
Executive Summary of the Thesis

Multi-sensors SLAM simulation for Planetary Rover Exploration

Laurea Magistrale in Space Engineering - Ingegneria Spaziale

Author: Davide Viviani

Advisor: Prof. Mauro Massari

Academic year: 2021-2022

1. Introduction
Nowadays, robotic planetary exploration is one
of the top researched area in the field of space
exploration. Through the last decades several
rovers have been deployed on the surfaces of
Moon and Mars, with more and more advanced
technologies. However, in particular for the case
of Mars, the delay in the communications with
the Earth has brought complications to their
mission planning and has reduced the possible
range of tasks achievable. Currently, space agen-
cies from all over the world are pushing to build
more autonomous and reliable systems for rover
exploration.
In this current state, a particular focus has been
brought to the problem of exploring a planetary
surface and at the same time making the agent
capable of localizing itself in this new environ-
ment. This is problem is called SLAM problem
for Planetary Exploration and it is going to be
the focus of this work.
The thesis here presented aims at creating a real-
istic and reliable simulation environment to test
and collect data for a planetary rover SLAM al-
gorithm. The first section is going to introduce
the problem, then the simulation environment
and the SLAM test are analyzed, presenting the
results and possible future developments in the
final section.

2. Simulation environment
The first problem tackled has been the creation
of a simulation environment capable of produc-
ing realistic, truthful and reliable results. The
purpose of reproducing such a virtual environ-
ment is to have available a tool which allows
to test the SLAM algorithm before its hardware
implementation. Moreover, the virtual environ-
ment can be set to reproduce real areas to be
explored, maybe exploiting data from satellite
images or previous rover missions. The simu-
lation environment has been built with the co-
operation of four different softwares: Blender,
Unreal Engine, Simulink and Matlab.

2.1. Mars virtual surface
The first step has been to recreate a surface sim-
ilar to a portion of the Martian soil and it has
been achieved by means of Blender. Blender has
proved to be a very powerful software when re-
producing detailed surfaces and textures. Figure
1 shows the final virtual Mars surface recreated.
The surface presents typical Mars features like
the dusty soil texture, the dark volcanic rocks,
the reddish light and the dust covering all the
surfaces. These are important details which are
going to affect some of the choices adopted for
the SLAM algorithm in the next sections.

1

Executive summary Davide Viviani

Figure 1: Mars virtual surface

2.2. Rover trajectory simulation
Once an enough realistic and detailed surface
has been recreated with Blender, it has been ex-
ported in an Unreal Engine scenario: this choice
has been done because of the powerful capa-
bilities of Unreal Engine in the field of move-
ment simulation. Unreal Engine has been cou-
pled with a Simulink file, allowing the setup of
the various parameters to be easier and more
immediate by means of a Matlab script. In this
way the desired trajectory for the rover has been
drawn manually over the map of the environ-
ment and subsequently the simulation has been
activated both in Simulink and Unreal Engine
simultaneously.
This procedure is based on the possibility to
link Unreal Engine and Simulink by means of
the Automated Driving Toolbox. Figure 2 shows
the nominal trajectory drawn in Matlab and the
Simulink architecture for the simulation.

Figure 2: Rover trajectory and Simulink archi-
tecture to reproduce it in Unreal Engine

2.3. Sensors simulation
It has been explained how the rover trajectory
is simulated. The simulation tool build allows
also to reproduce realistic sensor data by means

of the shown architecture. Indeed, this simula-
tion has been built over a rover equipped with
both a Lidar sensor and a StereoCam sensor.
Again, the reproduction of the sensor has been
done linking the Simulink file to Unreal Engine.
The powerful architecture proposed has the ca-
pability of both making the data acquisition be
followed live during the simulation and also stor-
ing all the sensors acquisition in Matlab variable.
In particular, this last feature is going to be fun-
damental through the next steps of the SLAM
algorithm. Figure 3 shows the visualization of
the environment from the StereoCam while the
simulation itself was running.

