates the operator norm14. Solving by differentiating the objective

function in the Fréchet sense, it is easy to see that the minimization problem can be

re-expressed as

ΨCOO = CMO,

Ψ̃ = CMOC−1
OO.

(2.10)

and the best linear prediction of the missing part is in the form

XM = Ψ̃XO.

Observe that, in order to find the solution of (2.10), we need to assume the existence

of a bounded solution, i.e. ||CMOC−1
OO||2 <∞ 15.

As in the case of the prediction of the principal scores, COO is a compact operator

with infinite dimensional range, hence C−1
OO is not bounded and the problem is ill-

posed. Again, the solution is stabilized by resorting to a ridge regularization and a

GCV procedure for the choice of α > 0, so that the best linear continuous regularized

operator is found to be in the form

Ψ̃(α) = CMO(C(α)
OO)−1.

In the practice of data reconstruction, the mean and covariance operator are sub-

stituted by their empirical counterparts µ̂ and Ĉ and the estimated optimal operator

is set to be

Ψ̂
(α)
i = ĈMiOi(Ĉ

(α)
OiOi

)−1,

14Let B be the space of continuous linear operators on a Hilbert space H. Then we define the
norm of an operator Ψ in B as

||Ψ||B = sup{||Ψ(x)|| : ||x|| ≤ 1}.

15The norm || · ||2 of an operator Ψ is defined as

||Ψ||2 = sup{||Ψ(x)||L2 : ||x||L2 ≤ 1}.
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where ĈMiOi and Ĉ(α)
OiOi

are defined by the restrictions of ĉ to Mi × Oi and Oi × Oi
respectively. Finally, the best linear prediction of the missing part is found to be

X̂Mi
i

(α) = µ̂Mi + Ψ̂
(α)
i (XOi

i − µ̂
Oi).

Remark 1 (On the non-optimality of Hilbert-Schmidt operators)

It is crucial to point out that, in order to prove consistency for this estimator and

additionally to the assumption of boundedness of the solution, we assume it to be a

Hilbert-Schmidt operator. In other terms, we strengthen the assumption of continuity

||Ã||L <∞ with the assumption ||Ã||2 <∞.

However, we show below that a Hilbert-Schmidt operator is generally not the optimal

reconstruction operator.

Resorting to the Mercer expansion (2.1), a Hilbert-Schmidt operator Ψk on L2(O)

may be equivalently expressed as

Ψk(X
O)(t) =

∫
O
k(t, s)XO(s)ds, k ∈ L2(M ×O). (2.11)

Let θ ∈ δM be a boundary point of M. Then, we would like a constructor to

satisfy the continuity constraint at the boundary, i.e.

XO(θ) = Ψ(XO)(θ), ∀θ ∈ δM,

which in other terms asks for the first constructed point to equal the last one observed.

The kernel satisfying the latter condition is the Dirac-δ, which is not an element of

L2(O). Since the reconstruction cannot be continuous, it is not optimal to our scopes

to identify Ψ within the class of linear regression operators. Indeed, there is no reason

to believe that the optimal reconstructor operator should satisfy (2.11).

As an alternative, in Kneip and Liebl (2020) the authors look for the optimal linear

reconstructor in the more general class of Reconstruction operators.

2.2.4 Functional completion with a reconstruction operator

With the aim of overcoming the discontinuity issue at the boundary and to identify

an optimal operator for functional completion, in Kneip and Liebl (2020) the au-

thors introduce a new class of operators, namely the class of reconstruction operators,

where to seek for the optimal operator that extends a sample of partially observed

functional data. In doing so, they introduce the Reproducing Kernel Hilbert Space,

in which it is possible to enunciate a representation theorem for reconstruction op-

erators.
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First, we introduce the class of reconstruction operators. Let XO ∈ L2(O) be a

zero-mean random function.

Definition 2.2.1 (Reconstruction operators) We call every linear operator A :

L2(O)→ L2(M) a reconstruction operator with respect to a random function XO if

Var(A(XO)(t)) <∞ for all t ∈M .

The Reproducing Kernel Hilbert Space (RKHS), with reproducing kernel the covari-

ance kernel cO(t, s) = E[XO(t)XO(s)], has inner product

〈f, g〉H :=
∞∑
j=1

〈f, ϕOOj〉2〈g, ϕOOj〉2
λOOj

, ∀f, g ∈ L2(O),

and induced norm

||f ||H =
√
〈f, f〉H .

Above, (ϕOOj , λOOj)j≥1 are the eigenvalue-eigenfunction pairings of the covariance

operator COO defined by cO 16.

The RKH space H := {f ∈ L2(O) : ||f ||2H < ∞} is a Hilbert space. The following

theorem provides a representation for the linear reconstruction operators on H.

Theorem 2.2.1 (Representation of reconstruction operators) Let A : L2(O)→
L2(M) be a reconstruction operator with respect to XO. Then there exists a unique

(deterministic) parameter function αt ∈ H such that almost surely

A(XO)(t) = 〈αt, XO〉H , t ∈M.

In this framework, the functional completion problem is solved by identifying the

optimal linear reconstruction operator A : L2(O)→ L2(M) that minimizes

E[(XM (t)−A(XO)(t))2], ∀t ∈M. (2.12)

Using the Representation theorem, the objective function may be re-expressed as

E[(XM (t)− 〈αt, XO〉H)2], ∀u ∈M.

16(ϕOOj , λOOj)j≥1 are solutions of the Mercer’s decomposition (2.1) stated for cO, namely∫
O

cO(t, s)ϕj(s)ds = λjϕj(t), t ∈ O.
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The proposed linear reconstruction operator is

A(XO)(t) = 〈ct, XO〉H , t ∈M, (2.13)

where we denote ct(s) = c(t, s) = E[XM (t)XO(s)], for t ∈M and s ∈ O.

The following theorems show that the proposed operator belongs to the class of

reconstruction operators, and that it is optimal.

Theorem 2.2.2

(a) A(XO)(t) in (2.13) has a continuous and finite variance function, i.e. V(A(XO)(t)) <

∞ for all t ∈M .

(b) E[A(XO)(t)] = 0 for all t ∈M , i.e. the operator is unbiased.

Let us introduce the reconstruction error in the form

Z = XM −A(XO), Z ∈ L2(M).

Then the following theorem shows that the reconstruction error is orthogonal to XO

and that the reconstruction operator proposed in (2.13) is optimal.

Theorem 2.2.3 (Optimal linear reconstructor)

(a) For every s ∈ O and t ∈M ,

E[XO(s)Z(t)] = 0.

(b) For any linear operator A : L2(O) → L2(M) that is a reconstruction operator

with respect to XO

E
[
(XM (t)−A(XO)(t))2

]
≥ V(Z(t)), ∀t ∈M.

Remark 2 (On the continuity of A)

The definition of A(XO) over O ∪M comes as a direct extension of the Karhunen-

Loève representation of XO ∈ L2(O)

XO =

∞∑
j=1

〈XO, ϕOOj〉2ϕOOj(t),=
∞∑
j=1

βOj ϕOOj(t), t ∈ O.

Starting from this representation, every eigenfunction ϕOOj defined over O may be

continuously extended to a function ϕ̃OOj. Indeed, by Mercer’s equation (2.1) for
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ϕOOj we have that

ϕOOj(t) =
〈ϕOOj , cOt 〉2

λOOj
, t ∈ O. (2.14)

Through the introduction of ct(s) in (2.14), ϕOOj may be extrapolated to the missing

part of the domain as

ϕ̃OOj(t) :=
〈ϕOOj , ct〉2
λOOj

, t ∈M. (2.15)

Now it is easy to see how ϕ̃OOj appears in the representation of A(XO). Indeed,

A(XO)(t) := 〈ct, XO〉H =
∞∑
j=1

〈ct, ϕOOj〉2〈XO, ϕOOj〉2
λOOj

=

=

∞∑
j=1

βOj ϕ̃OOj(t),∀t ∈M. (2.16)

Observe now that the definition of A : L2(O) → L2(M) can be extended to an

operator A : L2(O)→ L2(O ∪M). Indeed,

A(XO)(t) := 〈ct, XO〉H =
∞∑
j=1

〈ct, ϕOOj〉2〈XO, ϕOOj〉2
λOOj

=

=
∞∑
j=1

〈XO, ϕOOj〉2
〈
∑∞

k=1 λOOkϕOOk(t)ϕOOk, ϕOOj〉2
λOOj

=

=
∞∑
j=1

〈XO, ϕOOj〉2
λOOjϕOOj(t)

λOOj
=
∞∑
j=1

〈XO, ϕOOj〉2ϕOOj(t) = XO(t), ∀t ∈M.

Since ct(s) = c(t, s) = E[X(t)X(s)] is a continuous function on O ∪M , then the

reconstructed function A(XO) is continuous on O ∪ M , and in particular at any

boundary point θ ∈ δM .

The KL representation of the reconstruction operator, as expressed in (2.16), and

the definition of the reconstruction error allow us to provide a form of the complete

reconstructed function X on O ∪M as

X(t) =


∑∞

j=1 βjϕOOj(t), t ∈ O∑∞
j=1 βjϕ̃OOj(t) + Z(t), t ∈M

. (2.17)

In the practice of estimation of the missing part of an observed function, consider
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the general case in which the observed functions XOi
i are not zero mean. Consider

the truncated version of operator (2.16), which is

AJ(XOi
i )(t) = µ(t) +

J∑
j=1

βOiij φ̃OOj(t) = µ(t) +
J∑
j=1

βOiij
〈ϕOOj , ct〉2
λOOj

.

Here, the quantities µ, βOiij , φ̃OOj , ct and λOOj are to be estimated, so that the

empirical counterpart of the functional reconstructor is found in the form

ÂJ(XOi
i )(t) = µ̂(t) +

J∑
j=1

β̂Oiij
〈ϕ̂OOj , ĉt〉2
λ̂OOj

, t ∈ O ∪M. (2.18)

2.3 Estimation of mean and covariance operators for

incomplete functional data

When dealing with incomplete functional data, the estimates introduced in Section

2.1.4 are not valid over the entire domain T , because not all curves are defined in

every tj ∈ T , j = 1, . . . , N . Therefore, effort has been put to find opportune alter-

natives for mean and covariance estimates, that maximize the information provided

by the samples.

An idea of estimators is identified in Kraus (2015), in which the author proposes

that µ(t) can be estimated as the sample mean of all observed curves in t, namely

µ̂(t) =
J(t)∑n
i=1Oi(t)

n∑
i=1

Oi(t)Xi(t), (2.19)

where

Oi(t) =

1 if Xi is observed in t

0 otherwise
and J(t) =

1 if
∑n

i=1Oi(t) > 0

0 otherwise
.

and the covariance operator C can be estimated through an estimator for c(t, s),

which is the sample covariance of all complete pairs of functional values at t and s,

namely

ĉ(t, s) =
I(t, s)∑n
i=1 Ui(t, s)

n∑
i=1

Ui(t, s){Xi(t)− µ̂ts(t)}{Xi(s)− µ̂ts(s)}, (2.20)
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where
Ui(s, t) = Oi(s)Oi(t),

I(s, t) =

1 if
∑n

i=1 Ui(s, t) > 0

0 otherwise
,

µ̂ts(t) =
I(t, s)∑n
i=1 Ui(t, s)

n∑
i=1

Ui(t, s)Xi(t).

In the framework introduced in Section 2.2.1, estimators (2.19) and (2.20) are

proven to be consistent estimators for µ(t) and c(t, s) respectively, under the addi-

tional assumptions that: (i) O1, . . . , On are independent and identically distributed,

(ii) for every pair (t, s), the probability that a curve is observed on both t and s is

greater than 0.

Another option for mean and covariance estimates consists in techniques that

are typically used for the analysis of sparse functional data (Yao, Müller, and Wang,

2005). In Kneip and Liebl (2020), the authors take advantage of the class of Local

Linear Kernel (LLK) estimators to provide smoother estimates than the point-wise

evaluations proposed in Kraus (2015). In the paper the estimators are introduced

as follows.

Let K(·) be a second-order kernel with compact support. Then µ̂(t) = γ̂0, where

(γ̂0, γ̂1) solves

argmin
γ0,γ1

n∑
i=1

N∑
j=1

[Xi(tj)− γ0 − γ1(tj − t)]2K(tj − t),

and ĉ(t, s) = γ̂0, where (γ̂0, γ̂1, γ̂2) solves

argmin
γ0,γ1,γ2

n∑
i=1

∑
1≤j,l≤N

[Ĉijl − γ0 − γ1(tj − t)− γ2tj − s)]2K(tj − t)K(tl − s),

and Ĉijl = (Xi(tj)− µ̂(tj))(Xi(tl)− µ̂(tl)) is the sample covariance estimate.

Again in the framework of Section 2.2.1, the consistency of these estimators is

proven in Kneip and Liebl (2020) under the additional assumptions of: (i) sufficient

smoothness of µ and c, (ii) sufficient numerosity of the time instants of recording

with respect to the number of observations.
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Chapter 3

Weighted analysis for functional

data

In the framework of partially observed functional data, the handling of an incom-

plete curve is typically done via reconstruction, exploiting for instance one of the

methodologies presented in Chapter 2. In this chapter, we present a methodology

to deal with incomplete functional data that have been reconstructed. The idea

behind this method is simple: a reconstruction of the data is performed, and then

the reconstructed observation is associated to a weight, which takes value 1 where

the data is not reconstructed – i.e., where we have maximum confidence in the value

assumed by the curve – and decreases towards 0 the less confidence we have in the

reconstructed value. Doing so, the part of the domain which corresponds to the

unobserved data counts less in the estimation process. We want to give the theoret-

ical and methodological basis to handle the functional analysis in this context, thus

including the weights in the classical methodologies of smoothing, function-on-scalar

regression and estimation of the variability of the regression coefficients estimates.

