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Extended Abstract 

Background 

Risks and uncertainties are inevitable in construction projects and can drastically change the 

expected outcome and negatively impact the project's success. This is due to their unique, 

uncertain, and complex nature, containing numerous activities, stages, and stakeholders with 

nonlinear relationships. Risk Management (RM), as a proactive approach to identify, assess, and 

mitigate these risks, can play a crucial role in ensuring the projects' on-time and on-budget 

delivery, meeting the project's objectives and constraints, and securing the workers' safety. 

However, it is still conducted in a manual, time-consuming, superficial, and ineffective manner. 

Moreover, risk identification and assessment, in their conventional forms, are conducted based on 

individual and experience-based expert judgments and seem highly personalized, qualitative, and 

context-dependent, making the knowledge transfer and model generalization critical issues for 

future projects. Therefore, more efficient and fact-based RM methods are being explored in 

literature, using the current advancements of data-driven methods and industry 4.0 technologies, 

such as Artificial Intelligence (AI) and Machine Learning (ML) algorithms. 

With the increasing application of data-driven methods in construction research and practice, 

AI and ML algorithms, Bayesian inference, and fuzzy logic methods are being explored to 

automate and optimize the RM processes. ML-based models can improve analytical capabilities 

across the RM domain while offering a high granularity and depth of predictive analysis. 

Furthermore, they can significantly contribute to developing a holistic and integrated RM 

framework in construction companies, where risks are assessed based on factual knowledge 

inherited from previous projects concerning interrelated project variables and the effect of each on 

triggering different risks. However, their practical application is limited due to a) lack of structured 

data and infrequent documentation in the projects, b) overreliance on subjective expert judgment, 

c) isolated risk analysis and ignorance of causal inferences between variables in risk paths, d) 

improper choice of ML algorithms for a given problem regarding the data availability and 

requirements, the role of probability and expert judgment, and reasoning behind the analysis, and 

e) change-resistant culture of the construction industry and lack of technical knowledge on digital 

technologies. 

Research Questions 

Aiming to clarify the current status and challenges of RM methods in the industry and the scope 

and direction of this research to implement ML-based solutions, this dissertation seeks answers to 

the following questions, which have arisen after a Systematic Literature Review and analysis of 

real-world case studies: 

a) What are the shortcomings of conventional RM practices, and in which capacities and by 

the application of which ML algorithms can the RM domain benefit? What are the 

advantages, disadvantages, application scope, data requirements, prediction accuracy, and 

limitations of Probabilistic and Deterministic ML approaches for RM? 
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b) How can an ML-based RM model be applied in real-world cases? What solutions can be 

proposed to overcome the data scarcity and uncertainty issues? How can the ML-based RM 

model be integrated with other project management processes? What are its practical 

application obstacles, ethical/moral issues, and bias harms in the industry? 

Research Objectives 

This research aims to propose an ML-based and systematic RM framework for construction 

projects to: 

a) Identify and analyze the bottlenecks, problems, and inefficiencies in current RM practices, 

which ML algorithms can address and solve. 

b) Define and implement proper ML algorithms based on data requirements, availability, and 

role of uncertainty in given RM issues. 

c) Solve the data scarcity problem by eliciting experts' qualitative reasonings, synthesizing 

data using a Generative Adversarial Network (GAN), and integrating them with objective 

data from previous projects. 

d) Represent the interdependencies and causal inferences in the enterprise risk network using 

probabilistic graphical models like Bayesian Networks (BNs). 

e) Automate and optimize the construction risk identification and assessment processes using 

probabilistic and deterministic ML models and conduct a comparative analysis for their 

efficiency and accuracy.  

f) Constantly assess and improve the RM system performance using real-time data in 

dynamic networks or post-mitigation intervention modeling of risks. 

g) Address the ML-based model's real-world implementation requirements, challenges, 

ethics, and possible biases and harms in the system.  

 

Research Methodology/Design/Approach 

The research is conducted in systematic phases based on a case-study approach, given that the 

research has industry partners, Jacobs Engineering Group. The main phases of the research 

scheme, as presented in Figure a, are: 

a) Systematic literature review and analysis of findings from state of the art, best practices, 

and Professional standards to find interactions between ML and RM realms, as well as the 

research gaps to be addressed,  

b) Meetings with industry partners to determine the main focus area, expectations, and 

requirements,  

c) Data gathering from 44 previous projects' documents, such as Monthly reports, Project 

charters, Risk registers, Cost reports, and Schedule baselines, as the research case studies, 

d) Surveys and interviews with project managers and company representatives for data 

gathering and quantifying their subjective reasoning for risk identification and assessment,  

e) Integrating the risk data from various sources in a probabilistic BN to create the risk 

network for each risk,  
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f) Solving the data scarcity problem through elicitation and synthetic data generation using 

GANs,  

g) Implementation of deterministic models like Artificial Neural Networks and Decision 

Trees, as well as probabilistic models like Fuzzy Logic for results comparison and model 

validation, 

h) Final validation of the models with actual project data and interviews with experts, 

i) Integrating the proposed model with the current project management processes of the 

company,  

j) Addressing the data privacy, ownership, and bias problems to facilitate the broader 

application of the model. 

 
Figure a. Research Scheme 

 

Research Findings 

The findings of this study suggest that ML models, especially the probabilistic ones like BNs, 

can significantly facilitate, automate, and optimize the RM process of construction projects in all 

project knowledge areas, i.e., technical, financial, procurement, communication, etc. Being able to 

model the complex interrelationships and causal inferences between a project’s key variables like 

budget, duration, delivery method, and built area, they can propose an accurate and realistic 

estimate of potential risks to upcoming projects, enabling project managers to proactively take 

preventive actions and make strategic decisions to mitigate their impacts for a more successful, 

safe, on-budget, and on-time project delivery. 

 

Research Limitations/implications 

 The main limitation of this research is data scarcity, a common issue in construction 

companies due to the lengthy project completion process and unstructured and infrequent data 

documentation. Another limitation is the lack of similar previous studies on project-level risk 

modeling in the industry that could serve as a benchmark for result comparison, as a great share 
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of literature in the RM realm focused on operation-level risks, the data of which is produced on a 

daily basis and is easier to model. 

           There is the risk of the proposed model’s overfitting to entered data in the implication 

phase, as this study was developed for an actual client and based on their project database. Given 

the context-driven nature of risks and enormous variances between different types of projects, this 

is an inevitable issue. However, it is not considered a limitation since most companies have their 

specific portfolio of projects and services, and the model can be easily adjusted based on their 

requirements. Other issues to address during the implication phase are the social and ethical 

challenges of the AI technology application, enterprise infrastructural and organizational 

requirements, and necessary training to use the technology properly and efficiently. 

 

Practical Implications/Motivation/Contribution  

a) Determining the main features affecting risks in the industry and the characteristics of 

acceptable input risk data,  

b) Providing a holistic comparative analysis between various probabilistic and deterministic 

ML algorithms for companies to choose from based on their data availability and scope of 

application,  

c) Detecting practical implementation hinders and benefits, as well as moral-ethical 

challenges, to facilitate the integration of the proposed model with companies’ project 

management systems. 

d) Promoting the application of AI in the construction industry to facilitate, optimize, and 

automate project management services and increase projects’ success rate. 

 

This research project is funded and conducted in collaboration with Jacobs SPA, which is a 

leading construction and engineering consultancy firm worldwide. Therefore, the first practical 

implementation of the proposed model will be for Jacobs’ project management services as the 

research industry partner. The topic of the research is motivated by the industry’s leading firms’ 

need to integrate AI advancements in their practices as a competitive advantage and as a driver for 

more efficient and sustainable projects.  

 

Research Keywords 
Risk Management, Artificial Intelligence, Machine Learning, Bayesian Network, Construction 

Projects   

 

Organization and structure of the thesis 

The thesis starts with an abstract and introduction and is followed by the main body consisting 

of a) Literature review and state of the art, b) Methodology and research scheme, c) Results and 

discussion, and d) Conclusion. Each chapter has some subchapters that are indicated in Table a. 
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Table a. Organization and Structure of the Thesis 

Introduction 

 

State of the Art 

 

Methodology 

 

Results and 

Discussion 

 

Conclusion 

 

Chapter 1: 

Introduction 

Chapter 2: 

Systematic Literature 

Review Process on AI 

application for 

Construction Risk 

Management 

Chapter 6: 

Methodology 

 

Chapter 7: 

Case Studies 

Chapter 8: 

Results and Discussion 

Chapter 9: 

Conclusion 

 Chapter 3:  

Conventional Risk 

Management Models in 

Construction 

   

 Chapter 4:  

AI application in 

Construction RM 

   

 Chapter 5:  

Bayesian Networks and 

Elicitation 
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Chapter 1: Introduction 

 

1.1 Research Field 

1.1.1 Architecture, Engineering, Construction and Operation (AECO) Industry 

AECO industry plays a critical role in the economy of developed and developing countries (Yu 

et al., 2021), having a global output of 10.7 trillion USD in 2020, which is expected to grow by 

42% by 2030 to reach 15.2 trillion USD, accounting for 14.7% of globular Gross Domestic Product 

(GDP) by 2030 (Global Construction Perspectives and Oxford Economics, 2021). In Europe, this 

industry contributes to 9% of the EU’s GDP and provides about 18 million direct jobs (European 

Commission, 2016; Norouzi et al., 2021). However, besides all its contributions, it is one of the 

primary consumers of resources, with about 50% of the total raw materials use and 36% of the 

global final energy use, as well as one of the main environmental pollutants, accounting for 39% 

of the energy and process-related emissions (UN Environment Programme, 2019). All these 

attributes place the AECO industry in a critical position for policymakers and governments. One 

of the strategic shifts in the industry is its digitalization thanks to the advancements of Industry 4.0 

technologies and digital innovations, which, despite having promising perspectives for increasing 

global construction sector productivity and efficiency by 15% (Barbosa et al., 2017), has not yet 

found its way in practice. Therefore, it is one of the least digitalized industries, specially respecting 

AI integration (Rampini and Re Cecconi 2022), with one of the lowest productivity improvement 

rates among all industries (1% compared to the 2.8% average rate) (Barbosa et al., 2017). Solutions 

to implement digital technologies in the AECO industry and improve its productivity have been 

the focus of numerous researchers recently, and this dissertation follows the same path. 

 

1.1.2 Notion of Risk and Uncertainty 

Prince2 standard defines risk as an uncertain event or set of events that, should it occur, will 

affect the achievement of objectives in a project. Project Management Institute (PMI) defined risk 

at two levels in projects: 

• Individual project risk is an uncertain event or condition that, if it occurs, has a positive or 

negative effect on one or more project objectives. 

• Overall project risk is the effect of uncertainty on the project as a whole, arising from all 

sources of uncertainty including individual risks, representing the exposure of stakeholders 

to the implications of variations in project outcome, both positive and negative” (Project 

Management Institute(PMI), 2017). 

Risk is measured by a combination of the probability of a perceived threat or opportunity 

occurring and the magnitude of its impact on objectives (Axelos, 2017). Apart from the individual 

risk assessment based on probability and impact, the risk path method and scenarios analysis that 
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consider the interrelations of various variables affecting the risks are proposed nowadays 

(Eybpoosh, Dikmen and Talat Birgonul, 2011). 

 

1.1.3 Risks in the Construction Industry 

The construction industry has some of the highest accident and fatality rates, delays, and cost 

overruns, which are caused primarily by uncontrolled risks. Construction projects, due to their 

uniqueness and multifaceted nature, the dynamic association and conflicting interests of numerous 

stakeholders, long generation terms, huge capital investment, exposure to the external 

environment, and various productivity constraints, experience many risks and vulnerabilities 

during their lifecycle (Taroun, 2014). Construction Risks, according to their sources, can be 

divided into the owner’s, contractor’s, third-party’s, legal, social environment, and natural 

environment risk groups. They can occur at various levels, operational, project, portfolio, strategic, 

and business and enterprise levels, derived from external and internal factors (Khodabakhshian, 

Puolitaival and Kestle, 2023) 

Although each project is unique, regarding the usual portfolio and project types of a specific 

contractor or a company, a standard Risk Breakdown Structure (RBS) can be composed. An RBS 

and risk evaluation indexing system should follow the following principles: (1) scientific, (2) 

system, (3) theory for practice, (4) operability, (5) independence, and (6) comparability (Chenyun, 

2012). Fig 1.1 presents a typical project RBS based on previous studies. 

  

Figure 1.1 Construction Project Risk Breakdown Structure (Chenyun 2012; Ha, Hung, and Trung 2018) (Yaseen et 

al., 2020) 
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1.1.4 Conventional Risk Management Methods and Processes 

Project Risk Management aims to exploit or enhance positive risks (opportunities) while 

avoiding or mitigating negative risks (threats) through seven main steps: a) Plan Risk 

Management, b) Identify Risks, c) Perform Qualitative Risk Analysis, d) Perform Quantitative 

Risk Analysis, e) Plan Risk Responses, f) Implement Risk Responses, g) Monitor Risks (Project 

Management Institute(PMI), 2017). It is one of the main knowledge areas in project management 

standards, a brief comparative analysis of which is presented in Table 1.1.  

Table 1.1 Comparison between PMBOK, PRINCE 2, and ICB standards in Risk Management practices 

STANDARD STRUCTURE DEFINITION STEPS 

PMBOK 6 Among the main ten 

knowledge areas 

Increase the probability and/or 

impact of positive risks and to 

decrease the probability and/or 

impact of negative risks, in order 

to optimize the chances of project 

success. 

1) Plan Risk Management 

2) Identify Risks 

3) Perform Qualitative Risk 

Analysis 

4) Perform Quantitative Risk 

Analysis 

5) Plan Risk Responses 

6) Implement Risk Responses 

7) Monitor Risks (Project 

Management Institute(PMI), 

2017) 

PRINCE 2 One of the seven 

PRINCE2 themes  

 

The systematic application of 

principles, approaches and 

processes to the tasks of 

identifying, assessing, and 

planning for risks and 

communicating risk management 

activities with stakeholders 

1) Risk Identification 

2) Probability, impact and timing 

(proximity assessment)  

3) Response planning, Response 

implementation 

4) monitoring and controlling 

(Axelos, 2017) 

 

ICB 4.0 Categorized under 

the practice (project 

related) competence 

discussed in Project, 

Program, and 

Portfolio 

Management levels 

Identification, assessment, 

response planning, and 

implementation and control of 

risks and opportunities around 

projects 

No clear steps provided (International 

Project Management Association 

2015) 

RM is an important tactic to meet project targets like time, budget, and quality (Han et al., 2008). 

Therefore, companies need to implement systematic risk management practices to identify, 

analyze, solve, and control the risks and integrate them into their organizational structure to 

increase their success rate. Furthermore, due to the advancements in digital technologies, a large 

volume of data is collected from construction, which can feed the RM models. However, 

conventional RM is conducted in an inefficient, subjective, and superficial form and based on 

individual and experience-based expert judgments (Li et al., 2018). Furthermore, the data registry 

is not done in a structured, interoperable, and regular manner. Therefore, knowledge transfer, 

model generalization, and process automation remain critical issues for future projects’ RM 

(Eybpoosh, Dikmen and Talat Birgonul, 2011). 
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1.2 Problem statement and approaches 

1.2.1 Industry 4.0 Revolution in the Construction Industry 

The construction industry is currently undergoing a significant transformation towards 

digitalization, which can be attributed to a) the generation of copious amounts of on-site and off-

site data, b) the advancement of digital tools and technologies to capture and document this data 

such as wearable devices, sensors, and Internet of Things (IoT), and c) data-driven methods and 

decision-support systems, such as Artificial Intelligence (AI), Digital Twins, and Building 

Information Modelling (BIM), to process this data and extract insights for more efficient decision 

making and management of projects (Pan and Zhang, 2021). These technologies prepare the 

technical foundation for an intelligent and ever-improving construction industry. AI is one of the 

key pillars of the Industry 4.0 revolution and digitalization era to create an active connection 

between the physical and digital worlds that aims to make machines mimic human cognitive 

processes of learning, reasoning, perception, planning, and self-correcting (Darko et al., 2020). AI 

is gaining a vast application for fostering, optimizing, and automating processes throughout the 

entire construction project life cycle for intelligent management of projects (Chenya, 2022).  

Nowadays, AI algorithms can learn from enormous real-time data generated by cutting-edge 

technologies like the Internet of Things (IoT), Sensors, Cyber-Physical Systems (CPS), Cloud 

Computing, Big Data Analytics (BDA), Text Mining, and Information and Communication 

Technologies (ICT) for more reliable and smart management and decision-making in the 

construction projects (Zhong et al., 2017). This data, if transformed into a structured and 

understandable form, can bring valuable insights for knowledge management in projects, and 

economic and social developments. The AI learning process takes place based on historical data 

records, in which the machine tries to recognize the relationships between input data and output 

data by constant weighting and correction. AI algorithms can analyze large volumes of data to 

extract insights from previous data, recognize the data pattern, generalize the rules, and make a 

prediction for upcoming data entries in complicated, nonlinear, and uncertain problems (Mellit 

and Kalogirou, 2008). Figure 1.2 presents the key pillars of the Industry 4.0 revolution in the 

construction industry. 
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Figure 1.2 Pillars of Industry 4.0 Revolution in the Construction Industry (Khodabakhshian, Puolitaival and 

Kestle, 2023) 

 

1.2.2 Machine Learning for Risk Management 

The emergence of AI and ML has offered a promising avenue for addressing the shortcomings 

of conventional RM methods, enabling more accurate risk identification, assessment, and 

mitigation processes (Chenyun, 2012; Ha, Hung and Trung, 2018). AI models can improve 

analytical capabilities across the RM domain while offering a high granularity and depth of 

predictive analysis (Guzman-Urbina, et al. 2018), and provide accurate results in uncertain, 

dynamic, and complex environments (Yaseen et al., 2020), like the construction industry. AI-based 

RM systems can function as a) Early-warning systems for risk control, b) AI-based risk analysis 

systems using algorithms like Neural Networks for identifying complex data patterns, c) Risk-

informed Decision Support Systems for predicting various outcomes and scenarios of decisions, 

d) game theory-based Risk analysis systems, e) Data-mining systems for large data sets, f) Agent-

based RM systems for supply chain management risks, g) Engineering risk analysis systems based 

on optimization tools, and, h) Knowledge management systems by integrating decision support 

systems, AI, and expert systems to capture the tacit knowledge within organizations in computer 

systems (Wu, Chen and Olson, 2014). However, their applications in construction RM have been 

limited and far behind other industries, and robust AI-based RM frameworks are missing (Chenya, 

2022). 
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1.2.3 Machine Learning application benefits and hiders in construction enterprises 

Though ML application can automate, optimize, and facilitate the RM processes, it requires a 

significant amount of data in a structured format to learn from and make a prediction for future 

projects. The most important hinders to the widespread application of ML in construction RM are: 

a) lack of structured data or infrequent project documentation, with most data in text or image 

formats, 

b) over-reliance to individual and experience-based judgment of experts for RM,  

c) isolated risk analysis and ignorance of causal inferences between variables in risk path 

analysis (Eybpoosh, Dikmen and Talat Birgonul, 2011),  

d) wrong choice of AI model for a given problem regarding the data availability and 

requirements, the role of probability and expert judgment, and the reasoning behind the 

analysis (An et al., 2021; Chenya, 2022), 

e) concerns about data privacy, confidentiality, and ownership, 

f) lack of knowledge and training about ML methods in the industry 

As there are a variety of risk types and individual experts might not have encountered or have 

sufficient knowledge of all of them, human-based risk analysis systems suffer from low accuracy, 

incomplete risk identification, and inconsistent risk breakdown structures (Siraj and Fayek, 2019). 

 

1.3 Research Gap and Proposed Solution 

While ML application in construction engineering and management has been widely studied 

and practical models have been developed for addressing challenges in design and execution 

processes (Jin, Zuo and Hong, 2019; Akinosho et al., 2020), the RM domain, especially in project-

level risk assessment, falls far behind. There is a research gap between the potentials and 

competitive advantages of AI-based models to facilitate and automate the RM processes in 

construction projects and their real-world application status quo. One of the most important issues 

hindering the widespread adoption of ML in RM practice is the lack of structure, comprehensive, 

and well-documented data in the construction industry (Maphosa and Maphosa, 2022). 

Construction projects are unique, lengthy, and complex, resulting in infrequent data generation 

and documentation from which the ML models can learn. Nevertheless, with the digitalization and 

data management trends caused by industry 4.0 technologies, data collection from construction 

projects is becoming faster, more standardized, and more frequent (Khodabakhshian and Re 

Cecconi, 2022; Regona et al. 2022; Kozlovska, Klosova, and Strukova 2021). The advancements 

of text mining methods like Natural Language Processing (NLP), preprocessing techniques, 

synthetic data generation using Generative Adversarial Networks (GANs), data clustering and 

classification methods like Support Vector Machine (SVM) and K-Nearest Neighbor (KNN), and 

models based on multiple sources and inferences like Bayesian Networks (BNs) can solve this 

problem. As a result, ML models can leverage more extensive databases, significantly enhancing 

their accuracy and effectiveness in construction research and practice (Ledig et al., 2017; Fan et 

al. 2019; Akinosho et al., 2020; Choi et al., 2021). 
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Seeing the proof of AI’s effectiveness and productivity in other industries’ risk domains, this 

research tries to bridge the gap of AI application for the construction RM domain by developing a 

systematic and holistic AI-based risk identification, assessment, mitigation, and control model, 

which can extract knowledge and insights from previous projects and expert judgment to predict 

risks for new projects efficiently and automatically. The proposed model can benefit from the 

advancements of digital technologies in various phases and integrate the produced knowledge in 

the project information systems, digital twin models, and documents for better knowledge 

management. Figure 1.3 presents the proposed AI-based RM framework that aims to a) mine and 

analyze real-time project data, historical records, or elicited experts’ opinions (Hon et al., 2021), 

b) conduct automatic identification, evaluation, and assessment of risks, c) conduct proactive 

decision-making on responses to mitigate these risks and d) share this insights and predictions in 

a collaborative environment for data integration like Cloud Building Information Modelling 

(BIM), and Digital Twin platforms (Pan and Zhang 2021). The main focus of this research is the 

ML algorithm learning part for automated risk identification and assessment. 

 

 

 

 

 

 

 

Figure 1.3 AI-based Risk Management framework (modified from (Khodabakhshian, Puolitaival and Kestle, 2023)  

  

Data 
Gethering

Text mining 
or Computer 

vision

ML 
algorithm 
learning

Automatic risk 
identification 

and assessment

Risk 
mitigation

Data integration 
in collaborative 

platforms

Project 
Documents 

Site Images Sensor Data Digital Twin and BIM 

model 

Project Documents and 

Contracts 

Expert 

Elicitation Research Focus 



21 
 

References 

Akinosho, T. D. et al. (2020) ‘Deep learning in the construction industry: A review of present status and future 

innovations’, Journal of Building Engineering, 32, p. 101827. doi: 10.1016/j.jobe.2020.101827. 

An, Y. et al. (2021) ‘Determining Uncertainties in AI Applications in AEC Sector and their Corresponding 

Mitigation Strategies’, Automation in Construction, 131(July). doi: 10.1016/j.autcon.2021.103883. 

Axelos (2017) Managing Successful Projects with Prince2. TSO (The Stationery Office). 

Barbosa, F. et al. (2017) ‘Re-inventing Construction In Brief’, McKinsey & Company, p. 168. Available at: 

www.mckinsey.com/mgi%0D. 

Ledig, C. et al. (2017) ‘Photo-realistic single image super-resolution using a generative adversarial network.’, 

ArXiv, 2. doi: 10.48550/arXiv.1609.04802. 

Chenya, L. (2022) ‘Intelligent Risk Management in Construction Projects : Systematic Literature Review’, IEEE 

Access, 10(June), pp. 72936–72954. doi: 10.1109/ACCESS.2022.3189157. 

Chenyun, Y. Z. (2012) ‘The BP Artificial Neural Network Model on Expressway Construction Phase Risk’, 

Systems Engineering Procedia, 4, pp. 409–415. doi: 10.1016/j.sepro.2012.01.004. 

Choi, S. J. et al. (2021) ‘Ai and text‐mining applications for analyzing contractor’s risk in invitation to bid (ITB) 

and contracts for engineering procurement and construction (EPC) projects’, Energies, 14(15). doi: 

10.3390/en14154632. 

Darko, A. et al. (2020) ‘Artificial intelligence in the AEC industry: Scientometric analysis and visualization of 

research activities’, Automation in Construction, 112(December 2019), p. 103081. doi: 

10.1016/j.autcon.2020.103081. 

European Commission (2016) ‘The European construction sector: A global partner’, European Commission, p. 16. 

Eybpoosh, M., Dikmen, I. and Talat Birgonul, M. (2011) ‘Identification of Risk Paths in International Construction 

Projects Using Structural Equation Modeling’, Journal of Construction Engineering and Management, 137(12), pp. 

1164–1175. doi: 10.1061/(asce)co.1943-7862.0000382. 

Fan, C. et al. (2019) ‘Deep learning-based feature engineering methods for improved building energy prediction’, 

Applied Energy, 240(September 2018), pp. 35–45. doi: 10.1016/j.apenergy.2019.02.052. 

Global Construction Perspectives and Oxford Economics (2021) Future of Construction, Oxford Economics. 

Available at: https://raconteur.uberflip.com/i/1157282-future-of-construction-2019/7? 

Guzman-Urbina, A., Aoyama, A. and Choi, E. (2018) ‘A polynomial neural network approach for improving risk 

assessment and industrial safety’, ICIC Express Letters, 12(2), pp. 97–107. doi: 10.24507/icicel.12.02.97. 

Ha, L. H., Hung, L. and Trung, L. Q. (2018) ‘A risk assessment framework for construction project using artificial 

neural network’, Journal of Science and Technology in Civil Engineering (STCE) - NUCE, 12(5), pp. 51–62. doi: 

10.31814/stce.nuce2018-12(5)-06. 

Han, S. H. et al. (2008) ‘A web-based integrated system for international project risk management’, 17, pp. 342–

356. doi: 10.1016/j.autcon.2007.05.012. 

Hon, C. K. H. et al. (2021) ‘Applications of Bayesian approaches in construction management research: a 

systematic review’, Engineering, Construction and Architectural Management. doi: 10.1108/ECAM-10-2020-0817. 

International Project Management Association (2015) Individual Competence Baseline for Project , Programme & 

Portfolio Management. 4th edn. 

Jin, R., Zuo, J. and Hong, J. (2019) ‘ Scientometric Review of Articles Published in ASCE’s Journal of Construction 

Engineering and Management from 2000 to 2018 ’, Journal of Construction Engineering and Management, 145(8), 

p. 06019001. doi: 10.1061/(asce)co.1943-7862.0001682. 

Khodabakhshian, A. and Re Cecconi, F. (2022) ‘Data-Driven Process Mining Framework for Risk Management in 

Construction Projects’. IOP Conference Series: Earth and Environmental Science 1101: 032023. doi:10.1088/1755-

1315/1101/3/032023. 

Khodabakhshian, A., Puolitaival, T. and Kestle, L. (2023) ‘Deterministic and Probabilistic Risk Management 

Approaches in Construction Projects: A Systematic Literature Review and Comparative Analysis’, Buildings, 13(5). 

doi: 10.3390/buildings13051312. 

Kozlovska, M., Klosova, D. and Strukova, Z. (2021) ‘Impact of Industry 4 . 0 Platform on the Formation of 

Construction 4 . 0 Concept : A Literature Review’, Sustainability, 13(2638). doi: 10.3390/ su13052683. 

Li, J. et al. (2018) ‘Importance degree research of safety risk management processes of urban rail transit based on 

text mining method’, Information (Switzerland), 9(2), pp. 1–17. doi: 10.3390/info9020026. 

Maphosa, V. and Maphosa, M. (2022) ‘Artificial Intelligence in Project Management Research: a Bibliometric 

Analysis’, Journal of Theoretical and Applied Information Technology, 100(16), pp. 5000–5012. 

Mellit, A. and Kalogirou, S. A. (2008) ‘Artificial intelligence techniques for photovoltaic applications: A review’, 



22 
 

Progress in Energy and Combustion Science, 34(5), pp. 574–632. doi: 10.1016/j.pecs.2008.01.001. 

Norouzi, M. et al. (2021) ‘Circular economy in the building and construction sector: A scientific evolution 

analysis’, Journal of Building Engineering, 44, p. 102704. doi: 10.1016/j.jobe.2021.102704. 

Pan, Y. and Zhang, L. (2021) ‘Roles of artificial intelligence in construction engineering and management: A 

critical review and future trends’, Automation in Construction, 122(August 2020), p. 103517. doi: 

10.1016/j.autcon.2020.103517. 

Project Management Institute(PMI) (2017) A guide to the project management body of knowledge (PMBOK guide). 

6th edn. Pennsylvania, USA: Project Management Institute, Inc. 

Rampini, L. and Re Cecconi, F. (2022) ‘Artificial Intelligence in Construction Asset Management : A Review of 

Present Status , Challenges And Future Opportunities’, 27. doi: 10.36680/j.itcon.2022.043. 

Regona, M. et al. (2022) ‘Artificial Intelligent Technologies for the Construction Industry: How Are They 

Perceived and Utilized in Australia?’, Journal of Open Innovation: Technology, Market, and Complexity, 8(1), p. 16. 

doi: 10.3390/joitmc8010016. 

Siraj, N. B. and Fayek, A. R. (2019) ‘Risk Identification and Common Risks in Construction: Literature Review 

and Content Analysis’, Journal of Construction Engineering and Management, 145(9), p. 03119004. doi: 

10.1061/(asce)co.1943-7862.0001685. 

Taroun, A. (2014) ‘Towards a better modelling and assessment of construction risk: Insights from a literature 

review’, International Journal of Project Management, 32(1), pp. 101–115. doi: 10.1016/j.ijproman.2013.03.004. 

UN Environment Programme (2019) Global Status Report for Building and Construction - Towards a zero-

emissions, efficient and resilient buildings and construction sector., Global Status Report. 

Wu, D. D., Chen, S. H. and Olson, D. L. (2014) ‘Business intelligence in risk management: Some recent 

progresses’, Information Sciences, 256, pp. 1–7. doi: 10.1016/j.ins.2013.10.008. 

Yaseen, Z. M. et al. (2020) ‘Prediction of Risk Delay in Construction Projects Using a Hybrid Artificial Intelligence 

Model’, Sustainability, 12(4), pp. 1–14. doi: 10.3390/su12041514. 

Yu, Y. et al. (2021) ‘Posture-related data collection methods for construction workers: A review’, Automation in 

Construction, 124(August 2020), p. 103538. doi: 10.1016/j.autcon.2020.103538. 

Zhong, R. Y. et al. (2017) ‘Intelligent Manufacturing in the Context of Industry 4.0: A Review’, Engineering, 3(5), 

pp. 616–630. doi: 10.1016/J.ENG.2017.05.015. 

 



23 
 

  



24 
 

Chapter 2: Systematic Literature Review Process on AI 

application for Construction Risk Management 

 

2.1 Systematic Literature Review 

This research used a Systematic Literature Review (SRM) approach on scientific libraries with 

various bibliometric analysis methods to find interrelations between RM, AI, and ML, and Project 

Management and Construction Industry, which serve as the theoretical basis of the developed 

model. The systematic literature review has a comprehensive, structured, reproducible, 

transparent, and quantitative nature. There are also some disadvantages, such as potential biases 

in the search. These have been minimized by following a systematic process throughout (Pickering 

and Byrne, 2014). An SLR requires the following stages: (1) question formulation; (2) localization 

and searching of the literature; (3) study selection and evaluation; (4) analysis and synthesis; and 

(5) reporting and interpretation of results. (Habibi Rad, Mojtahedi and Ostwald, 2021). As topics 

and domains related to the scope of this research are numerous, the systematic literature review 

approach helped locate the most relevant inter-disciplinary publications, extract knowledge areas, 

and categorize their applied AI techniques after some filtering (Khodabakhshian, Puolitaival and 

Kestle, 2023). Figure 2.1 presents the main research areas of the State of Art, which served as the 

classification basis of the source papers. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 State of the Art areas 

The literature search was conducted in Scopus and Web of Science, two of the most holistic 

scientific libraries. These sources provided relevant publications for the research themes 
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inclusion for review. Following PRISMA provides a systematic structure for the review process 

and allows better and unbiased comparisons of findings, strengths, and weaknesses. The search 

rule is presented in Equation 2.1: 

((Risk Management) OR (Risk Assessment) OR (Risk Analysis)) AND 
((Construction industry) OR (AEC) OR (Construction Projects) OR (Building Sector)) AND 

((Artificial Intelligence) OR (Machine Learning) OR (Deep Learning) OR (Bayesian 
Networks) OR (Deep Learning) OR (Neural Network) OR (Fuzzy Logic) OR (Statistical 

Model) OR (Data Mining)) (2.1) 
 

Followingly, a thematic and bibliometric analysis was conducted using the VOSviewer and 

Bibliometrix applications on the source papers to identify the main areas of research concentration, 

common techniques, interrelation of topics, application scopes, and trending topics. Figure 2.2 

presents the SLR workflow. 

a) In the Identification phase, the search rule in equation 2.1 was used, and a massive amount 

of relevant literature was found.  

b) In the Screening phase, a couple of criteria were used, such as the Engineering domain, 

publication date after 2013, and English language, after which 1143, 734, and 685 articles 

remained, respectively. Two groups of articles were the focus of the screening phase: a) 

review papers, as a result of which 71 articles were selected, and b) technical papers, as a 

result of which 245 papers were selected for the Eligibility phase. Review papers were used 

to extract general knowledge on various techniques and conduct a comparative analysis 

between them, and technical papers were used to get ideas about possible solutions to the 

research problems. They also served as a benchmark for the proposed model's accuracy 

evaluation and validation.  

c) In the Eligibility phase, which had some overlaps with the Screening phase, abstracts and 

keywords of all 69 review articles and 614 technical papers were reviewed to remove the 

outlier publications. For instance, some publications were studying RM in other industries, 

some were focused on AI methods for other purposes like data generation or structural 

design (Cao et al., 2021), and some were focused on non-AI methods (Hualiang Li, 

Runzhong Liu, Li Li, Zhiting Liu, Shaoyan Lu and Lin, 2020), which was out of this 

study’s scope. The exclusion process at this point was manual and based on the researcher’s 

judgment. There might have been some mistakes caused by incomplete abstracts, which 

could have led to the wrong exclusion or inclusion of papers. However, the final 48 source 

review papers and 412 technical papers were fully reviewed to guarantee their compliance 

with the research questions and objectives and to reduce selection errors. There might have 

been other insightful papers not included in the analyzed scientific libraries, which is an 

inevitable issue in any literature review study. 

d) In the Inclusion phase, 48 review papers and 412 technical papers were selected as the 

source papers and were thoroughly studied and analyzed using quantitative and 

qualitative analyses to answer the research questions.  
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Figure 2.2 Systematic Literature Review flowchart based on PRISMA 

 

The PRISMA checklist for Systematic Reviews is also addressed and filled to comply with the 

standard format of this study. However, the checklist is best suited for quantitative studies and 
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• Framing the question: Introduction  

• Identifying relevant publications: Systematic Literature Review 

• Assessing study quality: Systematic Literature Review and Methodology 

• Summarizing the evidence: Systematic Literature Review and Results 

• Interpreting the findings: Results and Conclusion 

2.2 Bibliometric Analysis 

For the quantitative analysis, a bibliometric analysis was conducted as it includes many 

techniques, such as science mapping and particularly co-word analysis—both considered to be 

applicable for this research; as well as research productivity and trends evaluation (Ali, Alhajlah 

and Kassem, 2022). Co-word analysis examines the content of the publications’ “words” 

themselves (Donthu et al., 2021). As an example, co-word analysis can show a thematic 

relationship between research keywords and research areas that frequently appear together. A 

keyword network displays the structure of the knowledge body by presenting the interrelations and 

organization of research topics  (Zhao, 2022). 

Figure 2.3. presents the keyword co-occurrence diagram in the 48 review papers that delineates 

areas of research concentration, common techniques, interrelation of topics, application scopes, 

and trending topics. For results visualization purposes, VOSviewer and Bibliometrix applications 

were used. It is noteworthy that a number of papers were particularly focused on health and safety 

risks, which are only analyzed regarding the AI algorithms they proposed (Kamari and Ham, 

2022). Based on the bibliometric analysis, the topics covered in literature are grouped into 5 main 

areas, as presented in Figure 2.3: a) AI algorithms and techniques, b) Construction project 

disciplines, c) RM steps and areas, d) Decision support systems, and e) Health, safety, and 

occupational risks.  

 

Figure 2.3 Co-occurrence diagram between keywords and research areas of source papers 

Health, Safety, and Occupational risks 

Construction Project Disciplines 

RM steps 

AI algorithms and techniques 

Decision Support Systems 



28 
 

Figures 2.4.a and 2.4.b present the co-occurrence diagram of keywords found in technical papers 

in WOS and Scopus, respectively, with their evolution over time. As evident in both figures, the 

focus of publications has shifted from classical and manual RM methods, such as AHP and Fuzzy 

Logic, to the use of novel and data-driven technologies, especially ML. Furthermore, the most 

common ML techniques are being repeated in keywords, such as Bayesian Belief Networks, 

Artificial Neural Networks, Random Forest, Fuzzy Logic, Genetic Algorithm, etc., which will be 

thoroughly analyzed in Chapter 4. The annual scientific publication rate and trending topics are 

presented in Figures 2.5 and 2.6, demonstrating a significant increase within the past couple of 

years. Big Data, Machine Learning, and Deep Learning lead the current trend of publications, 

followed by health, safety, and occupational risks. Decision Support Systems and knowledge-

based Systems have been trending during the last decade but are substituted by AI-based 

techniques that foster the decision-making process. Figure 2.7. presents the co-occurrence diagram 

of countries that produced scientific articles in this domain, with China, the US, and Iran in the 

lead. However, interestingly, Italy has become one of the leading countries recently, indicating the 

interest of the Italian scientific community in AI-based RM methods. 

As the bibliometric analysis is quantitative in nature and produced mainly background data, 

qualitative analyses were followed to answer the research questions in more detail and to analyze 

each ML algorithm and method, which is presented in Chapter 4. The data was first looked for AI-

based risk data structuralizing and pre-processing methods through qualitative content analysis. 