Figure 3: StereoCam live view

2.4. Data elaboration
As in the real case, the data from the sensors
come in the form of raw information which have
to be elaborated in order to make it useful for
the following SLAM algorithm. Both the Lidar
data and the StereoCam data have been rear-
ranged in the form of point clouds inside which
clusters of point have been identified as land-
marks. It should be pointed out that this in not
the unique form in which the sensor data could
reveal themselves as useful, however in this work
this form has been adopted in order to clearly
define geometrical landmarks and use the same
Data Association algorithm for both the sensors.
The point clouds from the sensors have been
scanned in order to divide the point inside them
into clusters, where each cluster is identified as
landmark. Each cluster in made by point under
a selected Euclidean distance and over a certain
Angular distance one from the other. By means
of this clustering procedure, several landmarks
have been identified inside each of the sensor
acquisition at every time instant t of the sim-
ulation. Then, for each of the clusters, its geo-
metric centre has been computed and a bearing
and range distance in the rover local frame have
been assigned to each landmark. Figure 4 shows
an example of a clustered point cloud (in this
case from a Lidar acquisition).

2

Executive summary Davide Viviani

Figure 4: Clustered point cloud

The simulation architecture of the first part can
be summarized as in the following algorithm:

Algorithm 1 Simulation Part 1
Require: Unreal Engine scene set, Simulink

model set
1: Open Matlab
2: Run the main script and draw the trajectory

3: Smooth the trajectory and generate control
input u

4: Open Simulink and set simulation time
5: From Simulink open Unreal Engine
6: In Unreal Engine open the simulation envi-

ronment
7: Run the simulation first in Simulink, then in

Unreal Engine
8: return u, StereoCam data, Lidar data

The point cloud elaboration and clustering
procedure is instead shown here:

Algorithm 2 Simulation Part 2
Require: StereoCam data, Lidar data
1: Upload the Lidar and StereoCam data
2: for Lidar data, StereoCam data do
3: Transform the data into one point cloud

for each time step
4: for each point cloud do
5: Cluster the points inside the point

clouds for distance and angular separa-
tion

6: Count the clusters (or landmarks)
7: Compute clusters geometric centre co-

ordinates
8: Compute geometric centre orientation

in the rover local frame
9: end for

10: end for
11: return Lidar Point Cloud and landmarks,

StereoCam Point Cloud and landmarks

3. SLAM formulation and solu-
tion

The SLAM problem is analyzed in this work
under its probabilistic formulation. The Simul-
taneous Localization and Mapping procedure is
established as a statistical basis for describing
relationships between landmarks and uncer-
tainty [2]. It has been shown that an high
degree of correlations between the estimates of
landmarks locations in the map is present and
these correlations are growing with time as the
number of observations increases. The correla-
tion between the landmarks estimates is present
because of the uncertainty in the estimate of
the vehicle location, which propagates into the
observations [3]. Some quantities should be
introduced:

• xk: state vector containing location and ori-
entation of the robot;

• uk: vector containing the control inputs at
different times;

• mi: vector with the location of the land-
mark i;

• zik: observation of a landmark i at time k,
written also as zk.

Also the following sets have to be defined:

• X0:k = [x0, x1, ..., xk]: history of vehicle lo-
cations;

• U0:k = [u1, u2, ..., uk]: history of control in-
puts;

• m = [m1,m2, ...,mn]: the set of all land-
marks;

• Z0:k = [z1, z2, ..., zk]: the set of landmarks
observations.

The probabilistic SLAM requires the following
probabilistic distribution to be computed at all
times k:

P (xk,m | Z0:k, U0:k, x0) (1)

This probability distribution describes the joint
posterior density of the landmark locations and
vehicle state at time k given the observations
and the control inputs up to and including time
k, together with the initial state of the vehicle.
This formulation is exposed in details in [2].