3.1 Weighted norm in L2

Let T be an open subset of R and w : T → [0,∞) be a bounded non-negative

function, which we refer to as weight.

Now let f, g ∈ L2(T ) and let w, v be weights associated to f and g respectively. We

define the weighted inner product in L2 as

〈f, g〉W =

∫
T

√
w(s)f(s)

√
v(s)g(s)ds.
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Observing that 〈f, g〉W = 〈
√
wf,
√
vg〉L2(T ), it is immediate to verify that the

weighted inner product is bilinear, symmetric and positive definite.

The weighted inner product induces a norm on L2(T ). We define the weighted L2

norm of f with respect to w as

||f ||W =
√
〈f, f〉W =

(∫
T

(
√
w(s)f(s))2ds

)1/2

.

It is trivial to see that if the L2 norm of f is finite, then also the weighted L2 norm

of f is finite. Indeed,

||f ||2W =

∫
T

(
√
w(s)f(s))2ds ≤ sup

t∈T
w(t)

∫
T

(f(s))2ds ≤ K||f ||L2(T ) <∞.

In the following sections we will resort to the weighted L2 norm to identify the

criteria for smoothing functional data and fitting the regression.

3.2 Smoothing

The smoothing methodology allows one to represent the functional data as immersed

in a space generated by a (finite) set of basis functions, and as univocally identified

by the coefficients of their projection on the basis. As a result, it becomes possible

to link functional analysis to multivariate analysis, and to apply in this context the

straightforward extension of methodologies already used in multivariate analysis.

In this section, we illustrate the penalized weighted smoothing technique, that we

apply adopting a roughness penalization method. Through the introduction of a

penalty term, a penalized criterion limits the inherent tendency of the least squares

method to perfectly interpolate the points yi(t1), . . . , yi(tN ), giving rise to a trade-off

between the accuracy of the fitting and the regularity of the smoothed function.

We mentioned that we want to adapt the common smoothing technique to the

weighted framework where we place ourselves. Actually, a smoothing that weights

differently at the different sampling instants is already present in the literature, and

is well illustrated in Ramsay and Silverman (2005). However, specifically in our case,

the weighting – and consequently the smoothing – is curve-specific and depends on

the weighting function coupled to the observation.

Although this peculiarity does not affect the common argument about weighted

smoothing, the issue should be kept in mind when one wants to represent the overall
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smoothing of observations through a mapping. In this section, first we present the

penalized weighted smoothing for a single observation, by closely following Ramsay

and Silverman (2005), Chapter 5, and then we deal with the aforementioned problem

of building the projection map.

3.2.1 The penalized weighted least squares criterion

Assume Y1, . . . , Yn to be independent and identically distributed random variables

with values in L2(T ), where T is an open subset of R. Assume to observe y1, . . . ,yn,

realizations of Y1, . . . , Yn. In particular, assume each observation yi to be a vector of

discrete recordings of yi, evaluated at a sequence of breaks t1, . . . , tT , where tj ∈ T
for all j = 1, . . . , T .

For a generic observation yi, the smoothing technique fits the discrete values yi(t1), . . . , yi(tT )

resorting to the model

yi(tj) = xi(tj) + εi(tj), ∀j = 1, . . . , T,

where the smoothed curve xi is defined on the space generated by a basis φ1, . . . , φL,

so that it may be written in the form

xi(t) =
L∑
l=1

cilφl(t) = cᵀiφ(t). (3.1)

The basis is common to all smoothed curves (x1, . . . , xn). Let ci be the vector of the

coefficients of the linear combination specific of xi and let φ(t) = (φ1(t), . . . ,φL(t))ᵀ

be the vector of evaluations of the basis functions in t.

Define the smoothing error εi as a function, observed at the sequence of sampling

instants (t1, . . . , tN ) and taking values

εi(tj) = yi(tj)− xi(tj) = yi(tj)− cᵀiφ(tj), ∀j = 1, . . . , T.

For each εi, let wi be the associated weight as specified in Section 3.1.

The penalized least squares criterion works by adding a roughness penalty to the

classical error sum of squares. We adopt a natural quantification of roughness, that

considers the abrupt changes in the curve by evaluating the square of the L2 norm

of its second derivative, i.e.

||D2x||L2(T ) =

∫
T

[
(D2x)(s)

]2
ds.
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Summing up, the penalized weighted least squares criterion consists in solving

ĉi = argmin
c∈RL

T∑
j=1

(√
wi(tj)εi(tj)

)2

+ ζ||D2x||L2(T ), (3.2)

where ζ is a smoothing parameter that manages the trade-off between the good

fitting of data and the roughness of the smooth function: the smaller ζ, the more

the estimate is close to the least squares estimate and tends to interpolate the

observed points; the greater ζ, the more flat the smooth function tends to be. Such

parameter may be calibrated through a generalized cross-validation procedure, that

selects ζ corresponding to the minimum of the mean squared error discounted by a

measure of increased regularity.

Taking advantage of the result of de Boor (Boor, 2001), we look for the optimal

smoothing curve in the class of cubic splines with knots at t1, . . . , tT , solving problem

(3.2) with respect to the coefficients of (3.1).

The closed form expression of the optimal ĉ is derived below, resorting to a matricial

representation of (3.2).

First, observe that the penalization term may be re-expressed in matricial form as

||D2x||L2(T ) =

∫
T

[
(D2x)(s)

]2
ds =

∫
T

[
(D2cᵀφ)(s)

]2
ds = cᵀRc,

where [R]lk = 〈D2φl, D
2φk〉L2(T ).

Secondly, observe that the error sum of square may be written as

T∑
j=1

(√
wi(tj)εi(tj)

)2

= εᵀiWiεi = (yi − Φc)ᵀWi (yi − Φc) .

Above, Wi = diag(wi(t1), . . . , wi(tN )) is a T -order diagonal matrix which plays the

role of weighing differently the different temporal instants, according to the weight

which has been assigned to the i-th observation. The term Φ ∈ R(T×L) is a matrix,

whose columns contain the values that the basis functions take at the sampling

instants.

Finally, we can equivalently formulate (3.2) as the problem of finding the minimum
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of the quadratic form

(yi − Φc)ᵀWi (yi − Φc) + ζcᵀRc, (3.3)

By taking the derivative of (3.3) with respect to c and by setting it to zero, we get

−2ΦᵀWiyi + 2ΦᵀWiΦc+ 2ζRc = 0,

and it is immediate to see that the optimal coefficient vector for observation i is

given by

ĉi = (ΦᵀWiΦ + ζR)−1 ΦWiyi. (3.4)

3.2.2 Construction of the smoothing map

Expression (3.4) leads to the introduction of a map SiΦ, that for each observation

establishes a connection between the vector of recordings yi and the vector ĉi of

coefficients of the basis expansion. For all i = 1, . . . , n, such mapping is represented

by the L× T matrix

SiΦ := (ΦᵀWiΦ + ζR)−1 ΦWi, (3.5)

so that

ĉi = SiΦyi.

Now let Y ∈ R(n×T ) be the matrix containing the values that n observations take

in T sampling points, and let C ∈ R(n×L) be the matrix that collects all n optimal

coefficient vectors, found following the procedure developed in the previous section.

We are interested in building a mapping SΦ between Y and C.

Prior to this, it is important to point out that, in the classical framework of weighted

smoothing, the weighting is introduced in order to account for the presence of corre-

lations between different time instants. Therefore, it is reasonable that the smooth

counterpart of each observation is computed resorting to the same weighting matrix

W . This implies that, by definition (3.5), SΦ is the same for every observation, and

that the connection between Y and C is easily found as

C = Y Sᵀ
Φ. (3.6)

Notice that, recalling the properties of the Kronecker product1, the relation above

1Let A be a matrix of dimension k×l and B be a matrix of dimension m×n. Then the Kronecker
product A⊗B generates a matrix C of dimension km× ln that is given by sub-matrices aijB.
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can equivalently be expressed as

vec(C) = vec(IY Sᵀ
Φ) = (SΦ ⊗ I)vec(Y ), 2 (3.7)

where I is the n-dimensional identity matrix.

Moving the focus on our setting again, we observe that the smoothing is performed

through an observation-specific mapping SiΦ, and hence that a counterpart of repre-

sentation (3.6) does not exist. On the contrary, it is possible to manually construct

a map that extends relation (3.7) to the more general case of observation-specific

weighting. Indeed, suppose to have Si , i = 1, . . . , n, different smoothing maps 3.

One may check that the counterpart of (SΦ⊗I) is the (Ln×Tn)-dimensional sparse

matrix

SΦ :=



S1
11 0 . . . 0

0 S2
11 . . . 0

...
. . .

0 . . . 0 Sn11

S1
12 0 . . . 0

0 S2
12 . . . 0

...
. . .

0 . . . 0 Sn12

S1
1T 0 . . . 0

0 S2
1T . . . 0

...
. . .

0 . . . 0 Sn1T

S1
L1 0 . . . 0

0 S2
L1 . . . 0

...
. . .

0 . . . 0 SnL1

S1
L2 0 . . . 0

0 S2
L2 . . . 0

...
. . .

0 . . . 0 SnL2

S1
LT 0 . . . 0

0 S2
LT . . . 0

...
. . .

0 . . . 0 SnLT



,

so that

vec(C) = SΦvec(Y ). (3.8)

This notation will turn out to be particularly useful in Section 3.3.2, where the link

between the variability of Y and the variability of C is deployed.

3.3 Functional linear regression

Linear regression is a practical tool that is employed and well known both in univari-

ate and in multivariate statistical analysis, but extensions of the linear regression

model are possible also in the context of Functional Data Analysis (Ramsay and

Silverman, 2005, Horváth and Kokoszka, 2012).

2Given a matrix A of dimension k×m, vec(A) indicates the km-dimensional vector obtained by
writing A as a vector column-wise.

3Here, we temporarily drop the subscript Φ for clarity of notation.
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The main problem with a functional extension of the linear regression is that each

regression coefficient β is an infinite dimensional object that has to be estimated

from a finite sample (Horváth and Kokoszka, 2012). If no restrictions are imposed

on β, then the regression results in an estimate that is inherently unstable, noisy and

uninformative, although providing a perfect fitting of the observations. One way to

prevent such side effect consists in imposing a roughness penalty on the functional

estimate of the coefficient, that counterbalances the pursuit of a good fitting with the

estimation of a coefficient that is regular, stable and able to provide useful insights

on the phenomenon under analysis.

3.3.1 Function-on-scalar linear regression

As our interest lies in a functional extension of a linear regression with scalar pa-

rameters, the most convenient choice falls on the adoption of a function-on-scalar

linear regression model with independent multivariate covariates (x1, . . . , xq) and

functional coefficients (β1(·), . . . , βq(·)), where the functional errors are assumed to

be uncorrelated.

In the framework defined in Section 3.2, the linear regression model is formulated

as

y(t) = Xβ(t) + ε(t), t ∈ T . (3.9)

Above, β(t) = (β1(t), . . . , βq(t)) denotes the vector of functional coefficients evalu-

ated in t, X ∈ Rn×q is the design matrix and y(t) is a n-dimensional vector contain-

ing the response functions evaluated in t. Lastly, the error term is a n-dimensional

vector of functions εi, that are assumed to be independent realizations of a stochastic

process with zero mean and covariance function c(t, s).

In order to define a criterion to fit the model, we aim to extend to a functional case

the penalized least-square principle, resorting to the weighted L2 norm introduced in

Section 3.1. Similarly to the smoothing procedure, we associate the errors ε1, . . . , εn

to the weights w1, . . . , wn and define the weighted functional least-square (WFLS)

criterion as the minimization of
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WFLS =
n∑
i=1

||εi||2L2(T ),W

=
n∑
i=1

∫
T

(
√
wi(s)εi(s))

2ds

=

∫
T

n∑
i=1

[√
wi(s) (yi(s)− xᵀ

iβ(s))
]2
ds

=

∫
T

[y(s)−Xβ(s)]ᵀW (s) [y(s)−Xβ(s)] ds, (3.10)

where we set W (t) = diag (w1(t), . . . , wn(t)) , for all t ∈ T , to be the diagonal matrix

of the weights evaluated in t.

In order to regularize and stabilize the estimate of the regression coefficients, a

penalization term that quantifies the roughness of the coefficient functions is added

to the WFLS. Suppose to the define a correction to the bumpiness through a linear

differential operator L. Then, we call the fitting criterion a penalized weighted least-

square (PWFLS) and the quantity to be minimized becomes

PWFLS =

∫
T

[y(s)−Xβ(s)]
ᵀ
W (s) [y(s)−Xβ(s)] ds+ λ

∫
T

[Lβ(s)]ᵀ[Lβ(s)]ds, (3.11)

where λ is a smoothing parameter that can be tuned through a generalized cross-

validation procedure.

The general idea for the resolution of the minimization problem consists in moving

from an infinite dimensional setting to a multivariate framework, by projecting the

observations in the space spanned by the basis functions, as discussed in Section

3.2. The functional coefficients are estimated as elements of a space generated by

suitable basis functions. In doing so, the part of the curves that is not captured

by the basis functions is assumed to be negligible and is included in the regression

error. Having this in mind, in this section we will refer to the response variable and

to the functional coefficients as

yi(t) =

Ly∑
l=1

cilφl(t), i = 1, . . . , n,

βj(t) =

Lβ∑
l=1

bjlθl(t), j = 1, . . . , q. (3.12)

The two bases for the observations and the coefficients are typically chosen to be
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the same, but we maintain the argument in a more general framework and consider

them as distinct.