Secondly, using a deductive approach, thematic content analysis was used to identify, analyze, and 

report repeated patterns (Bandura, 1989). Focusing mostly on ML algorithms and techniques and 

RM steps and areas groups and based on a contents analysis on applied techniques in technical 

papers, the ML-based techniques for risk identification, analysis, and mitigation planning were 

grouped under two general umbrella terms, deterministic and probabilistic models. A comparative 

analysis was used between probabilistic and deterministic models regarding their reasoning basis 

in risk assessment, advantages and disadvantages, application areas, and data requirements for 

each, which will be presented in Chapter 5. Moreover, given that Bayesian Approaches are the 

main solution proposed by the research, a separate chapter is designated to them, including 

structure and parameter learning methods for creating risk networks. 
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a) 

Figure 2.4a Keyword co-occurrence diagram and evolution during time in WOS source papers 

 

b) 

Figure 2.4b Keyword co-occurrence diagram and evolution during time in Scopus source papers 
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Figure 2.5 Annual Publication rate in AI-based RM models for the construction industry, based on the source 

papers 
 

 
Figure 2.6. Trending topics and keyword dynamic 
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2.3 Statistical Analysis 

In this subsection, a statistical analysis is conducted on the applied ML methods in technical 

papers, risk areas, and risks identified in the source papers. Figure 2.8. indicates the most frequent 

methods used with Hybrid Models (mostly Fuzzy+ another algorithm), Bayesian Belief Networks, 

Artificial Neural Networks, Fuzzy Logic, and Monte Carlo Simulation on top. These findings show 

the vast application of probabilistic models in the context of risk, unlike most other knowledge 

areas where deterministic approaches have more applications. Figure 2.9 indicates the RM steps 

covered in the source papers, with qualitative risk analysis on top, followed by risk identification, 

risk quantitative analysis, and mitigation planning. It is noteworthy that this categorization 

indicates the phase up to which these studies progressed. An interesting fact is the limited number 

of studies for risk intervention mitigation planning and post-intervention analysis, which is the 

case in real-world applications, too. 

 

 
Figure 2.7. Co-occurrence diagram of countries 
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Figure 2.8. Most frequent AI methods used for construction RM in literature 
 

Figure 2.9. RM steps covered in source papers 
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interviews with the company representatives. Figures 2.10 to 2.12 present the most common risk 

factors identified in the financial, procurement, and safety categories. 

 

Figure 2.10. Frequency of appearance of each risk in the Financial Risk category in literature 

 

 

Figure 2.11. Frequency of appearance of each risk in the Procurement Risk category in literature 
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Figure 2.12. Frequency of appearance of each risk in the Safety Risk category in literature 

 

2.4. Findings and Shortcomings of previous Review Studies 

Many remarkable review studies have been published in recent years that present an extensive 

review of Industry 4.0 in formation of construction 4.0 (Kozlovska, Klosova and Strukova, 2021), 

different AI applications in the construction industry (Pan and Zhang, 2021) and in other industries 

(Wang and Siau, 2019), AI-based RM models for intelligent project management (Afzal et al., 

2019), and many more insightful topics. Contrasting with studies before 2009, which were largely 

centered on mathematical modeling or computer-aided design, the recent decade has seen a surge 

in the application of various quantitative methods and ICTs, especially BIM and AI, in the CEM 

field (Jin, Zuo and Hong, 2019). 

The main foci of previous review studies were the structure of the AI algorithms or the data 

mining technologies (Rao and Chen, 2020), the classification of AI methods based on their 

structure, or the used technology, such as ML or computer vision (An et al., 2021). The grouping 

of these technologies was based on their area of application in construction projects. For instance, 

Afzal et al. (2019) conducted a comprehensive review analysis on AI-based risk assessment 

methods and listed papers based on the technique used, identifying six key techniques used. 

Another critical review of available literature on AI applications in the construction industry, such 

as activity monitoring, risk management, and resource and waste optimization, was conducted by 

Abioye et al. (2021). Sharma et al. (2021) conducted an extensive review of the capability of 

various AI-based models to accurately predict and estimate preliminary construction cost, 
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duration, and shear strength. In a similar study, Tayefeh Hashemi et al. (2020) analyzed the 

scientific papers on ML-based cost estimation over the past 30 years. In another study, the tree 

structure consisting of nodes in data mining was studied by Rao and Chen (2020) in the scope of 

construction risk control.  

Islam et al. (2017) conducted an extensive review of hybrid and fuzzy models’ structures and 

then explored the areas of their applications, such as roads and highways and building projects. In 

a similar study, Nguyen and Fayek (2022) conducted a comprehensive review study on the 

applications of hybrid fuzzy techniques in construction engineering and management research, 

providing a categorization of various hybrid models and their main application areas. 

A few articles just focused on one type of risk, such as safety risk, and one type of project, such 

as urban railway construction. Some other studies (Darko et al., 2020; Yan et al., 2020; Xu et al., 

2022) highlighted the RM domain, focusing on the types and structures of AI technologies applied 

in construction. In other studies, a specific method, such as the SEM, was analyzed thoroughly 

regarding technical aspects, sample size issues, data screening and reliability testing, model 

evaluation, and validation processes. (Xiong, Skitmore and Xia, 2015).  

Notably, there are limited review studies specifically on BNs application for project 

management or RM in the construction industry, which generally aimed to predict the success of 

the projects (Martínez and Fernández-rodríguez, 2015; Afzal et al., 2019). One of the 

comprehensive reviews on this topic that was not merely limited to the construction industry was 

conducted by Guinhouya et al. (2023), which focused on articles published within the last 20 years, 

categorizing them based on the project type (Construction & Infrastructure; Software & IT; 

Engineering & Manufacturing; and Others), project aspect (Challenges & Risks; Context & 

Process; and Outcomes), reasons for using BNs (Description; Prediction; and Prescription) and 

types of BNs (Basic BNs; Combined BNs; and Extended BNs). 

As supported by these studies’ findings, historically, risk analysis methods were primarily 

focused on ranking risks based on their relative importance. However, there has been a paradigm 

shift towards understanding the intricate interrelationships among various risks. This evolution is 

evident in how the objects of construction RM research have transitioned from generic 

construction projects to more specific types, such as small projects, underground constructions, 

green buildings, and prefabricated projects. Furthermore, there has been a heightened focus on 

individual risk categories, including political, safety, and social risks. The most studied type of 

risk in construction literature is safety risk. While most efforts have been directed toward technical 

developments, the management of construction personnel safety remains a primary concern. This 

attention to detail is complemented by the integration of RM into various management functions, 

such as cost, time, quality, safety, and environment, especially with the rising adoption of 

information and communication technologies (ICTs) (Zhao, 2022). Thanks to the Industry 4.0 

revolution and the vast application of ICTs in the industry, the construction RM approach has 

evolved considerably, driven by technological advancements, innovative methodologies, and a 

deeper understanding of the intricacies of construction projects. 
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The application of ICTs in construction engineering and management (CEM) has been gaining 

momentum since 2009 (Jin, Zuo and Hong, 2019). This momentum is driven by the application of 

a plethora of quantitative methods, including algorithms, statistics, fuzzy sets, and neural networks. 

These methods have been pivotal in applying various data analytics approaches to perennial 

management issues, such as safety, sustainability, and risk assessment. The emergence of hybrid 

methods, which combine fuzzy techniques, MCDM, network analysis, and machine learning, 

signifies the industry's commitment to innovation (Zhao, 2022). ICTs, including building 

information modeling (BIM), the Internet of Things (IoT), virtual reality (VR), and digital twins, 

have been progressively integrated into RM. This integration is further underscored by the 

consistent focus on project performance indicators, such as cost, scheduling, safety, productivity, 

and risk management, in leading scientific journals (Adeleye et al., 2013). 

The recent decade has witnessed a harmonious integration of conventional research themes in 

construction with emerging topics. For instance, while cost, schedule, and productivity remain the 

top-studied topics, the methodologies have evolved. Traditional prediction methods have been 

replaced by advanced techniques like data mining and ML. Similarly, data analytics tools, such as 

the Bayesian decision tool, have found wider applications in construction safety research, with a 

growing emphasis on artificial intelligence and smart monitoring (Cho et al., 2018). 

Even though previous review studies provided lucrative insights on the evolution of the industry 

and RM processes, as well as highlighted the main ML applications for the RM domain, they rarely 

present a practical and problem-driven framework to implement these technologies in practice, 

and mostly focused on the underlying theoretical foundation of them. Once a practical approach is 

considered, many challenges come into the picture that need to be addressed, like ethical, moral, 

and social behaviors and responsibilities of autonomous agents like AI, industry acceptance, and 

trust building in these technologies (Emaminejad and Akhavian, 2022), data and model ownership 

and legal considerations, biases/harms/discrimination raised through data gathering phase, one-fit 

all model issues, conflicts of interest with current company practices, the requirement for training 

and education about AI, and many more prerequisites for a successful AI-based model application 

in practice.  

One of the few studies that addressed the Opportunities and Adoption Challenges of AI in the 

Construction Industry was conducted by Regona et al. (2022), which identified fifty-seven key AI 

algorithms frequently mentioned in journal articles, namely, neural networks, fuzzy cognitive 

maps, genetic algorithms, Bayesian model, support vector machine, fast messy genetic algorithm, 

bootstrap aggregating neural networks, and adaptive boosting neural networks, which 

consequently are more likely to find a vast application in practice. 

Although such studies provide helpful insights, they contain highly detailed and advanced 

information and formulas that might be far from the experience and roles of the audience and, in 

this case, the practitioners and industrial researchers in the field. Most of the technologies 

discussed in these papers are at the research stage. Their future potential application in practice is, 

therefore, still unknown. 
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This study, benefiting from the opportunity to work with real industry partners and encounter 

real-world problems when designing, optimizing, and implementing an AI-based model from start 

to finish, has a viewpoint and purpose different from the source review papers. In this study, the 

model is not merely a research case that can delineate the advantages of AI but also a practical 

example of how AI can alter already established and nonefficient RM practices, the challenges it 

can face, the ethical issues it can raise, and the solutions to these issues, with a problem-solving 

viewpoint. For instance, data scarcity, a widespread problem in almost every construction 

enterprise, has mainly not been appropriately addressed in previous studies as they did not focus 

on real-world case studies. To address such issues, this study explored AI-based solutions from 

other domains that are more advanced compared to construction. This is an opportunity offered by 

the advancements of Industry 4.0 technologies, which combine different technological approaches 

and models such as AI, Digital twins, Blockchain, and Cloud computing to expedite 

computerization and interconnectedness in diverse industries, leading to operational excellence 

(Habibi Rad, Mojtahedi and Ostwald, 2021). 

Therefore, although the review papers gave significant insights and guidance toward the proper 

selection of algorithms and scope of applications, this study aims to go one step further and point 

out the areas that have not been extensively covered by such review studies, as the research gaps. 

Moreover, having the practical viewpoint, this research assesses previous review studies based on 

their practicality and compliance with actual industry challenges to choose the most optimum 

solution for the RM domain. The theoretical findings of this multidisciplinary study, alongside a 

comparative analysis of ML applications for construction RM, will be presented in Chapter 4, and 

the practical results will be presented in the results section in more detail.  
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Chapter 3: Conventional Risk Management Models in 

Construction 

 

3.1 Risk Management processes in construction projects 

“The possibility of loss, injury, disadvantage or destruction” is the definition of risk in Webster’s 

dictionary, which is measured by the combination of its probability of occurrence and the 

consequences of the occurrence (Subramanyan, Sawant and Bhatt, 2012). Risks can emerge from 

various origins, such as a) risk from outside the company—natural hazards, activities of suppliers, 

debtor customers, government policies; (b) risk from within the company—physical damage, 

accidents; and (c) risk that originates from company’s activities—negligence (Assaf and Al-Hejji, 

2006), which can be grouped under different Risk Breakdown Structures (RBS) (Mittnik and 

Starobinskaya, 2010), which can range from economic, scheduling, quality, and safety risks to 

macroeconomic, social, political, legal, contract, client-related, design, safety, procedural 

complexity, technical, material and equipment, project team, and cost overrun risks (Ganbat et al., 

2018). Furthermore, international risks can fall into three levels a) macro (nationwide), b) market, 

and c) project (Hastak and Shaked, 2000). Despite the various sizes and scopes of construction 

projects and their associated risks, RM remains an important tactic to ensure projects’ success and 

deliver them on budget, on time, safely (Sousa, Almeida and Dias, 2014), and in compliance with 

the required quality and standards. It consists of some main steps, the most studied of which are: 

o Risk Identification: Risk Identification is the process of identifying individual project risks 

as well as sources of overall project risk and documenting their characteristics for proper risk 

response in the future. 

o Qualitative Risk Analysis: Qualitative Risk Analysis is the process of prioritizing individual 

project risks for further analysis or action by assessing their probability of occurrence and 

impact as well as other characteristics. 

o Quantitative Risk Analysis: Quantitative Risk Analysis is the process of numerically 

analyzing the combined effect of identified individual project risks and other sources of 

uncertainty on overall project objectives like cost and schedule. 

o Mitigation Planning: Mitigation Planning aims to take proactive actions to lower the 

possibility and impact of risks through risk reduction, risk avoidance, risk sharing, and risk 

acceptance (Project Management Institute(PMI), 2017). 

Figure 3.1 presents the project risk management overview, containing the steps, input 

documents for each step, processing tools and techniques, and produced outputs, as proposed by 

the Project Management Institute (Project Management Institute(PMI), 2017).  
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Figure 3.1 Project Risk Management Overview (Project Management Institute(PMI), 2017) 
 

RM is one of the least developed knowledge areas in construction project management and falls 

behind other industries like finance. The probability theory has been studied through various 

models within the past decades, such as Pareto distributions, stochastic process theory, Markov 

processes, and Monte Carlo simulations (Wu, Chen and Olson, 2014) in conventional RM. 

However, an important factor that is missing in many of the previous techniques is the isolated 

analysis of risks and ignorance of the causal interrelations and correlations among risk factors. 

Assessment of the individual risk factor's magnitude, regardless of the occurrence probability of 

the risk events chain and the effects each risk causes to the others, may result in an underestimation 

of the overall project risk level. Some previous studies have focused on the concept of risk paths 

and scenario analysis rather than individual risk factors, which is a more accurate and realistic 

delineation of reality (Eybpoosh, Dikmen and Talat Birgonul, 2011). Moreover, in most of these 

methods, the data is entered manually and in a time-consuming fashion, which reduces the 

productivity of the RM. In this section, an overview, pros, and cons of each of these techniques is 

briefly presented. 



43 
 

3.2 Conventional Risk Management Methods in Construction Projects 

3.2.1 Checklists and Information Systems 

Checklists and questionnaire surveys are some of the basic, comprehensive, and comprehensible 

methods in small and mid-sized construction companies (Ganbat et al., 2018). Checklists are 

valuable planning and assessment tools when carefully developed, regularly updated, validated, 

and applied. A sound checklist should offer formative and summative evaluations, specifying and 

clarifying the criteria that should be considered when assessing a phenomenon in a particular 

context, enhancing the objectivity and credibility of the evaluation process, and guiding 

practitioners in planning for the outcomes of the evaluation. As a part of companies’ information 

systems, checklists can serve as a risk identification ontology that aims at supporting risk 

assessment, decision-making concerning risk control, and the planning of risk mitigation strategies 

(Zhou, Vasconcelos and Nunes, 2008). This method is particularly effective in the construction 

industry due to its reliance on practical experience. A reliable assessment can be achieved by 

selecting experts through scientific methods and determining risk categories and their impacts 

through expert interviews  (Ganbat et al., 2018). They are comprised of some main steps: 

1. Risks and hazards identification, and if the company has a list of previous risks, the Project 

Manager or the Risk controller should only check the ones that apply to that specific 

project. 

2. Deciding who might be harmed and affected and how. 

3. Risk Evaluation based on its magnitude, possibility of occurrence, and severity of 

consequences. 

4. Decision on the mitigation method and resource allocation. 

5. Implement preventive or corrective actions. 

6. Control the remaining and secondary risks. 

7. Record and review the findings as a lessons-learned registry. 

 

Some of the common checklist-based risk identification methods in construction projects are: 

 

a. Industrial checklists prepared by a documentation specialist for various project and product 

documents.  

b. Interviews with key project participants or analysis of historical data for similar projects 

like lessons learned. 

c. Database systems that actively manage and report the progress of projects  

d. Brainstorming with the project team ( Tadayon and Jaafar, 2012). 

 

The downside of this technique is that checklist preparation and update require much time and 

precision, which is usually overlooked in construction companies. Moreover, filling the checklists 

is a tedious task that project managers might not be willing to do each month for each monthly 

report. 
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3.2.2 Probability-Impact Matrix 

The Probability-Impact matrix is a common risk assessment and ranking technique to elicit from 

the core team and experts on the likelihood and consequences of a risk, to grade the probability 

and impact of each identified risk, and to calculate the risk criticality as the product of these two 

values. Once risks’ criticality is assessed and risks are ranked based on their criticality, the project 

management team can prioritize them and allocate project resources to mitigate the ones with 

higher priority. It is also a useful and comprehensible technique that ensures consistency of 

assessment between team members (Chapman, 2001). Usually, a liker scale from 1 to 5 (1 being 

the lowest and 5 being the highest) or descriptive terms (such as very high, high, medium, low, 

and very low) can be used, and the severity of each risk is determined according to its position on 

the graph is identified (El-Sayegh et al. 2021). The specific combinations of probability and impact 

that lead to a risk being rated as ‘‘high,” ‘‘moderate,” or ‘‘low” importance – with the 

corresponding importance for planning responses to the risk – are usually set by the organization. 

They are reviewed and can be tailored to the specific project during the risk management planning 

process (Mojtahedi, Mousavi and Makui, 2010). 

Besides the ease of calculation and standardized process as the advantages of this technique, it 

has a time-consuming and repetitive process, which despite requiring constant updates as the 

project progresses, is not usually updated or reproduced after project initiation. Moreover, it 

evaluates risks isolated and ignores the interdependence of risks, which is not the case in real-

world applications. Figure 3.2 presents the scheme of the P-I matrix as offered by the Project 

Management Institute (Project Management Institute(PMI), 2017). 

 

 

Figure 3.2 Probability-Impact Matrix Scheme for Risk Ranking (Project Management Institute(PMI), 2017) 
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3.2.3 Critical Path Method 

Critical Path Method (CPM) [3] is a useful tool for schedule risk assessment. It is a network-

based approach to estimate the minimum project duration and determine the amount of schedule 

flexibility on the logical network paths within the schedule model (Project Management 

Institute(PMI), 2017). This visualization of the interdependence of project activities enables 

project managers to monitor critical activities closely and ensure project success. Additionally, 

CPM can calculate the expected completion time, estimate the impact of schedule changes, and 

allocate resources effectively.  

The technique of schedule network analysis calculates the early start, early finish, late start, and 

late finish dates for all activities, irrespective of any resource limitations. This is done by analyzing 

the schedule network in both forward and backward directions. The amount of time that an activity 

can be delayed or extended from its early start date without affecting the project finish date or 

violating any schedule constraint determines the total float or schedule flexibility on any network 

path. A critical path typically has zero total float. However, with the precedence diagramming 

method sequencing, critical paths may have positive, zero, or negative total float depending on the 

constraints applied. The variance on the critical path has a direct impact on the project end date. 

Potential schedule risks can be identified by monitoring the progress of activities on near-critical 

paths (Equation 3.1). Figure 3.3 illustrates the critical path method scheme. However, despite its 

many benefits, it assumes deterministic activity durations and does not account for the uncertainty 

present in construction projects, potentially leading to overestimating project completion time and 

underestimating risk (Iromuanya, C., Hargiss, K. M., &amp; Howard, 2015). 

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝐸𝑎𝑟𝑛𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 (3.1) 

 

 

Figure 3.3 Critical path method scheme (Project Management Institute(PMI), 2017) 
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3.2.4 Multiattribute Utility Theory (MAUT), Analytical Hierarchy Process (AHP), and 

Analytic Network Process (ANP) 

The evolution of project delivery selection methods has seen the introduction of more 

sophisticated decision-making tools such as the Multiattribute Utility Theory (MAUT) and 

Analytical Hierarchy Process (AHP). These tools help improve the objectivity of the selection 

process and make it less subjective. The MAUT allows the project manager to identify a utility 

function for each criterion, based on their assigned weights, which is then used to compute the 

utility score of each project delivery method. Finally, the project delivery method with the highest 

global utility score is selected (Ahmed and El-Sayegh, 2021). 

The AHP, on the other hand, involves identifying different project delivery methods and 

developing a hierarchy of the selected criteria in which the risk factors play a significant role. The 

process then involves conducting a pairwise comparison of project delivery methods, after which 

these ratio scales are used to measure the manager’s comparative preferences and integrated to 

compute an overall weight for each project delivery method (Farnsworth et al., 2016). 

A later and more expanded version of AHP is the Analytic Network Process (ANP), which aims 

to overcome AHP limitations regarding the assumption of independence between criteria. ANP 

model allowed for complicated interrelations between various criteria elements (Khademi, Behnia 

and Saedi, 2014), using control hierarchies, clusters, nodes, the interrelationship among nodes and 

the interrelationship among clusters (Yucelgazi and Yitman 2020). Figure 3.4. shows the structure 

of ANP models. 

 

Figure 3.4. Structure of ANP models (Yucelgazi and Yitman 2020) 
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3.2.5 Monte Carlo Simulation 

Monte Carlo Simulation is a statistical sampling and simulation technique for quantitative risk 

analysis, where a computer model is iterated many times, with the input values chosen at random 

for each iteration driven by the input data, including probability distributions and probabilistic 

branches (Kokkaew and Wipulanusat, 2014). Outputs are generated to represent the range of 

possible outcomes for the project. It is an excellent way to solve uncertain problems, especially 

problems like construction schedule management(Kurihara, 2002). Unlike CPM, it can include the 

notion of uncertainty is estimations, which is more in alignment with reality. 

Monte Carlo Simulation is mainly used for schedule and cost risks; therefore, the input values 

are usually cost and duration estimates. Outputs represent the range of possible outcomes for the 

project (e.g., project end date, project cost at completion). Typical outputs include a histogram 

presenting the number of iterations where a particular outcome resulted from the simulation or a 

cumulative probability distribution (S-curve) representing the probability of achieving any 

particular outcome or less. Figure 3.5. presents a probability distribution and a S-curve generated 

by Monte Carlo simulation. The theoretical basis of Monte Carlo was the law of large numbers 

and the central limit theorem; the practice method of it was repeated sampling and high-speed 

computation. Therefore, it requires accurate data and an understanding of project processes, which 

is a complex and tedious task for project managers (Liu, 2014). It has also been applied for 

probabilistic safety risk assessment in construction projects in combination with ML methods (Lin, 

Wu and Zhang, 2023). 

 

Figure 3.5. Probability distribution and a S-curve generated by Monte Carlo simulation (Project Management 

Institute(PMI), 2017) 
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3.2.6 Program Evaluation Review Technique (PERT) 

 Program Evaluation and Review Technique (PERT) is a probabilistic method based on the 

assumption that the duration of a single activity can be described by a probability density function 

(Liu, 2013). It helps predict a project’s completion time and potential risks using a network 

diagram to represent the interdependence of various tasks in a project and calculates the expected 

completion time by considering the optimistic, most likely, and pessimistic scenarios. The project 

duration can be calculated by the sum of the “expected” durations of each activity in the critical 

path. Then, According to the central limit theorem, the project duration can be shown to follow a 

normal distribution, uniquely defined by the parameters computed from each activity parameter. 

Therefore, PERT analysis helps identify a project’s critical path and the tasks that impact the 

completion time. Figure 3.6. presents the PERT scheme. PERT considers the uncertainties during 

the construction process to plan, schedule, and control complex projects with many uncertainties. 

This technique can predict delays and cost overruns by monitoring critical tasks and progress and 

ensuring they are completed on schedule. However, PERT assumes that all activities in a project 

are independent and can be completed within the estimated time frame, which may not always be 

the case in the real world. It also does not consider the uncertainties associated with the project 

that can impact the outcome. 

 
Figure 3.6. PERT methods scheme 

 

3.2.7 Graphical evaluation and review technique (GERT) 

GERT, proposed by Pritsker (Pritsker, 1966) is a technique for the analysis of a class of networks 

that have two characteristics: 1) a probability that a branch of the network is indeed part of a 

realization of the network, and b) and elapsed time or interval associated with the branch if the 

branch is part of the network. These networks are stochastic and can be used for modeling risk and 

probabilistic activity duration.  

While CPM and PERT fall short in many practical situations, GERT is performing well due to 

its ability to address probability branches and loops. GERT makes it easy to identify project tasks, 

dependencies, and alternative paths. This can help streamline project planning and ensure that all 

tasks are completed in the most efficient manner. However, due to its complex structure it is not 
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as commonly used as CPM and PERT (Tao et al., 2017). Figure 3.7 presents an example of GERT 

structure. 

 
Figure 3.6. A GERT sample (Tao et al., 2017) 

 

3.2.8 Pareto Analysis 

It is a useful technique to determine risk factors that are more frequent or more critical in 

projects, based on historical data. Inspired by the Pareto “80-20” rule, this method seeks to find 

the 20% most significant factors that cause 80% of the risks. Therefore, it statistically separates a 

limited number of input factors-either desirable or undesirable- with the greatest impact on an 

outcome, like the root causes of a risk, to prioritize for mitigation planning (Pareto, 1964). In order 

to make a Pareto chart a few steps should be taken: 

a) Develop a list of problems to be compared. 

b) Develop a standard measure for comparing the items like the frequency, duration, and cost. 

c) For each item, assess its frequency, duration, or cost, in a cumulative way.  

d) Find the percent of each item in the grand total by taking the sum of the item. 

e) List the items being compared in decreasing order of the measure of comparison on the 

horizontal axis of a graph, with the left vertical axis labeled with numbers of occurrence. 

f) Label the right vertical axis with the cumulative percentages (cumulative total equal to 

100%). 

g) Draw in the bars for each item. 

h) Draw a line graph of the cumulative percentages. The first point on the line graph should 

line up with the top of the first bar. 

i) Determine the point where the cumulative percentage equals to 80%, with all the items 

before that determined as vital items. Figure 3.8. presents a Pareto chart example (Kenton, 

2022). 

As it is a useful method to identify and determine the main root causes of problems and risks 

and optimize the resource allocation to solve them, Pareto analysis can significantly foster 

problem-solving and decision-making processes in companies. However, it does not provide 

solutions by itself. Also, it mainly focuses on past data and does not consider of future possible 

scenarios. 
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Table 3.8. Example of Pareto chart analysis (Kenton, 2022) 

 

3.2.9 Stochastic Process Theory 

Stochastic models are used to represent the random behavior of risks and are widely used for 

quantitative analysis in financial risk management. A stochastic process is defined as a family of 

random variables {Xt}t∈T defined on a given probability space and indexed by t belonging to a 

parameter set T (Edirisinghe, Setunge and Zhang, 2015).  There are some important theories and 

processes used, like random walk, Brownian motion, and geometric Brownian motion, which help 

simulate a problem in a stochastic model, considering the different logics, reasonings, and 

distribution types to model the expected outcomes. The random walk, which is one of the simplest 

and most used techniques, tries to predict the path a pedestrian will take and when he will be 

positioned after N steps, given that the probability to move a step forward is p and the probability 

to move a step backward is 1-p. Therefore, the aim is to answer the following question: What is 

the probability p(m,N) that the walker will be at position m after N steps? It is answered through 

complicated formulas or computer simulation and can give a probabilistic and realistic prediction 

about the future behavior of a risk factor or possible scenarios over time (Paul and Physics, no 

date). The geometric Brownian motion (GBM), a more advanced modeling theory, describes the 

random behavior of the asset price level S(t) over time. The GBM is specified as Equation 3.2 

(Brigo and Dalessandro, 2007). Figure 3.9. presents an example of GBM sample paths and 

distribution statistics. 

dS(t)  =  µS(t)dt +  σS(t)dW(t)  (3.2) 
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Figure 3.9. GBM Sample Paths and Distribution Statistics (Brigo and Dalessandro, 2007) 

 

The downside of stochastic techniques is the approximate decisions on the distribution 

techniques and parameters that can fit a complex problem well. Especially in construction 

problems, where there are many variables engaged in the process, and each can have a different 

distribution type, the stochastic modeling can become very complex and, if simplified, would grow 

far from reality. 

3.2.10 Markov Process 

Markov process is a widespread type of random process that pertains to situations where a 

system has a finite number of states, and the system's state in the next moment is dependent solely 

on the current state but not on any previous state. The process by which the system transitions 

from one state to another is known as a Markov process. If the process is unchanging over time 

and the probability of state transitions is not dependent on time, it is considered to be a 

homogeneous Markov process. Markov processes can be either state-discrete Markov processes, 

which have a discrete state space, or state-continuous Markov processes, which have a continuous 

state space. When both the state and time are discrete, the Markov process is called a Markov chain 

(Sun and Li 2007). 

The analysis of the Markov chain can reflect dynamic changes of the system state by the state 

transmission probability as pij. pij is the probability that from state i to state j and 0< pij <1 (i 

=1,2,…,n). The matrix that is made of state transmission probability is called one-step state 

transmission probability matrix of the Markov chain. We use P to represent it and the sum of 

elements in every line is 1. Figure 3.10. shows the transmission probability matrix, and Figure 

3.11. presents an example of the Markov chain model (Edirisinghe, Setunge and Zhang, 2015). 

Once the steps grow in number and the experiment is repeated many times, with the transmission 

probability matrixes being produced by each other, the variables get closer to their stationary value. 

The stationary distribution of a Markov chain describes the distribution of Xt after a sufficiently 

long time that the distribution of Xt does not change any longer.  

In  the building sector, it can be used for creating a building deterioration prediction model based 

on different variables (Edirisinghe, Setunge and Zhang, 2015), or predict the final probability of 
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some risks in a dynamic mode. The downside of this method is the complicated mathematical 

calculations that require special technical knowledge. 

 

Figure 3.10. One-step transition probability matrix (Edirisinghe, Setunge and Zhang, 2015) 

 

 

Figure 3.11. Example of Markov chain model (Edirisinghe, Setunge and Zhang, 2015) 
 

3.2.11 Earned Value Management 

Earned Value Management (EVM) is one of the most used project management techniques to 

check the progress of the projects compared to the budget and schedule baselines and predict the 

expected budget and duration for project completion. EVM integrates the scope baseline with the 

cost baseline and schedule baseline to form the performance measurement baseline and develops 

and monitors three key dimensions for each work package and control account: 

• Planned value (PV) is the authorized budget assigned to scheduled work for an activity or 

work breakdown structure (WBS) component, which defines the physical work that should 

have been accomplished at a given point of the schedule. The total planned value for the 

project is also known as the budget at completion (BAC). 
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• Earned value (EV) is a measure of work performed and completed at a certain point of 

the schedule expressed in terms of the budget authorized for that work. It is the budget 

associated with the authorized work that has been completed. EV determines current status 

and can cumulatively determine the long-term performance trends. 

• Actual cost (AC) is the realized cost incurred for the work performed and completed on 

an activity during a specific period or the measured work related to the EV. 

 

The comparison of these three measures gives insights into project performance and future time 

and cost trends and variances on baselines, which are caused by uncontrolled risks (Sruthi and 

Aravindan, 2020). Figure 3.12. presents the S-curve for comparison of PV, EV, and AC. Although 

it is not a specific risk management method, its techniques, listed in Table 3.1, like schedule 

variance, are used to estimate the consequences of the risks on the project (Project Management 

Institute(PMI), 2017).  

EVM provides an analytical evaluation of the project by considering both the schedule and cost 

performance and helps detect possible risks and issues early, thus enabling corrective actions to be 

taken on time and the baselines to be updated accordingly (Project Management Institute, 2011). 

However, EVM does not consider the impact of changes in scope, schedule, and resource 

availability, which can result in inaccurate predictions (Sruthi and Aravindan, 2020). 

 

 

Figure 3.12 Earned Value, Planned Value, and Actual Costs on the project S-curve (Project Management 

Institute(PMI), 2017)   
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Table 3.1 Earned Value Calculations Summary Table (Project Management Institute(PMI), 2017) 

Name Lexicon Definition How Used Equation 

Planned 
Value 
(PV) 

The authorized budget assigned to scheduled 
work. 

The value of the work planned to be completed 
to a point in time, usually the data date, or 
project completion. 

 

Earned Value 

(EV) 

The measure of work performed expressed in 
terms of the budget authorized for that work. 

The planned value of all the work completed 
(earned) to a point in time, usually the data 
date, without reference to actual costs. 

EV = sum of the 
planned value of 
completed work 

Actual Cost 

(AC) 

The realized cost incurred for the work 
performed on an activity during a specific time 
period. 

The actual cost of all the work completed to 
a point in time, usually the data date. 

 

Budget at 
Completion 
(BAC) 

The sum of all budgets established for the 
work to be performed. 

The value of total planned work, the project cost 
baseline. 

 

Cost Variance 

(CV) 

The amount of budget deficit or surplus at 
a given point in time, expressed as the 
difference between the earned value and the 
actual cost. 

The difference between the value of work 
completed to a point in time, usually the data 
date, and the actual costs to the same point in 
time. 

CV = EV – AC 

Schedule 
Variance 
(SV) 

The amount by which the project is ahead or 
behind the planned delivery date, at a 
given point in time, expressed as the 
difference between the earned value and the 
planned value. 

The difference between the work completed 
to a point in time, usually the data date, and the 
work planned to be completed to the same 
point in time. 

SV = EV – PV 

Estimate At 
Completion 
(EAT) 

The expected total cost of com- pleting all 
work expressed as the sum of the actual 
cost to date and the estimate to complete. 

If the CPI is expected to be the same for the 
remainder of the project, EAC can be calculated 
using: 

If future work will be accomplished at the 
planned rate, use: 

If the initial plan is no longer valid, use: 

If both the CPI and SPI influence the 
remaining work, use: 

EAC = BAC/CPI 

 
EAC = AC + BAC – 

EV 

EAC = AC + Bottom-

up ETC EAC = AC 

+ [(BAC – EV)/ 
(CPI x SPI)] 

Estimate to 
Complete 
(ETC) 

The expected cost to finish all the remaining 
project work. 

Assuming work is proceeding on plan, the cost 
of completing the remaining authorized work 
can be calculated using: 

Reestimate the remaining work from the bottom 
up. 

ETC = EAC – AC 

 

ETC = Reestimate 

 

3.2.12 Risk Use Case and Risk Class Diagrams 

A use case diagram provides a visual representation of the typical interactions between a user 

and a computer system. It includes actors, which represent essential 'players' in the system, and 

use cases, which represent the routines the system must perform to achieve its actions. A risk use 

case diagram specifically focuses on modeling the interactions and relationships related to risk 

management within a system or project. It helps to identify and visualize the various use cases or 

scenarios involving risks and how different actors interact with the system to manage those risks 

effectively, as depicted in Figure 3.13. On the other hand, a class diagram depicts the types of 

classes used in an object-oriented system and defines the relationships that exist between them, 

which are of two types: associations and subtypes. It showcases attributes, methods, and 

constraints for each class. Class diagrams are part of the Unified Modeling Language (UML) and 

are widely used in software development to represent the static structure of a system. A risk class 
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diagram can contain various classes of risk types, risk categories, risk assessments, and risk 

treatments (Tah and Carr, 2000).  

 

Figure 3.13. Risk Use Case Diagram sample (Tah and Carr, 2000) 

 

3.2.13 Software Systems 

Various project scheduling software systems, such as Microsoft Project, Oracle Primavera P6, 

Open Plan Professional (OPP), FastTrack Schedule, ZOHO Projects, @risk, Workfront, eResource 

Scheduler, ConceptDraw Project, Resource Guru, Smartsheet, and many other software, packages, 

and platforms are used for time control and risk management in the construction industry 

(Sepasgozar et al., 2019). Moreover, various packages in Python, R studio, and Mathlab have been 

developed for Monte Carlo simulation or fuzzy logic modeling, which are some of the first 

attempts to digitalize the risk assessment process. It is noteworthy that some standardized tools 

such as Hierarchical Risk Breakdown Structure (HRBS) and strength–weakness–opportunity–

threats (SWOT) analysis have been developed over the years as a complementary part of other RM 

methods (Tah and Carr, 2000). 

 

3.3. Summary 

Although various techniques have been developed to identify, analyze, and evaluate risks 

qualitatively and quantitatively (Zou, Kiviniemi and Jones, 2017), which are being widely applied 

in the industry these days, they are confined to static control management and play only a limited 

role in practice (Zhang et al., 2014). They are mainly conducted manually and inefficiently, 

frequently based on knowledge and experience-based intuitions. Moreover, the assessment is 

greatly reliant on mathematical analysis and experience, ignoring the interdependencies between 

risks and project variables, which makes the model unlearnable and ungeneralizable by the 

machines (Shim et al., 2012). Finally, most of the abovementioned methods fail to address risks 

in multidisciplinary knowledge areas and project sections to create a unified and communicative 

environment. As depicted in Figure 3.14. RM scope expands throughout the entire lifecycle of the 
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projects, and if an RM method cannot create a link between various phases of the project, it cannot 

provide a realistic and applicable assessment of risks. 

 

Figure 3.14. General RM framework during the lifecycle of construction projects (Zou, Kiviniemi and Jones, 

2017) 
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Chapter 4: AI application in Construction RM 

 

4.1. Industry 4.0 Revolution in the Construction Industry 

The Architecture, Engineering, Construction, and Operation Industry (AECO) occupies the 

center stage in a nation’s socio-economic development and industrialization, with a worth 

estimated about $8.7 trillion, accounting for 12.2% of the world's economic output and providing 

employment for about 200 million people worldwide (Zou and Sunindijo, 2015). Traditionally, it 

is a slow-shifting industry with a change-resistant nature. However, recently, and thanks to the 

fourth industrial revolution, it is going through constant innovations and a considerable shift 

toward digitalization and intelligence, aiming to significantly enhance automation, productivity, 

reliability, sustainability, and effective RM (Fernández-Mora, Navarro and Yepes, 2022; Wu et 

al., 2022). The concept of Construction 4.0 represents the industry's digital transformation through 

the use of advanced tools such as laser scanning, drones, robots, AI, IOT, and Digital Twins, which 

improve the management of construction projects across all phases of their lifecycles, leading to 

the creation of smarter and more sustainable buildings (Ahmed and El-Sayegh, 2021). Figure 4.1. 

presents various industry 4.0 technologies in construction projects. Based on a classification 

offered by Sepasgozar et al. (2019), some of these key digital technologies used for different 

purposes in construction projects are:  

a) Digital design communication tools: Digital Twin, Building Information Systems (BIM) 

including Revit, ArchiCAD, Navisworks, BIMx, BricsCAD, Archibus, Constructor, 

IntelliCAD, VisualARQ, Revizto; Geographic Information Systems (GIS) including 

QGIS, ArcGIS, and ArcMap (Shirowzhan and Sepasgozar, 2019). 

b) Digital communication systems: cloud-based tools, emails, smartphones, and radio 

communication systems (Adam, Josephson and Lindahl, 2017). 

c) Digital scheduling and planning tools: Microsoft Project, Oracle Primavera P6, FastTrack 

Schedule, ZOHO Projects, @risk, Workfront, eResource Scheduler, Concept Draw 

Project, Resource Guru, Open Plan by Deltek, Smartsheet, and other software, packages, 

and platforms. 

d) Digital progress monitoring and job-site controlling tools: laser scanner, lidar, Internet of 

Things sensors, and photography camera (Sepasgozar et al., 2019). 

e) Digital contract management tools: intelligent or smart contracts. The literature shows that 

many projects suffer from weak contract administration (Asiedu, Adaku and Owusu-Manu, 

2017). 

f) Digital devices to increase the productivity of heavy equipment: real-time locating systems, 

Global Positioning System (GPS), and radar. 

g) Digital production technologies: 3D printers (Tahmasebinia et al., 2018). 
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Figure 4.1. Industry 4.0 technologies in construction projects (Abioye et al., 2021; Pan and Zhang, 2021) 
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4.2 AI Applications in Construction Engineering and Management 

Artificial Intelligence (AI), a concept that emerged in the late 1950s, found its way into the 

construction industry as a support of activities like construction management, architecture, 

structural design, etc. (Oh et al. , 2019). European Commission (EC, 2019) defines AI as: 

“Artificial intelligence (AI) systems are software (and possibly also hardware) systems designed 

by humans that, given a complex goal, act in the physical or digital dimension by perceiving their 

environment through data acquisition, interpreting the collected structured or unstructured data, 

reasoning on the knowledge, or processing the information, derived from this data and deciding 

the best action(s) to take to achieve the given goal. AI systems can either use symbolic rules or 

learn a numeric model, and they can also adapt their behavior by analyzing how the environment 

is affected by their previous actions.” Having the insight into boosting labor efficiency by 40% 

and doubling annual economic growth rates by 2035 (M. Purdy 2016), AI is becoming the center 

of companies' attention.  

