
Executive Summary of the Thesis

Orbital interference, planetary close-approaches detection and mem-
ory handling on GPUs

Laurea Magistrale in Space Engineering - Ingegneria Spaziale

Author: Adriano Filippo Inno

Advisor: Prof. Camilla Colombo

Co-advisor: Alessandro Masat

Technical advisor: Lorenzo Bucci

Academic year: 2020-2021

1. Introduction
Graphics Processing Units (GPU)s provide
much higher instruction throughput and mem-
ory bandwidth than a Central Processing Unit
(CPU) within a similar price range [4]. High-
efficiency GPU software can exploit this benefit
and grant a huge computational time speed-up
with respect to classical CPU programs, up to
two order of magnitude. Recently, the employ-
ment of GPUs for space mission design-related
programs is increasing. Orbit propagation soft-
ware are suited to be accelerated by graphic
cards, allowing to propagate tens of thousands
bodies in parallel. However, the difficulties re-
lated to implementing efficient GPU algorithms
for orbital interference and event detection dur-
ing the propagation make the usage of graphic-
cards less appealing. Moreover, GPU program-
ming can be hard, and it is not the focus of space
engineers. GPU software are particularly power-
ful in large-scale analyses, such as Monte-Carlo
methods or grid search optimisations. However,
handling the consequent huge sets of output ar-
rays complicates the development of the software
itself.

The aim of the work is to tackle the described
problems suggesting some event detections al-
gorithms that exploit logical arithmetic to effi-
ciently run in a GPU based application, as well
as efficient techniques to handle the outputs.
The work presents the development of the event
detections algorithms in CUDAjectory, an open
source orbit propagation GPU software avail-
able under European Space Agency (ESA) Com-
munity License, recently developed by the mis-
sion analysis team of ESA. The developments
focus on the implementation of four algorithms:
close-approach, Low Earth Orbit (LEO) pro-
tected region, Geostationary Earth Orbit (GEO)
protected region, and massless bodies collision.
A significant part of the work is also devoted
to lower the computational effort of the output
handling, which is the main bottleneck of CUD-
Ajectory. The ultimate goal for the software is
to enrich its interference and event detection ca-
pabilities in order to increase both the amount
of analyses perform-able and the user pool.

1

Executive summary Adriano Filippo Inno

2. Brief overview of CUDAjec-
tory

CUDAjectory is written in C++, CUDA and
Python. It is optimised to propagate millions
of bodies, called samples, on GPUs. The output
consists in the final states of the samples and
the eventual events detected during the propa-
gation. The user can exploit multiple gravity
models and orbital perturbations to enrich the
accuracy of the simulation.
The propagation of each sample is carried on
with the patched conic approach [1]. An event
algorithm detects the eventual change of Sphere
Of Influence (SOI) and updates the integration
centre of each sample. Another algorithm de-
tects the collisions between the samples and the
celestial bodies. The third event detection algo-
rithm available in the previous version of CUDA-
jectory is called close-approach. Its optimisation
is part of this work. The goal and the develop-
ment of the algorithm is presented in Section 3.
The position and velocity vector of celestial bod-
ies is retrieved at running time by exploiting
planetary ephemerides. The ephemerides data
are an input of the simulation and must be
passed using the NAIF-JPL Satellite and Planet
Kernels (SPK) format. Many SPK types exist,
and CUDAjectory is currently compatible with
respect to SPK types 2 and 3 only. These two
file formats are optimised to evaluate planetary
motions.
In CUDA, the main functions executed on GPUs
are called kernels, and are issued by the CPU.
The samples are propagated in parallel by the
computational units of the GPUs. In CUDAjec-
tory, the simulation is divided in multiple se-
quential kernels, each one performing N con-
secutive integrational steps, where the amount
of consecutive steps can be tuned by the user.
This simulation layout comes form a previous
optimisation of the ephemerides evaluation de-
scribed in details in [2, 5]. After the execution
of each kernel, the partial output containing the
eventual events detected and the intermediate
states of the samples is post-processed and the
useful data are saved. In the previous version of
CUDAjectory, the data related to the events are
stored in multiple structures of doubles. Each
event algorithm stores a specific amount of vari-
ables per detection, leading to additional post-
processes to parse the partial output.