3

Executive summary Davide Viviani

Following this formulation and the application
of the Bayes theorem, the probabilistic SLAM
can be reformulated in a recursive two steps
version, based on a motion model, representing
how the quantities inside the algorithm are up-
dated after the control input is applied, and a
measurement model, representing how the same
quantities are updated after the sensor measure-
ments. This recursive prediction-correction im-
plementation form: the SLAM problem can be
reformulated in two steps, allowing a recursive
prediction-correction implementation form.
Time-update:

P (xk,m | Z0:k, U0:k, x0) =

=

∫
P (xk | xk−1, uk)

P (xk−1,m | Z0:k−1, U0:k−1, x0)dxk−1

(2)

Measurement-update:

P (xk,m | Z0:k, U0:k, x0) =

=
P (zk | xk,m)P (xk,m | Z0:k, U0:k, x0)

P (zk | Z0:k−1, U0:k

(3)

Equations 2 and 3 provide a recursive procedure
for calculating the joint posterior in equation 1.
Once the probabilistic formulation of the prob-
lem has been introduced, it is possible to imple-
ment its solution. The solution to the probabilis-
tic SLAM presented in this work is an Extended
Kalman filter formulation.

3.1. Extended Kalman filter SLAM
The Extended Kalman filter SLAM has been im-
plemented following algorithm 3:

Algorithm 3 Simulation Part 3
Require: StereoCam point clouds, Lidar point

clouds, u
1: Upload Lidar or StereoCam point clouds
2: for each time step do
3: Actuate the control input
4: Run the EKF Prediction step
5: Run the Data Association
6: Run the EKF Correction step
7: end for
8: return Results and plots

Step 4 and 5 of algorithm 3 are implemented in
a classical formulation of the Extended Kalman
filter, while particular focus during the work has

been adopted over step 3: the Data Association
problem.

3.2. The Data Association problem
Particular attention has been adopted when
tackling the Data Association problem. As the
simulation aims at reproducing real environ-
ments, it also brings with itself the consequent
real Data Association issues. In particular, in
the case of planetary SLAM under study, it is
important to find a way to recognize and as-
sociate correctly different rocks seen during the
rover exploration. The Data Association prob-
lem is here formulated following the work in [1],
in particular:

Algorithm 4 Data Association procedure
Require: point cloud at time t, point cloud at

time t− 1 (both with landmarks defined by
algorithm 2)

1: Filter out the rover parts from the point
clouds

2: Huang-Arun algorithm finds the movement
between the point clouds as a rotation ma-
trix R and a translation vector t⃗

3: Match the features in the point clouds to
select the observed landmarks

4: Associate to each observed landmark a range
and a bearing measurement

5: Select only the best associations
6: return Point cloud at time t with only its

best associated landmark

The procedure used in this thesis is a basic geo-
metrical procedure for the Data Association, due
to fact that the association problem is not the
main focus of the research. However, it enables
effective associations and the Extended Kalman
filter algorithm to work properly.

4. Results
This section presents the result of the EKF
SLAM simulation inside the virtual environment
built in section 2. The results of the algo-
rithm are analyzed together with the variations
of some of its parameters and under the impor-
tant assumption of the absence of any Loop Clo-
sure. This assumption stands for the fact that
the recognition of already visited places when
the rover revisits previously seen areas in not
implemented in this thesis.

4

Executive summary Davide Viviani

Figure 5 shows the comparison between the de-
sired trajectory, a trajectory affected by random
noise and the same corrected by the EKF SLAM.

Figure 5: EKF SLAM results

In the figure the black trajectory represents the
nominal desired one, the red trajectory is the
noisy one and the blue one is the trajectory un-
der the effects of the EKF SLAM. As expected
the blue trajectory oscillates around the nominal
one, with an error behaviour represented here in
figure 6.

Figure 6: EKF SLAM error

As can be noted the error oscillates, however it
slowly increases. This phenomenon is demon-
strated to be an effect of the absence of Loop
Closures: even if the data association algorithm
and the EKF are able to correct the trajectory,
after a certain distance covered by the rover, the
error becomes too big and impossible to reduce
again to a zero value.