AI has a wide range of applications, especially in fostering, optimizing, and automating 

processes throughout the entire lifecycle of construction projects, thereby enabling intelligent 

project management. With the advent of cutting-edge technologies such as the Internet of Things 

(IoT), sensors, cyber-physical systems (CPS), cloud computing, big data analytics (BDA), text 

mining, and information and communication technologies (ICT), AI algorithms can now learn 

from large volumes of real-time data, enabling more reliable and intelligent decision-making and 

management of construction projects (Zhong et al., 2017). AI models can improve analytical 

capabilities across the construction engineering and management domains while offering a high 

granularity and depth of predictive analysis (Guzman-Urbina, Aoyama and Choi, 2018), and 

provide accurate results in uncertain, dynamic, and complex environments (Yaseen et al., 2020), 

like the construction industry. A dominant number of AI applications are already operational in 

the financial sector (fintech), where data is available in great quantity and good quality. The broad 

usage of complex AI applications in the construction industry started only later, mostly because of 

data collection and data quality problems.  

The thriving application of AI, and especially ML algorithms, in construction projects, has 

proven to be effective in solving the shortcomings of traditional project management methods, 

automating repetitive and tedious tasks, optimizing resource allocation, making a factual 

prediction on projects' trends, and data-driven decision-making for managing construction projects 

(Sanni-Anibire, Zin and Olatunji, 2021), during all phases of projects like: 

a) Planning and Control phase for schedule optimization based on available resources and 

the work breakdown structure (WBS),  

b) Generative design for design optimization and increasing engineering performance in an 

iterative manner (Newton, 2019),  

c) Claim Analysis to reduce the claim-based delays in the project,  

d) Predicting the Environmental Performance of buildings to promote improvements if 

necessary (Fernandes, Rocha and Costa, 2019),  
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e) Health and safety assurance of the workforce (Wu et al., 2019) using images from trucks, 

cranes, and other construction machinery or sensor data for predicting safety measures 

such as injury severity, injury type, body part impacted, and incident type,  

f) Maintenance and operation management, retrofitting of existing buildings (Rampini and 

Re Cecconi, 2022), and more.  

Despite all the advantages and potentials of AI, there is a practical gap in applying AI, Big Data, 

ML, and the Internet of Things (IoT) into well-known construction practices, which, if solved, 

would place industry among the top productive sectors (Gledson and Greenwood, 2017). Blanco 

et al. (2018) stated that AI is the next frontier for construction technology as they survey the 

applications and algorithms to help bridge the technology gap (Basaif et al., 2020). However, the 

industry practitioners are generally reluctant to trust new technologies, and the use of antiquated 

work processes is prevalent (Manuel et al., 2019; Zhang et al., 2021). Small businesses comprise 

the vast majority of the industry with a share of 82.3% (compared to 44.4% for manufacturing and 

35.1% for retail) (Kobe, 2022) and smaller companies are known to be often the “late majority” 

and “laggards” in technology adoption (Peltier, Zhao and Schibrowsky, 2012). Other determining 

factors for AI’s vast application in the industry are enterprises’ attitude toward change, technology 

switching costs, market uncertainty and environmental hostility, demographical characteristics 

like Age, Education, Gender, and Ethnicity of business owners, knowledge about the technology, 

and relative advantage of AI compared to already established methods (Schepers and Wetzels, 

2007). 

AI is a vast umbrella term that includes various technologies, applications, types, and subfields. 

AI itself is a subcategory of digital technologies alongside cloud-based applications, augmented 

reality, virtual reality, digital twin, artificial intelligence, cyber–physical systems, big data, 

blockchain, laser scanners, robotics and automation, sensors, Internet of Things, actuators, and 

sensors  (Forcael, Ferrari and Opazo-vega, 2020), all of which have found their way in construction 

research and practice over the last decades. Based on comprehensive literature reviews on AI 

applications in construction engineering and management by Pan and Zhang (2021) and Chenya 

(2022), AI applications can be grouped into six main categories: (a) machine learning, (b) 

knowledge-based systems, (c) computer vision, (d) robotics, (e) Natural Language Processing, (f) 

automated planning and scheduling, and (g) optimization, as depicted in Figure 4.2, and can cover 

a variety of purposes such as construction process management, facility management, and RM. 

Another classification of AI applications in construction was provided by Abioye et al. (2021), 

depicted in Figure 4.2. Moreover, Figure 4.3 categorizes the components, types and subfields of 

AI. Three types of AI based on their level of autonomy and authority are: a) Artificial Narrow 

intelligence (ANI), b) The artificial general (or "strong") intelligence (AGI), and c) The artificial 

super-intelligence (ASI). ANI aims to automate some repetitive and learnable activities without 

the ambition to substitute human intelligence, authority, or decision-making. AGI aims to match 

human-level intelligence in any field and type of human activity and is capable of complex 

decision-making (Wang and Siau 2018). ASI aims to exceed human intelligence and faculties, 

staying unbeatable by any human mind (Müller and Zalta, 2020). The current state of AI 

application in the AEC industry is mostly the ANI and, to some extent, the AGI. 
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Figure 4.2. AI application groups in Construction Engineering and Management (Abioye et al., 

2021; Pan and Zhang, 2021) 

 

AI has four types of applications in construction based on their level of automation, which are 

listed below (PWC, 2017). Automation is a technology that actively selects data, transfers 

information, makes decisions, and controls processes, having significant potential to extend human 

performance and improve safety (Lee, See and City, 2004). 

 

a) Automated Intelligence, which is the automation of manual and cognitive tasks and does 

not involve innovative ways of doing things, like automated welding systems. 

b) Assisted Intelligence, which includes accurate and efficient tracking, analysis, and 

visualization of data, like AI surveillance systems for construction personnel performance 

improvement on particular tasks, and project monitoring systems using Industry 

Foundation Classes-based BIM (Golparvar-Fard et al., 2015). 

c) Augmented Intelligence, which includes algorithmic decision-making to enable 

construction personnel to do things they could not do and make better decisions, decision 

support systems for contractor selectionو and design alternatives selection to enhance 

occupation health and safety in construction design (Awad and Fayek, 2012). 

d) Autonomous intelligence, which supports decision-making processes without human 

intervention, like a construction robot that can assemble pre-designed modular structures 

by autonomously identifying the prismatic building components like brick and blocks 

(Feng et al., 2015). 
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Figure 4.3. Components, types and subfields of AI (Abioye et al., 2021) 

 

4.3. Classifications of AI applications in Risk Identification, Analysis, and 

Mitigation Planning domains 

The advancement of AI and digital technologies can significantly change conventional risk 

assessment and management methods, making them factual, efficient, generalizable, and able to 

be performed in real-time (Chenya, 2022). AI-based RM systems can function as (a) early warning 

systems for risk control, (b) AI-based risk analysis systems using algorithms such as neural 

networks for identifying complex data patterns, (c) risk-informed decision support systems for 

predicting various outcomes and scenarios of the decisions, (d) game-theory-based risk analysis 

systems, (e) data mining systems for large data sets, (f) agent-based RM systems for supply chain 

management risks, (g) engineering risk analysis systems based on optimization tools, and (h) 

knowledge management systems by integrating decision sup-port systems, AI, and expert systems, 

to capture the tacit knowledge within organizations’ computer systems (Wu, Chen and Olson, 

2014). 

ML, a branch of AI, combines methods from statistics, database analysis, data mining, pattern 

recognition, and AI to extract trends, interrelationships, patterns of interest, and valuable insights 

from complex data sets (Flath et al., 2012). ML techniques have been widely studied in 

construction RM research, aiding in hazard and risk identification, vulnerability assessment, 

consequence prediction, and mitigation strategy development (Habibi Rad, Mojtahedi and 

Ostwald, 2021), which can bring numerous benefits to construction projects, including preventing 
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cost overruns, enhancing site safety, and managing projects efficiently (Regona et al., 2022). 

However, RM is a lesser-studied and progressed domain in construction projects due to the 

complex and probabilistic nature of assessments, inferences, and the direct influence of RM on 

other knowledge areas, such as stakeholder management (Xia et al., 2018). The key reasons are: 

a) Lack of structured data and infrequent documentation in the projects 

b) Over-reliance on individual and experience-based judgment by experts in RM 

c) Isolated risk analysis and ignorance of the causal inferences between variables in risk 

path analysis, and  

d) Incorrect choice of the AI model for a given problem, regarding data availability and 

requirements, the role of probability, expert judgement, and the reasoning behind the 

analysis (An et al., 2021; Chenya, 2022). 

In this subsection, the different ML algorithms applications for construction risk identification, 

assessment, and control, which previous researchers studied, are listed and analyzed, such as 

Artificial Neural Networks (Heravi, Asce and Eslamdoost, 2015), Decision Trees (Chou and Lin, 

2013), Logistic Regression (Hwang and Kim, 2016), Naïve Bayesian Models (Gerassis et al., 

2017), Support Vector Machines (Huang and Tserng, 2018), Genetic Algorithm (GA), Structure 

Equation Modelling (SEM), Fuzzy Hybrid Methods (FHMs) (Afzal et al., 2019). 

4.3.1 Phase-based classification of AI applications 

Construction Risk identification has been conducted by various methods such as construction 

drawing, meta-network, Monte Carlo simulation, ontology, and BNs (Liu et al., 2021).  Moreover, 

various techniques have been used to model the interdependencies of project risks in literature, 

including Structural Equation Modeling (SEM) (Eybpoosh, Dikmen and Talat Birgonul, 2011), 

Analytic Network Process (ANP) (Prince Boatenga and Ogunlana, 2015), causal mapping 

(Ackermann and Alexander, 2016) systems thinking (Loosemore and Cheung, 2015), and 

Bayesian Belief Networks (BBNs) (Yildiz et al., 2014), among which BBNs have gained much 

popularity due to benefiting from a robust theoretical framework and the ability to capture 

uncertainty and update beliefs upon the availability of new information, which is a considerable 

advantage in ongoing projects. Qualitative Risk Analysis is the process of prioritizing individual 

project risks for further analysis or action by assessing their probability of occurrence and impact 

as well as other characteristics (Project Management Institute(PMI), 2017). Various AI techniques 

such as multilevel regression (SEM) (Ebrat and Ghodsi, 2014), MCDM, probability models, FHM, 

NNs, and genetic algorithm (GA) have been used in previous research for both qualitative and 

quantitative analysis. Quantitative Risk Analysis is the process of numerically analyzing the 

combined effect of identified individual project risks and other sources of uncertainty on overall 

project objectives like cost and schedule. Quantitative Risk assessment tools are based on different 

linear and non-linear approaches. However, since construction projects have stochastic behavior, 

non-linear probabilistic models of AI, such as ANNs, ANP, and BBN, are dominant to address this 

phenomenon of interdependency (Dekker, 2013), which can be used independently or in a hybrid 

manner. Few studies have adopted hybrid methods based on the FST and other AI tools to design 

flexible risk assessment tools under high uncertainty (Afzal et al., 2019). 
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4.3.2 Other AI applications classifications in literature 

Various categories have been proposed for AI-based Risk analysis and reasoning methods in the 

literature. Based on the categorization for AI application areas in the construction industry 

proposed by Pan and Zhang (2021), RM falls under a) the category of Expert Systems/Fuzzy logic 

for Knowledge Representation and Reasoning mainly formed on probabilistic, qualitative, and 

linguistic analysis, and b) Machine Learning for supervised learning based on either probabilistic 

or deterministic analysis. Samantra, Datta and Mahapatra (2017) classified construction risk 

assessment approaches as a) Probabilistic approach, dealing with risk probability and impact 

estimation based on historical numeric data, including Sensitivity analysis, Decision Tree analysis, 

Bayesian Networks, Monte Carlo simulation, etc. (Zhang, et al., 2014), and b) Possibilistic 

approach, dealing with risk probability and impact estimation based on qualitative or descriptive 

data including fuzzy logic (Dikmen, Birgonul and Han, 2007). The advantage of possibilistic 

models is that they can embrace the uncertain and vague definition of risk factors and their 

magnitude in a linguistic and subjective human description (Samantra, Datta and Mahapatra, 

2017). Although called by various names, the notion and reasonings for classifying all of the 

methods are the same. For ease of reference, this research calls them Probabilistic and 

Deterministic models. It is noteworthy that this classification basis is the risk reasoning itself, 

which is applicable to all phases of the RM process, from risk identification to assessment and 

mitigation planning. 

Probabilistic models are mostly based on Bayesian Inference, which allows making judgments 

on prior and posterior probabilities in random variables based on various sources, like expert 

judgment, model simulation, or historical data (Phan et al., 2016). Prior probability is the 

likelihood of a particular state of a variable happening without seeing any evidence, and posterior 

probability is the updated belief or likelihood of that state of a variable happening after seeing 

evidence (Zhang et al., 2016). Benefitting from multiple sources of data in probabilistic 

approaches, the priors can be learned based on one source and the posteriors can be updated by 

another source. This is a huge advantage in situations with limited data, as the application of 

multiple sources compromises the data limitation.  

On the other hand, Deterministic models are mostly based on the Frequentist approach, which 

can be merely based on historical records, and the priors are learned based on the frequency of an 

event happening in the database. These methods perform best when a huge amount of data is 

available. The learning and development processes are much more straightforward and simpler 

compared to the Probabilistic methods, as the elicitation process to obtain information on 

probabilities from experts is usually challenging and time-consuming. However, the downside, in 

contrast to Probabilistic approaches, is the inability to assign probability to a particular event 

happening after witnessing evidence, i.e., the posterior update. The downside of the Probabilistic 

approaches, on the other hand, is the subjectivity, bias, and overreliance on experts’ opinions if 

not appropriately calibrated (Bar-hillel and Neter, 1993). A comparative analysis of deterministic 

and probabilistic ML methods is presented in subchapter 4. 
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4.3.3 ML Classifications 

Machine learning (ML) is a computational approach that enables machines to mimic human 

learning, gaining knowledge and experience from real-world data (Gibert, Mateu and Planes, 

2020), which is used for modeling, control, or prediction using statistical techniques, without the 

need for explicit programming. The ML methods, as presented in Figure 4.4., can be categorized 

as:  

a) Supervised Machine Learning, which involves machines making decisions based on 

labeled datasets (input and desired output pairings). It is further divided into classification 

and regression (Kotsiantis, Zaharakis and Pintelas, 2006),  

b) Unsupervised Machine Learning, which involves machines learning the underlying 

structure in unlabeled datasets, categorized into clustering and dimension reduction 

techniques (Xie et al., 2020);  

c) Reinforcement Learning (RL), defined as learning a mapping from situations to actions to 

maximize a scalar reward or reinforcement signal]. RL is a computational approach that 

involves learning from the outcome of interactions with the environment; and,  

d) Deep Learning, the current state-of-the-art in ML, which has proven to provide more 

accurate predictions than conventional ML techniques (Schmidhuber, 2015; Abioye et al., 

2021; Sharma et al., 2021). 

 

Figure 4.4. Types of ML algorithms based on type of data (Kong et al., 2019) 

 

For a successful application of ML methods, transparent, accessible, and high-quality data are 

needed to be compiled in a computer-readable form. In ML applications, although significant 

expertise and effort are required in model tuning, training, validation, and interpretation, generally, 

the time spent running ML is much less in comparison with the time to gather data, integrate it, 

clean it, and pre-process it (Domingos, 2012). However, challenges arise mainly in two cases:  

a) When the data is large-scale, high-dimensional, nonlinear, non-stationary, and 

heterogeneous, challenging the capabilities of existing ML methods, where more advanced 

ML techniques, such as active learning, reinforcement learning, and deep learning are 
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required (Nguyen and Medjaher, 2019) to characterize the higher-order correlation and 

dependencies within the data, perform efficient and reliable imputation and prediction for 

decision making, and develop scalable learning models for large-scale and time-dependent 

problems (Xie et al., 2020), and  

b) When the data is limited, scarce, and unstructured, or there are missing data, outliers, and 

imbalanced class distribution (Dietrich et al., 2020), which makes the application of 

advanced and black box models inefficient and unprecise.  

In order to overcome these challenges, alongside assuring the proper data quality, quantity, and 

format, methods like Principal Component Analysis (PCA) and Feature Importance are super 

helpful. PCA is used to address dimensionality problems, breaking down large variable data sets 

into smaller classes without losing valuable data (Koc, Ekmekcioğlu and Gurgun, 2021). It can 

also reduce the chance of overfitting the developed models by eliminating features with high 

correlations. On the other hand, features importance in ML techniques captures complex 

relationships between variables, providing insights for decision-makers by determining the relative 

significance or contribution of each feature or input variable in a given model's predictive 

performance. (Allah Bukhsh et al., 2020). 

ML methods offer numerous advantages, including speed, cost-effectiveness, high performance, 

and ease of validation. The hybridization of standard models and the introduction of new ones has 

become a common practice among researchers for solving engineering and construction problems 

(Munawar, Hammad and Waller, 2021). One of the common hybrid models is the aggregation of 

Monte Carlo Simulation with ML models, used for risk and reliability assessment and construction 

and excavation projects (Lin, Wu and Zhang, 2023). Moreover, BIM has been paired with ML 

methods in numerous previous research (Pan and Zhang, 2023). The Auto-ML technologies have 

been introduced to solve the requirement for manual interventions, such as data normalization, 

feature selection, model selection, and hyperparameter optimization in traditional ML, automating 

the ML pipeline, eliminating manual operations, and allowing designers to train optimal models 

with minimal effort (Chauhan et al., 2020). 

Comparative analysis between various ML algorithms has been the topic of many studies. For 

instance, Koc and Gurgun (2022) implemented various methods including logistic regression (LR), 

decision tree (DT), random forest (RF), and Extreme Gradient Boosting (XGBoost) for predicting 

construction accident severity assessment. ML algorithms have been widely studied for 

construction risk assessments (Lin et al., 2021b), construction accident severity assessment (Koc 

and Gurgun, 2022), safety enhancement, injury type prediction (Alkaissy et al., 2023), cost overrun 

and delay prediction, human error reduction, and ensuring the performance of the project in terms 

of quality, cost, and on-time completion (Sharma et al., 2021). While traditional statistical models 

have been used to analyze construction accidents, schedule trends, or project progress, ML 

techniques offer high potential for predicting future events (Alkaissy et al., 2023). Most applied 

classes of ML methods in general are ANN, support vector machine (SVM), response surface 

model (RSM), logistic regression (LR), decision tree (DT) and random forest (RF), hybrid methods 

that couple two or more soft computing algorithms, and all other methods (e.g., evolutionary 
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computing (EC) and genetic expression programming (GEP)) that are not significant in the number 

of applications. (Xie et al., 2020) 

4.4. Introductions to Various AI and ML Methods for Construction RM 

In this section, various methods used for the construction of RM in literature are introduced.  

Initially, non-ML methods like Big Data techniques, Process Mining, and NLP are introduced, and 

then ML algorithms are listed, starting from deterministic algorithms and continuing with 

probabilistic ones. 

4.4.1. Big Data 

In the rapidly evolving landscape of information technology, "Big Data" has emerged as a 

ubiquitous and complex pool of diverse data (Meng et al., 2022). The construction industry, 

already dealing with large volumes of heterogeneous data, is expected to see an exponential 

increase in data volume with the commoditization of technologies like the IoT and Cloud 

Computing (Bilal et al., 2016), which can be considered Big Data due to having the three features 

of variety, velocity, and volume.  Traditional and manual data collection and processing methods 

are inadequate to handle the vast and varied data generated in construction projects. Hence, the 

use of Big Data technology is necessary to collect, classify, and process data effectively.  

Big Data application for Construction RM has been studied by numerous scholars. Ayhan and 

Tokdemir (2020) developed a model to predict engineering construction accidents and suggested 

preventive measures using class clustering analysis and  

ANN. Guo et al. (2016) developed a Big Data-based worker behavior observation platform to 

identify unsafe behavior patterns and improve safety on site. Other researchers like Su et al. (2021) 

proposed a data-driven approach using Convolutional Neural Network (CNN)-based image 

recognition techniques for automated fire detection and alarm systems. 

Big Data analysis techniques such as text mining, audio analytics, video analytics, and predictive 

analytics are being increasingly used to improve safety and mitigate accident risks on construction 

sites. Zhu et al. (2020) applied different ML methods to classify the severity of construction safety 

accidents, emphasizing the critical role of predictive analysis. Among ML and DL methods, Neural 

Networks, simulating certain intelligent activities of the human brain, are widely used in Big Data 

analysis techniques, particularly in engineering construction risk assessment (Hegde and Rokseth, 

2020). The advent of Big Data technology has also facilitated the observation of workers on job 

sites, with researchers using motion sensors, cameras, and ML to monitor worker behavior and 

unsafe movements, as well as the incompliance of activities with safety measures (Yu et al., 2021). 

However, controlling unsafe human behavior remains the primary challenge in construction safety 

management, necessitating the development of AI-based Big Data systems (Tibaut and Zazula, 

2018). The efficient collection of multi-sourced, heterogenous, time-constrained, spatially 

correlated, concurrent, and synchronized Big Data in construction projects and the integration of 

it with construction site domain knowledge present ongoing challenges that require new theories 

and methods for data processing (Meng et al., 2022). Disaster Risk Management is another area 

that can significantly benefit from the advancement of Big Data technologies by improving the 

speed and effectiveness of linkages between disaster information and systemic response to increase 

resilience (Habibi Rad, Mojtahedi and Ostwald, 2021). 
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4.4.2. Process Mining 

Process Mining is an analytical, evidence-based, and data-driven method to detect, monitor, and 

improve business or project processes (Kulakli and Birgun, 2021). As a theme of Business Project 

Management, Process Mining is a combination of data-mining and traditional model-driven 

Business Project Management that analyses processes simply and systematically by exploiting 

current and historical process data stored as event logs in the information systems. For this purpose, 

Machine Learning and Data Mining algorithms are used to understand the current performance of 

the processes and their deviations concerning a normative model (Van der Aalst, 2016). In contrast 

to traditional methods like process mapping, Process Mining is fact-based, objective, continuously 

enhancing, self-operating, efficient, less time-consuming, holistic, and detailed (Miller, 2014). 

PM has an outstanding performance in ever-changing and uncertain environments like 

construction projects and can take advantage of Industry 4.0 novel technologies for the digital 

transformation of the industry. Like Project Management, PM has standard implementation steps 

based on the application objectives, e.g., 1) process discovery, 2) process conformance checking, 

and 3) process enhancement (Van der Aalst, 2016). 

Integration of PM and RM has been limitedly studied in previous research works. Taroun, 

(2014) studied different risk models and measures in construction projects by assessing the various 

definitions, risk elements, and allied concepts of risk models. Caron, Vanthienen and Baesens 

(2013) provided a full exploration of the applicability of PM in the context of the eight components 

of the COSO Enterprise RM Framework, which was illustrated based on the risks involved in 

insurance claim handling processes. Lamine et al. (2020) researched to establish the Business 

Process-Risk Integrated Method (BPRIM) framework to address risks considering enterprise 

engineering. In PM integration with enterprise and project processes, Liu et al. (2012) proposed a 

generic approach of business process simulation for operational decision support by simulating 

credit card applications. Khodabakhshian and Re Cecconi (2022) proposed a PM-based project-

level RM framework for a number of Italian construction projects, developing  PM workflows for 

each of the process discovery, conformance checking, and performance enhancement levels, as 

depicted in Figure 4.5. 
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Figure 4.4. Framework workflow for in Process Discovery, Conformance Checking, and Performance 

Enhancement Phases (Khodabakhshian, and Re Cecconi, 2022) 

 

4.4.3. Natural Language Processing (NLP), Text Mining, and Data Structuralizing Techniques: 

Natural Language Processing (NLP), a subfield of AI, focuses on creating computational models 

that emulate human linguistic abilities (Bilal et al., 2016). It has applications in machine 

translation, text processing, user interfaces, speech recognition, and expert systems (Chowdhury, 

2003). NLP techniques transfer human language to the structured text and then to numeric data for 

further analysis and modelling (Di Giuda et al., 2020). Text tokenization is a key process in NLP, 

a preprocessing step involving tokenization, stop word removal, and stemming (Zou, Kiviniemi 

and Jones, 2017).  
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As construction companies and institutions do not document frequently and do not share their 

data in the form of open sources, a common issue in construction research is data scarcity and 

missing values, which hinders the application of Deep Learning algorithms requiring huge 

amounts of data to have proper performance. Therefore, NLP-based Text Mining applications have 

been the center of attention to convert textual and unstructured data, consisting of 80% of 

construction data, into structured format proper for AI algorithms (Fan and Li, 2013). TM can run 

an automatic analysis of construction documents (Malsane et al., 2015) and extract valuable data 

for identifying contract risks from contract conditions, socio-technical risks from licensee event 

reports, and safety risks from accident reports (Xu et al., 2021), which can bridge the gap between 

manual and automated processes for reviewing construction specifications. Clustering and 

Classification methods, such as Support Vector Machine (SVM), Linear Regression (LR), K-

Nearest Neighbour (KNN), Decision Tree (DT), and Naïve Bayes (NB) models, are used to 

categorize risks and can be integrated with TM methods as a proceeding step of text structurization 

(Zhang et al., 2019). Moreover, NLP has been used to develop automated specification reviewing 

models, such as the one proposed by (Moon et al., 2021), which includes a Named Entity 

Recognition (NER) model based on bidirectional long-short-term memory architecture.  

NLP can greatly benefit the RM domain by extracting the acquired knowledge from similar 

previous projects through risk registers and documents, aiding project teams and public agencies 

to be well-equipped with a risk identification model instead of starting from scratch (Erfani and 

Cui, 2022). It has also been applied to other construction management areas, such as contract 

management (Hassan, Le and Lv, 2021), litigation and claim management, and safety management 

(Baker, Hallowell and Tixier, 2020). The study by Erfani introduced an NLP-based model for risk 

register template generation using historical data, offering flexibility, efficiency, and reduced 

subjectivity compared to expert judgment-based approaches (Erfani and Cui, 2022). Moreover, 

NLP provides the opportunity to generate risk register templates and conduct sensitivity analysis, 

resulting in a more accurate analysis of risks. The importance of NLP extends to addressing 

problems like increased risk of accidents, rework, wasted resources, and conflicts in construction 

projects (Zhang and El-Gohary, 2017). 

 

4.4.4. Artificial Neural Networks and Generative Adversarial Networks (GANs) 

Categorized in the Deep Learning group, Artificial Neural Networks (ANNs) are intelligent 

systems designed to emulate human brain functions, handling intricate information processes 

while not needing to understand cause-and-effect relationships. Inspired by human biological 

neurons, ANN consists of processing units called neurons with weighted connections, which are 

located in three sections, namely the input layer, several hidden layers, and the output layer 

(Sharma et al., 2021). The forward flow of information, moving from input data through hidden 

nodes to the output result, is a key feature of NNs. The number of input nodes corresponds to 

specific risk parameters, while the number of hidden neurons is guided by training data (Lin et al., 

2021b). There has been a noticeable trend over the past 20 years (Xu et al., 2022). 
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Applications of NNs in construction management date back to the early 1990s and cover a range 

of topics like construction scheduling and management, resource allocation, and construction 

litigation. Based on a review study conducted by Hegde and Rokseth (2020) on applications of 

ML methods for engineering risk assessment, ANNs are the most applied method to aid in 

engineering risk assessment, followed by SVM, Decision Trees, and RF. Moreover, the format of 

the input data for Risk Assessment in NNs can be numeric data, categorical data, video data, sensor 

data, and textual data, and input data acquisition approaches could be historical, real-time, or a 

combination of historical and real-time data. NNs offer advantages such as the capability to deal 

with large and complex data, self-organization, fault tolerance, adaptive learning, large data 

handling, quick processing, and multitasking (Sharma et al., 2021). However, their application in 

construction engineering and management is challenged due to data collection, cleaning, and 

storage difficulties, black box structure resulting in difficulty to explain, lack of transparency, data 

privacy and cybersecurity challenges, lack of on-size-fits-all model (Akinosho et al., 2020), weak 

collaboration among stakeholders, and lack of systematic design for required platforms (Xu et al., 

2022). 

ANN can greatly reduce risks through their on-time identification, evaluation, and mitigation in 

complex and uncertain construction environments by capturing the interdependence between 

accidents and their causes in historical data, which effectively avoids the limitations of traditional 

risk analysis, such as the vagueness and subjectivity of expert experience. ANN is considered one 

of the most optimal tools for predicting various types of risks in construction projects, such as 

finance (Lhee, Issa and Flood, 2012), site safety (Yang, Ahn and Kim, 2020), Structural health, 

contract (Jin, 2011), and quality, disputes and claims, bidding and procurement; and evaluating 

risks such as deep excavation risks like wall deflection and ground surface settlement (Zhou et al., 

2019), project success prediction, organizational capability assessment, accident analysis, 

environmental disasters and flood prediction (Munawar, Hammad and Waller, 2021), and optimal 

risk allocation. Project managers can benefit from the automated and efficient ANN-based risk 

prediction to quickly determine the priority of possible risks and to proactively plan for preventive 

actions, such as simplifying the work site operation, adjusting personnel arrangements (Xu et al., 

2022), and directing their limited resources and time towards the bigger risk factors through 

recognizing project milestones (Pedroso, 2017).  

Despite the black box structure of ANNs, making them unexplainable, they are the most applied 

AI methods in many fields (Tayefeh Hashemi, Ebadati and Kaur, 2020). However, their data-

driven nature can lead to low prediction performance with small data sets; moreover, their 

sensitivity to input data and the number of input neurons affect system performance. Developing 

hybrid models of backpropagation NNs will lead to more accurate predictions and prevent the 

model from presenting erroneous performance and hence can overcome the abovementioned 

shortcomings. For instance, ANFIS is a fuzzy system that uses NN-based learning to find 

parameters and is considered a powerful hybrid model for RM (Munawar, Hammad and Waller, 

2021).  

On a broader scope, the application of deep learning techniques, particularly Convolutional 

Neural Networks (CNN), has seen significant advancements in the construction industry, being 
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the most applied type of deep learning method in literature based on Akinosho et al. (2020). CNN 

is instrumental for object detection and monitoring for construction site safety purposes, with 

Multi-view deep learning and voxel-based 3D CNN as its two pioneering research areas (Lin, Wu 

and Zhang, 2023). Moreover, computer vision technology provides conditions for CNNs to further 

realize accurate object and personnel detection in real-time mode (Fang et al., 2018; Seo et al., 

2015). Figure 4.6. presents the structure and learning process of a typical ANN. 

 

Figure 4.6. Structure and Learning process of ANNs (Keerthana, 2021) 

Another solution to overcome data scarcity in construction research is data augmentation 

techniques like Generative Adversarial Networks (GANs), which are applied to improve the 

quantity and distribution of data by producing synthetic data through learning from the training 

sample (Goodfellow et al., 2020). GANs are a type of NNs in which two sub-networks, namely 

the generator and the discriminator, compete with each other by using deep learning methods to 

become more accurate in their predictions (Akinosho et al., 2020). The generator is a conventional 

multilayer perceptron, and the discriminator is a binary classifier that finds the differences between 

the original data and the generated data (Zhang et al., 2018). GANs typically run unsupervised and 

use a cooperative zero-sum game framework to learn, where one person's gain equals another 

person's loss. Although GANs have broader applications in creating synthetic images, they are 

recently being applied to tabular data as well, which is the common form of risk data registration. 

GANs’ application in generative design cannot be overlooked, even if it has been studied broadly 

yet. Newton (2019) argues that GANs are an emerging research area in deep learning that has 

demonstrated impressive abilities to synthesize 2D and 3D designs from specific architectural 

styles and design requirements. Figure 4.7. presents the structure of GANs. 

 

Figure 4.7. Structure of GANs (Ganz, 2020) 
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4.4.5. Random Forest and Decision Tree 

Decision Tree is an analytical method that partitions data based on essential variables, offering 

a top-down algorithm to explain complex problems in construction safety and risk prediction 

(Delen et al., 2017). It is a widely used non-parametric supervised learning algorithm for 

classification and regression tasks, consisting of a hierarchical structure with a root node, branches, 

internal nodes (decision nodes), and leaf nodes. Starting from the root node, the tree is constructed 

by recursively partitioning the data based on available features, creating homogeneous subsets 

represented by leaf nodes to find optimal split points within the tree. This process is then performed 

iteratively for each branch (Tayefeh Hashemi, Ebadati and Kaur, 2020). The Decision Tree 

Regressor is employed for regression tasks, aiming to predict continuous numerical values, which 

can fit each subspace in the case of regression. It recursively partitions the data into subsets, 

minimizing the variance of predicted values (Ferreira and Vasilyev, 2015; Mistikoglu et al., 2015). 

Known for its accuracy, interpretability, and efficiency, DT can handle unrelated features and 

produce feasible results for large data sources (Poh, Ubeynarayana and Goh, 2018).  

Developed by Breiman (2001), Random Forest is adept at demonstrating nonlinear relationships 

without statistical assumptions and can address classification and regression problems. The RF 

algorithm consists of numerous trees for training and predicting sample data, with critical 

considerations for splitting tree nodes and applying randomness. The formation of classification 

and regression trees (CARTs) is a significant part of the RF model, with applications demonstrated 

in construction and excavation projects (Lin et al., 2021a). Figure 4.8. illustrates the DT and RF 

structures. A cost function is applied together with a greedy construction procedure to find the 

optimal partitioning of the data. RF further enhances DT by constructing multiple trees and using 

bootstrap aggregating or bagging to overcome overfitting and instability (Alkaissy et al., 2023). 

Both algorithms have high explainability and transparency and have an understandable reasoning 

and learning process, which is a great advantage compared to black box methods. 

 

Figure 4.8. Structures of a) binary DT, and b) RF (Xie et al., 2020) 
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4.4.6. Extreme Gradient Boosting (XGBoost) 

The XGBoost algorithm, proposed by Chen and Guestrin (2016), is an integrated learning 

method based on gradient boosting, which aims to achieve an accurate classification via 

calculations of weak classifiers iteratively. The structure of XGBoost consists of an ensemble of 

decision trees, where each tree corrects the errors made by its predecessors. The objective function 

of XGBoost is defined by two main concepts: training error and regularization (Dong et al., 2020). 

The method utilizes gradient descent optimization (Munkhdalai et al., 2019) to find optimal values 

and employs parallel computing to reduce learning time and improve based on the prediction error 

(Chen and Guestrin, 2016). It utilizes column and row block data structures for efficient tree 

construction, handles sparse data using a sparsity-aware learning algorithm, reflects linearity and 

non-linearity of data, and incorporates regularization to enhance model robustness 

(Khodabakhshian et al., 2023; Elmousalami, 2020). It also adds a regularization term to the loss 

function to penalize model complexity and address overfitting (Dong et al., 2020). Algorithm 

performance is evaluated using metrics like confusion matrix, precision, recall, and F1-score 

(Baker, Hallowell and Tixier, 2020).  

Koc and Gurgun (2022) proposed a tree-based ensemble ML model, combining XGBoost and 

Genetic Algorithm, to predict potential future accidents and their severities in construction 

projects. Wu and Lu (2022) adopted XGBoost to evaluate the degree of each structural reliability 

index and feature importance analysis in bridge construction risk assessment. Dong et al. (2020) 

proposed an XGBoost algorithm-based prediction model for structural health monitoring and 

electrical resistivity measurement, which considered all potential influential factors 

simultaneously. XGBoost has been widely applied for RM in other industries as well, such as real-

time driving risk assessment (Shi, Qian and Guo, 2022), credit risk analysis (Tang, Guorui Zhu 

and Li, 2023), environmental risk assessment (Iban and Bilgilioglu, 2023). These applications 

highlight the versatility and robustness of XGBoost in assessing various types of risks across 

different domains; however, its application in construction RM is relatively new and understudied. 

Figure 4.9. presents the structure and learning process of XGBoost. 

 

Figure 4.9. Structure and Learning process of XGBoost (Wang, Chakraborty and Chakraborty, 2021) 
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4.4.7. Support-Vector Machine (SVM) 

The Support-Vector Machine (SVM), a concept grounded in statistical learning theory and 

structure risk minimization, was pioneered by Corinna Cortes (1995). SVM is a versatile tool for 

classification and regression problems, aiming to enhance predictive accuracy while preventing 

overfitting. SVM's structure consists of three layers: input data, hidden, and output, each serving 

specific classification rules. The process involves inputting vectors into the model, transforming 

them into a high-dimensional feature space using the training data, and utilizing kernel functions 

like polynomial, linear, sigmoid, or radial basis functions (Skala, Karim and Zabran, 2020). The 

high-dimensional space is divided into positive and negative instances by a hyperplane. To classify 

new instances, their location in this space concerning the hyperplane is determined. The optimal 

classification hyperplane and kernel functions are the two main principles of SVM (Corinna 

Cortes, 1995; Xie et al., 2020). It can also be used as a regression method, known as Support 

Vector Regression (SVR), by applying minor changes to the algorithm, basically involving the 

determination of a regression model for describing the relationships among sample data (Sharma 

et al., 2021). Figure 4.10. illustrates the structure of SVM. 

