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1. Introduction

Swarms are collaborative groups of agents with
local knowledge that coordinate their actions to
accomplish tasks. A type of task is represented
by the best-of-n problem, where the objective is
to reach a collective agreement on the best op-
tion among n choices. This study focuses on the
collective decision-making process guided by the
exchange of opinions among agents when stub-
born agents, referred to as zealots, who inten-
tionally spread misinformation, are present.

Agents in the swarm hold one opinion at a time,
which is subject to change as a result of so-
cial interactions. I consider different behavioural
configurations of the agents, first with swarms
that display homogeneous behaviours, where ev-
ery agent within the swarm follows the same
collective decision-making strategy, and com-
bine them to form heterogeneous swarms where
the collective decision-making strategies differ
across agents within the swarm. The main dif-
ference between these behavioural models is the
amount of social information that each agent
needs to process, where models that need to pro-
cess more social information are more resilient;
however, processing more information implies a
higher cognitive cost. I construct mathematical

models, represented as systems of ordinary dif-
ferential equations (ODEs), to describe how the
swarm population splits into sub-populations
composed of agents sharing the same opinion.
Moreover, I analyze these systems by changing
the amount of zealots and the values of the qual-
ities, to test their resilience.

My work focuses on finding the optimal balance
between resilience and cognitive cost by combin-
ing models with varying social information re-
quirements. Initially, homogeneous swarm mod-
els establish a baseline understanding, followed
by the integration of these models into heteroge-
neous swarms. I develop metrics to evaluate the
performance of the models in terms of resilience
and cognitive cost.

The novelty of this work resides in the develop-
ment and analysis of heterogeneous systems in
the best-of-2 problem, when zealots are present.
In the state of the art, mathematical models for
homogeneous models are developed, as in [1],
[2] and [3], both with the presence of malicious
and without. My work collects these modelling
efforts in order to build hybrid swarms which
display a trade-off between their resilience and
their cost in terms of amounts of messages that
an agent needs to process.



Heterogeneous models enable the customization
of agents requiring less social information, meet-
ing specific resilience and cognitive cost require-
ments. This work contributes to understanding
collective decision-making in swarms and pro-
vides insights for designing resilient systems in
the presence of malicious agents. The emphasis
is on leveraging heterogeneous swarm models to
strike a balance between resilience and cognitive
cost.

2. Models

Agents receive and send messages which contain
their belief on the best among the n available
options. I consider the case for n = 2, where the
two options are A and B, each with an associ-
ated quality: option A has quality g4 := 1, fixed
to the maximum quality; option B has quality
gp € [0,1], a parameter that I vary in my anal-
ysis. Let A(t) and B(t) be the relative number
of agents holding opinion A and opinion B, re-
spectively.

The communication of the agents is divided into
two parts: first, they filter the opinions they re-
ceive from their neighbours using an opinion fil-
tering mechanism; then, they update their opin-
ion with an opinion update rule.

I consider agents that communicate their opin-
ion with a frequency that is proportional to the
quality of the opinion they hold [2], except for
zealots, that communicate with maximum fre-
quency regardless of the opinion they propagate.
The relative number of zealots with opinion A
and opinion B constitute two additional parame-
ters: z4 and zp, both laying in the range [0, 0.5].
These values represent the percentage of zealots
with respect to the total number of collaborative
agents. Furthermore, 1 consider a well-mixed
system, where agents are distributed in the en-
vironment uniformly with respect to the opinion

they hold.

2.1. Filtering mechanisms

Filtering mechanisms allow agents to select one
opinion from the messages they receive. I con-
sider two filtering mechanisms: the voter model
and the majority rule.

In the voter model, agents select a random opin-
ion from the messages they receive. There-
fore, the probability that an agent selects a ran-
dom opinion from its neighbours is given by

the weighted average of the relative number of
agents holding an opinion, where the weights are
the quality of the options. Let this probabil-
ity be Pi(z) [1], where z is the aforementioned
weighted average.

On the other hand, in the majority rule, an agent
selects the opinion which is present in the major-
ity of the messages it receives. Then, the prob-
ability that an agent selects opinion ¢ from its
neighbours is modelled in two ways:

e the Py(x) function, described in [1];

e the discrete integration of a Bernoulli dis-
tribution, where the success probability is
given by P;(x) and the number of trials is
given by the number of neighbours of an
agent, G [3].

2.2. Update rules

Update rules allow an agent to update its opin-
ion based on the opinion it selects through the
filtering mechanism at hand. I consider two up-
date rules: the direct switch update rule and the
cross-inhibition update rule.

