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Abstract

The increasing population of resident space objects is currently fostering many Space
Surveillance and Tracking initiatives, which rely on the use of ground sensors. In this
framework, besides slant range and Doppler shift measurements, surveillance radars
can provide the angular track as well, but the related accuracy may be quite poor.
This thesis shows the advantage which may derive from an adaptive beamfoming tech-
nique in multi-receiver surveillance radars devoted to SST-related activities. Com-
bining such an approach with a proper clustering strategy and criteria to solve the
possible estimations ambiguity, the resulting MATER algorithm is capable of provid-
ing angular track either in presence of a single or multiple targets, in a robust way. In
both cases, the accuracy is in the order of 1e-03 deg, but may deteriorate depending
on the impinging signal power, the number of samples integrated to generate each
estimation and the related integration time length. Nevertheless, MATER represents
a remarkable step forward in favour of the surveillance radars contribution to SST-
related activities, such as Collision Avoidance, Re-entry and Fragmentations Analysis
services.
Particular attention is devoted to fragments cloud monitoring. Specifically, the frag-
mentation epoch identification problem from a single fragment observation is dealt
with. Given the initial orbit determination accuracy, the uncertainty associated to
the fragment orbital state cannot be neglected, and a stochastic approach is intro-
duced. The resulting FRED algorithm ranks a set of fragmentation epoch candidates
according to the statistical matching between the minimum orbital intersection dis-
tance and the relative distance distributions, and the optimal candidate is returned.
The convergence to the correct solution strongly depends on the mutual geometry be-
tween fragment and parent orbits, the fragment orbital state accuracy and the time
elapsed between the event and the observation, but FRED always performs better
than an alternative deterministic metrics. MATER allows to exploit such an ap-
proach, but the associated non-zero mean and non-Gaussian error of measurements
would prevent from stable and reliable results. Nevertheless, in operational applica-
tions, the detected fragment may be later tracked with additional sensors to derive a
more accurate orbital state to be used in FRED algorithm.



Sommario
L’aumento della popolazione di oggetti in orbita terrestre sta attualmente incorag-
giando molte iniziative di sorveglianza e tracciamento spaziale (SST), che si basano
sull’utilizzo di sensori a terra. In questo contesto, oltre alle misure di distanza obliqua
e di effetto Doppler, i radar di sorveglianza sono in grado di fornire anche la traccia
angolare, ma con un’accuratezza che rischia di essere piuttosto scarsa.
Questa tesi illustra i vantaggi che potrebbero derivare da una tecnica di beamforming
adattativo nei radar di sorveglianza multi-ricevitori che vengono impiegati in attività
SST. Combinando tale approccio con un’appropriata strategia di clustering e con cri-
teri per risolvere eventuali ambiguità, l’algoritmo MATER che ne deriva è in grado di
fornire in modo robusto la traccia angolare in presenza sia di una sola che di molteplici
sorgenti. In entrambi i casi l’accuratezza ottenuta è nell’ordine di 1e-03 gradi, ma
può deteriorarsi a seconda della potenza del segnale rilevato, del numero di campioni
integrati per generare ciascuna stima e della connessa lunghezza del tempo di inte-
grazione. Ad ogni modo, MATER rappresenta un passo importante per il contributo
dei sensori radar di sorveglianza alle attività SST quali i servizi di anticollisione, di
analisi di rientro e di analisi di frammentazioni.
Particolare attenzione viene dedicata al monitoraggio della nube di frammenti. Spec-
ificatamente, si affronta il problema dell’identificazione dell’epoca di frammentazione
dall’osservazione di un solo frammento. Data l’accuratezza della determinazione or-
bitale iniziale, l’incertezza associata allo stato orbitale del frammento non può essere
trascurata e si introduce quindi un approccio stocastico. L’algoritmo FRED che ne
deriva ordina una serie di epoche di frammentazione candidate a seconda della cor-
rispondenza statistica tra le distribuzioni di distanza di intersezione orbitale minima
e di distanza relativa e viene così restituito il candidato ottimale. La convergenza alla
soluzione corretta dipende fortemente dalla geometria relativa tra le orbite del fram-
mento e dell’oggetto genitore, dall’accuratezza dello stato orbitale del frammento e dal
tempo intercorso tra l’evento e l’osservazione, ma FRED dà risultati sempre migliori
di una metrica deterministica alternativa. MATER permette di sfruttare tale ap-
proccio, ma l’errore di misura, non Gaussiano e a media diversa da zero, impedirebbe
di ottenere risultati stabili e affidabili. Comunque sia, in applicazioni operative, il
frammento rilevato può poi essere tracciato con altri sensori per ottenere uno stato
orbitale più accurato che possa essere usato nell’algoritmo FRED.
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Chapter 1

Introduction

In the last decades, the number of man-made objects orbiting the Earth has dramatically

increased. In around 65 years of space activities, more than 6180 successful launches have

taken place, which turned out in about 12720 objects placed in Earth orbit [1]. Among

these, 7810 are still orbiting, but only 5400 are active. Furthermore, about 630 break-ups,

explosions, collisions, or anomalous events resulting in fragmentation have been recorded,

which have further contributed to the increase in the orbiting population of man-made

objects, such that 29860 debris objects are regularly tracked by space surveillance networks

and maintained in their catalogue. In addition to them, statistical models estimate that

there are 36500 objects greater than 10 cm, one million objects between 1 cm and 10 cm,

and 130 million objects between 1 mm and 1 cm. The numerical evolution of the geocentric

orbiting objects from the start of space activities is represented in Fig. 1-1.

Due to this overpopulation, in 1978 Donald Kessler postulated that the generation of space

debris via collisions and explosions could lead to an exponential increase in the amount of

artificial objects in space, in a chain reaction which would render spaceflight too hazardous

to conduct [3].

Given the global concern about the issue, multi-lateral meetings started under the initiative

of the National Aeronautics and Space Administration (NASA), eventually resulting in 1993

in the creation of the Inter-Agency Space Debris Coordination Committee (IADC), founded

by ESA (Europe), NASA (USA), NASDA (now JAXA, Japan), and RSA (now Roscosmos,

Russian Federation). Nine more agencies have then joined the IADC: ASI (Italy), CNES

(France), CNSA (China), CSA (Canada), DLR (Germany), KARI (South Korea), ISRO
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Figure 1-1: Evolution of number of objects in geocentric orbit, subdivided by orbit class.
Credits [2].

(India), NSAU (Ukraine), and UKSA (United Kingdom) [2]. The IADC was founded as

a forum for technical exchange and coordination on space debris matters, and can today

be regarded as the leading international technical body in the field of space debris. Space

debris has also been a recurring agenda item for the Scientific & Technical Subcommittee of

the United Nations’ Committee on the Peaceful Uses of Outer Space (UNCOPUOS) since

1994.

In 2002 the IADC published the IADC Space Debris Mitigation Guidelines [4] (then pre-

sented to UNCOPUOS Scientific & Technical Subcommittee), which also gave the definition

of space debris as all artificial objects including fragments and elements thereof, in Earth

orbit or re-entering the atmosphere, that are non functional. From 2002, IADC Space Debris

Mitigation Guidelines has represented a baseline for non-binding policy documents, national

legislation, and as starting point for the derivation of technical standards. Based on this

document, nations around the world have developed safety standards and specific guidelines.

In order to keep the standardisation of mitigation measures among all the players, norma-

tive international standardisation bodies, such as the International Standards Organisation

(ISO) [5], are in charge of maintaining transparent and comparable processes also for space

applications. Furthermore, to address the issues posed by space debris on spaceflight ac-

tivities, UNCOPUOS created the guidelines for the long-term sustainability of outer space

activities [6]. These guidelines regard several aspects, from the policy for space activities to
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the scientific and technical research and development.

1.1 The Near-Earth environment

Orbiting objects can be classified as identified (which can be traced back to a launch event)

and unidentified (that cannot). Following the division in [2], the former can be further

categorised in:

• Payloads: space object designed to perform a specific function in space excluding

launch functionality. This includes operational satellites as well as calibration objects.

• Payload mission related objects: space objects released as space debris which served a

purpose for the functioning of a payload. Common examples include covers for optical

instruments or astronaut tools.

• Payload fragmentation debris: space objects fragmented or unintentionally released

from a payload as space debris for which their genesis can be traced back to a unique

event. This class includes objects created when a payload explodes or when it collides

with another object.

• Payload debris: space objects fragmented or unintentionally released from a payload

as space debris for which the genesis is unclear but orbital or physical properties enable

a correlation with a source.

• Rocket body : space object designed to perform launch related functionality. This

includes the various orbital stages of launch vehicles, but not payloads which release

smaller payloads themselves.

• Rocket mission related objects: space objects intentionally released as space debris

which served a purpose for the function of a rocket body. Common examples include

shrouds and engines.

• Rocket fragmentation debris: space objects fragmented or unintentionally released

from a rocket body as space debris for which their genesis can be traced back to a

unique event. This class includes objects created when a launch vehicle explodes.
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• Rocket debris: space objects fragmented or unintentionally released from a rocket

body as space debris for which the genesis is unclear but orbital or physical properties

enable a correlation with a source.

It is possible that several payloads are deployed in-orbit with the aim at operating in a

coordinate manner, like as the Global Positioning System (GPS), forming a constellation,

that is a set of at least 20 individual Payloads objects, released into orbits over more than

2 events and spreading more than 1 year in time, sharing the same objective as a combined

system, and with the orbits in which they are deployed directly related to the systems objective

[2].

An object (either identified or unidentified) can be considered catalogued, uncatalogued or

asserted (without mutual exclusion). In the first case, its orbital elements are maintained

for prolonged periods of time in a catalogue created by a space surveillance system. Then, if

an object is not included in a catalogue, it is referred to as uncatalogued. Finally an object

is asserted when it has not been reported by a space surveillance system but is known to

exist in the space environment by design. Asserted objects are, for instance, rocket bodies

that perform a re-entry burn after inserting a payload into orbit prior to repeated detections

by a space surveillance system. Catalogued and asserted objects can be categorised in terms

of their orbital elements for a given epoch, as reported in Tab. 1.1, which lists the orbital

classes based on semi-major axis 𝑎, eccentricity 𝑒, inclination 𝑖, perigee height ℎ𝑝 and apogee

height ℎ𝑎 [2]. In particular, the IADC identified two protected regions: the Low Earth Orbit

(LEO) and the Geostationary Orbit (GEO), which are specifically defined in Tab 1.2.

1.2 Space Surveillance & Tracking

The monitoring of the Near-Earth environment described above is one of the crucial points

Space Situational Awareness (SSA) is in charge of. SSA is the requisite foundational, cur-

rent, and predictive knowledge and characterisation of space objects and the operational en-

vironment upon which space operations depend, including physical, virtual, information, and

human dimensions—as well as all factors, activities, and events of all entities conducting,

or preparing to conduct, space operations [7].

Starting from the above-mentioned high-level definition, different fields of application can

be identified in SSA framework [8]:
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Orbit Description Definition

LEOIADC IADC LEO Protected Region ℎ 𝜖 [0, 2000]
GEOIADC IADC GEO Protected Region ℎ𝑝 𝜖 [35586, 35986] 𝛿 𝜖 [−15, 15]

Table 1.2: Ranges defining each protected region, with altitude ℎ and declination 𝛿. The
units are km and degrees. Credits [2].

• Space weather (SWE): monitoring and predicting the state of the Sun and the in-

terplanetary and planetary environments, including Earth’s magnetosphere, iono-

sphere and thermosphere, which can affect spaceborne and ground-based infrastruc-

ture thereby endangering human health and safety.

• Near-Earth objects (NEO): detecting natural objects such as asteroids that can po-

tentially impact Earth and cause damage.

• Space Surveillance and Tracking (SST): watching for active and inactive satellites,

discarded launch stages and fragmentation debris orbiting Earth.

Specific SST programs were started to build the expertise required to manage the challenges

posed by the space traffic control problem. In particular, the presence of space debris may

jeopardise the operative mission of active satellites, as the consequences of a possible collision

with a space debris ranges from cumulative erosion of satellite surface to possible catastrophic

aftermaths for the satellite. Most internationally accepted space debris mitigation measures

can be traced back to the following objectives [2]:

• The limitation of space debris released during normal operations: payloads and rocket

bodies should be designed to minimise the release space debris during normal opera-

tions.

• The minimisation of the potential for on-orbit break-ups: minimise the potential for

break-ups during operational phases, through failure trees analysis and (sub)system

reliability improvement, for instance, and the one for post-mission break-ups resulting

from stored energy. In addition, intentional destruction and other harmful activities

should be either avoided, or -if needed- conducted at sufficiently low altitudes, in order

to reduce the expected fragments lifetime.

• Post mission disposal: LEOIADC and GEOIADC, the IADC protected regions, should
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be cleared from permanent or (quasi-) periodic presence of non-functional man-made

objects. In other orbital regions, payloads or rocket bodies, after their operational

phases, should either be manoeuvred to reduce their orbital lifetime, or to be relocated.

• Prevention of on-orbit collisions: limit the probability of accidental collision with

known objects during the payload or rocket body orbital lifetime, by possibly con-

ducting avoidance manoeuvres.

These high-level objectives are generally declined in several actions, whose core is represented

by the managing of data catalogued, which is regularly updated according to measurements

data, derived from observations performed by optical, radar and laser sensors and gathered

in Tracking Data Messages (TDM) [9]. Based on the catalogue, collision risk assessment is

performed daily by satellite operators who are provided with Conjunction Data Messages

(CDM) [10] to support decisions on the execution of collision avoidance manoeuvres. In

addition, in-orbit fragmentations are detected and characterised, and uncontrolled re-entry

predictions of objects are regularly produced to estimate on ground risks. Active debris

removal initiatives are under development.

In the last decades both national and international partnerships were established to deal with

SST-related applications. Hereafter, Sec. 1.3 describes the United States Space Surveillance

Network (US-SSN). Then, Sec. 1.4 illustrates both the European Space Surveillance and

Tracking (EUSST) consortium and the SST segment of the ESA SSA program.

1.3 United States Space Surveillance Network

US-SSN is a combination of optical and radar sensors used to detect, track, identify, and

catalogue all man-made objects orbiting the Earth [11]. All sensors in the US-SSN are re-

sponsible for providing space surveillance and space object identification to the Combined

Space Operations Center (CSpOC), former Joint Space Operations Center’s (JSpOC), lo-

cated at Vandenberg AFB, California, and to the Alternate Space Control Center (ASCC)

at Dahlgren, Virginia. In particular, CSpOC is responsible for setting prioritisation for

monitoring more than 23,000 space objects and re-tasking sensors in real time during con-

tingencies [12]. By this way, data are processed to update the space objects catalogue and,

in addition to it, some orbital information are published on Spacetrack website [13] in the
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Two-Line Element set (TLE) format [14].

The sensors in the network are categorised primarily by their availability to support the

CSpOC. This availability is based on the primary mission of each sensor. The SSN sensor

missions are divided into three categories [11]:

• Dedicated sensors: US Strategic Command (USSTRATCOM) operationally controlled

sensors with a primary mission of space surveillance support.

• Collateral sensors: USSTRATCOM operationally controlled sensors with a primary

mission other than space surveillance (usually, the site’s secondary mission is to pro-

vide surveillance support).

• Contributing sensors: those owned and operated by other agencies that provide space

surveillance support upon request from the CSpOC.

From 2005, the U.S. Air Force started developing the Space Fence System as part of the US-

SSN, that is a system of geographically dispersed S-Band phased array radars which provide

24/7 un-cued capability to find, fix, and track small objects in LEO, through unprecedented

detection sensitivity, coverage and tracking accuracy [15]. In June 2014, the Lockheed Martin

industry team was awarded the contract for the Engineering, Manufacturing, Development,

Production and Deployment (EMDPD) of the Space Fence System. The U. S. Space Force

declared the system operational on March 28, 2020, after a cost of 1.5 G$ [16].

The Space Fence design was shaped by the need of flexible sensor coverage and affordability

through use of digital array technology that employs element-level Digital Beam Forming

(DBF) and is capable of many independent beams to support simultaneous functions [17].

In particular, the un-cued LEO surveillance fence is a fan-shaped search volume aligned in

an east-west direction that detects objects as they pass through. When a detection occurs,

SF tracks the object long enough to determine its observed locations. The observations are

then combined to estimate its orbital elements set. This is compared to the space catalogue

to determine if the object elements set correlates with one already catalogued or if it is an

uncorrelated target. Use of element-level DBF allows Space Fence to maintain persistent

surveillance while tracking hundreds of simultaneous objects detected in the fence.

The system automatically manages resources by performing long-arc tracks on uncorrelated

targets to support accurate Initial Orbit Determination (IOD). The SF system is designed
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to run the un-cued surveillance mission with the majority of the radar transmit power. A

portion of the radar remaining resources are available for precision tracking of high-interest

objects. For such objects, a “mini-fence” can be electronically constructed to gather more

tracking data, focusing radar resources specifically on that object, providing more timely

and accurate information. Scheduling of the mini-fences is automated and based on orbital

algorithms and system parameters [17] [18]. The Space Fence is expected to observe about

200,000 objects and make 1.5 million observations per day, about 10 times what made by

existing assets [19].

1.4 SST in Europe

At European level, two major SST programs have been started: the EUSST consortium and

the SST segment of the ESA SSA program. They are described hereafter.

1.4.1 European SST consortium

Given the space domain strategic importance for Europe, as space applications are essential

for its economies, societies and citizens, the European Parliament and Council established

the EUSST support framework [20], following the decision No. 541/2014/EU. This frame-

work is implemented by the EUSST Consortium, subscribed in 2015, in cooperation with

the European Union Satellite Centre (SatCen). Since 2016, EUSST Consortium and SatCen

have worked together to develop a European SST capability, and formed the SST Coopera-

tion, with the support of the European Union under different funding lines (H2020, Galileo

& Copernicus programs). Today, the SST Consortium EU Member States are represented

through their national designated entities: CNES for France, German Space Agency at DLR

for Germany, ASI and INAF for Italy, POLSA for Poland, PT MoD for Portugal, ROSA for

Romania and CDTI for Spain. These agencies cooperate with international organisations,

space agencies, and other SSA initiatives, including US-SSN and ESA (which is not directly

involved in EUSST) [21].

The EUSST capability consists of three main functions: sensor network, data processing

and service provision [22]. Data are acquired by member states sensors and later analysed

in the processing function and inserted in a database, which is then exploited for the services
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Figure 1-2: EUSST processing chain, subdivided in the three functions: sensor, processing
and service provision. Credits [22].

provided by the Operations Centres (OCs) and delivered to users. The EUSST functions

scheme is represented in Fig. 1-2.

The sensor network function consists of optical, radar and laser ranging stations of the

member states of the EUSST Consortium, which monitor space objects in LEO, MEO,

HEO and GEO. EUSST seeks to increase its autonomy and, so, its sensors network is

under continuous upgrade and expansion, which improves the EUSST coverage and orbital

information accuracy and timeliness. The current network configuration is represented in

Fig. 1-3.

The data processing function coordinates the data-sharing among the OCs and processes

thousands of daily measurements from the sensors contributing to EUSST. The German

SSA Centre (GSSAC) is responsible for this function, in particular for the development,

maintenance and operation of the current database, which is the basis for a future EUSST

catalogue. In order to upgrade the data processing function, the research aims at developing

methods to improve correlation and orbit determination quality, manoeuvre and conjunction

detection, short-term and long-term collision risk assessment, radar and optical data fusion

and uncertainty propagation.

The service provision function analyses both EUSST and external information, in order to

provide [23]:

• Collision Avoidance (CA) service: provides risk assessment of collision between space-

craft and between spacecraft and space debris, and generates collision avoidance alerts.
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Figure 1-3: EUSST sensor network, subdivided in optical, radar and laser stations. Credits
[21].

Information are processed to distinguish between the close approaches with a low level

of risk (INFOs), those that require further analysis due to the level of risk (Interest

Events, IEs) and those with a high level of risk (High Interest Events, HIEs), pos-

sibly requiring Collision Avoidance Manoeuvres (CAMs). Currently, the French and

Spanish OCs are responsible for the CA service.

• Re-entry Analysis (RE) service: provides risk assessment of the uncontrolled re-entry

of man-made space objects into the Earth’s atmosphere that may constitute a poten-

tial risk to the safety of EU citizens and to terrestrial infrastructure. It carries out

re-entry predictions, both long-term (within 30 days) and short-term (few days), by

possibly providing overflight predictions over areas of interest. Currently, the Italian

OC is responsible for the RE service.

• Fragmentation Analysis (FG) service: provides detection and characterisation of in-

orbit fragmentations, break-ups or collisions, and analyses all the available information

regarding the object(s) involved in the event. Short, middle and long-term analysis

are conducted. Currently, the Italian OC is responsible for the FG service.
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For critical operations and events of media interest, the service provision function produces

in a timely and coordinated manner dedicated outputs to inform key stakeholders and for

dissemination purposes. The SST Service Provision Portal is managed by the SatCen, which

acts as Front Desk by also providing a Helpdesk to support users, and more than 135 or-

ganisations are receiving these services, with more than 240 European satellites safeguarded

from the risk of collision [23]. The EUSST services are provided upon request to all EU

Member States, the European Council, the European Commission, the European Union’s

External Action Service, public and private spacecraft owners and operators, and public

authorities concerned with civil protection [22].

The three aforementioned functions, in particular the SST services, are continuously devel-

oped with the support of the European Union. The SST Cooperation created a Research

and Development (R&D) plan, including both hardware-based and software-based activi-

ties. The effort related to the R&D plan involves both the Consortium partners and the

industry, both the academia and the start-ups, with about 80% of the investments allo-

cated through subcontracts [21]. The EUSST Consortium established the R&D plan to be

achieved between 2021 and 2028, is subdivided in:

• Medium term (2021-2023): achieve high autonomy in observing and cataloguing ob-

jects flying in LEO, MEO and GEO, through a proper sensors improvement. Then,

develop new technologies and operations concepts (e.g. in-orbit servicing and ac-

tive debris removal) and enhance data-processing capabilities, which would provide

top-quality services.

• Long term (2024-2028): keep pursuing the medium-term objectives, by also developing

and demonstrating innovative SST sensors (e.g. for space-based space surveillance),

and by evolving data-processing capabilities, both on-ground and on-board. Then,

develop new EUSST services, by supporting launch, early orbit phase and end-of-life

operations, and enable a higher coordination among space operators.

At the moment, the EUSST Catalogue is not planned to be made publicly available, similarly

to Spacetrack database [13]. In any case, discussions are ongoing and a subset could be made

publicly available at a later stage [21].
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1.4.2 ESA SST

In 2009 ESA started the SSA program with a total financial participation between 2009 and

2020 of approximately 200 M€ (95 M€ from 2017), by 19 Member States. It is providing

strong benefits to European industry. For example, between 2009 and 2016, over 100 con-

tracts were issued to industry for SSA-related work with a total value in excess of 70 M€ [8].

The following Member States have participated in the period 2017-2020: Austria, Belgium,

Czech Republic, Denmark, Finland, France, Germany, Greece, Italy, Luxembourg, Nether-

lands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland, and the United

Kingdom. The SSA Programme is managed through a Programme Office that is based at

the European Space Operations Centre (ESOC), in Darmstadt (Germany), while technology

research and development, project planning and industrial contracting are being conducted

by teams located across the Agency, and at European industrial partners [24].

The core of the SST segment of the SSA program is an updated catalogue, which contains

information about the detected objects, such as their orbits and physical properties [25].

The Database and Information System Characterising Objects in Space (DISCOS) provides

orbital information on catalogued and asserted objects. From the physical parameters there

contained, both the characterisation and the propagation of the object trajectories can be

derived, also for the orbital lifetime assessments [2]. Based on these information, the services

of conjunction prediction, fragmentation detection and reentry prediction are accomplished.

ESA SST team is based at the ESOC, and it works closely both with an extensive network of

industry experts, sensor operators, scientists and engineers across Europe, and international

partners. For instance, a data-sharing agreement between USSTRATCOM and ESA was

signed in 2014, allowing ESA’s operations to be alerted in case of an identified risk of colli-

sion [24]. Furthermore, it is very active in the technical standardisation field, in particular

in cooperation with the Consultative Committee for Space Data Systems (CCSDS) [26], the

European Committee for Standardization (CEN) [27] and the European Electrotechnical

Committee for Standardization (CENELEC) [28].

Between 2013 and 2016, prototype SST systems were developed and deployed. Then, in the

period 2017-2020, a core software has been established, consisting of back-end data process-

ing from observations to orbits (both sensor planning and object database) and front-end

services (the above-mentioned services, together with the catalogue query) [25]. In particu-
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lar, the interoperability have been further improved and national assets (including radars,

optical telescopes and laser-ranging systems) further qualified, by also seeking to develop

both on-ground and space-based sensors.

1.4.3 European SST radars

EUSST consortium and the SST segment of ESA SSA program grant an autonomous Euro-

pean capability able to safeguard the European economies, societies and citizens that rely

on space-based applications such as communication, navigation and observation. In order

to provide the services illustrated in Sec. 1.4.1 and Sec. 1.4.2, the process chain exploits

observations data derived from optical, radar and laser sensors. These sensors can measure

angles (all of them), slant range (radar and laser sensors) and Doppler shift information

(only radars). They can be subdivided in tracking and survey sensors: the former observe

the object by tracking it, whereas the latter detect objects while they cross the sensor Field

of View (FoV). Optical telescopes can be used to monitor objects orbiting at any altitude,

as they do not need a transmitted power, but they are limited by weather and illumination

conditions. On the contrary, radars are more versatile, as the target is illuminated by the

transmitting station, but this makes a constrain on the altitude they can monitor. Thus,

radars are predominantly used to monitor LEO orbits. Another remark is that the optical

telescopes can provide just the angular track, and this usually forces to carry out an as-

sociation task to link measurements acquired through different sensors, in order to pursue

high-level orbit determination quality. On the contrary, the radars are capable to provide

all the measurements, but their angular track generally results less accurate, and, so, it

is of paramount importance to develop high-resolution techniques to improve the angular

measurements quality.

Concerning the radars, the surveillance ones are mainly useful for the regular observation of

the space object population, whereas the tracking ones are necessary to achieve high-fidelity

orbits. In particular, the surveillance radars regularly scan a region of interest, called Field

of Regard (FoR), using electric beamforming by phased-array radar, or create an additional

beam to track a newly detected object [29]. The most remarkable European ground-based

radars are described below.
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The German Tracking and Imaging RAdar (TIRA), developed and operated at Fraunhofer

FHR, combines two radars: a tracking radar operated in L-band with a central frequency of

1.3 GHz and an imaging radar operated in Ku-band with a central frequency of 16.7 GHz

[30]. Both radars are coherent pulse radars. The L-band radar is equipped with a monopulse

system for real-time tracking and controls the Ku-band radar. The core component of TIRA

system is the 34 m reflector antenna, whose resulting high gain enables the imaging of LEO

satellites with a high radiometric resolution. In addition, small space objects can be reliably

detected and their parameters accurately estimated.

The French GRAVES system (Grand Réseau Adapté à la Veille Spatiale) is a bistatic radar

working with a VHF continuous wave pure carrier transmission at 143.05 MHz [31]. The

transmitting station (located near Dijon, France) is composed of four linearly polarised

transmitting arrays, each covering 30 deg in elevation and 45 deg in Azimuth, granting a

total coverage of 180 deg in Azimuth. Each FoV is individually scanned by electronic de-

flection forming a fence in the sky. The receiver station is represented by a 60 m diameter

sparse array of circularly-polarised antenna elements, located 400 km south of the trans-

mission site. Digital static beamforming is performed in more than one thousand different

directions to detect the objects and an associated signal processing is performed real time

at the receiver antenna site [32]. This process enables the localisation of the objects along

azimuth and elevation, while the frequency shift caused by the Doppler effect enables the

radial velocity, and hence the orbit altitude, to be determined. Thanks to its configuration,

GRAVES is able to detect each satellite at least once every 24 hours.

The Spanish S3TSR is a ground-based radar, exploiting a close monostatic configuration,

which operates in L band [33]. Both, transmitting and receiving antennas are separated

electronically scanning arrays. The receiver static beamforming architecture is fully digi-

tal and each antenna input is digitised to maximise functional flexibility. Specifically, the

resulting beamforming process can arrange bundles of up to 7 receiver beams for covering

each transmitter beam (which are 6), with a total of 42 simultaneous receiver beams. The

radar provides automatic surveillance and tracking of space objects in LEO by continuously

scanning the instrumented Field of Regard (FoR) and generating track reports for all the

detected objects.

In recent years the German Experimental Space Surveillance and Tracking Radar (GES-

TRA) has been developed [34] [35]. It is a close monostatic pulsed phased array radar,
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operated in L-band (at about 1.3 GHz), able to accomplish space surveillance observations

in LEO and beyond, up to altitudes of 3000 km. Both antenna frontends use planar phased

arrays with a diameter of 3 m, integrated into 3-axis positioners in order to point the FoV in

all space directions. In the reception, the optical digital outputs are combined using static

beamforming units, which can be modified to arbitrarily shape multibeam pattern of the

receiving antenna [36]. Surveillance flexibility is further improved by the combination of

mechanical and electronical beam steering.

The under-development EISCAT 3D system is a multistatic High-Power Large-Aperture

(HPLA) radar located in Northern Scandinavia using phased array antennas for both trans-

mission and reception. It is designed to investigate how the Earth’s atmosphere is coupled

to space but it will also be suitable for a wide range of other scientific targets, like as space

weather forecasts and detecting space debris [37]. The radar is multi-static, and is therefore

capable of observing instantaneous three-dimensional vector velocity and position by ob-

serving round-trip delay and Doppler shift between the transmitter and three receiver sites

[38].

The Italian BIstatic RAdar for LEo Survey (BIRALES) is a bistatic radar sensor, whose

transmitter is the TRF (Trasmettitore a Radio Frequenza) located at the Italian Joint Test

Range of Salto di Quirra in Sardinia (capable to supply a maximum power of 10 kW in the

bandwidth 410-415 MHz), while the receiver is part of the Northern Cross radio telescope

of the Radio Astronomical Station of Medicina (Bologna, Italy) [39] [40] [41] [42] [43]. The

latter is a multi-receiver array, whose cylinders can be mechanically pointed only in elevation

along the local meridian. In addition to Doppler shift and slant range measurements, the

system is able to provide angular track, thanks to a static multibeam. Due to its character-

istics, BIRALES is used as baseline in this work, and a more detailed description is provided

in Sec. 1.5

The BIstatic RAdar for LEo Tracking (BIRALET) is an Italian bistatic radar sensor devoted

to tracking operations [44]. It shares the same transmitter as BIRALES, while the receiver

is represented by the Sardinia Radio Telescope, which is located close to Cagliari, with a

baseline of about 20 km. It provides both Doppler shift and slant range measurements. It

does not compare in Fig. 1-3, because it is currently under maintenance.
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Figure 1-4: BIRALES receivers (red dots) installed along the antenna focal line. Each
receiver contains 16 dipoles.

1.5 Bistatic Radar for LEO survey

As mentioned above, BIRALES is used as baseline in this work, and a detailed description

of its receiver station system and data processing chain is provided hereafter.

BIRALES receiver is part of the Northern Cross radio telescope of the Radio Astronomical

Station of Medicina (Bologna, Italy), which consists of two perpendicular branches: the

East-West (E-W) arm is 564 m long and is made of a single 35 m wide cylindrical antenna,

whereas the North-South (N-S) branch is made of 64 parallel antennas each 23.5 m long and

7.5 m wide. The portion currently dedicated to the BIRALES receiving antenna is called

1N-section, which is an array composed of 8 cylindrical parabolic concentrators belonging to

the N-S arm. Each cylinder contains four receivers installed on the focal line (aligned with

the E-W direction). Therefore, the receiving system is composed of a matrix of 8x4 receivers

spaced 5.67 m in E-W (𝑑𝐸−𝑊 ) and 10 m in N-S (𝑑𝑁−𝑆), as represented in Fig. 1-4. The 8

cylinders of the 1N-section can be mechanically pointed only in elevation (𝐸𝑙𝑅𝑋) along the

local meridian. The mechanical elevation limits are 42 deg < 𝐸𝑙𝑅𝑋 < 90 deg both in North

and South pointing configuration. This mechanical pointing involves all the array elements.

With a total collecting area of about 1400 square meters, the system allows to detect small

objects with a size of 10 cm at 2000 km slant range. The FoV is 5.7 deg × 6.6 deg (at half

power beam width).

BIRALES exploits two different systems, working at the same time: a multibeam Contin-

uous Wave (CW) unmodulated radar system, operating at 410 MHz, and a single beam

pulse compressed radar system, based on a pulsed chirp at 412.5 MHz with a bandwidth of
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Figure 1-5: Multibeam configuration of BIRALES receiver. Contours define the -3 dB
beamwidth of each beam main lobe with respect to the RX main lobe maximum gain. The
blue ellipse represents the single analogue beam used for slant range measurements.

4 MHz, which is used to measure the slant range [39]. Since the receiver single beam for the

compressed pulse covers partially the receiving antenna FoV, slant range measurements are

available only for a portion of the pass over BIRALES FoV. Thanks to dedicated calibration

campaigns, the slant range and Doppler shift measurements errors were assessed to be 30 m

and 10 Hz respectively.

Based on its receiver array configuration, BIRALES currently exploits 32 digitally formed

beams, whose direction is kept fixed in the FoV. The multibeam configuration in the re-

ceiver FoV is represented in Fig. 1-5, where the blue circle is the beam currently used for

slant range measurement, which is obtained electronically by combining only 3 cylinders

out of 8. The angles Δ𝛾1 and Δ𝛾2 represent the angular deviation from the Line of Sight

(LOS). Theoretically, as soon as the observed object crosses a beam, the latter is expected

to generate data. Thus, collecting all measurements along the entire pass should eventu-

ally provide the time history of the angular coordinates in the receiver FoV. However, the

receiver array geometry introduces a spatial ambiguity. Indeed, even if, in the receiver ref-

erence frame, the mutual distances among array elements vary with the receiver elevation,

they are always larger than half-wavelength (being the CW wavelength 𝜆 = 0.73 m) in both

directions. Consequently, multiple grating lobes simultaneously appear in the sensor FoV

for any beam, and their shape and mutual spacing depends on the receiver elevation. Thus,

it is not straightforward to link the beam illumination to a specific direction in the receiver

FoV. By collecting the contribution of the 32 beams, the overall gain pattern turns out to
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be relatively complex and the angular track reconstruction difficult to be achieved.

In previous works, the Multibeam Orbit Determination Algorithm (MODA) was devel-

oped to address the angular track reconstruction problem in this multibeam configuration,

through a chain of optimisation processes which exploit both the Doppler shift and the slant

range measurements at the same time [41]. Despite the interesting performances on numer-

ical simulation, when dealing with real observations, the method tends to be affected by the

lobe ambiguity problem due to several factors, such as a high sensitivity to the SNR quality

in the optimisation process. This may generate coarse angular coordinates estimation, with

a maximum error of about 2.5 deg for passes with peculiar geometries. Furthermore, it is

worth remarking that the angular track can only be estimated if both Doppler shift and

slant range measurements are available and reliable.