SVM has been applied for risk assessment in various domains. Zhou et al. (2017) used SVM to 

identify excavation risks in subway projects. It is also a popular method for flood analysis, where 

SVM training models assign binary linear classifiers to minimize errors and maximize geometric 

margins (Xue et al., 2020). SVR has been introduced as a regression tool for flood risk assessment 

(Gibert, Mateu and Planes, 2020). In geotechnical engineering, SVM is used for pattern 

recognition, matter classification, and soil and rock classification, aiding in landslide susceptibility 

analysis and the identification of deformed rocks and soil (Sharma et al., 2021). It is also applied 

in construction safety assessment since it can solve high-dimensional problems and nonlinear 

features, such as worksite accidents (Alkaissy et al., 2023). 

 

 

Figure 4.10. Structure and learning process of SVM (modified from (Huang and Zhao, 2018)) 
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4.4.8. K-Nearest Neighbor, K-Means, and Naïve Bayes Classifiers 

The K-nearest neighbors (KNN) classifier is a non-parametric supervised ML algorithm used 

for classification and regression tasks. KNN finds a predefined number of training samples 

(denoted by the parameter 'K') closest in distance to a new sample, which is yet to be classified. 

The label of the new sample is then determined by a majority vote of its K-nearest neighbors 

(Santos et al., 2017). It has been widely applied in construction RM and safety research. Farid et 

al. (2018) propose the K-nearest neighbor (KNN) method for calibrating safety performance 

functions to evaluate road safety for four states in the USA (Farid, Abdel-Aty and Lee, 2018). Goh 

et al. (2018) used the established algorithms commonly used in supervised learning, including 

KNN and Naïve Bayes classifiers, to evaluate the relative importance of different cognitive factors 

within the Theory of Reasoned Action (TRA) in influencing safety behavior. Figure 4.10. presents 

the learning process of KNN. 

K-means is another widely used clustering ML algorithm, aiming to partition a set of data points 

into "K" distinct clusters based on their features, which was first published in 1955. The goal of 

K-means, which is a greedy algorithm, is to minimize the sum of the squared error over all K 

clusters; thus, it can only converge to a local minimum (Jain, 2010). (Chattapadhyay, Putta and 

Rao (2021) developed a risk prediction system based on a cross analytical ML model was 

developed for construction megaprojects, using a genetic-algorithm-based K-means clustering 

algorithm (GA–K-means) with dual-objective functions to segment high-risk factors and allied 

sub-risk components. 

The Naive Bayes Classifier is one of the most applied Bayesian learning methods, which is a 

statistical classifier based on Bayes’ theorem. It is a probabilistic ML algorithm called naïve due 

to a fundamental assumption that variables or features are conditionally independent given the 

class label. In other words, the presence or absence of a particular feature does not influence the 

presence or absence of any other feature, given the class variable (Naji, Ibrahim and Hassan, 2018). 

Mathematically, it is expressed as Equation 4.1. It has been widely used in construction research 

like other Bayesian approaches. Gondia et al. (2020) used NB classifier and DT to facilitate 

accurate project delay risk analysis and prediction using objective data sources. NB was chosen 

for this purpose since it is suited to small-sized data sets. 

P( A|B) =  
P(B|A)×P(A)

P(B)
   (4.1) 

Where: 

P(A∣B) is the posterior probability of class A given predator B. 

P(B∣A) is the likelihood which is the probability of predictor B given class A. 

P(A) is the prior probability of class A. 

P(B) is the prior probability of predictor B. 
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4.4.9. Logistic and Ridge Regression 

Logistic Regression (LR) analyzes the relationship between a categorical dependent variable 

and independent variables to estimate values and probabilities using a logistic distribution 

function, such as the sigmoid function (Xie et al., 2020). Proposed by Cox (1958), LR is a favored 

classification model, especially in safety risk assessment, as it correlates items and simplifies the 

resulting formula. It is mainly used for binary predictions, but extensions like One-vs-rest logistic 

regression (OvR LR) and multinomial logit (M LR) can handle multi-class problems (Abramovich, 

Grinshtein and Levy, 2021). Figure 4.11 presents the structure and learning process of LR. 

Ridge Regression, also known as L2 regularization, is a technique used to address 

multicollinearity in multiple regression data. By adding a degree of bias to the regression estimates, 

Ridge Regression stabilizes them, thus providing a solution to ill-posed problems or reducing 

variance in the predictions (Hoerl and Kennard, 1970). Incorporating a penalty term ensures that 

the model does not overfit the data, allowing for more robust predictions of potential risks in 

construction projects. This method has been particularly useful in handling high-dimensional data 

where traditional regression models may falter. Ridge Regression has been applied to develop 

predictive models for continuous values such as cost estimation, project delays, and safety risk 

evaluation in construction, providing valuable insights and decision-making tools for project 

managers and engineers (Dobriban and Wager, 2018). 

 

Figure 4.11. Structure and learning process of Logistic Regression (Torres, Ohashi and Pessin, 2019) 

 

4.4.10. Genetic Algorithm 

A Genetic Algorithm (GA), a family of evolutionary computation models (Tayefeh Hashemi, 

Ebadati and Kaur, 2020), is a search heuristic inspired by Charles Darwin's theory of natural 

evolution, reflecting the process of natural selection where the fittest individuals are selected for 

reproduction (Morano et al., 2018). It consists of Initialization or candidate solutions generation, 

selection of individuals based on their fitness in the problem domain, crossover (recombination) 

for randomly choosing pairs of individuals from the population to create one or more offspring, 

mutation for introducing small random changes in the offspring, replacement of some of the less 

fit individuals with new offspring to the population, and termination of the process when some 

stopping condition like minimum fitness threshold is met (Koc, Ekmekcioğlu and Gurgun, 2021). 
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GAs are used in various applications where exact solutions are hard to find. They can be applied 

to optimization and search problems, including scheduling, data modeling, RM, and many 

engineering design problems (Magnier and Haghighat, 2010). The strength of GAs comes from 

their ability to explore a large solution space efficiently and often find good enough solutions to 

complex problems where other methods might struggle. In the context of construction, GAs have 

been applied to credit risk evaluation in construction enterprises utilizing a combination of Radial 

Basis Function (RBF) Neural Network and Ant Colony Algorithm (Wu and Si, 2008), predicting 

the risk of contractor default using GA and ANN (Al-Sobiei, Arditi and Polat, 2005), quantitative 

assessment of technology choices in building retrofit projects (Asadi et al., 2014), resource 

optimization and management (Ugwu and Tah, 2002), and optimal income taxation (Małecka-

Ziembińska and Ziembiński, 2020). 

4.4.11. Fuzzy Logic and Hybrid Models 

Zadeh's fuzzy set theory, developed in 1965, has been instrumental in handling uncertainty and 

vagueness in risk assessment practices (Zadeh, 1965). Contrary to crisp values with deterministic 

nature, fuzzy sets indicate a membership function between 0 and 1 for each variable and can utilize 

linguistic terms by experts, allowing for uncertain reasoning (Yazdanbakhsh and Dick, 2018). The 

probabilities of verbal expressions are transformed into fuzzy numbers, with degrees of 

truthfulness or falsehood represented by a range of values between 1 (true) and 0 (false), using 

triangular, trapezoidal, or Gaussian fuzzy membership functions, and through four subprocesses 

of fuzzification, inference, composition, and defuzzification (Pokoradi, 2015). Methods like AHP, 

developed by Saaty (1980), and TOPSIS, created by Hwang and Yoon (1981), are based on fuzzy 

set theory. Therefore, FL models are easily comprehensible for experts and project managers to 

utilize in their RM processes. Their white-box and explainable nature is a great advantage in 

comparison to black-box deep learning methods. 

Fuzzy hybrid techniques, such as FANP, FBBNs, FMCS, and FANNs,  have been employed as 

hybrid models in Construction Engineering and Management (CEM), specifically the RM domain, 

to handle subjective uncertainty and vagueness through combining qualitative assessments with 

quantitative ones (Chan, Chan, and Yeung, 2009) These techniques combine fuzzy logic with 

standard methods like Multi-Criteria Decision Making, Monte Carlo Simulation, and ML to 

enhance their capabilities in performing dynamic modeling and computing processes (Fayek et al., 

2020; Seresht et al., 2018). Moreover, they have been coupled with advanced technologies like 

BIM, GIS, sensors, modular construction, alternative reality technologies (e.g., augmented reality 

/ AR, virtual reality / VR), and emerging innovations (e.g., big data analytics) in construction 

research (Chen, Lu and Zhao, 2022). Optimization and prediction of time performance (e.g., 

project durations), cost performance (e.g., cost controls), productivity performance (e.g., 

estimation of productivity), RM, disputes and claims, and client satisfaction are the primary 

application areas of these hybrid models (Tran, Cheng and Pham, 2016). 

Based on an extensive literature review conducted by Nguyen and Robinson Fayek (2022), 

Fuzzy Hybrid ML techniques represent the majority (38%) of fuzzy hybrid applications in 

construction problems, aiming to handle subjectivity, incomplete data, and ambiguity (Seresht et 

al., 2018). These techniques, with fuzzy ANN and fuzzy clustering in lead (Soares, Barroso and 
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Al-Fahdawi, 2020), are used in data classification, predictive modeling, and pattern recognition 

(Qi et al., 2021). Fuzzy ANN has been mainly applied for construction materials’ strengths 

prediction, project cost estimation, and evaluation of subcontractor and project manager (Rashidi, 

Jazebi and Brilakis, 2011), while Fuzzy clustering techniques (e.g., fuzzy c-means, context-

specific fuzzy inference systems) have also been utilized for structural damage detection, 

development of control systems for pavement deflection tests, pavement design, monitoring 

project schedules, and predictive modeling (Yu, Zhu and Yu, 2013). 

Fuzzy Hybrid MCDM models have been mainly applied for construction material selections, 

project risk management, supplier selection, and sustainability analysis (Beltrão and Carvalho, 

2019). Fuzzy hybrid simulation techniques, like fuzzy Monte Carlo simulation (FMCS), fuzzy 

discrete event simulation (FDES), fuzzy system dynamics (FSD), and fuzzy agent-based modeling 

(FABM), handle the dynamic nature of construction problems (Raoufi, Gerami Seresht and 

Robiinson Fayek 2016). They have been used in risk analysis, project scheduling, resource 

management, quality management, and construction crew performance modeling (Attarzadeh et 

al., 2017; Nguyen and Fayek, 2022). In particular, Fuzzy Monte Carlo Simulation has been 

implemented primarily on construction RM because of its ability to simultaneously model and 

process various uncertainties, including probabilistic and subjective uncertainty of project risk 

factors (Seresht et al., 2018). In general, Fuzzy hybrid MCDM techniques are recommended for 

decision-making problems, fuzzy hybrid simulation techniques for capturing dynamism in process 

and system modeling, and fuzzy hybrid optimization techniques for solving complex multi-

objective optimization problems. 

A fuzzy Cognitive Map (Wee et al., 2015) is a combination of fuzzy Logic and cognitive map, 

which uses subjective and vague linguistic variables from domain experts, perform a Root Cause 

Analysis, and model complex and dynamic systems with numerous indicators, causal 

dependencies, and weights. FCM forms a what-if scenario analysis for the prediction and 

evaluation of risks in a fuzzy weighted graph model with a tolerance for imprecision and 

uncertainty (Chen, Zhang and Wu, 2020). Figure 4.12. presents the structure of a Fuzzy Cognitive 

Map. Ensemble Risk Analysis Fuzzy-based Framework (ERAFF) is another type of fuzzy models 

used to enhance the safety of construction operations. The ERAFF's novel contributions are 

threefold: (1) determining critical causal factors by considering their significance and influence 

levels, (2) identifying and prioritizing risks that threaten workers' lives by examining the 

association of causal factors and risks, and (3) providing and prioritizing beneficial control 

measures (Sadeghi, Zhang and Mohandes, 2023). Unlike traditional methods that rely on accident 

data, which may have limitations such as underreporting (Dewlaney, Hallowell and Fortunato, 

2012), ERAFF can be implemented prior to accidents, using expert feedback (Hallowell and 

Gambatese, 2009). It overcomes subjectivity and ambiguity in decision-making by utilizing fuzzy 

set theory, systematically identifying causes, prioritizing risks, and ranking control measures. 

The main challenge in FL implementation, especially in prediction problems, is the requirement 

of highly dimensional and complex data, accommodating a mix of quantitative and qualitative 

inputs, and capturing uncertainty and vagueness of model outputs (Tiruneh, Fayek and Sumati, 
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2020; Subramanyan, Sawant and Bhatt, 2012). Moreover, once the number of parameters and input 

variables increases, the scenario modeling and analysis becomes complicated and burdensome. 

 

Figure 4.12. structure of a Fuzzy Cognitive Map (Szwed, Skrzynski and Chmiel, 2016) 

4.4.12. Knowledge-based Systems 

Construction RM often depends on tacit knowledge, making the exploitation of corporate risk 

memory crucial. This memory includes lessons learned from previous projects, allowing for 

precise forecasts about risks and their consequences (Dikmen et al., 2008). As pinpointed by 

Atkinson, Crawford and Ward (2006), risk-related experience gained throughout past projects is 

fundamental for accurate risk estimations in upcoming projects. However, capturing and utilizing 

this knowledge in a quantified and interpretable form is challenging (Okudan, Budayan and 

Dikmen, 2021). Knowledge-based Systems seem to be the perfect solution for this issue, which 

has been widely discussed in the literature (Abu Bakar et al., 2016). 

Knowledge-based Systems (KBS) is a branch of AI used for machine decision-making, relying 

on existing knowledge in the field. A KBS is comprised of a knowledge base, an inference engine, 

and a user interface. The knowledge base can be created from expert knowledge, past experiences, 

or other relevant sources, enhancing productivity, efficiency, and transparency of the decision-

making process. KBS can be classified into four categories: (A) Expert Systems, which imitate 

human decision-making process; (B) Case-based Reasoning (CBR) Systems, using past 

experiences to interpret new situations, requiring expert knowledge for case selection; (C) 

Intelligent Tutoring Systems, employing AI techniques for personalized tutoring; and (D) DBMS 

with intelligent user interfaces and linked systems, including Hypertext manipulation systems 

(HMS) for easy traversal of complex information networks (Abioye et al., 2021). 

Despite the recognized benefits of knowledge-based RM, implementation is low due to a lack 

of learning culture and ineffective knowledge management (KM) processes/tools in the industry 

(Abu Bakar et al., 2016). Construction companies can barely capture, store, and disseminate 

knowledge to optimize the RM of forthcoming projects (Alashwal and Abdul-Rahman, 2014). 

Knowledge management strategies can be categorized as techniques and technologies (Eken et al., 

2020). Techniques are defined as non-information Technology (IT) tools, while technologies are 

IT tools that require the development of a system to manage the knowledge, providing a platform 

for articulating, storing, and sharing knowledge (Alavi and Denford, 2011). However, the majority 

of these tools are generic knowledge management tools and usually do not offer a particular 

technological solution to support the RM process. A critical review of knowledge-based RM tools 

for construction projects conducted by Okudan, Budayan and Dikmen (2021), reveals that an ideal 

tool should support all RM steps, capture and formalize tacit knowledge, support live risk 
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knowledge capture, enable inter-project learning, and have a systematic case retrieval mechanism 

(Fan et al., 2014). Existing tools, particularly web-based platforms, often lack these features. Web-

based organizational learning tools using Case-based reasoning (CBR), which can be used for 

capturing, storing, retrieving, and disseminating risk-related knowledge, have been proposed as an 

alternative to address the abovementioned challenges (Okudan, Budayan and Dikmen, 2021). 

Moreover, the use of fuzzy linguistic variables, hybrid similarity measurement, and comprehensive 

definition of project features are critical for increasing accuracy in KBS (Zou, Kiviniemi and Jones, 

2017). 

CBR has been identified as a promising method for knowledge-based RM, which has been 

studied by previous researchers for construction projects and safety management (Lu, Li and Xiao, 

2013). The web-based tool CBRisk can facilitate knowledge-based RM by developing a corporate 

risk memory to store risk-related knowledge of construction projects. CBRisk represents a 

continuous learning platform, enabling inter-project learning and live capture of newly created 

risk-related knowledge (Ayhan and Tokdemir, 2019). CBR recalls prior knowledge to provide a 

starting point for solving new problems (Zou, Kiviniemi and Jones, 2017), and is preferred due to 

its transparency and performance compared to black box methods like ANN. Figure 4.13. presents 

a holistic process model for knowledge-based RM activities throughout the project life cycle, 

including risk identification, response planning, monitoring, and cataloging risks and responses. 

As depicted in the figure, some of the main features and benefits of an RM KBS are a) Risk 

identification based on similar projects and the risk catalog, b) Knowledge capture, c) RM at every 

stage of the project, d) Guidance on different RM processes (Dikmen et al., 2008). 

 

Figure 4.13. RM Knowledge-based system Process Model (Okudan, Budayan and Dikmen, 2021) 
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4.4.13. Fault Tree Analysis and Event Tree Analysis 

Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) are essential tools in engineering 

and construction RM and for handling uncertainties in process systems risk analysis. These 

methodologies provide systematic ways to identify and evaluate potential failures and risks in 

complex systems. Fault Tree Analysis (FTA) is a top-down approach that starts with an undesired 

event and systematically identifies the various reasons that event can occur. It is a deductive 

method that enables an investigation of causal relations between basic events or factors and an 

undesired event. It uses Boolean logic to combine different failure events, allowing for the 

calculation of the probability of the top event (Guan et al., 2020). A study by Shu, Li and Qiu 

(2008) applied FTA based on fuzzy reasoning in risk analysis of construction quality, providing a 

more nuanced understanding of the potential failures in construction projects. Event Tree Analysis 

(ETA), on the other hand, is a bottom-up approach that starts with an initiating event and explores 

possible outcomes through different branches, representing various scenarios. It is an inductive 

method that describes accident scenarios through a sequence of events. It helps in understanding 

the sequence of events that can lead to different consequences (Wang et al., 2014). FTA/ETA 

requires the assessment of single probability values for events so that the probability of occurrence 

of a failure accident can be calculated through the logical or functional relationships predefined in 

the diagram. Figures 4.14. and 4.15 present the structures of Faul Trees and Event Trees, 

respectively. 

In construction projects, ETA can be combined with FTA to create a hybrid framework for 

assessing risks. Moreover, the integration of fuzzy logic and hybrid frameworks further enhances 

these tools, allowing for a more nuanced understanding of complex risks in construction projects 

(Wang et al., 2014). Abad and Naeni (2020) proposed a hybrid framework using fuzzy fault tree 

and fuzzy event tree analysis to assess the risk of change and scope creep in construction projects. 

Ferdous et al. (2011) explored the uncertainty handling formulations in Fault and Event Tree 

Analyses for process systems risk analysis, emphasizing their applicability in complex systems. 

Abdollahzadeh and Rastgoo (2017) used FTA and ETA methods based on Fuzzy Logic for risk 

assessment in bridge construction projects. Guan et al. (2020) integrated FTA and Fuzzy set theory 

with BNs to create a risk assessment model for international construction projects. 

 

 

Figure 4.14. structure of Fault Trees (Abdollahzadeh 

and Rastgoo, 2017) 
Figure 4.15. structure of an Event tree (Abdollahzadeh 

and Rastgoo, 2017) 
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4.4.14. Structural Equation Modeling (SEM) 

Structural Equation Modeling (SEM) is a multivariate statistical analysis technique used to 

analyze structural relationships between measured variables and latent constructs (Eybpoosh, 

Dikmen and Talat Birgonul, 2011). It combines factor analysis and multiple regression analysis, 

allowing researchers to test complex relationships between observed and unobserved variables 

(Xiong, Skitmore and Xia, 2015). SEM has many advantages including a) the ability to handle 

complex relationships among variables, including those that are hypothetical or unobserved, b) 

estimating all coefficients in the model at the same time and assessing the significance and strength 

of any particular relationship in the context of the full model, and c) the possibility to statistically 

test the model in a simultaneous analysis of the entire system of variables to determine the fitness 

of the model (Liu et al., 2018). 

SEM's ability to model complex relationships makes it particularly suitable for analyzing the 

multifaceted nature of construction risks, although its application in construction research is 

relatively new. Malesios and Dey (2019) utilized SEM to assess both external and internal risk 

factors in projects, providing a comprehensive understanding of how different risks interact and 

influence each other. Kassem (2022) applied SEM, specifically Partial Least Squares Structural 

Equation Modeling (PLS-SEM), to assess RM in oil and gas construction projects, allowing for a 

nuanced understanding of the relationships between various risk factors and their impacts. 

Moreover, SEM can incorporate various aspects such as government acts, laws, and policies, and 

their influence on effective communication and construction risk, as explored in a recent study 

(Adeel et al., 2022). It can also be used for risk paths’ identification in international construction 

projects (Eybpoosh, Dikmen and Talat Birgonul, 2011), resulting in a more accurate and realistic 

assessment of risks. It can also be combined with Exploratory Factor Analysis (EFA) for safety 

risk factors analysis in construction projects  (Liu et al., 2018). EFA can uncover the underlying 

structure of a large set of variables when there are no hypotheses about the nature of the underlying 

structure of a model (Liu et al., 2018). GA and multi-variate SEM have also been found to be 

useful in measuring project risk interdependencies for the optimal cost solution under uncertainties 

(Liu, Yang and Zhang, 2013). 

4.4.15. Bayesian Networks (BNs) 

Bayesian Networks are the most implemented type of Probabilistic Graphical Models, statistical 

techniques based on probability and graph theory that enable modeling of stochastic systems and 

representing causal relationships between variables to perform risk and probability analysis (Hon 

et al., 2021). BNs, developed based on the Bayes Theorem of Thomas Bayes, are graphical 

representations of knowledge with intuitive structures and parameters to solve complex and 

uncertain problems (Lee, 2021). BNs are presented as graphs consisting of nodes, as random 

variables, and directed arcs, as causal relationships among these variables, which is referred to as 

the Directed Acyclic Graphical model (DAG) (Borujeni et al., 2021); and include a Conditional 

Probability Distribution (CPD) for continuous variables or a Conditional Probability Table (CPT) 

for categorical variables, representing the influences between the nodes. The structure and 



87 
 

parameters on CPD or CPT can be learned through algorithms from enormous historical data, 

expert opinion, or both.  

BNs have a wide application in modelling, identifying, and analysing project-related risks like 

claims and contract risks, structural health, operation quality, cost and schedule overruns, and 

safety hazards (Khodabakhshian and Re Cecconi, 2022; Liu, Jiao and Key, 2021). They can 

analyze causal influences between project variables and risks in construction projects, offering 

several advantages, including the ability to model uncertainty and dynamic risks, handle large 

amounts of data and model complexity, and perform sensitivity analysis and validation. However, 

there are limitations, such as over-reliance on expert knowledge and a lack of validation guides for 

BN models (Hon et al. 2022). 

The application of Bayesian approaches in Construction Management (CM) research has been 

extensively mapped across almost all functional areas, as defined by Kang et al. (2018). These 

applications demonstrate the ability of Bayesian methods to handle uncertainties and multifactor 

interdependencies, with a particular focus on safety management, risk management, contract 

management, and process control. Since BN is the proposed method of the research, chapter 5 is 

completely designated to analyze its structure, learning process, and background in more detail. 

 

4.5. Probability-based ML Algorithms Classification 

ML algorithms’ structures, risk reasoning, processing formats, data requirements, and the role 

of uncertainty in the assessment process are the criteria to categorize them into Probabilistic and 

Deterministic groups. Such categorization enables the comparison of the advantages and 

limitations of each group and the choice of the proper method for the given problems. 

Probability theory has been studied via various models within the past few decades, such as 

Gaussian models, Pareto distributions, stochastic process theory, Markov processes, and Monte 

Carlo simulations (Wu, Chen and Olson, 2014). However, an important factor that is missing in 

many of the previous techniques is the isolated analysis of risks (Xia et al., 2018) and ignorance 

of the causal interrelations and correlations among risk factors. The assessment of the individual 

risk factor’s magnitude, regardless of the occurrence, the probability of the risk events chain, and 

the effects each risk cause to the others, may result in an underestimation of the overall project risk 

level. Some previous studies have focused on the concept of risk paths and scenario analysis rather 

than individual risk factors, which is a more accurate and realistic delineation (Eybpoosh, Dikmen 

and Talat Birgonul, 2011). 

The same concept also applies to the ML algorithms’ structures and processing formats. ML 

algorithms can generally conduct deterministic or probabilistic analyses, which are grouped under 

deterministic or probabilistic approaches (Khodabakhshian, Puolitaival and Kestle, 2023). 

Deterministic models follow a frequentist statistic and provide a fixed prediction amount, simply 

based on historical data and the effects of input variables on the output. Therefore, they require 

high volumes of data to base their judgments on (Pan and Zhang, 2021). The probabilistic 
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approaches mainly follow a Bayesian statistic and base judgment on multiple sources, such as 

experts’ opinions, model simulation, and historical records (Choy, O’leary and Mengersen 2009; 

Karimiazari et al., 2011; Cardenas et al. 2014; Debnath et al., 2016). Moreover, they provide a 

probability distribution of possible outcomes, considering the interrelation and causal inferences 

of input variables on each other. Therefore, they do not need an extensive database to draw 

judgment from and can update the probability distribution based on new observations or data 

(Gelman et al., 2013). The first step, therefore, is to create a statistical analysis model, identify the 

problem to solve, and then decide which statistical approach to use, as an improper choice of the 

statistical approach can result in the wrong influence of priors and variables, the wrong 

interpretation of results, and an improper reporting of results. Figure 4.16 provides an overview of 

the probability-based classification of ML algorithms. 

 

Figure 4.16. Probability-based ML algorithms’ classification 

The same probability-based grouping exists in conventional and non-AI-based RM methods, 

classifying them into deterministic and stochastic (probabilistic) models (Senova, Tobisova and 

Rozenberg, 2023). Deterministic models, such as the Probability–Impact matrix (El-Sayegh et al., 

2021) or Pareto analysis (Pareto, 1964), predict a fixed value and mostly follow a frequentist 

statistic. On the other hand, the stochastic models represent the random behaviour of risk factors 

through various types of distributions that emerge from data (frequentist) or expert opinion 

(Bayesian) and provide a probability distribution of each outcome. For instance, the Monte Carlo 

method runs multiple simulations on the model to reach a frequentist distribution of possible 

outcomes with an objective and data-based judgment (Senova, Tobisova and Rozenberg, 2023), 

or Program Evaluation Review Technique (PERT) is a probabilistic method based on the 

assumption that the duration of a single activity can be described by a probability density function 

(Liu, 2013). However, the main difference between these methods and ML-based algorithms is 

that they predict outcomes based on some rules, distributions, and formulas set by the model, 

whereas ML algorithms learn these rules by observing many samples of input and output data and 

detecting the patterns between them. Therefore, the processing process and structure are not 

comparable to the ML algorithms. 
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4.5.1. Probabilistic ML approaches for RM 

The probabilistic approach is used by Structural Equation Modelling (SEM), Bayesian Network 

(BN), fuzzy logic, and fuzzy cognitive map that can be integrated with other methods such as fault 

tree analysis. These methods have a vast application in expert systems and knowledge 

representation and can have one of the aforementioned risk reasonings (Wee et al., 2015): 

1. Probability-based reasoning refers to probability theory to indicate the uncertainty in 

knowledge, including fault tree analysis (FTA), SEM, and BNs. Figures 5.1 and 5.2 present 

the structures of a fault tree and an event tree. 

2. Rule-based reasoning, deploying a set of rules in the "if <conditions>, then <conclusion>" 

format with logical connectives, like AND, OR, NOT, for analysing qualitative and linguistic 

data of expert opinion, including Fuzzy Logic. 

3. Fuzzy Cognitive Map (FCM) learned from data or expert opinions, in which the fuzzy graph 

structure enables interpreting complex relationships and systematic causal propagation for 

immediate identification of risks' root causes in uncertain conditions. Figure 5.3 presents the 

structure of an FCM. 

Some remarkable previous studies have proposed probabilistic and subjective RM models for 

construction projects. Afzal et al. (2019) proposed a hybrid method of fuzzy logic and BBN based 

on a systematic literature review on subjective RM methods for cost overrun risk in Construction 

projects, which proved to have better performance compared to other AI-based methods. The 

integration of Monte Carlo simulation (MCS) and multi-criteria decision model (MCDM) 

techniques for measuring complexity and risk relationship for cost overrun in construction projects 

was studied and proposed by Floyd et al. (2017), and Qazi et al., (2016).  Cardenas et al. (2014) 

addressed the data unavailability and incompleteness problem in tunneling projects through expert 

elicitation in BBNs. Lee and Kim (2017) proposed a Failure Mode and Effects Analysis (FMEA)-

based method to find primary factors responsible for causing cost increases throughout the modular 

construction life-cycle. Ferdous et al. (2011) developed a Quantitative Risk Analysis model based 

on event tree analysis (ETA) and fault tree analyses (FTA) to handle and describe the uncertainties 

in the input event likelihoods. Kim et al. (2009) conducted a comparative analysis between SEM, 

multiple regression, and ANN and developed an SEM-based model predict the project success of 

uncertain international construction projects. 

Moreover, the biggest portion of construction RM literature is based on hybrid models, the 

integration of Fuzzy Logic with other AI-based methods, which are among the probabilistic 

models group. Fuzzy logic application in construction management literature can be divided into 

two main fields a) fuzzy set/fuzzy logic, and b) hybrid fuzzy techniques, with the applications in 

four main categories, including decision-making, performance,  evaluation/assessment, and 

modeling (Chan et al., 2009). For instance, Zhao, Hwang and Gao (2016) developed a risk 

assessment model using a fuzzy synthetic evaluation approach for green building projects in 

Singapore, which grouped and calculated the likelihood of each risk factor’s occurrence, risk 
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magnitude, and criticality. Kabir, Sadiq and Tesfamariam (2015) incorporated fuzzy logic into 

BBN and proposed a Fuzzy Bayesian belief network (FBBN) model to represent dependencies of 

events and uncertain knowledge (such as randomness, vagueness, and ignorance) for safety 

analysis of Oil and Gas Pipeline projects. In another study, Shafiee (2014) proposed a fuzzy 

analytic network process (FANP) approach to select the most appropriate risk mitigation strategy 

for offshore wind farms with regard to four criteria: safety, added value, cost, and feasibility. 

Zhong, Li and Chen (2021) proposed a project risk prediction model using the entropy weight 

method (EW), fuzzy analytic hierarchy process (FAHP), and 1D Convolutional Neural Network 

for risk indexing. Cheng and Lu (2015) presented a hybrid risk analysis model combining fuzzy 

inference with failure mode and effect analysis (FMEA) to improve the existing risk assessment 

methods for pipe jacking construction by mapping the relationship between occurrence (O), 

severity(S), and detection (D) with the level of criticality of risks. Liu and Ling, (2005) constructed 

a fuzzy logic-based artificial neural network model, or Fuzzy Neural Network (FNN), to facilitate 

the decision-making process for contractors, providing a clear explanation to justify the rationality 

of the estimated markup output. There are also some remarkable literature review studies on Fuzzy 

and Hybrid Risk Assessment methods in construction projects, like the one Islam et al. (2017) 

conducted, which delineated the advantages of Fuzzy Bayesian Belief Networks (FBBNs) over 

other hybrid models like FANP, due to overcoming the systematic constraints like lengthy 

calculations required for the pairwise comparisons. Petroutsatou, and Vagdatli (2023) proposed a 

probabilistic model for pre-estimating the life cycle cost of road tunnels’ construction using 

multiple regression analysis and Monte Carlo simulation.  

4.5.2. Deterministic ML approaches for RM 

Deterministic Models include most of the ML algorithms, including a) Regression to predict 

continuous numerical outcomes like delay caused by a risk, including Linear Regression, Decision 

Trees, Support Vector Machines (SVM), and Neural Networks (NN) techniques, b) Classification 

to present the class of the output based on some input features like risk identification including 

NNs, Random Forest, SVM, and Genetic Algorithm, c) Clustering to explore data for natural 

groupings like finding related events causing a risk including K-means and SVM, d) Attribute 

importance to rank attributes based on their relationships to the target variable like identifying the 

most significant causes of accidents including Decision Trees and Random Forest, e) Anomaly 

detection to identify unusual cases based on deviation like identifying accident risks including 

SVM and Deep Neural Networks (Ajayi et al., 2019). Deterministic models provide a definite 

prediction of output value without assigning a probability distribution to it, which is their main 

difference from Probabilistic models. ANNs are the most applied ML method in engineering risk 

assessment, followed by SVM, Decision Trees, RF, CART, Naïve Bayes, K-means, KNN, Linear 

Regression, and BRT (Hegde and Rokseth, 2020). They have a great performance in the presence 

of abundant data, capturing linear and nonlinear relationships of the data and serving as a 

predicting model for industrial RM control and accident severity assessment (Gondia, Siam, et al., 

2020). 
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Deterministic ML applications have been studied mainly for predicting delay risks in 

construction, predicting the impact of contract changes on time and quality performance, and 

analyzing and modeling incident databases for predicting health and safety risks. The format of 

the input risk data for risk assessment in deterministic models can be numeric, categorical, video 

data, sensor data, and textual data, and input data acquisition approaches could be historical, real-

time, or a combination of historical and real-time data (Hegde and Rokseth, 2020). Jallan and 

Ashuri (2020) used Text Mining and Natural Language Processing techniques to identify and 

classify risk types and trends affecting publicly traded construction companies by leveraging their 

10-K reports filed with the Securities and Exchange Commission. Chattapadhyay, Putta and Rao 

(2021) used  cross analytical ML model with K-means clustering and Genetic Algorithm to exploit 

different risk factors and their impacts on the performance aspects of construction megaprojects. 

Valpeters, Kireev and Ivanov (2018) determined the probability of contract execution risk at a 

given stage of its establishment using Logistic Regression, Decision Tree, and Random Forest 

algorithms. Creedy, Skitmore and Wong (2010) benefited from Multivariate Regression Analysis 

for evaluating risk factors that lead to cost overruns in delivering highway construction projects. 

Yaseen et al. (2020) developed a hybrid artificial intelligence model called integrative RF classifier 

with GA optimization (RF-GA) for delay problem prediction. Joukar and Nahmens (2016) 

extracted and forecasted volatilities of the Construction Cost Index (CCI) in the short term by 

assessing the cost risk of construction projects with respect to price volatilities and quantifying the 

risk of overestimation or underestimation, using Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) model and ARIMA. Gondia, Asce, et al. (2020) used the DT and 

Naive Bayes Model to analyze and predict project delay risk using objective data from previous 

projects. Alshboul et al. (2022) implemented an ensemble machine learning technique combining 

various ML algorithms, such as XGBoost, Categorical Boosting, K-Nearest Neighbor, Light 

Gradient Boosting, ANN, and DT, to predict the liquidated damages in highway construction 

projects. 

 

Moreover, the integration of NNs with other methods, as hybrid models, has been widely studied 

for construction RM. Goh and Chua (2013) used NN analysis in quantified occupational safety 

and health management system audit with accident data obtained from the Singaporean 

construction industry in order to predict accidents and identify safety critical factors. Gajzler 

(2013) proposed a method for supporting the decision-making process of materials and technology 

selection for repairing industrial building floors, using Knowledge-based NN and Fuzzy Logic. Jin 

and Zhang (2011) developed an ANN-based Risk allocation decision-making process in public–

private partnership (PPP) projects. Chenyun (2012) conducted an Analysis and evaluation of 

project cost risk and identification of critical factors based on NN.  

 

4.6. Comparative Analysis between Probabilistic and Deterministic ML Models 

Following determining and listing the probabilistic and deterministic algorithms based on the 

source technical papers, an analytical comparison was performed between them regarding their 

reasoning basis in risk identification, assessment, and mitigation planning stages, advantages and 
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disadvantages, application areas, and data requirements for each, presented in Table 4.1. The basis 

of this comparison was the points mentioned in the sourced papers of the systematic literature 

review regarding the precision, problem type, analytical reasoning, input data requirements, level 

of probability included, and characteristics of each of these methods. 

 

In general, algorithms with a deterministic approach have advanced structure, quicker 

processing time, and higher precision of results in complex problems. However, they require a 

large amount of structured data with no missing values or uncertainties. Given that documentation 

is in a non-optimum condition in the industry, data scarcity and infrequent data updates are the 

main challenges in these models. The probabilistic approach, on the other hand, is more 

appropriate for RM in construction due to functioning in the state of data scarcity and missing 

values and being closer to reality, considering the inter-dependencies between risk variables. They 

can integrate subjective and experience-based experts' opinions through elicitation with objective 

historical data gathered from previous projects or simulations to overcome the data scarcity issue. 

Moreover, they benefit from the risk path approach instead of isolated risk assessment, which 

makes the assessment process closer to reality. However, the structure and parameter learning are 

daunting and complicated tasks as the model becomes more complex, containing more variables 

and risk factors.  

 

Probabilistic models are based on Bayesian Inference, as mentioned in Equation 4.2, and 

Deterministic models are based on Frequentist Inference, as mentioned in Equation 4.3. These 

equations are the basis of risk reasoning and assessment for different AI algorithms, which can 

lead to different results and accuracies in the RM process. 

 

Referring to Table 4.1., and considering the circumstances of the case study, the Probabilistic 

Models, specifically BNs, were chosen as the primary solution of the research. However, for 

validation and comparative analysis purposes, a number of Deterministic models and Fuzzy Logic 

will be applied to the case study as well. 

 

PPosterior(H|D) =
P(D|H)PPrior(H)

P(D)
    (4.2) 

Likelihood L(H; D) = P(D|H)    (4.3) 

 

This research aimed to overcome the shortcomings of previous review articles, which mostly 

focused on one type of ML application or its computational structure, by applying a practical 

classification for the proposed ML algorithms from the risk reasoning and judgment point of view. 

Such a functional and right-to-the-point classification is easily comprehensible and can be 

addressed by practitioners and researchers in the field, and they can choose the algorithm that best 

fits their requirements, research problem, available data, and resources. This is an interdisciplinary 

and novel way of grouping the widespread ML algorithms already implemented in the construction 

RM research. Furthermore, this practical viewpoint assisted the integration of the heterogeneous 

findings of previous review studies, which had differing scopes.  
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Apart from this theoretical comparative analysis, the results obtained from different probabilistic 

and deterministic ML algorithms on the research case study are compared in Chapter 8, which is 

the practical complementary part of the provided analysis. It is noteworthy that different 

algorithms have varying accuracy and performance in different contexts and problems due to the 

context-drivenness of RM; therefore, it is only possible to evaluate their overall performance and 

validate them by knowing the context and scope of their application, which in this case is the 

research case study. 