A new phrasing of model (3.9) follows all the considerations made above, and takes

the form

Cφ(t) = XBθ(t) + E(t), (3.13)

where C and B are matrices of dimensions n×Ly and q×Lβ respectively, that contain

the projection coefficients of {y1, . . . , yn} and {β1, . . . , βq} appearing in (3.12).

Putting formulation (3.13) in (3.11), one gets∫
T

[Cφ(t)−XBθ(t)]ᵀW (t) [Cφ(t)−XBθ(t)] dt+ λ

∫
T

[LBθ(t)]T [LBθ(t)] dt.

This formulation of the objective function is the starting point of the calculation,

extensively reported in Appendix A.1, that leads to the following equation for matrix

B:

[J + λR⊗ Iq] vec(B) = vec

(∫
XᵀW (t)Cφ(t)θ(t)ᵀdt

)
,

where

R :=

∫
T

[Lθ(t)] [Lθ(t)]T dt,

J :=

∫
(θ(t)θ(t)ᵀ ⊗XᵀW (t)X) dt.

To sum up, the estimate of the B matrix is given through the vec() operator by

vec(B̂) = [J + λR⊗ Iq]−1 vec

(∫
XᵀW (t)Cφ(t)θ(t)ᵀdt

)
. (3.14)

3.3.2 Estimation of the variability of regression coefficients

Whenever an analysis leads to the computation of a point estimation of a parameter,

it is statistically relevant to couple the estimate with a quantification of the related

uncertainty. This section is devoted to the deployment of an argument that shows

how to evaluate the variability associated to the estimate obtained in (3.14). The

way to achieve this is through the construction of a mapping that acts as linkage

between the raw observations and the estimate B̂.

First, let us see how the general idea applies to the simpler case of a single curve y,

of which we observe a sample y = (y(t1), . . . , y(tT )). Assume that the vector y goes
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through a transformation, e.g. a smoothing that binds the rough observations of y

to a smooth function x. We are interested in investigating the variability of some

feature of x, identified by a functional L(x) as

L(x) =

∫
ξ(s)x(s)ds.

Suppose that our concern lies in a functional

Lt(x) = x(t),

represented by a kernel ξ that takes positive values only in a small interval centred

in t. Let SΦ and L be the two linear operators that map y into x and x into

Lt(x) = x(t), respectively. Then let M = L ◦SΦ be the composite mapping, so that

Lt(x) = x(t) = LSΦy. Then, using the expression for the variance of transformed

random vectors, we have that

Var[x̂(t)] = Var(LSΦy) = LSΦΣeS
ᵀ
ΦL

ᵀ,

where Σe is the covariance matrix of the sample y.

Let us now extend and adapt this argument to the case in which a sample of func-

tional observations goes through a smoothing and a linear regression, as described in

the previous sections. In order to identify the linkage between the observations and

the estimates of the regression coefficients, it is useful to view the overall mapping

as the composition of: (i) the smoothing map that associates the observations to the

smooth functions, (ii) the regression map that connects the smooth functions to the

matrix of coefficients B, (iii) the basis expansion map that couples the estimated

coefficients with the basis functions for the β’s. In this work, all mappings are han-

dled in the same matricial form that has been adopted above to discuss smoothing

and regression.

The construction of the smoothing map is described in Section 3.2.2, and we refer

to it as SΦ, namely the (nL× nT )-dimensional matrix such that

vec(C) = SΦvec(Y ).

The regression map connects vec(C) into vec(B) and is found by reformulating what

is reported in (3.14). Indeed, exploiting the properties of the Kronecker product,
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the relation may be written in the form

vec(B) = [J + λR⊗ Iq]−1

(∫
θφᵀ ⊗XᵀW

)
vec(C),

and we may identify the mapping as the (Lq × Ln)-dimensional matrix

Sβ := [J + λR⊗ Iq]−1

(∫
θφᵀ ⊗XᵀW

)
.

The basis expansion map carries out the linear combination of the basis function

that uniquely define β̂ from the estimated coefficients.

Recalling the matricial counterpart of (3.12), it is immediately found that

vec(β̂) = vec(BΘᵀ) = (Θ⊗ Iq)vec(B),

where Θ is a T × L matrix of values of the functions (θ1, . . . , θL) evaluated in the

T sampling points. Then the basis expansion mapping is defined as the (Tq × Lq)
matrix

SΘ := Θ⊗ Iq.

Finally, the complete mapping of Y into β̂ is given by the composition of all three

mappings identified above, and may be expressed in matricial form as

Map := SΘSβSΦ,

and

vec(β̂) = SΘSβSΦvec(Y). (3.15)

Now observe that the variance of the observations is given by the (Ln × Ln)-

dimensional matrix

Var[vec(Y)] = Σe ⊗ In,

where Σe is the covariance matrix of the residuals ε̂i from the regression model.

Summing all up, we may express the variability of the regression coefficients in terms

of the variability of the observations

Var[vec(β̂)] = Var[SΘSβSΦvec(Y )] = SΘSβSΦ(Σe ⊗ In)Sᵀ
ΦS

ᵀ
βS

ᵀ
Θ, (3.16)
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and we obtain the symmetric covariance matrix, whose diagonal values are the vari-

ances of (β1, . . . , βq), for all tj , j = 1, . . . , T , i.e.



V(β̂(t2))

C(β̂(t1), β̂(t2)) V(β̂(t2))

.

..
.
..

. . .

C(β̂(t1), β̂(tT )) C(β̂(t2), β̂(tT )) . . . V(β̂(tT ))



,

where the generic C(β̂(ti), β̂(tj)) takes the form

C(β̂(ti), β̂(tj)) =


C(β̂1(ti), β̂1(tj))

C(β̂1(ti), β̂2(tj)) C(β̂2(ti), β̂2(tj))

...
...

. . .

C(β̂1(ti), β̂q(tj)) C(β̂2(ti), β̂q(tj)) C(β̂q(ti), β̂q(tj))

 .

3.3.3 Estimation of the point-wise variance of residuals

Consider the regression model in matricial form

Y = Xβ + E ,

where we assumed the errors ε(tj) = (ε1(tj), . . . , εn(tj)) to be such that

E[ε(tj)] = 0, Cov(ε(tj), ε(tk)) = σjkI.

In other words, we assume the errors to be uncorrelated, but evaluations of an error

at different time instants to be correlated in principle. For clarity of notation, let

[Σ]jk = σjk be the (T × T )-dimensional covariance matrix of the errors evaluated at

the sampling instants.

Define the residuals of the model in matricial form as

Ê = Y − Ŷ = Y −Xβ̂. (3.17)

We want to use the information in the residuals to replace the population quan-
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tity Σ by a reasonable estimate Σ̂. If the regression were not penalized, an unbiased

estimate for matrix Σ would be

Σ̂ =
1

n− q
ÊᵀÊ , (3.18)

where n−q are the degrees of freedom of the model 4 (Ramsay and Silverman, 2005,

Johnson and Wichern, 2018).

As we resort to a penalized criterion, n− q is not a corrected estimate of the degrees

of freedom of our model and consequently estimator (3.18) is not unbiased. Because

of this we are interested in getting an estimate of the effective degrees of freedom

(edof) of our PWFLS regression that leads to a reliable estimate for the quantities

(σ11, . . . , σTT ).

To achieve this, we first observe that applying the vec() operator to (3.17), one gets

vec(Ê) = vec(Y )− vec(Xβ̂) = vec(Y )− (IT ⊗X)vec(β̂), (3.19)

and that plugging (3.15) into (3.19) we obtain

vec(Ê) = (InT − (IT ⊗X)P )vec(Y ) = (InT −H)vec(Y ). (3.20)

Above, P := SΘSβSΦ for notational purposes.

Exploiting the similarity between formulation (3.20) and a classical multivariate

regression, we consider the pointwise residual sum of squares (RSS) and look for a

corrective term that makes RSS(tj) a useful estimate for the corresponding σjj . To

clarify, fix the sampling instant t1. Then the procedure illustrated in Appendix A.2

shows that a useful estimate for σ11 may be taken in the form

σ̂11 = V̂ar(ε̂(t1)) =
1

δ1
RSS(t1), (3.21)

where δ1 = tr [(I −H)ᵀAᵀA(I −H)] = n− 2tr [H1:n,1:n] + tr [H1:n,·(H1:n,·)
ᵀ].

We point out that estimate (3.21) is unbiased only under the far-fetched hypotheses

of uncorrelated time points and of equal variances at the time points. Nonetheless,

we consider δ1 to be a reliable estimate of the edof of the model and hence use it as

corrective term.

4Notice that q counts the intercept term too.
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3.4 Bootstrap approach to assess the simultaneous vari-

ability of the functional coefficients

It is important to stress that the variability estimated in Equation 3.16 has point-

wise validity, meaning that conclusions based on it can only be drawn one-at-a-time.

If we are interested in obtaining an estimate that simultaneously quantifies the un-

certainty of the β̂’s over the whole domain, one option is to rely on resampling

methods.

Such approaches are based on the use of data to randomly generate additional sam-

ples of a population and to investigate its distributional characteristics, avoiding the

introduction of any strong assumption on the statistical model. Bootstrapping is one

of these methods. First introduced by Efron (1979), the idea behind the method is

to obtain an estimate of the distribution of an estimator by repeatedly sampling data

with replacement and getting values of the estimator over the empirical distributions

of the samples.

In the case of scalar data, the bootstrap method finds a theoretical foundation in

the law of large numbers and in the Glivenko-Cantelli theorem, which combine to

guarantee uniform convergence of the empirical distribution to the true distribution

of the population. If an estimator T of a statistic θ is consistent, i.e. T (F) = θ where

F is the true distribution underlying data, then we are guaranteed convergence of

the empirical distribution of the estimator to its true distribution.

Bootstrap resampling methods and results of asymptotic validity of the bootstrap

methodology are extended in the framework of functional data analysis, where

the distributional properties of the statistics are particularly problematic to han-

dle (Cuevas, Febrero, and Fraiman, 2004, Politis and Romano, 1994, Cuevas and

Fraiman, 2004). In particular, the work of Cuevas and Fraiman (2004) derive a

result of bootstrap validity for functional statistics defined from differentiable oper-

ators. This result is crucial in justifying the use of a bootstrap approach to get an

estimate of the distribution of the functional coefficients, and hence of their overall

variability.

Indeed, recall that the operator bringing the functional observations into the func-

tional coefficient estimates takes the form

vec(β̂) = SΘSβSΦvec(Y).

We observe that the vec() operator and the projection maps SΘ, Sβ and SΦ satisfy
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the regularity conditions required by the result of Cuevas and Fraiman (2004), and

so does their composition.

The resampling scheme we resort to is the following:

1. Estimate β̂(t) of the regression model y(t) = Xβ(t) + ε(t),

2. Evaluate the residuals ε̂(t) = y(t)−Xβ̂(t),

3. Randomly generate a bootstrap sample ε̂∗ from the empirical distribution of

the residuals and define the new pairings {(y∗1,x1), . . . , (y∗n,xn)} as

y∗i (t) = xᵀ
i β̂(t) + ε̂∗i (t).

4. Estimate β̂∗(t) of the regression model y∗(t) = Xβ(t) + ε(t),

5. Repeat (3) and (4) for a sufficiently large number of times.

Once the samples of functional coefficients are generated, we visualize their dis-

tribution with functional boxplots. Since typically the observations that cross the

fences are considered as outliers, we take the amplitude of the fences at the sam-

pling points as useful estimate of the confidence that we have globally on the true

coefficients.

It is relevant to point out that the literature presents more refined and compound

techniques to simultaneous inference for functional parameters, that is not exploited

in this work. Among the methods based on parametric bootstrap, Degras (2011) con-

siders a function-on-scalar regression and proposes a parametric bootstrap method

to build simultaneous confidence bands around the estimate of the functional coef-

ficient. An extension of this work is provided by Chang, X. Lin, and Ogden (2017),

who propose a wild bootstrap methodology to handle regression with multiple co-

variates and errors that are non-normal and heterogeneous. The simulation based

method of Degras (2017) provides theory, method and implementation of simultane-

ous confidence bands for the mean, the quantiles, the covariance function and other

functional parameters for functional data. Another parametric bootstrap method

to simultaneous inference for functional data is proposed by Cao, Yang, and Todem

(2012), who propose a spline estimator for the mean function of dense functional

data, associated to a simultaneous confidence band which is asymptotically correct.

Another approach to simultaneous inference consists in dimensionality reduction
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based on functional principal component analysis and to build multivariate confi-

dence ellipses (Goldsmith, Greven, and Crainiceanu, 2013).

The employment of these methodologies may be scope of future work that aims to

accurately identify confidence bands for coefficient estimates or for other functional

statistics.
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Chapter 4

Case study: A functional

Ground Motion Model for Italy

This chapter is devoted to the preliminary analysis, the end point of which is the

calibration of the regression model. Here, we discuss the extension of the Ground

Motion functional form to an infinite dimensional setting, the characteristics of the

dataset, the application of the weighted FDA methods outlined in Chapter 3, and

some crucial intermediate steps that complete the overall structure of the analysis.

Finally, the soundness of the entire procedure is validated through a comparison with

state-of-the-art techniques for the reconstruction of partially observed functional

data.

4.1 Model formulation: functional ITA18

In Section 1.3, we recalled the functional form of the Ground Motion Model proposed

in Lanzano, Luzi, Pacor, et al. (2019), henceforward referred to as ITA18. The

model predicts the dependent variable Y, i.e. the logarithm of the RotD50 intensity

measure, separately at 37 different period ordinates {Tj}Jj=1, Tj ∈ T := [0, 10s] for

all j.

Now Y(·) is assumed to be a functional variable defined over an interval T of

vibration periods. Let Y be functional datum and Y1, . . . , Yn an independent and

identically distributed functional dataset.