1.6 Research activity and outline

As mentioned in Sec. 1.4.3, in surveillance radars the angular track measurement gener-

ally results less accurate. Thus, it is of paramount importance to develop high-resolution

techniques to improve its quality. The aim of this thesis is to illustrate the potential of adap-

tive beamforming techniques to derive the angular track in array radars devoted to space

surveillance, and assess the benefits for the SST activities. On the one hand, a high-quality

angular track reconstruction would allow a more accurate IOD from a single measurements

track (that is, from a single observation), with the related improvement in Re-entry Analysis

and Collision Avoidance services. On the other hand, a proper development of the adaptive

beamforming based technique would allow to derive the tracks of multiple targets simulta-

neously observed, and this would enhance both survey applications, proximity operations

recognition and Fragmentation Analysis service.

To fulfil the above-stated objective, the thesis is structured as follows. Chapter 2 is ded-

icated to the fundamentals of the thesis: it gives a definition of the reference frames, and

it presents the propagation models, the uncertainty propagation tools and the radar basics.

Moreover, it introduces the orbit determination techniques for the correlation process, the

Refined Orbit Determination (ROD) and the IOD.

Next, Ch. 3 describes the MATER algorithm, which embeds the adaptive beamforming
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technique to derive the angular track in array radars, both for the catalogued and the un-

catalogued case. In this latter situation, ambiguous solutions may appear because of the

mutual distance among array radar antennas (like the ones in Sec. 1.5), and different solving

criteria (exploiting either the statistics, or the signal processing, or the observation geom-

etry) are proposed. MATER algorithm is tested through an extensive numerical analysis

in Ch. 4 by considering BIRALES as baseline on single source process. Besides the array

receiver characteristics, this choice is motivated by the fact that BIRALES back-end allows

to record raw data and, so, to work in post-processing, partially attenuating the operational

drawback of the large computational demand required by the adaptive approach. A sen-

sitivity analysis is also conducted to assess the performance in non nominal situations. In

addition, numerical simulations on Re-entry Analysis and Collision Avoidance services are

carried out, and a real case scenario is reported as well.

Analogously, Ch. 5 is dedicated to the numerical analysis of the multiple sources scenario,

and simulations of a close proximity operation and of a fragments cloud observation are

provided and discussed. In this latter simulation, the capability of reconstructing the frag-

ment track allows to run an IOD, which can be further exploited in fragmentation event

monitoring to detect the epoch of the event. Therefore, Ch. 6 presents the FRED algorithm,

which deals with the problem of identifying the fragmentation epoch in a stochastic way,

starting from the last available ephemeris of the parent object (that is the satellite which

broke up) and a single fragment observation through a surveillance radar. Finally, Ch. 7

discusses FRED performance on numerical simulations and it presents an application to an

operational scenario in which radar measurements include the angular track reconstructed

through MATER algorithm.
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Chapter 2

Fundamentals

This chapter offers a general description of the basic mathematical concepts used throughout

the thesis. First, reference frames are introduced in Sec. 2.1, which are widely exploited

across the entire work. Next, the propagation models are discussed in Sec. 2.2, and they

are fundamental in Ch. 4, Ch. 5 and Ch. 7, both to derive the analysis data set and in the

numerical simulations.

Afterwards, the most common methodologies for the uncertainty propagation are presented

in Sec. 2.3. In particular, the Montecarlo approach is applied to describe the uncertainty

associated to the fragment orbital state in FRED algorithm, which is presented in Sec. 6.2

and whose performance are assessed by the numerical simulations in Ch. 7. Instead the

Unscented Transformation is used in Sec. 4.4.2 during the simulation regarding the Collision

Avoidance service introduced in Sec. 1.4, that is a conjunction scenario. The radar basics

later introduced in Sec. 2.4 are fundamental for MATER algorithm definition in Ch. 3 and

in the simulations in Ch. 4, Ch. 5 and in Ch. 7.

The orbit determination techniques are then discussed in Sec. 2.5. Both the correlation

procedure, the refined orbit determination and the initial orbit determination are strongly

linked to the MATER algorithm definition in Ch. 3 and to the related simulations in Ch.

4. Concerning particular applications of the refined orbit determination, the Non-linear

Least Squares and the Unscented Kalman Filter are used in the simulations of the Re-entry

Analysis and of the Collision Avoidance services (introduced in Sec. 1.4) respectively, in Sec.

4.4.1 and in Sec. 4.4.2. The presented initial orbit determination technique is also exploited

in Ch. 7 simulations which assess the FRED algorithm performance.
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2.1 Reference Frames

The reference frames represent a key point in the celestial mechanics, the most remarkable

being the Earth-Centered Inertial (ECI), the Earth-Centered Earth-Fixed (ECEF) and the

Radial-Tranverse-Normal (RTN) ones. Then, for on-ground observations, also the Topocen-

tric and the Sensor reference frames are fundamental. A recap of all of them is here proposed,

based on [45].

Earth-Centered Inertial reference frame

The Earth-Centered Inertial (ECI) reference frame, often addressed as EME2000 or J2000

(as explained in this paragraph), is centered in the Earth center of mass and is fixed with

respect to the stars. In more detail:

• �̂�𝐸𝐶𝐼 : points towards the vernal equinox, that is the ascending node of the Sun on

the 21𝑠𝑡 of March.

• 𝑧𝐸𝐶𝐼 : points towards the North pole.

• 𝑦𝐸𝐶𝐼 : belongs to the the mean equator and is normal to the other two axes according

to the right hand rule.

Besides the cartesian coordinates, in ECI reference frame two angles uniquely identify the

direction of a generic point: the right ascension (𝛼, defined between 00 h 00 min 00 s and

23 h 59 min 59 s) and the declination (𝛿, between -90 deg and +90 deg). The former is the

angle (measured counterclockwise) between �̂�𝐸𝐶𝐼 and the projection of �⃗� on the equatorial

plane, while the latter between such a projection and �⃗�.

Figure 2-1 represents ECI reference frame according to the definitions provided above. ECI

reference frame is fixed (that is inertial) as long as the vernal equinox is defined for a specific

epoch. A common choice is to refer to the vernal equinox on January 1, 2000, 12 hrs and

the system defined for this date is known as the J2000 system. An alternative is represented

by the M50 system, which is defined by the mean equator and equinox of 1950. The present

thesis considers J2000 system only which, for this reason, is simply referred to as ECI refer-

ence frame.
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𝑄

𝑟

�̂�𝐸𝐶𝐼

𝑦𝐸𝐶𝐼

𝑧𝐸𝐶𝐼

𝛼

𝛿

Figure 2-1: Earth-Centered Inertial reference frame. The �̂�𝐸𝐶𝐼 unitary vector is directed
towards the vernal equinox on January 1, 2000, 12 hrs, 𝑧𝐸𝐶𝐼 towards the North pole and
𝑦𝐸𝐶𝐼 is normal to the other two axes according to the right hand rule. Both �̂�𝐸𝐶𝐼 and 𝑦𝐸𝐶𝐼

belong to the mean equator. The direction 𝑟 of a generic point 𝑄 can be defined according
to 𝛼 and 𝛿, which are right ascension and declination respectively.

Earth-Centered Earth-Fixed reference frame

The Earth-Centered Earth-Fixed (ECEF, or ECF) reference frame is centered in the Earth

centre of mass and rotates solidly to the planet. In more detail:

• 𝑥𝐸𝐶𝐸𝐹 : belongs to the equator and points towards the prime meridian.

• 𝑧𝐸𝐶𝐸𝐹 : points towards the North pole.

• 𝑦𝐸𝐶𝐸𝐹 : belongs to the equator and is normal to the other two axes according to the

right hand rule.

Similarly to ECI reference frame, also for ECEF two angles uniquely identify the direction of

a generic point: the longitude (𝜆, defined between -180 deg and +180 deg) and the latitude

(𝜑, between -90 deg and +90 deg). The former is the angle (measured counterclockwise)

between �̂�𝐸𝐶𝐸𝐹 and the projection of �⃗� on the equatorial plane, while the latter between

such a projection and �⃗�. It is worth to remark that, for the Earth oblateness, a distinction

exists between geodetic and astronomic latitude.

Fig. 2-2 represents ECEF reference frame according to the definitions provided above.
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𝑄

𝑟

�̂�𝐸𝐶𝐸𝐹

𝑦𝐸𝐶𝐸𝐹

𝑧𝐸𝐶𝐸𝐹

𝜆

𝜑

Figure 2-2: Earth-Centered Earth Fixed reference frame. The �̂�𝐸𝐶𝐸𝐹 unitary vector is
directed towards the prime meridian (drawn as well), 𝑧𝐸𝐶𝐸𝐹 towards the North pole and
𝑦𝐸𝐶𝐸𝐹 is normal to the other two axes according to the right hand rule. Both �̂�𝐸𝐶𝐸𝐹 and
𝑦𝐸𝐶𝐸𝐹 belong to the mean equator. The direction 𝑟 of a generic point 𝑄 can be defined
according to 𝜆 and 𝜑, which are longitude and latitude respectively.

Radial-Transversal-Normal reference frame

The Radial-Transversal-Normal (RTN) reference frame is centered in the center of mass of

the orbiting object under consideration and moves solidly to its motion. In more detail:

• �̂�𝑅𝑇𝑁 : points towards the orbiting radius, that is the unitary vector instantaneously

joining the center of mass of the Earth to the one of the object.

• 𝑧𝑅𝑇𝑁 : points towards the orbit angular momentum and is normal to the other two

axes according to the right hand rule.

• 𝑦𝑅𝑇𝑁 : belongs to the orbital plane and is normal to the other two axes according to

the right hand rule. It is equivalent to orbital velocity direction only in circular orbits.

Fig. 2-3 represents RTN reference frame according to the definitions provided above.

Topocentric reference frame

For some applications, a coordinate system attached to a point on the surface of the Earth is

useful in the description of satellite motion from a ground-based observer’s viewpoint. Such

topocentric coordinate system is centered in the observer’s position and rotates solidly to
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𝑟

𝑄

�̂�𝑅𝑇𝑁

𝑦𝑅𝑇𝑁

𝑧𝑅𝑇𝑁

Figure 2-3: Radial-Transversal-Normal reference frame, which is centered in the center of
mass of the orbiting object under consideration (point 𝑄) and rotates solidly to its motion.
The �̂�𝑅𝑇𝑁 unitary vector points towards the orbiting radius (𝑟 direction), 𝑧𝑅𝑇𝑁 towards the
orbit angular momentum and 𝑦𝑅𝑇𝑁 is normal to the other two axes according to the right
hand rule. Both �̂�𝑅𝑇𝑁 and 𝑦𝑅𝑇𝑁 belong to the orbital plane.
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𝑟

𝑄

�̂�𝑇𝑜𝑝𝑜

𝑦𝑇𝑜𝑝𝑜

𝑧𝑇𝑜𝑝𝑜

𝐴𝑧

𝐸𝑙

Figure 2-4: Topocentric reference frame, which is centered in the observer’s position. The
�̂�𝑇𝑜𝑝𝑜 unitary vector is directed towards the local North, 𝑦𝑇𝑜𝑝𝑜 towards the local West and
𝑧𝑇𝑜𝑝𝑜 towards the local zenith. The observer plane is identified by �̂�𝑇𝑜𝑝𝑜 and 𝑦𝑇𝑜𝑝𝑜. The
direction 𝑟 of a generic point 𝑄 can be defined according to 𝐴𝑧 and 𝐸𝑙, which are azimuth
and elevation respectively.

the Earth. There is no unique way to define it and this thesis uses the definition proposed

by [46]:

• �̂�𝑇𝑜𝑝𝑜: points towards the local North direction.

• 𝑦𝑇𝑜𝑝𝑜: points towards the local West direction.

• 𝑧𝑇𝑜𝑝𝑜: points towards the local zenith direction.

The direction �̂�𝑇𝑜𝑝𝑜 and 𝑦𝑇𝑜𝑝𝑜 identify the observation plane. Two angles uniquely identify

the direction �⃗� of a generic point in topocentric reference frame: the azimuth (𝐴𝑧, defined

between 0 deg and 360 deg) and the elevation (𝐸𝑙, between 0 deg and +90 deg). The

former is the angle (measured clockwise) between the local North direction (�̂�𝑇𝑜𝑝𝑜) and the

projection of 𝑟 on the observation plane, while the latter between such a projection and 𝑟.

Fig. 2-4 represents the topocentric reference frame according to the definitions provided

above.
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𝑄

�̂�𝑆𝑒𝑛𝑠

𝑦𝑆𝑒𝑛𝑠

𝑧𝑆𝑒𝑛𝑠

Δ𝛾1

Δ𝛾2

Figure 2-5: Sensor reference frame, which is centered in the sensor position. The 𝑧𝑆𝑒𝑛𝑠 axis
points towards the LoS, while �̂�𝑆𝑒𝑛𝑠 and 𝑦𝑆𝑒𝑛𝑠 are orthogonal to it and arbitrary selected,
according to the right hand rule. The position of a generic observed target 𝑄 can be expressed
through the angular coordinates Δ𝛾1 and Δ𝛾2, which express its angular deviation from the
LoS along �̂�𝑆𝑒𝑛𝑠 and 𝑦𝑆𝑒𝑛𝑠, respectively.

Sensor reference frame

During an on-ground observation, measurements depend on the Line of Sight (LoS) direction

of the sensor, which defines one of the sensor reference frame axes. Figure 2-5 reports a

representation of such a reference frame inspired from [47], where:

• 𝑧𝑆𝑒𝑛𝑠: points towards the LoS.

• �̂�𝑆𝑒𝑛𝑠 and 𝑦𝑆𝑒𝑛𝑠: are orthogonal to 𝑧𝑆𝑒𝑛𝑠 and arbitrary selected, according to the right

hand rule.

The position of a generic observed target can be indicated through the angular coordinates

Δ𝛾1 and Δ𝛾2, which express its angular deviation from the LoS (𝑧𝑆𝑒𝑛𝑠 direction) along �̂�𝑆𝑒𝑛𝑠

and 𝑦𝑆𝑒𝑛𝑠, respectively.

In many applications it is useful to represent the angular deviation of the observed target

with respect to the LoS on a two-dimensional angular graph Δ̂𝛾1-Δ̂𝛾2, that is the sensor

Field of View (FoV), as represented in Fig. 2-6.
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Δ̂𝛾1

Δ̂𝛾2

𝑄

Δ𝛾1

Δ𝛾2

Figure 2-6: Field of View, that is the two-dimensional sensor reference frame centered in
the sensor position. The Δ̂𝛾1 and Δ̂𝛾2 axes express the angular deviation from the sensor
LoS along �̂�𝑆𝑒𝑛𝑠 and 𝑦𝑆𝑒𝑛𝑠, respectively.

2.2 Astrodynamics and Propagation Models

Among the simplest approach to model the dynamics of an orbiting object is through the

Keplerian equation, which describes the two-body problem motion in unperturbed environ-

ment:

𝑟 = −𝜇
𝑟

|𝑟|3
(2.1)

Where 𝜇 = 398600.4418 km3/s2 is the Earth gravitational constant and:

𝑟 =

⎡⎢⎢⎢⎣
𝑟𝑥

𝑟𝑦

𝑟𝑧

⎤⎥⎥⎥⎦ (2.2)

is the satellite position in ECI reference frame. This motion can be derived analytically, as

described in [48].

However, in addition to Keplerian gravitational acceleration, orbital perturbations affect

satellites flying in the Near-Earth environment [49]:

𝑟 = −𝜇
𝑟

|𝑟|3
+ 𝑎𝑝 (2.3)
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Where 𝑎𝑝 includes different kinds of perturbations:

𝑎𝑝 = 𝑎𝐷 + 𝑎𝐺𝐻 + 𝑎3𝑟𝑑 + 𝑎𝑆𝑅𝑃 + 𝑎𝐸𝑅𝑃 (2.4)

which are listed below:

• Acceleration due to the aerodynamic drag:

𝑎𝐷 =
1

2
𝜌 |𝑣|2𝐶𝑑

𝐴𝑎𝑒𝑟

𝑀

𝑣

|𝑣|
(2.5)

It is effective at those heights at which the atmospheric density 𝜌 is not negligible

(generally below 1000 km altitude). It is proportional to the square of the air relative

velocity modulus |𝑣|2, to the drag coefficient 𝐶𝑑 and to the ratio between the aerody-

namic area 𝐴𝑎𝑒𝑟 and the satellite mass 𝑀 . The term 𝐶𝑑𝐴𝑎𝑒𝑟/𝑀 is generally known

as ballistic coefficient. The aerodynamic drag perturbation can possibly account for

atmospheric winds effects, usually below 500 km altitude.

• Acceleration due to the gravitational harmonics: 𝑎𝐺𝐻 . It accounts for the not per-

fectly spherical shape of the Earth. It is important to remark that the second order

term of the harmonics, usually indicated as J2, represents the most effective perturba-

tion in LEO environment. The gravitational harmonic perturbation can also account

for solid and ocean tides effects (both permanent and time-varying).

• Acceleration due to the third-body perturbation, that is the gravitational attraction

exerted on the satellite by a body (typically Sun and Moon, in Near-Earth environ-

ment) which is not the main attractor (the Earth) and can be modeled like:

𝑎3𝑟𝑑 = 𝜇3𝑟𝑑

(︂
𝑟3𝑟𝑑 − 𝑟

|𝑟3𝑟𝑑 − 𝑟|3
−

𝑟3𝑟𝑑

|𝑟3𝑟𝑑 |3

)︂
(2.6)

where 𝜇3𝑟𝑑 and 𝑟3𝑟𝑑 are the third-body gravitational constant and inertial position

with respect to the main attractor, respectively.

• Acceleration due to solar radiation pressure:

𝑎𝑆𝑅𝑃 =
𝑃𝑆𝑢𝑛

𝑐
𝐶𝑟

𝐴𝑟𝑎𝑑

𝑀
𝜈

𝑟 − 𝑟𝑆
|𝑟 − 𝑟𝑆 |

(2.7)
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Where 𝑃𝑆𝑢𝑛 is the Solar Energy reaching the satellite, 𝑐 is the light velocity, 𝑟𝑆 is

the Sun inertial position with respect to the main attractor and 𝐶𝑟 and 𝐴𝑟𝑎𝑑 are the

satellite radiation pressure coefficient and radiative area, respectively. Finally 𝜈 is

the shadow function, which considers the Earth as the occulting body and can be

determined according to either a biconical or a cylindrical model.

• Acceleration due to the Earth radiation pressure: 𝑎𝐸𝑅𝑃 . It accounts for radiating

effects involving the Earth either as reflecting or radiating body, such as the albedo

and the infrared radiation. A detailed description of this perturbation can be found

in [50].

Without any approximation and differently from Eq. 2.1, there is no analytical way to

integrate Eq. 2.3. Thus, to compute the satellite position and velocity in time considering

the orbital perturbations, numerical integration must be used and several schemes can be

considered, such as the Runge-Kutta 8-7𝑡ℎ order Dorman and Prince formulas [51]. The

numerical integration allows a high-fidelity orbital propagation, but also provokes a remark-

able increase of the computational demand. On the one hand, it is fundamental to include

in the propagation only those perturbations actually effective, on the other hand particular

analytical and semi-analytical approaches were developed in the past to boost the compu-

tational time, despite an accuracy reduction.

As mentioned above, Eq. 2.1 can be analytically integrated only if particular approxima-

tions are exploited, e.g. when only J2 perturbation is considered. In this framework, one

of the most popular analytical model which accounts also for perturbations is the Simpli-

fied General Perturbations model #4 (SGP4) propagator. The version used throughout the

thesis is the one from [52], which, depending on the orbital regime, considers secular and

periodic variations due to the Earth oblateness, the solar and lunar gravitational effects, the

gravitational resonance effects, and the orbital decay using a drag model.

To conclude, although no semi-analytical propagator is used throughout the thesis, it is

worth to mention the Draper Semi-analytical Satellite Theory (DSST) [53], which couples

analytical integration (for the J2 perturbation, for instance) with numerical schemes for non-

conservative perturbations (such as the atmospheric drag and the solar radiation pressure).
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2.3 Uncertainty propagation

Section 2.2 describes how an orbital state, assumed as deterministic, can be propagated in

time. However, in practical applications, it is always associated to a degree of uncertainty

and it is important to account for its effects in the propagation. This aspect is also true for

any kind of random variable transformation. If the Gaussian assumption holds, such as for

short-term propagations or small initial uncertainties, the State Transition Matrix (STM)

[54] is often used.

In SST-related applications, Gaussian assumption is widely exploited for many kinds of op-

erations, but it turns out not to be adequate when the non-linearity of a transformation

cannot be neglected. In the past, several works were conducted to establish an optimal way

to deal with this issue. In this context, a widely used methodology is the Gaussian Mixtures

model [55], which splits the Gaussianly-distributed orbital state in multiple sub-distributions

and propagate each one singularly. This methodology is often joint with other actions aimed

at remedying to non-linearity effects. In [56], for instance, equinoctial elements [57] are used

to propagate uncertainty, instead of cartesian coordinates.

This thesis does not discuss the non-Gaussian methodologies for the uncertainty propagation

of the orbital state in detail. If the Gaussian assumption holds, random variables can be

expressed according to a distribution 𝑄 ∼ 𝒩 (𝜇, 𝑃 ), where 𝜇 stands for the mean and 𝑃

for the covariance. The most basic way to transform 𝑄 is through a Montecarlo approach,

which can turn out to be computationally demanding. Therefore, several methods were

developed in the past to transform random variables in an efficient way. The present thesis

exploits the Unscented Transformation, given its efficiency and accuracy and the fact that

it nonlinearly approximates the first two statistical moments of the propagated distribution

[58].

Both the Montecarlo approach and the Unscented Transformation are described below.

Montecarlo

According to the Montecarlo approach, an initial N𝑑-dimensional distribution 𝑄 ∼ 𝒩 (𝜇, 𝑃 )

is populated with N𝑠 samples, such that N𝑠 N𝑑-dimensional vectors are obtained, which are

representative of 𝑄. Under Gaussianity assumption, if N𝑑 = 1, the operation is called

univariate normal distribution, otherwise it is called multivariate normal distribution [59].
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Starting from it, samples can be propagated both linearly and non-linearly, according to the

applied transformation, up to the final condition. At the end mean and covariance can be

retrieved back from the propagated samples.

Montecarlo approaches are the most general way to deal with the uncertainty transformation

and, for this reason, they are used as reference in many applications. However, the result

accuracy is proportional to the number of initial samples N𝑠 used and, so, to the compu-

tational demand which, for some applications, becomes prohibitive. Therefore, alternative

approaches have been developed to reduce time consumption.

Unscented Transformation [58]

An alternative way to propagate 𝑄 is through the linearisation of the involved transformation

function, that is the prediction part of the Extended Kalman Filter (EKF) [60]. This is based

on a Taylor Series expansion about the estimate, which is truncated at the first order. This

approximation is valid if the contributions of the truncated higher order terms are negligible.

However, in many practical situations, linearisation introduces significant biases or errors.

This approach can also be prohibitively difficult to implement because deriving Jacobians

can be cumbersome and time consuming (especially when the system is complicated and of

high order), and they must be reevaluated at every prediction step of the filter.

The Unscented Transformation (UT) solves these issues, based on the assumption that it is

easier to approximate a probability distribution than to approximate an arbitrary nonlinear

function or transformation. Hence, a set of points is generated from the distribution 𝑄 and

the nonlinear function is applied to each of them in turn to yield a transformed sample, and

the predicted mean and covariance are calculated from the transformed sample. Although

this superficially resembles a Monte Carlo method, the samples are not drawn at random.

Rather, the samples are deterministically chosen so that they capture specific information

about the distribution. In general, this intuition can be applied to capture many kinds of

information about many types of distributions. The procedure is described in more detail

as follows.

The N𝑑-dimensional random variable 𝑄 is approximated by 2N𝑑+1 weighted samples �̃�, the
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so-called sigma points, selected by the algorithm which, at a generic step 𝑘, are defined as:

�̃� (𝑘|𝑘) = 𝜇 (𝑘|𝑘)

𝜇𝑖 (𝑘|𝑘) = 𝜇+
(︁√︀

(N𝑑 + 𝜆)𝑃 (𝑘|𝑘)
)︁𝑖

�̄�𝑖+N𝑑 (𝑘|𝑘) = 𝜇−
(︁√︀

(N𝑑 + 𝜆)𝑃 (𝑘|𝑘)
)︁𝑖

(2.8)

Where 𝜆 ∈ ℜ such that (N𝑑 + 𝜆) ̸= 0, and
(︁√︀

(N𝑑 + 𝜆)𝑃 (𝑘|𝑘)
)︁𝑖

is the 𝑖-th row or column

of the matrix square root of (N𝑑 + 𝜆)𝑃 (𝑘|𝑘). The set of samples chosen by Eq. 2.8 have

the same sample mean, covariance, and all higher odd-ordered central moments as the

distribution 𝑄 (𝑘). The matrix square root and 𝑘 affect the fourth and higher order sample

moments of the sigma points.

The sigma points are then transformed up to a generic step 𝑧 according to the transformation

𝑔 (either linear or non-linear):

�̄� (𝑧|𝑘) = 𝑔 (�̄� (𝑘|𝑘) , 𝑢 (𝑘) , 𝑘) (2.9)

Where 𝑢 (𝑘) is a generic input vector. The predicted mean and covariance at step 𝑧 are

computed as:

𝜇 (𝑧|𝑘) =
2N𝑑∑︁
𝑖=0

𝑤𝑖 �̄�𝑖 (𝑧|𝑘)

𝑃 (𝑧|𝑘) =
2N𝑑∑︁
𝑖=0

𝑤𝑖 (�̄�𝑖 (𝑧|𝑘)− 𝜇 (𝑧|𝑘)) (�̄�𝑖 (𝑧|𝑘)− 𝜇 (𝑧|𝑘))𝑇
(2.10)

Where:
𝑤0 = 𝑘/ (N𝑑 + 𝑘)

𝑤𝑖 = 1/ (2N𝑑 + 𝑘)

𝑤𝑖+N𝑑 = 1/ (2N𝑑 + 𝑘)

(2.11)

The mean and covariance are calculated using standard vector and matrix operations, which

means that the algorithm is suitable for any choice of process model, and implementation is

extremely convenient because it is not necessary to evaluate the Jacobians, which are needed

in an EKF. The method has a further advantage: it yields more accurate predictions than

those determined through linearisation.
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It is worth observing that the parameter 𝜆 provides an extra degree of freedom to “fine

tune” the higher order moments of the approximation, and can be used to reduce the overall

prediction errors. When 𝑥 (𝑘) is assumed Gaussian, a useful heuristic is to select N𝑑+𝜆 = 3,

otherwise a different choice of 𝑘 might be more appropriate.

The UT operation represents the prediction part of the Unscented Kalman Filter (UKF)

described in Sec. 2.5.2.

2.4 Radar basics

This section is based on [61] and [62]. Considering the general case of a bistatic configuration,

let us consider the signal transmitted by the radar. By naming 𝑃𝑇𝑋 the power radiated by

the transmitter, 𝐺𝑇𝑋 = 𝐺𝑇𝑋

(︀
Δ𝛾𝑇𝑋

1 , Δ𝛾𝑇𝑋
2

)︀
the transmitting antenna gain expressed as a

function of the angular deviations with respect to the LoS pointing direction (Sec. 2.1), the

power density 𝑆𝑇𝑋 at a distance 𝜌𝑇𝑋 from the transmitter is:

𝑆𝑇𝑋 =
𝐺𝑇𝑋 𝑃𝑇𝑋

4𝜋𝜌2𝑇𝑋

(2.12)

When this signal is intercepted by a transiting object, the amount of power that it reflects

depends on its physical and electrical properties, which can be summarised in a single

parameter: the Radar Cross Section (RCS). It defines the effective area of the object, and it

is not a constant property, as it depends on both the wavelength of the incoming signal, the

area of the object and its attitude. By introducing this parameter, the intercepted power

can be expressed as:

𝑃𝑖 = 𝑆𝑇𝑋 𝑅𝐶𝑆 (2.13)

Assuming that all the intercepted power is reflected in an isotropic way, the power that is

collected at the receiver is equal to:

𝑃𝑟𝑥 =
𝑃𝑇𝑋 𝐺𝑇𝑋 𝐺𝑅𝑋 𝑅𝐶𝑆 𝑐2

(4𝜋)3 𝑓2
𝑐 𝜌

2
𝑇𝑋 𝜌2𝑅𝑋

(2.14)

Where 𝐺𝑅𝑋

(︀
Δ𝛾𝑅𝑋

1 , Δ𝛾𝑅𝑋
2

)︀
is the gain of the receiver as a function of the angular deviations

with respect to its LoS, 𝑐 is the light speed, 𝑓𝑐 is the carrier frequency considered, 𝜌𝑅𝑋 is the

distance of the object from the receiver. Eq. 2.14 is the simplified version of the so-called
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bistatic radar equation, in which no system and propagation losses are considered. The

receiver also measures a noise power, which can be expressed as:

𝑁 = 𝑘𝐵 𝐵𝑤𝑇𝑒𝑞 (2.15)

Where 𝑘𝐵 = 1.380658𝑒 − 23 𝐽𝐾−1 is the Boltzmann’s constant, 𝑇𝑒𝑞 is the equivalent tem-

perature of the system and 𝐵𝑤 is the channel bandwidth, corresponding to the frequency

𝑓𝑠 used to sample the received signal.

The Signal to Noise Ratio (SNR) is defined as the ratio between the received and the noise

powers:

𝑆𝑁𝑅 = 10 log10

(︂
𝑃𝑟𝑥

𝑁

)︂
(2.16)

When the value is larger than an imposed threshold, the object is detected, and other

quantities can be derived. Typical radar systems provide two different measurements per

time instant: slant range (SR) and Doppler shift (DS) measurements.

The slant range is the sum of the distances of the the detected object from transmitter and

receiver:

SR = 𝜌𝑇𝑋 + 𝜌𝑅𝑋 (2.17)

The Doppler shift is instead the variation in frequency of the signal generated by the motion

of the target, and can be expressed as:

DS = 𝑓𝑅𝑋
𝑐 − 𝑓𝑇𝑋

𝑐 =
𝑐

𝑓𝑇𝑋
𝑐

𝑑

𝑑𝑡
(𝜌𝑇𝑋 + 𝜌𝑅𝑋) =

𝑐

𝑓𝑐

(︀
𝑣𝑇𝑋
𝑟𝑒𝑙 + 𝑣𝑅𝑋

𝑟𝑒𝑙

)︀
=

𝑐

𝑓𝑇𝑋
𝑐

𝑑 SR
𝑑𝑡

(2.18)

where 𝑣𝑇𝑋
𝑟𝑒𝑙 and 𝑣𝑅𝑋

𝑟𝑒𝑙 are the magnitudes of the satellite relative velocities with respect to

transmitter and receiver, respectively. The definition of Eq. 2.18 allows to appreciate the

close relationship between Doppler shift and slant range rate, which are linked through the

signal features.

When operating a radar system, both slant range and Doppler shift measurements are

derived by analysing the received signal. The Doppler shift is directly obtained by comparing

the received signal frequency with the transmitted one, while the derivation of slant range

measurements depends on the nature of the transmitted signal. For continuous wave systems,

range measurements can be obtained by analysing the spectrum of the reflected signal. For

pulse compression radars, the computation of the time delay between the transmission and
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reception of the signal provides an estimate for the slant range.

Besides slant range and Doppler shift measurements, also angular coordinates of the source

in the receiver FoV can be derived, according to the implemented signal processing chain.

As stated in Sec. 1.6, this thesis investigates a new approach to compute the angular track,

as widely discussed in Chapters 3 to 5 and in Ch. 7.

2.5 Orbit determination techniques

In SST related applications, sensor measurements are processed in order to reconstruct or-

bital states of the observed object. This process is known as Orbit Determination (OD).

In order to determine the orbital state of an observed object, sensor measurements can be

processed in two ways, depending on whether the data refer to a catalogued object or not.

In the catalogued case, orbital state predictions of the object are available, which, besides

position and velocity, can include additional parameters (such as the ballistic coefficient).

These are refined using the measurements and this process is known as Refined Orbit De-

termination (ROD). It is typically based on larger amounts of available data and can be

distinguished between batch methods, in which the complete data set acquired over a cer-

tain time horizon is used to find a solution, and sequential methods, in which measurement

information is processed as soon as it is available. Both batch and sequential methods are

iterative and require sufficiently good initial guesses.

For uncatalogued objects, instead, no prediction is available and only measurements can be

exploited. In this case, an Initial Orbit Determination (IOD) is performed, through dedi-

cated algorithms. In this context, the most reliable methodologies usually estimate orbital

position and velocity only.

In an operational scenario, the measurements are first recorded without any possible con-

tribution from the a-priori knowledge of the observed object, but for what concerns the

observation time schedule and the station pointing when a specific target is observed. A

correlation procedure is then performed to link the measurements to a catalogued object,

which is propagated towards the observation epochs according to one of the propagation

model described in Sec. 2.2 and, if the predicted state uncertainty is considered as well, to

one of the uncertainty transformation techniques discussed in Sec. 2.3. If the correlation is

successful, a ROD is run, otherwise an IOD procedure is performed. A similar correlation
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process can be later performed to check the compatibility of the OD result with respect to

the input measurements, as deepened below.

2.5.1 Correlation

In this work, a statistical correlation index is computed using the concept of Mahalanobis

distance [63]. Assuming a normal distribution, the acquired measurements, at each obser-

vation epoch 𝑡𝑘, can be expressed as 𝑌 (𝑡𝑘) ∼ 𝒩 (𝜇𝑦(𝑡𝑘),𝑃𝑦), where 𝑃𝑦 is constant and

is defined based on the sensor accuracy. The dimension N𝑦 of 𝑌 depends on the acquired

measurements. In order to verify the correlation status of a generic catalogued orbital state

𝑋 ∼ 𝒩 (𝜇𝑥, 𝑃𝑥), this can be propagated (according to one of the propagation models dis-

cussed in Sec. 2.2) up to the observation epochs and then projected in the measurement

space, according to an UT transformation (Sec. 2.3). This operation results in the synthetic

measurement set 𝑌 (𝑡𝑘) ∼ 𝒩
(︁
�̃�𝑦(𝑡𝑘),𝑃𝑦(𝑡𝑘)

)︁
, where, differently from 𝑃𝑦, 𝑃𝑦 depends on

the observation epoch 𝑡𝑘 considered.

For each observation epoch 𝑡𝑘, the Mahalanobis distance is computed as:

𝜉(𝑡𝑘) = {�̃�𝑦(𝑡𝑘)− 𝜇𝑦(𝑡𝑘)}𝑇
{︁
𝑃𝑦 + 𝑃𝑦(𝑡𝑘)

}︁−1
{�̃�𝑦(𝑡𝑘)− 𝜇𝑦(𝑡𝑘)} (2.19)

And it is divided by the inverse of the 𝜒2 cumulative distribution function, which depends

on the uncertainty level (usually addressed to as 𝜎 level), and to the N𝑦 number of degrees

of freedom:

𝜁(𝑡𝑘) =
𝜉(𝑡𝑘)

�̄�2
(2.20)

In this work, the 3-𝜎 level is generally used, which corresponds to a probability of 99.8 %.