Table 4.1. Analytical comparison between Probabilistic and Deterministic RM models(Khodabakhshian, Puolitaival 

and Kestle, 2023) 

Comparison 

Criteria 
Probabilistic Approach Deterministic Approach 

Reasoning basis 

Probability-based reasoning 

Rule-based reasoning 

Fuzzy logic (Samantra, Datta and Mahapatra, 2017; 

Valpeters, Kireev and Ivanov, 2018) 

Forward propagation and backpropagation 

Loss function 

Weights and biases (Hosny, Elbarkouky, and 

Elhakeem, 2015; Habbal et al., 2020) 

Structure 

 Interconnected graphs (Khakzad, NKhan and 

Amyotte, 2013; Qazi et al., 2016; Lee and Kim, 

2017) 

Layers of neurons or branches (Jin and Zhang, 

2011; Gajzler, 2013) 

Data Source 

Historical Data, model simulation 

Experts’ opinion (Butler, Thomas and Pintar, 2015; 

Mkrtchyan, Podofillini and Dang, 2015) 

Historical data, model simulation (Hosny, 

Elbarkouky, Elhakeem, 2015; Habbal et al., 

2020; Re Cecconi, Khodabakhshian and 

Rampini, 2022) 

Inference Bayesian inference (Nguyen and Tran, 2016) Frequentist inference (Lele and Allen, 2006) 

Data Requirements 

Limited amount of data 

Able to deal with missing values 

Numerical, categorical, and linguistic data (Regan,  

Colyvan and Burgman 2002; Mohamed and Tran, 

2021) 

High amount of data 

Partial ability to deal with missing values (Fan 

et al., 2019) 

Probability and 

dependencies’ role 

Embrace probability in assessments 

Considering variables interdependencies with each 

other and final output (Omondi, Lukandu and 

Wanyembi, 2021; Wang et al., 2021) 

Does not embrace probability in assessments 

Considering variables interdependencies on 

final output (Valpeters, Kireev and Ivanov, 

2018; Anysz, Apollo and Grzyl, 2021) 

Prediction 

precision 
Mid-high (Tardioli et al., 2020) Very high ( Akinosho et al., 2020) 

Application scope 
Subjective and uncertain problems with limited data 

(Yang, Bonsall and Wang, 2008) 

Objective and complex problems with 

abundant data (Gondia, Asce, et al., 2020) 

Application in RM 

processes 

Risk identification 

Qualitative analysis 

Risk control (Karakas, Dikmen and Birgonul, 2013; 

Islam et al., 2019; Yucelgazi and Yitmen 2020) 

Risk identification 

Qualitative and quantitative analysis 

Mitigation planning 

Risk control (Fang, C. and Marle, 2013; 

Chattapadhyay, Putta and Rao, 2021) 

Advantages 

Flexibility to various problems 

Ability to integrate qualitative and quantitative data 

(subjective and objective) 

Risk path approach 

Ability to include dynamic data (Serpella et al., 

2014; Zhang, Wu, et al., 2014) 

Quick processing and learning 

Ability to consider linear and nonlinear 

relationships among data 

Ability to include dynamic data (Sherafat et al., 

2020; Von Platten et al., 2020) 

Disadvantages 

Takes longer time to create the structure 

Not high precision if merely based on historical data 

High processing time in complex problems (Wisse 

et al., 2008; Qazi et al., 2016) 

Individual risk analysis approach (isolated) 

Not flexible toward change 

Requirement of high data volume (Giannakos 

and Xenidis, 2018; Lamine et al., 2020) 
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Chapter 5: Bayesian Networks and Elicitation 

 

5.1. Bayesian Networks 

Probabilistic models and Bayesian approaches enable the integration of subjective expert data 

as background knowledge on priors and posteriors for a more precise structure and parameter 

learning with objective project data. Probabilistic networks have become a widely accepted 

method for representing knowledge for reasoning under uncertainty (Yoon, Weidner and Hastak, 

2021), and have been successfully applied in various domains such as medical diagnosis, 

prognosis, planning, information retrieval, and natural language processing. BNs, as the most 

applied probabilistic graphical models (Odimabo and Oduoza, 2017), have been widely used for 

accident root cause analysis, workers’ safety risk assessment, and defect risk analysis in 

construction research (Nguyen, Tran and Chandrawinata, 2016; Gerassis et al., 2017). However, 

their application in practice, dynamic risk modeling, and proper network validation is still in 

infancy (Piao et al., 2021; Nguyen, Tran and Chandrawinata, 2016). BNs are comprised of two 

main components:  

a) A Directed Acyclic Graph (DAG) is used to qualitatively present the interdependency 

among variables and encode conditional independence assumptions, which is also referred 

to as the structure of the BN. In DAG, nodes present the variables, and the arc oriented 

between variables presents the dependency between them, starting from the parent node 

toward the child node (Guinhouya, 2023). 

b) Conditional Probability Tables (CPTs) or Conditional Probability Distribution (CPD) 

quantitatively represent the relationship between the child node and its parent nodes in 

discrete or continuous variables, respectively (Wang and Chen, 2017), which are also 

referred to as the parameters of the BN. Figure 5.1. presents a BN example, indicating both 

the DAG and the CPT.  

 

 

Figure 5.1. Bayesian Network and CPT example 
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The structure and causal relationships between variables or the parameters are determined by 

learning algorithms from objective project data, elicitation of subjective expert opinion, or both 

(Garvey, Carnovale and Yeniyurt, 2015). BNs have huge advantages compared to other ML 

algorithms for risk analysis, given their ability to combine different sources of information (e.g., 

expert knowledge, field data, simulation models, and databases) (Qazi et al., 2016), handling 

incomplete data, which is a common challenge in the industry (Zhang et al., 2016), and updating 

the interdependency among risks when new information is available, which contribute to their 

broad application in construction risk-related research (Liu et al., 2019).  

Among the four types of BN reasoning, i.g. a) Predictive Reasoning, b) Diagnostic Reasoning, 

c) Predictive+ Diagnostic reasoning, and d) Predictive+ Intercausal reasoning, Predictive 

reasoning is the most popular type and is mainly used for predicting the probability of cost overrun, 

time performance, and workplace accidents. Moreover, diagnostic reasoning seeks to diagnose the 

risk or accident scenarios and causes of poor performance as the output (Hon et al. 2022).  

BNs can aggregate various project objectives and model a holistic risk network in which the 

general impact of each risk is depicted and calculated across the network. This approach focuses 

on the "Risk Path" connecting the causal effect of various risks instead of isolated assessment of 

individual risk points, The risk path approach, despite delineating what happens in reality (Yildiz 

et al., 2014), has been limitedly studied (Eybpoosh, Dikmen and Talat Birgonul, 2011). To depict 

the risk path and increased learning by BNs, a thorough analysis of lessons learned, risk events, 

and previous projects' documents is required. However, the main challenge is that in most 

companies, there is no consistency or standard in the lessons learned in terms of style, language, 

metrics, and detail. Additionally, concerning general project risks, each project that lasts at least a 

couple of months is counted as one data entry in the database, leading to a data scarcity problem. 

Therefore, relying merely on the project data limits the choice of algorithms to implement. For 

instance, deterministic and black-box models like artificial neural networks, which perform 

significantly in huge databases, are inapplicable for small datasets. For this reason, this study relied 

on probabilistic models as the first step, which handles data scarcity problems through integrating 

various sources of information and uncertainty. 

5.1.1. BN Literature 

In order to identify the main application areas, applied techniques, and learning processes of the 

Bayesian approaches, another filter was added to the source technical papers, filtering merely 

papers that used the BNs or hybrid models containing Bayesian approaches in construction, 

resulting in 78 articles. These articles were thoroughly analyzed to identify BN application areas 

and were complied with similar review studies for a systematic classification (Hon et al., 2021), 

as mentioned below: 

• Safety Management covers four main areas: a) Analyzing factors that affect the safety 

performance in projects (Chan et al. 2017), b) Selecting Safety Management Strategies and 

Interventions (Mofidi et al., 2020), c) Safety Supervision and workforce monitoring (Nath, 
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Behzadan and Paal, 2020), d) Other Safety-Related Topics, including lifecycle safety 

control, safety design, and accident diagnosis (Abdat et al., 2014). 

• Risk Management in building, infrastructure, excavation projects, and energy (e.g., 

buildings, bridges, tunnels, power plants) (Wang et al., 2014). 

• Contract and Procurement Management is used to analyze construction contractual risks, 

handle disputes, and improve bidding (Abotaleb and El-adaway, 2017). Particularly, the 

Naïve Bayes method has been employed to extract the required contractual text for 

decision-making (Hassan and Le, 2020). 

• Process Control for managing project schedules, predicting schedule performance, 

productivity management, and other areas like progress monitoring and performance 

measurement  (Golparvar-Fard, Peña-Mora and Savarese, 2015; Sabillon et al., 2020)  

• Project Cost Management, for cost prediction, forecasting errors in cost estimation, and 

dynamic monitoring of construction costs (Nasrazadani et al., 2017). 

• Quality Management, including evaluating the impacts of stakeholders on quality defects, 

evaluating operator welding-quality performance, and examining building materials 

compliance for fire safety (Yu et al., 2019). 

• Other CM Research and Practice, such as design management, project information 

management, environment management, materials management, and stakeholder 

management (Hu and Castro-Lacouture, 2019). 

Figure 5.2. presents the co-occurrence diagram of the keywords in the source technical papers, 

indicating the Bayesian modelling techniques, application areas, and risk factors, which are 

developed in Bibliometrics. Moreover, BNs have been applied in one of the forms mentioned 

below (Guinhouya, 2023): 

a) Basic BNs, which are the most prevalent type in literature. 

b) Combined BNs, with methods like Fuzzy Set Theory, Fault Tree Analysis, and Project 

Evaluation and Review Technique, etc. 

c) Extended BNs, including Hybrid BN (HBN), Dynamic BN (DBN), and Object-Oriented 

BN (OOBN). 
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Figure 5.2. Co-occurrence diagram of keywords-main domains of literature review 

Modeling technique 

Application 

Risk factors 

 

There are remarkable studies on BN applications in construction RM. Liu et al. (2021) proposed 

a BN-based construction risk assessment method for PPP projects of urban rail transit, using offline 

interviews and surveys and online questionnaires and result correction by leaky noisy-OR gate 

model (Zhansheng Liu, Yueyue Jiao and Key, 2021).  Mittnik and Starobinskaya (2010) presented 

a hybrid BN-based operational-risk taxonomy for modeling common shocks and mapping causal 

dependencies between frequencies and severity of risk events. Qazi and Dikmen (2019) developed 

a BNN-based methodology and an aggregative process of risks mapped on a risk matrix in order 

to assess the holistic impact of each risk across the risk network, using a new risk metric called 

Network Propagation Impact (NPI). Wang et al. (2014) proposed a hybrid model using BN and 

Relevance Vector Machine (RVM), which identifies risk scenarios and quantifies the probability 

and severity of possible risks. Asrar and Adi (2021) measured safety performance using a BN-

based probabilistic model for a Dam construction project. Xia et al., 2017 proposed a modified BN 

to consider risk propagation in different stages of a construction project life cycle using ranked 

nodes/paths and Bayesian truth serum. Qazi et al., (2016) introduced a comprehensive risk 

management process, namely “Project Complexity and Risk Management (ProCRiM),” which is 

based on the theoretical framework of Expected Utility Theory and BNs. It establishes causal paths 

across project complexity attributes, risks, and their consequences affecting the project objectives.  

Though all the previous studies added valuable insights to the field, the specific BN-based 

models for risk identification and assessment that rely on a limited number of input data are 

missing. Even the research works that benefitted from experts’ opinions are more focused on the 

risk qualitative analysis, which is a more tangible objective for fuzzy set implementation. This 

research aims to fill this research gap by proposing practical solutions to overcome the data scarcity 
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problem in the construction industry, i.e., elicitation-based structure and parameter learning in BN 

and synthetic data generation by Generative Adversarial Networks (GANs). The obtained results 

will be compared to merely data-based BN models, like Naïve Bayes model, and will be validated 

by experts and cross-validation. The Naïve Bayes classifier model was first proposed by Pearl 

(Pearl, 1988) and widely adopted in ecology, sociology, economics, and construction projects 

(Wang and Zhang, 2018). It takes a top-down approach to proceed from risk factors to risk events, 

where the joint probability distribution of a risk system can be decomposed into the product of 

specific conditional probabilities and marginal probabilities in the DAG, considering all the risk 

factors independent. Although it is easier to learn a Naïve Bayes model from data due to variables’ 

interdependencies ignorance, it cannot represent a real-world situation where all project variables 

somehow affect each other. 

5.2. Elicitation-based RM Models 

There are many decisions to be made in each construction project, which intrinsically have a 

high level of risk and uncertainty. Risks are known events that might or might not happen in the 

future and can be integrated into the decision models in the form of probabilities or probability 

distributions. The probability of an uncertain event or condition can be assessed based on various 

sources, like historical records, model simulation, analogues, theories, physical principles, etc. 

(Druzdzel and van der Gaag, 2000). On the other hand, the uncertainties in the risk assessment 

process stem from a) information deficits and limited size of observations and data samples due to 

difficulty or costliness of the data acquisition, or the unstructured and infrequent data registration 

(Butler, Thomas and Pintar, 2015), known as informal uncertainty, or b) the use of linguistic 

variables by experts, when they are engaged in the probability assessment procedure due to lack 

of project data (Hora, 2018), known as Lexical uncertainty (Andrić et al., 2019). This process is 

called elicitation, which, although being a lucrative method in RM, can be full of uncertainties and 

fuzziness, as already mentioned. 

Elicitation is the process of obtaining knowledge and subjective assessment about the underlying 

relationships and dependencies between variables and their probabilities from domain experts, 

based on which the priors and posteriors of a network are estimated (Laitila and Virtanen, 2016). 

This is the main advantage of the Bayesian approach over the Frequentist one, in which the priors 

and posteriors are merely based on historical data, and no other source of information can be 

included.  Elicitation is the most common source for BN development, structure learning, and 

parameter learning in previous research, and case studies are the most common source for network 

validation (Hon et al., 2022). Bayesian methods necessitate a prior distribution to derive a posterior 

distribution for variables when evidence is observed. The prior distribution is intrinsically 

subjective and based on a judgment, which is in alignment with the subjectivity of probabilities 

derived from experts. It is noteworthy that the prior can have a uniform distribution in case of a 

lack of prior knowledge of the event. Therefore, the prior does not limit the application of the 

Bayesian theorem in case of lack of an informative prior. 

Butler, Thomas and Pintar (2015) conducted a systematic literature review on expert elicitation 

studies on enteric illness and their key considerations and identified five main themes for designing 

an elicitation-based system: a) the expert panel, b) the background material supplied, c) the 

elicitation model, e) analysis methods, and f) research design. Careful consideration of these 
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themes reduces bias, produces the best possible results, and synthesizes the available knowledge 

on the field from different experts. Monti and Carenini, (2000) discussed four methods in the 

knowledge acquisition task of probability elicitation from experts for BN construction for the 

clinical domain of chronic nonorganic headaches, three of which were extracted from literature, 

and the fourth one was developed by adapting the Analytic Hierarchy Process (AHP), which 

allowed the analyst to measure reliably the degree of inconsistency in the expert’s assessments. 

Kuhnert, Martin and Griffiths (2010) provided a guideline for using expert knowledge in 

ecological models and natural resource and conservation decision-making, examining the impact 

of expert knowledge through priors in Bayesian modeling with the aim of minimizing potential 

bias. Although there is a rich literature of elicitation-based BN development in other realms, 

similar examples in construction research are missing. 

In spite of the advantages of elicitation, the main challenge is the huge amount of probability 

assessments needed when the model is complex and contains many nodes with multiple states, as 

the CPT grows exponentially with the number of parent nodes (Laitila and Virtanen, 2016). The 

easiest type of elicitation is for binary problems, for instance, the possibility of a risk event 

happening or not. However, the elicitation can get more complicated when there are multiple 

possible states for each variable or the variables can take continuous values, for which the experts 

need to provide a probability density function or its integral, the distribution function. Therefore, 

elicitation in its conventional form can be time-consuming, costly, difficult to understand, and 

contain inconsistencies in the expert’s assessments (Monti and Carenini, 2000). Furthermore, a 

number of errors might arise during the elicitation process, which will be discussed in the 

methodology section. 

5.3. BN Advantages 

Bayesian approaches seem to be the ideal methods for RM in construction projects for their 

ability of: 

a) Modeling complex problems and relationships between variables. CM problems, like 

safety, business, and legal risks, have multiple inter-dependent factors and uncertainties 

that need to be tackled by complex modeling, which BN can facilitate due to its graph-

based structure, DAGs and CPTs, and benefiting from graphical representation to show 

relationships among project variables (Baudrit et al., 2019) for easier understanding, 

b) Representing and dealing with high levels of uncertainty and complexity (Phan et al., 

2016).  

c) Combining different sources of information, e.g., export knowledge, field data, synthetic 

data, and model simulations, which can be used for prior and posterior distributions. Most 

problems in construction projects, e.g., safety, tendering, and financial management, need 

implicit knowledge from field experts to serve as priors. Bayesian approaches can converge 

these complex models, which cannot be done in other ways (Van De Schoot et al., 2017), 

d) Incorporating subjective and objective data in quantitative form, which are derived 

from experts and previous case studies. Bayesian approaches can turn qualitative 

assessments like linguistic terms into crisp values through elicitation and quantitatively 

represent the relationships among variables in the form of probabilities and beliefs, which 

can be updated when new information is available (Xia et al., 2017).  
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e) Handling incomplete data, missing values, and data scarcity. This is due to the 

Bayesian inference and the ability of combining different data sources and reasonings, 

which can update beliefs and compensate for the data scarcity (Leu and Chang, 2015; 

Zhang et al., 2016), 

f) Performing different tasks of quantitative relationship analysis, diagnosis, prediction, 

and monitoring (Chua and Goh, 2005; Chan et al., 2017). As RM is consisted of various 

stages, i.e., Risk Identification, Qualitative Risk Analysis, Quantitative Risk Analysis, 

Mitigation Planning, Control Risk, and Monitor Risk, and can be applied on various levels, 

i.e., Operational, Project, Portfolio, and Enterprise, with different purposes and 

requirements for each, BNs are proper methods able to perform all the tasks in one single 

application. 

g) Flexibility to be integrated with other methods to improve the accuracy and reliability 

of risk assessments. On the one hand, BNs are flexible to import mathematical methods 

like Markov chain Monte Carlo (MCMC) to improve the data organization and 

processability. For instance, MCMC is commonly used with Bayesian approaches to 

determine the posterior distribution and draw random samples, which strengthens the 

predictive ability and statistical quality of Bayesian approaches (Ji and Abourizk, 2017). 

On the other hand, BNs can be combined with other common applications in CM, such as 

BIM, the Geographic Information System (GIS), Multi-Agent Systems, ML algorithms, 

and Decision Support Systems (Qazi et al., 2016; Rongchen et al., 2020). As combined 

applications could benefit from the advancements of each method, it also improves the 

applicability of Bayesian approaches in CM, providing even more powerful tools to tackle 

complex CM issues. 

h) Ability to conduct both forward and backward inference. BNs can model both potential 

hazards (forward inference) and most likely causes of an adverse outcome (backward 

inference) according to different roles/trades in the construction industry. 

5.4. BN Limitations and Research Gaps 

Despite all the advantages of BNs, there are several challenges and research gaps that need to 

be addressed in order to benefit from their full potential in construction research and practice, 

including: 

a) Most of the issues studied in RM literature are not multifaceted, while the advantage of 

Bayesian approaches is fully realized in more complex multifaceted and multi-factorial 

problems.  

b) Limited application of dynamic BNs in CM research, while construction projects are based 

on constant change and progress along their lifecycle. 

c) Over-reliance on expert knowledge for structure and parameter learning due to lack of 

availability and accessibility of project data. 

d) Most of the issues addressed in the literature are operational-level issues, such as safety 

management. However, BNs have the potential to address problems on project and 

strategic levels as well, which could be even more critical in construction projects. 

e) Major focus on risk assessment rather than entire stages of risk management. 

f) Lack of attention to the diagnostic reasoning of BN, such as construction fault diagnosis 

and energy/materials consumption diagnosis.  
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g) Difficulty and biases in the elicitation process and in turning experts’ tacit knowledge into 

quantitative data, such as complexity, biases, unreliability and subjectiveness, 

inconsistency between two expert opinions, and overconfidence (Low-Choy et al., 2011). 

h) Lack of established validation methods for BNs due to insufficient data applications 

(Mkrtchyan, Podofillini and Dang, 2015). Most previous studies used case studies in model 

validation, which, although performing acceptable when data is insufficient, cannot be 

generalizable to a larger set of projects. Sensitivity analysis or expert evaluation are better 

validation methods to improve this step's comprehensiveness and reliability (Liao Ma and 

Chong, 2018; Hon et al., 2022). Sensitivity analysis is used to determine the impact of 

changes in the state of a variable on the overall risk of a system. Decision analysis is used 

to determine the optimal decision in a risk management problem, considering the 

uncertainties associated with the variables in the system.  

 

5.5. Future potential CM topics for BN applications 

 
The application of BNs for RM can be improved and expanded in terms of: 

a) Detailed analysis level by including more in-depth root causes of risks and accidents like 

workers' psychological factors, containing entire project phases, 

b) Dynamic modelling of interactions between incidents and their causes using temporal 

nodes and time series, meaning performance at time T will affect those at time T+1 

(Nwadigo et al., 2020), 

c) More advanced Bayesian modeling techniques in combination with other statistical, 

mathematical, and simulation methods, like BIM, Digital twins, and multi-agent systems 

(Wu et al., 2014),  

d) Integration with other project knowledge areas like stakeholder management and resource 

management for more optimized risk responses, 

e) Real-time safety monitoring, benefiting from digital technologies such as IoT, sensors, 

and wearable devices, 

f) More systematic validation methods, which mitigate the biases in the model, such as 

evaluating the reliability of data elicited from expert knowledge before modeling (Zhang 

et al., 2016),  

g) Better documentation and reporting of best practices, research results, and methods for 

future reference (Van De Schoot et al., 2017).  
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Chapter 6: Methodology 

 

6.1. Research scheme and framework 

This research follows a systematic methodology consisting of several phases developed for an 

industry partner. Therefore, the steps are slightly different from regular research projects and are 

revised through a back-and-forth feedback process from the industry partners, available data and 

case studies, and the results obtained. The main phases are: 

a) Systematic literature review and analysis of state-of-the-art findings, best practices, and 

Professional standards to find interactions between AI and RM realms, as well as the research 

gaps to be addressed,  

b) Meetings with industry partners to determine the main application area and scope, expectations 

and requirements, data and tools available, and status quo on RM practices,  

c) Data collection from previous projects’ documents, such as Monthly reports, Project charters, 

Risk registers, Cost reports, and Schedule baselines, Standards and best practices, and 

Literature, 

d) Surveys and interviews with experts, project managers, and company representatives for data 

collection and inference, quantifying their subjective judgments and risk reasonings,  

e) Data cleaning, preprocessing, and categorizing, and standardized data collection templates 

creation, 

f) Integrating the risk data from various sources (objective project data and subjective experts’ 

opinions) using probabilistic Bayesian Networks (BNs) to create the risk network for each risk,  

g) Solving the data scarcity problem by synthetic data generation using Generative Adversarial 

Networks (GANs) and repopulating the BN model with the new synthetic data, 

h) Implementation of advanced deterministic models like Artificial Neural Networks, XGBoost, 

and Decision Trees to compare the results obtained merely based on objective project data, 

i) Developing a Fuzzy Logic-based risk assessment model based on the opinions of experts to 

compare the results obtained merely based on subjective elicitation, 

j) Comparative analysis of results obtained from the three techniques mentioned above to 

validate the proposed BN-based model, 

k) Implementing both probabilistic and deterministic ML models on another risk database with a 

significantly higher number of data to compare the performance of each algorithm with respect 

to the size of the database,  

l) Final validation of the model using ongoing project data and experts’ opinions,  

m) Integrating the proposed model with the company’s current project management processes, 

n) Addressing the potential data privacy and ownership challenges, biases, and ethical and moral 

issues raised during the implementation phase to facilitate the wider application of the model 

in practice. 

The overall research scheme and phases, data sources, and used tools and methods are presented 

in Figure 6.1. 
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Figure 6.1 Research Scheme and phases 
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The proposed computational model and its components and processes are developed based on a 

Process Mining framework presented in Figure 6.2. Process Mining provides an ever-improving 

platform and workflow for the model in a standardized fashion. It is an optimal approach to tailor 

RM steps on the available data sources on various levels with the requirements of the case study 

regarding the maturity and performance of its RM processes. Initially, only 44 project data were 

available; therefore, only probabilistic models like BNs were applicable. Hence, the research 

started with BN development and integrated data and inferences from three different sources of 

previous project data, literature, and citations from experts to compensate for the data limitation 

issue. Experts' subjective data was gathered through a three-step elicitation process using surveys 

and interviews, a detailed overview of which is presented in the following subchapters. Later, 

synthetic data was generated using GANs based on the available database, doubling its size and 

enabling the application of other deterministic ML methods. Moreover, a Fuzzy Logic-based 

model was developed based on surveys from 11 experts to compare the differences in obtained 

results and predicted probabilities if the judgment is merely based on subjective data, objective 

project data, or a combination of both. 

 
Figure 6.2 Process Mining Architecture for the proposed ANN-based risk management framework 
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This research aims to develop an automated and optimized RM framework using the three 

proposed solutions, namely a) BNs, b) Deterministic ML models, and c) Fuzzy Logic model. The 

project variables/features and risks serve as the input of these models, and the portfolio of Jacobs' 

projects serves as the training and testing datasets. Finally, the probability of each risk happening 

or the existence of each risk in the project risk list is the output of the model. Figure 6.3 presents 

the proposed framework, which will be implemented for each new project. Based on the project 

variables/features of the given project, the ML model will automatically predict the risks and their 

probabilities in that project. 

 

Figure 6.3 Proposed application framework of the ML-based models 

 

6.2. Data Collection  

Project Risk Data requires specific attributes attached when being registered to be usable in 

systematic analysis; for instance, the type of risk, area of influence, owner of the risk, probability 

of the risk, impact, and consequences of the risk, cost and time contingency assigned to the risk. 

However, in reality, risk data registration is conducted in an unstructured and infrequent manner 

in construction projects, including several missing values and inconsistent entries. Moreover, due 

to the context-specific nature of risks, it is highly probable that only specific types of risks are 

identified and registered in a company’s documents. Therefore, with the purpose of creating a 

holistic database of risks in construction projects, three main sources were probed as data sources: 

a) Previous projects’ documents, including Project Charters, Monthly Reports, Accident 

Reports, Progress Reports, Risk Registers, Schedule Baseline, Budget Baseline, etc.; 

b) Literature on research conducted by other scholars on construction-related risks; 

c) Interviews with experts, including project managers, engineers, and program directors at 

the company. 
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Data gathering is followed by the risk categorization step, for which both project knowledge 

areas identified by PMBOK and the company’s registration formats were considered, as a result 

of which the identified 65 risks were categorized into 11 categories 1) Technical, Scope, and 

Management risks, 2) Administrative risks, 3) Communication risks, 4) Environmental risks, 5) 

Procurement risks, 6) Resource risks, 7) Safety risks, 8) Schedule risks, 9) Stakeholders risks, 10) 

Quality and change risks, and 11) financial risks. As the documents’ review is a time-consuming 

process, a standardized format for data collection was developed in Excel, including all the 

necessary information on the project like duration, contract type, number of contractors, etc., as 

well as all the risks identified in each risk category, which was sent to project managers of the 

studied projects to fill. This solution significantly expedited the data collection process. Ultimately, 

all this data was documented in tabular format in a unified Excel spreadsheet consisting of 44 rows 

of data as projects and 47 columns of data as project features. 

 

6.3. Data Preprocessing and Synthetic Data Generation 

Data preprocessing is a critical part of the ML pipeline that helps improve the quality, relevance, 

reliability, and compatibility of the input data with ML algorithms. It aims to make data cleaner, 

more manageable, and more suitable for ML application by transforming the initial raw data, 

usually in an unstructured format including errors, outliers, and missing values, into a suitable 

format for analysis in ML, and includes the following steps: 

a) Data Cleaning for handling missing values, outliers, and noise in the dataset 

b) Data Integration among multiple sources 

c) Data Transformation into a suitable format, preferably numerical format proper for 

mathematical and statistical methods  

d) Feature Selection to identify the most influential features and reduce dimensionality, noise, 

and redundancy 

e) Feature Engineering for deriving new features from existing ones or binning, discretization, 

and aggregating data 

f) Synthetic Data Generation to increase the database size 

g) Data Splitting into train, validation, and test datasets 

In this study, data preprocessing had a significant positive impact on the developed models. 

Given the small size of the database and the existence of missing values, projects with missing 

values were dropped off the table, and data-filling methods like average value replacement were 

used. Moreover, synthetic data generation was conducted in order to increase the size of the 

database with an initial 44 projects or rows of data. Synthetic data generation refers to the process 

of creating artificial data that mimics the characteristics, patterns, and statistical distribution of the 

initial data using different approaches such as Rule-based or parametric methods, Simulation-

based methods, and Generative Adversarial Networks (GANs). This study used GANs, which is a 

deep learning technique. 

GANs are a type of deep learning algorithm (Akinosho et al., 2020) that can learn the probability 

distribution in a collection of training samples and generate more examples with the same 
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probability distribution (Goodfellow et al., 2020). Data Augmentation techniques like GANs are 

applied to improve data quantity, diversity, and distribution by producing synthetic data through 

learning from the training sample (Berthelot, Milanfar and Goodfellow, 2020). GANs are 

composed of two subnetworks: a) the Generative Network, which generates the synthetic data, and 

b) The discriminative network, which is a binary classifier aiming to find the differences between 

the original and generated data by the network (Akinosho et al., 2020). Although GANs have 

broader applications in creating synthetic images and unlabeled dataset learning (Zhang et al., 

2017), which can be highly beneficial in analyzing safety risks and hazards in construction sites, 

they are recently being applied to tabular data as well, which is the common form of risk data 

registration. However, advanced GANs’ algorithms for tabular data generation are still missing, 

and the produced data might face an overfitting problem. The complete code using GANs for data 

augmentation on the case study database can be found here. 

6.4. Probabilistic Risk Model Development 

Once the data is collected, cleaned, and prepared for analysis, ML-based models must be 

developed to learn from the data, detect patterns, generalize the rules and relationships between 

data features, and predict outcomes for new data. Due to the limited size of the database and the 

uncertain nature of the risk domain, probabilistic models are initially developed. Benefitting from 

probability and graph theory, they enable modeling of stochastic systems and causal relationships 

between variables. Furthermore, they can benefit from Bayesian Inference to integrate various 

sources of information and judgments and make the input dataset stronger and more diverse. As 

the most applied Probabilistic Graphical Model (PGM), the Bayesian Network (BN) was chosen 

for modeling the risk network in the company, which can graphically represent the influential 

project attributes, potential risks in projects, the relationships between these variables, and the 

existing knowledge and uncertainty in the area (Lee, 2021).  

Each BN consists of three parts: a) The nodes representing the variables; b) the DAG, 

representing the structure and the interrelationships between the nodes in the network, and c) the 

Conditional Probability Table (CPT) or the Conditional Probability Distribution (CPD), 

representing the strength of these interrelationships between variables (Nasir, Mccabe and 

Hartono, 2003). Hence, the development of BNs includes two parts: the development of the 

topology or the structure, which is the qualitative part, and the parameterization, which is the 

quantitative part. The next chapter presents a comprehensive overview of various structure and 

parameter learning approaches. 

Furthermore, there are three types of probability data or parameters in a BN: prior probability, 

conditional probability, and posterior probability. Prior probabilities are the probability 

distribution before taking into consideration any evidence, and posterior probability is calculated 

after observing evidence (Mohamad and Tran, 2021). Conditional probabilities are the 

probabilities that reflect the degree of influence of the parent nodes on the child node. For BNs 

with discrete nodes, the probabilistic dependence is often represented via a table called a 

Conditional Probability Table (CPT). To obtain the CPT, first, the possible combination values of 

the parent nodes need to be found, which is called an instantiation. For each instantiation, the 

probability that the child node will take a possible value is the conditional probability. They could 

https://colab.research.google.com/drive/1cENO623qVZAYZq_ApBZAI4hQ-fbIur-2#scrollTo=91B4cm9O2RKN
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be calculated using statistical or computational methods or elicited from domain experts  (Zhang 

et al., 2020).   

6.4.1. Structure and Parameter Learning in BN 

The structure and parameters of a BN can be learned from different sources, e.g., Expert 

knowledge (the judgment of academics and industry professionals), Objective data (field or 

observational data derived from databases, records, and the scientific literature), Model simulation 

(outputs of other established models or frameworks, such as FTA, ETA, and Influence Diagrams), 

and the combination of two or three of them (Phan et al., 2016).  

There are three ways to build a BN: manually, automatically or a combination of both (Fenton, 

Neil and Caballero, 2006). One can elicit both the structure and parameters of the network, or elicit 

the structure only and learn the parameters from historical data, or learn both the structure and the 

parameters based on objective data (Low Choy, O’leary and Mengersen, 2009; Kjærulff and 

Madsen 2008). The probabilities elicited from domain experts are called subjective probabilities. 

When multiple experts are used, we can either elicit the experts’ opinions individually and then 

combine them or achieve the group consensus. Elicitation-based BN models are thought to carry 

biases and uncertainty while learning BBN is considered evidence-based (Mazaheri, Kujala and 

Montewka, 2014), since the model is built on real data. 

Structure-learning methods proposed in the literature are a) based on conditional independence 

test, or b) based on a scoring metric and a search algorithm. The first group (Campos, 1998) 

analyzes the dependent and independent relationships among variables via conditional 

independence tests such as X2 tests and constructs the networks that characterize these 

relationships. The second group (Lam, Bacchijs and Bayesian, 1994) consists of two components: 

1) a scoring function that assesses how well a network fits the data and 2) a search method to find 

networks with high scores. Moreover, the structure learning research mainly focuses on two 

problems a) Evaluation, which involves developing scoring functions that can measure the fitness 

of a Bayesian network structure to the given data, using various principles, such as Bayesian 

Methods, Minimum Description Length, or Entropy Methods, and b) Identification, that involves 

finding the network structures that optimize the scoring functions, which typically involves 

searching through a large space of possible network structures and evaluating them using the 

scoring function. Various algorithms can be used for this task, such as the K2 algorithm, the PC 

algorithm, or Genetic Algorithms (Chen et al., 2008). 

When extensive objective data is available, structural learning can be performed merely based 

on the data and by algorithms like PC algorithm, K2 algorithm, Naïve Bayes algorithm, and Tree 

Augmented Naïve Bayes algorithm (Abdat, et al., 2014). Furthermore, parameter learning can be 

performed by Expectation-Maximization (EM) and Maximum Likelihood Estimation (MLE) 

algorithms (Fang et al., 2023). EM algorithm is suitable for incomplete data, while MLE is a 

common strategy for parameter learning of complete data (Ji, Xia and Meng, 2015). Moreover, 

Fault Tree Analysis, Event Tree Analysis, and Influence diagram can be used to build BN structure 

based on types of random variables and inferences.  
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Among the numerous algorithms proposed to learn the structure and parameters of BNs, the K2 

algorithm for structure learning and the Expectation-Maximization (EM) algorithm for parameter 

learning are the most applied ones in CM research (Chen et al., 2008). K2 is a greedy search 

algorithm that learns the network structure from the data, aiming to maximize the posterior 

probability of the learned network structure (Chen et al., 2008). K2 is a greedy search algorithm 

that learns the network structure from the data, aiming to maximize the posterior probability of the 

learned network structure (Cooper, Herskovits and Edu, 1992). The algorithm assumes that the 

variables in the network have been ordered beforehand so that all the parents of a variable occur 

prior to the variable itself. This ordering reduces the search space for the algorithm and makes it 

computationally efficient. However, the performance of the algorithm is highly dependent on the 

correctness of the ordering. If the order is incorrect, the algorithm may yield poor results (Chen et 

al., 2008). Unfortunately, in many real-world applications, the correct ordering of variables may 

not be available. In such cases, other algorithms may be used, such as the PC algorithm or the 

Greedy Equivalence Search algorithm. These algorithms do not require an ordering of variables 

but may be more computationally expensive than the K2 algorithm. 

The EM algorithm, however, is an iterative parameter learning algorithm that alternates between 

estimating the expected sufficient statistics of the data, given the current estimates of the 

parameters, and then updating the parameters based on these statistics. One advantage of the EM 

algorithm is its computational speed, which makes it well-suited for large and complex problems, 

such as those encountered in the construction industry (Ji and Xia, 2015). Another advantage is its 

ability to impute missing data, which is often a common problem in real-world applications. 

However, it is important to note that the EM algorithm assumes a fixed network structure, which 

may not always be known or correct. In such cases, other algorithms may be used to learn the 

network structure from data, such as the K2 algorithm or the PC algorithm. 

If extensive previous data is not available, the elicitation method is used to extract insights from 

expert judgment for structure learning and prior and posterior assignment. Even though the 

involvement of experts’ judgment brings uncertainty and biases, and empirical data-based BN is 

considered more objective, the fully objective BN application is not always viable due to data 

limitation and the rare occurrence of specific accidents or situations, which are not represented in 

the available databases. As a result, experts’ knowledge continues to be an important source for 

risk modeling. Reducing the elicitation workload and facilitating the elicitation of individual 

conditional probabilities are the two most important tasks for BN modeling based on experts’ 

knowledge (Zhang et al., 2020) 

The computational complexity of learning BN structures can be a major challenge, especially 

for networks with a large number of variables as the number of possible network structures and 

the number of CPT entries grow exponentially with respect to the number of variables and their 

states (Achumba et al., 2013), making the exhaustive search and CPT calculations impractical. The 

sheer number of probabilities would not only lead to heavy elicitation loads but will also cause 

inconsistency in the judgment. Therefore, as exact structure-learning methods fail to model risk 

networks efficiently, various inexact search-based methods have been developed using Machine 

Learning, which is computationally efficient and can handle moderately sized networks. Heuristic 
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search techniques, such as the K2 algorithm, Genetic algorithms, Simulated Annealing, and 

Markov Chain Monte Carlo (MCMC)-based methods are some of these models (Castelo and 

Koˇcka, 2003). Moreover, when new evidence (observation) is obtained, inferences can be made, 

i.e., posterior probabilities could be calculated, which brings the model closer to reality. Making 

inferences is also called probability propagation, conditioning or belief updating (Fang et al., 

2023). 

This study uses elicitation method for manual structure learning and EM for parameter learning 

based on previous projects’ data. Equations 6.1. to 6.3. present the formulas used for Maximum 

Likelihood Estimate (MLE), Expectation, and Maximization steps, respectively, which are 

automatically run on the input data in GENIRE software. A comprehensive overview of various 

elicitation methods, potential issues and errors that need to be addressed, and eventually, the 

elicitation methods used in this research are presented in the next subsections. 