3. Close-approach algorithm
The goal of the close-approach algorithm is to
detect the nearest point of each sample with
respect to its closest celestial body during the
propagation. The outcomes of the algorithm can
be utilised by the users for multiple purposes, for
example to check and identify potentials fly-by
happened during the propagation. The previous
version of this algorithm exploits a bisection-like
procedure to converge at the event condition.
The iterations are performed imposing the next
time step according to the range rate (rr), which
is the radial component of the relative velocity
between a sample and its closest celestial body:

rr =
rrelk · vrel

k

||rrelk ||
(1)

where the subscript k indicates the closest celes-
tial body. When the range rate is equal to zero,
the sample is in its close-approach. The itera-
tions start when the algorithm detects a change
of sign of the range rate; the event is contained in
the time interval between that epoch (tb) and the
epoch at previous integration step (ta). Fig. 1
shows the timeline during the propagation of a
sample, together with its sign of the range rate
function, supposing that the integration is car-
ried on for 100 steps.

Figure 1: Timeline of the close-approach event
during the propagation of a sample.

The rationale of the loop is to half the time in-
terval at every iteration taking the part in which
the event is contained, until a tolerance is met,
like in a bisection. The loop is designed to en-
force the sample to be after the event epoch at
the last iteration, otherwise during the follow-
ing integrational step the algorithm is triggered
again by the change of sign of the range rate,
leading to an infinite loop. In order to avoid
this infinite loop condition, the time interval
is not halved if the range rate is negative, im-
posing the next time step to the current upper
boundary of the interval. The resulting conver-

2

Executive summary Adriano Filippo Inno

gence rate is up to 30% lower than a classical
bisection scheme. Moreover, the high number
of if-else statements of previous implementation
causes warp divergence (i.e. a typical GPU per-
formance issue in which threads are stalled be-
cause of branch-dependant instructions) [4].
The work presents a new developed algorithm,
aimed at achieving an higher convergence rate
and reducing the warp divergence. The algo-
rithm exploits a bisection-like loop as in the pre-
vious implementation, but halving the time in-
terval at each iteration. The infinite loop condi-
tion is avoided by storing a dummy sign of the
range rate and enforcing the epoch after the fi-
nal iteration to be higher than the event epoch.
The aim is to avoid any iteration in which the
interval is not halved, in order to improve the
performance. Logical arithmetic is used to keep
the number of if-else statements as low as possi-
ble, in order reduce the warp divergence.

4. Earth protected regions algo-
rithms

The goal of the LEO and GEO protected region
algorithms is to detect the conditions at which
the samples cross one of the boundaries of the
two regions. This implementation aims to ex-
tend the simulation capabilities to Earth plane-
tary protection and space debris analyses. Fig. 2
shows the conventions adopted to define the pro-
tected regions, according to the Inter-Agency
space Debris coordination Committee (IADC)
space debris mitigation guidelines [3].

Figure 2: Earth protected regions - IADC con-
ventions [3]

The thesis presents the reasons why a bisection-
like method is not a robust choice for these two
algorithms. Instead, an adaptive step refine-
ment procedure is used to update the next time
step according to a prediction of the altitude and
the latitude (for the GEO algorithm only). Call-

ing the altitude z, the latitude l, and the time
step interval h, the predictions are:

zn+1 ≈ zn + żnhn+1

ln+1 ≈ ln + l̇nhn+1

(2)

where indicates n the current time step. Eq. (2)
are based on a linear extrapolation of the first or-
der derivatives. The derivative of the altitude is
given by the radial velocity of the sample, while
the derivative of the latitude is approximated
with the backwards finite difference of the lat-
itude between two time steps. The predictions
in Eq. (2) depend on the next time step interval
(hn+1) which is not known in advance. How-
ever, the work proposes a robust way to predict
its worst possible value related to the integrator
scheme used in the software. The predictions
are used to identify potential crossings over the
LEO or GEO boundaries at running time. If
this happens, the step is adjusted in order to
converge at the predicted crossed boundary.
Boolean algebra is exploited to minimise the
warp divergence as in the close-approach algo-
rithm.

5. Massless bodies collision al-
gorithm

The Massless bodies collision algorithm is aimed
at finding the collisions between the samples and
a set of user-defined bodies. The radius of the
collision sphere around each body is defined by
the user. The massless bodies are modeled as
orbiting points without a proper mass. Conse-
quently, the gravity acceleration acting on the
samples is not perturbed by this set of bodies
and the integrational step-size is not intrinsically
refined by the integrator. The massless bod-
ies are not propagated by CUDAjectory. The
goal is to utilise a user-prompted ephemerides
file to evaluate the position and velocity of the
requested massless bodies.
As presented in Section 2, the current com-
patibility of CUDAjectory with respect to SPK
types limits the possibility to provide data for
non-planetary bodies. For this reason, the thesis
focuses on the analytical implementation of the
Libration points motion, in order to be utilised
as massless bodies. Libration points are equi-
librium points under the influence of a primary
and a secondary mass [1]. The proposed analyt-
ical implementation exploits the instantaneous