Finally, the correlation index 𝜁 is selected as the mean value of all the 𝜁(𝑡𝑘) computed along

the observation window. If this quantity satisfies a given threshold 𝜏 , the measurements can

be considered correlated to the catalogued orbital state 𝑋. To pass the 𝜒2 test described

above, the threshold 𝜏 shall be theoretically set equal to 1. However, for noisy and not

accurate measurements (such as in real case scenario), it may occur that such a threshold

is not respected even for correct correlations, and 𝜏 shall be relaxed accordingly. This takes

place, for instance, when the measurement noise exceeds the declared accuracy (information

included in the covariance matrix 𝑃𝑦), or when the Gaussian assumption does not hold.
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As mentioned above, this procedure is here used also to define an index which assesses the

compatibility of the OD results with the measurements adopted in the estimation process.

From the resulting mean 𝜇𝑥 and covariance 𝑃𝑥 at the OD reference epoch, the related

synthetic measurements 𝑌 (𝑡𝑘) are computed at each 𝑡𝑘. Then, the Mahalanobis distance is

computed according to Eq. 2.19 on each measurement and the mean correlation index 𝜁 is

computed. Then, Eq. 2.19 and Eq. 2.20 are evaluated, and the mean correlation index 𝜁 is

computed. Finally an OD result is considered to be satisfactory if 𝜁 < 𝜏 , where the same

considerations as above apply to 𝜏 .

It is worth pointing out that the larger the residuals of the OD process are, the larger the

orbital state covariance 𝑃𝑥 and the smaller the correlation index computed according to

Eq. 2.19 is. Hence, an object affected by noisy measurements may turn out to feature

good correlation index values despite the presence of large residuals. In order to avoid this

problem, Eq. 2.19 can be modified as:

𝜁(𝑡𝑘) = {�̃�𝑦(𝑡𝑘)− 𝜇𝑦(𝑡𝑘)}𝑇 𝑃−1
𝑦 {�̃�𝑦(𝑡𝑘)− 𝜇𝑦(𝑡𝑘)} (2.21)

such that only the sensor accuracy is considered in the correlation index. Since the index

increases as a consequence of this modification, the threshold 𝜏 shall be relaxed accordingly.

In this work, the compatibility of the OD result with the measurements is checked according

to Eq. 2.21.

2.5.2 Refined Orbit Determination

In ROD processes, an orbital state prediction 𝑋0 ∼ 𝒩 (𝜇𝑥0, 𝑃𝑥0) is refined based on the

acquired measurements 𝑌 ∼ 𝒩 (𝜇𝑦,𝑃𝑦). Generally, either batch filters like the Non-linear

Least Squares, or sequential filters like the Kalman Filters are used [60]. The former can

refine the orbital state prediction also when the covariance 𝑃𝑥0 is not known, while the

latter cannot. Furthermore, the batch filters allow greater flexibility in the choice of the

epoch at which the orbital state has to be refined, as it can either belong to the observation

window or not. On the contrary, even if also sequential filters can theoretically refine orbital

states which are outside of the observation time window, by properly setting the transfor-

mation function, this choice is usually not taken, because of the increasing transformation

non-linearity (leading to performance deterioration) and longer computational time. Thus,
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sequential filters provide the estimate only at the final-step observation epoch, which can

be the first in time (for backward ROD), or the last one (for forward ROD), but they are

generally more stable and, consequently, more reliable.

In the past, multiple works were carried out to establish optimal formulations for batch

and sequential filters applied to ROD problems. In [64] the OD problem is formulated as a

batch parameter estimation problem which refines multiple intermediate orbital states in the

observation window, such that a faster and more robust convergence is granted. In [65] the

Extended Kalman Filter (EKF) [60] is used as sequential filter, by propagating the orbital

state uncertainty, expressed through equinoctial elements [57], through Gaussian Mixtures

[55].

A detailed discussion about ROD filters is beyond the objective of this thesis. For this

reason, the widely used Non-linear Least Squares (as batch filter) and Unscented Kalman

Filters (as sequential filter) are considered and they are presented in this section.

Non-linear Least Squares [60]

Generally speaking, the Non-linear Least Squares method seeks to refine an orbital state

𝜇𝑥0 (of dimension N𝑥), defined at time 𝑡 and considered as process first guess, by searching

for the mean orbital state 𝜇𝑥 as that value that minimises the sum of the squares of the

calculated observation residuals.

Let the residual vector be:

𝜀 (𝜇𝑥) = (𝜇𝑦 − �̃�𝑦 (𝜇𝑥)) (2.22)

Whose dimension is N𝜀=N𝑜𝑏𝑠+N𝑦, where N𝑜𝑏𝑠 is the observation epochs number and N𝑦

is the dimension of the measurement state. Then, 𝜇𝑦 is the set of the observation data

(mapped in the measurements space) and �̃�𝑦 is the synthetic measurements set, retrieved

from 𝜇𝑥0 according to the procedure described in Sec. 2.5.1. The process searches for the

value of 𝜇𝑥 which minimises the following performance index:

ℎ (𝜇𝑥) =
1

2
𝜀 (𝜇𝑥)

𝑇 𝜀 (𝜇𝑥) (2.23)
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Note that Eq. 2.23 is a quadratic function of 𝜇𝑥, and, as a consequence, the expression has

a unique minimum when:

𝜕ℎ

𝜕𝜇𝑥
= 0 and 𝛿𝜇𝑇

𝑥

𝜕2ℎ

𝜕𝜇2
𝑥

𝛿𝜇𝑥 > 0 (2.24)

for 𝛿𝜇𝑥 ̸= 0. The second condition of Eq. 2.24 means that 𝜕2ℎ/𝜕𝜇2
𝑥 is positive defined.

The non-linear transformation from 𝜇𝑥0 to �̃�𝑦 can have several shapes, depending on the

epoch 𝑡 (either related to observation window or not) and on the propagation model adopted,

but all propagate the orbital state 𝜇𝑥0 along the observation epochs and then project the

computed states on the measurements space, according to the available data contained in

𝜇𝑦. If the process converges, the orbital state 𝑋 is found, both in terms of the estimated

𝜇𝑥 and covariance, which is computed as:

𝑃𝑥 =
𝜀 (𝜇𝑥)

𝑇 𝜀 (𝜇𝑥)

N𝜖 − N𝑥

(︁
𝐽 (𝜇𝑥)

𝑇 𝐽 (𝜇𝑥)
)︁−1

(2.25)

Where 𝐽 (𝜇𝑥) is the Jacobian of 𝜀 (𝜇𝑥) at the solution 𝜇𝑥.

There are different variations to this scheme, the most remarkable being the weighted Non-

linear Least Squares and the a-priori Non-linear Least Squares.

In the weighted Non-linear Least Squares, Eq. 2.23 is modified as:

ℎ (𝜇𝑥) =
1

2
𝜀 (𝜇𝑥)

𝑇 𝑊𝑦 𝜀 (𝜇𝑥) (2.26)

where 𝑊𝑦 is the matrix weighting the observation errors and usually results from an initial

judgement on the accuracy of the observations (the sensor accuracy, for instance), followed

by a normalisation procedure to scale the weights to values between zero and one.

The a-priori Non-linear Least Squares also considers the predicted orbital state �̄�𝑥0 as a

further data to fit, together with an associated weighting matrix 𝑊𝑥0, and Eq. 2.23 is

modified as:

ℎ (𝜇𝑥) =
1

2
𝜀 (𝜇𝑥)

𝑇 𝑊𝑦 𝜀 (𝜇𝑥) +
1

2
(𝜇𝑥 − 𝜇𝑥0)

𝑇 𝑊𝑥0 (𝜇𝑥 − 𝜇𝑥0) (2.27)

Usually, 𝑊𝑥0 is derived from the covariance 𝑃𝑥0 associated to 𝜇𝑥0.

Even if the Non-linear Least Squares approaches are theoretically exploitable for IOD (start-
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ing from a circular first guess, for instance), they are operationally considered just for ROD

operations, as an accurate 𝜇𝑥0 is fundamental to get convergence, except for particular pro-

cedures in which they are combined with other algorithms to provide an IOD result, such

as described in Sec. 2.5.3 if angles and Doppler shift measurements are provided.

Unscented Kalman Filter

An efficient way to perform ROD with a sequential filter is represented by the Unscented

Kalman Filter, which is a technique based on the Unscented Transformation (Sec. 2.3),

which does not contain any linearisation, and thus provides superior performance with re-

spect to the EKF in nonlinear problems [58] [66].

In a ROD operation, let’s consider a prediction state 𝑋0 ∼ 𝒩 (𝜇𝑥0, 𝑃𝑥0) defined at refer-

ence time 𝑡0. Its dimension N𝑥 depends on the parameters to be refined: N𝑥=6 to refine

just the orbital state, N𝑥=7 if an additional physical parameter (such as the ballistic coeffi-

cient) is considered, and so on. Let the ROD measurements set be 𝑌 (𝑡𝑘) ∼ 𝒩 (𝜇𝑦(𝑡𝑘), 𝑃𝑦),

where 𝜇𝑦(𝑡𝑘) represents the acquired measurements at each observation epoch 𝑡𝑘 and 𝑃𝑦

the constant covariance defined up to the sensor accuracy.

From 𝑋, sigma points are created according to Eq. 2.8: �̄�𝑥 (𝑡0). These are propagated

up to the first-step observation epoch 𝑡1 through one of the approaches described in Sec.

2.2, resulting in the propagated N𝑥-dimensional sigma points: �̄�𝑖
𝑥 (𝑡1|𝑡0) (for the i-th sigma

point). Given the non-linear function 𝑔 which projects an orbital state in the measurement

space, the predicted measurements sigma points can be computed at the first-step observa-

tion epoch 𝑡1, whose dimension N𝑦 corresponds to the number of considered measurements:

�̄�𝑖
𝑦 (𝑡1|𝑡0) = 𝑔

(︀
�̄�𝑖
𝑥 (𝑡1|𝑡0)

)︀
. Then, the augmented sigma point �̄�𝑖

𝜉 (𝑡1|𝑡0) is created, chaining

�̄�𝑖
𝑥 and �̄�𝑖

𝑦:

�̄�𝑖
𝜉 (𝑡1|𝑡0) =

⎡⎣�̄�𝑖
𝑥 (𝑡1|𝑡0)

�̄�𝑖
𝑦 (𝑡1|𝑡0)

⎤⎦ (2.28)

And its dimension N𝜉 turns out to be equal to N𝑥+N𝑦.

At this point, Eq. 2.8 is applied on the entire set of sigma points �̄�𝑖
𝜉 (𝑡1|𝑡0) and N𝜉-

dimensional state is returned, both in terms of mean �̂�𝜉 (𝑡1|𝑡0) (dimension N𝜉x1) and co-
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variance 𝑃𝜉 (𝑡1|𝑡0) (dimension N𝜉xN𝜉). It is now possible to split �̂�𝜉 (𝑡1|𝑡0) in:

�̂�𝜉 (𝑡1|𝑡0) =

⎡⎣�̂�𝑥 (𝑡1|𝑡0)

�̂�𝑦 (𝑡1|𝑡0)

⎤⎦ (2.29)

And 𝑃𝜉 (𝑡1|𝑡0) in:

𝑃𝜉 (𝑡1|𝑡0) =

⎡⎣𝑃𝑥 (𝑡1|𝑡0) 𝑃𝑥𝑦 (𝑡1|𝑡0)

𝑃 𝑇
𝑥𝑦 (𝑡1|𝑡0) 𝑃𝑦 (𝑡1|𝑡0)

⎤⎦ (2.30)

Such that the dimensions are N𝑥x1 for �̂�𝑥 (𝑡1|𝑡0), N𝑦x1 for �̂�𝑦 (𝑡1|𝑡0), N𝑥xN𝑥 for 𝑃𝑥 (𝑡1|𝑡0),

N𝑦xN𝑦 for 𝑃𝑦 (𝑡1|𝑡0), N𝑥xN𝑦 for 𝑃𝑥𝑦 (𝑡1|𝑡0).

By defining:

𝑃𝑒 (𝑡1|𝑡0) = 𝑃𝑦 (𝑡1|𝑡0) + 𝑃𝑦 (2.31)

and the covariance gain as:

𝐾 (𝑡1|𝑡0) = 𝑃𝑥𝑦 (𝑡1|𝑡0)𝑃𝑒 (𝑡1|𝑡0)−1 (2.32)

The orbital state is updated as:

𝜇𝑥 (𝑡1|𝑡0) =�̂�𝑥 (𝑡1|𝑡0) +𝐾 (𝑡1|𝑡0) {𝜇𝑦 (𝑡1)− �̂�𝑦 (𝑡1|𝑡0)}

𝑃𝑥 (𝑡1|𝑡0) =𝑃𝜇 (𝑡1|𝑡0)−𝐾 (𝑡1|𝑡0)𝑃𝑒 (𝑡1|𝑡0)𝐾𝑇 (𝑡1|𝑡0)
(2.33)

By repeating this procedure for all the conditional estimations (𝑡𝑘+1|𝑡𝑘) sequentially, up to

the final-step observation epoch 𝑡𝑓 , the orbital state is refined through the measurements.

It is important to stress that the sequential filter procedure is possible only if a covariance

can be associated to the orbital prediction. Then, as remarked above, the procedure can

be performed either forward or backward with respect to the observation timeline (being

sequential), but the result is always associated to the final-step observation epoch considered.

2.5.3 Initial Orbit Determination

As illustrated above, no orbital predictions are available for the observed object in the IOD

context. In this case the Non-linear Least Squares approaches, theoretically, could still be

applied (and would allow to estimate other parameters in addition to position and velocity),
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but they turn out to be quite unstable, mainly due to the lack of a sufficiently accurate first

guess. Thus, alternative methodologies have been developed by the scientific community

that are applied depending on the available radar measurements.

Let’s consider a set of radar sensor observations 𝑌 (𝑡𝑘) ∼ 𝒩 (𝜇𝑦(𝑡𝑘),𝑃𝑦), where 𝑡𝑘 are the

N𝑜𝑏𝑠 observation epochs, 𝜇𝑦(𝑡𝑘) the measurements acquired at 𝑡𝑘 and 𝑃𝑦 the covariance as-

sociated to the measurements and which is derived from the sensor accuracy. The acquired

measurements are assumed to be angular coordinates (azimuth and elevation, or right as-

cension and declination) and SR, such that 𝜇𝑦 and 𝑃𝑦 result to have dimension 3xN𝑜𝑏𝑠 and

3x3, respectively. These information, together with the time-dependent inertial sensor posi-

tion 𝑠(𝑡𝑘), can be processed to estimate the object orbital position 𝑟(𝑡𝑘), whose uncertainty

is described in terms of a multivariate normal distribution. In particular, the covariance

𝑃𝑟(𝑡𝑘) can be derived from 𝑌 (𝑡𝑘) with an UT (Sec. 2.3), by projecting the sigma points

from the measurements to the inertial space.

Several methods exist to obtain a preliminary orbit from two or three geocentric positions,

such as Lambert’s problem solver or the Herrick-Gibbs approach as provided in [67]. Then,

the GTDS range and angles method from [68] provides a stable fixed-point iteration scheme

using the full acquired measurements, that is all the N𝑜𝑏𝑠 available observations. These

methods are adapted in [69], which gives the definition of the IOD process applied in the

present thesis and which is described as follows.

The 𝑟(𝑡𝑘) vectors can be grouped in a unique matrix: 𝑍 =
(︀
𝑟𝑇 (𝑡1), 𝑟

𝑇 (𝑡2), ..., 𝑟
𝑇 (𝑡N𝑜𝑏𝑠

)
)︀
.

From 𝑍, the algorithm proceeds iteratively by modifying the orbital mean state with a

fixed-point update process, starting from a first guess 𝜇0 (e.g. obtained with a Keplerian

circular orbit assumption):

𝜇𝑗
𝑥 = 𝐻(𝜇𝑗−1

𝑥 )𝑍 (2.34)

By defining the 𝑗-th residual as 𝑅𝑗 = max(|𝑥𝑗 − 𝑥𝑗−1|), the iterations proceed as long as(︀
𝑅𝑗 −𝑅𝑗−1

)︀
/𝑅𝑗 is larger than a tolerance 𝜏 and a maximum number of iterations 𝜆 is

reached. In this work, 𝜏 = 1𝑒− 9 and 𝜆 = 100.

At any iteration 𝑗, the matrix 𝐻(𝜇𝑗−1
𝑥 ) is defined according to 𝑓(𝜇𝑗−1

𝑥 ) and 𝑔(𝜇𝑗−1
𝑥 ), which

are vectors grouping the Lagrangian coefficients, whose derivations are provided in e.g. [70]:

𝐻
(︀
𝜇𝑗−1
𝑥

)︀
=

1

𝛿

⎛⎝𝑔𝑇 𝑔𝐹 − 𝑓𝑇 𝑔𝐺

𝑓𝑇𝑓𝐺− 𝑓𝑇 𝑔𝐹

⎞⎠ (2.35)
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where the denominator is:

𝛿 =
(︀
𝑓𝑇𝑓

)︀ (︀
𝑔𝑇 𝑔

)︀
− (𝑓𝑇 𝑔)2 (2.36)

while the auxiliary matrix 𝐹 (and equivalently 𝐺) is defined as:

𝐹 =

⎛⎜⎜⎜⎝
𝑓1 0 0 ... 𝑓N𝑜𝑏𝑠

0 0

0 𝑓1 0 ... 0 𝑓N𝑜𝑏𝑠
0

0 0 𝑓1 ... 0 0 𝑓N𝑜𝑏𝑠

⎞⎟⎟⎟⎠ (2.37)

where 𝑓𝑘 is the Lagrangian coefficient 𝑓 relative to 𝑘-th epoch.

The method converges towards the solution 𝜇𝑥. The orbital state covariance is finally

determined through the linear approximation:

𝑃𝑥 = 𝐻 (𝜇𝑥)𝑃𝑟 𝐻
𝑇 (𝜇𝑥) (2.38)

where 𝑃𝑟 = diag (𝑃𝑟(𝑡1), ...,𝑃𝑟(𝑡N𝑜𝑏𝑠
)), and the orbital state 𝑋(𝑡) ∼ 𝒩

(︀
𝜇𝑥(𝑡),𝑃𝑥(𝑡)

)︀
is

determined. The epoch 𝑡 is selected by the user (the first observation epoch in this work).

The resulting 𝑋(𝑡) can be further refined through the filters described above, as later done

for SST services simulations in Sec. 4.4.

It is worth observing that, if an orbital prediction with no uncertainty associated (retrieved,

for example, from Two-Line Elements TLE [14]) is exploited as the first guess 𝑥0, this

procedure can work as a ROD process as well.

Slant Range as derived measurement

The method described above determines the orbital mean state and covariance from radar

measurements including angles and SR, regardless the availability of DS. However, SR is

not always included in the set of available measurements and this may represent a major

limitation. To alleviate this issue and enhance the versatility of the method proposed, when

the SR is not measured, its values are derived from DS measurements. To this aim, the

approach proposed in [71] is applied and summarised below.

As mentioned in Sec. 2.4 and appreciable in Eq. 2.18, from DS measurements it is possible

to derive the SR time derivative 𝑑SR/𝑑𝑡 by knowing the transmitted frequency. Therefore,
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if the SR initial value SR0 is known, the SR can be computed at any epoch as:

SR (𝑡) = SR0 +

∫︁ 𝑡

𝑡0

𝑑 SR
𝑑𝑡

𝑑𝑡 (2.39)

Assuming that 𝑑 SR/𝑑𝑡 is known from DS measurements (Sec. 2.4), together with 𝑡, 𝑡0 and

𝑑𝑡 (from the observation epochs), the problem reduces to the estimation of the SR initial

value SR0 associated to the first observation epoch 𝑡0. The procedure for its determination,

described hereafter, is based on the conservation of the total orbital energy.

Let 𝑟𝑖 = 𝑟(𝑡𝑖, SR𝑖) 𝑟𝑖 and 𝑟𝑗 = 𝑟(𝑡𝑖, SR𝑗) 𝑟𝑗 be the inertial position vectors at the 𝑖-th and

𝑗-th observation epochs, and Δ𝑡 = 𝑡𝑗 − 𝑡𝑖 > 0 the corresponding flight time. SR𝑖 and SR𝑗

are related to SR0 through Eq. 2.39. It is possible to solve the Lambert’s problem for 𝑟𝑖

and 𝑟𝑗 to get the specific orbital energy of the connecting arc:

𝜀𝑖,𝑗 (SR0) = −𝜇/2𝑎 (2.40)

Being 𝜇 the Earth gravitational parameter and 𝑎 the orbit semi-major axis. An ideal two-

body system is conservative, that is the total energy of the problem is conserved. Therefore,

after 𝜀𝑖,𝑗 (SR0) has been computed for any combination of two observations (𝑖, 𝑗), it is pos-

sible to identify the value of SR0 that yields the minimum standard deviation 𝜎𝜀 in the

distribution of energies. This SR0 represents the optimal solution, and the standard de-

viation of the energy distribution is a univariate function that only depends on the scalar

integration constant SR0.

In this work, the approach is included in a process, schematised in Fig. 2-7, which first

searches for the optimal solution on a coarse grid, by using a golden section search and

parabolic interpolation. The resulting SR0 is the first guess entering a Non-linear Least

Squares process (Sec. 2.5.2), that refines the estimate by iteratively performing IOD (ac-

cording to the procedure described above) and minimising the difference (weighted with the

sensor accuracy 𝑃𝑦) between the real measurements 𝜇𝑦 and the predicted ones �̃�𝑦 (com-

puted from IOD result).

The final estimate SR0 is used to derive the SR profile at all the observation epochs, accord-

ing to Eq. 2.39 and the IOD process can be finally run based on angles and on the derived

SR.
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Doppler shift

Minimization
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Eq. 2.39

Radar IOD

̂︀𝑥, ̂︀𝑃

Figure 2-7: Flow diagram of the radar IOD procedure with SR as derived measurement.

46



Chapter 3

MUSIC Approach for Track

Estimation and Refinement

As stated in Sec. 1.6, the main research objective of this thesis is represented by an adap-

tive beamforming approach to derive the angular track in array radars devoted to space

surveillance. To accomplish such a purpose, MATER algorithm has been developed and is

presented in this chapter.

First, the adaptive techniques that estimate the signal direction of arrival are described in

Sec. 3.1. Among them, MUSIC is selected both because of its high-level resolution and for

the possible application to a multiple sources scenario, which may occur during a survey

application, a proximity operation monitoring or a fragments cloud observation. Then, the

data model is defined in Sec. 3.2 and MUSIC is presented in Sec. 3.3. Afterwards, Sec. 3.4

discusses the ambiguous solutions problem, which may arise because of the mutual geometry

among array receivers, and introduces MATER algorithm, which embeds both MUSIC and

a clustering strategy, and deals with the ambiguous solutions problem. In particular, if the

target transit prediction is available, the ambiguity can be solved a-priori, as described in

Sec. 3.5. Otherwise, criteria are presented in Sec. 3.6, which are based either on statis-

tical considerations (maximum occurrence criterion), or on the signal processing (delta-k

technique), or even on the merging with additional measurements (OD-based, SNR and SR

criteria).
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3.1 Direction of Arrival estimation algorithms

As stated in Sec. 1.6, the basic objective of the research is to improve the angular track

estimation in ground-based array radars, for space surveillance related applications. This

can be accomplished by exploiting a digital signal processing approach implementing an

adaptive beamforming logic.

The problem of the adaptive beamforming consists in the signal Direction of Arrival (DOA)

estimation in presence of interference and noise. Two philosophies to deal with this subject

exist: the optimum beamformers and the parameters estimation, the latter being further

subdivided in statistics and subspace techniques.

The optimum beamformers purpose is to estimate the signal waveform [72], and the most

remarkable ones are listed in the following. The Minimum Variance Distortionless Response

(MVDR) algorithm is a filter which tries to keep only the signals propagating along spec-

ified directions by minimising the output noise power. If the noise is a sample function

from a Gaussian random process then the output of the optimum distortionless filter is the

maximum likelihood estimate of the signal. The Minimum Mean-Square Error (MMSE)

algorithm is an optimum linear processor which tries to minimise the mean square error of

the estimated signal. The Maximum Signal-to-Noise Ratio (Maximum SNR) beamformer

maximises the output SNR. The Minimum Power Distortionless Response (MPDR) filter

tries to steer the beamformer direction by finding the optimum distortionless filter for that

direction. If the steering direction corresponds to the actual signal one, then the MPDR

beamformer reduces to the MVDR beamformer.

In actual applications, to estimate the signal DOA, the above-mentioned beamformers have

to adapt to the incoming data (from which the adaptive beamformers definition), and several

techniques are available to perform such an operation [73]. The Sample Matrix Inversion

(SMI) technique, also known as the Direct Matrix Inversion (DMI), performs this adaptation

by estimating the spatial spectral matrix, through the inversion of the sample covariance ma-

trix (CM). The Recursive Least Squares (RLS) performs this inversion recursively through a

Least Squares algorithm. The Least Mean Square (LMS) algorithm adapts the beamforming

through classical steepest descent algorithms.

The statistical parameter estimation approach for the DOA estimation problem basically

consists in the Maximum Likelihood Estimation (MLE), always based on the sample CM, de-
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clined in multiple versions [74]. The Conditional Maximum Likelihood Estimation (CMLE),

or Deterministic Maximum Likelihood Estimation (DMLE), estimator assumes the source

signals are unknown, but non-random, signals. Instead, the Stochastic Maximum Likeli-

hood Estimation (SMLE), also known as Unconditional Maximum Likelihood Estimation

(UMLE), estimator assumes the source signals are sample functions from Gaussian random

processes and its performance approaches the Cramer-Rao bound asymptotically (that is,

the lower bound on the variance), but it requires a significant amount of computation to

find the estimate. Other multidimensional estimators exist that have similar asymptotic

performance, but, in general, still require a significant amount of computation.

In practice, the above-mentioned MLE versions can be solved through the gradient tech-

niques, such as quasi-Newton methods, or the so-called relaxation methods, or the expectation

methods [74].

The subspace parameter estimation approach for the DOA estimation problem exploits the

signal subspace of the received data, and the most remarkable are the Estimation of Signal

Parameter via Rotational Invariance Techniques (ESPRIT) and the Multiple Signal Classifi-

cation (MUSIC) [75]. The ESPRIT first performs an eigendecomposition of the samples CM,

retaining the same number of orthonormal eigenvectors as the number of observed sources.

Then, it splits these eigenvectors in different subsets (representing the array subdivision

in multiple subarrays), and exploits the CM rotation. Instead, the MUSIC splits the CM

space in signal and noise subspaces, and exploits their mutual orthogonality to identify the

DOA which maximises the array response to the impinging signal. Generally, the subspace

methods are considered hyper-resolution techniques, for their high-level accuracy, and they

are more computationally efficient than the statistics one.

The subspace parameter estimation algorithms are considered in this work, as they are

more accurate than the optimum beamformers and more computationally efficient than the

statistical parameter estimation techniques. In addition, they allow to detect multiple un-

correlated sources simultaneously, and this is a key aspect in surveillance radars, whenever

multiple objects can cross the receiver FoV simultaneously, as during a survey application, a

fragment cloud observation, or a proximity operation monitoring . In more detail, the thesis

deals with the DOA estimation problem by using MUSIC algorithm [76] [77], as it does not

need regularly shaped receiver arrays (differently from ESPRIT) and, so, it can have a more

general application. Furthermore, the study presented in [78] assesses MUSIC as the most
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promising hyper-resolution algorithm.

3.2 Data Model

Consider the case of a source detected by a planar rectangular array of 𝑀 = 𝑁𝑥 × 𝑁𝑦

uniformly distributed elements and with physical spacing 𝑑𝑥 and 𝑑𝑦.

Let Δ𝛾1 and Δ𝛾2 denote the two angular deviations relative to the LOS (in azimuth and

elevation respectively), according to their definition in Sec. 2.1. From [79], the direction

cosines corresponding to the DOA are:

𝑢 =sinΔ𝛾1 cosΔ𝛾2

𝑣 =sinΔ𝛾2 (3.1)

The planar wave on a generic position 𝑟 can be written as 𝐸(𝑡) = 𝐴𝑒𝑗(𝜔𝑡−𝑘𝑟·𝑢) where

𝑘 = 2𝜋/𝜆 is the wave number and 𝑢 is the unit vector of the impinging DOA.

From [80], the distances measured in wavelength are:

𝑑𝑥𝜆
=

𝑑𝑥
𝜆

𝑑𝑦𝜆 =
𝑑𝑦
𝜆

(3.2)

After having defined the electric angles as:

𝜑𝑥 = 2𝜋𝑑𝑥𝜆
𝑢

𝜑𝑦 = 2𝜋𝑑𝑦𝜆𝑣 (3.3)

it is possible to write the steering vector corresponding to the 𝑚-th line of sensors (where

𝑚 = 0 : 𝑁𝑦 − 1) as

𝑎𝑚(Δ𝛾) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑒−𝑗𝑚𝜑𝑦

𝑒−𝑗(𝜑𝑥+𝑚𝜑𝑦)

...

𝑒−𝑗((𝑁𝑥−1)𝜑𝑥+𝑚𝜑𝑦)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.4)
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where the bold notation 𝑎𝑚(Δ𝛾) indicates that the steering vector indirectly depends on

the vectorial parameter Δ𝛾 = [Δ𝛾1 , Δ𝛾2]
𝑇 . By stacking the steering vectors corresponding

to the lines of the array, it is possible to define the 𝑀 × 1 steering vector (𝑀 = 𝑁𝑥×𝑁𝑦) as

𝑎(Δ𝛾) =

⎡⎢⎢⎢⎣
𝑎0(Δ𝛾)

...

𝑎𝑁𝑦−1(Δ𝛾)

⎤⎥⎥⎥⎦ (3.5)

Then, the signal received by the array at any time instant can be expressed as:

𝑥(𝑡) = 𝑎(Δ𝛾) 𝑠(𝑡) + 𝑛 (3.6)

where 𝑠(𝑡) is the envelope of the signal emitted by the source and impinging on the array,

and 𝑛 is the process noise.

If 𝑁𝑠 sources are detected simultaneously, Eq. 3.6 can be generalised as:

𝑥(𝑡) =

𝑁𝑠∑︁
𝑧=1

𝑎(Δ𝛾𝑧) 𝑠𝑧(𝑡) + 𝑛 (3.7)

Based on 𝑥(𝑡), the signal Covariance Matrix (CM) can be computed as:

𝑅𝑥𝑥 = 𝐸
[︀
𝑥(𝑡)𝑥(𝑡)𝐻

]︀
(3.8)

where 𝐸 [·] is the expected value operator and 𝑥(𝑡)𝐻 is the hermitian of 𝑥(𝑡).

In the discrete time domain, 𝑁𝑘 is considered as the number of samples integrated to generate

one single CM. For the 𝑘-th sample, 𝑎(Δ𝛾), 𝑠(𝑡) and 𝑛 can be expressed as 𝑎(Δ𝛾)𝑘, 𝑠𝑘 and

𝑛𝑘 respectively, and Eq. 3.6 becomes:

𝑥𝑘 = 𝑎(Δ𝛾)𝑘 𝑠𝑘 + 𝑛𝑘 (3.9)

In this way, the discrete CM derived from integrating the 𝑁𝑘 samples can be expressed as:

̂︀𝑅𝑥𝑥 =
1

𝑁𝑘

𝑁𝑘∑︁
𝑘=1

𝑥𝑘𝑥
𝐻
𝑘 (3.10)
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3.3 Multiple Signal Classification algorithm

Ideally, without any noise contribution, the 𝑅𝑥𝑥 rank is equal to the signal sources number

𝑁𝑠. In real scenarios instead, which are affected by noise, 𝑅𝑥𝑥 shows 𝑁𝑠 eigenvalues much

larger than the other 𝑀−𝑁𝑠. Therefore, it is possible to split 𝑅𝑥𝑥 space in signal and noise

subspaces, which are assumed to be orthogonal (based on the assumption that signal and

noise are uncorrelated). Denoting the largest eigenvalues matrix as Λ𝑠 and the corresponding

eigenvectors subspace as 𝑈𝑠 and, similarly, indicating noise subspace matrices as Λ𝑛 and

𝑈𝑛, the CM can be decomposed as:

𝑅𝑥𝑥 = 𝑈𝑠Λ𝑠𝑈
𝐻
𝑠 +𝑈𝑛Λ𝑛𝑈

𝐻
𝑛 (3.11)

MUSIC method [76] [77] assumes that 𝑈𝑠 and 𝑈𝑛 span orthogonal complements and it can

be proved that 𝑈𝑠Λ𝑠𝑈
𝐻
𝑠 has 𝑀 −𝑁𝑠 eigenvalues equal to zero.

The estimate Δ𝛾 can thus be computed through the maximisation of the following spectrum,

which represents the array response to the impinging wave:

𝑃 (Δ𝛾) = 𝑎(Δ𝛾)𝐻𝑈𝑠𝑈
𝐻
𝑠 𝑎(Δ𝛾) (3.12)

An alternative formulation is obtained by considering that 𝑈𝐻
𝑛 𝑎(Δ𝛾) = 0. Due to the

orthogonality between signal and noise subspaces, the estimate Δ𝛾 can be computed through

the maximisation of the following spectrum:

𝑃 (Δ𝛾) =
1

𝑎(Δ𝛾)𝐻𝑈𝑛𝑈𝐻
𝑛 𝑎(Δ𝛾)

(3.13)

or by considering that 𝑈𝑛𝑈
𝐻
𝑛 = 𝐼−𝑈𝑠𝑈

𝐻
𝑠 (where 𝐼 is a 𝑀 ×𝑀 identity matrix), through:

𝑃 (Δ𝛾) =
1

𝑎(Δ𝛾)𝐻 [𝐼 −𝑈𝑠𝑈𝐻
𝑠 ]𝑎(Δ𝛾)

(3.14)

Finally, the sensor directional properties can be taken into account by introducing a tapering

action ϒ𝑠(Δ𝛾) on the total array response:

Γ(Δ𝛾) = 𝑃 (Δ𝛾)ϒ𝑠(Δ𝛾) (3.15)
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In this work no tapering action is considered, and MUSIC algorithm is applied based on Eq.

3.14.

3.4 Ambiguous solutions

A fundamental condition must be met to have a unique solution of Eq. 3.14, that is:

𝑑𝑥
𝜆

≤ 1

2
𝑑𝑦
𝜆

≤ 1

2
(3.16)

Eq. 3.16 is analogous in space-domain to the Shannon theorem: the spacing between samples

of the signal, which is provided by the array elements position, must be lower than the half-

distance between the sinusoidal peaks, that is the half-wavelength [80]. As a consequence, if

the spacing is longer than half-wavelength, spatial ambiguity (aliasing) occurs and so grating

lobes appear. The shift of the 𝑖-th (in direction E-W) and 𝑗-th (in direction N-S) grating

lobe with respect to the boresight, expressed in direction cosines space (Eq. 3.17) is:

𝑢 =
𝑖

𝑑𝑥𝜆

𝑣 =
𝑗

𝑑𝑦𝜆
(3.17)

where 𝑑𝑥𝜆
and 𝑑𝑦𝜆 are defined in Eq. 3.2.