In this setting, a functional extension of ITA18 is straightforward and takes the

form

log10 Y = a+ FM (Mw,SoF) + FD(Mw, R) + FS(VS30) + ε. (4.1)

As already mentioned at the end of Chapter 1, FM (Mw, SoF ), FD(Mw, R) and
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FS(VS30) are the source-, path- and site-related terms, respectively.

The source is specified as a step-wise linear function

FM (Mw;T ) =

b1(T )(Mw −Mh) Mw ≤Mh

b2(T )(Mw −Mh) Mw > Mh

,

FM (SoF;T ) = fj(T )SoFj ,

in which the straight line changes slope at the hinge magnitudeMh. SoFj are dummy

variables that account for the style-of-faulting. In particular, we specify SoF1 = SS

strike slip, SoF2 = TF thrust faulting, and SoF3 = NF normal faulting. Note that

the coefficient f3, related to the normal faulting, is constrained to zero when the

regression is performed.

The path term takes the form

FD(Mw, R;T ) = [c1(T )(Mw −Mref) + c2(T )] log10(R) + c3(T )R,

where parameter Mref is the reference magnitude. The first term of this summation

accounts for the geometrical spreading of waves from a source, and the second term

explains the anelastic attenuation. A dependence on magnitude is introduced in

the first component of the geometrical spreading. Recalling what we anticipated in

Section 1.4.2, R is a predictor that represents a correction of the pure Joyner-Boore

distance, and is defined as R =
√
d2
JB + h2, where h is the parameter of pseudodepth

measured in kilometres.

Lastly, the site-related term has the form

FS(VS30;T ) = k(T ) log

(
V0

800

)
,

where V0 = VS30 if VS30 ≤ 1500 m/s, V0 = 1500 m/s otherwise. The introduction

of an upper bound in the shear-wave velocity is upheld by a poor sampling of sites

characterized by very hard rocks. Since little to no information is given in corre-

spondence of such sites, the amplification here is assumed to be independent of the

shear-wave velocity. For values of VS30 lower than 1500 m/s, the scaling with the

spectral acceleration is assumed to be linear.

We stress that, in formulation (4.1), b1, b2, fj for j = 1, 2, 3, c1, c2, c3, k are func-

tional coefficients, defined over domain T and representing the effects at vibration

period T of the predictors on the response variable. Therefore, the statistical tool

that naturally fits for their estimation is a function-on-scalar linear regression, re-

lating the scalar predictors of magnitude, style of faulting, shear-wave velocity and
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distance from the source, to the response function.

Parameters Mh, Mref and h that appear in the functional form are known to

be dependent on the spectral periods. For this reason, they are typically estimated

through a preliminary step of non-linear regression. As a methodology of this kind is

non-trivial when applied to a functional framework, we assume them to be constant

and known, and define them as the mean value of their period-wise estimates from

ITA18 model. Specifically, these parameters are fixed as

Mh = 5.7, Mref = 4.5, h = 5.9 km.

A substantial simplification of this kind will necessitate a sensitivity analysis,

showing how much the a priori choice of parameters impacts the estimates and the

variability of the model. We will address this issue later in the following chapter,

when we discuss the results and the goodness of the regression model.

4.2 Dataset exploration

For this work, we rely on the same data that have been used for the calibration of

ITA18. The dataset is derived from the Engineering Strong Motion (ESM) database

(Lanzano, Sgobba, Luzi, et al., 2018, Lanzano, Luzi, Russo, et al., 2018), and in-

cludes the records of some small-magnitude events collected in the ITACA archive

(Luzi, Pacor, and Puglia, 2017). Additionally, the inclusion of recordings of world-

wide events increases the range of magnitudes up to a value of 8, and enriches the

dataset with additional scenarios of strike-slip and thrust-faulting mechanisms as-

sociated to high-magnitude events. As the great majority of the data concerns the

Italian soil (the included global events are the 8% of the total), the functional model

is considered to be calibrated specifically for Italy.

4.2.1 Response variable

The functional dependent variable of the model, referred to as RotD50, is defined

as the median of the distribution of a quantity, that is the linear combination of the

two horizontal components of the spectral acceleration (SA) across all non-redundant

azimuths. We are given with 5568 recordings of RotD50 1, each one observed at 37

periods in [0, 10 s]. Namely, each record is associated to 37 values, representing the

measures of the soil acceleration at the registration periods (T1, . . . , T37). Figure 4.1

provides a representation of the functional dataset.

1Disambiguation. For the sake of fluency and in accordance with the literature on this topic,
this work will hereafter refer equivalently to spectral acceleration and RotD50.
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Figure 4.1: Representation of data of intensity measure as functions of the period.

Recall that Figure 1.2 in Section 1.3 showed that the 25% of the records of

spectral acceleration is not completely observed on the whole domain. Now, the aim

is to go a little deeper into the investigation of the missing values. Let us define

incomplete record a curve that is not fully observed up to 10 s. In other words,

a curve is incomplete if its value is missing at at least one period T in [0, 10 s].

Figure 4.2 provides a visualization of the characteristics of incomplete records with

respect to those that are complete. Figure 4.2a suggests that incomplete records

tend to correspond to low-magnitude events recorded at medium to long distances,

while Figure 4.2c shows how incomplete records correspond to values of soil motion

that attenuate more rapidly with distance than complete records, and that this

characteristic accentuates as the recording period increases.

(a) Magnitude vs dJB . (b) SA vs dJB at T = 0.1 s. (c) SA vs dJB at T = 2 s.

Figure 4.2: Comparison between complete and incomplete records.

The availability of conspicuous information of this kind is useful in robustly

calibrating the model for Italy and in stabilizing the estimates of the regression. For

this reason and for the non-negligible ratio of incomplete records with respect to the
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total, we are not willing to discard these data. Rather, we propose an alternative

strategy, whose discussion is deferred to Section 4.3.1.

4.2.2 Prediction variables

Magnitude (Mw), style-of-faulting (SoFj), Joyner-Boore distance (dJB) and shear-

wave velocity (VS30) are the scalar variables that enter model (4.1). In this section,

we are interested in qualitatively exploring their distribution and inner characteris-

tics.

Figure 4.3 displays the frequencies of the faulting mechanisms and the densities

of the other variables. The Joyner-Boore distance takes values in the [0, 200 km]

range and exhibits the greatest amount of recordings around the distance of 25

km from the source. The magnitude has peaks of frequencies in correspondence of

about 4.3, 5 and 6 of the Richter scale, then it rapidly lowers at high magnitudes.

The peak of observations corresponding to events of magnitudes 6 is due to the

presence of global high-magnitude events in the dataset, whereas low-magnitude

events are mainly registered in the Italian region. As far as the shear-wave velocity

is concerned, it takes values up to 3000m/s with very few points exceeding 1500m/s.

This stands as further confirmation of the justification provided for the choice of the

threshold value, when we commented the functional form of the site term. Lastly,

the histogram for the style-of-faulting shows that the majority of the records are

associated to normal faulting, and that the less represented focal mechanism is the

strike-slip. Such observation is in line with what is commonly known in the literature

of Ground Motion models, namely that the normal faulting is the most frequent

style-of-faulting in the Italian peninsula (Lanzano, Luzi, Pacor, et al., 2019). In

fact, the inclusion in the dataset of worldwide events was also intended to extend

the valid range of magnitudes for the less common focal mechanisms in Italy.
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Figure 4.3: Empirical density of the seismological variables. Joyner-Boore distance [km],
moment magnitude, shear-wave velocity [m/s], style-of-faulting.

Given the inherent spatial nature of our data, it is appealing to provide a geo-

graphical representation of it. In particular, a localization of recordings along the

peninsula permits to go deeper into the seismic information provided by the predic-

tors.

The map on the left of Figure 4.4 shows the recordings sites, coloured accord-

ing to the faulting mechanism of the event. The seismological characteristics of

the peninsula are mainly due to the Adriatic plate, which is in contact with the

Eurasian, African and Aegean plates2 (Palano, 2014). The plate moves together

with the African plate in direction North-North East, with a small counterclockwise

rotation component. This movement causes the coexistence on the Italian territory

of extensional, compressional and lateral-shift regimes, that correspond to normal

faulting, thrust faulting and strike slip, respectively. The majority of normal-faulting

recordings along the Apennines is due to the movement with respect to the African

plate, while the thrust faulting in the North East of Italy and the strike-slip all along

the peninsula are associated to the rotation of the plate.

The map on the right shows the recordings associated to the magnitude of the

events, and in particular the geographical location of sites that recorded the soil

motion after high-magnitude events. Among others, these events include the seismic

sequences of central Italy in 2016 and 2017, l’Aquila in 2009, and the less recent

2The author likes to think of the Adriatic plate as a fish hook, which has the barb in Sicily, the
shank along the eastern border of the Apennines and the eye, wider, supporting Northern Italy.
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sequences of Umbria and Marche in 1997, Umbria in 1984, Irpinia in 1980 and

Friuli in 1976. Recordings of these earthquakes play the crucial role of populating

the portion of the dataset associated with critical hazard scenarios, namely ground

motions in the vicinity of the earthquake epicentre, i.e. at a distance from the source

lower than 30 km.

(a) Style-of-faulting (b) Magnitude

Figure 4.4: Geographical localization of the recordings of events along the Italian peninsula.
(a) Recordings are coloured according to the style-of-faulting, (b) Recordings are coloured
according to three classes of magnitudes: 1. Mw < 4.5, 2. 4.5 ≤Mw ≤ 5.5, 3. Mw > 5.5.

4.3 Workflow: from raw data to regression

In this section, we outline a scheme that leads the raw data to the estimation of

the functional coefficients of the regression. A generic FDA workflow involves the

smoothing of the raw data and then the estimation of the regression coefficients. The

line of this work is the same, but deeply reworked to fit the context of incomplete

records. In Chapter 3, we already detailed how smoothing and regression adapt into

a weighted functional framework. Here, we meticulously describe also the minor, yet

crucial, practical steps of the overall procedure, so as to provide a comprehensive

picture of it.

4.3.1 Extrapolation of incomplete records and weights construction

First, it is necessary to handle the presence of incomplete data in the dataset.

The idea is to reconstruct each incomplete record by a simple linear extrapolation
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of the curve from its last observed value T̄ , up to the last recording period T = 10s.

The slope of the extrapolating line is chosen so as to be equal to the mean, over

all complete records, of the slope of the straight line interpolating the values of the

complete record at T̄ and at T = 10 s. This reconstruction choice is justified by the

nature of the functional data, as it is clearly displayed in Figure 4.1. Most of the

variability in the curves is concentrated in periods smaller than 1s, whereas the rest

of the domain is characterized by a slow decade of the soil motion to low and little

varying values of spectral acceleration. Figure 4.5a displays the incomplete records,

Figure 4.5b shows their reconstruction following the above specified procedure.

(a) Incomplete data as functions of period (b) Extrapolated data as functions of period

In order to properly account for the reconstruction of curves in a subpart of their

domain, we are interested in associating less, or more, confidence to observations

that are the result, or not, of the extrapolation procedure.

To this aim, each curve i is associated to a specific functional weight wi. The

weight is chosen so as to reflect the reliability that we have on a certain portion

of the curve. Where the curve is defined by measured values, the full reliability is

represented through a weight that is set to 1. As we move more and more away

from the last observed value, the reliability on the extrapolated values is corrected

to become continuously smaller. A logistic function is a convenient choice to achieve

a decrease in confidence from 1 to small values.

Suppose that observation i has values measured up to a period T = T̄ . Then we

define

wi(T ) =

1 , T ≤ T̄
1

1+e(T−µi)/si
+ 1

1+e(T̄−µi)/si
, T > T̄

, (4.2)
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where we set

µi = T̄ + ξ,

s =
1

Var(SAcomplete(T̄ ))
.

The scale parameter s accounts for the rate of decay of the function. The smaller

the scale, the more abrupt is the decrease of the weight to 0. Here, a low scale is

associated to a great variability of the complete curves in T̄ , meaning that if a record

is interrupted at a period characterized by large variability, then the confidence as-

sociated to the reconstruction quickly falls to 0. The location parameter µ identifies

the point in which the weight is 0.5. The larger µ, the more far from T̄ the confidence

on the reconstruction is extended. The fact that the location depends on the last

valid period of observation implies that weights are specifically defined according to

the observation to which they are coupled. Figure 4.6 shows the weights defined for

our partially observed data.

While s is fixed, ξ is an hyperparameter that has to be chosen among a set of

values, through a cross-validation procedure that is detailed in the last part of the

chapter.

Figure 4.6: Logarithmic weights associated to the incomplete observations of spectral accel-
eration.

4.3.2 Selection of the penalization parameter

Second to extrapolation and the construction of the logistic weights, the raw data

are smoothed on a B-spline basis with knots at the sampling periods, through the
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penalized weighted smoothing technique illustrated in Section 3.2. Sticking to such

methodology, each functional datum is smoothed separately according to the asso-

ciated weight. Although the smoothing is performed record-wise, the penalization

parameter ζ is selected via a common generalized cross-validation (GCV) procedure,

so that the penalization on curvature is the same for every resulting smooth curve.

The workflow of the GCV procedure is the following:

1. Pick ζ in a set (ζ1, . . . , ζJ) 3,

2. for each functional record i, perform a generalized cross-validation over its

point-wise observations and evaluate the gcvi(ζ) statistic, i.e. the error sum of

squares discounted by a measure of regularity (Ramsay and Silverman, 2005),

3. Define GCV (ζ) :=
∑n

i=1 gcvi(ζ)

4. Repeat (1)–(3) for every (ζ1, . . . , ζJ), and eventually select ζopt as the argmin

of GCV among all ζ’s.