4.1. EKF SLAM behaviour with pa-
rameters changes

This section analyzes the changes in the results
of the EKF SLAM when changing the values of
its parameters. In particular, the results are an-
alyzed for changes in the sensor uncertainty ma-
trix Q and for changes in the trajectory shape.
Figure 7 shows how the SLAM behaviour

changes with the uncertainty on the sensor
acquisitions and consequently on the relative
power of the correction step in updating the
state vector. Higher values for the terms of Q

Figure 7: Different Q comparison

bring a less powerful correction step making the
SLAM incapable to move enough towards the
nominal trajectory. At the same lower values
bring less smooth corrections, often bringing to
drastic corrections and increasing errors. A fine
tuning of Q must be performed.
The behaviour of the EKF SLAM is then ana-
lyzed with respect to the shape of the trajectory.
The results show how the algorithm has a faster
rate of errors accumulation when the trajectory
is curved. The algorithm showed a linear pro-
gression of the error when moving on straight
paths, while a quadratic rate showed for curved
path. Again, this result was expected in the ab-
sence of loop closures and it is confirmed by the
literature. Both the simulation and the SLAM
algorithm have been so proved as effective and
the results confirmed the expected behaviours.

5

Executive summary Davide Viviani

5. Conclusions
The main outcome of this simulation is the pos-
sibility to recreate real problems of a planetary
SLAM in a virtual environment. Thanks to
this result, it is possible to study and analyzing
the algorithm behaviour before its hardware
implementation and so correct what needed
before the rover construction, allowing a more
economic, both in time and money, construction
approach to planetary rovers.
However, the work is far from complete and
several future developments of this work are
shown here:

• Data Association: the problem of a more
powerful data association can be tackled,
improving the results with new techniques
or exploiting information as, for example,
the light reflected by the observed surfaces;

• In Loop Simulation: the simulation can be
structured as a single loop process, without
the partition in three parts, where the
rover pose is fed to Unreal Engine and the
sensor data are fed directly to the SLAM
in a closed loop;

• Simulation scaling : the architecture pro-
posed for the simulation can be exploited
to other simulations, scaling the Simulink-
Unreal Engine link to more complex and ar-
ticulate simulations.

The developments above are only part of
the possible improvements fro the simulation
architecture proposed.
In conclusion, the desired outcomes from this
thesis work have been achieved and can be
divided in three main areas:

1. Simulation environment : by means of
the cooperation between the software of
Blender, Unreal Engine and Simulink, it
has been possible to reproduce a detailed
Mars surface and also to simulate realistic
sensor acquisitions;

2. Sensor data elaboration: both in the case
of the Lidar sensor and the StereoCam
sensor it has been possible to recreate the
process of elaboration of the sensor data

from the raw acquisition to a more refined
version to be fed to the SLAM algorithm;

3. SLAM algorithm: both the realistic simula-
tion environment and the sensor data elab-
oration allowed to simulate an Extended
Kalman filter SLAM with the problems of
a real SLAM: the imperfections in the sen-
sor acquisitions and in the data association
brought the SLAM to a realistic level and
implementation in which the final results
were satisfying.

With the result explained this thesis work
is considered concluded and ready for the
implementation of new powerful features.

References
[1] K. S. Arun, T. S. Huang, and S. D. Blostein.

Least-squares fitting of two 3-d point sets.
IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-9, 1987.

[2] Cesar Cadena, Luca Carlone, Henry Car-
rillo, Yasir Latif, Davide Scaramuzza, Jose
Neira, Ian Reid, and John J. Leonard. Past,
present, and future of simultaneous local-
ization and mapping: Toward the robust-
perception age. IEEE Transactions on
Robotics, 32, 2016.

[3] Sebastian Thrun, Wolfram Burgard, and Di-
eter Fox. Probabilistic robotics. MIT Press,
2005.

6

	Introduction
	Simulation environment
	Mars virtual surface
	Rover trajectory simulation
	Sensors simulation
	Data elaboration

	SLAM formulation and solution
	Extended Kalman filter SLAM
	The Data Association problem

	Results
	EKF SLAM behaviour with parameters changes

	Conclusions