According to Eq. 3.1, it is possible to express such a shift in angular coordinates as:

Δ𝜃𝑥 ≈ arcsin
𝑖

𝑑𝑥𝜆

Δ𝜃𝑦 = arcsin
𝑗

𝑑𝑦𝜆
(3.18)

which holds as long as Δ𝜃𝑦 (that is the angular shift, in direction N-S, of the 𝑗-th grating

lobe with respect to the boresight) is small, which allows the approximation cosΔ𝜃𝑦 ≈ 1.

Given this problem, ad-hoc solutions shall be identified for the DOA estimation ambigui-

ties, by possibly exploiting problem geometry and pass predictions. In this framework, the

MUSIC Approach for Track Estimate and Refinement (MATER) algorithm has been devel-

oped. As the name suggests, the algorithm core is composed of two steps: track estimate,
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performed with MUSIC, and track refinement, where clustering, regression and ambiguity

solving criteria are adopted. The way MATER algorithm processes data depends whether

an a-priori information of the target pass is available or not, that is in the catalogued and

the uncatalogued case, respectively

3.5 MATER - Catalogued case

Covariance Matrixes
sequenceReference track

First guess 1 DOA estimate
for each epoch

Quadratic
regression in time

Track

Track estimate

Track refinement

Figure 3-1: MATER: catalogued case flowchart.

In the case the observed object is catalogued, MATER processes observation data as illus-

trated in Fig. 3-1. In the track estimate phase, the DOA is estimated, time by time, from

the CM eigendecomposition, thanks to an optimisation process aimed at maximising Eq.

3.14. The reference track (derived from pass prediction) can directly be used as first guess

in the optimisation, such that the DOA corresponding to the closest peak is selected. In

this way, if the first guess is sufficiently close to the actual DOA (i.e. if the a-priori orbital

estimate is sufficiently accurate), the DOA ambiguity is solved, as reported in the sensor

FoV in Fig. 3-2a for a generic LEO pass. Then, after a quadratic regression in time for the

two angular coordinates separately, a single track is eventually obtained, as represented in

Fig. 3-2b.
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(b) Track refinement phase result.

Figure 3-2: MATER: catalogued case results.

At this point, the track can be used to refine the orbital state of the observed object according

to the ROD procedures described in Sec. 2.5.2. Usually, this is done after having transformed

the angular profile Δ𝛾1 (𝑡) and Δ𝛾2 (𝑡) in topocentric azimuth and elevation, according to

the relationship discussed in Sec. 2.1.

3.6 MATER - Uncatalogued case

For the uncatalogued case (i.e. when the detected measurements do not correlate to any

catalogued object) no pass prediction is available. In this case, track shall be reconstructed

based on acquired measurements only. In this framework, Sec. 3.6.1 and Sec. 3.6.2 present

two ways to reconstruct track if the CMs are the only input, at a post-processing and at a

signal-processing level respectively. Then, Sec. 3.6.3 presents the MATER version for the

uncatalogued case if additional measurements can be exploited, that is either SR, or DS, or

both of them.

3.6.1 Maximum Occurrence Criterion

If, in the uncatalogued case, no additional measurement is available and just the angular

path can be used to solve the ambiguity, the maximum occurrence criterion can be applied,

according to the assumption that the correct track is the one spending the longest time in

the sensor FoV and, so, it is expected to spend significant time in a central region of it. This

procedure is represented in Fig. 3-3.
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Covariance Matrices
sequence

1 coarse computation on a discrete grid

1 first guess

1 DOA estimate for each epoch

Clustering

Regression

Filter on the time spent out of receiver FoV

Select the track related to the most populated cluster

Track

Track estimate

Track refinement

Figure 3-3: MATER: uncatalogued case flowchart with no additional measurement and
maximum occurrence criterion application.
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Figure 3-4: MATER: uncatalogued case results obtained with no additional measurement
solved with the maximum occurrence criterion.

Based on the above assumption, in the track estimate phase a weighting action is applied to

favour the central peaks of the array response. So, in a first coarse grid computation, only

the angular coordinates corresponding to the maximum peak are selected and are used as

first guesses for the maximisation process of Eq. 3.14. In this way, multiple track candidates

are expected to appear at the end of the track estimation phase, as represented in Fig. 3-4a.

It is possible to observe that, when the source is in a border region of the receiver FoV, the

algorithm converges to a more central ambiguous solution, like in Fig. 3-4b.

In order to identify the multiple candidates, the track refinement phase starts by clustering

the DOAs according to a RANdom SAmple Consensus (RANSAC) process, which itera-

tively performs a regression among a data subset, distinguishing inliers from outliers. In

this phase, clusters that do not satisfy a population threshold are discarded. At the end, a

quadratic regression in time is performed on the two angular coordinates for each cluster,
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such that time-dependent profiles Δ𝛾1 (𝑡) and Δ𝛾2 (𝑡) are obtained for all candidates, as

represented in Fig. 3-4c.

At this point, multiple track candidates are present and the unfeasible solutions can be re-

jected first. Considering the [−6,+6] deg FoV represented in Fig. 3-4c, the correct track is

not expected to spend significant time out of that region, as it is unlikely that the receiver

array detects signal while the source is out of the FoV. Therefore, a threshold on the maxi-

mum percentage of time spent out of this FoV shall be respected (5% in this work).

Finally, among the survived tracks, the one related to the most populated cluster is selected.

This represents the result of the process and corresponds to the one represented in Fig. 3-2b,

which can be later used for OD purposes.

As stated above, this approach assumes that the source spends most of the pass in the

central part of the sensor FoV. Consequently, it is worth remarking that it can hardly solve

ambiguities for objects crossing the FoV close to the border, as it favours central solutions.

3.6.2 Delta-k technique

From Eq. 3.18 it is evident that signals at different frequencies (and, so, experiencing differ-

ent sampling) exhibit different angular shifts of the ambiguous DOA estimation with respect

to the correct one. Hence, it is possible to distinguish between the correct DOA estimation

by comparing data processed at two different frequencies. This leads to an extension of the

so called delta-k technique (also known as split-spectrum or split-bandwidth method), which

was developed for synthetic aperture radar (SAR) applications to determine the absolute

value of the unwrapped phase directly from the data, without any a-priori information [81]

[82].

Delta-k technique for signal DOA estimation in multireceiver radars

The delta-k technique consists in splitting the range bandwidth [f− f+] centred in f0 into

two subbands in the processor and processing each individually, like as represented in Fig.

3-5. Further delta-k technique applications in SAR problems are present in [83] and in [84].

The same method is applied in [85] and in [86] to compensate the ionospheric delay. Such

a technique is here adapted to the DOA ambiguity problem for multi-receivers radars, as
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f− f+

Figure 3-5: Signal bandwidth subdivision for the delta-k technique. From the original
bandwidth [f− f+] centered in f𝑐, two subbands are created (dashed lines) centered in f1 and
f2.

follows.

Let’s generalise Eq. 3.18 for any coordinate as:

Δ𝜃 = arcsin
𝑚𝜆

𝑑
(3.19)

where 𝑑 is the generic physical distance among array elements and 𝑚 the generalisation

of 𝑖 and 𝑗 indexes. Let’s now consider 𝑓1 and 𝑓2 as the frequencies of two unmodulated

continuous waves reflected from the same source. For each frequency, Eq. 3.19 describes

the angular shift Δ𝜃1 and Δ𝜃2 of the 𝑚-th ambiguity with respect to the correct DOA and

their mutual difference is:

|Δ𝜃2 −Δ𝜃1| =
⃒⃒⃒⃒
arcsin

𝑚𝜆2

𝑑
− arcsin

𝑚𝜆1

𝑑

⃒⃒⃒⃒
(3.20)

Therefore, by using any two frequencies (no matter their characteristics) and comparing

the two DOA estimations, it is theoretically possible to identify the correct solution, as it

shall show the same angular location, unlike the ambiguous ones, which are expected to be

differently located in the angular FoV.

However, in real applications, the validity of this conclusion is affected by the presence

of noise, which causes an angular shift Δ𝜃𝑛 > 0, no matter the estimation is correct or

ambiguous. Thus, in order to distinguish the correct DOA from the ambiguous ones, it is

necessary that |Δ𝜃2 −Δ𝜃1| > Δ𝜃𝑛, that is:

⃒⃒⃒⃒
arcsin

𝑚𝜆2

𝑑
− arcsin

𝑚𝜆1

𝑑

⃒⃒⃒⃒
> Δ𝜃𝑛 (3.21)
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Equation 3.21 can be expressed in terms of frequencies as:

⃒⃒⃒⃒
arcsin

(︂
𝑚𝑐

𝑑 𝑓2

)︂
− arcsin

(︂
𝑚𝑐

𝑑 𝑓1

)︂⃒⃒⃒⃒
> Δ𝜃𝑛 (3.22)

where 𝑐 is the speed of light. Equation 3.22 relates analytically the two frequencies 𝑓1 and

𝑓2 needed to obtain an angular shift of the ambiguous solutions larger than Δ𝜃𝑛, i.e. larger

than the angular shift induced by the noise. Thanks to this relationship, the correct DOA

can be identified even in real applications, by first identifying an angular shift Δ𝜃𝜏 which is

expected to be larger than Δ𝜃𝑛, and then selecting 𝑓1 and 𝑓2 accordingly.

MATER - Delta-k technique

The MATER algorithm workflow which embeds the delta-k technique is reported in Fig.

3-6. It starts performing the track estimate phase on the two CM sequences (related to the

two frequencies at which they are constructed). First a coarse computation is performed

on a grid of angular coordinates, aimed at identifying the highest 𝑁𝑝 peaks of the pattern

obtained from Eq. 3.14. The peaks searching is performed by identifying the global maxi-

mum first. Then, the other 𝑁𝑝− 1 peaks coordinates are determined analytically, according

to the angular shift of Eq. 3.18. These 𝑁𝑝 angular coordinates pairs represent the first

guess for the maximisation process of Eq. 3.14. Thus, 𝑁𝑝 angular positions in the receiver

FoV are identified at each epoch. As a consequence, multiple DOA sequences appear in the

sensor FoV for both frequencies, among which only one is correct and can be identified as

the one related to the best matching between the two frequencies trends (see Fig. 3-7a).

Then, in the track refinement phase, the correct signal DOA is identified at each epoch by

selecting the estimation exhibiting the minimum angular deviation and the other solutions

are discarded. This results in a FoV less populated of DOAs estimations, as represented in

Fig. 3-7b (where just the estimations along the correct track are present).

The next steps are similar to the ones of Sec. 3.6.1. The estimations are clustered according

to a RANSAC algorithm and the quadratic regression in time, for the two angular coordi-

nates separately, is performed. If multiple clusters are still present, the algorithm discards

those related to tracks which spend too much time out of the receiver FoV. Among the

survived tracks, the one related to the most populated cluster is selected. This represents
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Correlation Matrices
sequence - 1

Correlation Matrices
sequence - 2

𝑁𝑝 coarse computations
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𝑁𝑝 first guesses

𝑁𝑝 DOA estimates
for each epoch

𝑁𝑝 coarse computations
on a discrete grid

𝑁𝑝 first guesses

𝑁𝑝 DOA estimates
for each epoch

For each time, retain DOA estimation
exhibiting the minimum deviation

Clustering

Regression

Filter on the time spent out of receiver FoV

Select the track related to the most populated cluster

Track

Track estimate

Track refinement

Figure 3-6: MATER: uncatalogued case flowchart with no additional measurement and
delta-k technique application.
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(b) DOA ambiguity solved.

Figure 3-7: MATER: uncatalogued case results obtained with no additional measurements
solved with the delta-k technique.

the result of the process and corresponds to the one represented in Fig. 3-2b, and can be

later used for OD purposes.

It is important to highlight that, differently from the maximum occurrence criterion and

from those criteria which exploit additional measurements, the delta-k technique acts at a

signal processing level, and this, in the practical applications, would set design constraints

in the signal processing chain.

3.6.3 Methods based on additional measurements

MATER can possibly exploit additional measurements (either SR, or DS, or both of them)

to solve the angular track ambiguity as follows. First, a coarse computation on a discrete

grid is performed, analogously to the one in Sec. 3.6.2, returning 𝑁𝑝 angular positions in the

receiver FoV, later refined through the maximisation of Eq. 3.14. Consequently, 𝑁𝑝 angular

positions in the receiver FoV are identified at each epoch, as represented in Fig. 3-9a.

Similarly to Sec. 3.6.1, in the track refinement phase both the RANSAC clustering and the

quadratic regression in time, for the two angular coordinates separately, are performed. At

the end, time-dependent profiles Δ𝛾1 (𝑡) and Δ𝛾2 (𝑡) are obtained for all the candidates, as

represented in Fig. 3-9b. It can be noticed that some side points present in Fig. 3-9a do

not have any related track, since they form clusters which do not satisfy the population

threshold and they have been rejected.

Then, the algorithm discards the clusters related to tracks which spend too much time out
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Figure 3-8: MATER: uncatalogued case flowchart with additional measurements.
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Figure 3-9: MATER: uncatalogued case results obtained with additional measurements.
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of the receiver FoV. The result is shown in Fig. 3-9c, where it can be observed that some

track candidates have been rejected. At this point, multiple candidates may still appear

(like in Fig. 3-9c) and proper criteria must be applied to solve the ambiguity and select the

correct solution. Four procedures have been investigated to this purpose, which are applied

depending on the available additional measurements.

The first one is the OD-based criterion, according to which the correct track is the one gen-

erating the orbit featuring the best correlation to the measurements. Each track candidate

enters an IOD process (according to the procedure described in Sec. 2.5.3): an orbital state

estimate is obtained and the associated correlation index is computed through the Eq. 2.21

and, in general, as illustrated in Sec. 2.5.1. Finally the best candidate is selected.

The second procedure is the SNR criterion, according to which the correct track is the one

whose predicted SNR profile best matches the measured one. The predicted SNR is derived

in Eq. 2.16, where 𝑃𝑟𝑥 and 𝑁 are defined in Eq. 2.14 and Eq. 2.15 respectively, and all the

involved parameters are described in Sec. 2.4. Since, in Eq. 2.14, the values of 𝐺𝑟𝑥, 𝐺𝑡𝑥,

𝜌𝑇𝑋 and 𝜌𝑅𝑋 depend on the relative position between the observed object and the ground

stations, the predicted SNR profiles computed from the candidate tracks are expected to

significantly differ one from another and this makes the SNR criterion theoretically robust.

In order to apply this criterion, a 𝑅𝐶𝑆 value must be assumed and it possibly introduces a

bias term in the difference between the measured SNR and the predicted one. However, this

term affects all the candidates equally and it does not have an impact on the validity of the

criterion. To determine 𝐺𝑟𝑥, 𝐺𝑡𝑥, 𝜌𝑇𝑋 and 𝜌𝑅𝑋 , the orbital state for each candidate shall be

determined, and, for this purpose, the radar IOD procedure described in Sec. 2.5.3 is used,

which can be applied even if only either SR or DS measurements are available. Indeed, in

the latter case, SR is computed from DS, observation epochs and track angles, and this also

allows to derive the terms 𝜌𝑇𝑋 and 𝜌𝑅𝑋 .

The third procedure is the SR criterion: the correct track is the one which, combined with

DS and according to the procedure described in Sec. 2.5.3, returns the predicted SR profile

that best matches the measured one. This criterion provides a straightforward process to

solve the ambiguity, although it needs both SR and DS measurements.

Regardless the approach adopted, the track obtained at the end of the process is the same

as the one reported in Fig. 3-2b and can enter an IOD process. It is important to point

out that, for the SNR and OD solving criteria, the IOD is already performed during the
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ambiguity solving phase.
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Chapter 4

MATER applied to single source

observations

A numerical analysis is here conducted to test MATER algorithm performance. All the

simulations were implemented in MATLAB [87] and run with an Intel(R) Core(TM) i7-8700

CPU @ 3.20 GHz - 3.19 GHz processor. BIRALES sensor, introduced in Sec. 1.4.3 and

described in Sec. 1.5, is taken as reference, as its back-end allows to record raw data and,

so, to work in post-processing, partially attenuating the operational drawback of the com-

putational demand of the adaptive beamforming approach. In addition, it is a ground-based

multi-receiver radar, used for SST-related applications, which does not fulfil the require-

ment expressed in Eq. 3.16 and so the MATER ambiguity solving criteria can be tested.

BIRALES characteristics are further detailed in Sec. 4.1.

A first analysis in Sec. 4.2 assesses MATER performance in a nominal scenario, both for

the catalogued and the uncatalogued case. In the latter situation, all the ambiguity solving

criteria introduced in Sec. 3.6 are evaluated. Then, a sensitivity analysis is conducted in

Sec. 4.3 to test MATER robustness to different transmitter and receiver pointing, detected

signal interruption, lower transmitted power, RCS fluctuations, different sampling frequency,

mismatching between the actual RCS and the one used to predict the SNR, as well as to a

real signal scenario. In such a sensitivity analysis, both SNR criterion and delta-k technique

are used to solve the ambiguity.

Afterwards, Sec. 4.4 applies MATER algorithm to the Re-entry Analysis and the Collision

Avoidance services, introduced in Sec. 1.4. Finally, a real application of MATER algorithm
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Figure 4-1: BIRALES array response based on MUSIC for a single source observation.

is presented in Sec. 4.5.

4.1 BIRALES data

Based on the BIRALES characteristics presented in Sec. 1.5 and referring to the data model

described in Sec. 3.2, the number of array elements results in: 𝑀 = 𝑁𝑥 × 𝑁𝑦 = 32, being

𝑁𝑥 = 4 and 𝑁𝑦 = 8. Thus, 𝑎(Δ𝛾) dimension is 32× 1 and ̂︀𝑅𝑥𝑥 size is 32× 32, regardless

the snapshot number 𝑁𝑘.

As mentioned above, BIRALES does not fulfil the requirement expressed in Eq. 3.16, being

𝜆 = 0.73 m, 𝑑𝑥 = 5.67 m and 𝑑𝑦 = 10 m. This generates an ambiguity in the array

response to the impinging signal and multiple peaks (that is multiple DOA solutions) are

simultaneously present at any epoch, as represented in Fig. 4-1, which shows MUSIC output

for a 𝑁𝑠 = 1 source observation. Δ𝛾1 and Δ𝛾2 represent the angular deviation with respect

to the receiver LOS, as discussed in Sec. 2.1. Since the receiver pointing can be moved

along the local meridian (that is in elevation only), Δ𝛾1 and Δ𝛾2 turn out to represent the

East-West and the North-South directions respectively. The peaks lobes are larger along

Δ𝛾1, as the East-West direction has less receivers than the North-South one (4 against 8),

and this theoretically makes DOA estimation more accurate along the Δ𝛾2 direction. The

mutual angular distance among these peaks is defined according to Eq. 3.18.

Concerning the signal processing criterion for the ambiguity resolution, Eq. 3.22 can be

evaluated by considering the euclidean distance 𝑑 =
√︀
(𝑑2𝐸−𝑊 + 𝑑2𝑁−𝑆) = 11.5 m and two

given frequencies. Figure 4-2 reports the angular shift of the ambiguous solution (in degree)
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Figure 4-2: Angular shift of the ambiguous solution (in degree) for a given frequencies couple.

provoked by a given frequency couple between 410.5 MHz and 414.5 MHz. The two central

frequencies involved in the delta-k technique for the multireceiver radars are set to 411.5

MHz and 413.5 MHz. From Fig. 4-2 (also appreciable in Eq. 3.22), this frequency choice

provokes an angular shift of the ambiguous estimations of 0.017 deg.

BIRALES FoV, presented in Sec. 1.5, is extended to [−6,+6] deg, in order to keep all the

significant signal contributions. An equivalent temperature 𝑇𝑒𝑞 of 86 K is then considered.

Concerning Eq. 2.14, the carrier frequency 𝑓𝑐 is set equal to 410 MHz, which is the CW

signal currently used for the multibeam, but when the delta-k technique is applied. In

this latter case, Eq. 2.14 is evaluated for both of the central frequencies involved in the

computations (that is 411.5 MHz and 413.5 MHz).

4.2 Numerical Nominal Analysis

A synthetic data set (taken from [41]) composed of 899 passes related to 537 LEO objects

from the NORAD catalogue [52] is analysed. The analysis considers an observation window

of one week, from December 15th to December 21th, 2018. The passes projections in the

measurements space provide their nominal angular tracks, SR and DS measurements. The

transmitter and receiver pointing angles, provided in terms of azimuth and elevation are

set to [7.69, 40.45] deg and [0, 60] deg respectively. According to [41], this configuration

allows the observations to cover most objects and the angular tracks to spread over the

entire receiver FoV.

Then, the data for the testing procedure are generated as follows:
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• The measured SNR is simulated according to Eq. 2.14, Eq. 2.15 and Eq. 2.16, with

a 1e+05 W transmitted power, a RCS of 1 m2 and the addition of Gaussian noise

(standard deviation of 0.5 dB) to include the effect of the RCS fluctuation. Focusing

on Eq. 2.15, besides the 86 K equivalent temperature mentioned above, a 1 kHz

sampling frequency 𝑓𝑠 is selected, which is equal to the receiver channel bandwidth

𝐵𝑤.

• The measured SR and DS, derived from the synthetic data set, are artificially cor-

rupted with a Gaussian noise coherent with the sensor accuracy, that is 30 m and 10

Hz respectively.

According to the 1 KHz 𝑓𝑠 selected, one CM is created along the pass each 0.1 s (the integra-

tion time) with 𝑁𝑘 = 100 snapshots, through the implementation of the formulas reported

in Sec. 3.2, and the mean snapshot epoch is taken as the DOA estimation epoch. Thus, the

half of the integration time theoretically bounds the angular error in the DOA estimation

(without considering the noise effect), depending on the relative velocity and on the relative

distance between the station and the observed target. The angular error generated by the

integration time resolution is then mediated by the clustering and the regression phases,

where the outliers are rejected.

Starting from these data, MATER is run and the performance is assessed in terms of con-

vergence rate and of median value (that is the 50-th percentile) 𝜂 between all the root mean

square errors (RMSEs) of the data set, each of them computed as:

RMSE =

√︂
1

𝑁

∑︁(︀
Δ𝛾 −Δ𝛾

)︀2 (4.1)

for the two angular coordinates separately. Δ𝛾 stands for the correct angular position

and 𝑁 is the number of the observation epochs. The quantity 𝜂 is computed only on the

cases where MATER successfully converged to the solution. Then, the mean value of the

correlation index, indicated as 𝜁, is usually computed as an additional metrics, according to

Eq. 2.21.

First of all, MATER is run by assuming that all the objects are catalogued, i.e. an a-priori

estimate of their orbit is available. The results are summarised in Tab. 4.1, which reports

the success rate (in percentage), 𝜂Δ𝛾1 and 𝜂Δ𝛾2 (in degree) and 𝜁. The algorithm was able

to converge in all the cases. In addition, the low values of angular error and correlation
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Success [%] 𝜂Δ𝛾1 [deg] 𝜂Δ𝛾2 [deg] 𝜁

100 7.5e-03 1.0e-02 9.0e-02

Table 4.1: Catalogued case: statistical analysis on synthetic data.

index confirm the accurate performance of MATER in the catalogued objects observation.

Although the solution along Δ𝛾2 might be expected to be finer (as discussed in Sec. 4.1),

it presents a slightly larger RMSE. This is due to the length of the angular path travelled

during the integration time, as the estimated DOA can correspond to any actual value

assumed in the meanwhile. Since most of the data set passes correspond to high-inclination

orbits, the angular path travelled in the North-South direction is usually larger than the

one travelled in the East-West one and this makes the angular RMSE larger along Δ𝛾2 than

along Δ𝛾1. A detailed computational demand analysis is beyond the purpose of this work,

given the current prototype implementation in MATLAB [87], but it can be quantified in

less than 10 s per track by using a single core with an Intel(R) Core(TM) i7-8700 CPU @

3.20 GHz - 3.19 GHz processor.

Then, MATER is applied on the same passes in uncatalogued mode, i.e. by assuming that

no a-priori orbital estimates of the objects are available. The results are reported in Tab.

4.2. Each row in the table provides the performance obtained by one of the different solving

criteria introduced in Sec. 3.6. For both the SNR and the OD criteria, the brackets in the

first column specify which measurement is available to solve the ambiguity. The correlation

index 𝜁 is not reported for the criteria which solve the ambiguity without performing orbit

determination (as no additional measurement is available), that is the maximum occurrence

and the delta-k method criteria.

Focusing on the success rate, it is possible to note that the delta-k method and the SNR

criteria present a 100% success rate. On the contrary, the uncertainty introduced by the

integration time, coupled with the random noise associated to SR and DS profiles, makes

the OD-based criteria less robust. Multiple solutions featuring similar correlation indexes

may occur, and the wrong solution may feature a better correlation index. Furthermore,

this problem affects more the procedure when only DS is available, as the noisy DS profile

affects the SR reconstruction process (see Sec. 2.5.3): multiple SR profiles tend to match

the measured one and a wrong solution may happen to provide the best matching, and the

same problem affects the SR criterion. All these ambiguities are solved by the SNR criterion,
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Criterion Success [%] 𝜂Δ𝛾1 [deg] 𝜂Δ𝛾2 [deg] 𝜁

Max Occ. 98.1 7.0e-03 1.0e-02 -
Delta-k 100 6.9e-03 1.0e-02 -

OD (SR) 98.4 6.9e-03 1.0e-02 8.2e-02
OD (DS) 98.1 6.9e-03 1.0e-02 5.5e-01
SNR (SR) 100 6.9e-03 1.0e-02 8.2e-02
SNR (DS) 100 6.9e-03 1.0e-02 2.8e-01

SR 98.0 7.5e-03 1.0e-02 1.4e-01

Table 4.2: Uncatalogued case: statistical analysis on synthetic data. Each row is related
to one of the different solving criteria introduced in Sec. 3.6: Max Occ. stands for the
maximum occurrence criterion, Delta-k for the delta-k method criterion, OD (SR) and OD
(DS) for the OD-based criterion when SR is available and when DS is available respectively,
SNR (SR) and SNR (DS) for the SNR criterion when SR is available, and SR stands for SR
criterion.
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Figure 4-3: Uncatalogued case: erroneous track result in the maximum occurrence criterion,
due to DOAs erroneously estimation. The algorithm converges to a more central ambiguous
solution.

which better exploits the pass geometry and turns out to be very robust.

Concerning the maximum occurrence criterion, its failure cases regard passes spending sig-

nificant time in FoV side regions. A failure case of the maximum occurrence cluster criterion

is represented in Fig. 4-3.

Overall, the median angular RMSE is comparable to the catalogued case one, and is a bit

lower in the E-W direction (𝜂Δ𝛾1) than in the N-S one (𝜂Δ𝛾2). Another general considera-

tion is that the mean correlation index 𝜁, when available, is comparable to the one of the

catalogued case, and it increases for those orbit determinations performed by reconstructing

the SR from DS. Concerning the computational demand, MATER takes between 2 min and

3 min (depending on the track length), but when the maximum occurrence or the delta-k
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technique based criteria are used. In these cases, no OD is performed, and this makes the

former criterion faster. However the delta-k technique needs a double DOAs sequence esti-

mation, and this increases the computational time remarkably. All these evaluations were

performed with the same processor as above, by using a single core.

Figure 4-4 represents the empirical cumulative distribution function of the angular RMSE on

the entire data set, both in terms of Δ𝛾1 and Δ𝛾2, for the catalogued and the uncatalogued

cases, the latter with all the ambiguity solving criteria analysed. All of them share a similar

remarkably non-Gaussian trend, and it may be noticed that Fig. 4-4d presents much larger

RMSE maxima. Indeed, for that case ambiguous and correct tracks are very close each

other, and the SR criterion converges to a wrong candidate, but the angular RMSE is so

small that the reconstructed angular track is still compliant. It can be also observed that

the Δ𝛾2 CDF is always below the Δ𝛾1 one, but for the extremely small RMSE values: it

means that, although Δ𝛾1 errors are generally smaller than the Δ𝛾2 ones (as commented

above about Tab. 4.1 and Tab. 4.2), the angular estimation along Δ𝛾2 can reach a finer

accuracy than the one along Δ𝛾1, and this is due to the resolution, which is higher along

the former direction.

To sum up, based on the statistical analysis performed with the numerical tests, the track

reconstruction problem can be solved for both catalogued and uncatalogued objects. In the

latter case, the SNR criterion turns out to be the most reliable one, together with the delta-k

method (which does not need additional measurements). The OD-based and the SR criteria

provide good success rates, although they featured some failures, as like as the maximum

occurrence criterion. However, this last method tends to fail for passes close to the FoV

border.

4.3 Numerical Sensitivity Analysis

A sensitivity analysis of MATER performance is carried out in this section. In particular,

the analysis aims at testing algorithm robustness, both in terms of track estimate and

track refinement phases, especially in the solution of the track ambiguity problem. The

uncatalogued case is investigated, as it allows to carry out a more complete analysis than

the catalogued one. To solve the ambiguity, both the delta-k criterion and the SNR one with

measured SR are exploited, as they represent the optimal ways to select the proper track
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(a) Catalogued case.

0 0.01 0.02 0.03 0.04 0.05 0.06

RMSE [deg]

0

0.2

0.4

0.6

0.8

1

C
D

F

Max Occ.

 
1

 
2

(b) Uncatalogued case: maximum occurrence
criterion.

0 0.005 0.01 0.015 0.02 0.025

RMSE [deg]

0

0.2

0.4

0.6

0.8

1

C
D

F

Delta-k

 
1

 
2

(c) Uncatalogued case: delta-k criterion.
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(d) Uncatalogued case: SR criterion.
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(e) Uncatalogued case: OD criterion (with SR).
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(f) Uncatalogued case: OD criterion (with DS).
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(g) Uncatalogued case: SNR criterion (with SR).
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(h) Uncatalogued case: SNR criterion (with
DS).

Figure 4-4: Empirical cumulative distribution functions of the angular RMSE on the entire
data set, both for Δ𝛾1 and Δ𝛾2.

(according to the numerical analysis shown in Sec. 4.2).

The same data set of 899 simulated passes is generally used hereafter and the off-nominal

scenarios in which the sensitivity analysis is performed are listed as follows:

• Different TX and RX pointing directions: this is modelled by simulating observations

in which BIRALES receiver points towards 45N (azimuth 0 deg and elevation 45 deg)

and 90 (elevation 90 deg). Indeed, it is fundamental to investigate if performances vary

for different pointing elevation. For this analysis, data sets for 45N and 90 pointing,

of 493 and 361 passes respectively, corresponding to an observation window of 1 day

(May 20th, 2021), are used. This is the only case in which the data sets differ from

the one of 899 passes.

• Interruption of the detected signal, both for SNR, SR and DS : this is simulated by

randomly subtracting a certain percentage (10%, 20% and 50%) of measurements,

such that, for those instants, the CM is built based on noise only. Signal interruption

may occur for different reasons, such as the target tumbling motion or a possible

interference.

• Lower transmitted power : this is simulated by modifying the transmitted power from

1e+05 W to 1e+04 W, 5e+03 W and 1e+03 W. According to Eq. 2.14, this makes the

signal less distinguishable from the noise and, so, decreases the percentage of detected

passes (a further quantity evaluated in the analysis). A decrease in transmitted power

can be either planned (decided by the operator), or unexpected (for instance, a sudden
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decrease in the electric feed).

• RCS fluctuations (due to target tumbling, for instance): this is simulated by modifying

the standard deviation of the measured SNR additional Gaussian noise from 0.5 dB

to 1 dB, 2 dB and 5 dB, following an analogous analysis presented in [41].

• Different sampling frequency : as commented above, the MATER performance de-

pends on the integration time and, so, on the sampling frequency acquisition. So, the

sampling frequency is modified from 1 kHz to 500 Hz, 2 kHz and 10 kHz, and the

integration time is modified accordingly, as detailed later.

• Mismatching between the actual RCS and the one used to predict the SNR (in the SNR

criterion only): this is modelled by modifying the RCS adopted for the prediction from

1 m2 to 0.1 m2, 5 m2 and 10 m2. The RCS used to solve the ambiguity through SNR

criterion is instead kept fixed to the nominal value of 1 m2. The delta-k method

criterion is not applied to this case.

Referring to Tab. 4.3, it is possible to notice that MATER performances are not altered by

the pointing direction. On the contrary, Tab. 4.4 and Tab. 4.5 show that the algorithm

accuracy (in terms of 𝜂Δ𝛾1 and 𝜂Δ𝛾2) deteriorates for increasing signal interruption rate

(with the appearance of 3 failure cases in the 50% interruption, for the SNR criterion) and,

moreover, for decreasing transmitted power. In this latter scenario, also the percentage

of detected passes (with respect to the original 899 transits data set) is reported, and the

smaller the transmitted power, the weaker the signal impinging the receiver array, the lower

the number of detected objects. On the one hand, the detection percentage decrease is more

remarkable in applying the delta-k technique (as two different signals are involved and only

the instants when both of them are detectable can be retained), on the other hand such

an ambiguity solving method always guarantees the convergence to the correct solution.

Comparing Tab. 4.5 with Tab. 4.2, it can be further observed that the deterioration in Δ𝛾1

is much larger than in Δ𝛾2 one. Indeed, the effect of the SNR decrease on the accuracy of

the angular estimate is strongly linked to the resolution, which is higher along Δ𝛾2 direction,

as it owns more receivers. Consequently, Δ𝛾1 tends to be more affected than Δ𝛾2. Figure

4-5 shows that the lower the SNR level, the broader the error distribution, coherently with

the resolution relationship.
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Pointing [deg] Success [%] 𝜂Δ𝛾1 [deg] 𝜂Δ𝛾2 [deg] 𝜁

SNR criterion (SR)

45 N 100 7.5e-03 1.2e-02 7.5e-02
90 N 100 7.0e-03 1.9e-02 8.1e-02

delta-k method criterion

45 N 100 9.3e-03 1.3e-02 -
90 N 100 7.3e-03 1.9e-02 -

Table 4.3: Uncatalogued case: statistical analysis on synthetic data by considering different
pointing directions.

Interruption [%] Success [%] 𝜂Δ𝛾1 [deg] 𝜂Δ𝛾2 [deg] 𝜁

SNR criterion (SR)

10 100 8.7e-03 1.2e-02 1.2e-01
20 100 1.2e-02 1.5e-02 1.8e-01
50 99.7 1.9e-02 2.3e-02 4.4e-01

delta-k method criterion

10 100 7.4e-03 1.2e-02 -
20 100 8.6e-03 1.3e-02 -
50 100 1.6e-02 2.0e-02 -

Table 4.4: Uncatalogued case: statistical analysis on synthetic data by varying the percent-
age of the pass in which no signal is detected.

TX Power [W] Success [%] Detection [%] 𝜂Δ𝛾1 [deg] 𝜂Δ𝛾2 [deg] 𝜁

SNR criterion (SR)

1e+04 64.2 99.8 5.2e-03 1.3e-02 7.8e-02
5e+03 55.6 97.7 6.0e-03 1.3e-02 9.7e-02
1e+03 90.0 10.5 3.1e-02 3.0e-02 1.1e-01

delta-k method criterion

1e+04 100 99.4 1.1e-02 1.1e-02 -
5e+03 100 93.9 1.3e-02 1.2e-02 -
1e+03 100 5.6 1.1e-02 1.8e-02 -

Table 4.5: Uncatalogued case: statistical analysis on synthetic data by varying the trans-
mitted power.
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Figure 4-5: Signal DOA error distribution for two SNR levels. Each sample is related to
a CM computed with differently distributed noise, whose mean and standard deviation do
not change. It can be noticed that the smaller the SNR level, the broader the error distri-
bution, with a larger elongation along Δ𝛾1 than along Δ𝛾2, coherently with the resolution
relationship.