In the direct switch update rule, an agent up-
dates its opinion to the filtered opinion directly,
hence the name. Since an agent can hold either
opinion A or opinion B, this rule implies that
A(t)+ B(t) = 1.

On the other hand, in the cross-inhibition up-
date rule:

e if an agent’s filtered opinion is different than
its current belief, it becomes undecided and
holds no opinion;

e if an agent is undecided, it updates its opin-
ion to the filtered opinion.

Since an agent can either hold opinion A, B or
have no opinion, let U(t) be the relative num-
ber of agents with no opinion. Then, the cross-
inhibition update rule implies that A(t)+ B(t)+
Ut)=1.

2.3. Homogeneous models

Homogeneous models describe the evolution of
sub-populations of agents holding the same opin-
ion when the entire population uses the same fil-
tering mechanism and the same update rule. I
build three models for each update rule: one
that uses the voter model, one that uses the
majority rule with the Py probability function
and one that uses the majority rule with the
discrete integration of a Bernoulli distribution.



Models using the direct switch update rule have
dA

one ordinary differential equation <7 (t), since
B(t) = 1 — A(t), while models using the cross-
inhibition update rule have two ordinary differ-
ential equations, %(t) and %(t), since U(t) =
1 — A(t) — B(t). Moreover, the change in a sub-
population is composed of two parts:

e a positive term, which indicates the increase
of a sub-population as a result of agents in-
side that sub-population sending their mes-
sage to

o agents in the other sub-population, if
direct switch is used;

o to agents with no opinion, if cross-
inhibition is used;

e a negative term, which indicates the de-
crease of a sub-population as a result of
agents inside that sub-population receiving
a message from the other sub-population.

The change in the A population of the direct
switch models has the following form:

dA

—(6) = BB)ma(t) = A)mp(t) (1)

where 74 (t) and 7p(t) refer to the probability
of adopting opinion A and B, which depend on
the filtering mechanism. On the other hand,
the change in the sub-populations of a cross-
inhibition model has the following structure:

Dty =vmt) — i) (@)

where i € {A, B} and j = —i.

2.4. Heterogeneous models

Heterogeneous models combine two homoge-
neous models that use the same opinion update
rule, but a percentage (k) of the agents uses
the voter model filtering mechanism, while the
rest of the population uses the majority rule. I
develop four heterogeneous models, since I con-
sider two opinion update rules and two proba-
bility functions for the majority rule.

Let AVM(t) (BVM(t)) and AMR(t) (BMR(t))
be the relative number of agents holding opin-
ion A (B) while using the voter model and
the majority rule, respectively. Then, A(t) =
Apr(t)+Aya(t) and B(t) = Byr(t)+Byar(t).
In the case of models using the direct switch up-
date rule Ayps(t) + Bya(t) = k and Apyg(t) +
Buyr(t) = 1 — k. Furthermore, I model the

change in the two A sub-populations as:

a4,
dt

where f € {VM,MR}. Thus, the probability
depends on the particular filtering mechanisms,
as in Equation 1, while the influenced sub-
population now depends on the filtering mecha-
nism as well.

On the other hand, models using the cross-
inhibition update rule need to keep track of the
number of agents in the undecided state for both
filtering mechanisms. Let Uy s and Upsg be the
relative number of agents with no opinion while
using the voter model and the majority rule, re-
spectively. Then, Ay (t)+Bya(t)+Uya(t) =
k and AMR(t) —|—BMR(t) + UMR(t) =1—k. Fur-
thermore, I model the change in the two A and
B sub-populations as:

(t) = By(t)ma(t) — Ap(t)mp(t)

dis
dt

where f = {VM,MR}, i € {4, B} and j = —i.
Thus, the probability depends on the particular
filtering mechanisms, as in Equation 2, while the
influenced sub-population now depends on the
filtering mechanism as well.

(t) = Up(t)mi(t) — iy (t)m;(t)