4.3.3 Calibration

As for the smoothing, the regression performed through the penalized weighted

functional methodology described in Section 3.3.1 requires the handling of the pe-

nalization parameter λ, that forces the regression coefficient functions to be smooth.

However, differently to the smoothing that applies to all estimated curves the same

penalty to roughness, there is no point in assuming that the functional coefficients

should share the same level of regularity.

For the sake of clarity, the discussion in Section 3.3.1 has been developed con-

sidering a unique and common penalization parameter λ. As matter of fact, we

generalize the functional form (3.14), showing that each regression coefficient func-

tion βj can be associated to its own λj . Indeed, let us focus on the term that accounts

for the roughness penalty λR⊗ Iq. This term simply expands λR for the estimation

of each functional coefficient and may equivalently be re-expressed as R⊗λIq. Now

it is immediate to see that if we replace λIq with a matrix Λ = (λ1, . . . , λq), then we

succeed in introducing different penalty terms.

It is worth underlining that these λ’s are q hyperparameters of the model, and

that they are all manually specified when the least-squares methodology is exploited.

All the more reason, therefore, to appropriately address the issue of developing a

3In the specific case of our analysis, after a previous analysis conducted with non-weighted
smoothing, we identified (10−8, 10−3) as vector of possible values that identified the optimal ζ.
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procedure that calibrates the vector (λ1, . . . , λq) of penalty parameters. Let us give

an idea of the calibration method adopted in this work.

First, we identify a sequence (γ1, . . . , γN ) of adequate values for the components

of (λ1, . . . , λq). The sequence is the same for all λ’s. Then, since it is not feasible

to try all possible dispositions with repetitions of the γ’s into a q-length vector, we

stick to the hereunder greedy approach:

For each γ ∈ (γ1, . . . , γN ), fix all penalty parameters (λ1, . . . , λq) equal to γ.

Hence, compute the corresponding Mean Squared Error (MSE) 4. Let γ̃ be the

value providing the lowest MSE. This preliminary step allows us to identify γ̃ as a

convenient value to initialize the parameters with.

Indeed, initialize all components of (λ1, . . . , λq) with γ̃.

1. Set λ1 = γ1 and let λγ1 = (γ1, λ2, . . . , λq) be the corresponding vector of

penalty parameters.

2. Evaluate the corresponding mean squared error MSEλ1(γ1).

3. Repeat (1)–(2) for all γj ∈ (γ2, . . . , γN ).

4. Fix λ1 = γ∗, where γ∗ corresponds to the minimum of (MSEλ1(γ1), . . . ,MSEλ1(γN )).

5. Repeat the procedure for all λk ∈ (λ2, . . . , λq)

4.4 Validation of the weighted analysis

The preceding sections of this chapter outline a course of action leading from the

raw data to the estimation of the coefficients of the functional regression. To recap,

the steps of the analysis are:

1. Reconstruction of the incomplete records

4Given a vector of penalty parameters λ = (λ1, . . . , λq), the Mean Squared Error is computed
resorting to the following cross-validation procedure.
For each training-test partition, fit the model on the training set by penalizing with λ, then evaluate
the fitted values on the test set. Compute the regression error for the j-th partition as

MSEj =
1

ntest

ntest∑
i=1

1

|T |

∫
T

(yi(s)− ŷi(s))2ds,

where T is the domain of definition of the curves.
Then the MSE is defined as the mean over all partitions of the MSEj ’s.
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2. Construction of the weights associated to the records

3. Weighted smoothing with ζ selected via GCV procedure,

4. Calibration of the penalization vector λ

5. Estimation of the functional coefficients via penalized weighted least squares.

At this stage, we are unable to assess how the naive extrapolation of incomplete

records, as described in Section 4.3.1, is an appropriate method for our analysis, nor

whether it introduces a bias into the estimates. From these reasons, the need arises

to make a comparison between the results obtained with the extrapolation and those

attained through other reconstruction methods that are present in the literature and

that, to the best of our knowledge, represent the state-of-the art of reconstruction

methodologies for partially observed functional data. An evaluation of this kind

allows us to understand whether extrapolation, when combined with a weighted

functional analysis, is a robust approach to be applied in this case study and other

similar frameworks. The theory and the general ideas behind these methodologies

have been largely discussed in Section 2.2, and herein only some practical details

are emphasized.

4.4.1 Comparative analysis with state-of-the-art reconstruction meth-

ods

The comparison is conducted among five different reconstruction methods:

– Extrapolation

– Kraus PCS: Estimation of the principal component scores (Section 2.2.2),

– Kraus FCHS: Functional completion with a Hilbert-Schmidt operator (Section

2.2.3),

– Kneip, Liebl PC: Functional completion with a reconstruction operator, with

principal component decomposition (Section 2.2.4),

– Kneip, Liebl Align: Functional completion with a reconstruction operator,

with alignment (Section 2.2.4).

It is necessary to make a clarification about the last two methods listed above.

In Kneip and Liebl (2020), the authors recognize that, additionally to the problem

of reconstruction, the estimation of the function underlying the sampled longitu-

dinal points requires some effort. They propose two alternative ways to address
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this: (i) resorting to the best basis property, use the truncated principal compo-

nent decomposition to simultaneously provide estimates of the real curve both on

the observed and the unobserved domains; (ii) operate a preliminary step of non-

parametric smoothing. Since in general we are not guaranteed continuity of the

non-parametric estimate and the optimal operator at a boundary point, the recon-

struction is corrected at the boundary in order to resort continuity (hence the term

align).

Of all methods listed above and already present in the literature, we were required

to manually implement the estimation of the principal component scores. The other

scripts are available in the R package ReconstPoFD, which can be downloaded

and installed from the GitHub account of Dominik Liebl.

The scheme behind the comparison procedure is simple: for each reconstruc-

tion methodology, perform the course of action synthesized at the beginning of this

section and, downstream of the operational flow, evaluate the corresponding MSE

between the original, possibly incomplete, records and the responses predicted by

the regression.

In particular, the MSE is evaluated through an event-wise cross-validation, i.e. a

classical cross-validation that separates observations so that the test set contains

records of events that are unobserved in the training set5. For each original record

yi observed on a domain Oi, the corresponding squared error erri is evaluated as

erri =
1

|Oi|

∫
Oi

(y(s)− ŷi(s))2ds.

Then, the MSEj for the j-th training-test partition is given by

MSEj =
1

ntest

ntest∑
i=1

erri,

and the overall MSE of the method is evaluated by taking the mean of the MSEj .

The pseudocodes provide an effective scheme of the entire procedure discussed above.

5As we work under the ergodic assumption with data that are known to be event and site
dependent, a partition of this kind allows to obtain a more reliable, less underrated estimate of the
true error.
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Algorithm 1: Analysis

Input: method, location, Ytrain, Ytest, Xtrain, Xtest;

Set Y ← Ytrain for steps (1), (2), (3), (4), (5).

1. Reconstruct using the reconstruction method

Yrec ← reconstruction(method, Y )

2. Create weights

weights ← create.weights(Y , location = method$location)

3. Weighted smoothing

Ysmooth ← weighted.smoothing(Yrec, weights)

4. Calibration of the optimal λ

λlist ← lambda.selection(Ysmooth, Xtrain)

5. Weighted functional regression

model ← weighted.regression(Ysmooth, Xtrain, λlist, weights)

6. Evaluation of the MSE on Xtest

Ŷtest ← predict(model, Xtest)

MSE← 1

ntest

ntest∑
i=1

1

Oi

∫
Oi

(Y i
test(t)− Ŷ i

test(t))
2dt

Output: MSE

Algorithm 2: 10-fold cross-validation

Set ntest = n
10 , ntrain = n− ntest;

for k = 1, . . . , 10 do

1. Split train and test sets

Y k
train and Y k

test

Xk
train and Xk

test

2. For each method, apply the analysis

for method ∈ {methods} do

MSEkmethod ← analysis(method, Y k
train, Y

k
test, X

k
train, X

k
test)

for method ∈ {methods} do

MSEmethod ←
1

10

10∑
k=1

MSEkmethod
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Method MSE MSEratio

Extrapolation, ξ=0 0.10360 1.00045
Extrapolation, ξ=1 0.10355 1.00000
Extrapolation, ξ=2 0.10361 1.00063
Extrapolation, ξ=3 0.10360 1.00045
Extrapolation, ξ=4 0.10356 1.00005

Kraus PCS, ξ=1 0.10758 1.03886
Kraus FCHS completion, ξ=1 0.10437 1.00784
Kneip, Liebl PC, ξ=1 0.10491 1.01310
Kneip, Liebl Align, ξ=1 0.10384 1.00280

Table 4.1: Comparison of MSEs between reconstruction methods.

Before discussing the results of the comparison, we need to make an additional

clarification concerning the location parameter ξ that defines the weights. As we

mentioned in Section 4.3.1, ξ is a hyperparameter that has to be selected through a

cross-validation procedure. Indeed, the approach that we adopt consists in evaluat-

ing a set of MSEs for the extrapolation method, associated to a sequence of possible

candidates for the location parameter. After selecting the best candidate ξ∗, we

proceed to the second part of the comparison, that confronts the extrapolation with

the other methods, all being coupled to ξ∗.

Table reports the results of the comparison.

As we may notice, the extrapolation method associated to weights with ξ = 1 is

the one providing the smallest MSE. These statistics show whether the differences

among the reconstruction methods are absorbed – or not – by the weighted functional

analysis. Actually, as the values of MSEratio
6 do not show appreciable divergences,

this result reassure us about the robustness of a weighted approach with respect to

the missing part of the response variable, and de facto justifies our choice to rely on

such technique.

6We define the MSEratio of a method as the ratio between the MSE evaluated for the method
and the minimum among all MSE’s.
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Chapter 5

Case study: Results and

diagnostic

Following all preliminary steps of analysis illustrated in the previous sections, this

chapter is devoted to the discussion of the results. Here, we aim to combine model

diagnostic with a seismological interpretation of the quantities involved, based on

the related literature.

First, we comment on the estimated regression coefficients and on the goodness-of-fit.

Then, we focus on the ground motion predictions and perform a sensitivity analysis

on the hyperparameters of the model, hinge magnitude, reference magnitude and

pseudodepth. Finally, the functional model is compared to its scalar counterpart,

ITA18.

5.1 Model estimates

This section concentrates on the coefficients estimates appearing in (4.1). Before

commenting directly on the form of the coefficients, a multicollinearity analysis

allows us to highlight the presence of correlation between the regressors and to get

a prior, qualitative idea of the uncertainty associated to the estimates.

5.1.1 Multicollinearity analysis for the regressors

The analysis of multicollinearity among the predictors is a statistical tool that in-

vestigates the uncertainty associated to the estimates of the regression coefficients.

The easiest way to detect the presence of collinearity is through the inspection of the

correlation matrix, that is showed in Figure 5.1. As expected, there is almost perfect

positive correlation between the predictors associated to the magnitude-independent
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Figure 5.1: Correlation matrix of the predictors.

low Mw high Mw SS TF GS-Mw GS anelastic VS30

10.68 7.89 1.38 1.24 25.52 7.04 6.36 1.09

Table 5.1: Values of the Variance Inflation Factor for each regressor.

geometrical spreading (GS) and the anelastic attenuation, since both terms depend

exclusively on the Joyner-Boore distance. High positive correlation is also present

between low and high magnitude regressors and the term accounting for magnitude-

dependent geometrical spreading (GS-Mw).

In presence of multicollinearity, i.e. when collinearity exists between three or

more variables, the Variance Inflation Factor (VIF) quantifies how closely these

variables are related with one another, and complements the correlation matrix in

capturing associations between more than two predictors. As a rule of thumb, a VIF

value that exceeds 5 or 10 indicates problematic levels of multicollinearity, revealing

the necessity for model reduction or variable selection. In agreement with the results

of the correlation matrix, Table (5.1) reports critical VIF values for the variables

mentioned above, and does not uncover correlations for the others (SS, TF, VS30).
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Multicollinearity makes it problematic to separate the individual effects of the predic-

tors on the response, leading to an increased variability in the coefficients estimates.

Typically, multicollinearity is handled through model reduction – i.e. variable se-

lection, combination of collinear variables – and regularization. Although there are

extensions of model reduction to functional data analysis, both in the frequentist

(Horváth and Kokoszka, 2012, Ramsay and Silverman, 2005) and in the Bayesian

(Mehrotra and Maity, 2019) contexts, the functional formulation of our model does

not lend itself to the use of such techniques. Indeed, the physical interpretability of

the regressors in (4.1) allows one to comment on the results in seismological terms,

and to compare them with those of other functional forms, present in the literature,

where the same terms appear. For this reason, we do not perform model reduction in

this work. Nonetheless, we point out that the introduction of a penalization param-

eter in the least squares criterion (Section 3.3.1) works as regularization technique,

that controls the effects of multicollinearity by reducing the variability associated to

the coefficients estimates.

5.1.2 Estimated functional coefficients

In this section, we report the functional coefficients estimated by our model. Figure

5.2 shows the estimates of b1, b2, c1, c2, c3 and k, each one associated to the functional

boxplot of a bootstrap sample of dimension B = 1000 generated from its empirical

distribution. The bootstrap sample is obtained following the procedure discussed

in Section 3.4. By doing so, the idea is to see the scatter of the sample around the

functional estimate as measure of its related uncertainty. The smaller the scatter,

the narrower is the distribution of the coefficient around its true value and the lower

is the uncertainty associated to the estimate. Notice that, by relying on a bootstrap

sample to account for estimates variability, the confidence we get is simultaneous

over the whole domain. In the plot, the dashed red line corresponds to zero. We

will say that an estimate at T is significantly different from zero if the fences of its

functional boxplot at T do not include zero.