On average, this effect induces an angular error comparable to the one linked to the integra-

tion time, and this smooths out the accuracy difference between the two coordinates shown

in Tab. 4.2.

Table 4.6 reports the sensitivity analysis results by varying the sampling frequency: 500 Hz,

2000 Hz and 10000 Hz. To keep the same number of samples per integration as adopted

in the nominal analysis (𝑁𝑘 = 100), the integration time is modified accordingly: 0.2 s for

500 Hz, 0.05 s for 2000 Hz and 0.01 s for 10000 Hz. From Tab. 4.6 it can be observed that,

generally, the larger the sampling frequency, the finer the angular estimation, and this can

be linked to the smaller integration time used. However, the smaller the integration time,

the larger the computational demand, as more and more DOAs shall be estimated. Further-

more, an increase in the sampling frequency leads to an increase in the receiver bandwidth

(that is to the noise term in Eq. 2.16), which attenuates the percentage of the detected

signal and makes the SNR profile more noisy. The former effect is visible for the delta-k

method criterion, as some targets are not observed in the 10000 Hz case, while the latter

affects the SNR criterion, which presents oscillating performance by increasing the sampling

frequency.

The RCS fluctuations slightly deteriorate the results, but both of the criteria result to be

robust, as reported in Tab. 4.7. Finally, the RCS mismatching case, regarding the SNR
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Sampling
frequency [Hz] Success [%] Detection [%] 𝜂Δ𝛾1 [deg] 𝜂Δ𝛾2 [deg] 𝜁

SNR criterion (SR)

5e+02 100 100 1.5e-02 2.1e-02 1.5e+00
2e+03 100 100 7.4e-03 9.0e-03 1.2e-01
1e+04 100 100 1.3e-02 1.4e-02 1.7e-01

delta-k method criterion

5e+02 100 100 1.5e-02 2.1e-02 -
2e+03 100 100 5.8e-03 8.1e-03 -
1e+04 100 99.7 4.6e-03 5.2e-03 -

Table 4.6: Uncatalogued case: statistical analysis on synthetic data by varying the sampling
frequency.

Fluctuations [dB] Success [%] 𝜂Δ𝛾1 [deg] 𝜂Δ𝛾2 [deg] 𝜁

SNR criterion (SR)

1 100 6.8e-03 1.0e-02 8.2e-02
2 100 6.9e-03 1.0e-02 8.2e-02
5 100 7.5e-03 1.1e-02 8.6e-02

delta-k method criterion

1 100 6.9e-03 1.0e-02 -
2 100 7.1e-03 1.0e-02 -
5 100 1.1e-02 1.1e-02 -

Table 4.7: Uncatalogued case: statistical analysis on synthetic data by varying the consid-
ered RCS fluctuations.

criterion only (as commented above), is reported in Tab. 4.8. It is possible to appreciate

that the SNR criterion turns out to be fully robust to RCS mismatching.

To recap, the sensitivity analysis shows that MATER is quite robust to off-nominal condi-

tions, and both the SNR and the delta-k method criteria confirm to be a reliable approach to

solve the ambiguity problem. Major limitations may arise for transmitted power decrease,

as the signal impinging the array is less intensive. A larger sampling frequency enhances

the DOA estimation precision, as, keeping fixed the number of samples used to generate the

CM, the integration time (and so the related time uncertainty) can be reduced. However,

besides the larger computational demand, it leads to an increase of the receiver noise, which

can possibly deteriorate both the detection capability and the estimation quality.
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Actual RCS [m2] Success [%] 𝜂Δ𝛾1 [deg] 𝜂Δ𝛾2 [deg] 𝜁

SNR criterion (SR)

0.1 100 7.9e-03 1.0e-02 9.3e-02
5 100 6.8e-03 1.0e-02 8.1e-02
10 100 6.8e-03 1.0e-02 8.2e-02

Table 4.8: Uncatalogued case: statistical analysis on synthetic data by varying the actual
RCS of the observed object. The RCS used in SNR criterion is kept fixed to the nominal
value of 1 m2.

Real signal

For the sake of completeness, the following analysis focuses on a test case in which the

CMs are computed synthetically, while the SNR used to simulate the signal in Eq. 3.9 is

derived from a real satellite pass. This analysis is conducted as an intermediate step between

synthetic simulations and real observation. Similarly to the sensitivity analysis, this section

deals with the uncatalogued case by applying the delta-k method and the SNR criteria, the

latter with measured SR.

The selected scenario is the re-entry of the Chinese launcher CZ-5B R/B core stage occurred

in May 2021. This re-entry event was monitored by EUSST and BIRALES contributed to

this observation campaign. In particular, the pass of May 5th, 2021 at 02:18:53 a.m. (UTC),

is here analysed. The object was transiting southwards from the receiver, at an elevation

of 37.1 deg. This was below the receiver minimum mechanical elevation of 42 deg (see Sec.

1.5) and so an electronic steering was exploited. The transmitter pointing was 40.8 deg

in azimuth and 42.1 deg in elevation. This pass is selected because it is a real worst case

scenario. Indeed, the object flies at low elevation with respect to the receiver and the signal

exhibits strong variations and regularly repeating peaks due to the uncontrolled tumbling

motion of the target. The recorded signal is reported in Fig. 4-6. Overall, about 58.2 %

of the pass produce no SNR, which is more than the worst case scenario analysed in the

previous section.

This varying signal produces frequent failures in the DOA estimation, as illustrated in Fig.

4-7a, which shows the output of the track estimation phase. It is possible to notice that the

estimates are spread over the entire FoV, except for those instants corresponding to a high

intensity signal. Then, the track refinement phase is performed: the DOAs are clustered,

their regression is performed and the ambiguity solving criterion is applied. In this way,
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Figure 4-6: Real SNR profile of the CZ-5B R/B pass observed by BIRALES on the 5th of
May 2021. The strongly varying signal and the regularly repeating peaks are due to the
uncontrolled tumbling motion of the target.
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(b) Track refinement phase result.

Figure 4-7: MATER applied to the real SNR profile of the CZ-5B R/B pass observed by
BIRALES on the 5th of May 2021. Figure 4-7b also represents the correct DOAs used for
the final regression.
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𝜂Δ𝛾1 [deg] 𝜂Δ𝛾2 [deg] 𝜁

SNR criterion (SR)

1.6e-02 4.0e-02 1.6e-01

delta-k method criterion

6.0e-02 5.8e-02 -

Table 4.9: MATER results related to the real SNR profile of the CZ-5B R/B pass observed
by BIRALES on the 5th of May 2021.

MATER provides the track reported in Fig. 4-7b, together with the correct DOAs identified

by solving the ambiguity and then used for the final regression.

The analysis results are reported in Tab. 4.9. It is possible to notice that, for both of the

solving criteria, 𝜂Δ𝛾1 and 𝜂Δ𝛾2 are comparable: indeed, the path along E-W direction is

larger than the one along the N-S one, but the DOA estimations used to derive the angular

track are too few to appreciate a larger error along the former direction. Overall, there is

a deterioration in the track reconstruction accuracy with respect to Tab. 4.2, and this is

due to the noisy DOA estimates. Yet, especially considering the relevant noise of the SNR

measurements, MATER provides a reasonably accurate track estimate.

4.4 SST services numerical simulations

Given the nominal and the sensitivity analyses provided in Sec. 4.2 and Sec. 4.3, MATER

algorithm is tested on numerical simulations regarding SST services. In particular, the Re-

entry Analysis and Collision Avoidance services are investigated, as they are related to the

single source observation.

4.4.1 Re-entry

During the re-entry, the object experiences a very highly perturbed environment, as it flies

at low altitudes, where both the air drag and the gravitational harmonics are extremely

effective. This makes the pass prediction unreliable and, especially for the last phases, may

force the observation to be lead in an uncatalogued mode, that is without exploiting the

pass prediction. For this reason, it is fundamental to assess what is the difference between
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A𝑎𝑒𝑟/m [m2/kg] A𝑟𝑎𝑑/m [m2/kg] Cd [-] Cr [-]

5.9e-03 5.9e-03 2.2 2.2

Table 4.10: Physical parameters of the reentering object.

carrying out the re-entry monitoring in the catalogued and in the uncatalogued way, in terms

of both orbit determination and angular accuracy (that is just for what concerns MATER

algorithm).

The selected synthetic scenario reproduces the observation campaign of the Chinese launcher

CZ-5B R/B occurred in May 2021 and already introduced in Sec. 4.3. The analysis simulates

the observations carried out by BIRALES in the ten days before the re-entry epoch, and all

the physical parameters of the reentering object (reported in Tab. 4.10) are assumed to be

known.

To reproduce the re-entry, the object last available TLE from [13] is taken and numerically

propagated up to the re-entry epoch (according to the high-fidelity propagator described in

Sec. 2.2). Then, the state at the re-entry epoch is back-propagated (in the same manner

as before) for the previous ten days, such that the target states from April 29th, 2021 up to

May 09th, 2021 are computed. BIRALES observations are simulated on this time window.

First, the process is run considering the MATER catalogued case: the signal DOA estimation

is performed by giving the pass prediction as first guess in the optimisation of Eq. 3.14, and

the angular track is derived as described in Sec. 3.5. The computed angular measurements

are joint to the SR and DS ones, to which a Gaussian noise is associated with a standard

deviation retrieved from BIRALES accuracy (30 m and 10 Hz, for SR and DS respectively).

Then, a ROD process based on a Non-linear Least Squares with a-priori estimation (as pre-

sented in Sec. 2.5.2) is performed, embedding the high-fidelity propagation.

Observation epoch RMSEΔ𝛾1 RMSEΔ𝛾2 𝜁 Pos. Err. Vel. Err.

[UTC] [deg] [deg] - [km] [km/s]

29-Apr-2021 03:32:47 2.7e-02 3.7e-03 1.2e-01 3.3e-03 3.5e-03

29-Apr-2021 05:07:09 5.8e-02 2.4e-03 1.1e-01 7.2e-03 2.6e-03

29-Apr-2021 06:41:13 4.7e-02 4.9e-03 1.3e-01 9.1e-03 2.5e-03
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30-Apr-2021 03:27:05 3.4e-02 3.9e-03 1.2e-01 4.1e-04 4.4e-03

30-Apr-2021 05:01:11 6.1e-02 1.5e-04 1.3e-01 3.6e-03 3.9e-03

30-Apr-2021 06:35:11 3.8e-02 4.6e-03 1.2e-01 9.5e-03 1.1e-02

01-May-2021 01:44:40 1.6e-02 2.8e-03 1.2e-01 5.9e-04 3.1e-03

01-May-2021 03:19:14 4.1e-02 4.2e-03 1.2e-01 6.2e-04 1.2e-03

01-May-2021 04:53:08 6.0e-02 2.3e-03 1.4e-01 6.9e-03 2.4e-03

01-May-2021 06:27:05 3.1e-02 4.1e-03 1.3e-01 1.3e-03 1.3e-03

02-May-2021 01:34:56 2.0e-02 2.8e-03 1.2e-01 1.4e-03 9.1e-03

02-May-2021 03:09:10 4.8e-02 4.1e-03 1.2e-01 2.6e-03 3.9e-03

02-May-2021 04:42:53 5.6e-02 4.0e-03 9.7e-02 5.8e-03 4.1e-03

02-May-2021 06:16:50 2.5e-02 3.5e-03 1.2e-01 2.5e-03 1.7e-03

03-May-2021 01:22:52 2.4e-02 3.1e-03 1.2e-01 2.9e-03 8.5e-04

03-May-2021 02:56:48 5.3e-02 3.5e-03 1.2e-01 3.0e-03 1.4e-03

03-May-2021 04:30:21 5.1e-02 4.8e-03 1.5e-01 1.1e-03 8.6e-04

03-May-2021 06:04:16 2.0e-02 3.1e-03 1.2e-01 3.5e-04 3.1e-03

04-May-2021 01:08:17 2.7e-02 3.5e-03 1.3e-01 2.6e-03 2.3e-03

04-May-2021 02:41:57 5.7e-02 2.4e-03 1.1e-01 1.1e-02 5.1e-03

04-May-2021 04:15:22 4.5e-02 5.0e-03 1.2e-01 2.1e-04 1.9e-03

05-May-2021 00:51:00 3.1e-02 4.1e-03 1.2e-01 3.0e-03 6.0e-03

05-May-2021 02:24:25 5.9e-02 1.3e-03 1.2e-01 1.0e-03 6.9e-03

05-May-2021 03:57:41 4.1e-02 4.9e-03 1.0e-01 5.4e-04 2.0e-03

06-May-2021 00:30:43 3.4e-02 4.1e-03 1.1e-01 1.2e-03 2.8e-03

06-May-2021 02:03:53 6.0e-02 3.3e-04 1.1e-01 5.8e-04 8.0e-04

06-May-2021 03:36:57 3.8e-02 4.6e-03 1.3e-01 1.8e-03 2.7e-03

07-May-2021 00:06:54 3.7e-02 4.1e-03 1.3e-01 2.0e-03 2.6e-03

07-May-2021 01:39:47 6.1e-02 3.3e-04 1.1e-01 7.7e-03 3.1e-03

07-May-2021 03:12:37 3.6e-02 4.4e-03 1.4e-01 2.3e-03 2.9e-03

07-May-2021 23:38:31 3.8e-02 3.9e-03 1.3e-01 9.8e-04 1.5e-03

08-May-2021 01:11:01 6.3e-02 4.0e-04 1.1e-01 4.8e-03 3.9e-03

08-May-2021 02:43:29 3.6e-02 4.1e-03 1.2e-01 5.4e-03 3.8e-03

08-May-2021 23:02:16 3.7e-02 3.2e-03 1.3e-01 3.7e-04 1.3e-03

09-May-2021 00:33:49 6.8e-02 3.3e-04 1.0e-01 7.9e-03 1.5e-03
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09-May-2021 02:04:58 4.1e-02 3.0e-03 1.2e-01 3.2e-03 2.1e-03

Median values

- 3.9e-02 3.6e-03 1.2e-01 2.5e-03 2.7e-03

Table 4.11: Re-entry simulation: results of the catalogued case observation.

The results are reported in Tab. 4.11, divided for each observation and with the median

values at the end. It is possible to observe that, contrary to the analyses in Sec. 4.2 and

(generally) in Sec. 4.3, the Δ𝛾2 estimation is finer than the Δ𝛾1 one, as the transit is along

the E-W direction and, during the integration time, the path covered along Δ𝛾1 is longer

than the one along Δ𝛾2, which makes the former estimation less accurate. About this, it is

important to remark that the flying velocity is high (oscillating between 7.7 km/s and 7.8

km/s), and this increases the path covered during the integration time. The orbit deter-

mination errors are in the order of e-03 both in position and in velocity, even if the latter

is expected to present a smaller order of magnitude, and this suggests that the measure-

ments noise and the integration time uncertainty affect that quantity more. Nevertheless,

the correlation index 𝜁 is similar to the results of the analyses in Sec. 4.2 and Sec. 4.3,

and this confirms the compliance of the result. Finally, it is worth to notice that both the

MATER result accuracy and the orbit determination errors are stable along all the obser-

vations, although the later the observation, the more perturbing the environment crossed

by the target, and this confirms that the algorithm represents a reliable solution in re-entry

campaigns.

Next, the same scenario is studied in the uncatalogued case. First MATER is run without

the a-priori prediction and following the logical scheme presented in Sec. 3.6 and by solving

the ambiguity through the SNR criterion. Then, the radar IOD procedure described in Sec.

2.5.3 is run based on the computed track and on the SR measurement (to which a noise

with 30 m standard deviation is applied, as above). Finally, the computed state is refined

in a Non-linear Least Squares, which embeds the high-fidelity propagator, with an a-priori

estimation represented by the IOD result.
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Observation epoch RMSEΔ𝛾1 RMSEΔ𝛾2 𝜁 Pos. Err. Vel. Err.

[UTC] [deg] [deg] - [km] [km/s]

29-Apr-2021 03:32:47 2.7e-02 3.4e-03 2.7e-01 3.9e-02 2.9e-02

29-Apr-2021 05:07:09 5.8e-02 2.4e-03 2.1e-01 3.6e-02 8.0e-02

29-Apr-2021 06:41:13 4.7e-02 4.9e-03 1.9e-01 5.1e-02 6.5e-02

30-Apr-2021 03:27:05 3.4e-02 3.9e-03 2.8e-01 4.1e-02 4.0e-02

30-Apr-2021 05:01:11 6.1e-02 1.4e-04 2.4e-01 2.8e-02 8.4e-02

30-Apr-2021 06:35:11 3.8e-02 4.6e-03 2.0e-01 3.9e-02 4.6e-02

01-May-2021 01:44:40 1.6e-02 2.9e-03 1.9e-01 4.6e-02 1.4e-02

01-May-2021 03:19:14 4.1e-02 4.2e-03 2.5e-01 4.2e-02 5.2e-02

01-May-2021 04:53:08 6.0e-02 2.4e-03 2.3e-01 4.1e-02 7.7e-02

01-May-2021 06:27:05 3.1e-02 4.1e-03 1.9e-01 3.4e-02 3.5e-02

02-May-2021 01:34:56 1.9e-02 3.2e-03 2.1e-01 3.8e-02 2.0e-02

02-May-2021 03:09:10 4.8e-02 4.1e-03 2.4e-01 4.1e-02 6.1e-02

02-May-2021 04:42:53 5.6e-02 4.0e-03 2.7e-01 4.1e-02 7.6e-02

02-May-2021 06:16:50 2.5e-02 3.5e-03 1.9e-01 3.6e-02 2.7e-02

03-May-2021 01:22:52 2.3e-02 3.4e-03 2.3e-01 3.9e-02 2.4e-02

03-May-2021 02:56:48 5.3e-02 3.5e-03 2.3e-01 3.3e-02 7.1e-02

03-May-2021 04:30:21 5.1e-02 4.8e-03 2.4e-01 4.5e-02 6.4e-02

03-May-2021 06:04:16 2.0e-02 3.3e-03 1.7e-01 3.2e-02 2.2e-02

04-May-2021 01:08:17 2.7e-02 3.7e-03 2.5e-01 4.6e-02 3.0e-02

04-May-2021 02:41:57 5.7e-02 2.5e-03 2.3e-01 4.9e-02 7.2e-02

04-May-2021 04:15:22 4.5e-02 5.0e-03 2.1e-01 4.6e-02 5.8e-02

05-May-2021 00:51:00 3.1e-02 3.8e-03 2.6e-01 4.3e-02 3.5e-02

05-May-2021 02:24:25 5.9e-02 1.2e-03 2.3e-01 3.5e-02 7.7e-02

05-May-2021 03:57:41 4.1e-02 4.9e-03 2.0e-01 4.3e-02 4.9e-02

06-May-2021 00:30:43 3.4e-02 4.1e-03 2.9e-01 4.2e-02 4.0e-02

06-May-2021 02:03:53 6.0e-02 4.0e-04 2.1e-01 3.7e-02 8.6e-02

06-May-2021 03:36:57 3.8e-02 4.6e-03 1.9e-01 3.4e-02 4.5e-02

07-May-2021 00:06:54 3.7e-02 4.1e-03 2.6e-01 4.3e-02 4.3e-02

07-May-2021 01:39:47 6.1e-02 2.6e-04 2.5e-01 3.3e-02 8.6e-02
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07-May-2021 03:12:37 3.6e-02 4.4e-03 2.4e-01 3.4e-02 4.2e-02

07-May-2021 23:38:31 3.8e-02 4.0e-03 2.7e-01 4.3e-02 4.7e-02

08-May-2021 01:11:01 6.3e-02 6.1e-04 2.7e-01 4.7e-02 9.0e-02

08-May-2021 02:43:29 3.6e-02 4.0e-03 1.9e-01 3.7e-02 4.3e-02

08-May-2021 23:02:16 3.7e-02 3.3e-03 2.5e-01 3.8e-02 4.6e-02

09-May-2021 00:33:49 6.8e-02 3.1e-04 2.2e-01 2.8e-02 1.1e-01

09-May-2021 02:04:58 4.0e-02 2.1e-03 1.5e-01 3.0e-02 5.2e-02

Median values

- 3.9e-02 3.6e-03 2.3e-01 3.9e-02 4.8e-02

Table 4.12: Re-entry simulation: results of the uncatalogued case observation.

Tab 4.12 reports the results of the simulation. It can be noticed that, although the angular

accuracy is comparable to the catalogued case one (always with Δ𝛾2 more accurate than

Δ𝛾1), the orbit determination error increases of one order of magnitude both for position

and velocity. This is due to the orbit determination algorithm implemented, as the IOD

procedure exploited to retrieve the Non-linear Least Squares first guess is analytical, and

so it does not provide an accurate result for the highly perturbed scenario here analysed.

The Non-linear Least Squares does not improve the estimation in a remarkable way, mainly

for its dependence on the first guess. Nevertheless, the result is compliant, as confirmed

by the correlation index median 𝜁. Finally, similarly to the catalogued case, the results do

not deteriorate moving from the first to the last transits, and this once again confirms the

applicability of MATER to reconstruct track in all the phases of the re-entry.

To recap, the Re-entry service can profit from MATER algorithm across all the phases, both

in the catalogued and in the uncatalogued case. However, the latter situation may lead to

a deterioration in orbital state estimation because of the IOD algorithm used.

4.4.2 Collision Avoidance

The Collision Avoidance service is devoted to the conjunction analyses: it is in charge of

assessing possible conjunctions among catalogued objects and, for those which overcome
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𝑎 [km] 𝑒 𝑖 [deg] Ω [deg] 𝜔 [deg]

IRIDIUM 33 7145.1 7.0e-04 86.4 121.2 190.0
COSMOS 2251 7155.5 1.2e-03 74.0 17.2 84.1

Table 4.13: Orbital parameters of IRIDIUM 33 and COSMOS 2251.

threshold quantities, a Conjunction Data Message (CDM) [10] is created, which groups the

information of the satellites involved. Usually, the objects are distinguished in primary (the

one which is manoeuvrable, for instance) and secondary (as space debris, for example) [88].

For them, the CDM reports the satellites state, both in terms of mean and covariance,

the Time of Closest Approach (TCA), the related Miss Distance (MD) and the Probabil-

ity of Collision (PoC). Several methods exist to compute the PoC, depending on the type

of conjunction. Under particular assumptions, such as high relative velocity during the

conjunction, the short-term encounter model can be used, which allows to reduce the com-

putational demand. According to this model, multiple PoC computation methods have been

developed, which are either numerical, like [89] and [90], or analytical, like [91], [92] and

[93].

OD applications for CA service related tasks consist in determining the orbital state of the

observed target (either IOD or ROD, depending on the application) to maintain the objects

catalogue and, so, to allow CA operations.

To assess the performance of MATER algorithm in contributing to the CA service, a sim-

ulation is carried out referred to the collision between COSMOS 2251 and IRIDIUM 33,

occurred on February 10th, 2009, at 16:56 UTC [94]. A CDM is simulated starting from

the temporally closest TLEs [14], resulting in a TCA dated at 16:55:59.809 (UTC) and in

827.5242 km of MD. The PoC is computed through the Chan’s method [91] and results

equal to 9.851e-08. It may be argued that the MD is too large and the PoC is too small for

a conjunction in which the satellites eventually collided. However, this is a quantity coher-

ent with the fact that no manoeuvre was applied by operators, as the threshold quantities

(on either MD or PoC) were not overcome. Both IRIDIUM 33 and COSMOS 2251 orbital

parameters (with the exception of the true anomaly) are reported in Tab. 4.13.

The orbital mean state of COSMOS 2251 is backward propagated in time via SGP4 [52] up

to February 09th, 2009, at 17:39:44.809 UTC. At this epoch, the pass prediction is simulated

by associating a covariance to the orbital mean state, according to the method described in
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Reference 1 kHz 5 kHz 10 kHz

TCA (2009-02-10) 16:55:59.809 16:56:01.048 16:55:59.588 16:55:58.500
MD [km] 827.5242 10982.7491 3440.7894 13572.9589

PoC (Chan) 9.851e-08 6.9209e-09 2.4199e-08 7.0188e-11

Table 4.14: Conjunction analysis simulation by varying the sampling frequency.

[95], and the mean is perturbed accordingly, resulting in an error of 9.53e-02 km in position

and 4.6e-04 km/s in velocity. By this way, a difference is set between the ground truth

(represented by the backward propagation) and the pass prediction.

The obtained orbital state (in terms of both mean and covariance) is forward propagated via

UT [58], for 8.33 h, when the COSMOS 2251 enters in BIRALES FoV and is detected. At

this point, measurements are synthetically generated, both in terms of SR, DS and CMs. To

both SR and DS a Gaussian noise is associated (with 30 m and 10 Hz standard deviation),

while the signal is sampled with a varying frequency (1 kHz, 5 kHz, 10 kHz) and keeping

fixed to 100 the number of samples used to compute the CM. This makes the integration

time varying according to the sampling frequency: 0.1 s, 0.02 s and 0.01 s for the 1 kHz, 5

kHz and 10 kHz cases respectively. The angular measurements are computed by MATER

algorithm, and ROD via UKF is run [66], embedding SGP4. The determined orbital state

is forward propagated, and both TCA, MD and PoC (still according to Chan’s method [91])

are computed. The results are reported in Tab. 4.14.

It can be observed that the TCA varies within about 1 s due to the OD error, and this

provokes a change in both the MD and the PoC. In addition, it is to point out that, increasing

𝑓𝑠 up to 10 kHz does not imply an improvement in the results, as the case in which the

best matching is reached is the 5 kHz case. This is coherent with what obtained in the

sensitivity analysis in Sec. 4.3: the larger the sampling frequency, the smaller the integration

time uncertainty, but the larger the noise contribution, and this may deteriorate the track

estimation and, so, the OD accuracy.

Figure 4-8 reports, for the 5 kHz case, the time trends of the error (with respect to the

ground truth) and the standard deviation, both for the tracked position and velocity of the

satellite state. The orbital state knowledge is represented by the prediction propagated up

to the OD epoch, and then by the OD result up to the TCA. In correspondence of the OD,

a fall both in error and standard deviation occurs, due to the refinement resulting from the
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(d) Velocity standard deviation in time.

Figure 4-8: Time trend of error and standard deviation both for position and velocity of the
tracked satellite state, for the 5 kHz case. The error is computed with respect to the ground
truth. It is possible to appreciate the fall, both in error and in standard deviation, due to
the ROD process, which allows to reach smaller error and uncertainty at the TCA.

ROD, and this allows to reach errors and uncertainties at the TCA much smaller than what

would have been obtained by directly propagating the predicted orbital state (also visible in

the plots). It must be remarked that the errors remain bounded and are generally smaller

than the associated uncertainties, but right after the OD.

It is interesting to asses the results for the IOD case. In this situation, the angular track is

computed by MATER algorithm by solving the ambiguity through the delta-k method, and

a first guess for the orbital state (both in terms of mean state and covariance) is retrieved

based on [69], and then refined according to UKF [66]. As Fig. 4-9 shows, the result from

IOD induces very large errors both in position and in velocity at the correct TCA, and

this prevents the conjunction data computation to provide reliable results. In particular,

using the orbital state determined by the IOD, no conjunction is alerted by the tool which

computes TCA, MD and PoC. Such a decrease in performance is due to the IOD algorithm
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Figure 4-9: Time trend of error and standard deviation both for position and velocity after
the IOD, for the 5 kHz case. The error is computed with respect to the ground truth. Given
that no conjunction is identified by the screening process, the plots show the propagation
on the same time window as in the ROD case to better compare the results.

used rather than to MATER performance, which provides an angular track with the same

accuracy as in the ROD case, as visible in Tab. 4.15. Indeed the orbital state first guess

is computed through [69], which is an analytical method, and this introduces an error the

UKF [66] is not able to fully compensate. Therefore, larger errors with respect to the ROD

at the OD epoch are obtained, as reported in Tab. 4.15. Finally, it is to point out that the

position and velocity errors are always larger than the respective uncertainties.

To recap, this section provided an example of MATER algorithm used in OD applications for

CA service tasks. Appreciable results are reached by a ROD based on UKF [66] and embed-

ding SGP4 [52], while, similarly to the Re-entry service analysis in Sec. 4.4.1, performance

deteriorates with IOD applications because of the IOD algorithm used.
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RMSEΔ𝛾1 RMSEΔ𝛾2 Pos. Err. Vel. Err.
[deg] [deg] [km] [km/s]

ROD 2.1e-03 6.6e-03 1.5e-01 3.3e-03
IOD 2.1e-03 6.6e-03 2.1e-01 9.2e-03

Table 4.15: Angular RMSE and OD results, both for ROD and IOD processes.

𝑎 [km] 𝑒 𝑖 [deg] Ω [deg] 𝜔 [deg]

6794.9 6.1e-04 51.5 228.8 45.6

Table 4.16: Real observation: International Space Station orbital parameters.

4.5 Real Observation

In this section, MATER performance is assessed on real data from one BIRALES observa-

tion. The algorithm could only be run using the current receiver back-end of BIRALES,

which allows to post-process recorded raw data (operationally a key aspect, as mentioned in

Sec. 1.6), but it does not match exactly the typical requirements for optimal MATER per-

formance. BIRALES is currently configured to use the static multibeam strategy described

in Sec. 1.5, and the corresponding settings prevented an optimal generation of the real

CMs. On the one hand, the CM integration time was 0.42 s, which introduces a significant

uncertainty on the estimated DOA. On the other hand, the CM can only be built on a signal

acquired with a channel with 78 kHz bandwidth. This limitation poses a severe constraint,

as the current BIRALES back-end allows MATER to be realistically applied only on the

observation of resident space objects providing a relatively intense received signal (i.e., large

RCS and/or short slant range). For this reason, the results obtained on an observation of

the International Space Station (ISS) is reported hereafter.

The observed pass of the ISS occurred on April 28th, 2021 at 08:44:32 (UTC), southwards

from the receiver, at an elevation of 83.9 deg. The predicted orbital parameters, according

to the TLE [14], are reported in Tab. 4.16 (with the exception of the true anomaly). The

transmitter pointing angles were 19.3 deg in azimuth and 35.1 deg in elevation.

The resulting MUSIC pattern, for a generic instant, is illustrated in Fig. 4-10, where it

is possible to appreciate the presence of multiple peaks, similarly to Fig. 4-1. The DOAs

resulting from the track estimate phase are reported in Fig. 4-11a, while the reconstructed

angular profile after the track refinement phase (exploiting the OD-based criterion with
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Figure 4-10: Three-dimensional array response for the real pass of the International Space
Station (ISS) on April 28th, 2021 at 08:44:32 (UTC).

RMSEΔ𝛾1 [deg] RMSEΔ𝛾2 [deg] 𝜁

1.5e-01 9.2e-02 2.0e-01

Table 4.17: MATER results related to the real pass of the International Space Station (ISS)
on April 28th, 2021 at 08:44:32 (UTC).

measured SR) is reported in Fig. 4-11b, together with the correct DOAs (identified by

solving the ambiguity) used to obtain the final regression. The estimated DOAs are along

the real track for a large portion of the pass. Yet, a slight time shift between the real track

and the one estimated by MATER can be observed (e.g., close to the end points of the

track). This shift can be mainly attributed to four possible factors: the relatively long CM

integration time and the associated time uncertainty introduced in the estimated DOA, the

signal quality (attenuated by the 78 kHz channel bandwidth), the inaccuracy of the reference

ISS track (which has been retrieved from TLE) the result is compared to and, possibly,

sensor calibration inaccuracies. All of these factors have an impact on the performance

reported in Tab. 4.17 (for the uncatalogued case): the angular RMSEs are about 1 order of

magnitude larger than those obtained with the statistical analysis presented in Sec. 4.2, but

the correlation index is of coherent magnitude with the nominal analyses. Nevertheless, the

results are encouraging as they show that MATER algorithm can reconstruct the track for

orbit determination purposes, even when a not optimal back-end is used, as in the current

settings.
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Figure 4-11: MATER applied to the real pass of the International Space Station (ISS) on
April 28th, 2021 at 08:44:32 (UTC). In Fig. 4-11b also the DOAs used for the final regression
are represented.
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Chapter 5

MATER applied to multiple sources

observations

This chapter discusses MATER application to the multiple sources scenario, that is when,

for certain observation epochs, more than one source is present in the receiver FoV. Section

5.1 describes the procedure, both for the catalogued and the uncatalogued case. The process

in evaluated through both nominal and sensitivity analyses, in Sec. 5.2.1 and in Sec. 5.2.2

respectively. Finally, Sec. 5.3 presents SST applications of MATER for multiple sources

scenario: a proximity operation monitoring and a fragments cloud observation. The latter

analysis is fundamental for the Fragmentation Analysis service introduced in Sec. 1.4, the

thesis further contributes to in Ch. 6 and in Ch. 7.

All the simulations were implemented and run in MATLAB [87].

5.1 Multiple sources scenario

During survey observations, it may occur that multiple sources simultaneously cross the

receiver FoV. This can occur during a survey observation, but also when either a formation

flying, or a fragments cloud is observed, or even a proximity operation is monitored. In

these scenarios, the detection epochs of the target signals overlap, as represented in Fig.

5-1, which reports the SNR trend during a generic survey observation, and where it is

possible to appreciate the simultaneous presence of multiple sources signal at the same

epochs. In these scenarios, the MATER algorithm described in Ch. 3 can be adapted to
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Figure 5-1: Generic SNR profile acquired during a survey observation. It is possible to
appreciate the presence of multiple detected signals, that is multiple observed sources, at
the same epochs.

Figure 5-2: BIRALES array response based on MUSIC for two sources observation.

derive the tracks of targets whose detection epochs overlap, that is when, for some epochs,

the number of observed sources 𝑁𝑠 is larger than 1. In this case, at a generic observation

epoch, both correct and ambiguous DOAs are estimated, for all the observed targets. Figure

5-2 represents the array response of BIRALES (always used as baseline, like in Ch. 4) when

two targets are detected.

To adapt MATER to the multiple sources scenario, the key point is to isolate the detection

instants related to a same target. This is accomplished through the SNR profile, from

which it is possible to derive the information about the number of detected targets 𝑁𝑠

at a given epoch, that is the number of impinging signals that, at that epoch, overcome

a SNR threshold. Based on this information, the MATER track estimate phase, at that

epoch, searches for 𝑁𝑠 DOAs and, like in Ch. 3, the process is divided in catalogued and

uncatalogued case.
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(a) Track estimate phase result.
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(b) Track refinement phase result.

Figure 5-3: Catalogued case in multiple sources scenario.

5.1.1 Catalogued case

The flow of the catalogued case for the multiple sources scenario is the same as the one

reported in Fig. 3-1, by considering possible multiple DOA estimations for each epoch. Like

in Sec. 3.5, the DOAs estimation ambiguity can be solved based on the pass prediction and,

so, through the reference track. This, for a time window in which multiple sources pass

(like in Fig. 5-1), results in a number of estimated DOAs trends equal to the number of the

observed targets, as represented in Fig. 5-3a. Then, after the clustering and regression, the

output tracks are returned, as represented in Fig. 5-3b.