𝐿 (𝜃; 𝑋) = 𝑝 (𝑋|𝜃) =  ∫ 𝑝 (𝑋, 𝑍|𝜃)𝑑𝑍 =  ∫ 𝑝(𝑋|𝑍, 𝜃)𝑝(𝑍|𝜃)𝑑𝑍     (6.1) 

𝑄(𝜃|𝜃(𝑡)) = 𝐸𝑍~𝑝(.|𝑋,  𝜃(𝑡))[log 𝑝(𝑋, 𝑍|𝜃)]    (6.2) 

𝜃(𝑡+1) =  𝑎𝑟𝑔 𝜃max 𝑄(𝜃|𝜃(𝑡))       (6.3) 

Where: 

X is the set of observed data,  

Z is the set of unobserved latent data,  

θ is a vector of unknown parameters,  

L (θ;X)=p (X|θ) is the likelihood function, 

Q(θ│θ^(t)) is the expected value of the log likelihood function of θ with respect to the current 

conditional distribution of Z given X and the current estimates of the parameters. 

 

6.4.2. Elicitation Methods 

There are several elements to consider when selecting an elicitation method. First, a proper issue 

needs to be selected, formed, and analyzed, which should be compatible with the elicitation 

process. That is, the posed issue should be resolvable within the assigned time and resources, be 

within the available knowledge area of the experts, and has to have a firm basis for judgment. The 

research question frames the problem, structures the model, and identifies the data (expert and ⁄or 

empirical) required for input into that model ( Kuhnert, Martin and Griffith, 2010). 

Second, the elicitation methods and means should be selected, which can be either a loose and 

informal method or a structured and rigorous one. Some of the common means are questionnaires, 

surveys, interviews, round tables, etc., which can be used in online or in-person formats regarding 

the physical accessibility of the experts. Another important element in elicitation is the type of 

variables (continuous or categorical) and scale used to obtain information, e.g., Likert scale and 

linguistic terms. Although crisp values (i.e., numbers) are more precise than linguistic terms, 

defining a crisp value for occurrence probability and severity is not easy. On the other hand, 

although linguistic terms are easier to comprehend and evaluate by experts, translating qualitative 
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responses to a quantitative probability measure is challenging. In this case, Fuzzy Logic is used, 

by which the subjectivity of experts can be modeled. In FL, variables have degrees of truthfulness 

or falsehood, or degree of membership to a specific class, represented by a range of values between 

1 (true) and 0 (false), which are calculated through four steps: fuzzification, inference, 

composition, and defuzzification (Pokorádi, 2015). Therefore, the probability of verbal 

expressions needs to be transformed into fuzzy numbers, denoted by P(ϴ), using triangular, 

trapezoidal, or Gaussian fuzzy membership functions (Li et al., 2012). Although fuzzy logic-based 

risk assessment (Bowles and Peláez, 1995) has been studied widely, its integration with Bayesian 

Networks is limitedly explored (Mohamed and Tran, 2021). 

Generally, the elicitation methods and reasonings used are divided into direct methods, asking 

experts for quantitative numbers, and indirect methods, asking experts for qualitative statements. 

The common elicitation methods include but are not limited to Betting method, Equivalent lottery 

method,  Analytical Hierarchy Process (AHP) method (Monti and Carenini, 2000; Bielza, Gómez 

and Shenoy, 2010), Probability Wheel, Probability Scale (Renooij, 2001), Fuzzy Logic (Ren et al., 

2009). It is considered the most human-friendly and comprehendible method. 

Third, the experts need to be selected based on their professional skills, current position or role, 

experience with the issue, preferability in terms of citations and published works, and 

recommendations from respected bodies. An expert is someone who has superior knowledge about 

the subject of interest and its rules (Bonano et al., 1990) gained through their life experience, 

education, or training. Another important factor to consider is the expert’s willingness and 

motivation to take part in the experiment and their openness to share their names or affiliations. 

Furthermore, the number of experts involved in the process needs to be determined based on the 

problem type. If more than one expert is invited to the experiment, there is a chance of redundancy, 

assuming they are performing the same task. Selecting experts from different backgrounds and 

fields can both solve this issue and add a diversity of viewpoints to the table, which are important 

teamwork elements. One of the most common methods in group elicitation is the Delphi approach, 

which begins with eliciting information from each expert independently and sharing the collated 

results amongst the group as feedback for helping experts understand the elicitation task, ensuring 

their response addresses the question adequately (Macmillan and Marshall, 2006). The risk though, 

is that the answers might have massive inconsistencies, needing to be calibrated. The common way 

to aggregate the responses is to take a mean, where the variance of the mean is a measure of 

uncertainty among the expert responses (Kuhnert, Martin and Griffith,  2010). Methods like 

sensitivity analysis or selectivity curve are useful to present the impact of an expert’s priors on the 

network. 

The forth step is the training of experts about the whole elicitation process regarding forming 

the probability judgments and responses, the role of their subjective judgment on the analysis, 

background information about the elicitation questions, and judgment biases. The scales used to 

assess the probability, either in numeric or linguistic formats, should be clearly explained, and the 

confidentiality of their responses should be assured. It is also essential to ask for feedback from 

experts on the process and adjust it accordingly to be more comprehensible and accurate. If the 
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elicitation is conducted in groups, then a coordinator should lead the sessions to use the time 

efficiently (Hora, 2018).  

The eight most widely used elicitation focuses were summarized by Kuhnert et al. (2010), i.e., 

elicitation of (1) probability, (2) frequency, (3) quantity, (4) weighting, (5) quantitative interval, 

(6) probability distribution, (7) categorical measure, and (8) relative measure. The first six are to 

elicit quantitative values, while the last two deal with qualitative values ( Kuhnert, Martin and 

Griffith, 2010). Low Choy, O’leary and Mengersen (2009) highlighted six key elements for 

conducting an elicitation: a) the purpose and motivation for the use of prior information, b) Specify 

available prior knowledge from experts or other sources, to define an appropriate and achievable 

goal of elicitation, c) Formulate a statistical model representing the conceptual model, d) Design 

numerical encoding (measurement technique) for effective elicitation of prior information and 

representation as a statistical distribution, e) Manage uncertainty, biases, and inconsistencies for 

accurate and robust elicitation, and f) Design an elicitation protocol to manage logistics of 

implementing elicitation. Moreover, based on a guide provided by Martin, Kuhnert and Mengersen 

(2005), there are eight key processes in an elicitation exercise: a) Clearly articulate the research 

question, b) Consider the resources available to help address the research question, c) Consider the 

modeling framework and data requirements carefully for the process under investigation, d) 

Identify what types of expert(s) are available to determine the form of elicitation required, e) 

Structure the elicitation such that the information supplied by experts can be translated into 

something (e.g., prior probabilities, prior distributions) that can be used for the model, f) 

Incorporate a feedback mechanism with some form of graphical aid, and g) Ensure a structured 

sensitivity analysis is conducted to investigate the impact of priors..  

The review of previous research in the realm is useful in terms of providing a general framework 

and examples for the elicitation structure. However, the research gap remains for a holistic and 

detailed elicitation process for real-world problems in the construction industry. 

6.4.3. Elicitation Challenges and Errors 

Even though elicitation seems like a solution to many problems in BN application, the selection 

of the elicitation method, determination of experts, and the training process could be daunting 

(Kuhnert, Martin and Griffith, 2010). Furthermore, when the BN gets bigger and contains more 

nodes, the number of conditional probabilities grows exponentially, which require great workload 

from the experts to provide data, as well as from the research to assure the quality or consistency 

of the elicited result. There are two solutions to overcome this challenge:  

Reducing the number of conditional probabilities to elicit by simplifying the model structure, 

i.e., reducing the number of nodes, reducing the number of node states, restricting the model by 

node divorcing, or exploiting the causal independence between the parent nodes, e.g., the Noisy-

OR rule (for binary variables) and its extension Noisy-Max rule (for nominal variables). There are 

also methods to generate a full CPT from a few probability items and functions, e.g., the ranked 

node method (Fenton, Neil and Caballero, 2006), the likelihood method, the EBBN method (Wisse 

et al., 2008), and the weighted sum algorithm, all of which could be applied to nominal variables 

and reduce experts’ elicitation workload. 
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Facilitating the elicitation of individual probability entry using direct methods, asking experts 

to give quantitative numbers or indirect methods, asking experts to give qualitative statements 

(Knochenhauer, Swaling and Dedda, 2013). Methods such as the probability wheel, probability 

scale, gambling analogy, and Fuzzy BN are used for direct quantitative probability elicitation, and 

AHP is used for indirect elicitation.  

Another issue is the uncertainties  derived from experts’ elicitation, which are a) the aleatory 

uncertainty, the uncertainty associated with the randomness of systems, and b) the epistemic 

uncertainty, the uncertainty caused by lack of knowledge of systems (Merrick, van Dorp and 

Dinesh, 2005). In BNs, the aleatory uncertainty is represented by the probability concept itself; 

however, the epistemic uncertainty, which is caused by experts’ lack of knowledge about the 

parameters of the model, is neither asked nor addressed, assuming the experts have full knowledge 

about the issue (Brooker, 2011).  

Expert judgment can turn into probabilities using different methods and scales. One of the most 

comprehendible approaches is using the verbal descriptors of likelihoods such as probable, rare, 

and virtually certain. However, there is the risk of different interpretation by various individuals, 

which can lead to inconsistency between the results. Common types of errors when expressing 

one’s knowledge in terms of probabilities, which are detected and classified using cognitive 

psychologists, are Extension Error, Conjunction Error, Disjunction Error (Bar-hillel and Neter, 

1993), Judgmental Errors (Representativeness and Availabilities heuristics), 

Overconfidence/conservatism (Hora, 2018), Support theory error (Tversky and Koehler, 1994), 

Epistemic uncertainty (due to lack of knowledge) (Kuhnert, Martin and Griffith,  2010), 

Misunderstanding of conditional probabilities, Translation of scales, Affect error, Hindsight bias, 

Law of small numbers, and Linguistic uncertainties such as ambiguity, context dependence, under 

specificity, and vagueness ( Regan, Colyvan and Burgman 2002). 

6.4.4. Elicitation Process of the Study 

This research follows a case study method and is developed based on a database of projects 

conducted by an Italian construction company; hence, the experts interviewed for elicitation are 

the representatives of the company. Structure learning of BN is done through elicitation, and 

Parameter learning is done based on elicitation and previous projects’ data using the EM method. 

Experts identified the effective project variables on common risks as the network parent nodes, the 

risks as the child nodes, and their connection as the DAG, forming the BN structure. Afterward, 

they quantified the causal inferences, nodes’ interconnections, and probabilities as the parameter 

learning and finally validated the network. Previous projects’ objective data was later inserted into 

the BNs to update the beliefs and posteriors. The second round of validation was conducted using 

cross-validation based on the database. The success of the methodology depends on the quality of 

the data, the expertise of the experts, the compatibility of the elicitation method, and the rigor of 

the modeling process.  

Figure 6.4 presents the elicitation process used by this study. It starts with analyzing the issue, 

determining the scope of elicitation, and consequently, selecting experts and the proper elicitation 

method. The elicitation was conducted in 3 phases presented in Figure 6.5 Before starting the 



131 
 

elicitation process, previous project documents were thoroughly analyzed, key project variables 

were determined, and common risks were extracted and grouped into 11 categories. This 

classification significantly simplified and structuralized the elicitation process. 
 

Figure 6.4 Elicitation and Structure Learning Process of the study 
 

Figure 6.5 Integration of Elicitation and Project data for risk network parameter learning 

The first round of elicitation was through a poll survey sent to all the Project Managers and 

directors of the company, which aggregated to 30 people. 16 of these experts responded to the 

survey, and alongside their evaluation of relationships between project variables and consequent 

risk categories, they provided their educational level, position in the company, and years of 

experience. This questionnaire had risk categories as columns and different project variables as 

rows. Experts were asked to select if any of these project variables, like budget, delivery method, 
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etc., had an effect on that specific risk category or not, providing a yes or no answer. If more than 

60% of the answers were yes, that variable would be added to the structure of that risk category 

network. Based on the findings, the overall structure of the risk networks was created in GENIE 

software, a specific tool for BNs development and validation, with parent nodes as project 

variables, child nodes as risks, and arcs as their relationship with each other. This process is 

presented in Figure 6.6. 
 

Figure 6.6. Elicitation-based learning process 

In the second phase, the experts were interviewed individually on one or two specific risk 

categories. They were asked to select the likelihood of each risk in the risk category happening 

given a specific state of the affective variables on a scale of 1-5. For instance, given the evidence 

that the project type is residential, how likely it is that it faces a delay risk due to authorization and 

permit issues, and so on for all other types of projects. Then, these numbers were turned into 

numbers between 0 and 1, presenting the posterior probability of the risks given the realization of 

any of the conditions questioned, using the equation 6.4. Since most child nodes, in this case, the 

risks, have more than one parent, in this case, influential project variables, the joint distributions 

of collective posteriors are calculated by a geometric mean presented in Equation 6.5. These priors 

shape the background knowledge of the BNs derived from years of experience. Afterwards, the 

projects’ data was inserted into the model and the beliefs or posteriors were updated based on these 

observations. Combining two sources of data and judgement, this research succeeded in 

compensating for the data scarcity problem, as depicted in Figure 6.7. 

{IF Answer = “very low”, x=0.1} 

{IF Answer = “low”, x=0.3} 

{IF Answer = “medium”, x=0.5} 

{IF Answer = “high”, x=0.7} 

{IF Answer = “very high”, x=0.9} 

(6.4) 

 

(∏ 𝑥𝑖)𝑛
𝑖=1

1

𝑛 =  √𝑥1𝑥2 … 𝑥𝑛
𝑛

     (6.5) 

Where: 

 Answer is the linguistic assessment of experts, 

xi is the posterior inserted from ith parent node to the child node. 
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The third phase of elicitation was conducted after the project data insertion into the model. 

Experts were asked to validate the networks based on one of their ongoing projects, the data of 

which was not inserted into the network. Their feedback was registered, and minor changes were 

made to the model to make it more accurate and user-friendly. Afterward, a cross-validation based 

on the projects’ database was conducted, and the results were registered.  

Finally, the proposed probabilistic RM model for this study was developed, as presented in 

Figure 6.8, consisting of a) input data, including the independent project variables, which are the 

ones not influenced by choice of any other variable, and the dependent project variables somewhat 

affected by the independent ones, b) process layer, including the interrelations and influences of 

the project variables on each other and on the project risks, categorized in 11 groups, each having 

a number of risks, and c) output layer, that is the identification and assessment of the likelihood of 

the risks. It is noteworthy that for the ease of elicitation, the structure learning was based on the 11 

risk categories, but the parameter learning was conducted separately for each single risk. 

It is noteworthy that, although this probabilistic BN-based model is the primary alternative 

proposed for the research problem, Other deterministic ML-based RM models and Fuzzy logic-

based models are developed as well in order to conduct a comparative analysis and model 

validation, examining the variances in results if they are merely based on experts’ opinions or on 

projects’ data. Moreover, the same methods are applied to another database of construction 

projects with a higher number of values to assess the influence of database size on the obtained 

results from the ML models. 

 

 

Fig. 6.7. Beliefs Update and Parameter Learning 



134 
 

 

 

 

Fig. 6.8. General Risk Network of the study using BN  

 

6.5. Fuzzy Logic Model Development 

Fuzzy logic is a mathematical framework that deals with uncertainty and imprecision in using 

the fuzzy values and degree of membership between 0 and 1 instead of crisp and deterministic 

values, enabling a more flexible and nuanced representation of subjective and vague information 

like linguistic terms. In risk analysis for projects, fuzzy logic can be applied to handle the inherent 

uncertainties and imprecisions and representation and manipulation of linguistic variables and 

fuzzy sets, which are defined by membership functions. Fuzzy logic has a close relationship with 

the elicitation process of experts' subjective opinions. While asking experts about their assessment 

of the probability of some risks happening, it is much easier for them to express it using linguistic 

terms such as "low," "medium," or "high", which needs to be transformed into quantified and 

numeric values for analysis, pattern detection, and learning by the machine. Fuzzy sets, providing 

a distribution of membership values to each linguistic term, can capture the uncertainty associated 

with them and allow the incorporation of qualitative and expert knowledge in the risk assessment 

process. 

Fuzzification and defuzzification are two fundamental steps in the fuzzy logic process. 

Fuzzification involves mapping crisp input values into fuzzy sets by assigning membership 

degrees to relevant linguistic terms. This step converts precise measurements or data into fuzzy 

representations using different memberships like Triangular, Trapezoidal, Gaussian, and Sigmoid. 

If more than one expert is involved in the process, their answers should be aggregated. 

Defuzzification, on the other hand, is the process of converting fuzzy output values into crisp 

values that can be easily understood and used for decision-making, using different methods like 

centroid maximum membership value methods. These methods determine how the fuzzy sets are 

transformed into crisp values or how the aggregated fuzzy outputs are converted into a single crisp 

output value. 

The aim of this phase of the research is to assess the potential of Fuzzy logic in providing a 

formal framework to capture and represent these expert opinions in the form of linguistic variables 
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and fuzzy sets in the RM context. By incorporating fuzzy logic, the process of eliciting experts' 

opinions can be more systematic and structured, allowing for a more effective integration of their 

knowledge and expertise into the decision-making process. Fuzzy logic facilitates the modeling of 

subjective assessments, uncertainties, and imprecisions, providing a powerful tool for 

incorporating expert opinions in a quantifiable and interpretable manner. Therefore, it provides 

insightful results if the risk assessment is merely based on experts’ subjective opinions, which is 

later compared to results of ML methods merely based on project objective data and results of the 

BN model based on both experts’ and projects’ data. 

In this study, the fuzzy logic model was developed for the Procurement Risks category. 

Therefore, the input variables were the ones identified by experts on the first round of the survey 

as following: 

• "Project Type": states= {"Building: Residential", "Building: Commercial", "Industrial/Data 

Science/Logistic", "Pharma: vaccine and fill finish", "Pharma: other types"} 

• "Delivery Methods": states= {"DB", "Design+GC", "EPCM"} 

• "Number of Contractors": states= {"1", "more than 1"} 

• "Initial TIC budget": states= {"more than 15M", "between 15 and 60M", "more than 

60M"} 

• "Cost Contingency": states= {"sufficient", "insufficient"} 

• "Cost Overrun": states= {"low", "mid", "high"} 

• "Project Duration": states= {"less than 2y", "between 2 and 3y", "more than 3y"} 

• "Project Delay": states= {"low", "mid", "high"} 

• "Covid Suspension": states= {"yes", "no"} 

• "Jacobs Service Type": states= {"A_E", "EPCM", "PM_CM"} 

• "Jacobs Collaboration With the Headquarters": states= {"yes", "no"} 

• "Existence of Sustainability certificates": states= {"yes", "no"} 

 

11 experts participated in the survey where they were asked to assess the probability of each 

of the four risks in the Procurement Risks category, given different states of the abovementioned 

project variables based on their experience, using the Linguistic Terms: {“very low”, “low”, 

“medium”, “high”, “very high”}. Then, the triangular membership function was used to fuzzify 

each answer using the following membership ranges: 

 

Membership_ranges={ 

“very low”: [0.0, 0.166, 0.332] 

“low”: [0.166, 0.332, 0.498] 

“medium”: [0.332, 0.498, 0.664] 

“high”: [0.498, 0.664, 0.83] 

“very high”: [0.664, 0.83, 1.0]  

} 

 

Figure 6.9. presents the fuzzy membership function of each range using triangular distribution. 
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Figure 6.9. triangular fuzzy membership function used by the study 
 

Then the aggregation of the 11 answers for each probability was assessed using weighted 

average method and the value was defuzzified into a crips value between 0 and 1, showing the 

probability of that risk happening given specific states of each project variable. These values are 

comparable to the posteriors learned from 1 expert opinion and updated by project data in the BN 

model.  

There are two possibilities for completing the model. The first one is conducting risk assessment 

using Fuzzy Rules, which relate the input variables to the output risk probability. However, given 

that 12 input variables affect the risks and each of them has 2 or more states, the total number of 

rules required will be 116640 (5*3*2*3*2*3*3*3*2*3*2*2), which is almost impossible to model. 

Therefore, the integration of FL with the structure already learned in the BN model is suggested, 

where the CPT connecting child and parent nodes is filled with the probabilities learned through 

the Fuzzy Logic process. The structure consists of parent nodes (the project variables), 

intermediate nodes, and child nodes (the risks), as depicted in Figure 6.10., which greatly 

simplifies the rule-based analysis. 

 

Figure 6.10. BN graph structure for the procurement risks 

First, the membership functions for each part of the graph are simulated in Mathlab using the 

Fuzzy library. Then, all the rules for the rule-based analysis are inserted into the model. Each rule 

consists of if statements, in which different combinations of input variables’ states are noted, and 

the aggregated defuzzified values calculated from experts’ opinions are assigned to them as the 

probability of different outcomes based on the noted rules. The overall number of rules for each 
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part of the model equals the multiplication of the number of input variables’ states. Based on these 

rules and their output probabilities, the model can predict the probability of each of the 

intermediate nodes happening once the input values are inserted.  

However, Mathlab does not provide the probability distribution among all scenarios, which 

indicates the final value for each of the states (“yes”/”no”) of the nodes. Therefore, the probability 

distribution of the overall model, considering all the possible rules and scenarios, is calculated 

using the SciKit Fuzzy library in Python. The algorithm calculated the probability distribution of 

each rule and calculated the integral of its figure. Afterward, it sums up all the values and provides 

their average as the final probability of each of the states (“yes”/”no”) of the studied node, the code 

of which can be found here. Following this graph structure, it is possible to divide the overall risk 

network into smaller pieces and apply the FL model. In the end, and with the same process, the 

probability of each of the risks having a “yes” state is calculated. It is noteworthy that the prior 

distributions of different states of the child nodes are assumed equal since this model does not use 

any previous project data. Moreover, the aggregated values from experts serve as the posteriors of 

the network. 

6.6. Deterministic Machine Learning-based Models Development 

After developing the BN model based on both experts' opinions and project data, and FL merely 

based on experts' opinions, several other ML algorithms and methods were used to learn from only 

the project data and identify the Procurement risks. Since the inference is based on one source of 

judgment, frequent statistics is used instead of Bayesian statistics, and the probability of events is 

directly associated with the repetition in the database. Hence, instead of probabilistic models, 

deterministic ML models are developed to predict one certain output without assigning a 

probability distribution to it. In other words, these algorithms follow a fixed set of rules and 

computations to make predictions or classify data, and their outcomes are entirely determined by 

the input data and the algorithm itself. Deterministic algorithms do not incorporate randomness or 

probability in their decision-making process. 

For this purpose, 8 different ML algorithms, mostly deterministic ones, including Decision Tree, 

XGBoost, Logistic Regression, Support Vector Machine, Random Forest, K-Nearest Neighbor, 

Naïve Bayes Classifier, and ANN are applied to the already augmented database of projects, 

consisting of 88 rows. Although this is a very limited number of data, which negatively affects the 

performance of the ML algorithm, the obtained results provide lucrative insights into the influence 

of inference sources and the role of uncertainty in the risk identification assessment process, which 

are compared to results obtained from BN and FL models. While deterministic models are of 

higher reproducibility and stability, they may struggle to handle complex and uncertain data 

patterns or capture inherently probabilistic phenomena. In such cases, stochastic or probabilistic 

algorithms, which incorporate randomness or uncertainty, may be more appropriate. This is a good 

exercise to realize what type of inference and statistics fits the RM domain best and for limited 

databases like the research case study. As all the used algorithms have been thoroughly introduced 

in Chapter 4, no additional information on their structure is provided here. The Python code used 

for the abovementioned algorithms in the first case study can be found here. 

https://colab.research.google.com/drive/18UY7LBSlqCH6mGXLTbvfeQ8few8cbbot#scrollTo=715tBj3tJdv8
https://colab.research.google.com/drive/1WksBpEJ6X7vJi-LYdu3LW0lxT3pHbdpd
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The results obtained from each algorithm are registered for comparative analysis based on the 

data requirements, structure, the role of uncertainty and non-linearity, and inference of each of 

them in the results section. It is noteworthy that the performance and accuracy of the algorithms 

highly depend on the input data quality and quantity. Even if GANs have augmented the first case 

study database, it is still very small and limited, which can challenge the successful application of 

the deterministic ML algorithms and may result in overfitting. 

6.7 Implementation of the Probabilistic and Deterministic ML Models on 

another Database with a Higher Volume of Data 

In order to assess the effect of database size on the performance and accuracy of ML algorithms 

and to evaluate the effectiveness of each algorithm with respect to its unique structure, a second 

case study with a considerably larger database was examined, which aimed to predict the delay 

and cost overrun risks in construction projects using 6 ML algorithms a) Artificial Neural Network, 

b) Decision Tree, c) XG Boost, d) Linear Regression, e) Ridge Regression, and f) Bayesian 

Network. It is an open-access real-world database of 13570 New York City school building 

construction projects, which is retrieved from "the Capital Project Schedules and Budgets" 

database available on the City of New York's Open Data Portal 

(https://data.cityofnewyork.us/Housing-Development/Capital-Project-Schedules-

andBudgets/2xh6-psuq), maintained by the New York City government.  

Linear regression is applicable to this case study since, in contrast to the previous one, the type 

of the problem is regression. It is a widely employed ML algorithm that predicts a continuous 

output variable based on input variables. Often used as a benchmark, it fits a straight line or plane 

through the data to capture the underlying relationship between inputs and output. The objective 

is to estimate coefficients that effectively predict the output variable from input variables. These 

coefficients can then be used to make predictions for new input values. The method of Least 

Squares is commonly used to estimate the coefficients by minimizing the sum of squared errors 

between predicted and actual values (Sanni-Anibire, Zin and Olatunji, 2021). Ridge Regression, a 

variation of linear regression, addresses multicollinearity issues caused by highly correlated input 

variables. It achieves this goal by incorporating a penalty term in the least squares method 

(Khodabakhshian et al., 2023). 

Before data cleaning the database had 13570 rows or projects and 14 columns or project 

attributes, including: Project Geographic District, Project Building Identifier, School Name, 

Project Type based on funding, Project Description (Description of construction/ retrofit services 

and work packages), Project Phase Name, Project Status (completed, ongoing), Project Phase 

Actual Start Date, Project Phase Planned End Date, Project Phase Actual End Date, Project Budget 

Amount ($), Final Estimate of Actual Costs Through End of Phase Amount ($), Total Phase Actual 

Spending Amount ($), DSF reference Number(s). The substantial number of rows and influencing 

attributes enables ML algorithms to capture patterns in data more effectively, leading to more 

accurate predictions. Specific attributes, such as the type of construction work, planned and actual 

project end dates, and total costs, were considered particularly important for differentiating 

construction projects and allowing the algorithms to generate meaningful predictions. However, 
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only 1489 records with 17 data columns remained in the database after the data cleaning and 

filtering phase, during which irrelevant columns such as “Project School Name,” “DSF 

Number(s),” “Project Building Identifier,” and “Project Type”, incomplete projects with missing 

values specially in actual end date and total spending costs columns, errors and outliers like 

negative value for time and cost-related attributes, and duplicates were dropped from the database. 

Furthermore, date attributes were converted into Python’s datetime objects with the "%m/%d/%Y" 

format, and “Week Delay” and “Week Duration” values were calculated based on the difference 

between "Project Phase Actual End Date" and "Project Phase Planned End Date”, and the 

difference between "Project Phase Actual End Date" and "Project Phase Actual Start Date" 

respectively. The categorical variables were transformed into numerical values using Label 

Encoding, which is super useful when the order of the categories is not essential. A similar 

procedure was conducted for the "Project Description" column, which usually contains different 

types of work separated by a delimiter and is not interpretable for ML algorithms. For this purpose, 

a one-hot encoding approach was applied, creating ten new columns, each for a specific work 

package; the value of the value of each could be 0 or 1. Finally, projects with no work package 

identified, with delays exceeding 80% of the duration, and with cost overruns of more than 75% 

of the total budget were dropped from the database as outliers, deteriorating the accuracy and 

generalizability of the ML model. Following the data preprocessing steps, redundant columns such 

as 'Project Status Name' and 'Project Description' were removed, as their information had been 

effectively captured in new binary variables. 

Figure 6.11. presents the research scheme and steps of this case study, with the ultimate goal of 

conducting a comparative analysis between the performances and prediction precision of different 

ML algorithms for delays and cost overruns, two of the most significant construction risks 

concerning each algorithm's structure and learning process. 

 
Figure 6.11. Second Case study research scheme and flowchart 

 

Five models based on the five abovementioned algorithms are developed. The target variables 

are the "Week Delays" and "Total Phase Actual Spending Amount," the precision to predict which 

indicates the performance of the ML algorithms. The dataset is divided into train and test datasets 

with an 80%-20% proportion, so that the model can be trained on one subset and evaluated on 

another, providing an unbiased assessment of its performance. The primary goal of model training 

is to learn underlying patterns and relationships between the predictor and target variables through 
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an iterative process wherein the algorithm minimizes prediction errors by adjusting its internal 

parameters, while testing enables the evaluation of the model's generalizability to unseen data. The 

input data is scaled and normalized before the training process for the ANN model to ensure that 

it has a similar range and variance to prevent specific features from dominating the learning 

process. 

Several metrics, such as R squared, Mean Absolute Error (MAE), Mean Squared Error (MSE), 

and cross-validation (CV) scores, are employed to evaluate the performance of the models in the 

testing process. R-squared, also known as the coefficient of determination, is a statistical measure 

ranging from 0 to 1, representing the proportion of the variance in the dependent variable that can 

be explained by the model's independent variables. Mean Absolute Error (MAE) measures the 

average magnitude of the errors in the predicted values, irrespective of their direction, while Mean 

Squared Error (MSE) calculates the average squared differences between actual and predicted 

values. Cross-validation (CV) is a technique used to evaluate a model's performance by 

partitioning the dataset into k subsets or folds. The model is trained on k-1 folds and tested on the 

remaining folds. This process is repeated k times, with each fold used as the test set once. 

Analyzing these metrics makes it possible to identify each model's strengths and weaknesses and 

select the most suitable model. Moreover, using multiple evaluation techniques helps to mitigate 

the risk of overfitting and ensures that the chosen model can generalize well to new, unseen data. 

Ultimately, a thorough model testing process guarantees the reliability and validity of the findings 

of the study. 

As the last step, the results obtained from each algorithm are compared to identify the most 

accurate and well-performing one. The structure and data requirements of each algorithm are 

briefly stated and analyzed to identify the reason behind their performances. This step is super 

important to facilitate the ML algorithm selection based on available risk data, database size, 

application scope and target, and computational complexity of each model.  

6.8. Models Validation and Results Comparison 

The learning process of each algorithm is followed by the validation and testing phases, where 

the results obtained from the algorithm are compared to the actual data in the test dataset to assess 

its precision and performance. Moreover, a comparative analysis was conducted between all the 

algorithms based on the precision and accuracy of results and the variances between the predicted 

probability of each of the risks.  

6.8.1. Model Validation Methods 

In machine learning model development, validation refers to the process of evaluating the 

performance and generalization ability of a trained model beyond the training data using unseen 

data and identifying potential issues such as overfitting or underfitting. The purpose of validation 

is to estimate how well the model is likely to perform on new, unseen examples. Validation can be 

conducted using various methods, such as: 

a) Holdout validation is done by splitting the dataset into two parts: training and validation 

sets. The model is trained on the training set and evaluated on the validation set. The 
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performance metrics obtained on the validation set provide an estimate of how the model 

will perform on unseen data. 

b) K-fold cross-validation, where the dataset is divided into K subsets or folds. The model is 

trained and evaluated K times, with each fold used as the validation set once while the 

remaining folds are used for training. The performance results from each fold are then 

averaged to provide an overall estimate of the model's performance. 

c) Stratified cross-validation, when dealing with imbalanced datasets where the distribution 

of classes is uneven. It ensures that each fold has a representative proportion of examples 

from each class, helping to obtain more reliable performance estimates. 

d) Leave-One-Out Cross-Validation (LOOCV), using all but one sample for training and 

using the single left-out sample for validation. This process is repeated for each sample in 

the dataset.  

e) Time Series cross-validation, used for time series data, where the temporal order of the 

data points is important. It involves creating training and validation sets by using data from 

earlier time periods for training and data from later time periods for validation. 

f) Experts’ validation, where experts implement the model on their ongoing projects or 

unseen data and evaluate its performance. 

These validation methods help assess the model's performance and make informed decisions 

regarding hyperparameter tuning, model selection, and potential improvements in the training 

process. This research initially used experts' validation to validate the structure of the BN and the 

FL model, then used K-fold cross-validation for the BN model and Holdout and K-fold cross-

validation for other ML algorithms. 

6.8.2. Model Scalability and Adaptability 

The risk realm is highly context-driven and subjective, as the types and probabilities of risk can 

greatly differ from one location to another and from one type of project to another. Furthermore, 

as the three solutions are originally designed for the project portfolio of a specific client, they are 

not automatically scalable to other types of portfolios. However, it possesses a high degree of 

adaptability and can be customized for other companies with distinct project portfolios by making 

minor adjustments in the models. The overall framework and application steps remain consistent, 

while the variables in the developed BN or deterministic ML models can be easily modified and 

updated when new data is introduced. This flexibility allows the models to be applied to various 

databases. However, the scalability of the FL model is comparatively limited. Its effectiveness 

heavily relies on the implicit knowledge and expertise of specific professionals, which can 

significantly vary between companies or even across different countries. Therefore, data-driven 

models like ML have a higher scalability in comparison to expert systems like FL. On the other 

hand, integrating subjective experts’ opinions helps tailor the developed model better to the 

requirements of the company. Therefore, the BN model benefits from both scalability and the 

ability to be tailored to the specific context of the projects. 
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6.9. Integration of the Proposed Model with the Company’s Project 

Management Processes 

There are many drivers and benefits in using digital technologies on a broad scale that interests 

construction companies including a) lower business costs of manpower with reduced need for 

human intervention, b) real-time collection, processing, and monitoring of data compared to 

human agents, c) faster prediction of risks, delays, and clashes, due to simulating the digital version 

of the project in advance, d) enhancing workers’ safety by using robots in dangerous activities, 

and e) allocating machinery and resources to the activities Optimizely (Yaseen et al., 2020). AI 

specifically aims to boost labor efficiency by 40% and double annual economic growth rates by 

2035 ( Purdy and Daugherty, 2016). Nevertheless, to obtain these benefits, companies have to bear 

high implementation costs, immensely change their established process and organizational 

structures, secure data privacy and cyber security, and educate their personnel (Oesterreich and 

Teuteberg, 2016). Moreover, AI applications can lead to numerous challenges, harm and biases, 

and ethical and social issues, which need to be studied and addressed for a successful and harmless 

application in the industry, which are thoroughly analyzed in the next subchapter. In general, AI’s 

application in construction companies has its advantages and disadvantages, or the opportunities 

and challenges, which are briefly listed in Table 6.1.  

The main aim of this industrial research is to integrate the proposed AI-based method with the 

current company's project management processes, such as RM tools for risk identification and 

assessment automation, quality control tools for project success and KPIs prediction, and 

procurement and sales unit processes for bid/no bid decision making. The integration is based on 

produced outputs by the model that can serve as input for other departments' information 

systems. Through an integrated and synced platform, information on new projects is 

automatically inserted into the developed ML-based RM model from project database, and the 

output of the model, the predicted risks, and their probability are inserted into cost management, 

time management, quality management, resource planning, and HSE services software to be 

considered for decision making and resource allocation. Moreover, the frequent updates and 

surveillance of risks will make constant progress reporting possible in monthly reports to keep all 

the stakeholders informed and engaged in the risk mitigation process. 

An important issue to take into account is that even though this model is developed through a 

Ph.D. research framework, it will be implemented and used in the company for long after the 

project is finished and the model is finalized. Therefore, strategic decisions need to be made on 

model ownership, confidentiality, and copyright. Moreover, training sessions will be held to 

educate the users with basic ML knowledge and guidelines for the use of the model. Model 

surveillance and maintenance are issues that need to be discussed with the company management 

to either assign people from the company to take care of them or outsource the responsibility. 
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Table 6.1. AI application Opportunities and Challenges in construction firms (Regona, Yigitcanlar and Xia, 2022) 

Opportunities Challenges 
Provide a competitive advantage to businesses that use 

AI, as it will reduce economic costs 

AI applications are highly specialized and need 

constant algorithms training to identify patterns 

Increase productivity and efficiency of on-site personnel The fragmented nature of the construction industry 

may result in data scarcity 
Reduce the time spent on repetitive tasks by using big 

data 
High initial costs in the research and development of 

AI platforms 
Identify high-risk issues and automatically classify 

them into actionable categories 

AI platforms need investment constantly to keep data 

up to date 

Improve current work processes Implementation of AI requires businesses to move 

away from traditional ideas 

Increase the consistency in project related work that 

will result in higher quality 

Security and reliability of a large amount of data 

Avoid possible delays through predictive modeling Multi-point responsibility between stakeholders may 

reduce accountability 
Extract data from the complex document and 

categorize them based on patterns easily 

Non-standardization of a construction project makes it 

difficult to implement AI 

Reduce the probability of on-site accidents and 

mitigate safety risks 

Require an AI expert that will involve additional costs 

Increase accuracy of plans and allow for better 

verification 

High resistance from industry bodies 

Produce outcomes that can be easily understandable by 

all stakeholders, which enhances efficient 

communication 

Ethical, moral, and legal issues that are yet to be 

addressed by the government or institutional bodies 

Enhance consistency and reliability, as AI is highly 

unlikely to 

make mistakes (provided data are correct) 

High impact on traditional skills and may impact job 

availability 

  

6.10 Addressing the Potential Ethical, Moral, and Social Harms and Biases of 

the Proposed Model in Practice 

Being overwhelmed with the numerous advantages of AI and industry 4.0 technologies in 

construction, the potential harms, biases, and discriminations embedded in and caused by such 

technologies in ethical and social contexts are usually overlooked. As creators of the built 

environment, engineers, architects, and construction managers have a vital social responsibility to 

represent the needs of all social groups, regardless of ethnicity, race, and gender, in their projects 

to serve sustainable development goals. Therefore, the proposed technology should be human-

centric and socially harmless to them and the environment they live in. Hence, the social, ethical, 

and moral responsibilities of such technologies, beyond the technical standards, should be 

addressed as prerequisites to implement them in the design, construction, and operation phases of 

projects (Weber-Lewerenz, 2021). This initiative gives rise to the concept of Industry 5.0 for a 

transition toward a sustainable, human-centric, and resilient industry that looks beyond 

productivity and efficiency as end goals (European Commission, 2021; Kozlovska, Klosova and 

Strukova, 2021). However, the tradeoff between delivering building projects faster, cheaper, and 

higher quality while following ethical and moral regulations is not always easy, considering the 

great capital, lengthy process, numerous stakeholders, and complex data environment in 

construction projects. 
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The inherent complexity, bureaucracy, and change-resistant culture in the construction industry, 

as well as technology switching costs and market uncertainty, slow down the industrial evolution 

and digital-data-driven systems integration in projects, which can be perceived both as a threat and 

an opportunity (Manuel et al., 2019; Zhang, Pan and Wu, 2021). The lack of established standards 

and references on data security and protection, knowledge transfer, interoperable formats, data 

ownership, digital contracts, etc., as well as the lack of proper training to familiarize the 

professionals with digital technologies, are hindering the widespread application of industry 4.0 

technologies in practice (Oesterreich and Teuteberg, 2016). However, it leaves room to integrate 

ethic codes and standards in writing such standards for a human-centric and ethic-aware 

application of technology in the sector. This subsection aims to delineate the potential harms and 

ethical issues that might arise during different stages of the AI application process, as well as to 

determine the key aspects and components of an ethics-aware technology application framework 

in the construction industry, which can greatly benefit the integration of the developed model with 

the company processes. 