Coefficients b1 and b2, plotted in the two top left panels, capture the linear

dependence of ground motion on low magnitudes and high magnitudes respectively.

Both have a positive impact on spectral acceleration that grows in the interval [0, 1

s] and then remains more or less constant until T = 10 s.

In the top left panel, coefficient k accounts for the negative scaling of ground

motion with the shear-wave velocity. A common issue with this coefficient lies in its

instabilities at short periods, where it may get very close to zero or even be positive,

conversely to what is observed at all other periods. In our case, the instability is
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not pronounced and k remains significantly negative for all T .

The second line of plots displays the coefficients related to the attenuation of

ground motion with distance, namely c1, c2 and c3. At all periods, c2 captures the

linear decay of the spectral acceleration with dJB. Coefficient c1 complements c2

in capturing the magnitude dependence of geometric spreading due to finiteness of

large magnitude ruptures. As expected, c1 takes positive values to simulate the more

gradual decay in near-source distances from large ruptures, and increases towards

longer periods (Kotha, Weatherill, et al., 2021). Finally, c3 accounts for the expo-

nential decay of ground motion with distance, that is the anelastic attenuation. As

we may see from the graph, anelastic attenuation affects ground motion at short

periods, and its effect vanishes at longer periods. It is crucial to always obtain non-

positive values of c3, since it would indicate an unphysical exponential increase with

distance.

Figure 5.2: Estimated functional coefficients. The red line represents the point estimate of
the coefficient. The azure lines correspond delimit the central region and the fences of the
functional boxplot. The green dashed line marks zero.

A comment on the coefficients f1 and f2 is made separately for two main rea-

sons. Firstly, the faulting mechanism is known to have little impact on the standard

deviation of GMPEs (Bommer, Douglas, and Strasser, 2003, Lanzano, Luzi, Pacor,

et al., 2019), and to be included in the functional form for purposes of seismic hazard

assessment, rather than to get a better performance of the regression model (Section

1.4.1). Secondly, as found in the work of Lanzano, Sgobba, Caramenti, et al. (2021),

coefficient f2 is dependent on the region where the event occurs. Because of this,

an ergodic model – as ours is – that neglects both between-event and site-to-site

variabilities and does not include any spatial dependence in the coefficients is not

expected to capture the effects of the thrust-faulting, to which f2 is associated. Nev-
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Figure 5.3: Estimated coefficients related to style-of-faulting.

ertheless, some indicators help to comment on the estimates. According to Bindi

et al. (2011), the main differences in the ground motion due to the faulting mecha-

nism should result in the short-period range – i.e. T < 1 s – wherein the expected

values produced by thrust-faulting are significantly larger than those associated to

normal faulting and strike-slip. Here, we partially observe a behaviour of this kind:

indeed, the trends of the coefficients in Figure 5.3 are similar in every part of the

domain but in the range [0, 1]s, where f̂2 is positive and f̂1 is not significant. As

matter of fact, we notice that this trend is not fully consistent with that of Bindi

et al. (2011), since (i) we are not confident that f2 is different from zero at short

periods, (ii) there is a gap in the coefficients magnitude at larger periods, implying

that a difference among the faulting mechanisms is not only observable for T ≤ 1 s.

Summing up, we do not consider the estimates of f1 and f2 to be meaningful, nor to

have a trend that is fully consistent with what is observed in the literature. For these

reasons, it may be useful to complicate the model with additional terms that reduce

the uncertainty associated to these estimates, by allowing for a regionalization of

the effects of style-of-faulting.

5.1.3 Goodness-of-fit

In this section, we discuss the behaviour of the residuals to assess whether the

functional formulation is able to capture the variability of the dataset. In the scalar

case, a good fitting is graphically checked through a scatterplot of the regression

residuals against the prediction variables, that shows if some dependence is left

unaccounted by the model. If the dots form a cloud around zero with uniform

variability along the horizontal axis, then we conclude that the regression succeeds

in representing the effects of the independent variables. The functional counterpart
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of the scalar scatterplot is displayed in Figure 5.4, in which the integral means 1 of

the residuals are plotted against the input variables. As we may notice, the dots are

symmetrically distributed around 0 and do not show any particular trend or change

in dispersion along the axis. The bottom-left image shows the integral means of the

residuals against the integral means of the fitted values. This is intended to check if

all amplitudes of ground motion are associated to residuals of the same magnitude

and variability. Since also in this case we do not detect any dependence, we conclude

that the model does good in capturing the variability of the dataset.

Figure 5.4: Goodness-of-fit. Integral mean of the residuals against the three continuous
independent variables: Joyner-Boore distance, magnitude, shear-wave velocity, and against
the integral mean of the fitted values. The yellow dashed line marks zero.

5.2 Regression results

In this section, we comment the regression results separately for source, path and

site terms, with an eye on how their behaviour is affected by the vibration period.

Specifically, the results corresponding to each soil component are displayed at a

sequence of increasing vibration periods, that we believe to effectively catch their

overall trend with respect to T . Then, a sensitivity analysis is performed for the

1Given a function y : T → R, its integral mean is∫
T
y(s)ds.
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parameters of hinge magnitude (Mh), reference magnitude (Mref) and pseudodepth

(h).

5.2.1 Source

Figure 5.5 displays the behaviour of the source term with respect to the magnitude.

The points are the values of spectral acceleration observed for the data used for

calibration, regressed by the predicted effects of the path and site terms, while

the green lines represent the values of the soil motion component FM (Mw, SoF ;T )

predicted by the regression.

Figure 5.5: Predictions of the source term at periods T = {0.01s, 0.1s, 10s}, versus Mw. The
dots are the observed values of spectral acceleration, regressed by the predicted effects of
the path and site terms. The green line represents the predicted effects of the source term.

The figure provides a clear representation of the functional form chosen for the

source, that is a bilinear function with two terms intersecting at the hinge magnitude

Mh. As expected, there is a positive dependence of the spectral acceleration with

magnitude. This dependency decreases for values of Mw larger than the Mh, show-

ing the presence of a saturation effect. We observe that saturation is accentuated

at short periods, and that it manifests itself in the flattening of the line at periods

around T = 0.01 s, indicating no dependency of the source term on magnitude.

Although such behaviour may suggest oversaturation2, the presence of the magni-

tude as explanatory variable in the path term acts as a compensation, recovering the

physical soundness within our model. This has been checked by plotting the scaling

of the intensity measure with distance, at magnitudes varying in a range of [4.0, 8.0]

and for all different faulting mechanisms. Figure 5.6, corresponding to the strike-

slip faulting mechanism, shows how the increase of ground motion with magnitude

2We refer to oversaturation as the anti-physical behaviour of a model that show a negative
dependence of ground motion on the moment magnitude Mw, for some values of Mw > Mh.
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is preserved at all distances and also in scenarios that are poorly sampled, like short

distances and high magnitudes.

Figure 5.6: Prediction of SA for magnitude-varying scenarios, at periods T =
{0.01s, 0.1s, 1s}. Every coloured line corresponds to a value of magnitude Mw, ranging
in {4.0, 5.0, 6.0, 7.0, 8.0}. The dots represent the observed values of spectral acceleration,
regressed by the predicted effects of the path and site terms. Each dot is coloured according
to the magnitude of the recorded event, e.g. yellow if Mw = 4± 0.3.

It is important to acknowledge that the behaviour of the source term at short

periods is part of a larger discourse, much debated in literature, that involves the

choice of the most appropriate functional form and of a suitable value of hinge mag-

nitude, in relation to the occurrence of the oversaturation effect. The discussion is

primarily about the most convenient choice of a functional form that simultaneously

allows to: (i) capture the non-linear scaling of SA with magnitude, (ii) avoid over-

saturation. The work of Fukushima (1996) adds a quadratic term for source scaling

at low magnitudes, and shows that this term should be associated with a negative

coefficient if the magnitude scale considered is Mw, in order to avoid oversaturation

at short periods. Accordingly, both Kotha, Bindi, and Cotton (2014) and Kotha,

Bindi, and Cotton (2016) include the quadratic term and show that the correspond-

ing coefficient is negative. On the contrary, the model of Boore et al. (2014), that

adopts the same functional form as in Lanzano, Luzi, Pacor, et al. (2019) with the

addition of the quadratic term, reports a small but positive associated coefficient.

In Kotha, Weatherill, et al. (2020), the authors present a ground motion model for

Europe that shows a strong positive trend in the coefficient of the quadratic term,

resulting in estimates of the short-period spectral acceleration at near-source dis-

tances (dJB ≤ 20 km) that are lower in the range Mw ≥ 6.5 than in the range

5.7 ≤ Mw ≤ 6.2. In order to accommodate this, the model has been revised one

year later, with a lowering in the hinge magnitude parameter down to Mh = 5.7

that was originally set at Mh = 6.2.

To mention other functional forms for the source term, Chiou and Youngs (2014)
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adopts hyperbolic magnitude scaling functions, whose effects are, however, difficult

to compare with the simpler quadratic and bilinear forms.

In Lanzano, Luzi, Pacor, et al. (2019), the authors argue that the bilinear shape is

a convenient choice, since it allows to better control oversaturation without the need

to manually lower Mh, nor add other constraints to solve non-physical behaviours.

Resorting to a bilinear functional form, the issue is solved within the model through

an effective compensation operated by the path term.

All things considered, we shall keep in mind that the issue remains open, and

that a univocal solution has not been identified yet. Those who adopt a quadratic

form argue that the reason behind the oversaturation can be found, among others,

in the poor sampling at near-source distances from large magnitude events. Indeed,

the strong imbalance in terms of number between these kind of observations and

those at low magnitudes would cause the model to seek for a better fit at Mw ≤Mh.

From this perspective, the calibration of quadratic models on more recent and more

complete datasets, such as the NEar Source Strong motion (NESS, Sgobba, Felicetta,

et al., 2021), would possibly allow to overcome the oversaturation issue.

Another viable solution, and focus of future work, may reside in the formulation

of models which impose a sign constraint on the coefficient estimate, effectively

preventing the occurrence of oversaturation.

5.2.2 Path

Figure 5.7 displays the attenuation of ground motion with the distance from the

source, at two different magnitudes Mw = 4.0 and Mw = 6.0. Similarly as for

Figure 5.5, the dots are obtained by removing source and site effects from the

responses, whereas the curves represent the soil motion component FD(Mw, SoF ;T )

fitted by the regression model, at Mw = 4.0 and Mw = 6.0. As expected, we observe

that the attenuation is more rapid at short periods and that it decreases as the

period increases (Lanzano, Luzi, Pacor, et al., 2019, Douglas, 2003). Secondly,

we observe the compensation operated by this term commented in the previous

paragraph; indeed, the attenuation reduces as the magnitude of the earthquake

increases, resulting in the overall amplification of ground motion with magnitude

that we checked in Figure 5.6. The dependence of the decay rate on magnitude is a

peculiarity of the phenomenon of attenuation that was first detected and investigated

in Campbell (1981).
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Figure 5.7: Predictions of the path term at periods T = {0.01s, 0.1s, 10s}, versus dJB . The
green and yellow lines is the predicted effect of the path term for Mw = 4.0 and Mw = 6.0,
respectively. The dots are the observed values of spectral acceleration, regressed by the
predicted effects of the source and site terms, coloured light if Mw = 4.0 ± 0.3, dark if
Mw = 6.0± 0.3.

5.2.3 Site

Figure 5.8 shows the scaling of ground motion with the shear-wave velocity repre-

senting the local soil conditions of the site, at periods T = 0.01s, 1s, 10s. Recalling

that higher values of shear-wave velocity are measured at rock and stiff sites and

that lower values are observed at soil sites, then the plots illustrate a well known

feature of ground motion models. Low values of shear-wave velocity correspond to

larger amplitudes of the spectral acceleration, and higher values of VS30 to smaller

amplitudes, as expected (Douglas, 2003). In this case, we do not identify a peculiar

trend in the slope with the period.

Figure 5.8: Predictions of the site term at periods T = {0.01s, 0.1s, 10s}, versus VS30. The
dots are the observed values of spectral acceleration, regressed by the predicted effects of
the source and path terms. The green line represents the predicted effects of the site term.

As mentioned in the comment for coefficient k, its instabilities at short periods

could make it become zero or even positive. This would result in an unexpected
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increase of the soil motion at rock sites. Since the irregularity is sufficiently limited in

our case, we do not observe an undesirable behaviour of the site term. Instead, what

we observe is a confirmation of something that is already known in the literature,

namely that soil sites are expected to show significantly larger response spectral

amplitudes than rock sites at almost all periods of engineering interest, with the

maximum ratio occurring around T = 1 s (Douglas, 2003). In the specific of our

model, the minimum occurs at T = 2 s.

5.2.4 Sensitivity analysis on Mh, Mref and h

This section is devoted to the assessment of the impact that parameters Mh,Mref

and h have on the outcome of the regression. Our model considers them to be

fixed and equal to the average of their period-dependent counterpart used for the

calibration of ITA18.

To the best of our knowledge, a general approach for the identification of the hinge

magnitude does not exist in the literature. After a preliminary step of non-linear

regression, Lanzano, Luzi, Pacor, et al. (2019) define Mh to be a period-dependent

step-wise parameter, taking values in the 5.5-6.5 range. This choice causes the

presence of jumps in the prediction of the spectrum for scenarios close to hinge

magnitude. To smooth the discontinuities in the estimates, the work of Sabetta et al.

(2021) corrects Mh to have a smoother variation in the range of periods [0.25s, 0.7s].

In Kotha, Weatherill, et al. (2021), the lowering of the hinge magnitude from 6.2 to

5.7 solves the issue of the previous model that associated a negative dependence of

ground motion on large magnitudes.