5.1.2 Uncatalogued case

In the uncatalogued case for the multiple sources scenario, one of the processes described in

Sec. 3.6 can be exploited. Based on the nominal numerical analysis carried out in Sec. 4.2,

the ambiguity solving approach based on the delta-k method is the most robust and, so, it

is selected. Thus, the same process described in Sec. 3.6.2 and schematised in Fig. 3-6 is

here exploited.

First of all, for each observation epoch, MATER searches for 𝑁𝑠 sources retaining also the

related ambiguous solutions. This, at the end of the estimate track phase, results in a

FoV very populated of DOA estimations, as represented in Fig. 5-4a. The estimation is

then refined according to the delta-k technique, and this results in a much less populated

FoV, as represented in Fig. 5-4b. Then, the algorithm proceeds by isolating the epochs

related to a same target detection (like described in the catalogued case above), and the

97



-6 -4 -2 0 2 4 6

1
 [deg]

-6

-4

-2

0

2

4

6

2
 [

d
e
g

]

Real track

DOA estimate

(a) Track estimate phase result.
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(b) DOA ambiguity solved.

Figure 5-4: Uncatalogued case (delta-k technique) in multiple sources scenario.

N. of passes per slot 2 3 4 5 6 7 8 TOT

Obj. per slot 129 50 17 4 2 2 1 530

Table 5.1: Slots composed of passes temporally overlapping each other.

quadratic regression is performed for the two angular coordinates separately. The final result

is analogous the one reported in fig. 5-3b.

5.2 Numerical Analysis

MATER algorithm performance in the multiple sources scenario is assessed through a numer-

ical simulation. Besides the nominal conditions, also a sensitivity analysis on the transmitted

power is conducted, retracing what presented in Sec. 4.3 for the single source scenario.

5.2.1 Nominal Analysis

A synthetic data set composed of 530 passes related to 253 LEO objects from the NORAD

catalogue [52] is analysed. The analysis considers an observation window of one day, on June

16th, 2021. These passes temporally superimpose each other and they can be subdivided

in slots, each slot being composed of a sequence of temporally overlapping transits (with

overlapping SNR trends, like in Fig. 5-1). The correspondence between the number of

overlapping transits and the slots is reported in Tab. 5.1: 129 slots composed of 2 temporally

overlapping passes, 50 slots with 3 temporally overlapping passes, and so on.

The passes projections in the measurements space provide their nominal angular track. The
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Success [%] 𝜂Δ𝛾1 [deg] 𝜂Δ𝛾2 [deg]

Catalogued 100 7.0e-03 1.1e-02
Uncatalogued 100 6.0e-03 1.1e-02

Table 5.2: Statistical analysis on synthetic data, for catalogued and uncatalogued case.

transmitter and receiver pointing angles, in terms of azimuth and elevation, are set equal to

[7, 40.5] deg and [0, 60] deg respectively. For the remaining quantities, the same values as

in Sec. 4.2 are used (like RCS, transmitted power, and so on). Then, the data for the test-

ing procedure are generated similarly to Sec. 4.2, but no SR, nor DS are simulated, as the

ambiguity solving based on the delta-k technique does not need additional measurements.

Starting from these data, MATER is run and the performance is assessed in terms of con-

vergence rate and of median values 𝜂 of the root mean square error (RMSE), computed

through Eq. 4.1, for the two angular coordinates separately.

First of all, MATER is run by assuming that all the objects are catalogued, i.e. an a-priori

estimate of their orbit is available. The results are summarised in Tab. 5.2, which reports

the success rate (in percentage), and 𝜂Δ𝛾1 and 𝜂Δ𝛾2 (in degree). The algorithm is able to

converge in all the cases. In addition, the very low values of angular error confirm the ac-

curate performances of MATER in reconstructing the angular track for a set of catalogued

objects simultaneously detected. Then, it is worth observing that the angular RMSE is

lower in the E-W direction (𝜂Δ𝛾2) than in the N-S direction (𝜂Δ𝛾1). As discussed in Sec.

4.2, this is due to the length of the angular path travelled during the integration time, as

the estimated DOA may correspond to any actual value assumed in the meanwhile. Since

most of the data set passes correspond to high-inclination orbits, the angular path travelled

in the N-S direction is usually larger than the one travelled in the E-W one, and this makes

the angular RMSE larger along Δ𝛾2 than along Δ𝛾1.

Then, MATER is applied on the same passes in the uncatalogued case, that is by considering

no a-priori orbital estimate for the observed objects. As mentioned above, in this case

the ambiguity is solved according to the delta-k method, as presented in Sec. 3.6.2, by

considering two frequencies equal to 411.5 MHz and 413.5 MHz, which induce an angular

shift of 0.017 deg (see Sec. 4.1). The results are reported in Tab. 5.2 and show that the

correct solution is always matched, with an accuracy similar to the catalogued case one.

Both for the catalogued and the uncatalogued case, the computational demand increases
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N. of passes per slot TX Power [W] 2 3 4 5 6 7 8 TOT

Obj. per slot 1e+04 90 14 4 2 1 0 0 254
5e+03 57 8 3 1 0 0 0 155
1e+03 0 0 0 0 0 0 0 0

Table 5.3: Slots composed of passes temporally overlapping each other, by varying the
transmitted power.

with respect to Sec. 4.2 (with the same processor and using a single core) as multiple DOAs

are estimated at each overlapping epoch and the clustering is performed for each detected

source.

5.2.2 Sensitivity Analysis

A sensitivity analysis is carried out on the multiple sources observations scenario, consid-

ering the same different transmitted power levels as the one of the single source sensitivity

analysis in Sec. 4.3.

Since a decrease of the transmitted power shortens the length of the detected signal, the

number of temporally overlapping passes decrease, as represented in Tab. 5.3: the slots for

each intersecting passes number become smaller and smaller and, in particular, no tempo-

rally overlapping sources are present for the 1e+03 W transmitted power case. Therefore, a

decrease of the transmitted power makes the detected tracks less overlapping, such that they

are analysed separately. This may imply an advantage in terms of algorithm complexity,

but the portion of the detected tracks becomes shorter and shorter, and this is eventu-

ally a drawback in terms of orbit determination routines and of contribution to catalogue

maintenance.

The analysis results are reported in Tab. 5.4. Similarly to Tab. 4.5 (for the delta-k tech-

nique), the correct solution is always matched, with a slight angular accuracy deterioration

with respect to the nominal analysis.

5.3 SST services numerical simulations

Given the nominal and the sensitivity analyses provided in Sec. 5.2.1 and Sec. 5.2.2, and

analogously to what done in Sec. 4.4, MATER algorithm is tested on numerical simulations
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TX Power [W] Success [%] 𝜂Δ𝛾1 [deg] 𝜂Δ𝛾2 [deg]

1e+04 100 7.8e-03 1.1e-02
5e+03 100 9.2e-03 1.2e-02
1e+03 - - -

Table 5.4: Statistical analysis on synthetic data, for the uncatalogued case, by varying the
transmitted power.

regarding those SST applications for which the multiple sources angular track reconstruction

is fundamental. In particular, the observation of a proximity operation and of a fragments

cloud are investigated, the latter being strictly related to the Fragmentation Analysis service.

5.3.1 Close proximity operation

The first simulation is represented by the proximity operation. These scenarios are of in-

creasing concern, given the importance attributed to the satellite inspections activities, both

for military and civilian applications. An example of the latter application are the opera-

tions studied for the active debris removal programs.

In this simulation, the proximity operation is represented by a chaser moving around the

target according to the football orbit model [96], for which the period of the relative orbit

is equivalent to the target orbit one. In such a model, the football orbit semi-major axis is

aligned towards the transversal direction of the target RTN reference frame (defined in Sec.

2.1), and it is doubled with respect to the semi-minor axis. In the analysed scenario, the

football orbit semi-major and semi-minor axes are set equal to 10 km and 5 km respectively,

the latter being aligned towards the radial direction (no cross-track component is consid-

ered). Figure 5-5a shows the selected football orbit in the target RTN reference frame.

The observation geometry used in the simulation is retrieved from the ISS transit conducted

on the April 28th, 2021, already discussed in Sec. 4.5 about the real application of MATER

algorithm. In particular, the ISS ephemeris are used to retrieve target orbital state (its

RCS is set equal to 1 m2), and the chaser relative orbit is generated around it. Four cases

are assessed, in terms of angular distance of the target in the transversal-radial reference

frame, moving in clockwise direction from the point [10 0] km: 0 deg (positive transversal

distance), 90 deg (negative radial distance), 180 deg (negative transversal distance), 270 deg

(positive radial distance). These four cases are represented in Fig. 5-5b. It is important to
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Figure 5-5: Proximity operation simulation: football orbit. In Fig. 5-5b the four analysed
chaser angular positions with respect to the target are represented as well.
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Figure 5-6: Proximity operation simulation: predicted track in the receiver FoV.

point out that, being the observation time window about 3 order of magnitude smaller than

the target orbital period (and, so, of the football orbit period as well), the angular position

of the chaser with respect to the target does not change significantly during the observation.

The chaser position in the football orbit has an impact on the mutual positions between

target and chaser angular tracks in the receiver FoV, as clearly visible in Fig. 5-6a and Fig.

5-6b. In particular, those situations for which the distance chaser-target is along the target

transversal direction (0 deg and 180 deg) feature aligned tracks in the FoV, but with a time

gap, as the chaser is either in advance (0 deg situation) or in late (180 deg). This motivates,

in the track refinement phase, a cluster performed on time coordinates. On the contrary,

the situations for which the distance chaser-target is along the radial direction (90 deg and

270 deg) feature parallel tracks in the FoV. Therefore, this motivates the choice of clustering

in the FoV, as usually done in the rest of Ch. 5.
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The angular difference between the sources in the receiver FoV are reported in Tab. 5.5 in

terms of root mean square between the predicted tracks. It is possible to notice that the

transversal separation causes a remarkable angular difference along Δ𝛾1 (cases 0 deg and

180 deg), while the radial one does not (cases 90 deg and 270 deg). Besides their magnitude

(10 km and 5 km respectively), this is mainly due to the fact that the line receiver-target

is almost aligned towards the target radial direction, considering that the sensor pointing is

close to the zenith (83.9 deg). So, a radial separation of the chaser makes it either almost

hiding or almost being hidden by the target, and, so, the two sources result extremely close

in the receiver FoV.

RMSΔ𝛾1 [deg] RMSΔ𝛾2 [deg]

0 deg 1.4e+00 7.70e-01

90 deg 3.5e-02 1.1e-01

180 deg 1.4e+00 7.8e-01

270 deg 3.4e-02 1.01e-01

Table 5.5: Proximity operation simulation: root mean square angular difference in the
receiver FoV.

For each case, MATER is run on simulated data through the delta-k method, considering

three different scenarios: the catalogued, the uncatalogued and the semi-uncatalogued one.

In this last situation, one of the two observed objects (in this case the target) is considered

as catalogued, while the latter is not, and this allows to have, at the end of the track

estimate phase, a FoV less populated of DOAs estimations, as the target ambiguities have

been already solved. Figure 5-7a and Fig. 5-7b show the result difference, at the end of the

track estimate phase, between the uncatalogued and the semi-uncatalogued scenarios (for

the 0 deg case): in the former all the DOAs are kept, both for the target and the chaser,

while in the latter just the chaser ambiguities remain, as the target ones have been removed.

Table 5.6 shows the results of the analysis, in terms of success rate in solving the angular

track ("Convergence" column) and angular RMSE, for the target and the chaser. It can

be seen that the angular accuracy deteriorates with respect to the nominal analysis in Sec.

5.2.1, and this is basically due to the mutual interference produced by the two sources,

which are close each other for the entire observation. Both for the catalogued, uncatalogued
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(b) Semi-uncatalogued scenario.

Figure 5-7: Proximity operation simulation: track estimate phase result, represented through
the two angular coordinates trends in time.
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Figure 5-8: Proximity operation simulation: MATER failure for the scenario semi-
uncatalogued 270 deg. It can be seen that the tracks are erroneously estimated, even if
the angular accuracy, in terms of RMSE, is low.

and semi-uncatalogued scenario, the 0 deg and the 180 deg cases converge to the correct

solution, while the others do not, even if they always exhibit a similar angular accuracy.

Indeed, comparing the results in Tab. 5.6 with the angular distances in Tab. 5.5, it can

be observed that the angular accuracy is much smaller than the predicted angular distance

in the 0 deg and 180 deg cases, while it is of comparable magnitude in the 90 deg and 270

deg ones. In this two latter situations, the sources are so close each other that, also because

of the noise, the clustering phase possibly erroneously group the signal DOAs, grouping in

a same cluster estimations related to different sources. This results in erroneous tracks, as

represented in Fig. 5-8, which shows a zoomed FoV to better appreciate the failure.

Regardless the track reconstruction accuracy, the presence of two targets can be assessed by

looking at the CM eigenvalues trends, as shown in Fig. 5-9. It is always possible to identify
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Convergence RMSE𝑡
Δ𝛾1

RMSE𝑡
Δ𝛾2

RMSE𝑐ℎ
Δ𝛾1

RMSE𝑐ℎ
Δ𝛾2

[deg] [deg] [deg] [deg]

0 deg

Catalogued yes 5.6e-02 3.4e-02 5.2e-02 2.9e-02
Uncatalogued yes 5.6e-02 3.4e-02 5.2e-02 3.1e-02

Semi-uncatalogued yes 5.8e-02 3.4e-02 5.3e-02 3.1e-02

90 deg

Catalogued no 6.3e-02 3.5e-02 7.1e-02 1.3e-01
Uncatalogued no 5.2e-02 4.4e-02 5.6e-02 5.6e-02

Semi-uncatalogued no 5.8e-02 3.4e-02 6.6e-02 1.1e-01

180 deg

Catalogued yes 5.6e-02 3.5e-02 5.8e-02 3.4e-02
Uncatalogued yes 5.6e-02 3.4e-02 5.8e-02 3.5e-02

Semi-uncatalogued yes 5.8e-02 3.4e-02 5.8e-02 3.5e-02

270 deg

Catalogued no 7.1e-02 1.3e-01 6.2e-02 3.5e-02
Uncatalogued no 5.2e-02 4.8e-02 5.0e-02 5.9e-02

Semi-uncatalogued no 5.8e-02 3.4e-02 6.0e-02 4.0e-02

Table 5.6: Proximity operation simulation: results.
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(b) 90 deg configuration.
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(d) 270 deg configuration.

Figure 5-9: Proximity operation simulation: CM eigenvalues trend for the four configura-
tions. It is possible to notice that two trends are always present, but they are better visible
in the 0 deg and in the 180 deg configurations.

2 sources, that is 2 eigenvalues trends which are remarkably different from the noise ones

(slightly visible in the bottom of the graph). However this is better visible in the 0 deg

and 180 deg configurations (Fig. 5-9a and Fig. 5-9c), whereas in the 90 deg and 270 deg

configurations (Fig. 5-9b and Fig. 5-9d) the first eigenvalue increases in magnitude and the

second one decreases with respect to the other two cases. Another aspect to point out is

that, in the 0 deg graph (Fig. 5-9a), 2 sources are visible from the beginning, and in the

very final instants of the observation time just one remains, while the situation is opposite in

the 180 deg graph (Fig. 5-9c). This is due to the fact that the observation, and so the time

window of the measurements acquisition, is planned based on the target visibility. Indeed,

in the 0 deg configuration (Fig. 5-9a), the chaser object is already present in the receiver

FoV when the target object is first detected, and 2 sources are present. Then, in the final

instants of the target object visibility, the chaser is not in the FoV anymore, and so only 1

source is present. The situation is opposite in the 180 deg configuration (Fig. 5-9c).
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To conclude, a proximity operation scenario, simulated according to a football orbit model,

has been analysed. MATER correctly estimates the angular tracks when the chaser relative

position in the target RTN reference frame is towards the transversal direction, while the

angular distance between the two sources in the receiver FoV falls at the resolution level

when the chaser relative position is towards the radial direction, because of the observation

geometry. In both cases it is possible to recognise the presence of 2 sources, but it turns out

much better visible when the chaser relative position is towards the transversal direction.

5.3.2 Fragments cloud observation

Generally speaking, a fragmentation event can be originated either by a single spacecraft

explosion or a collision between two satellites. The widely used NASA Standard Break-up

model [97] [98] provides a distribution of fragmentation impulses and physical characteristics

of the cloud which depends on the involved satellite characteristics. A more detailed disser-

tation about the fragmentation modelling techniques is presented in Ch. 6 and is beyond

the objective of this section.

The NASA Standard Break-up Model is here applied to create a fragments cloud which is

then observed by BIRALES. The simulation considers the observation of the ISS occurred

on April 28th, 2021 at 08:44:32 (UTC), already discussed in Sec. 4.5. The current simula-

tion considers the ISS pass prediction as the parent object ephemeris. BIRALES receiver

pointing is kept southwards at an elevation of 83.9 deg, whereas the transmitter pointing

angles are 19.3 deg in azimuth and 35.1 deg in elevation, that is the same configuration as

the one in Sec. 4.5.

The fragmentation event is set at 08:00:00 (UTC). The generated fragments are propagated

and MATER is applied to those detected by BIRALES sensor. To assess the algorithm

sensitivity on fragment size, an analysis is carried out considering different RCS: 1 m2, 0.1

m2, 0.01 m2.

For them, Tab. 5.7 reports the correspondence between the number of intersecting passes

and slots, and the total number of observed fragments. It is possible to notice that the

smaller the RCS, the less the observed objects and the less overlapping the passes are, as

a smaller portion of each pass is detected, similarly to what obtained in Sec. 5.2.2 by

decreasing the transmitted power.
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N. of passes per slot RCS [m2] 2 3 4 5 6 7 8 9 TOT

Obj. per slot 1 21 11 4 0 1 0 0 1 102
0.1 21 9 3 1 1 0 0 1 100
0.01 23 8 1 0 1 0 0 0 80

Table 5.7: Fragments cloud simulation: slots composed of fragments temporally superim-
posing each other, by varying the fragment RCS.

RCS [m2] Success [%] 𝜂Δ𝛾1 [deg] 𝜂Δ𝛾2 [deg]

1 99 4.5e-02 2.7e-02
0.1 98 4.6e-02 2.8e-02
0.01 100 4.7e-02 2.9e-02

Table 5.8: Fragments cloud simulation: statistical analysis on fragmentation scenario, by
varying the detected fragment RCS.

Table 5.8 shows the MATER results for the analysis: the accuracy slightly deteriorates with

RCS decreases and, overall, some failures occur. In particular, in the 1 m2 case MATER

does not reconstruct the track of one object: it is a fragment marginally illuminated by the

TRF (its projected track crosses a side region of the transmitter FoV) and its SNR is so

small that, even if it passes the detection block, it is completely hidden by the other sources,

as represented in Fig. 5-10a. This, in the track estimate phase, makes the pattern associated

to the weakest source very noisy along all its detection, and the associated maximisation

of Eq. 3.14 provide estimations of the other sources angular positions, either correct or

ambiguous. For this reason, no DOA estimation of that source is present at the end of the

track estimate phase, as can be seen in Fig. 5-10b, and this provokes the failure of MATER

for this source observation.

In the 0.1 m2 case, this fragment is not detected anymore, but another failure occurs in-

volving two fragments whose actual tracks are so close in the receiver FoV that they cannot

be separately estimated. Figure 5-11 reports the DOA estimation in time for the two angu-

lar coordinates separately. The two failures regard the last two fragments detected, whose

estimated DOAs cannot be distinguished during the clustering phase. This issue does not

occur in the 1 m2 scenario, because of the larger SNR, which makes the DOA estimations

less noisy for both of the sources and allows the clustering to distinguish them. In the 0.01

m2 case these fragments are not detected anymore, and no failure occurs.

To conclude, the same analysis is carried out by using the fragment cross section derived
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Figure 5-10: Fragments cloud simulation: MATER failure case in the analysis which con-
siders 1 m2 RCS for all the fragments. It is possible to notice that the smallest SNR is
completely hidden by the other two (in Fig. 5-10a) and that no DOA estimation related to
the shortest track is present, as it is related to the weakest source detected (in Fig. 5-10b)
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Figure 5-11: Fragments cloud simulation: DOA estimation of the failure case in the analysis
which considers 0.1 m2 RCS for all the fragments. It is possible to notice that the last two
detected sources are so close in time that cannot be distinguished in the clustering phase.
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Figure 5-12: Operational fragments cloud simulation: logarithmic distribution of the de-
tected target RCS, which are assumed equal to the fragments cross section modeled accord-
ing to the NASA Standard Break-up model.

N. of passes per slot 1 2 3 4 5 6 7 8 9 TOT

Obj. per slot 88 20 9 3 0 1 0 0 1 182

Table 5.9: Operational fragments cloud simulation: slots composed of fragments temporally
overlapping each other, considering the NASA Standard Break-up Model fragment cross
section as RCS. Also the single source cases are considered.

from the NASA Standard Break-up Model as the RCS, and considering also the single source

transit, that is like in a realistic fragments cloud observation. The RCS logarithmic distri-

bution is reported in Fig. 5-12, where it can be appreciated that the vast majority of the

targets have a RCS much smaller than 1 m2. The correspondence between the number of

intersecting passes and slots is reported in Tab. 5.9 and the results are shown in Tab. 5.10,

where no failure occurs and the track accuracy is even better than the previous analysis

case. This improvement in accuracy is basically due to the inclusion of the single source

scenario, which does not suffer any mutual sources interference (as each target is detected

alone), and this improves the angular accuracy.

To recap, MATER algorithm for multiple sources observation can be applied to the SST

Success [%] 𝜂Δ𝛾1 [deg] 𝜂Δ𝛾2 [deg]

100 4.7e-03 2.9e-02

Table 5.10: Operational fragments cloud simulation: fragmentation scenario, considering
the NASA Standard Break-up Model fragment cross section as RCS. Also single transits are
considered.
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service of Fragmentation Analysis. Both the accuracy and the resolution depend on the size

of the observed fragment, as this is strictly linked to the SNR detected by the receiver array.

The analysis also highlights that a source with a very low SNR and which flies simultaneously

to other sources with much larger SNR cannot be properly detected, as its signal is hidden

by theirs.

This section has shown the capability of MATER algorithm to provide the angular track for a

detected fragment, and this may allow to couple such a measurement with SR (and eventually

with DS) to run an IOD. Besides accomplishing the catalogue maintenance purpose, the

reconstructed orbital state of the detected fragment can be further exploited within the

Fragmentation Analysis service tasks to detect the fragmentation epoch. This possible

application is deepened in Ch. 6 with the FRED algorithm presentation and in Ch. 7 with

numerical simulations, also involving MATER algorithm.
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Chapter 6

Fragmentation Epoch Detector

Algorithm

Given the benefit of MATER algorithm for the Fragmentation Analysis service, described

in Sec. 5.3.2, possible additional contributions of on-ground multi-receiver radars to the

fragmentation events monitoring are here assessed. In particular, the present chapter deals

with the fragmentation epoch identification problem focusing on the case in which, besides

the last available ephemeris of the parent object, just one single fragment orbital state,

obtained by one single surveillance radar observation, is available and already linked to

the event. In such a scenario, a single measurements track of slant range and of angles,

retrieved through MATER algorithm, is sufficient to initially determine the orbit, but the

uncertainty associated to the computed orbital state cannot be neglected by the process, as

discussed in Sec. 6.1. For this reason, FRED algorithm is described in Sec. 6.2, involving

a stochastic approach which first obtains fragmentation epoch candidates and then rank

them according to the statistical matching between the relative distance and the minimum

orbital intersection distance distributions. Finally, analogies and difference with conjunction

analysis methodologies are discussed.

6.1 Fragmentation epoch identification problem

In the last years, fragmentation events have become of utmost concern. As mentioned in

Ch. 1, from the start of the space era, more than 630 break-ups, explosions, collisions,
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or anomalous events resulting in fragmentation have been recorded [1], which have further

contributed to increase the number of space debris. Therefore, it is fundamental to predict

the fragments cloud evolution, in order to assess possible collisions, as done in [99] and

[100], where the information on fragment position is translated into a continuous function,

using an analytical expression for the fragment density probability along the orbit. By this

way, the evolution of the cloud density with time, under the effect of atmospheric drag, is

obtained through the continuity equation.

To apply the models predicting the fragments cloud evolution, the epoch when the break-up

occurred shall be identified. In [101] the event epoch is evaluated as the point of minimum

distance of all the fragments with respect to the cloud centre of mass. Besides the accu-

rate orbital ephemeris, this approach also assumes to own the physical information of each

fragment, such as the mass and the cross sectional area. In [102] the break-up epoch is

determined by detecting a convergence of fragments in the space of inclination and right

ascension of the ascending node. In [103] a critical study is conducted to identify the best

criterion to assess the event epoch from the fragments ephemerides and a sensitivity analysis

on the cloud orbital position is also conducted. In [104] a process is proposed, which screens

a catalogue of ephemerides and identifies those related to fragments, through the filters pre-

sented in [105]. After the filtering phase, the same criteria are applied combined with SGP4

propagation [52] and, by comparing the algorithm outputs among all the fragments, the

fragmentation epoch is identified. All these approaches need many fragments ephemerides,

and use them as a deterministic information.

The numerous accurate ephemerides availability of the space debris originated by the frag-

mentation event is a quite optimistic assumption, as, from an operational point of view, it

could be necessary to estimate the fragmentation epoch just few hours after the event and

very few ephemerides (even only one) could be available. In addition, when a fragments

cloud is observed, the correlation of measurements to a single fragment is a very challeng-

ing task, and this further decreases the number of ephemerides which can be used in a

reliable way. Next, such ephemerides could be inaccurate, because of the noise of the obser-

vation measurements and the error introduced by the IOD algorithm exploited, and their

uncertainty cannot be neglected during the event characterisation. Nevertheless, a prompt

knowledge of the fragmentation epoch would be fundamental to plan additional observations

of the fragments cloud, e.g. by tasking the sensors to point at the right ascension and dec-
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lination where the parent was when broke up. In addition, this would also be important to

refine the processing of the observation measurements, aiming at obtaining more and more

accurate orbit determination results. This would lead to also refine the estimation of the

fragmentation epoch and, so, a virtuous cycle would be generated.

The aim of this chapter is to provide an operational procedure to estimate the fragmen-

tation epoch starting from the last available ephemeris of the parent object (assumed as a

deterministic quantity) and a single fragment orbital state provided with uncertainty. The

latter is considered as determined by a multi-receiver array surveillance radar, as, besides

being the topic of this thesis, it allows to run IOD from a single observation with no transit

prediction. To accomplish this purpose, the FRagmentation Epoch Detector (FRED) algo-

rithm, implementing a stochastic approach, has been developed and is described as follows.

To support the reader, the nomenclature lists the description of the involved quantities.

6.2 Fragmentation epoch detector algorithm

Let’s consider the fragmentation of a space object whose last available ephemeris 𝑥𝑝 is

dated to 𝑡𝑒𝑝ℎ, and is considered as a deterministic information. The event has occurred at

𝑡0 > 𝑡𝑒𝑝ℎ and the related alert has been notified at 𝑡𝑎 > 𝑡0. Some hours later, one fragment

is detected by a surveillance radar at 𝑡𝑜𝑏𝑠 (with 𝑡𝑜𝑏𝑠 > 𝑡𝑎) and its orbital state
{︀
𝑥𝑓𝑔,𝑃 𝑓𝑔

}︀
is first determined, where the mean 𝑥𝑓𝑔 and covariance 𝑃 𝑓𝑔 are directly derived from the

IOD process.

If the orbit determination were very accurate and the physical parameters were well known,

it would be theoretically possible to propagate both the fragment and the parent object in

the time window [𝑡𝑒𝑝ℎ, 𝑡𝑎] and search for the epoch of the minimum relative distance, which

would correspond to the fragmentation epoch 𝑡0. However, in real applications, both the

measurements accuracy and the IOD process introduce an error in the reconstruction of the

observed fragment state vector, and the above-mentioned method turns out to be unreliable.

Figure 6-1 represents the relative distance trend on an analysis time window between the

parent object last available ephemeris and an observed fragment mean state to which an

IOD error of 1.85e-02 km in position and 4.99e-04 km/s in velocity is attributed (continuous

line). It can be observed that the epoch of the minimum relative distance between the

fragment mean state and the parent (dashed dense line) is completely different from the
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Figure 6-1: Relative distance between the parent object and the mean state of one observed
fragment. Their state vectors are propagated on a time window ranging from the last
available ephemeris of the parent object to the event alert. The dashed curve line shows
the theoretical trend and the dashed straight line corresponds to the epoch of minimum
value, that is the fragmentation epoch. On the contrary, the continuous black line shows the
relative distance trend when an IOD error is attributed to the fragment mean state, and the
dashed dense line corresponds to the minimum value, that is the estimated fragmentation
epoch. It is possible to see that the estimated fragmentation epoch is completely different
from the correct value.

correct fragmentation epoch (dashed line), that is the epoch corresponding to the theoretical

minimum relative distance (dashed black line). A further source of error is represented by

the mismatching between the actual fragment trajectory and the propagation model used,

due, for instance, to the fact that the actual physical parameters of the observed fragment

are not known. For all these reasons, assessing the fragmentation epoch by just searching

for the minimum relative distance between 𝑥𝑝 and 𝑥𝑓𝑔 in the time window [𝑡𝑒𝑝ℎ, 𝑡𝑎] is an

unreliable methodology.

The considerations above imply that the orbit determination uncertainty cannot be a-priori

neglected. For this reason FRED algorithm deals with the fragmentation epoch identification

problem through a stochastic approach, starting from a Monte Carlo distribution of the

orbit determination result. Ideally, at the fragmentation epoch, both the Minimum Orbital

Intersection Distance (MOID) [106] and the relative distance between the parent and the

fragment are expected to be zero. Due to the considerations above, in practical cases neither

MOID nor relative distance turn out to be null, but they should statistically match each

other. Therefore, the correct fragmentation epoch is expected to feature a matching between

the MOID and the relative distance distributions.

FRED algorithm flowchart is reported in Fig. 6-2, and is structured as follows.
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1. In order to include the fragment state uncertainty in the event epoch identification, 𝑁𝑠

samples 𝑥𝑠 are generated from the orbital state
{︀
𝑥𝑓𝑔,𝑃 𝑓𝑔

}︀
according to a multinormal

distribution [59].

2. The time window [𝑡𝑒𝑝ℎ, 𝑡𝑎] is sampled with frequency 1/𝑇 𝑝 (where 𝑇 𝑝 is the parent

orbital period). This results in the epochs 𝑡𝑖, whose number is 𝑛𝑜𝑟𝑏.

3. Both parent and fragment samples orbital states are propagated to each 𝑡𝑖.

4. For each 𝑡𝑖 and for each 𝑗-th fragment sample, the epochs of transit through the MOID

of both the parent and the fragment 𝑗-th sample are computed analytically, according

to [106], and indicated as 𝑡𝑝𝑗 and 𝑡𝑠𝑗 . The parent and the 𝑗-th sample state vectors

are propagated up to 𝑡𝑝𝑗 and 𝑡𝑠𝑗 respectively, resulting in the orbital states 𝑥𝑝(𝑡𝑝𝑗 ) and

𝑥𝑠(𝑡𝑠𝑗), and the analytical computations of 𝑡𝑝𝑗 and 𝑡𝑠𝑗 are updated. The epochs 𝑡𝑝𝑗 and

𝑡𝑠𝑗 are iteratively modified in this manner until, between two consecutive steps, they

do not change anymore (according to a tolerance set equal to 1e-03 s).

This iterative process results in 𝑁𝑠 × 𝑛𝑜𝑟𝑏 couples of
(︁
𝑡𝑝𝑗 , 𝑡

𝑠
𝑗

)︁
and

(︁
𝑥𝑝(𝑡𝑝𝑗 ), 𝑥

𝑠(𝑡𝑠𝑗)
)︁
.

It is important to observe that the difference between 𝑝𝑠(𝑡𝑠𝑗) and 𝑝𝑝(𝑡𝑝𝑗 ) (the 𝑥𝑠(𝑡𝑠𝑗)

and 𝑥𝑝(𝑡𝑝𝑗 ) positions) allows to compute the MOID (usually described in a scalar way

[106]) in 3 dimensions: 𝑚𝑗 = 𝑝𝑠(𝑡𝑠𝑗)− 𝑝𝑝(𝑡𝑝𝑗 ).

5. The fragment 𝑗-th sample state vector 𝑥𝑠(𝑡𝑠𝑗) is propagated up to the epoch of parent

transit through the MOID, resulting in 𝑥𝑠(𝑡𝑝𝑗 ). It is worth to observe that the difference

between the 𝑝𝑠(𝑡𝑝𝑗 ) (the 𝑥𝑠(𝑡𝑝𝑗 ) position) and 𝑝𝑝(𝑡𝑝𝑗 ) provides the three-dimensional

relative distance between the 𝑗-th sample and the parent, at the epoch of parent transit

through the MOID: 𝜌𝑗 = 𝑝𝑠(𝑡𝑝𝑗 )−𝑝𝑝(𝑡𝑝𝑗 ). Figure 6-3 provides a two-dimensional sketch

of the parent and fragment sample orbits, with the involved quantities.

6. To exclude unfeasible solutions, the 𝑁𝑠 × 𝑛𝑜𝑟𝑏 couples enter a filtering phase, which

is based on the epoch of parent transit through the MOID 𝑡𝑝𝑗 . Being related to the

parent ephemeris, that is the information considered more reliable (and so assumed

as deterministic), it is selected instead of the time of the fragment 𝑗-th sample transit

through the MOID 𝑡𝑠𝑗 :
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Parent last ephemerides: 𝑥𝑝 Fragment IOD result:
{︀
𝑥𝑓𝑔,𝑃 𝑓𝑔

}︀

Sample the analysis time window
with frequency 1/𝑇 𝑝 and obtain 𝑡𝑖

From
{︀
𝑥𝑓𝑔,𝑃 𝑓𝑔

}︀
, create a MC

distribution of 𝑁𝑠 samples

Propagate parent and fragment samples ephemerides to each 𝑡𝑖

Compute the time of transit through the MOID for
the parent and the fragment 𝑗-th sample: 𝑡𝑝𝑗 and 𝑡𝑠𝑗

Compute the positions of the parent at 𝑡𝑝𝑗 and of the
fragment 𝑗-th sample at 𝑡𝑠𝑗 and 𝑡𝑝𝑗 : 𝑝𝑝(𝑡𝑝𝑗), 𝑝𝑠(𝑡𝑠𝑗), 𝑝𝑠(𝑡𝑝𝑗)

Compute the three-dimensional
MOID 𝑚𝑗 and the relative distance 𝜌𝑗

Remove uncompliant solutions data and cluster in time, obtaining
the distributions 𝐹 (grouping all the 𝑡𝑝𝑗), 𝑀 (the 𝑚𝑗) and 𝑃 (the 𝜌𝑗)

Rotate all the 𝑚𝑗 and 𝜌𝑗 in the EQCM reference frame

Compute the statistical distance between the distributions 𝑀 and 𝑃

Select the cluster with the minimum statistical distance

Fragmentation epoch {𝜇𝑡, 𝜎𝑡} from 𝐹 mean and standard deviation

For each 𝑡𝑖 and for each couple
parent - fragment 𝑗-th sample

For each cluster

Figure 6-2: FRED algorithm flowchart.
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𝑝𝑝(𝑡𝑝𝑗) 𝑝𝑠(𝑡𝑠𝑗)

𝑝𝑠(𝑡𝑝𝑗)

𝜌𝑗

𝑚𝑗

Parent orbit

Fragment 𝑗-th sample orbit

Figure 6-3: Sketch of the parent and fragment sample orbits, with the quantities involved
in FRED algorithm process.