2.5. Metrics

I analyze the homogeneous models by fixing z4
and then exploring all the possible values of zp
and g. The same is done for heterogeneous sys-
tems, however I need to fix k£ and I choose the
range [0, 1] with a resolution of 10%. I integrate
the ODEs for a large ty;ax — oo by fixing those
values and I check the final value of the sub-
populations: if the value of the sub-population
A is higher than a given threshold €, then the
agents have come to an agreement on option A;
if the value of the sub-population B is higher
than €, the agents have agreed on option B. Fi-
nally, if neither of these conditions holds, then
the agents are unable to agree, meaning that
they have undergone a decision deadlock.
I generate and discretize the parameter space
(2B, q), after fixing z4, where each point denotes
either the convergence of the agents to option
A, B or to a decision deadlock. Furthermore, I
introduce the following metrics:
e accuracy: it represents the amount of points
where the system converges to option A,



over the total amount of points. A model
should maximize this metric;

e regret: it represents the value lost due to
the convergence to option B and decision
deadlocks. The regret of a point where
the system converges to A is zero, while
the regret of a point where the system con-
verges to B is the differences in the quali-
ties, namely 1 — ¢. Finally, the regret of a
point where the system undergoes a deci-
sion deadlock is one. A model should mini-
mize this metric;

e the average convergence time: it represents
the average amount of integrations of the
ODEs needed to reach consensus on option
A. A model should minimize this metric;

e cognitive cost measures the upper bound
on the messages processed by a model. A
model should minimize this metric.

These metrics are analyzed for two values of the
parameter that controls the amount of zealots
holding opinion A:

e 24 = 0: this corresponds to a wrong ad-
dressing attack, where the zealots deceive
the collaborative population towards the
worst option;

e 24 = 0.05: this corresponds to a super-
set of a denial of service attack, where the
zealots cause a decision deadlock.

3. Results

The results show that models leveraging the di-
rect switch update rule have the highest ac-
curacy, however the models leveraging cross-
inhibition have the lowest regret. Heterogeneous
models show a decreasing trend in the accuracy
as k, the percentage of agents using the voter
model, increases, together with an increasing
trend in the regret. This trend is common to
all models under both attacks described in Sec-
tion 2.5.

Another common trend is the increase in the av-
erage convergence time as k increases toghether
with its variance.

Furthermore, I compare the accuracy and the
cognitive cost in function of k. Then, I nor-
malize the cognitive cost with respect to the ac-
curacy, in order to compare the Euclidean dis-
tances between the points in the cognitive cost
versus accuracy plot and the point that ideally
has the lowest cognitive cost and the maximum

accuracy. The distances depend on k, therefore
I plot them in function of k£ as well, in order to
find the minimum.

The point at minimum distance represents the
best trade-off between accuracy and cognitive
cost. The heterogeneous models leveraging the
direct switch update rule require the same opti-
mal values of k when different amounts of zealots
with opinion A are present. On the other hand,
the models leveraging the cross-inhibition up-
date rule indicate that different optimal value
of k can be used both under a wrong addressing
attack and under a denial of service attack.

4. Conclusions

My work tackles the need for mathematical
models that are able to describe adequately the
complex interactions of heterogeneous decision
makers in the presence of stubborn individuals,
which is absent in the current state of the art. In
particular, I focus on the collective decision mak-
ing process aimed at solving the best-of-n prob-
lem, by first fixing n = 2, and then modelling
the change within the population brought by the
exchange of opinions. Therefore, by modelling
the change within the sub-populations, one for
each opinion, I construct systems of ordinary
differential equations. The numerical integra-
tion of such systems under a finite set of values
of the parameters that compose them, allows
to discover the behaviour of the system under
convergence. Moreover, I combine the homoge-
neous systems of ordinary differential equations
by keeping the same opinion update rule, either
direct switch or cross-inhibition, while varying
the amount of voter model agents, thus creat-
ing the heterogeneous systems. By introducing
some metrics, namely accuracy, regret, average
convergence time and cognitive cost, I analyze
the heterogeneous models in a finite set of values
of the parameter k, which determines the per-
centage of agents using the voter model. In par-
ticular, I focus my attention on two settings: the
case when no zealots with opinion A are present,
which represents the wrong addressing attack,
and the case when some zealots with opinion A
are present (z4 = 0.05), which constitutes a su-
perset of the denial of service attack.

The analysis of the metrics leads to the conclu-
sion that the direct switch opinion update rule,
in order to have an optimal trade-off between



cognitive cost and accuracy, requires the same
amounts of voter model agents when different
amounts of zealots A are present. In my work,
these different amounts coincide with the two
types of attacks, namely wrong addressing and
denial of service. On the other hand, the cross-
inhibition based heterogeneous models have an
optimal trade-off between cognitive cost and ac-
curacy with different values of k in the two cases.
Furthermore, the trade-off between cognitive
cost and accuracy can be reached only in
heterogeneous systems, as the voter model has a
lower cost and a lower accuracy with respect to
the majority rule, which has both a higher cost
and a higher accuracy. Therefore, the possibility
to fine tune the needs of a system in terms of
these metrics is guided by the mathematical
modelling of heterogeneous systems.
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