In our case, a sensitivity analysis that varies Mh in {5.5, 5.7, 6.2, 6.5} does not

clearly indicate which value is best. The left and the right panels of Figure 5.9 show

that both the point-wise mean squared error (PMSE)3 and the estimated standard

deviation σ̂ 4 of the model are not affected by Mh at short periods, while they reduce

for Mh = (6.2, 6.5) at periods larger than 1. More precisely, the lowest value of MSE

and σ̂ correspond to Mh = 6.5. We observe that the greatest reductions in σ̂ and

in MSE with respect to their value for Mh = 5.7 are 3% and 10% respectively, both

occurring at periods around T = 7 s for Mh = 6.5.

3The pointwise mean squared error is evaluated as the mean of the mean squared errors pro-
duced by a cross-validation procedure, that separates training and test sets event-wise and for each
partition j evaluates

MSEj(t) =
1

ntest

ntest∑
i=1

(ŷi(t)− yi(t))2.

4The evaluation of σ̂ is done following the argument of Section 3.3.3.
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In light of the little changes in MSE and σ̂, we are interested in checking whether

one of the values of Mh leads to oversaturation effect, as the occurrence of this phe-

nomenon would make us discard the value. Figure 5.10 shows that Mh = {6.2, 6.5}
are associated to a negative slope for Mw > Mh, suggesting oversaturation at short

periods. Actually, by repeating the magnitude scaling analysis made at the end of

Section 5.2.1, we observe that neither Mh = 6.2 nor Mh = 6.5 are associated to such

non-physical behaviour (see Appendix B.1.1).

Figure 5.9: MSE (left) and σ̂ (right) for Mh = {5.5, 5.7, 6.2, 6.5}.

Figure 5.10: Variation of the source term with Mh in {5.5, 5.7, 6.2, 6.5}, at T =
{0.01s, 0.1s, 1s}.

All things considered, this analysis does not identify an objective criterion for

setting Mh. In our case, the low reduction in MSE and σ̂ observed for Mh =

{6.2, 6.5} convince us to keep Mh = 5.7 as fixed value, as it is the mean of the values

assumed by Mh in Lanzano, Luzi, Pacor, et al. (2019).

Nonetheless, to better stick to the formulation of ITA18, it may be preferable to

introduce in the functional form a dependence of Mh on the period. Notice that

such a change could be handled in two ways, and either way would be non-trivial

in a functional framework. If Mh is assumed to be a known function, e.g resorting

to the parameter proposed in Sabetta et al. (2021), then the overall model should

be reformulated as a function-on-function regression. If Mh is considered unknown,

then the regression would be non-linear in the coefficients. Both these options open

interesting perspectives for further research.
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A similar analysis conducted on Mref and h does not show the same criticalities.

Indeed, a variation of the parameters in the ranges identified by Lanzano, Luzi, Pa-

cor, et al. (2019) does not correspond to any significant variation in the MSE error

(< 1%), in σ̂ (< 1%), nor in the path term in which these parameters appear (see

Appendix B.1.2, B.1.3). The effect of the alteration of Mref and h is found in neg-

ligible modifications in the estimates of c2 and c3, that are effectively compensated

by the intercept term.

This suggests that our fixing Mh = 5.7, Mref = 4.5 and h = 5.9 km may be the

most convenient choice, as their variation has poor effect on the outcomes of the

regression.

5.3 Comparison with Scalar ITA18

This section is devoted to the comparison between the results of ITA18 and its

functional extension. Below, we refer to the first as Scalar ITA18 and to the latter

as Functional ITA18.

5.3.1 Comparison of the functional coefficients

Figure 5.11 shows the comparison between Scalar ITA18 and Functional ITA18 esti-

mates of the coefficients. Each functional estimate is associated to 37 simultaneous

confidence intervals5 6. We observe that the general trend of Scalar ITA18 coeffi-

cients is always captured by the functional model, but that the roughness of the first

is smoothed out at periods that correspond to the highest variability of data. We

refer in particular to the peaks that ITA18 estimates present in correspondence of

T = 0.1 s. Such smooth behaviour is the result of the regularization that we operate

on the functional coefficients, through the introduction of the penalization term in

the least squares criterion. Recall that Scalar ITA18 does not employ any form of

regularization for its point-wise estimates.

5Following the procedure discussed in Section 3.4, the SCIs for a coefficient are constructed
using the bootstrap sample generated from its empirical distribution. More precisely, the SCI at a
sampling period T is given by the amplitude at T of the fence of the functional boxplots built for
the bootstrap sample.

6It is worth noticing that, by introducing the assumption of Gaussianity of the point-wise resid-
uals and by using the value of the point-wise variance of the coefficient estimate (Section 3.3.2), we
obtain the one-at-a-time confidence intervals. Nonetheless, we are not interested in the information
they bring, for two reasons: (i) the bootstrap approach prevents us from introducing any far-fetched
hypothesis on the distribution of data, (ii) a simultaneous confidence is more informative for our
scopes, since it allows to draw conclusions for the entire estimated curve and not only point-wise.
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Figure 5.11: Comparison of the estimated coefficients between Scalar ITA18 and Functional
ITA18. The green vertical segments indicate the simultaneous confidence intervals at the
sampling points. The red dashed line marks zero.

5.3.2 Comparison of ground motion predictive performances

Figure 5.12 shows a comparison of the point-wise mean squared errors. From the

comparison of the coefficient estimates, where we observe a clear-cut smoothing of

the predictions at T = 0.1 s, we would have expected to observe a strong reduction

of the PMSE in the model functional at that time. In fact, the reduction is very

small and the trend of the two statistics is similar along the period axis.

Figure 5.13 shows the comparison between the estimated point-wise standard

deviations of Functional and Scalar ITA18. Notice that σ̂ for the Functional model is

obtained following the argument in Section 3.3.3. While Scalar ITA18 is associated

to a lower σ̂ at very short periods, Functional ITA18 provides a lower standard

deviation at almost all periods T > 0.5 s. Eventually, the two estimates align

for T > 8 s. However, we emphasize that the result of this comparison is not very

informative, since the estimate we make of the degrees-of-freedom (dof ) of the model

has no sound theoretical basis.

Figure 5.14 shows the observations against the predictions of Functional and

Scalar ITA18, for magnitudes Mw = 4.0 and Mw = 6.8. The two rows of plots

are associated to normal faulting and strike-slip scenarios respectively, whereas the

columns correspond to periods T = 0.01 s and T = 1 s. The behaviour of Functional

ITA18 closely follows that of its scalar counterpart at all periods; still, we notice one

interesting deviation. Indeed, the functional model provides higher predictions of
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Figure 5.12: Point-wise Mean Squared Error for Functional ITA18 and Scalar ITA18.

Figure 5.13: Estimated residual standard deviation σ̂ for Functional ITA18 and Scalar
ITA18. Notice that σ̂ estimate of Functional ITA18 does not use the correct dof of the model,
hence the comparison is not very reliable. We show the plot for the sake of completeness.
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near-source ground motions for normal faulting and thrust faulting (see Appendix

B.2) scenarios at short periods. Note that this behaviour is not present in strike-slip

scenarios.

Figure 5.14: Comparison of the ground motion predicted by Functional ITA18 and Scalar
ITA18 for normal faulting and strike-slip scenarios, at T = {0.01s, 1s}. Each plot shows the
predictions for both Mw = 4.0 and Mw = 6.0. The dots are coloured light if Mw = 4.0±0.3,
dark if Mw = 6.0± 0.3.

5.3.3 Comparison at near-source scenarios

In probabilistic seismic hazard, large-magnitude events occurring near a site are

considered critical scenarios that require pre-eminent investigation. Ground mo-

tion models are expected to perform well for such rare scenarios, i.e. to predict

realistic values of soil motion with low prediction uncertainty (Kotha, Weatherill,

et al., 2021). In light of this, it is somehow problematic that the ESM flatfile (Lan-

zano, Sgobba, Luzi, et al., 2018), which is the pan-European dataset model ITA18

was calibrated on, is composed by less than 9% of near-source events of magnitude

Mw ≥ 5.5, implying that the model is poorly constrained by data of this kind.
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Only recently, Sgobba, Felicetta, et al. (2021) took advantage of the availability of a

richer dataset of near-source records to evaluate corrective terms for the estimates of

ITA18 in correspondence of such scenarios. The dataset is NESS2, which is an up-

dated version of the worldwide NEar Source Strong motion flat file (Pacor, Felicetta,

Lanzano, Sgobba, Puglia, D’Amico, Russo, Baltzopoulos, et al., 2018), containing

an increased number of near-source recordings of moderate-to-strong earthquakes.

The corrected model is obtained in Sgobba, Felicetta, et al. (2021) by logarithmi-

cally combining the ITA18 median predictions (SAITA18) with a correction factor

δc, according to the equation

log10(SAITA18, corrected) = SAITA18 + δc.

In particular, given the little dependence of near-source predictions on VS30, the

corrective term δc is estimated conditionally on magnitude, distance and style-of-

faulting. The authors observe that the corrected terms are associated with higher

predictions of SA for distances less than 30 km. In this context, what we noted

in the previous section is of particular interest and motivates the analysis reported

here, that checks the near-source behaviour of Functional ITA18 with respect to

Scalar ITA18 and its correction, hereafter referred to as Corrected ITA18.

First, we compare the PMSEs of Functional and Scalar ITA18, evaluated for

data partitioned in three classes of distances, which are

– class 1 : dJB ≤ 10km,

– class 2 : 10km < dJB ≤ 30km,

– class 3 : dJB > 30km.

The sequence in Figure 5.15 shows that for classes 1 and 2 Functional ITA18 cor-

responds to a lower MSE, while little to no difference is observed for class 3. This

suggests that the functional model is better able to fit the observations for near-

source scenarios.

Figure 5.16 provides a zoomed in picture of Figure 5.14, showing the scaling of

ground motion with distance in the range [0, 30] km as predicted by Functional and

Scalar ITA18 respectively. The images show the scaling at three different magni-

tudes, i.e. Mw = {4.8, 5.8, 7}, and each plot is repeated for the sequence of increasing

vibration periods T = {0.01s, 0.1s, 1s}. The plots correspond to a normal-faulting

scenario 7. Interestingly, distinctions in the prediction curves are observed at periods

7The analysis has been repeated for thrust-faulting scenarios and for strike-slip scenarios (see
Appendix B.3). The first shows results very similar to the NF case. The latter confirms what

77



Figure 5.15: Comparison of MSE of Functional ITA18 and Scalar ITA18 for three classes of
distance. Top to bottom: dJB ≤ 10 km, 10 km < dJB ≤ 30 km and dJB ≥ 30 km.

T < 1 s for critical hazard scenarios, i.e. for estimates associated to Mw = {5.8, 7},
whereas the two models present similar trends for Mw = 4.8. Generally, the func-

tional model overestimates ground motion with respect to Scalar ITA18 in these

scenarios.

Figure 5.16: Comparison of the ground motion predicted by Functional ITA18 and Scalar
ITA18 for normal faulting near-source scenarios, at T = {0.01s, 0.1s, 1s}. The continuous
line is SA predicted by Functional ITA18. The dashed line is SA predicted by Scalar ITA18.
In each plot, the lines are coloured according to the magnitude of the corresponding sce-
nario. The dots are the observed values of SA, coloured darker as the magnitude of the
corresponding event increases.

previously detected in Figure 5.14, namely that no difference is observed between the near-source
trends of Scalar and Functional ITA18.
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The fact that Functional ITA18 is associated to higher ground motion predic-

tions than its scalar counterpart in normal and thrust faulting scenarios motivates

its comparison with the near-source corrected predictions of the scalar model, at

these faulting regimes. Similarly to the previous figure, Figure 5.17 shows the near-

source scaling of spectral acceleration with distance as predicted by Functional and

Corrected ITA18 8. For periods around T = 0.01 s, the functional model aligns to

the corrected scalar estimates, while at T = 0.1 s it predicts higher soil motions

at very short distances, and then approaches the corrected predictions at dJB ' 30

km. We notice that the differences among predictions tend to increase with the

magnitude, and eventually to disappear for all magnitudes at periods T ≥ 1 s.

Figure 5.17: Comparison of the ground motion predicted by Functional ITA18 and Corrected
ITA18 for normal faulting near-source scenarios, at T = {0.01s, 0.1s, 1s}. The continuous
line is SA predicted by Functional ITA18. The dashed line is SA predicted by Corrected
ITA18. In each plot, the lines are coloured according to the magnitude of the corresponding
scenario.

Although the functional model is fitted on the same dataset as Scalar ITA18, the

functional estimates seem to better explain soil motion for critical hazard scenarios,

especially at very short periods, by predicting higher values of spectral accelera-

tion. Given their relevance in the context of probabilistic seismic hazard, it may

be of interest to deepen this qualitative investigation on critical hazard scenarios,

by calibrating the functional model on the NESS2 dataset and checking how the

coefficients estimates are affected by new observations.

8Here we report the analysis for the normal faulting scenario. The analysis is repeated for thrust
faulting scenario, showing very similar results to what observed for normal faulting.
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Conclusions

The present work proposes a new approach to the analysis of partially observed func-

tional data, maintaining a thorough focus on the application aspect that motivated

the analysis itself, aimed at the formulation of Ground Motion Prediction Equa-

tions in the field of engineering seismology. Based on the proposed methodology,

the reconstruction of an incomplete observation is associated with the definition of a

weight, quantifying the confidence associated with the values that the reconstructed

functional datum assumes in the different parts of the domain. Accordingly, the

classical penalized smoothing and penalized functional regression are extended to

account for the introduction of weights. The soundness of the proposed techniques

with respect to the adopted reconstruction method is tested via a cross-validation

procedure, that confirms the validity of the approach and its adaptability to other ap-

plication contexts, characterized by incomplete functional data that are extended to

the unobserved part of the domain. The benefits of such novel approach are twofold.