3

Executive summary Adriano Filippo Inno

position and velocity vectors of the secondary
body with respect to the primary to evaluate
the motion of the Libration points using a roto-
pulsating restricted three body problem model.
The work presents the development of the mass-
less bodies collision algorithm in analogy to the
LEO protected region one. The proposed algo-
rithm exploits an adaptive step refinement pro-
cedure based on the prediction of the distance
(d) between each sample and a massless body,
to converge at the detection. The prediction is
computed as:

dn+1 ≈ dn + ḋnhn+1

The derivative (ḋn) is given by the range rate,
computed as in Eq. (1).
Since the Libration points are modelled as mass-
less points, the time steps are not automati-
cally refined in the proximity of the points them-
selves during the integration. As a consequence,
the linear first order extrapolation is not robust
enough. In order to improve the robustness of
the prediction, the algorithm uses the magni-
tude of the sample velocity instead of the range
rate, which represents an upper boundary of the
range rate itself.
The warp divergence is minimised by exploiting
logical computations as in the other algorithms.

6. Software optimisation
The output handling of the previous version of
CUDAjectory takes more than the 99% of the
total computational time in most of the simula-
tions, representing a huge execution bottleneck.
This part of the thesis is aimed at optimising the
computational time of the output handling. The
new implementation is based on the usage of a
common data-type structure to contain the ker-
nel output of every event detection algorithms,
improving the final results retrieval efficiency.
Since the detections are mutually exclusive, a
single common data structure is allocated for
each time step and for each sample. The size
of the whole allocation can be in the order of
tens of GigaBytes (GB). As a consequence, sim-
ulations are often limited by the memory capac-
ity of the computer and the user must decrease
the number of samples to be propagated. For
this reason, the thesis focuses on the minimisa-
tion process of the common data structure size,
performed to reduce the total memory required.

Nowadays, operating systems deal with the so
called virtual memory to store the applications
data. The required memory is divided in small
chunks of few KiloBytes (KB), called pages.
When the required memory is higher than the
physical memory available, the operating system
relocates some pages from the physical memory
into additional virtual pages. The additional
pages are temporarily stored in the computer
storage, causing a huge performance bottleneck
in many applications. The new output handler
ensures that the physical memory is enough to
store all the required data, without using addi-
tional virtual pages and consequently avoiding
potential bottlenecks.
CPU memory allocations are pageable by de-
fault, which means that can be moved into the
storage if needed. It is possible to request
physical, non-pageable memory, which is called
pinned or page-locked memory. The work ex-
ploits the mapped pinned memory, which is a
specific type of pinned memory, to allocate the
kernel output and to further improve the perfor-
mance.

7. Conclusions
The first part of the work proves that is pos-
sible to efficiently design GPU event detec-
tion algorithms, despite the difficulties of avoid-
ing branch-dependent equations. Moreover, it
demonstrates the validity of adaptive step re-
finement procedures to adjust the integrational
time steps according to linear extrapolation pre-
dictions. The algorithms were successfully vali-
dated using Godot, a CPU-based software pack-
age for orbit propagation and optimisation avail-
able under ESA Community Licence.
The new output handler grants a massive com-
putational time decrease, leading to analyses up
to fifty time faster than before. Moreover, in the
new version of CUDAjectory, analyses involving
the close-approach algorithm benefit of an addi-
tional performance uplift up to 15%, depending
on the configuration.

4

Executive summary Adriano Filippo Inno

References
[1] Howard D Curtis. Orbital Mechanics for En-

gineering Students. Elsevier, The Boulevard,
Langford Lane, Kidlington, Oxford, 2010.

[2] Márton Geda. Massive parallelization of
trajectory propagations using gpus. Mas-
ter’s thesis, Delft University of Technology,
1 2019.

[3] IADC. Space debris mitigation guidelines, 7
2021.

[4] Nvidia. CUDA C++ Programming Guide,
11 edition, 6 2021.

[5] Fabian Schrammel. Alternative ephemeris
representations for astrodynamical simula-
tions on accelerators. Master’s thesis, Tech-
nisch Univeritat Darmstadt, 1 2019.

5

	Introduction
	Brief overview of CUDAjectory
	Close-approach algorithm
	Earth protected regions algorithms
	Massless bodies collision algorithm
	Software optimisation
	Conclusions