(a) First, the couples for which 𝑡𝑝𝑗 is not included in the boundaries [𝑡𝑒𝑝ℎ, 𝑡𝑎] are

filtered out.

(b) Then, the couples computed from the state vectors propagated at epoch 𝑡𝑖 and for

which 𝑡𝑝𝑗 < (𝑡𝑖 − 𝑇 𝑝/2) or 𝑡𝑝𝑗 > (𝑡𝑖 + 𝑇 𝑝/2) are removed from the data set. This

operation is done because the MOID data are computed for each periodicity.

Thus, if 𝑡𝑝𝑗 is computed from orbital states at 𝑡𝑖, it must belong to the 𝑖-th

periodicity, that is the time difference |𝑡𝑖 − 𝑡𝑝𝑗 | shall be smaller than half of the

orbital period 𝑇 𝑝.

7. All the remaining 𝑛𝑓𝑖𝑙𝑡𝑒𝑟 epochs 𝑡𝑝𝑗 are clustered according to a Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) [107]. From this operation, 𝑛𝑜𝑟𝑏 are

expected to be identified. However, for those situations in which parent and fragment

orbits are similar (especially in inclination and ascending node right ascension), mul-

tiple clusters are possibly identified for each 𝑖-th periodicity, as the epochs 𝑡𝑝𝑗 change

significantly from a 𝑗-th sample to another one. So, more generally, 𝑛𝑐𝑙 clusters are

considered to be identified. Figure 6-4a presents the obtained clusters, in the plane

𝑡𝑝𝑗 (in Coordinated Universal Time, UTC) versus scalar MOID. It is worth to remark

that the MOID values are equal from a periodicity to the other, as the graph is related
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(a) Distribution of the 𝑡𝑝𝑗 epochs in the time win-
dow of the analysis.

(b) Distribution of the 𝑡𝑝𝑗 epochs for the cluster
related to the correct solution.

Figure 6-4: Results of the clustering phase. The epochs are reported in UTC.

to a Keplerian scenario, in which, for a single parent 𝑗-th sample couple, the MOID

does not change.

8. For each 𝑛-th cluster, the candidate fragmentation epoch 𝑡𝑓𝑔𝑛 can be computed (in

terms of mean and standard deviation) from the distribution of the epoch of parent

transit through the MOID, which is indicated as 𝐹 , and which is represented in Fig. 6-

4b (for the correct cluster). In addition, 𝑀 and 𝑃 distributions (grouping the 𝑚𝑗 and

𝜌𝑗 respectively) are associated to each cluster. Figure 6-5 shows the two distributions

in Earth-Central-Inertial (ECI) reference frame, both for the correct candidate and

for a non-correct one. It is possible to observe that the three-dimensional MOID

distribution 𝑀 is much more concentrated than the relative distance one 𝑃 . This

is due to the fact that, from sample to sample, the change in 𝑡𝑝𝑗 causes a remarkable

modification in the relative distance 𝜌𝑗 (as it is time-dependent), but not in the MOID

𝑚𝑗 , which is the geometrical difference between the parent and the 𝑗-th sample orbits

and, so, does not vary remarkably from a sample to another.

9. Afterwards, for each cluster:

(a) All the 𝑚𝑗 and 𝜌𝑗 are rotated in the Modified Equidistant Cylindrical (EQCM)

reference frame [108]. This operation results in MOID and relative distance dis-

tributions like in Fig. 6-6. The MOID distribution 𝑀 is almost two-dimensional,

as, in all the 𝑚𝑗 , the y-component, expressing the along orbit curvature relative

distance, is negligible.
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(a) Cluster related to the correct epoch. (b) Cluster related to a wrong epoch.

Figure 6-5: 𝑀 and 𝑃 distributions in ECI reference frame, for the correct cluster and a
non-correct one.

(a) Cluster related to the correct epoch. (b) Cluster related to a wrong epoch.

Figure 6-6: 𝑀 and 𝑃 distributions in EQCM reference frame, for the correct cluster and a
non-correct one.

(b) The statistical distance between 𝑀 and 𝑃 distributions is computed according

to one of the metrics discussed below.

10. Repeating the operations above for each cluster results in Fig. 6-7, which shows

the statistical distance computed through the Earth Mover’s Distance (EMD) [109]

(discussed below) in function of the 𝐹 distribution mean. Finally, the cluster featuring

the minimum statistical distance between the 𝑀 and 𝑃 distributions is selected, and

the fragmentation epoch is returned from the related distribution 𝐹 , in terms of mean

𝜇𝑡 and standard deviation 𝜎𝑡.

As mentioned above, this process provides a pattern to derive the fragmentation epoch (in
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Figure 6-7: EMD statistical distance computed for each cluster.

terms of mean and standard deviation) through a stochastic approach, starting from the last

available parent ephemeris and the fragment IOD result. However, there are two theoretical

sources of failure:

• The MOID computation turns out to be unstable when the orbital planes of the frag-

ment and parent orbits are very close each other (that is, they have similar inclination

and right ascension of the ascending node). In this case, the change in the fragment

orbit, occurring from sample to sample, may provoke a remarkable variation in the

MOID data computation. As result, for the correct candidate, 𝐹 distribution does

not cluster around the actual fragmentation epoch, but around an epoch distant up

to tens of minutes.

• The relative distance distribution 𝑃 does not change from a cluster to another when

the fragment and parent orbital periods are very close each other (that is, they have

similar semi-major axis). In this case, for a 𝑗-th sample, from a 𝑖-th periodicity to

the following one, the relative distance 𝜌𝑗 does not change significantly. As result,

it is not straightforward to recognise the correct cluster from the statistical distance

metrics, and the wrong fragmentation epoch is possibly returned by the process.

As introduced above, FRED needs a statistical distance metrics to assess the best epoch

candidate. A possible choice would be represented by the Mahalanobis Distance, which has

been already introduced in Eq. 2.19, but it applies to Gaussian distributions only. Even

if supported by the rotation to EQCM reference frame, assuming Gaussian distributions

would be a particularly strong assumption for 𝑀 and 𝑃 distributions. To be as generic

and agnostic as possible regarding the distributions characteristics, metrics suitable both for
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Gaussian and no Gaussian distributions are investigated.

A first choice is represented by the Earth Mover’s Distance (EMD) [109], which measures

the flow to pass from a distribution to the other one. Such a flow can be evaluated based on

different distance metrics, and the Euclidean distance weighted on the distribution variance

is chosen to better account for 𝑀 and 𝑃 distributions shape and elongation. The imple-

mentation provided in [110] is used.

A third metrics is investigated, which has been developed specifically for FRED algorithm.

It is addressed as the quantile metrics given its workflow, which is described as follows.

1. For both 𝑀 and 𝑃 distributions a Principal Component Analysis (PCA) is performed

to rotate them in their respective principal coordinate reference frame [111]. Then,

for each distribution, the quantiles 10%, 25%, 50%, 75% and 90% are computed for

the three coordinates separately. This operation does not account for the correlations

among coordinates, but these have been minimised thanks to the rotation to the

principal coordinate reference frame. This results in two sequences (for 𝑀 and 𝑃 )

of three-dimensional points, expressed in two different principal coordinate reference

frames.

2. The two sequences of three-dimensional points (expressing the quantiles) are rotated

back to the original EQCM reference frame, in order to have them in a common

coordinate system. Figure 6-8 shows the two sequences of three-dimensional points,

for the correct and for a wrong epoch. Then, the five quantile-to-quantile Euclidean

distances are computed and summed together in a weighted manner according to the

quantile percentage (that is, by advantaging more the central quantiles with respect

to the side ones). This weighted sum provides the statistical distance which accounts

for the similarity between the two non-Gaussian distributions 𝑀 and 𝑃 .

A critical comparison among the metrics presented above is proposed during the numerical

analysis in Sec. 7.2.

Analogies and differences with conjunction analysis

From the FRED description, the reader may easily notice that dealing with the fragmen-

tation detection problem in such a stochastic way presents analogies with the conjunction
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(a) Cluster related to the correct epoch. (b) Cluster related to a wrong epoch.

Figure 6-8: Quantile sequences for 𝑀 and 𝑃 distributions in EQCM reference frame.

analysis. In particular, the process involves the MOID and the relative distance, which

are quantities usually exploited also in the screening part of the conjunction assessment

[105], as well as in other fragmentation epoch identification algorithms (like [103] and [104])

which use the availability of many fragments orbital states (then processed in a determin-

istic way). However, at this level a first difference arises. Indeed, in FRED, the screening

is fully stochastic and is only based on the time of parent transit through the MOID. In

addition, the FRED screening phase does not aim at identifying possible conjunctions, as

the fragmentation is already known to have occurred, but to rank conjunction (that is frag-

mentation epoch) candidates. Thus, the MOID and the relative distance are not quantities

used to search for a possible conjunction in a deterministic way, but they are stochastically

represented at the fragmentation epoch candidates, and then their statistical distance is

computed.

At this point, a second analogy may be noticed, as in both cases a stochastic quantity is

expressed at the time of closest approach: the PoC in the conjunction analysis and the

statistical distance between MOID and relative distance distributions in FRED. However,

besides the two metrics differently defined, a remarkable difference arises: while in conjunc-

tion analysis the PoC is a quantity assessing the danger associated to a single conjunction

and, so, expresses an absolute meaning, in FRED the statistical distance is used to rank the

fragmentation epoch candidates previously identified, and so it has a relative meaning.

Certainly, further studies may be conducted in the future to assess alternative procedures to

the statistical distance metrics. A possible choice would be to rank the fragmentation epoch

candidates according to a long-term PoC computation associated to them, that is analo-
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gous to the short-term PoC based method presented in [112] for the manoeuvre detection

in geostationary orbits. Vice versa, the statistical distance metrics used in FRED may be

investigated as a possible application for long-term encounter models.
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Chapter 7

FRED Simulations and Results

This chapter assesses FRED performance through numerical simulations, run in MATLAB

[87], by eventually including MATER algorithm in the analysis. Section 7.1 describes the

investigated fragmentation scenario, related to the Russian satellite COSMOS 1408, which

broke up on November 15th, 2021, and the related data set generation.

Concerning the simulations, Sec. 7.2 evaluates a fully Keplerian scenario with no orbit de-

termination error associated to the fragment orbital state. The Earth Mover’s Distance is

identified as the most performing metrics and is selected for all the following analyses. Gen-

erally, the algorithm converges to the correct solution, but it gets less robust when fragment

and parent orbits are similarly oriented, or have a similar shape. Also, these cases corre-

spond to a larger standard deviation associated to the solution. A sensitivity analysis shows

that there is no dependence on the number of samples used in representing the fragment

orbital state.

Then, Sec. 7.3 assesses a perturbed scenario with no orbit determination error, which is

instead introduced in Sec. 7.4 using simulated measurements provided with Gaussian noise.

This provokes a remarkable deterioration in converging to the correct fragmentation epoch,

which is however always present among candidates. Furthermore, alternative deterministic

metrics are performing worse, especially when the fragmentation epoch is identified as the

time of minimum relative distance between parent ephemeris and fragment mean state prop-

agated on the analysis time window (that is analogously to the approach described at the

beginning of Sec. 6.2). Next, a sensitivity analysis in Sec. 7.5 shows a FRED performance

deterioration by increasing the angular noise associated to the solution, or enlarging the
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time elapsed between the event and the observation. However, FRED is always much more

performing than the deterministic metrics. Furthermore, no remarkable change is present

for a fragment physical parameter mismatching between the actual value and the one used

in the algorithm.

Afterwards, Sec. 7.6 presents an operational scenario which involves BIRALES, whose ob-

servations are scheduled according to the prediction of parent transit, and simulating the

measurements as soon as the fragment enters in the receiver FoV. Results are consistent

with the previous analyses.

Finally, Sec. 7.7 assesses an operational scenario in which the angular track is obtained with

MATER. Since for BIRALES there is no visibility of COSMOS 1408 fragments cloud on the

first hours after the event (that is when FRED algorithm aims at providing a contribution to

the Fragmentation Analysis service), an ISS fragmentation is simulated. Results get deteri-

orated because the angular track has non-Gaussian and non-zero mean error. Nevertheless,

performance are much more appreciable with respect to the deterministic metrics ones.

7.1 Data set generation

A numerical simulation is here conducted to test FRED algorithm described in Ch. 6. The

fragmentation scenario is the one which involved the Russian satellite COSMOS 1408 during

the kinetic anti-satellite (ASAT) test which occurred around 02:47 UTC of November 15th,

2021 [113]. The ASAT test took place when the satellite was flying over the north-west

Russia and the sensors of the EUSST consortium [22] (introduced in Sec. 1.4.1) observed

the fragments generated by such an event.

The data set to test FRED algorithm is generated as follows:

1. The last available COSMOS 1408 ephemeris before the event are retrieved from the

last TLE (Two-Line Elements) available on Spacetrack, which are dated to 00:55

UTC of November 15th [13]. To make the analysis time window more symmetrical

with respect to the break-up epoch, they are propagated one orbital period back to

the 23:20 UTC of November 14th, and the orbital state at this epoch is considered as

𝑥𝑝.

2. The state vector 𝑥𝑝 is propagated up to 02:47:00 UTC of November 15th. Table 7.1
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𝑎 [km] 𝑒 𝑖 [deg] Ω [deg] 𝜔 [deg]

6844.7 1.8e-03 82.7 123.3 134.5

Table 7.1: COSMOS 1408 orbital parameters.

(a) Impulses magnitude distribution. (b) Gabbard diagram.

Figure 7-1: Fragmentation event.

reports COSMOS 1408 orbital parameters (with the exception of the true anomaly),

at the simulated fragmentation epoch.

3. The fragmentation event is modelled as a set of impulses applied to the satellite

orbital state at 02:47:00 UTC. These impulses are retrieved from the NASA standard

break-up model [97] [98]. A data set of 231 fragments is generated by this way, and

its characteristics are described in Fig. 7-1, both in terms of impulse magnitude

distribution of the fragmentation event and Gabbard diagram.

The obtained ephemerides, representing the fragments, are propagated until the epoch 𝑡𝑜𝑏𝑠,

when they are detected by a surveillance radar, and the orbital states
{︀
𝑥𝑓𝑔,𝑃 𝑓𝑔

}︀
are de-

termined.

In this way all the inputs for the process described in Sec. 6.2 are obtained and FRED

algorithm can be tested, considering an analysis time window ranging from 23:20 UTC of

November 14th (epoch of the simulated last available ephemeris of the parent object) to

06:00 UTC of November 15th, retracing the fact that the COSMOS 1408 fragmentation

alert was provided in the early morning (considering UTC time coordinates). These two

epochs correspond to 𝑡𝑒𝑝ℎ and 𝑡𝑎 introduced in Sec. 6.2. Instead, the 𝑡𝑜𝑏𝑠 changes from an

analysis to the other, as discussed below.

Based on this data set, FRED is run on each fragment IOD result
{︀
𝑥𝑓𝑔,𝑃 𝑓𝑔

}︀
separately,
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considering 𝑁𝑠=1e+03 samples for the multinormal distribution.

7.2 Unperturbed scenario with no IOD error

First, the unperturbed scenario with no IOD orbital state error is tested to assess the

theoretical characteristics of FRED algorithm in ideal conditions. This simulation just

associates a covariance 𝑃 𝑓𝑔 (with standard deviations 2.6e-02 km and 7.0e-04 km/s, for

position and velocity respectively, computed simulating an IOD with the method presented

in [69]) to the nominal value 𝑥𝑓𝑔, that is the fragments propagated state vectors. Thus,

the fragment mean state 𝜇𝑓𝑔 is the actual fragment position and velocity at 𝑡𝑜𝑏𝑠. The

parent last available ephemeris 𝑥𝑝 is the same used above to generate the fragmentation,

and the observation epoch 𝑡𝑜𝑏𝑠 is set 13 h after the fragmentation, as the method aims at

reconstructing the fragmentation epoch from a single fragment observation conducted in the

hours right after the event.

For a single fragment analysis, the result is considered successful if the difference between

the epoch estimation and the correct value (𝑡𝑒𝑟𝑟) is below a threshold quantity, which is

set equal to 1 min in the analysis, coherently with the time uncertainty associated to the

estimated fragmentation epoch in [114]. As introduced in Sec. 6.2, possible FRED failures

can be linked to either the MOID computation or to the distributions comparison performed

through the statistical metrics, and for this reason they are classified as follows:

• MOID failures - compliant: 1 min < 𝑡𝑒𝑟𝑟 and 𝑡𝑒𝑟𝑟 < 3𝜎𝑡. These are cases for which the

fragment orbit orientation is so similar to the parent one that a slight change in the

fragment orbit, occurring from fragment mean state to its samples, causes a remarkable

variation in the MOID data computation. This leads to an erroneous estimation of

the mean epoch of parent transit through the MOID, but the distribution is wide

enough to include such an error. Therefore, the resulting epoch estimation is wrong,

but statistically compliant.

• MOID failures - uncompliant: 1 min < 𝑡𝑒𝑟𝑟 and 3𝜎𝑡 < 𝑡𝑒𝑟𝑟 < 𝑇 𝑝/2. In these cases,

the erroneous estimation of the epoch is not mitigated by its uncertainty. The epoch

estimation is wrong, but the error is smaller than the half of the parent orbital period.
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Metrics Correct
solutions

MOID failures
compliant

MOID failures
uncompliant

Periodicity
failures

Mahalanobis Distance 91.1% 4.2 % 1.3 % 3.4 %
EMD 92.8 % 4.7 % 0.4 % 2.1 %

Quantiles 89.5 % 4.2 % 0.8 % 5.5 %

Table 7.2: Unperturbed scenario results for the different statistical distance metrics.

• Periodicity failures: 𝑡𝑒𝑟𝑟 > 𝑇 𝑝/2. In these cases, the statistical comparison among

clusters identifies a wrong candidate and, so, a wrong result is returned. It is worth

to remark that MOID failures may occur also when a wrong candidate is identified.

Nevertheless, also this situation is addressed as a periodicity failure, as the time error

is anyways larger than half of the parent orbital period.

The results are reported on Tab. 7.2, for each statistical distance metrics introduced in Sec.

6.2. It can be observed that all the metrics feature comparable results, but the EMD ones

are the most appreciable.

An analysis is also conducted to assess the Gaussianity of the problem, in order to evaluate

whether the Mahalanobis Distance metrics, which needs the Gaussian assumption of the

involved distributions, is a suitable choice. For each fragment, the Mahalanobis Distances

between each 𝜌𝑗 and each 𝑚𝑗 and the distributions 𝑃 and 𝑀 respectively is computed,

and a 𝜒2 test is conducted to check how many Mahalanobis Distances are smaller than the

3𝜎 level, for all the 𝑛𝑐𝑙 clusters. To fulfil the Gaussian assumption, this condition shall be

matched in the 99% of cases. Figure 7-2 shows the number of fragments (in logarithmic

scale) in function of the mean percentage of samples (across the clusters) satisfying the 3𝜎

level, both for the MOID distribution 𝑀 and for the relative distance distribution 𝑃 , by

also focusing on the portion of the diagram closest to the expected value of 99%. It can be

observed that no fragment satisfies the 99% requirement in the MOID distribution 𝑀 , with

lot of cases showing a low percentage of samples within the 3𝜎 level. For some fragments

the relative distance distribution 𝑃 features Gaussianity, but the 99% requirement is not

fulfilled in most cases.

This analysis proves that a non-Gaussian metrics shall be considered and, so, the Maha-

lanobis Distance is rejected. Furthermore, given the results in Tab. 7.2, the Earth Mover

Distance metrics is selected, as it features the best performances. Therefore, next analyses
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(a) MOID distribution. (b) Focus on the MOID distribution.

(c) Relative distance distribution. (d) Focus on the relative distance distribution.

Figure 7-2: Number of fragments (in logarithmic scale) in function of the mean percentage
of samples (across the clusters) satisfying the 3𝜎 level, both for the MOID distribution 𝑀
and for the relative distance distribution 𝑃 , by also focusing on the portion of the diagram
closest to the expected value of 99%.
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always apply EMD to identify the best epoch candidates.

EMD results and failures assessment

Figure 7-3a shows, for each fragment analysed, the time error between the estimated and the

correct fragmentation epochs. It is possible to notice that, over the 231 fragments analysed,

12 MOID failures occur, out of which 11 are compliant and 1 is not. Then, 5 periodicity

failures are present, and they are cases for which the EMD metrics returns similar values

across the candidates, among which the correct solution is always present. Figure 7-3b shows

the relationship between the time standard deviation associated to the estimated epoch and

the magnitude of the impulse which generated the fragment. It is possible to notice that

the compliant MOID failures are more likely to occur in those regions with small impulse

magnitude and large time standard deviation associated to the solution. On the contrary,

both uncompliant MOID and periodicity failures generally present a much smaller time

uncertainty (with one exception), but still with a not high fragmentation impulse.

As for Ch. 4 and Ch. 5 analyses, a detailed computational demand study is not carried

out, given the current prototype implementation in MATLAB [87], but it can be quantified

in about 30 s per fragment by using a single core with the same Intel(R) Core(TM) i7-8700

CPU @ 3.20 GHz - 3.19 GHz processor as the one used for Ch. 4 and Ch. 5 analyses.

This low computational demand is linked to the analytical propagation exploited in the

unperturbed scenario (see Sec. 2.2).

To better assess the failures characteristics, the difference between parent and fragments

orbital parameters is studied. From Fig. 7-4a and Fig. 7-4b it is possible to observe

that the periodicity failures regard cases in which the fragment orbit semi-major axis and

eccentricity are very close to the parent values. Indeed, in this situation, the two orbits have

a similar period and shape, and, from a 𝑖-th periodicity to the following one, there is not

a remarkable difference in the relative distance distribution 𝑃 (the MOID distribution 𝑀

is always the same, being the scenario Keplerian). This weakens the statistical comparison

result, as the EMD is similar across multiple clusters, and the algorithm possibly converges

to an erroneous solution. Instead, from Fig. 7-4c and Fig. 7-4d it is worth to notice that

both compliant and uncompliant MOID failures regard cases in which fragment and parent

inclination and right ascension of the ascending node are very close each other, as the similar
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(b) Impulse magnitude vs the output time stan-
dard deviation.

Figure 7-3: Results of the numerical analysis on the unperturbed scenario with no orbital
state error, by using the EMD metrics. The fragments for which a failure occurs are high-
lighted according to the legend.

orientation provokes a remarkable excursion of MOID data from a sample to another, and

the samples cluster around a quantity corresponding to an epoch which is not the correct

value.

Another useful representation is to relate the time standard deviation of the computed

fragmentation epoch to the orbital parameters, as reported in Fig. 7-5. The closer the

fragment orbit to the parent one, the larger the time standard deviation associated to the

FRED solution, especially for what concerns the inclination and the right ascension of the

ascending node (Fig. 7-5c and Fig. 7-5d respectively). This behaviour is linked to the fact

that the closer the fragment orbit orientation to the parent one, the larger the excursion

of the MOID data from a sample to another and, so, the larger the uncertainty of the

time of parent transit through the MOID, that is of the fragmentation epoch candidates.

On the contrary, the smallest time uncertainty is related to those fragments with an orbit

significantly different from the parent one, as the MOID data do not vary much from a

sample to another.

Sensitivity analysis on the number of samples used

As described in Sec. 6.2, FRED algorithm starts from the IOD result (expressed in terms of

mean state and covariance), and populate it by samples according to a multi-normal distri-

bution. Thus, the larger the number of samples used, the more accurate the IOD uncertainty
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(d) Right ascension of the ascending node.

Figure 7-4: Unperturbed scenario: relationship between the impulse magnitude originating
each fragment and the fragment semi-major axis, eccentricity, inclination and right ascension
of the ascending node. The fragments for which a failure occurs are highlighted according
to the legend, and the dashed line shows the parent orbital parameters.
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Figure 7-5: Unperturbed scenario: relationship between the standard deviation associated
to the computed fragmentation epoch and the fragment semi-major axis, eccentricity, in-
clination and the right ascension of the ascending node. The fragments for which a failure
occurs are highlighted according to the legend, and the dashed line shows the parent orbital
parameters.
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Correct
solutions

MOID failures
compliant

MOID failures
uncompliant

Periodicity
failures

100 92.4 % 3.9 % 0.4 % 3.4 %
500 92.0 % 4.2 % 0.4 % 3.4 %
2000 92.4 % 4.2 % 0.4 % 3.0 %
10000 92.8 % 4.2 % 0.4 % 2.6 %

Table 7.3: Unperturbed scenario: sensitivity analysis on the number of samples used.

representation. The number of samples used is a key point in assessing FRED performance

and, for this reason, a sensitivity analysis is here conducted by modifying the nominal value

of 𝑁𝑠 = 1000 to 100, 500, 2000 and 10000. It must be pointed out that the larger the number

of samples used, the larger the computational cost, as more conjunctions for each fragment

are to be computed (both in terms of MOID and relative distance evaluation). In addition,

also the computational demand of the Earth Mover Distance metrics is proportional to the

number of samples.

The results are reported in Tab. 7.3. It is possible to notice that the performance are stable

across the different values of 𝑁𝑠, and remain similar to the EMD metrics results reported in

Tab. 7.2. In particular, it is to point out that the convergence rate to the correct solution

does not improve for a larger number of samples used in a monotonic way, and this confirms

that the failure cases are not related to a not correct uncertainty representation, but to the

mutual geometry between parent and fragment, as discussed above regarding Fig. 7-4 and

Fig. 7-5. On the one hand, this is an important result, as the method computational demand

can be reduced by using a lower number of samples, without a performance degradation.

On the other hand, the larger the number of samples, the better the representation of the

IOD uncertainty. Therefore, a trade off choice must be conducted. For these reasons, the

nominal value of 𝑁𝑠 = 1000 samples is kept in the following analyses.

7.3 Perturbed scenario with no IOD error

The same analysis as above is conducted on a perturbed scenario in which SGP4 [52] is used

both to derive the fragments actual trajectory, and in FRED algorithm. The data set is

created as follows:
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(a) B* distribution from the matching between
SGP4 and the high-fidelity propagation.
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(b) Distribution of the 𝑡𝑝𝑗 epochs in the time win-
dow of the analysis.

Figure 7-6: B* distribution and FRED clusters in the perturbed scenario.

1. The last available TLE of the parent object is propagated up to the fragmentation

epoch, which is always set at 02:47:00 UTC of November 15th, 2021, and converted in

Cartesian coordinates.

2. The fragmentation impulses are applied (still according to the NASA standard break-

up model [97] [98])

3. Each fragment state is converted in SGP4 elements. The B*, which accounts for the

physical characteristics of the object, is defined by:

(a) Propagating the fragment orbital state through the high-fidelity model presented

in Sec. 2.2.

(b) Searching for the B* which allows the SGP4 propagation to best match the

high-fidelity propagation, through a Non-linear Least Squares filter. Out of the

237 fragments of the original data set, for 28 the process does not converge to a

solution. Thus, a data set of 209 fragments is considered from now on.

The computed B* distribution is reported in Fig. 7-6a.

4. Similarly to the analysis in Sec. 7.2, each fragment elements are propagated through

SGP4 for 13 h, when the observation is simulated by computing the fragment orbital

state in Cartesian coordinates and associating a covariance to it.

Then, in FRED algorithm, each fragment sample is propagated through SGP4. This oper-

ation implies a first conversion from Cartesian coordinates to SGP4 elements (at the OD
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Correct
solutions

MOID failures
compliant

MOID failures
uncompliant

Periodicity
failures

90.0 % 5.3 % 0.9 % 3.8 %

Table 7.4: Perturbed scenario results for EMD metrics.

epoch), and then from SGP4 elements to Cartesian coordinates at the end of the propaga-

tion (that is at the epochs 𝑡𝑖 defined in Sec. 6.2) to compute the MOID quantities.

Both in data set generation and inside FRED algorithm, the conversion from Cartesian

coordinates to SGP4 elements is performed through a fixed-point iteration loop, and this

introduces an error which, although negligible at the considered epoch, increases with the

propagation and may affect results at the epochs 𝑡𝑖. On the contrary, the presence of per-

turbations in the propagation introduces an additional difference among clusters, besides

the one related to the phasing effect between parent and fragment samples orbital states.

This can be observed in Fig. 7-6b., which reports the clusters in the plane time of transit of

parent through the MOID versus MOID magnitude, for the same case as the one reported

in Fig. 6-4a for the Keplerian scenario. Comparing the two figures, it can be appreciated

how the perturbations introduce a difference among the clusters.

The results of the perturbation analysis are reported in Tab. 7.4 considering the Earth

Mover Distance metrics, and represented in Fig. 7-7. For the failure cases, the relationship

between the time standard deviation associated to the solution and the impulse magnitude is

analogous to the one in Fig. 7-3b, as the compliant MOID failures are still more likely to oc-

cur in those regions with small impulse magnitude and large time standard deviation, while

both uncompliant MOID and periodicity failures present a much smaller time uncertainty,

but still with a not high fragmentation impulse. On the contrary, there is a deterioration

in performance due to the fact that the number of fragments in data set decreases, as men-

tioned above, and both the uncompliant MOID and the periodicity failures increase, passing

from 1 and 5 to 2 and 8 respectively.

The computational demand increases with respect to the unperturbed scenario (under the

same conditions), resulting in about 5 min per fragment analysed. This is due both to SGP4,

which requires more computational time than the analytical propagation, and to the fact

that, for each 𝑗-th fragment sample, the MOID data are recursively refined until the flying

time to the MOID falls below 1e-03 s (as described in Sec. 6.2).
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Figure 7-7: Results of the numerical analysis on the perturbed scenario with no orbital state
error. The fragments for which a failure occurs are highlighted according to the legend.

Similarly to Sec. 7.2, the difference between parent and fragments orbital parameters is

studied to better assess the failures characteristics. From Fig. 7-8a it is possible to observe

that the periodicity failures regard cases in which the fragment orbit semi-major axis is

very close to the parent values. Then, Fig. 7-8c and Fig. 7-8d show that both compliant

and uncompliant MOID failures regard cases in which fragment and parent inclination and

right ascension of the ascending node are very close each other. Unlike Fig. 7-4b, in Fig.

7-8b there is no relationship between the periodicity failure and the eccentricity, and this

confirms that this type of failure is due to the similar orbital period, which depends on

the semi-major axis only. All these considerations are analogous to those stated about the

Keplerian scenario, to testify that the most failure prone situations (similar orbital period

and orientation) do not change when perturbations are considered in the dynamics.

As above, it is interesting to study also the relationship between the time standard deviation

associated to the solution and the orbital parameters, as represented in Fig. 7-9. It can be

noticed that the more similar the fragment and the parent object are, the larger the time

uncertainty associated to the FRED solution, especially for what concerns the orientation,

that is the inclination (Fig. 7-9c) and the right ascension of the ascending node (Fig. 7-9d).

Therefore, the same considerations as those in Sec. 7.2 about Fig. 7-5 hold.

To recap, the inclusion of perturbations modifies both the relative distance and the MOID

and the fragmentation epoch candidates distributions at 𝑡𝑖. The EMD capability to identify

the correct candidate is affected by this, as well as by the effect of the error introduced by

the conversion from Cartesian coordinates to SGP4 elements. Nevertheless, the distributions
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Figure 7-8: Perturbed scenario: relationship between the impulse magnitude originating each
fragment and the fragment semi-major axis, eccentricity, inclination and right ascension of
the ascending node. The fragments for which a failure occurs are highlighted according to
the legend, and the dashed line shows the parent orbital parameters.
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Figure 7-9: Perturbed scenario: relationship between the standard deviation associated to
the computed fragmentation epoch and the fragment semi-major axis, eccentricity, inclina-
tion and right ascension of the ascending node. The fragments for which a failure occurs are
highlighted according to the legend, and the dashed line shows the parent orbital parame-
ters.
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of the errors and of the uncertainty associated to the FRED solution are equivalent to the

Keplerian scenario in Sec. 7.2.

7.4 Perturbed scenario with IOD error

The analyses in Sec. 7.2 and Sec. 7.3 are conducted with no error associated to IOD,

that is starting from an orbital state obtained by simply propagating the fragment nominal

ephemeris up to a certain epoch, considering it as the mean state and associating a covariance

to it. However, in real applications, at the orbit determination epoch a mismatching between

the orbital state mean and the ground truth is introduced by the IOD process, and its effects

on FRED algorithm must be assessed.

For this purpose, an analysis is carried out by starting from an orbital state generated as

follows:

• The ground truth of the fragment orbital state is generated in the same manner as in

Sec. 7.3, that is propagating the fragment ephemeris for 13 h from the event through

SGP4 [52] and with the estimated B*.

• Geodetic latitude and longitude are computed from the fragment position, and a

monostatic radar station is simulated, at the same coordinates (with a small variation

of +1 deg) and at 0 km altitude.

• Azimuth, elevation and slant range are simulated for the following 30 s. A Gaussian

noise is added of 0.01 deg (on angular coordinates) and 30 m (on slant range).

• The orbital state is computed at the initial observation epoch, through the IOD pro-

cedure presented in [69], which analytically computes the orbital state at the first

observation epoch. The estimate might be later refined through an additional fil-

ter (like what done in Sec. 4.4), but this refinement is voluntarily not done in the

simulations, to test the procedure for a coarse IOD result.

In this way, the fragment orbital state
{︀
𝑥𝑓𝑔,𝑃 𝑓𝑔

}︀
is obtained, and FRED algorithm is run.

It is worth to stress that an error between 𝑥𝑓𝑔 and the fragment actual position and velocity

is now present, and the covariance 𝑃 𝑓𝑔 is computed from the measurements through the

IOD procedure, that is differently from what done in Sec. 7.2 and in Sec. 7.3.
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Correct
solutions

MOID failures
compliant

MOID failures
uncompliant

Periodicity
failures

68.9 % 9.6 % 0.5 % 21.0 %

Table 7.5: Results for the perturbed scenario and accounting for the orbital state error
introduced by the IOD process. The EMD metrics is used.
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Figure 7-10: Results for the perturbed scenario and accounting for the orbital state error
introduced by the IOD process. The fragments for which a failure occurs are highlighted
according to the legend.
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Figure 7-11: Perturbed scenario and accounting for the orbital state error introduced by the
IOD process: relationship between the impulse magnitude originating each fragment and
the fragment semi-major axis, eccentricity, inclination and right ascension of the ascending
node. The fragments for which a failure occurs are highlighted according to the legend, and
the dashed line shows the parent orbital parameters.