6.10.1 Ethics of Digital Technologies 

The implementation of AI models may raise various ethical, moral, and social dilemmas that 

digital agents are not equipped to resolve. Ethical dilemmas occur when a decision must be made 

between two alternatives that are both ethically problematic and can result in unethical behaviors, 

not following some values, norms, and laws in the society like justice and inclusion ( Arroyo, 

Schöttle and Christensen, 2021). On the other hand, a social dilemma happens when there is a 

conflict between self and collective interests (Van Lange et al., 2013). A deep understanding of 

ethics and morality is beneficial in addressing these dilemmas. Morality refers to internal 

principles and codes of conduct regarding right and wrong that are upheld by the individuals 

themselves and not by any law or regulation ( Stanford Encyclopedia of Philosophy, 2020), while 

ethics are societal principles and disciplines to guide individuals on how to act in different 

circumstances based on what is deemed right or wrong (Kuipers, 2020; Stanford Encyclopedia of 

Philosophy, 2022). Both principles are influenced by various cultural, social, organizational, 

geographic, contextual, and historical factors and are intended to promote positive interactions and 

prevent negative ones (Kuipers, 2020), and to create stronger, safer, healthier, more inclusive, and 

more just societies.  

Applied ethics defines protective boundaries alongside the autonomy and authority given to a 

human agent or a technology agent, like AI. AI ethics, as a set of values, principles, and techniques 

employing widely accepted standards of right and wrong in such dilemmas (Leslie, 2019), is 

developed to address ethical issues related to the AI system and its developers (Siau and Wang, 

2020) that may arise when designing and developing AI (e.g., human biases that exist in data, data 

privacy, and transparency), and ethical issues caused by AI (e.g., unemployment, wealth 

distribution, and change in power dynamic).  

As evident in the theoretical definition, AI ethics is directly connected to human-technology 

relationships and trust. Trust is a psychological state comprising the trustor’s intention to accept 

vulnerability based on positive expectations of the intentions or behavior of the trustee (Kuipers, 

2020). Trust can motivate an action or collaboration, in this context, public engagement in AI vast 
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applications. Once the society or a part of the society, in this case, the construction industry 

professionals, are convinced that AI systems are human-centered and serve humankind, are 

reliable, are compatible with the established workflows and reinforce best practices instead of 

replacing them, are interactable and controllable and are inclusive and accessible to all groups of 

society, they will be more open to accept and promote them (Emaminejad and Akhavian, 2022). 

A better knowledge of human rights laws can help AI algorithm developers eliminate or at least 

alleviate the potential harms, biases, discrimination, and invasion of privacy issues in AI (Siau and 

Wang, 2020). Therefore, it is important for the AI developers, as well as the researchers and 

practitioners who are going to use it, to understand existing ethical principles that need to be 

applied to construct ethical AI models following the same principles. Such AI models capable of 

translating ethical principles into practical and measurable metrics throughout the planning, 

development, deployment, tracing, and operation phases of the system are addressed as moral 

autonomous systems, ethical controllers (Trentesaux and Karnouskos, 2022), artificially intelligent 

autonomous systems (Russell, 2016), or responsible AI (Trentesaux and Karnouskos, 2022; 

Russell, 2016) in the literature. The main ethical principles that need to be addressed in developing 

ethical AI models for construction projects are as following (Arroyo , Schöttle and Christensen, 

2021): 

• Sources of Data, Biases, and Discriminations: The accuracy of AI algorithms depends on 

the quality and quantity of input data. Specially, in the construction industry, with inherent 

data scarcity and subjectivity issues, ensuring objectivity, completeness, generalizability, 

fairness, diversity, inclusion, and confidentiality of collected data becomes even more 

critical (Weber-Lewerenz, 2021; Koolen and van Cranenburgh, 2017). AI-driven 

technologies reflect and amplify patterns of marginalization, inequality, and discrimination 

in the social context (Leslie, 2019), which are critical issues to consider when choosing the 

input data and algorithm to use for a specific problem (Altman, Wood and Vayena, 2018; 

Weber-Lewerenz, 2021). 

• Trust in AI Technology and Decisions: Establishing trust between the AI agents and human 

counterparts is determined by a) the legal environment and standards, and b) the technical 

aspects of the system, warranting safety, security, transparency, and explainability 

(Emaminejad and Akhavian, 2022), c) concerns regarding job displacement caused by AI 

(Gillespie, Lockey and Curtis, 2021), and d) the level of trust and reliance on decisions and 

predictions made by AI (Arroyo, Schöttle and Christensen, 2021). Based on a thematic 

analysis in Architecture, Engineering, and Construction (AEC) literature conducted by 

Emaminejad and Akhavian (2022), four key dimensions to build trust in the AI algorithms 

are a) Explainability and interpretability, b) Reliability and Safety, c) Performance and 

Robustness, and d) Privacy and Security; which are as following. 

• Explainability and Interpretability: These concepts indicate the state where the operations of 

a system can be understood by a human through introspection or explanation (Haibe-Kains 

et al., 2020), which is of special importance in the construction industry, where the 

professionals are not familiar with advanced structures of AI algorithms like black-box. 

Therefore, the black-box to white-box transformation of AI, like the use of Probabilistic 

Graphical Models (PGM) over ANNs ( Hvam and Mortensen, 2008; Pan and Zhang, 2021) 
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allows intuitive interpretation of users on how algorithms and models arrive at an output 

(Pillai and Matus, 2020), keeping them in their decision loop and ensuring them of model 

accuracy, fairness, and transparency (Gunning et al., 2019). 

• Reliability and Safety: They indicate the capacity of the models to avoid failures or 

malfunctions and exhibit the same expected behavior over time (Hoff and Bashir, 2015). 

Both concepts are related to trust from a performance (rather than a moral) angle and find 

meaning in human-technology interactions (Malle and Ullman, 2021). Overtrust and 

overreliance on technology may lead to ignorance of its risks, the solution to which is 

training and educating the users on the abilities, reliability, and failure of AI agents ( Merritt 

et al., 2015). 

• Performance and Robustness: Performance indicators offer standardized and common 

criteria to compare different AI models (Glikson and Woolley, 2020). Robustness refers to 

performance consistency in different situations, which in construction translates to the 

ability to successfully transfer models between different projects, sectors, and locations 

considering the uniqueness and context-drivenness of projects without compromising the 

user’s trust in the system (Emaminejad and Akhavian, 2022).  

• Privacy and Security: The protection of human identity and sensitive data, as well as the 

protection of the system against attacks that breach privacy, need to be addressed (Orr and 

Davis, 2020). Privacy is defined as the right not to have personal data acquired, observed, 

and used, while security in AI ensures the confidentiality of data and preserves information 

integrity. Data regarding contract information, transactions, blueprints, photos, and project 

personnel are considered confidential, and careful attention must be paid to guarantee data 

confidentiality and prevent data leaks (Emaminejad and Akhavian, 2022). 

• Autonomy and Accountability: AI can have different levels of autonomy and authority 

(Abioye et al., 2021): a) Artificial Narrow Intelligence (ANI), b) Artificial General (or 

“strong”) Intelligence (AGI), and c) Artificial Super-Intelligence (ASI). ANI aims to 

automate some repetitive and learnable activities without the ambition to substitute human 

intelligence authority or decision-making. AGI aims to match human-level intelligence in 

any field and type of human activity and is capable of complex decision-making. ASI aims 

to exceed human intelligence and faculties, staying unbeatable by any human mind (Müller 

and Zalta, 2020). The stronger the AI system autonomy, the more accountability it should 

bear and the more serious the accountability becomes, since it is difficult to determine the 

accountable agent, such as the programmer, data owner, or end-user, for the mistakes or 

accidents (Leslie, 2019). 

6.10.2 Ethical Standards, Laws, and Regulations 

Codes of ethics, regulations, and standards developed by governments, companies, technical 

organizations, trade unions, and societies are the most influential factors in building public trust 

toward AI (OECD, 2019; Galindo,2021). Such regulations enforce compliance with ethical and 

moral values and determine human responsibility in the development and deployment of intelligent 

systems, filling the gap that emerges from the increased automation of decisions (Theodorou and 

Dignum, 2020). AI standards have been developed on national and international levels, such as 

the Organization for Economic Co-operation and Development (OECD) (OECD, 2019; Galindo, 



147 
 

2021), the Institute of Electrical and Electronics Engineers (IEEE) standardization Association 

(IEEE, 2021), Future of Life Institute (Future-of-Life, 2017), International organizations for 

standardization such as IEC and ISO standards (ISO, 2021), European Union, European 

Commission’s High-Level Expert Group on AI (European Commission, 2019), US National 

Institute of Standards and Technology (NIST) (NIST, 2021), and many more. These standards and 

regulations need to be supported by the AI community, State administration, and Standardization 

bodies (Mezg´ar and V´ancza 2022). These principles aim to promote a) inclusive growth, 

sustainable development, and well-being through trustworthy AI, b) human-centered values and 

fairness throughout the AI system lifecycle, c) transparency, explainability, and responsible 

disclosure regarding AI systems, d) robustness, security, and safety, and systematic risk 

management, e) accountability of AI systems (Yueng, 2020), g) culture of awareness and 

alignment of AI with ethical values, h) the competitiveness of the construction industry, and i) 

education and awareness-raising for the potentials, opportunities and risks of AI (Weber-

Lewerenz, 2021). There are two approaches for developing ethical standards (Nagel, 2021), 

finding a balance between which can resolve ethical dilemmas in AI systems: 

a) The Consequentialist justification evaluates and weights actions in terms of their long-term 

impact and outcome, their implied costs and benefits.  

b) The Deontological approach suggests sticking to some basic principles that embody the 

notion of values in a society and directly evaluating the rightness or wrongness of actions 

and policies without considering their direct impact explicitly. 

The aim of this subsection is to develop an ethical AI implementation framework with the help 

of the abovementioned standards that can address the potential ethical, social, and moral dilemmas 

raised by AI and can facilitate the wider and harmless application of AI in the construction 

industry, presented in the Results section. 
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Chapter 7: Case Studies 

7.1. Case studies introduction  

This research follows a case study approach to implement the proposed solutions and compare the 

results. Two case studies have been used for this purpose. The first one is the portfolio of 44 

construction projects conducted by the industry partner of the study, which is of small size and has 

intrinsic complexities like missing values and various types of risks. It consists of 47 columns as 

input project variables and 65 columns as output project risks for each project. The second case 

study is entirely different in terms of the size of the database, number of features, and data 

complexity. It is an open-access database of school buildings’ construction in New York, which 

includes data on more than 13570 projects, 12 input features, and two output features. The main 

objective of implementing the proposed solutions on two completely different databases was to 

conduct a comparative analysis between the results to delineate the importance of the database size 

and type of data in the performance of each ML algorithm. As a result, this research can contribute 

to construction companies' proper choice of ML algorithms with respect to their data availability. 

7.1.1. First Case Study: 

The first set of Case studies includes the building and pharmaceutical construction projects of 

Jacobs SPA, Italy, which are 44 projects in total. These projects are chosen among the vast 

portfolio of Jacobs' projects due to their ease of data acquisition, i.e., the availability of project 

documents and project manager for conducting interviews. Furthermore, as Jacobs Italy conducts 

mainly building and pharmaceutical projects, the data gathering was conducted in a way that 

creates a proper balance between different types of projects for future use. A general list of 

different types of projects and their other features like budget ranges, intervention types, and built 

area ranges were prepared based on the company's statistical information and was used for ease of 

reference by the project managers when filling in the missing values. That is, for each project, an 

excel spreadsheet was prepared with all the features of the projects, the state of which needed to 

be chosen from a dropdown menu by the corresponding project manager, and on the second page, 

there was a list of all possible risks identified in previous projects, from which the project manager 

needed to select the ones that happened in their project. Figure 7.1.a. to 7.1.i. show the statistical 

distribution of projects in the database. 

   

Figure 7.1.a Different project 

types in the database 
Figure 7.1.b Different intervention 

types in the database 
Figure 7.1.c Different project 

sizes in the database 
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Figure 7.1.d Project delivery 

methods in the database 

Figure 7.1.e Project TIC budget 

groups in the database 

Figure 7.1.f Project durations in 

the database 

   

Figure 7.1.g Different Jacobs 

services in the database 

Figure 7.1.h Jacobs contract types in 

the database 

Figure 7.1.i Jacobs internal 

budget groups in the database 

 

The project variables of these 44 projects are collected from their documents and through 

interviews with their project managers. The number of these variables is 47, which could influence 

specific types of risks in the projects. These variables are: 

• Property/Project Type (Residential, Commercial, Pharma, Data Centers) 

• Built Area (m2) 

• Lot Size (m2) 

• Number of Floors 

• Number of End Users (for example number of residents) 

• Intervention Type (new construction, renovation and development) 

• Delivery Method (DB, EPC, Design+ General Contractor) 

• Number of Contractors (one GC or multiple subcontractors) 

• Number of Design/Eng. Companies (one or multiple) 

• Initial Construction Budget (TIC budget value) 

• Cost contingency in TIC budget 

• Construction cost overrun 

• Contractual discounts 

• Initial schedule duration 

• Project Start delay 

• Project Closure delay 

• Covid suspension 

• Specific Quality standards used 

• Sustainability certificates application (LEED, BREEM, WELL) 
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• Specific HSE standards or safety protocols used 

• Other specific building permits 

• Number of Accidents 

• Number of near misses 

• Number of site workers per day 

• Project Location 

• Outdoor temperature and condition 

• Seismic Zone (1,2,3,4,5) 

• Soil type (clay, sand and gravel, rock) 

• Existence of underground waters 

• Existence of water pollutants 

• Structure type (concrete, steel, others) 

• HVAC system (central, local) 

• Energy demand amount for heating/cooling/electricity 

• Jacobs Internal: Company Service Type in the project (PM_CM, A and E, EPCM) 

• Jacobs Internal: Company Work Packages involved (Civil, electrical, mechanical, etc.) 

• Jacobs Internal: Project phases involved (partially, completely) 

• Jacobs Internal: Contract type (lump-sum, reimbursable and cost plus) 

• Jacobs Internal: Contracting relationship with client (joint venture, direct to owner) 

• Jacobs Internal: Collaborations with other headquarters 

• Jacobs Internal: Contract value 

• Jacobs Internal: Cost overrun 

• Jacobs Internal: Gross Margin (revenue-cost) 

• Jacobs Internal: approved change orders’ amount 

• Jacobs Internal: Value plus saving 

• Jacobs Internal: contract duration 

• Jacobs Internal: time overrun 

Moreover, a comprehensive list of risks that occurred in previous projects was composed. The 

risks were grouped into 11 categories: 1) Technical, Scope, and Management risks, 2) 

Administrative risks, 3) Communication risks, 4) Environmental risks, 5) Procurement risks, 6) 

Resource risks, 7) Safety risks, 8) Schedule risks, 9) Stakeholders risks, 10) Quality and change 

risks, and 11) financial risks. Some additional risks were added from literature and interviews with 

project managers of the company, and some irrelevant risks were dropped from the list, 

aggregating to a total of 65 risks.  

In order to deepen the analysis of the case study projects, a feature importance analysis and a 

project significance analysis were conducted using random forest and linear regression built in 

functions. Feature importance analysis is a technique used in various fields, including machine 

learning and statistical modeling, to determine the relative importance or contribution of different 

features or variables in predicting a target or outcome. Tree-based models, such as decision trees 

and random forests, provide a built-in measure of feature importance. The importance is calculated 
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based on how much each feature contributes to reducing the impurity or variance in the model. 

Features that are frequently used for splitting nodes higher up in the tree are considered more 

important. Figure 7.2. and 7.3. present the feature importance of two of the procurement risks, 

“Change of procurement strategy and contract type” and “Delay due to contract awarding/ tender 

closing”, respectively. 

 
Figure 7.2. Feature importance for “Change of procurement strategy and contract type” risk prediction 

Figure 7.3. Feature importance for “Delay due to contract awarding/ tender closing” risk prediction  
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Furthermore, in order to determine the influence of each of the 44 projects on the final output, 

a sensitivity analysis was conducted. Initially, the overall mean square error (MSE) of a simple 

logistic regression model ran on the entire database was calculated. Then, each row of the database 

was excluded one by one, creating a new database of the remaining 43 projects, and the MSE of 

the new database was calculated and saved in a new variable called MSE_new. The difference 

between the overall mean square error (MSE) of the prediction and the mean squared error of the 

new database excluding one row or project (MSE_new) was calculated and saved in a list called 

influences. The greater the amount of this value, positive or negative, the more influential and 

significant that project was in the overall precision of the model. Figures 7.4. and 7.5. present the 

project influence/significance analysis for two of the procurement risks, “Change of procurement 

strategy and contract type” and “Delay due to contract awarding/ tender closing”, respectively. 

 

Figure 7.4. Project Significance for “Change of procurement strategy and contract type” risk prediction 
 

Figure 7.5. Project Significance for “Delay due to contract awarding/ tender closing” risk prediction 



158 
 

Additionally, in order to visualize the relationship between the value of different features in the 

database and the Mean Absolute Error (MAE) of the prediction of each project or row of data, an 

analysis was performed in python. For each row in the data frame, the script dropped the current 

row from the input data and target variable, trained the linear regression model on the remaining 

data, and then used the model to predict the target variable for the dropped row. The MAE between 

the predicted and actual target variable for the dropped row was calculated and stored in a list, and 

later, added as a new column in the data frame. The values of all the columns, including the newly 

added MAE column, were standardized using sklearn's StandardScaler, scaling the values to a 

mean of 0 and a standard deviation of 1. Figure 7.6. and 7.7 present the line plot of this analysis 

for predicting risk 1 and 2, respectively, where each line represents a different project. The x-axis 

represents the different features, and the y-axis represents the standardized values of these features.  

 
Figure 7.6. Relationship between project features and MAE value for each project for risk 1 prediction 
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Figure 7.7. Relationship between project features and MAE value for each project for risk 2 prediction 

 

7.1.2. Second Case Study: 

The second case study is an open-access database sourced from the Capital Project Schedules 

and Budgets database available on the City of New York's Open Data Portal 

(https://data.cityofnewyork.us/Housing-Development/Capital-Project-Schedules-

andBudgets/2xh6-psuq), maintained by the New York City government. The reason for choosing 

this case study and applying all the developed models to it was to compare the results obtained 

from them when the size of the database is enormous and highlight the importance of the database 

size in the performance of different ML models, and consequently the choice of the ML model 

type. Before data cleaning the database had 13570 rows or projects and 14 columns or project 

attributes, including Project Geographic District, Project Building Identifier, School Name, Project 

Type based on funding, Project Description (Description of construction/ retrofit services and work 

packages), Project Phase Name, Project Status (completed, ongoing), Project Phase Actual Start 

Date, Project Phase Planned End Date, Project Phase Actual End Date, Project Budget Amount 

($), Final Estimate of Actual Costs Through End of Phase Amount ($), Total Phase Actual 

Spending Amount ($), DSF reference Number(s). However, after data cleaning and filtering, only 

1489 completed school-building projects were selected for further analysis. Moreover, only 7 data 

features were selected as influential for modeling, and 10 new columns created by one hot encoder 

were added for the work type category. Table 7.1 presents the statistical information of the 

database. 
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Table 7.1. Statistical information of the database 

Feature Mean Variance Standard 

Deviation 

Min Max 

Project Geographic District 17.67 83.96 9.16 1 32 

Project Phase Name 0.68 0.55 0.74 0 3 

Week Duration 36.10 1163.56 34.11 0 314.8557 

Week Delays 9.53 528.422 22.98 -24 171 

Project Budget Amount 453354.45 1735528285069 1317394.50 112 16096500 

Final Estimate of Actual 

Costs through the end of 

the phase 

373142.53 1230812537107 

 

1109419.91 90 15120360 

Total phase actual 

spending 

335434.41 984566654594 992253.32 90 13610170 

 

Figures 7.8.a and 7.8.b present the histogram of project geographical district and project budget 

amount distribution, respectively.  

 

  
Figure 7.8.a. Histogram of project geographical 

district 
Figure 7.8.b. Histogram of project budget 

 

Figure 7.9. shows the positive correlation between project duration (week duration) and week 

delay, indicating that the longer the project takes, the more prone to the risk of delay. Figures 

7.10.a and 7.10.b show the positive correlation between the project budget and the final estimate 

of costs with the total spending amount. However, as apparent in Figure 7.11, there is no strong 

correlation between the project delay and total spending amount, the two target variables of the 

study. 
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Figure 7.9. Correlation between project duration and delay 

 

 

Figure 7.10.a Correlation between project budget and 

total phase actual spending 
Figure 7.10.b Correlation between final estimation of 

costs with total phase actual spending 
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Figure 7.11. Correlation between project week delay with total phase actual spending 

7.2. Experts’ Backgrounds  

Seventeen experts directly participated in the elicitation process for the first case study, 

consisting of surveys and interviews in three phases: structure learning, parameters learning, and 

network validation. It is noteworthy that other experts contributed to the project by providing data 

on their projects. Moreover, 11 of these experts contributed to the Fuzzy Logic model creation 

through surveys asking the probability of each risk given specific states of each project variable. 

Figures 7.12 to 7.15 indicate the distribution of the department the experts work at, their position 

in the company, their educational level, and their years of work experience in the company, 

respectively. Extra information on the experts and their contribution to the research cannot be 

shared due to data confidentiality issues. 

  
Figure 7.12. Experts’ department at company Figure 7.13. Experts’ position at company 
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Figure 7.14. Experts’ educational level Figure 7.15. Experts’ years of work experience 
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Chapter 8: Results and Discussion 

8.1 Results analysis 

This subchapter presents the results retrieved in different stages of the methodology and from 

different models applied to both case studies: 

8.1.1. Results of the first Case study 

a) Data Collection and Documents search result: 47 main variables from 44 projects 

(building and pharmaceutical) were collected and listed in a database. Moreover, the risk 

list related to each project was collected.  

b) Data Preprocessing and Comprehensive Risk List creation: The risks identified in all 

projects were listed under 11 categories: 1) Technical, Scope, and Management risks, 2) 

Administrative risks, 3) Communication risks, 4) Environmental risks, 5) Procurement 

risks, 6) Resource risks, 7) Safety risks, 8) Schedule risks, 9) Stakeholders risks, 10) 

Quality and change risks, and 11) financial risks, a total of 65 risks. This risk list was 

updated based on findings from literature and interviews with the project director, during 

which some insignificant risks were dropped from the lists, some were added, and some 

were combined to make it as clear and simple as possible for the surveys. 

c) Synthetic Data generation: GANs were used for synthetic data generation based on the 

initial projects’ database as a solution to overcome data scarcity and augment data. As a 

results, the database size has doubled, reaching 88 projects from 44 initial ones. The results 

obtained from both databases are compared in the next parts to indicate the positive impact 

of data augmentation on the model performance. 

d) First phase Survey results for Probabilistic risk network structure selection: 

Systematic surveys have been conducted for feature and structure selection, i.e., 16 project 

managers were asked to choose if a certain project variable is affecting a certain risk 

category or not. If more than 60% of the answers were yes, that variable was taken into 

consideration in the risk network of that category. As a result, 11 general risk networks for 

the 11 risk categories were created and validated by the experts. 

e) Second phase survey results for Probabilistic risk network parameter selection and 

CPT assignment: In this phase and through interviews, project managers were asked to 

evaluate the effect of each state of a project variable; for instance, for the project type 

variable, the states are residential, commercial, industrial and logistics, and pharmaceutical, 

on the occurrence of a risk of a certain risk category on a scale of 1 to 5. As a result, an 

interconnected network of each risk is created in GENIE software, as depicted in Figure 

8.1. for technical and procurement risk categories. As evident in the network, the priors of 

variables are all equal for now, as the historical records have not been inserted in the model 

yet. Moreover, some variables were omitted from the list as experts concluded they do not 

have significant impact on the risks, and their existence only overcomplicates the model. 
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a) 

Project Variables Synthetic 

Variables 

Omitted Variables Risks in technical 

risk category 

Arrows and relationships 

between 

nodes 

Figure 8.1.a Structure and Parameter learning of the technical risk network by elicitation 
b) 

Project Variables Synthetic 

Variables 
Omitted Variables Risks in technical 

risk category 
Arrows and relationships 

between 

nodes 
Figure 8.1.b Structure and Parameter learning of the procurement risk network by elicitation 

 

f) Parameters learning and beliefs update by project data: In this phase, the data from the 

44 projects are also added to the network and learned by the network for weights 

adjustment, as well as posterior probabilities adjustment or beliefs update. It is noteworthy 

that the result of the experts’ elicitation serves as the basis of the CPT, and with new 
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projects’ data becoming available, it will be simply updated, treating the new data as 

evidence to update the posterior beliefs. This is a great advantage of Bayesian approaches 

compared to deterministic ML algorithms to be able to benefit from an experience-based 

judgment resulting from years of project management instead of only relying on historical 

records that might not be reflective enough of the actual situation. Moreover, this approach 

guarantees consistency between different assessments of risks for different projects, not 

showing extremely context-driven and overfitted results to a specific database. Figure 8.2 

presents the same risk network after beliefs are updated by historical records. As seen in 

the figure, the priors of each variable are adjusted based on the historical data, and the final 

results of the risks are changed accordingly. Figure 8.3. shows an example of a case-based 

model prediction based on a given project’s evidence for technical and procurement risks. 

a) 

Project Variables Synthetic 

Variables 

Omitted Variables Risks in technical 

risk category 

Arrows and relationships 

between 

nodes 

Figure 8.2.a technical risk network after posterior update by historical data 
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b)  

Project Variables Synthetic 

Variables 

Omitted Variables Risks in technical 

risk category 

Arrows and relationships 

between 

nodes 

Figure 8.2.b Structure and Parameter learning of the procurement risk network by elicitation 

 
 

Project Variables Synthetic 

Variables 

Omitted Variables Risks in technical 

risk category 

Arrows and relationships 

between 

nodes 

Figure 8.3. example of case-based risk assessment by the procurement risk network 

 

g) First round of validation: In this phase, another set of interviews was set with the experts 

to show them the networks and ask their feedback about their explainability and ease of 

use, as well as primary validation. For the validation, they were asked to provide 

information on one of their ongoing projects, the data of which was not in the historical 
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data records and was completely new to the model. Based on their provided information, 

the states on each node were set, the simulation was run, and the probability of each risk’s 

occurrence was predicted. Then, the experts confirmed if those specific risks actually 

happened in reality or not. In most cases, the model prediction was in alignment with 

reality, but few changes were made in the network when the result did not correspond to 

reality. 

h) Second round of validation: In this phase, the models were validated using cross-

validation. For instance, the result of k-fold cross-validation of the procurement risk 

network before adding synthetic data to the database was 67% accuracy, which is an 

acceptable number given the limited database but not a promising one. However, after 

synthetic data generation, the accuracy reached 86% percent with 299 correct predictions 

out of 384 iterations for the procurement risk network, which is very remarkable compared 

to the initial results. Figure 8.4 presents the ROC curve of the procurement network for one 

the procurement risks. Table 8.1. compares the pre and post-data augmentation results for 

each procurement risk, which is also presented in Figure 8.5. Figures 8.6 and 8.7 present 

the confusion matrix and ROC curve for one of the technical risks, which returned 82% 

accuracy in the cross-validation process. 

 
 

Figure 8.4. ROC curve of “Inefficient coordination of third-party suppliers” risk, after GAN 
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Table 8.1. comparison the pre and post data augmentation results for each procurement risk 

Risk State Pre-Data Augmentation 

accuracy 

Post-Data Augmentation 

accuracy 

Change of procurement 

strategy and contract type 

yes 0.16 (2/12) 0.44 (8/18) 

no 0.93 (30/32) 0.89 (62/69) 

overall 0.72 (32/44) 0.80 (70/87) 

Delay due to contract 

awarding/ tender closing 

yes 0.28 (6/21) 0.84 (32/38) 

no 0.43 (10/23) 0.87 (43/49) 

overall 0.36 (16/44) 0.86 (75/87) 

Delays and incompliance due 

to inefficient coordination of 

third-party suppliers 

yes 0.38 (5/13) 0.52 (10/19) 

no 0.96 (30/31) 0.98 (67/68) 

overall 0.79 (35/44) 0.88 (77/87) 

Vendor list and supply chain 

disruption 

yes 0.4 (4/10) 0.7 (14/20) 

no 0.94 (32/34) 0.94 (63/67) 

overall 0.81 (36/44) 0.88 (77/87) 

Overall Procurement Risk  0.67 (119/176) 0.85 (299/348) 

 

 

Figure 8.5. Comparison the pre and post data augmentation results precision of the procurement risks BN model 
 

  

Figure 8.6 Confusion matrix of the 

technical risk network 

Figure 8.7 ROC curve of the technical risk network 
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i) Comparison to the results obtained from other ML algorithms: Once the data scarcity 

issue is partially solved through data augmentation, it is possible to implement other 

deterministic ML algorithms, such as ANN, DT, and SVM, for risk identification and 

assessment purposes. This is a supervised learning problem, more specifically a 

classification problem, for which several ML algorithms are suitable. Each classifier 

algorithm was applied for the four risks of the Procurement risks category, and results and 

performance metrics were registered for comparative analysis. The following figures and 

tables indicate the results obtained from each of the algorithms for the four risks. 

1. Decision Tree: Figures 8.8.a to 8.9.d indicate the structure of the decision trees 

that were trained. Each node in the tree specifies a condition on a feature that is 

used to split the data. The tree makes a prediction for a sample by starting at the 

root and following the path that corresponds to the sample's features until it 

reaches a leaf node. The prediction of the tree is the value associated with the 

leaf node. Figures 8.9.a to 8.9.d show the loss function during the learning and 

validation phases. Table 8.2. indicates the performance metrics for each of the 

risks. Unfortunately, due to the small size of the database, sometimes the 

algorithms are overfitted and, despite indicating good accuracy, are not 

generalizable to other projects. Due to the nature of decision trees, the R2 score 

might be negative, which indicates that the model is arbitrarily worse. 

  
8.8.a. Decision Tree Structure of Risk 1: Change of 

procurement strategy and contract type 

8.8.b. Decision Tree Structure of Risk 2: Delay due to 

contract awarding/ tender closing 

  
8.8.c. Decision Tree Structure of Risk 3: Vendor list 

and supply chain disruption 

8.8.d. Decision Tree Structure of Risk 4: Delays and 

incompliance due to inefficient coordination of third 

party suppliers 
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8.9.a. Learning curve of Decision Tree for Risk 1: 

Change of procurement strategy and contract type 

8.9.b. Learning curve of Decision Tree for Risk 2: 

Delay due to contract awarding/ tender closing 

 
 

8.9.c. Learning curve of Decision Tree for Risk 3: 

Vendor list and supply chain disruption 

8.9.d. Learning curve of Decision Tree for Risk 4: 

Delays and incompliance due to inefficient 

coordination of third party suppliers 

 

Table 8.2. Performance metrics of the Decision Tree model for the four procurement risks 

Performance 

Metrics 

Risk 1: Change of 

procurement 

strategy and 

contract type 

Risk 2: Delay due 

to contract 

awarding/ tender 

closing 

Risk 3: Vendor 

list and supply 

chain disruption 

Risk 4: Delays 

and incompliance 

due to inefficient 

coordination of 

third-party 

suppliers 

Accuracy 0.88 0.77 1.0 0.88 

MSE 0.11 0.22 0.0 0.11 

MAE 0.11 0.22 0.0 0.11 

R2 score -1.11 0.06 1.0 -1.11 

Log loss 4.00 8.0 2.22 4.00 

 

2. Xgboost: XGBoost initializes the model with a single leaf as the initial 

prediction for all instances in the dataset. This prediction could be the average 

of the target variable or another value, depending on the objective function. 

Then, it builds trees one at a time, where each new tree helps to correct the 

errors made by the previously trained tree. With each tree added, the model 
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becomes even more expressive. At each iteration, XGBoost identifies the best 

places to split the data (the "features" to split on) by finding the split that 

optimizes a given "objective" or "loss" function, depending on the type of 

problem; for a classification problem, it could be a logistic loss if it is a binary 

classification or softmax loss for multi-class classification, where gradient 

descent is used to minimize this loss function. Figures 8.10.a to 8.10.b presents 

the feature importance of the four risks in XGBoost model, which indicates that 

the contract duration is the most influential factor. Figures 8.11.a. to 8.11.b 

show the loss function during the learning and validation phases. Table 8.3. 

indicates the performance metrics for each of the risks. 

 
 

8.10.a. XGboost Feature Importance for Risk 1: 

Change of procurement strategy and contract type 

8.10.b. XGboost Feature Importance for Risk 2: Delay 

due to contract awarding/ tender closing 

 
 

8.10.c. XGboost Feature Importance for Risk 3: 

Vendor list and supply chain disruption 

8.10.d. XGboost Feature Importance for Risk 4: Delays 

and incompliance due to inefficient coordination of 

third party suppliers 
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8.11.a. Learning curve of XGboost for Risk 1: Change 

of procurement strategy and contract type 

8.11.b. Learning curve of XGboost for Risk 2: Delay 

due to contract awarding/ tender closing 

  
8.11.c. Learning curve of XGBoost for Risk 3: Vendor 

list and supply chain disruption 

8.11.d. Learning curve of XGBoost for Risk 4: Delays 

and incompliance due to inefficient coordination of 

third party suppliers 

 

Table 8.3. Performance metrics of the XGBoost model for the four procurement risks 

Performance 

Metrics 

Risk 1: Change of 

procurement 

strategy and 

contract type 

Risk 2: Delay due 

to contract 

awarding/ tender 

closing 

Risk 3: Vendor 

list and supply 

chain disruption 

Risk 4: Delays 

and incompliance 

due to inefficient 

coordination of 

third-party 

suppliers 

Accuracy 0.94 0.77 1.0 0.88 

MSE 0.055 0.22 0.0 0.11 

MAE 0.055 0.22 0.0 0.11 

R2 score -0.05 0.06 1.0 -1.11 

Log loss 2.00 8.0 2.22 4.00 

 

3. Logistic Regression: Logistic regression models the probability that each input 

belongs to a particular category. For binary classification, the output is a 
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probability that the given input point belongs to a certain class. The key 

component of the logistic regression model is the logistic function, also called 

the sigmoid function, which takes any real-valued number and maps it into a 

range between 0 and 1, giving the output a probability interpretation. The loss 

function used for logistic regression is the log loss, which is a suitable measure 

for classification. Figures 8.12.a to 8.12.d show the loss function during the 

learning and validation phases. Table 8.4. indicates the performance metrics for 

each of the risks. 

  
Figure 8.12.a. Learning curve of Logistic Regression 

for Risk 1: Change of procurement strategy and 

contract type 

Figure 8.12.b. Learning curve of Logistic Regression 

for Risk 2: Delay due to contract awarding/ tender 

closing 

  
Figure 8.12.c. Learning curve of Logistic Regression 

for Risk 3: Vendor list and supply chain disruption 

Figure 8.12.d. Learning curve of Logistic Regression 

for Risk 4: Delays and incompliance due to inefficient 

coordination of third party suppliers 

 

Table 8.4. Performance metrics of the Logistic Regression model for the four procurement risks 

Performance 

Metrics 

Risk 1: Change of 

procurement 

strategy and 

contract type 

Risk 2: Delay due 

to contract 

awarding/ tender 

closing 

Risk 3: Vendor 

list and supply 

chain disruption 

Risk 4: Delays 

and incompliance 

due to inefficient 

coordination of 
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third party 

suppliers 

Accuracy 1.0 0.83 0.83 0.94 

MSE 0.0 0.16 0.16 0.05 

MAE 0.0 0.16 0.16 0.05 

R2 score 1.0 0.29 0.03 0.43 

Log loss 2.22 6.0 6.00 2.0 

 

4. Support Vector Machine:  SVMs construct a hyperplane or set of hyperplanes 

in a high- or infinite-dimensional space. In simple terms, the SVM algorithm 

finds the line (in 2D), plane (in 3D), or hyperplane (in more than three 

dimensions) that separates the data into two classes. The objective is to find the 

"maximum margin" hyperplane that has the largest distance to the nearest 

training data points of any class. The learning task is formulated as a 

constrained optimization problem, specifically a quadratic programming 

problem. This problem is solved using techniques such as Sequential Minimal 

Optimization. The result of the optimization process is a set of weights (or 

parameters) that can be used to define the hyperplane for the SVM. Figures 

8.13.a. to 8.13.d. show the loss function during the learning and validation 

phases. Table 8.5. indicates the performance metrics for each of the risks. 

  
Figure 8.13.a. Learning curve of SVM for Risk 1: 

Change of procurement strategy and contract type 

Figure 8.13.b. Learning curve of SVM for Risk 2: 

Delay due to contract awarding/ tender closing 
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Figure 8.13.c. Learning curve of SVM for Risk 3: 

Vendor list and supply chain disruption 

Figure 8.13.d. Learning curve of SVM for Risk 4: 

Delays and incompliance due to inefficient 

coordination of third party suppliers 

 

 

 

 

Table 8.5. Performance metrics of the SVM model for the four procurement risks 

Performance 

Metrics 

Risk 1: Change of 

procurement 

strategy and 

contract type 

Risk 2: Delay due 

to contract 

awarding/ tender 

closing 

Risk 3: Vendor 

list and supply 

chain disruption 

Risk 4: Delays 

and incompliance 

due to inefficient 

coordination of 

third-party 

suppliers 

Accuracy 1.0 0.88 1.0 0.94 

MSE 0.0 0.11 0.0 0.05 

MAE 0.0 0.11 0.0 0.05 

R2 score 1.0 0.53 1.0 0.43 

Log loss 2.22 4.0 2.22 2.0 

 

5. Random Forest: Random Forest builds a set of independent decision trees. Each 

tree in the Random Forest gets a random subset of the training data (done by 

bootstrap sampling) and is built independently of the others. For each node in 

the decision tree, a random subset of features is chosen to decide the best split. 