First, a functional embedding enables us to capture the smoothness underlying the

longitudinal discrete observations. Second, the reconstruction of incomplete data

avoids the loss of information that the removal of missing values would involve, by

extending the definition of the functional data over a domain that is wider than the

one common to all data pre-reconstruction.

Concerning the application aspects of this analysis, the functional extension of

the ground motion model ITA18 (Lanzano, Luzi, Pacor, et al., 2019) for the predic-

tion of the median spectral amplitudes is calibrated on the ESM dataset (Lanzano,

Sgobba, Luzi, et al., 2018) and shows results that are satisfactory. Indeed, the diag-

nostic conducted on the model does not report any anomaly, whereas the coefficient

estimates and prediction results show trends that are seismologically interpretable,

standing as useful tool in the understanding of the phenomenon under study. The

simplifying assumption made in the definition of the functional form, i.e. that pa-

rameters Mh, Mref and h are a priori fixed and independent of the period, is checked

through a sensitivity analysis and does not entail any abnormal trend in estimation

and predictive performances of the model. A comparison with ITA18 highlights an
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interesting behaviour of the functional model for critical hazard scenarios, where the

latter does better in predicting high values of spectral acceleration.

In conclusion, the proposed approach applied to ground motion prediction equa-

tions allows one to predict the whole spectrum of ground motion, simultaneously on a

continuous range of periods, with a sustainable computational burden. Through the

construction of bootstrap simultaneous confidence bands, conclusions can be drawn

simultaneously on the functional estimate, rather than only point-wise. Finally, the

methodology operates a natural smoothing of the predictions, solving the shortcom-

ings of univariate and multivariate approaches that show non-physical discontinuous

patterns in the estimates and predictions.

New horizons of research open up in multiple directions. One consists in the recal-

ibration of the model on the NEar Source Strong motion (NESS, Sgobba, Felicetta,

et al., 2021) dataset, that would allow for further investigation on the behaviour of

the functional model for critical hazard scenarios. An interesting extension of the

model could introduce in the functional form a dependence of Mh on the period.

Such a change could be handled in two ways, and either way would be non-trivial

in a functional framework. If Mh is assumed to be a known function, then the

overall model should be reformulated as a function-on-function regression. If Mh

is considered unknown, then the regression would be non-linear in the coefficients.

Another direction of research may go towards a functional extension of the model

of Lanzano, Sgobba, Caramenti, et al. (2021), that, by introducing a site and event

dependence in the regression coefficients, allows for a regionalization of the esti-

mates, and reduces the residual standard deviation of the model. Finally, the most

consistent extension of this work combines the functional estimation for the median

with the geostatistical model for the residuals proposed in Menafoglio et al. (2020),

providing a fully functional, effective tool for the construction of period-continuous

seismic shaking maps.
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Appendix A

Theoretical results

A.1 Weighted Functional Penalized Least Squares

In the following, t as integration parameter is omitted for clarity of notation.

Let W (t) = diag(w(t)).

WFLS =

∫
(Cφ−XBθ)ᵀW (Cφ−XBθ)

=

∫
(Cφ)ᵀW (Cφ) +

∫
(XBθ)ᵀW (XBθ)−

∫
(XBθ)ᵀW (Cφ)−

∫
(Cφ)ᵀW (XBθ)

=

∫
tr [(WCφ)(Cφ)ᵀ] +

∫
tr [(WXBθ)(XBθ)ᵀ]−

∫
tr [(WCφ)(XBθ)ᵀ]−

∫
tr [(XBθ)(WCφ)ᵀ]

=

∫
tr [WCφφᵀCᵀ] +

∫
tr [WXBθθᵀBᵀXᵀ]−

∫
tr [(XBθ)ᵀ(WCφ)]−

∫
tr [(XBθ)(WCφ)ᵀ]

=

∫
tr [CᵀWCφφᵀ] +

∫
tr [XᵀWXBθθᵀBᵀ]− 2

∫
tr [BθφᵀCᵀWX]

=

∫
tr [CᵀWCφφᵀ] +

∫
tr [BᵀXᵀWXBθθᵀ]− 2

∫
tr [Bᵀ(θφᵀCᵀWX)ᵀ] .

Here, the operations of integration and summation, implied by the trace, may

be interchanged, and hence the previous can be reformulated as

WFLS =

∫
tr [CᵀWCφφᵀ] +

∫
tr [BᵀXᵀWXBθθᵀ]− 2

∫
tr [Bᵀ(θφᵀCᵀWX)ᵀ]

= tr

[∫
CᵀWCφφᵀ

]
+ tr

[∫
BᵀXᵀWXBθθᵀ

]
− 2tr

[∫
BᵀXᵀWCφθᵀ

]
= tr

[∫
CᵀWCφφᵀ

]
+ tr

[∫
BᵀXᵀWXBθθᵀ

]
− 2tr

[
Bᵀ
∫
XᵀWCφθᵀ

]
.

In order to minimize this quantity, we have to take its derivative with respect to
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B. The first term does not depend on B and hence it disappears. The derivative of

the third is equal to

−2

∫
XᵀWCφθᵀ

and is easily obtained by recalling that the derivative of tr(BᵀA) with respect to B

is A. The derivation of the term in the middle requires a little more work.

First, recall that

∇Atr(ABAᵀC) = CAB + CᵀABᵀ

Then, the derivative of the middle term is obtained through the following calculations

∇Btr

[∫
BᵀXᵀWXBθθᵀ

]
=

∫
∇Btr [BᵀXᵀWXBθθᵀ]

=

∫
∇Btr [BθθᵀBᵀXᵀWX]

=

∫
(XᵀWXBθθᵀ +XᵀWXBθθᵀ)

= 2

∫
XᵀWXBθθᵀ

Similarly for the penalization term, we observe that∫
[LBθ]ᵀ [LBθ]

=

∫
tr [(BLθ)(BLθ)ᵀ]

=

∫
tr [B(Lθ)(Lθ)ᵀBᵀ]

= tr [BRBᵀ] ,

where we define [R]ij = 〈Lθi, Lθj〉L2(T ).

Taking advantage again of the properties of the derivative of the trace, we observe

that

∇Btr [BRBᵀ] = ∇Btr [BRBᵀI]

= IBR+ IBRᵀ

= 2BR.
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Therefore, we find that B satisfies the following system∫
XᵀWXBθθᵀ + λBR =

∫
XᵀWCφθᵀ.

Taking the vec() on both sides of the equation and exploiting the linearity of the

vec() operator, we get

vec

(∫
XᵀWXBθθᵀ

)
+ λvec(BR) = vec

(∫
XᵀWCφθᵀ

)
∫

vec (XᵀWXBθθᵀ) + λvec(IBR) = vec

(∫
XᵀWCφθᵀ

)
∫

(θθᵀ ⊗XᵀWX) vec(B) + (λR⊗ I)vec(B) = vec

(∫
XᵀWCφθᵀ

)
[∫

(θθᵀ ⊗XᵀWX) + (λR⊗ I)

]
vec(B) = vec

(∫
XᵀWCφθᵀ

)
.

A.2 Estimation of the degrees-of-freedom

Without loss of generality, fix t1 as time point. The residual sum of squares in t1 is

RSS(t1) =
n∑
i=1

(ε̂i(t1))2 = tr (ε̂(t1)ε̂(t1)ᵀ) .

Define A to be a (n× nT )-dimensional block matrix in the form[
In O O . . . O

]
.

Then we may write ε̂(t1) = Avec(Ê), so that

RSS(t1) = tr
(

(Avec(Ê))(Avec(Ê))ᵀ
)
.

Taking the expectation of RSS(t1), we get

E [RSS(t1)] = E
[
tr
(
Avec(Ê)vec(Ê)ᵀAᵀ

)]
= E [tr (A(I −H)vec(Y )vec(Y )ᵀ(I −H)ᵀAᵀ)]

= E [tr (A(I −H)vec(E)vec(E)ᵀ(I −H)ᵀAᵀ)]

= tr [Cov(vec(E))(I −H)ᵀAᵀA(I −H)] .
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Notice that we cannot isolate the covariance term from the corrective term, unless

we assume that Cov(vec(E)) = σInT . Such hypothesis is highly improbable: by

implying that the time points are uncorrelated and that the variance of the error

is equal at all time points, the hypothesis nullifies the reasons behind the use of a

functional approach.

Nonetheless, we observe that if Cov(vec(E)) = σ2InT , we are able to identify a

corrective term for RSS(t1). Indeed, we may write

E [RSS(t1)] = tr (Cov(vec(E))(I −H)ᵀAᵀA(I −H)) = σtr ((I −H)ᵀAᵀA(I −H)) ,

and identify

δ1 = tr [(I −H)ᵀAᵀA(I −H)] = n− 2tr [H1:n,1:n] + tr [H1:n,·(H1:n,·)
ᵀ]

as an estimate of the effective degrees-of-freedom of the penalized regression at t1.
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Appendix B

Additional figures

B.1 Sensitivity analysis

B.1.1 Oversaturation check for Mh parameter

Figure B.1: Check of oversaturation for models corresponding to Mh = {6.2, 6.7}, at periods
T = {0.01s, 0.1s}. The lines correspond to the predicted values of spectral acceleration,
coloured according to the magnitude of the scenario which they refer to. The dots represent
the observed values of spectral acceleration, and are coloured according to the magnitude
of the recorded event, e.g. yellow if Mw = 4± 0.3.94



B.1.2 Results of sensitivity analysis for Mref

Notice that the plots below show lines that are almost perfectly overlapped and that

cannot be distinguished.

Figure B.2: MSE (left) and σ̂ (right) for Mref = {4.0, 4.5, 5.0, 5.5}. We notice perfect
overlapping of the curves.

Figure B.3: Variation of the source term with Mref, at T = {0.01s, 0.1s, 1s}. We notice
perfect overlapping of the curves.

B.1.3 Results of sensitivity analysis for h

Notice that the plots below show lines that are almost perfectly overlapped and that

cannot be distinguished.

Figure B.4: MSE (left) and σ̂ (right) for h = {5.0, 5.5, 6.0, 6.5} km.
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Figure B.5: Variation of the source term with h, at T = {0.01s, 0.1s, 1s}.

B.2 Comparison of ground motion predictive perfor-

mances

Figure B.6: Comparison of the ground motion predicted by Functional ITA18 and Scalar
ITA18 for thrust faulting scenarios, at T = {0.01s, 1s}. Each plot shows the predictions
for both Mw = 4.0 and Mw = 6.0. The dots are coloured light if Mw = 4.0 ± 0.3, dark if
Mw = 6.0± 0.3.
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B.3 Comparison at near-source SS and TF scenarios

Figure B.8: Comparison of the ground motion predicted by Functional ITA18 and Scalar
ITA18 for strike-slip and thrust faulting near-source scenarios, at T = {0.01s, 1s}. The
continuous line is SA predicted by Functional ITA18. The dashed line is SA predicted
by Scalar ITA18. In each plot, the lines are coloured according to the magnitude of the
corresponding scenario. The dots are the observed values of SA, coloured darker as the
magnitude of the corresponding event increases.
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Appendix C

Codes

The application of the methodologies proposed in this work has been done through

the implementation of algorithms in the R language.

The main R scripts used for the analysis can be downloaded from the repository of

the author’s GitHub account:

https://github.com/tbortolotti/Weighted-functional-analysis-for-seismic-gmm.

git

In particular, the structure of the repository is organized as follows:

– Function main, that sequentially calls all the weighted functional methodolo-

gies leading from raw data to the diagnostic over the regression estimates.,

– Folder method comparison,

– Folder methods,

– Folder Regression.

Below, the composition of the folders is illustrated briefly.

Folder method comparison:

The folder contains the R scripts that allows one to test the soundness of the

weighted functional analysis with respect to the reconstruction method.In particular,

– The main script cv event performs the cross-validation. For every proposed

method, it calls function methodcomparisonevent, givingasinputthereconstruction methodandthesplittingcriterion.Functionmethod comparison eventpartitionsthedatasetintrainandtestsets, accordingtothesplittingcriterionreceivedininput, andevaluatestheMSEcommittedbythereconstruction methodreceivedininput.

--– Function my reconstructKenipLiebl and the corresponding folder KL

are convenient local versions of the method proposed in the work of Kneip
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and Liebl (2020), but no modifications are present with respect to the original

scripts of the authors.

– Function my reconstructKraus1 implements the reconstruction method

of Kraus (2015) for the estimation principal component scores of partially ob-

served functional data. Function finegrid evaluations simply evaluates

the curves to be reconstructed on a finest grid, for the method to work better.

Folders methods and Regression:

These folder contain the implementations of all the methods that compose the anal-

ysis workflow that leads raw data to the estimation of the functional coefficients.

Below, we comment on the main functions.

– Function build Sphi operates the construction of the smoothing map, as

illustrated in Section 3.2.2.

– Function create weights associates each observation to a weight, con-

structed following the rationale illustrated in Section 4.3.1.

– Function pwMSE event performs an event-wise cross-validation for the eval-

uation of the MSE.

– Function stderrors evaluates the variability associated to the coefficients

estimates, as illustrated in Section 3.3.2.

– Function wt bsplinessmoothing operates the weighted penalized smooth-

ing of the reconstructed observations.

– Function f Regress operates the weighted penalized regression of the smoothed

observations, conditionally on the predictor variables given in input. A cru-

cial input of the function is the parameter blist, which is the output of the

function lambda select, previously called, that operates a cross-validation

to choose the penalization parameters for the coefficient estimates.
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