Results are reported in Tab. 7.5 and represented in Fig. 7-10 . It is worth to observe that

in most cases the algorithm converges to the correct solution. However, comparing Tab. 7.5

to Tab. 7.2 and Tab. 7.4, it can be noticed that the IOD mismatching remarkably affects

the algorithm performance, especially for what concerns the metrics to select the correct

candidate. This can be visualised also by comparing Fig. 7-10a with Fig. 7-3a and Fig.

7-7a. Overall, the computational time is similar to the one in Sec. 7.3.

Analogously to Sec. 7.2 and Sec. 7.3, the difference between parent and fragments orbital

parameters and its relationship with the time standard deviation associated to the solution

are deepened. Comparing Fig. 7-11 with Fig. 7-8, it can be observed that the periodicity

failures occur more often, and also in situations in which fragment and parent semi-major

axes are not extremely close. On the contrary, MOID failures tend to regard still cases with
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Figure 7-12: Perturbed scenario and accounting for the orbital state error introduced by
the IOD process: relationship between the standard deviation associated to the computed
fragmentation epoch and the fragment semi-major axis, eccentricity, inclination and right
ascension of the ascending node. The fragments for which a failure occurs are highlighted
according to the legend, and the dashed line shows the parent orbital parameters.
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Correct
solutions 1 min < 𝑡𝑒𝑟𝑟 < 𝑇 𝑝/2 𝑡𝑒𝑟𝑟 > 𝑇 𝑝/2

Deterministic FRED 67.0 % 11.5 % 21.5 %
Relative distance 12.4 % 67.0 % 20.6 %

Table 7.6: Results for the perturbed scenario and accounting for the orbital state error
introduced by the IOD process. Both a deterministic FRED and a relative distance metrics
are used. In the former, the metrics to assess the best candidate is represented by the
euclidean distance between the relative distance and the MOID.

the same orbital plane orientation. In addition, the relationship between the time standard

deviation associated to the solution and the orbital parameters, represented in Fig. 7-12,

shows that the more similar the fragment and the parent object are, the larger the time

uncertainty associated to the FRED solution, as already discussed about Fig. 7-5 and Fig.

7-9. This relationship is more evident for the inclination (Fig. 7-12c) and the right ascension

of the ascending node (Fig. 7-12d).

It may be investigated which result would have been returned by a deterministic FRED

procedure, that is by starting from the fragment mean state without performing the multi-

variate normal distribution based on the covariance. In this case, the metrics to assess the

best candidate is just the euclidean distance between the relative distance and the MOID.

Results are reported in Tab. 7.6, where no considerations about failure compliance can be

stated, as no uncertainty is associated to the solution. Although less computational de-

manding, this deterministic approach presents results a bit deteriorated with respect to the

FRED ones in Tab. 7.5, confirming the benefit of a stochastic approach to the problem.

To further appreciate FRED results, an alternative analysis, analogous to the method de-

scribed at the beginning of Sec. 6.2, is carried out. Such an approach assesses the frag-

mentation epoch as the time of the minimum relative distance between the parent and the

fragment mean state (both assumed as deterministic), propagated on the analysis time win-

dow. This would allow a lower computational demand. The results are still reported in

Tab. 7.6, where a much smaller convergence to the correct solution can be observed. There-

fore, besides providing statistical information and the correct solution among fragmentation

epoch candidates, FRED convergence to the correct solution turns out to be more robust.

To recap, the IOD accuracy affects FRED algorithm results, by increasing both the compli-

ant MOID and the periodicity failures. Nevertheless, the algorithm mostly converge to the
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correct solution and, besides being more performing than a deterministic relative distance

metrics, the correct solution is always present among epoch candidates even when a period-

icity failure occurs. Then, applying FRED algorithm in a deterministic way is possible, but

it decreases the performance, because of the statistical comparison removal.

7.5 Sensitivity Analysis

A sensitivity analysis is conducted to test FRED robustness. Operationally, three aspects

may negatively affect the results:

• A larger time elapsed between the event and the IOD: given the IOD error, the larger

the propagation time, the larger the mismatching at the fragmentation epoch.

• A wrong evaluation of the physical parameter of the fragment: the physical character-

istics of the fragment can be either assumed or reconstructed during the IOD process,

and this likely create an additional source of mismatching.

• A larger measurements noise: this generally induces a more noisy IOD result, with

larger mismatching between IOD mean state and larger covariance.

For all these aspects a sensitivity analysis is carried out as follows, by also comparing the

FRED results with the ones obtained through the relative distance metrics introduced in

Sec. 7.4.

7.5.1 Sensitivity Analysis on the IOD epoch

In Sec. 7.2, Sec. 7.3 and Sec. 7.4, the IOD epoch is always set 13 h after the event, as

FRED algorithm aims at providing a method to identify the fragmentation epoch from a

single observation conducted by a surveillance radar in the first hours right after the event.

However, in real case scenarios, the algorithm may be applied starting from an orbital state

resulting from an IOD conducted later. For this reason, it is fundamental to assess the

FRED performance by considering larger time elapsed between the fragmentation and the

IOD epochs. Three cases are investigated: 24 h, 48 h and 72 h from the event to the first

observation epoch. As above, the IOD method presented in [69] is applied. Results are

reported in Tab. 7.7 and show a deterioration in performance, and this confirms that the
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Time from
the event

Correct
solutions

MOID failures
compliant

MOID failures
uncompliant

Periodicity
failures

24 h 60.8 % 5.7 % 0.0 % 33.5 %
48 h 43.1 % 3.8 % 1.0 % 52.1 %
72 h 31.6 % 2.4 % 0.5 % 65.5 %

Table 7.7: Perturbed scenario with orbital state error introduced by the IOD process: FRED
results for the sensitivity analysis on the time elapsed between the fragmentation and the
IOD epoch.

Time from
the event

Correct
solutions 1 min < 𝑡𝑒𝑟𝑟 < 𝑇 𝑝/2 𝑡𝑒𝑟𝑟 > 𝑇 𝑝/2

24 h 8.1 % 57.9 % 34.0 %
48 h 3.4 % 42.1 % 54.5 %
72 h 4.3 % 31.6 % 64.1 %

Table 7.8: Perturbed scenario with orbital state error introduced by the IOD process: de-
terministic relative distance metrics results for the sensitivity analysis on the time elapsed
between the fragmentation and the IOD epoch.

longer the time elapsed, the less robust the algorithm is. Furthermore, a longer time elapsed

implies a longer fragment samples propagation, which increases the computational cost.

The FRED results are compared to those which could be obtained with the deterministic

relative distance metrics, which are reported in Tab. 7.8. There is an oscillating behaviour

of the correct solution, but the general trend confirms that the longer the time elapsed, the

less performing the deterministic metrics. Moreover, the results are always much worse than

the FRED ones.

7.5.2 Sensitivity Analysis on the B* mismatching

In the above analyses, the same B* (expressing the physical parameter in the SGP4 prop-

agator [52]) is used to generate the ground truth and inside FRED algorithm. This is

a simplification, as operationally no physical information about the observed fragment is

known. Generally, during an OD process, the physical parameters can be estimated as well,

but accurate measurements are needed, as well as a long observation arc (possibly obtained

by linking more measurements tracks). This is not the case for a single observation right

after a fragmentation event, and the physical parameters are either roughly estimated or
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Factor
multiplying B*

Correct
solutions

MOID failures
compliant

MOID failures
uncompliant

Periodicity
failures

1e-01 68.9 % 9.6 % 0.5 % 21.0 %
1e-02 69.4 % 9.1 % 0.5 % 21.0 %
1e-03 68.9 % 9.6 % 0.5 % 21.0 %

Table 7.9: Perturbed scenario with orbital state error introduced by the IOD process: FRED
results for the sensitivity analysis on the B*.

Factor
multiplying B*

Correct
solutions 1 min < 𝑡𝑒𝑟𝑟 < 𝑇 𝑝/2 𝑡𝑒𝑟𝑟 > 𝑇 𝑝/2

1e-01 12.4 % 67.0 % 20.6 %
1e-02 12.4 % 67.0 % 20.6 %
1e-03 12.4 % 67.0 % 20.6 %

Table 7.10: Perturbed scenario with orbital state error introduced by the IOD process:
deterministic relative distance metrics results for the sensitivity analysis on the B*.

not estimated at all and, so, assumed. In addition, the IOD procedure used [69] estimates

the orbital state only, which is voluntarily not refined through additional filters, as stated

in Sec. 7.4.

To test FRED algorithm robustness to the physical parameter mismatching, a sensitivity

analysis is carried out considering, inside the FRED algorithm, B* values different from the

one used to generate the ground truth. This modification is obtained by multiplying the

correct B* times: 1e-01, 1e-02, 1e-03.

The results are reported in Tab. 7.9. FRED performance results robust to erroneous phys-

ical parameter estimation, and, for the 1e-01 and 1e-03 cases, the percentages are exactly

the same as the ones in Tab. 7.5. In the 1e-02 case the result for one fragment passes

from being a compliant MOID failure to a correct solution. Overall, these results cannot

be considered as a general algorithm behaviour, as the algorithm sensitivity on the physical

parameters always depends on the perturbations experienced by the fragment and, so, on

its orbital regimen. For the scenario analysed, also the distribution of the relative distance

metrics result does not change, as visible in Tab. 7.10.
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Angular
noise [deg]

Correct
solutions

MOID failures
compliant

MOID failures
uncompliant

Periodicity
failures

2e-02 66.5 % 11.5 % 0.5 % 21.5 %
5e-02 53.1 % 20.6 % 0.0 % 26.3 %
1e-01 33.5 % 29.7 % 0.0 % 36.8 %

Table 7.11: Perturbed scenario with orbital state error introduced by the IOD process:
FRED results for the sensitivity analysis on the angular track noise.

7.5.3 Sensitivity Analysis on the measurements noise

As mentioned above, the performance of FRED algorithm in operational scenarios strongly

depends on the IOD accuracy, which in turn depends on the algorithm used, the observa-

tion geometry and length, and on the measurements quality. Indeed, the deterioration of

measurements can lead to two effects on the IOD result and, so, on FRED performance: an

erroneous orbital mean state and a larger uncertainty. For this reason, it is fundamental

to assess FRED algorithm sensitivity to the measurements noise. In particular, since in

surveillance radars the angular track is the less accurate measurement (as also stated in Sec.

1.4.3), the noise associated to the range is kept fixed to the nominal value of 30 m, while

the angular noise is made varying from the nominal value of 1e-02 deg to: 2e-02 deg, 5e-02

deg and 1e-01 deg.

The results are reported in Tab. 7.11. It is possible to notice that the larger the noise asso-

ciated to the angular track, the lower the convergence to the correct solution and the larger

the periodicity failures percentage. There is a slight increase also in the MOID compliant

failures, while the uncompliant ones tend to zero. These results depend on the IOD result

deterioration, which introduces a mismatching affecting the estimation of MOID data. On

the one hand this may lead to a wrong evaluation by EMD metrics, with still the correct

epoch among candidates. On the other hand the IOD result may induce a wrong compu-

tation of time of parent transit through the MOID and, so, the epoch candidates may be

wrongly estimated, and this may result in the absence of the correct solution among can-

didates. In any case, FRED is always better performing than the relative distance metrics,

whose results are reported in Tab. 7.12. Also in this case there is a performance deteriora-

tion with the angular noise increase.
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Angular
noise [deg]

Correct
solutions 1 min < 𝑡𝑒𝑟𝑟 < 𝑇 𝑝/2 𝑡𝑒𝑟𝑟 > 𝑇 𝑝/2

2e-02 13.4 % 57.4 % 29.2 %
5e-02 12.0 % 59.8 % 28.2 %
1e-01 11.5 % 57.9 % 30.6 %

Table 7.12: Perturbed scenario with orbital state error introduced by the IOD process:
deterministic relative distance metrics results for the sensitivity analysis on the angular
track noise.

To recap, the sensitivity analysis highlights an algorithm deterioration with a longer time

elapsed between the event and the fragmentation epoch and with a larger angular track

noise. On the contrary, the physical parameter mismatching is less effective, because of the

poor sensitivity of the MOID quantities to it on short propagation time window. Overall,

FRED is more performing than the deterministic metrics.

7.6 Operational scenario

The same analysis as the one in Sec. 7.4, that is the perturbed one with IOD error simulation,

is now conducted on an operational scenario involving BIRALES, which was one of the

EUSST sensors most contributing to monitor the fragments generated by COSMOS 1408

fragmentation. Four observations are scheduled based on the transit predictions of the

parent object last available ephemeris, which are foreseen to occur 36.4 h, 59.9 h, 97.3 h and

120.75 h after the event. In these time ranges, only the first detected measurements track

for each fragment is considered.

On the one hand, this observation schedule implies quite long propagation times, and this

would deteriorate FRED performance, as highlighted in Sec. 7.5.1. On the other hand, this

choice possibly mitigates the drawback for which, in proximity to the epoch of the parent

transit prediction, only fragments with an orbit pretty similar to the parent object one might

be observed, that is those which would induce periodicity failures in FRED algorithm. The

observations characteristics are reported in Tab. 7.13, where no elevation pointing limit

is considered for BIRALES, together with the foreseen epoch of parent transit. It can be

noticed that in each observation only a portion of the fragments data set used in previous

sections is observed, which is remarkably small for the cases 3.2 - 51.2 h and 99.2 - 123.2 h.
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Time range
from the event

Estimated parent
pass from the event

RX point.
Az [deg]

RX point.
El [deg]

N. of fragments
observed

3.2 - 51.2 h 36.4 h 180.0 65.9 35
51.2 - 75.2 h 59.9 h 0.0 7.8 144
75.2 - 99.2 h 97.3 h 0.0 11.7 116
99.2 - 123.2 h 120.75 h 180.0 22.5 52

Table 7.13: Operational scenario: observation characteristics.

Time range
from the event

Correct
solutions

MOID failures
compliant

MOID failures
uncompliant

Periodicity
failures

3.2 - 51.2 h 22.9 % 2.9 % 5.7 % 68.5 %
51.2 - 75.2 h 24.3 % 0.7 % 0.0 % 75.0 %
75.2 - 99.2 h 19.8 % 0.9 % 0.0 % 79.3 %
99.2 - 123.2 h 17.3 % 0.0 % 1.9 % 80.8 %

Table 7.14: Operational scenario: FRED results.

The fragments IOD epoch distribution (in terms of hours from the event) for the four

observations is represented in Fig. 7-13, as well as the failures case, and FRED algorithm

results are reported in Tab. 7.14. Both the IOD accuracy and the long propagation time

deteriorate the EMD performance. In particular, a trend similar to the IOD epoch sensitivity

analysis (reported in Tab. 7.7) is obtained, that is the longer the time elapsed between the

event and the observation, the smaller the convergence to the correct solution. However, the

convergence rate is even smaller than the one in Tab. 7.7, and this change is due both to the

more realistic observation geometry (the measurements are simulated when the fragment

crosses the receiver FoV) and, moreover, to the fact that generally the fragments with

an orbit pretty similar are observed, as the observation has been scheduled from the parent

transit prediction. This represents an operational drawback of the method, as the fragments

with an orbit similar to the parent one are the most likely to be observed. Nevertheless, it

is worth to remark that multiple candidates are provided by the algorithm.

Similarly to what done in Sec. 7.2 and Sec. 7.3, for the 51.2 - 75.2 h case the relation-

ship between orbital parameters and time standard deviation associated to the solution is

reported. From Fig. 7-14 it is possible to notice that the relationship observed in Fig. 7-5,

Fig. 7-9 and Fig. 7-12 holds, that is the closer the fragment and the parent orbits, the larger

the time standard deviation (especially for what regards inclination and right ascension of
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(a) 3.2 - 51.2 h observation.
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(b) 51.2 - 75.2 h observation.
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(c) 75.2 - 99.2 h observation.
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(d) 99.2 - 123.2 h observation.

Figure 7-13: Operational scenario: relationship between the impulse magnitude originating
each fragment and the IOD epoch, for the four observations. The dashed line indicates the
predicted transit epoch of the parent object.
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(b) Eccentricity.
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(c) Inclination.
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(d) Right ascension of the ascending node.

Figure 7-14: Operational scenario: relationship between the standard deviation associated
to the computed fragmentation epoch and the fragment semi-major axis, eccentricity, incli-
nation and right ascension of the ascending node. The fragments for which a failure occurs
are highlighted according to the legend, and the dashed line shows the parent orbital pa-
rameters. The results are reported for the 51.2 - 75.2 h case.

the ascending node, in Fig. 7-14c and Fig. 7-14d respectively). Figure 7-14 also provides

an explanation for the remarkable decrease of MOID failures percentages (both compliant

and uncompliant) in Tab. 7.14 with respect to Tab. 7.5: differently from Fig. 7-9, the

periodicity failures regard cases in which the fragment orbit is similar to the parent one also

in inclination and right ascension of the ascending node, which are also the situations where

MOID failures occur. Thus, this type of failure merges in the periodicity one.

As in Sec. 7.4 and in Sec. 7.5, the deterministic relative distance is assessed to better

appreciate FRED algorithm . The results are reported in Tab. 7.15, where the convergence

to the correct solution is much smaller than the FRED one. For the 51.2 - 75.2 h case, the

results are graphically compared in Fig. 7-15, which reports the time error associated to

FRED and to the relative distance metrics result.
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Time range
from the event

Correct
solutions 1 min < 𝑡𝑒𝑟𝑟 < 𝑇 𝑝/2 𝑡𝑒𝑟𝑟 > 𝑇 𝑝/2

3.2 - 51.2 h 5.7 % 20.0 % 74.3 %
51.2 - 75.2 h 0.7 % 27.1 % 72.2 %
75.2 - 99.2 h 0.8 % 20.7 % 78.5 %
99.2 - 123.2 h 1.9 % 15.4 % 82.7 %

Table 7.15: Operational scenario: deterministic relative distance metrics results.
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(a) FRED result.
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(b) Relative distance metrics result.

Figure 7-15: Operational scenario: time error for each fragment of the data set by using
FRED and the minimum relative distance between parent and fragment mean state to assess
the fragmentation epoch. The results are reported for the 51.2 - 75.2 h case.
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To conclude, although the performance deterioration, the analysis proves that, also in oper-

ational scenarios, the fragmentation epoch identification problem would benefit from FRED

algorithm.

7.7 Operational scenario with MATER

As stated in Sec. 1.6, the aim of this thesis is to show the benefit for SST activities of using

an adaptive beamforming technique to derive the angular track in array radars. In Ch. 4

the applications to Re-entry Analysis and Collision Avoidance services are presented, as well

as what done in Ch. 5 for the proximity operations and the fragments cloud monitoring,

the latter being related to the Fragmentation Analysis service. Since this last application

motivates the interest on fragmentation events, FRED algorithm is presented in Ch. 6 and

its performance is assessed in this chapter. For the sake of a comprehensive analysis„ an

application of FRED algorithm starting from measurements computed through MATER

algorithm is here proposed.

As shown in Sec. 7.6, there was no possibility for BIRALES to observe COSMOS 1408

fragments cloud on the first day after the event. The long time elapsed between the frag-

mentation and the observations induces a remarkable deterioration in performance. Since

FRED algorithm aims at providing an operational procedure to identify the fragmentation

epoch in a stochastic way in the first hours after the event, another scenario is considered.

An International Space Station fragmentation is simulated, through the NASA standard

break-up model [97] [98], on the April 27th, 2021, at 19:30:00 UTC, and the ISS orbital

parameters at the fragmentation epoch are reported in Tab. 7.16 (with the exception of the

true anomaly). The last available ephemeris and the alert are considered at 16:00:00 UTC

and at 22:45:00 UTC, respectively. BIRALES receiver pointing is kept southwards at an

elevation of 83.9 deg, whereas the transmitter pointing angles are 19.3 deg in azimuth and

35.1 deg in elevation, that is the same pointing as in Sec. 4.5 and in Sec. 5.3. The RCSs

are derived from the break-up model and, for those fragments which intersect the receiver

FoV, the SNR is simulated, which enters the detection block. In this way, 99 fragments are

observed between 08:39:35 UTC and 08:50:12 UTC of April 28th, 2021. For each fragment

observed, both the signal CM, with a 5 kHz sampling frequency and 0.02 s integration time,

and the slant range are generated, and MATER algorithm is run considering the multiple
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𝑎 [km] 𝑒 𝑖 [deg] Ω [deg] 𝜔 [deg]

6792.7 1.2e-03 51.5 231.5 95.2

Table 7.16: Operational scenario with MATER ISS orbital parameters.

Time range
from the event

N. with
1 sources

N. with
2 sources

N. with
3 sources

𝜂Δ𝛾1

[deg]
𝜂Δ𝛾2

[deg]

13.2 - 13.3 h 88 4 1 1.2e-02 6.7e-03

Table 7.17: Operational scenario with MATER: number of passes temporally overlapping
each other and angular track median RMSE.

sources scenario, that is similarly to the simulations reported in Ch. 5. The correspondence

between the number of overlapping transits and the slots is reported in Tab. 7.17, together

with the median value 𝜂 on the data set of the angular RMSE of the MATER result, as

defined in Sec. 4.2, for the two angular coordinates separately. All the tracks converged to

the correct solution.

It can be noticed that the angular RMSE along Δ𝛾2 is better than along Δ𝛾1. This can

be explained both considering that the parent object inclination is around 51.6 deg and the

fragments ones do not deviate remarkably from this value. Thus, in the same time window,

the path along Δ𝛾1 and along Δ𝛾2 is of comparable length and the short integration time

allows the Δ𝛾2 direction to be finer because of the sensor resolution.

From the simulated slant range and the angular track computed with MATER algorithm,

IOD is run based on [69] and the fragment orbital state
{︀
𝑥𝑓𝑔,𝑃 𝑓𝑔

}︀
is computed for each

fragment.

Given these data, FRED algorithm is run and the results are reported in Tab. 7.18, which

presents also the number of fragments for which FRED returns a solution. For the sake of

comparison, also the results are reported for the no MATER case, in which the angular track

is simulated in the same manner as in Sec. 7.4, by associating a Gaussian noise equal to the

angular error standard deviation obtained through MATER, for each observed fragment.

It is worth to remark that this associated noise has zero mean, while the MATER angular

track one has not.

It is possible to notice that, while the no MATER case presents a convergence rate com-

parable to the ones in Tab. 7.14, the MATER case shows a remarkable deterioration with
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Correct
solutions

MOID failures
compliant

MOID failures
uncompliant

Periodicity
failures

N. of FRED
results

MATER 4.8 % 7.9 % 1.6 % 85.7 % 63
No MATER 32.3 % 1.0 % 0.0 % 66.7 % 99

Table 7.18: Operational scenario with MATER: FRED results.
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(a) MATER case.
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(b) No MATER case.

Figure 7-16: Operational scenario with MATER: FRED solution by starting from an angular
track simulated through MATER algorithm and from the correct profile in which a Gaussian
noise with the same standard deviation as the MATER track one is associated.

respect to the previous analyses, with few correct results. This may also be assessed by

looking at Fig. 7-16, which reports the time error for the two cases: it can be noticed that

the failures in the no MATER case align towards sound candidates (they are separated from

the correct solution according to the parent orbital period), while the MATER case results

are less ordered. The performance deterioration in MATER case can also be assessed con-

sidering that the number of solutions returned by FRED is larger in the no MATER case

than in the MATER case (Tab. 7.18): indeed, when no solution is returned, the IOD orbital

state obtained from MATER angular track (coupled with the slant range) is so inaccurate

that no result is provided by FRED.

Therefore, this deterioration in FRED results is linked to the IOD error, whose median

values (considering only the fragments for which FRED returns a result) in position and

velocity are 47.0 m, 23.0 m/s and in 8.5 m, 1.1 m/s, for the MATER case and the no

MATER case respectively. Thus, the MATER case features errors one order of magnitude

larger than the no MATER case one, and this is the main responsible for the significant

deterioration. Concerning the angular error trend, a remarkable deviation from a Gaussian
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(a) MATER case: azimuth.
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(b) No MATER case: azimuth.
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(c) MATER case: elevation.
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(d) No MATER case: elevation.

Figure 7-17: Operational scenario with MATER: MATER algorithm angular error distri-
bution (in azimuth and elevation) compared to Gaussian distribution case, with the same
standard deviation.

distribution occurs, as represented in Fig. 7-17 for a single fragment. For this case, the

Cumulative Distribution Function is also reported in Fig. 7-18, by representing both the

MATER case, the no MATER case and the theoretical trends. From both of figures, it is

possible to notice a bias effect in the MATER angular track error.

Finally, also the results for the relative distance metrics are reported, both for the MATER

case and the no MATER case. The results are shown in Tab. 7.19 and represented in Fig.

7-19. Comparing them both with Tab. 7.18 and Fig. 7-16 respectively, it is possible to

notice the better results provided by FRED.

To recap, the operational application of FRED from an angular track determined by MATER

highlights some critical issues. First of all, the angular track computed with MATER is often

not fine enough to determine an accurate orbital state, because both of the non-zero mean

and the non-Gaussian distribution of the angular error. In many cases, this also prevents

FRED from returning results, and this forces to track the detected fragment with additional
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Figure 7-18: Operational scenario with MATER: angular error distribution Cumulative
Distribution Function (CDF) in azimuth and elevation. Both the MATER, no MATER and
theoretical cases are represented.

Correct
solutions 1 min < 𝑡𝑒𝑟𝑟 < 𝑇 𝑝/2 𝑡𝑒𝑟𝑟 > 𝑇 𝑝/2

N. of FRED
results

MATER 0.0 % 0.0 % 100 % 99
No MATER 8.1 % 23.2 % 68.7% 99

Table 7.19: Operational scenario with MATER: deterministic relative distance metrics re-
sults starting from the IOD conducted either with MATER or without MATER.
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(a) MATER case.
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(b) No MATER case.

Figure 7-19: Operational scenario with MATER: time error of the deterministic relative
distance metrics starting from the IOD conducted either with MATER or without MATER.
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sensors to derive a more accurate orbital state to be used in the algorithm. Nevertheless,

determining the fragmentation epoch starting from a fragment IOD conducted from MATER

result performs better with FRED algorithm than with the deterministic relative distance

metrics.
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Chapter 8

Conclusions

This thesis illustrates the potential of the adaptive beamforming technique to derive the

angular track in array radars devoted to space surveillance, and assesses the consequent

benefits for the SST activities. This objective is accomplished with the development of

MATER, presented in Ch. 3, an algorithm embedding MUSIC to estimate the signal di-

rections of arrival, which are then clustered to provide the angular track measurement in

the receiver FoV. Ambiguous solutions may be possibly generated because of the mutual

distance among array receivers and, to solve this problem, MATER exploits the transit

prediction in the catalogued case, or tailored criteria otherwise. These criteria are based

either on statistical considerations, or on the signal processing, or even on the merging with

additional measurements.

Chapter 4 assessed MATER performance for the single target case, by considering BIRALES

as baseline. The nominal analysis, conducted both on the catalogued and the uncatalogued

case, provided a 50-th percentile of the angular track root mean square error between 6.9e-03

deg and 1.0e-02 deg. All of the ambiguity solving criteria for the uncatalogued case provided

a high-rate convergence to the correct solution. A sensitivity analysis highlighted that the

angular track accuracy depends on four main factors. First, the higher the detected signal,

the higher the signal direction of arrival precision and, so, the more accurate the recon-

structed angular track. Thus, the accuracy strongly depends on the transmitted power and,

if it is not sufficient, the target would not even be detected. Second, with the same number

of samples integrated to generate a single estimation, the smaller the integration time, the

shorter the time uncertainty associated to the estimation and the smaller the related angu-
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lar error. However, to keep the number of samples constant, the sampling frequency would

increase accordingly, and this would enlarge the receiver bandwidth noise and, so, attenuate

the detected signal. Hence, a trade-off choice is necessary. Third, with the same integration

time, the longer the angular path along a direction, the larger the angular error associated to

that coordinate because of the estimation time uncertainty. Fourth, the larger the number

of receivers along a direction, the higher the theoretical accuracy along that coordinate, but

this effect may be hidden by the previous one. Practical applications in Re-entry Analysis

and Collision Avoidance services are simulated and discussed, and a real observation of the

International Space Station is presented.

Chapter 5 was then dedicated to the multiple sources scenario, that is when more than one

target is simultaneously present in the receiver FoV, like what may occur during a survey

observation. MATER is also adapted to manage such situations, by associating the com-

puted signal direction of arrival to the correct target. A numerical nominal analysis obtains

an angular track accuracy similar to the single target one in Ch. 4. Based on a sensitivity

analysis on the transmitted power, the smaller it is, the less multiple sources are observed

simultaneously, as the detection arc is shortened and the epochs of overlapping between

sources reduces as well. Simulations involving proximity operations monitoring and frag-

ments cloud observation are carried out and discussed. In particular, the latter analysis

motivates the interest in on-ground multi-receiver radars applications to the Fragmentation

Analysis service, MATER algorithm might further contribute to.

Therefore, Ch. 6 deals with the fragmentation epoch identification problem focusing on

the case in which, besides the last available ephemeris of the parent object, just one single

fragment orbital state obtained by one single surveillance radar observation is available and

already linked to the event. Thus, the problem is approached in a stochastic way through

FRED algorithm, which assumes the last available ephemeris of the parent object as a deter-

ministic quantity, while the fragment orbital state is represented according to a multinormal

distribution from its mean and covariance, resulting in samples. All of them, together with

the parent ephemeris, are propagated on the analysis time window, sampled according to the

parent orbital period. For each periodicity and for each couple parent-sample, the Minimum

Orbital Intersection Distance (MOID) is determined, as well as the epochs of parent transit

through it and the relative distance at those epochs. Computing these quantities for all the

parent-sample couples provides the distribution of the fragmentation epoch candidate (from
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the epoch of parent transit through the MOID), of the relative distance and of the MOID.

This process is repeated for all the periodicities, resulting in fragmentation epoch candi-

dates, which are ranked according to the matching between MOID and relative distance

distributions, given that, at the actual fragmentation epoch, the MOID and the relative

distance were equal. To compute the statistical matching, three metrics are discussed: the

Mahalanobis distance, the Earth Mover’s Distance (EMD) and a tailored procedure based

on the quantiles coupled with a Principal Component Analysis (PCA).

FRED performance are then assessed in Ch. 7. First a Keplerian scenario with no orbit de-

termination errors highlights that the distributions involved in the process are not Gaussian

and, for this reason, the Mahalanobis distance is rejected as metrics. Then, the EMD results

better performing and is selected for all the following analyses. Generally, the algorithm con-

verges to the correct solution, but it gets less robust when fragment and parent orbits are

similarly oriented, or have a similar shape. Furthermore, these cases correspond to a larger

standard deviation associated to the solution. A sensitivity analysis shows that there is

no dependence on the number of samples used in representing the fragment orbital state.

The inclusion of the perturbations and, moreover, of the orbit determination error provokes

a remarkable deterioration in performance, but the correct fragmentation epoch is always

present among candidates. In addition, alternative deterministic metrics are performing

worse, especially when the fragmentation epoch is identified as the time of the minimum

relative distance between the parent ephemeris and the fragment mean state propagated on

the analysis time window. A further sensitivity analysis shows a deterioration proportional

to the angular noise associated to the solution and to the time elapsed between the event

and the observation, but FRED is always much more performing than the relative distance

metrics. Instead, no remarkable change is present for a fragment physical parameter mis-

matching between the actual value and the one used in the algorithm, but this depends on

the fragment orbital regimen and on the elapsed time from the event to the observation,

and so it is not possible to consider it as a general result.

An operational application involving BIRALES highlights the operational critical aspects

of this method: since, in practical cases, the observation can be scheduled only according

to the parent object transit prediction, it is easy to run in cases in which the fragment and

parent orbits are similarly oriented or have a similar shape, that is the most critical ones.

Finally, to include MATER algorithm and to evaluate its contribution to this Fragmentation
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Analysis service problem, an operational scenario in which the angular track is obtained with

MATER is assessed. Results get deteriorated because the angular track has non-Gaussian

and non-zero mean error. Nevertheless, FRED performance is much more appreciable than

the deterministic metrics ones.

The thesis objective can be considered accomplished, as the adaptive beamforming technique

widely showed its potential, with some particular aspects it is fundamental to take care of.

First of all, the angular track accuracy strongly depends on the detected signal intensity and

the integration time, which are also related each other. Indeed, a high-intensity signal would

allow to have enough signal to noise ratio even for high frequency sampling, and this would

allow to shorten the integration time, with benefit in the angular track accuracy. Therefore,

to obtain the best performance it is necessary to maximise the detected signal intensity, by

increasing the transmitted power or the stations gain, like enlarging the number of receivers.

This latter action would also improve the angular resolution, as long as the integration time

is short enough. Based on the SST services simulations discussed in Ch. 4, Ch. 5 and Ch.

7, it is worth to point out that the angular track obtained with MATER is not sufficient to

initially determine the target orbital state with a high-level accuracy, but this is compliant

with the purpose of surveillance radars, which usually first determine the target orbit, later

refined and monitored by tracking radars and telescopes. Furthermore, the capability of

determining the angular track of multiple sources simultaneously is of utmost importance,

and constitutes a significant advantage with respect the static beamforming techniques. The

next step is to carry out an extensive validation campaign on real data, both to validate

the approach and to find out possible aspects which may improve the procedure. Finally,

for the operational use of the approach, a rigorous analysis of the MATER computational

demand shall be carried out and the algorithm properly implemented to minimise it.

A separate discussion must be dedicated to FRED algorithm. Ch. 7 shows the advantage

of this stochastic approach in the fragmentation epoch identification problem, but the more

realistic the simulation is, the more deteriorated the performance turns out to be. First,

this is due to the fragment orbital state accuracy, which is voluntarily kept consistent with

the surveillance radar ones. In operational scenario, besides the positive contribution of

a more accurate angular track (as discussed above), the fragment orbital state could be

either refined from the same measurements with a smarter orbit determination process,

or improved through other sensor contributions. Furthermore, the plausibility of the frag-

166



mentation epoch candidates can be examined by tasking the sensors to point at the right

ascensions and declinations where the parent was at those epochs and retain only candidates

featuring a sufficient number of fragments detected. This action cannot be decisive, as peri-

odicity failures may share the same right ascension and declination as the correct solution,

but it can support to shrink the candidates set. Another point concerns the uncertainty

representation: the multivariate normal distribution used represents the most generic ap-

proach, but a smarter way of covariance propagation may be integrated in the process, for

example combining the UT [58] with the Gaussian mixtures [65]. This choice, if properly

implemented, would decrease the computational demand, as less orbital states would be

propagated. In addition, the process considers the last available ephemeris as a determinis-

tic information, while an uncertainty is associated also to it. Thus, a possible improvement

to be investigated is to apply FRED at a lower algorithm level, by also keeping the samples

strategy for the fragment orbital state, and then repeating this process for all the samples

representing the parent object uncertainty (defined like through UT). Another aspect which

may be further studied is the fragmentation epoch candidates ranking strategy, which is

currently performed based on the statistical matching between the relative distance and the

MOID distributions, but which may profit from other conjunction analysis tools, like the

long term risk assessment. Finally, it would be interesting to deal with the fragmentation

epoch identification in the case that it is not possible to determine the fragment orbital

state, with a tailored procedure conducted in the measurements space. Overall, all these

possible algorithm improvements and developments should be carried out together with test

on real data and the final operational implementation shall include a detailed computational

demand assessment and minimisation.
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