This process of selecting random subsets of features adds an extra layer of 

randomness to the model beyond that introduced by the bootstrap sampling. 

The split that results in the greatest reduction in the impurity measure is chosen. 

Random Forests also provide a measure of feature importance, which can be a 

very handy tool for exploratory analysis to identify features that are particularly 

useful for prediction. This importance is calculated by looking at how much the 

tree nodes that use that feature reduce impurity across all trees in the forest. 
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Figures 8.14.a. to 8.14.d. show the loss function during the learning and 

validation phases. Table 8.6. indicates the performance metrics for each of the 

risks. 

  
Figure 8.14.a. Learning curve of Random Forest for 

Risk 1: Change of procurement strategy and contract 

type 

Figure 8.14.b. Learning curve of Random Forest for 

Risk 2: Delay due to contract awarding/ tender closing 

  
Figure 8.14.c. Learning curve of Random Forest for 

Risk 3: Vendor list and supply chain disruption 

Figure 8.14.d. Learning curve of Random Forest for 

Risk 4: Delays and incompliance due to inefficient 

coordination of third party suppliers 

 

Table 8.6. Performance metrics of the SVM model for the four procurement risks 

Performance 

Metrics 

Risk 1: Change of 

procurement 

strategy and 

contract type 

Risk 2: Delay due 

to contract 

awarding/ tender 

closing 

Risk 3: Vendor 

list and supply 

chain disruption 

Risk 4: Delays 

and incompliance 

due to inefficient 

coordination of 

third party 

suppliers 

Accuracy 1.0 0.88 1.0 0.94 

MSE 0.0 0.11 0.0 0.05 

MAE 0.0 0.11 0.0 0.05 

R2 score 1.0 0.53 1.0 0.43 
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Log loss 2.22 4.0 2.22 2.0 

 

6. KNN: The KNN algorithm operates by computing the distance between the 

input sample and each training instance. This distance can be any metric 

measure but is commonly the Euclidean distance. Unlike other methods that 

construct a model from the training data, KNN does not perform explicit 

training. It simply stores the training dataset. For classification, the most 

common class among the k neighbors is returned. In other words, the new 

instance is assigned to the class that has the majority vote among its k nearest 

neighbors. Figures 8.15.a to 8.15.d show the loss function during the learning 

and validation phases. Table 8.7. indicates the performance metrics for each of 

the risks. 

  
Figure 8.15.a. Learning curve of KNN for Risk 1: 

Change of procurement strategy and contract type 

Figure 8.15.b. Learning curve of KNN for Risk 2: 

Delay due to contract awarding/ tender closing 

  
Figure 8.15.c. Learning curve of KNN for Risk 3: 

Vendor list and supply chain disruption 

Figure 8.15.d. Learning curve of KNN for Risk 4: 

Delays and incompliance due to inefficient 

coordination of third party suppliers 

 

Table 8.7. Performance metrics of the SVM model for the four procurement risks 
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Performance 

Metrics 

Risk 1: Change of 

procurement 

strategy and 

contract type 

Risk 2: Delay due 

to contract 

awarding/ tender 

closing 

Risk 3: Vendor 

list and supply 

chain disruption 

Risk 4: Delays 

and incompliance 

due to inefficient 

coordination of 

third-party 

suppliers 

Accuracy 1.0 0.72 0.88 0.94 

MSE 0.0 0.27 0.11 0.05 

MAE 0.0 0.27 0.11 0.05 

R2 score 1.0 -0.16 0.35 0.43 

Log loss 2.22 10.01 4.0 2.0 

 

 

7. Naive Bayes Classifier: Naive Bayes uses Bayes' Theorem to calculate the 

probabilities of each class given the input features. Naive Bayes classifiers 

assume that the value of a particular feature is independent of the value of any 

other feature, given the class variable. The parameters of a Naive Bayes model 

are estimated from the training data. This is typically done using maximum 

likelihood estimation (MLE). For each feature and each class, the MLE is used 

to estimate the parameters of the distribution of the feature given the class. 

Figures 8.16.a. to 8.16.h. show the loss function during the learning and 

validation phases and heatmap of correct and wrong predictions. Table 8.8. 

indicates the performance metrics for each of the risks. 

 

  
Figure 8.16.a. Learning curve of Naïve Bayes 

Classifier for Risk 1: Change of procurement strategy 

and contract type 

8.16.b. Heatmap of correct predictions of Naïve Bayes 

Classifier for Risk 1: Change of procurement strategy 

and contract type 
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Figure 8.16.c. Learning curve of Naïve Bayes 

Classifier for Risk 2: Delay due to contract awarding/ 

tender closing 

Figure 8.16.d. Heatmap of correct predictions of Naïve 

Bayes Classifier for Risk 2: Delay due to contract 

awarding/ tender closing 

  
Figure 8.16.e. Learning curve of Naïve Bayes 

Classifier for Risk 3: Vendor list and supply chain 

disruption 

Figure 8.16.f. Heatmap of correct predictions of Naïve 

Bayes Classifier for Risk 3: Vendor list and supply 

chain disruption 

  
Figure 8.16.g. Learning curve of Naïve Bayes 

Classifier for Risk 4: Delays and incompliance due to 

inefficient coordination of third party suppliers 

Figure 8.16.h. Heatmap of correct predictions of Naïve 

Bayes Classifier for Risk 4: Delays and incompliance 

due to inefficient coordination of third party suppliers 
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Table 8.8. Performance metrics of the Naïve Bayes Classifier model for the four procurement risks 

Performance 

Metrics 

Risk 1: Change of 

procurement 

strategy and 

contract type 

Risk 2: Delay due 

to contract 

awarding/ tender 

closing 

Risk 3: Vendor 

list and supply 

chain disruption 

Risk 4: Delays 

and incompliance 

due to inefficient 

coordination of 

third party 

suppliers 

Accuracy 0.38 0.88 1.0 0.88 

MSE 0.61 0.11 0.0 0.11 

MAE 0.61 0.11 0.0 0.11 

R2 score -10.64 0.53 1.0 -0.125 

Log loss 22.02 4.00 2.22 4.00 

 

8. Artificial Neural Network: Each connection between nodes in the network has 

a "weight" associated with it, which determines the influence of one node on 

another. These weights are usually initialized with small random values. The 

network makes predictions using forward propagation. Starting at the input 

layer, it applies a series of functions (linear combinations and activation 

functions) to the inputs and the weights, propagating this information through 

the hidden layers all the way to the output layer. The result is a predicted output. 

During backpropagation, the network calculates the gradient of the loss 

function with respect to the weights. This tells us how much a small change in 

each weight would help to minimize the loss. One complete pass through the 

entire training dataset is called an epoch. Figures 8.17.a. to 8.16.d show the loss 

function during the learning and validation phases. Table 8.9. indicates the 

performance metrics for each of the risks. 

  
Figure 8.17.a. Learning curve of Neural Networks for 

Risk 1: Change of procurement strategy and contract 

type 

Figure 8.17.b. Learning curve of Naïve Bayes 

Classifier for Risk 2: Delay due to contract awarding/ 

tender closing 
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Figure 9.17.c. Learning curve of Naïve Bayes 

Classifier for Risk 3: Vendor list and supply chain 

disruption 

Figure 9.17.d. Learning curve of Naïve Bayes 

Classifier for Risk 4: Delays and incompliance due to 

inefficient coordination of third party suppliers 

 

Table 8.9. Performance metrics of the Naïve Bayes Classifier model for the four procurement risks 

Performance 

Metrics 

Risk 1: Change of 

procurement 

strategy and 

contract type 

Risk 2: Delay due 

to contract 

awarding/ tender 

closing 

Risk 3: Vendor 

list and supply 

chain disruption 

Risk 4: Delays 

and incompliance 

due to inefficient 

coordination of 

third party 

suppliers 

Accuracy 1.0 0.94 1.0 1.0 

MSE 0.0 0.05 0.0 0.0 

MAE 0.0 0.05 0.0 0.0 

R2 score 1.0 0.76 1.0 1.0 

Log loss 2.22 2.00 2.22 2.22 

 

 

9. Results summary and Comparison of performance metrics retrieved from each 

algorithm: Figures 8.18.a. to 8.21.e. indicate the comparative analysis of the 

eight abovementioned ML algorithms based on their performance metrics for 

each of the four risks.  

Overall, ANN and XGBoost indicated a better and more consistent performance 

for all four risks. This is due to their ability to address both linearity and non-

linearity in the data. Moreover, their ever-improving and optimized structures 

help consider the underlying relationships and interdependencies between 

variables in output prediction. However, due to the small size of the database, 

most developed models suffer from overfitting, which, despite returning good 

results for the studied database, makes them ungeneralizable to other databases. 

Even though data augmentation made it possible to implement deterministic 
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ML models in the case study database, probabilistic models still outperform this 

problem type, producing more transparent and realistic results.  

Another key point is the inability of ML algorithms to provide a probability 

assigned to the predictions. The predicted value in the abovementioned 

algorithms is a binary state, and the probability distribution of each state follows 

a frequentist statistic, merely considering the repetition of each state in the 

database. This is a non-realistic and non-accurate way of risk assessment since 

even though some risks might not be present often in the current database, that 

does not mean their probability is low. In most cases, the project databases are 

not representative enough of reality and cannot mimic the future behavior of 

projects. That is why experts’ opinions and experience-based judgments need 

to be considered to bring the assessments closer to reality. Probabilistic models 

like BN and FL benefit from expert elicitation and quantify their qualitative 

assessments into a learnable format for the machine, and hence, can provide a 

probability assessment of each of the states of the output variable, in this case 

happening or not happening of the risk. However, deterministic ML models do 

not have this ability and cannot benefit from Bayesian statistics to assign a 

probability to the answers. Therefore, probabilistic models are more appropriate 

for risk assessment purposes, especially in small and incomprehensive 

databases like the first case study, where deterministic approaches are prone to 

overfitting. 

 

  
Figure 8.18.a. Comparison of accuracy metrics for 

different ML algorithms in predicting Risk 1. 

Figure 8.18.b. Comparison of MSE metrics for 

different ML algorithms in predicting Risk 1. 

  
Figure 8.18.c. Comparison of MAE metrics for different 

ML algorithms in predicting Risk 1. 
Figure 8.18.d. Comparison of R2 score for different 

ML algorithms in predicting Risk 1. 
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Figure 8.18.e. Comparison of Log loss for different ML 

algorithms in predicting Risk 1. 
 

 

  
Figure 8.19.a. Comparison of accuracy metrics for 

different ML algorithms in predicting Risk 2. 
Figure 8.19.b. Comparison of MSE metrics for 

different ML algorithms in predicting Risk 2. 

  
Figure 8.19.c. Comparison of MAE metrics for different 

ML algorithms in predicting Risk 2. 
Figure 8.19.d. Comparison of R2 score for different 

ML algorithms in predicting Risk 2. 

 

 

Figure 8.19.e. Comparison of Log loss for different ML 

algorithms in predicting Risk 2. 
 

 



186 
 

  
Figure 8.20.a. Comparison of accuracy metrics for 

different ML algorithms in predicting Risk 3. 
Figure 8.20.b. Comparison of MSE metrics for different 

ML algorithms in predicting Risk 3. 

  
Figure 8.20.c. Comparison of MAE metrics for 

different ML algorithms in predicting Risk 3. 
Figure 8.20.d. Comparison of R2 score for different ML 

algorithms in predicting Risk 3. 

 

 

Figure 8.20.e. Comparison of Log loss for different ML 

algorithms in predicting Risk 3. 
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Figure 8.21.a. Comparison of accuracy metrics for 

different ML algorithms in predicting Risk 4. 
Figure 8.21.b. Comparison of MSE metrics for different 

ML algorithms in predicting Risk 4. 

  

Figure 8.21.c. Comparison of MAE metrics for 

different ML algorithms in predicting Risk 4. 
Figure 8.21.d. Comparison of R2 score for different ML 

algorithms in predicting Risk 4. 

 

 

Figure 8.21.e. Comparison of Log loss for different ML 

algorithms in predicting Risk 4. 
 

 

j) Fuzzy Logic Model: The fuzzy logic model was developed based on the eleven experts’ 

opinions about the four procurement risks. Table 9.10. indicates the assessment of experts 

on the risk probability given project cost overrun using linguistic terms and Table 8.11. 

presents the fuzzy aggregation of experts’ opinions and the deffuzified crisp value using 

the weighted average method. 
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Table 8.10. Experts’ linguistic assessment of procurement risks given different states of project cost 

overrun 

Risk Cost 

overrun 

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 

Change of 

procurement 

strategy and 

contract type 

Low Low Low Mid Mid Low Very 

Low 

 

NA 

 

Low High Very 

Low 

High 

Mid Mid Mid Mid Mid Mid Mid  Na High Mid High Mid 

High Very 

High 

High Mid Low Mid Very 

High 

Very 

High 

Very 

High 

Mid Very 

Low 

Low 

Delay due to 

contract 

awarding/ 

tender 

closing 

Low Low Low Mid Mid Mid Very 

Low 

 

NA 

 

Low High Very 

Low 

High 

Mid Mid Mid Mid Mid Mid Mid  Na High Mid High Mid 

High Very 

High 

High Mid Low Mid Very 

High 

Low Very 

High 

Low Very 

Low 

Low 

Vendor list 

and supply 

chain 

disruption 

Low Low Low Mid High Low Very 

Low 

 

NA 

 

Low Mid Very 

Low 

High 

Mid Mid Mid Mid Mid Low Mid  Na Mid High High Mid 

High Very 

High 

Very 

High 

Mid Low Low Very 

High 

Mid High Mid Very 

Low 

Low 

Delays and 

incompliance 

due to 

inefficient 

coordination 

of third party 

suppliers 

Low Low Low Mid Low Low Very 

Low 

 

NA 

 

Low Mid Very 

Low 

High 

Mid High Mid Mid Mid Low Mid  Na High High High Mid 

High Very 

High 

Very 

High 

Mid Low Low Very 

High 

Very 

High 

Very 

High 

Mid Very 

Low 

Low 

 

Table 8.11. Deffuzification of Experts assessments fuzzy aggregation for cost overrun 

Risk low Aggregated 

Fuzzy 

Membership  

mid Aggregated Fuzzy 

Membership 

high Aggregated Fuzzy 

Membership 

Change of 

procurement 

strategy and 

contract type 

0.39 
 

0.53   0.57 
 

Delay due to 

contract 

awarding/ tender 

closing 

0.41 
 

0.53 
 

0.51   

Vendor list and 

supply chain 

disruption 

0.39 
 

0.49  0.53   
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Delays and 

incompliance 

due to 

inefficient 

coordination of 

third-party 

suppliers 

0.36   0.54   0.57 
 

 

This process is repeated for all the twelve project variables that are affecting the 

procurement risks. The crisp values calculated represent the collective probability 

assessment of the risks given each condition of the project features. The next step is the 

rule-based analysis of the risks given different scenarios for projects, which is modeled in 

Mathlab. Since the number of variables is high and considering all will require more than 

11000 rules, the structure developed by BN is used, presented in Figure 8.22. For instance, 

the three variables of “Cost Contingency”, “Initial TIC budget”, and “Cost Overrun” 

influence an intermediate node called “financial risk”, which eventually influences the 

Procurement risks. This scenario, which includes three input variables and an output 

variable with fuzzy distribution and assigned fuzzy sets for each of their states, is modeled 

in Mathlab. Figures 8.23.a. to 8.23.d. indicate the fuzzy membership function of each of 

the input and output variables. Figures 8.24.a. to 8.24.d. present the fuzzy rules between 

input and output variables and two case-based analyses for average and risky options. 

 

 

Figure 8.22. graph structure for the procurement risks 

 

  

Figure 8.23.a. Fuzzy membership function of TIC 

budget 

Figure 8.23.b. Fuzzy membership function of cost 

contingency 
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Figure 8.23.c. Fuzzy membership function of cost 

overrun 

Figure 8.23.d. Fuzzy membership function of final 

output 

 
Figure 8.24.a. Fuzzy rules to connect inputs and the output 

  
Figure 8.24.b. Case based analysis for an 

average project 

Figure 8.24.c. Case based analysis for a more risky 

project 
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Figure 8.24.d. Surface analysis between TIC, cost contingency, and final output 

Now that the algorithm can run a case-based analysis, it is important to simulate all the 

scenarios possible and create a probability distribution to evaluate the overall probability 

of each risk given all the possible scenarios. It is noteworthy that since this model is merely 

based on experts’ opinions and not projects’ data, the probabilities of all scenarios are 

considered equal, assigning the same prior distribution to all scenarios, which is not 

accurate in reality.  

For running this simulation and finding the joint probability distribution of posteriors, the 

Scikit Fuzzy library in Python was used, the code of which can be found  here. All the if 

rules created in MATLAB are imported in Python with the prior aggregated experts, 

opinions as the probability of each rule happening, like the one depicted in Table 8.11. 

Then, all the possible scenarios with their probabilities are run, and the integral of their 

probability distributions is calculated, the average of which presents the overall possibility 

of “yes” and “no” states or the probability of the risk happening considering all the possible 

scenarios. The probability of the financial risk being calculated from the FL method is 

44%, which is about 11% more than the calculation of the BN model. Figures 8.25.a and 

8.25.b show the probability distribution of “yes” state given two of the scenarios for the 

financial risk, and Figure 8.26 shows the overall probability of the “yes” and “no” states 

happening considering all the scenarios. 

 

 
Figure 8.25.a. Probability distribution for the 

financial risk given this scenario:  

• Initial TIC budget: less than 15 

• Cost Contigency: sufficient 

• Cost Overrun: low 

Where the Financial risk output sum equals to 0.44 

Figure 8.25.b. Probability distribution for the 

financial risk given this scenario:  
• Initial TIC budget: 15 to 60 

• Cost Contingency: insufficient 

• Cost Overrun: low 

Where the Financial risk output sum equals to 0.5 

https://colab.research.google.com/drive/18UY7LBSlqCH6mGXLTbvfeQ8few8cbbot#scrollTo=715tBj3tJdv8
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Figure 8.26. The final probability of each of the states of financial risk considering all the possible 

scenarios 
 

The same scenario modeling process was repeated for all the intermediate nodes and finally 

the child nodes or the 4 procurement risks, as a result of which, the probability of each of 

the risks calculated by the FL model are as following: 

 

• Probability of Risk 1: “Change of procurement strategy and contract types” 

happening is 33%, which is 8% more than the BN model calculation, 

• Probability of Risk 2: “Delay due to contract awarding/ tender closing” happening 

is 48%, which is 4% more than the BN model calculation, 

• Probability of Risk 3: “Vendor list and supply chain disruption” happening is 31%, 

which is 5% more than the BN model calculation, 

• Probability of Risk 4: “Delays and incompliance due to inefficient coordination of 

third-party suppliers” happening is 24%, which is 3% more than the BN model 

calculation, 

 

In conclusion, the results obtained from the FL model had higher probability estimations 

for each of the risks compared to the BN model, which combines two sources of data. 

Therefore, the results indicated that the experts assess the risk probability as higher than 

what happens and has happened in projects. On the other hand, if the judgment is merely 

based on historical project data, it might not be accurate and realistic since the database is 

so small and cannot properly represent the actual conditions of projects. Therefore, 

combining the subjective experts’ opinions with the objective project data obtained, like 

the process in the BN model, can balance the assessments and provide more realistic 

probabilities for risks. Accurate and fact-based risk assessments can greatly help project 

managers in their decision-making process for mitigating risks and allocating resources to 

overcome them. 
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8.1.2. Results of Second Case Study 

The database of the second case initially had 13570 rows, 1489 of which remained after the data 

cleaning and preprocessing phases. Even after these phases, it had a massively bigger database 

compared to the first one, which affected the results and accuracy obtained from each algorithm. 

In order to compare the results, the same ML algorithms, including XGBoost, ANN, Ridge and 

Linear Regression, Decision Tree, and BN, were applied. However, the problem type, in contrast 

to the first case study, was regression. The algorithms had to predict the final delay and spending 

of each project. Below, the comparative results analysis for each of the two target variables is 

presented.  

 

• Delay Prediction: Table 8.12. presents the results obtained from each ML algorithm when 

predicting the delay. The performance of each algorithm is assessed using the four tests of 

R2, Mean of Cross-Validation (CV), MSE, and MAE. Based on the obtained results, 

XGBoost model outperforms the other algorithms due to its robust gradient-boosting 

framework that combines multiple decision trees, enhancing accuracy and reducing 

overfitting. This results in the highest R-squared value (0.91), indicating a strong 

correlation between the predicted and observed values, as well as the lowest Mean Squared 

Error (45.77) and Mean Absolute Error (3.5 weeks), signifying superior prediction 

accuracy. The Decision Tree model follows with a slightly lower performance, which can 

be attributed to its single-tree structure, making it more prone to overfitting than the 

XGBoost model. It is worth noting that the ANN model does exhibit a good mean of CV 

scores, indicating an acceptable level of generalizability. However, when considering other 

performance metrics, such as R-squared, MSE, and MAE, the XGBoost model still 

outperforms the ANN model. Linear and Ridge Regression models have the lowest 

performance since these models assume a linear relationship between the predictors and 

the target variable, which is not the case for complex datasets. Consequently, they do not 

effectively capture the underlying patterns in the data, leading to reduced prediction 

accuracy. Notably, the Bayesian Network Model (Tree augmented Naïve Bayes Model) 

has poor performance compared to the other deterministic ML models, as in the database, 

most of the variables are independent, and there are no strong interdependencies or causal 

inferences to make the BN model suitable. Moreover, due to the huge size of the database, 

the black box ML models based on frequentist statistics and with more advanced structure 

compared to the white box probabilistic models outperform. Therefore, the hypothesis that 

the size of the database has a huge effect on the developed models' performance is 

approved. Figures 8.27.a to 8.27.c present the BN structure developed in GENIE, a case-

based analysis for one of the projects in the database and the strength of influence of each 

of the arcs. As evident in this figure, there is a weak influence between variables, indicating 

their little interconnectedness and interdependencies, making probabilistic models like BN 

improper for this database. Figures 8.28.a and 8.28.b. present the ROC curve of two of the 

delay states, indicating the learning process. 
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Table 8.12. Comparison of the ML algorithms results for delay prediction 

Variable Algorithms 

Evaluation DT ANN LR RR XGBoost BN 

R2 0.86 0.73 0.71 0.71 0.91  

Mean of CV 0.68 0.78 0.53 0.53 0.75 0.66 

MSE 68.1 128.9 145.61 145.3 45.77  

MAE 3.68 5.32 8.36 8.34 3.50  

 

   
Figure 8.27.a. BN structure 

developed for the Delay risk 

prediction 

Figure 8.27.b. Case based analysis 

of the BN structure developed for 

the Delay risk prediction 

 

Figure 8.27.c. Influence strength of 

the Delay risk network 

  

Figure 8.28.a. ROC curve for the first state of delay 

risk during the learning process 

Figure 8.28.b. ROC curve for the second state of delay 

risk during the learning process 

 

• Total Cost Prediction. In the case of total cost prediction, the XGBoost model again 

demonstrates the best performance, as presented in Table 8.13., achieving the highest R-

squared value and the lowest error rates. The DT model's lower MSE compared to 

XGBoost, despite the latter's better MAE, can be explained by the unique characteristics 

of these error metrics. The MSE focuses on more significant errors by squaring the 

differences between predicted and observed values. In this case, the Decision Tree model 

may have a few significant errors that are heavily penalized by the MSE metric. In contrast, 

the MAE calculates the average of the absolute differences between predicted and observed 

values, treating all errors equally. The better MAE for the XGBoost model indicates that, 

on average, its predictions are closer to the actual values, making it a more accurate model 

overall for this variable. The Linear and Ridge Regression models yielded better results for 

predicting total costs than delays. Given that Linear and Ridge Regression models assume 
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a linear relationship between variables and considering that the underlying relationship 

between the input variables and the "Total Phase Actual Spending Amount ($)" is 

predominantly linear, it allowed the models to capture the patterns in the data more 

effectively than the ANN model. The probabilistic BN model had a much better 

performance for total cost prediction compared to the delay prediction model, with a mean 

of cross-validation equal to 0.90. The main reason is a stronger influence of arcs and greater 

interdependencies between cost-related variables. Figures 8.29.a. to 8.29.c. present the BN 

structure developed in GENIE, a case-based analysis for one of the same projects in the 

database, and the strength of influence of each of the arcs. However, due to the huge size 

of the database, the deterministic approaches still outperform the probabilistic ones. 

Figures 8.30.a. and 8.30.b. present the ROC curve of two of the delay states indicating the 

learning process. 

Table 8.13. Comparison of the ML algorithms results for total cost prediction 

Attribute  Algorithms  

Evaluation  DT  ANN  LR  RR  XGBoost  BN 

R2  0.88  0.83  0.97  0.97  0.98   

Mean of CV  0.83  0.97  0.84  0.84  0.97  0.90 

MSE  30238740540  42462464672  6103773414  6102901345  3465322264   

MAE  36972  75820  38064  38127  22166   

 

   
Figure 8.29.a. BN structure 

developed for the total cost 

prediction 

Figure 8.29.b. Case based analysis 

of the BN structure developed for 

the total cost prediction 

 

Figure 8.29.c. Influence strength of 

the total cost network 

  

Figure 8.30.a. ROC curve for the first state of total 

cost during the learning process 

Figure 8.30.b. ROC curve for the second state of total 

cost during the learning process 
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As a result, the XGBoost model emerges as the most accurate algorithm for predicting delays 

and total costs, owing to its robust gradient-boosting framework and ability to handle complex 

datasets effectively. Figures 8.31.a to 8.33.c. present the delay and cost overrun prediction 

precision and feature importance for Decision Tree, ANN, and XGBoost algorithms, respectively. 

An important point is the significant importance and influence of project duration on final delay 

and total cost in all three algorithms. 

  

Figure 8.31.a. DT prediction 

accuracy for Delays 

Figure 8.31.b. DT prediction accuracy 

for Total costs 

 

Figure 8.31.c. Feature Importance for DT model 
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Figure 8.32.a. ANN prediction 

accuracy for Delays 

Figure 8.32.b. ANN prediction accuracy 

for Total costs 

 

Figure 8.32.c. Feature Importance for ANN model 

 

  

Figure 8.33.a. XGBoost prediction 

accuracy for Delays 

Figure 8.33.b. XGBoost prediction 

accuracy for Total costs 
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Figure 8.33.c. Feature Importance for XGBoost model 

In conclusion, the XGBoost model consistently demonstrated superior performance in 

predicting delays and total costs, followed by Decision Tree and ANN. The linear and ridge 

regression models exhibited lower performance compared to the non-linear models, as they 

assumed linear relationships between predictors and target variables, which did not correspond to 

reality. The outstanding performance of XGBoost can be attributed to several factors, including: 

• Model complexity: The MLPRegressor uses a fixed architecture with a predefined number 

of layers and nodes. This architecture might not be optimal for the specific problem at hand, 

whereas the XGBoost model can better adapt to complex data patterns due to its gradient 

boosting framework, which combines multiple decision trees, allowing it to capture non-

linear relationships more effectively. 

• Training process: The ANN model relies on gradient-based optimization techniques, such 

as backpropagation, which are sensitive to the choice of hyperparameters, including learning 

rate, activation functions, and the number of hidden layers. In contrast, the XGBoost model 

uses a more robust tree-based boosting method, which is less sensitive to hyperparameter 

choices, and generally converges more efficiently. 

• Interpretability and Explainability: The ANN model is often considered a "black box" due 

to its complex structure, making it difficult to understand and interpret its internal decision-

making process. This lack of interpretability may hamper the ability to diagnose and improve 

the model's performance. On the other hand, the XGBoost model is built upon decision trees, 

which are inherently more interpretable and allow for a better understanding of the 

relationships between the input attributes and the target variable. 

• Regularization: The XGBoost model incorporates regularization techniques that penalize 

overly complex models, reducing overfitting and improving generalization.  

 

As proved by the results, the choice of an appropriate ML algorithm depends on the nature and 

availability of data, the complexity of the problem to be solved, and the relationships between the 

input and target variables. The database used in this study was specifically focused on school 

construction projects in New York, influenced by its unique characteristics, such as building codes, 

construction technologies, and regulations. Consequently, the results and the performance of the 

selected algorithms may not be directly applicable to other types of constructions. This limitation 
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arises due to the context-drivenness of risks and construction projects, making the developed 

model inapplicable in other contexts or locations.  

8.1.3. Results Summary Obtained from the two Case Studies 

The application of the three different models on two different case studies had two main 

objectives: a) highlighting the importance of integrating multiple sources of data and judgments in 

accurate risk prediction and data scarcity compensation, and b) highlighting the critical role of 

database size on the performance of each probabilistic and deterministic ML model. 

To find answers to the first objective, a comparative analysis between the three proposed models 

was conducted with respect to their prediction accuracy and assigned probability to each risk. The 

comparison of prediction accuracy between the BN model and the deterministic ML models 

indicated that for small databases like the first case study, ML algorithms suffered from overfitting, 

while BN had an acceptable performance, with a minimum of 85% accuracy among the eleven 

risk categories. Figure 8.34 indicates the average accuracy of each of the deterministic ML models 

for the first case study, and Figure 8.35 indicates the average accuracy of BN for each of the eleven 

risk categories. 

 

Figure 8.34. The average accuracy of each of the deterministic ML models for the first case study 

 

Figure 8.35. The average accuracy of BN for each of the eleven risk categories 
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Moreover, the comparison of the risk probability assigned by each of the models indicated that: 

a) Judgment based on merely expert data in FL is over-conservative, estimating higher 

probabilities for risks. 

b) Judgment based merely on project data in deterministic ML models is not reflective 

of the actual situation due to the small size of the database and can underestimate 

the probabilities of risks. The deterministic ML models use the frequentist approach 

to estimate the probabilities of risks, that is, the frequency of the occurrence of risk 

in the database. However, if a certain risk was not repeated much in previous 

projects, there is no guarantee it will not be frequent in upcoming ones. 

c) Combining the two sources of judgments in BNs balances the estimates. Therefore, 

BNs offer the most realistic probability estimates of the risks, as evident in Figure 

8.36. 

 

Figure 8.36. Comparison of Risk Probabilities assigned by each of the three ML, FL, and BN models 
 

To find answers to the second objective, all three models were applied to another case study of 

a much larger size. As anticipated, deterministic ML models outperformed BN when the data was 

abundant. Among different ML algorithms, XGBoost had the best performance due to its ability 

to capture both linearity and nonlinearity existing in the data. Figures 8.37.1 and 8.37.2. present 

the mean of cross-validation and R2 score for the total cost prediction in the second case study, 

and Figures 8.38.1 and 8.38.2 present the mean of cross-validation and R2 score for the delay 

prediction in the case study. It is worth noting that BNs had a weaker performance than XGBoost 

as there was enough data available for the deterministic models to learn from and predict 

accurately, and the data was representative enough of the actual situation to rely on frequentist 

inference. Therefore, the advantage of Bayesian inference was not a game changer in the case of 

a large database. 

In conclusion, when working with small databases with a great number of missing values, 

probabilistic approaches like BNs are recommended, as they can integrate various sources of 

judgments to compensate for the data scarcity and benefit from the Bayesian inference for a more 

realistic risk probability assessment. However, when working with large databases, the 

deterministic ML algorithms outperform the probabilistic ones due to their advanced structure and 
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ability to capture both linearity and nonlinearity in the data. Furthermore, the existence of abundant 

data makes the frequentist inference of such models closer to reality.  

8.2. Practical Implementation of the model 

8.2.1. Integration of the model with the company’s processes:  

The proposed models should fit into the company's cycle of RM processes and should be 

authorized by the company. The input and output results, as well as the compatibility of the project 

reports' data formats with algorithm data, should be determined. Moreover, the data and model 

ownership, copyright, confidentiality, and operability need to be discussed with the company 

management. Moreover, training and guidelines on the use of the model will be provided to the 

project managers. The final product is aimed to be in the form of an Excel add-in that can be run 

on projects' documents for automated risk identification and assessment of new projects. However, 

it is out of the scope of this research and is considered a future research direction. 

8.2.2. Ethic-aware implementation framework: 

With the purpose of making it a moral, ethical, and harmless model, the areas of potential biases 

would be identified and addressed. Moreover, the data privacy and confidentiality issues should 

be discussed and compared to the company’s policies. Figure 8.37. presents a holistic list of harms, 

biases, and challenges in three steps of AI application in construction companies, i.e., Database 

collection, AI model development, and Implementation for Decision Making, that need to be 

considered and addressed for an ethical and just AI application, which is specific to this study. 
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Figure 8.37. Proposed Application Framework of the developed model to address and solve the Ethical harms, 

biases, and challenges of AI application in construction companies 

 

Transforming AI ethics and standards into a practical framework applicable to construction 

projects is difficult, where various components and processes need to be considered and assessed 

in terms of compliance with both the ethical standards and the enterprise processes to guarantee 

the system’s capability of making ethical and moral decisions. There are various ways to educate 

AI systems and transform them into ethical agents, including a) implicit ethical agents, when a 

machine’s actions are constrained to avoid unethical outcomes, which could significantly limit AI 

application, b) explicit ethical agents, stating explicitly allowed and forbidden actions, and c) full 

ethical agents, when machines have consciousness and free will like humans and can make their 

own decisions, although it is still in the research phase (Anderson and Anderson, 2007). However, 
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measuring ethics metrics is challenging compared to hard performance metrics, leading to 

companies often prioritizing project budget and quality over ethical considerations. Therefore, 

companies face a tradeoff between focusing on AI advancement to realize profit maximization or 

focusing on AI ethics to ensure societal benefits derived from AI (Siau and Wang, 2020). Another 

challenge to face is the shift of risks in the construction industry from known space, like financial 

or delay risks, to unknown space, like the liability of contractors if an accident was caused by a 

robot or a wrong design generated by AI (Pillai and Matus, 2020). Therefore, developing an ethical 

AI implementation framework requires systematic analysis on various levels mentioned below: 

• Ethics-Aware Design and Implementation of AI: Design engineers must be fully aware of 

the ethical challenges, biases, and cyber security risks, and inspect the potential flaws in the 

system design (Bostrom and Yudkowsky, 2014). The AI system itself should be able to 

reflect on the ethical and social principles and standards embedded by developers to make 

socially significant decisions and avoid unethical behaviors (Wallach and Allen, 2009). 

Finally, in order to implement a responsible and ethics-aware AI system, the ethical mindset 

and culture in the organization and among employees need to be promoted. Furthermore, 

fairness should be addressed at different levels: a) Data Fairness, when the input data is 

representative, relevant, accurate, and generalizable to the entire study sample, b) Design 

Fairness, when used target variables, features, processes, or analytical structures are not 

unreasonable, morally objectionable, or unjustifiable, c) Outcome Fairness, when the 

outcomes are not discriminatory or inequitable impacting on the lives of the people, and d) 

Implementation Fairness, when users are trained to implement them responsibly and without 

bias (Leslie, 2019).  

• Integration of AI in Project Team and Processes: The project team requires motivation to 

accept AI in their engineering and management processes and change the usual way of doing 

their activities. Autonomous motivation is based on the fulfillment of the three psychological 

needs: autonomy, competence, and relatedness (Deci, Olafsen and Ryan, 2017), all of which 

will be impacted by AI. While AI automates repetitive tasks and facilitates decision-making 

by team members to allow them to focus on creative thinking, it can hinder the team's ability 

to learn from mistakes and limit productive conflicts, affecting team dynamics and 

collaboration (Schöttle, 2020). Therefore, there is a dilemma between team motivation and 

performance when AI comes into the picture. 

• Education and Training on AI: Education and training have been introduced by previous 

researchers as the most straightforward solutions to solve the ethical, moral, and social issues 

of technology application in the industry (Leslie, 2019). Education has different target 

populations: a) AI applications developers need to be educated about ethics codes and 

standards, b) the AI algorithms need to be educated in embedding these standards, c) 

management-level policymakers need to be educated on the pros and cons and ethical 

considerations on AI, and d) end users, in this case, engineers, architects, and project 

managers, need to be educated with basic knowledge and hands-on experience on AI 

algorithms and codes of ethics. This way, a bilateral human-centric relationship will be 

shaped between the technology and human agents, and the change-resistant culture of the 

industry will change, giving more exposure and space for AI implementation on a vast scope. 
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Figure 8.38. indicates the ethics-aware and responsible AI framework with respect to 

proposed solutions. 

 

Figure 8.38. Responsible AI framework, components, and solutions (Wang, Xiong and Olya, 2020) 
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 Chapter 9: Conclusion 

 

9.1. Conclusion Key Points 

The construction industry, often viewed as traditional and resistant to change, is on the cusp of 

a technological revolution. With the advent of Artificial Intelligence (AI) and Machine Learning 

(ML), the construction Risk Management (RM) processes are undergoing a significant 

transformation. This dissertation aims to analyze the advantages, challenges, and future prospects 

of integrating AI and ML into construction RM in order to develop a comprehensive and efficient 

ML-based RM tool that can address and solve the shortcomings of traditional RM methods in the 

industry. A comprehensive literature review was conducted on the ML-based solutions and 

methods discussed by other researchers, which served as the theoretical foundation of the research. 

As a result, a number of probabilistic and deterministic ML algorithms were selected for the 

implementation phase. Searching for an optimum ML-based solution based on the specific 

requirements of the industry partner, the selected algorithms were implemented on the case study 

of their project, and results were recorded and compared; as a result, Bayesian Networks (BNs) 

combining experts' subjective opinions with objective project data indicated the best, most 

realistic, and most understandable results. Parallel to BNs, eight other deterministic ML models 

based on merely project data and a fuzzy logic model based on experts' opinions were developed, 

and their results were compared with the BN's results. Moreover, almost the same algorithms were 

applied to a second case study with a much bigger database, where deterministic models 

outperformed as expected. This finding highlights the importance of data quantity in the 

performance of the ML models.  

Moreover, two solutions were proposed for compensating the data scarcity in the first case study: 

a) synthetic data generation using GANs and b) elicitation-based risk network structure and 

parameter learning, which made it possible to integrate two sources of data and judgment experts' 

experience-based opinions with historical project records. Both solutions helped largely overcome 

the data scarcity and increased the BN prediction precisions. Another key point in the results was 

the comparison between the FL and BN models' prediction of risk probability, which was higher 

in the FL model, meaning that experts evaluate the probability of risks higher than they actually 

are, and if a model is merely based on expert opinion, like most conventional RM models, the 

assessment of risks would not be accurate. On the other hand, the limited project database might 

not be comprehensive and reflective enough of the actual situation to form the entire judgment. 

Therefore, combining the two sources of information can balance the risk assessments and foster 

informed and factual decision-making in the industry. 



208 
 

9.1.1. The application of AI and ML in Construction RM 

The integration of AI in the construction sector is not a mere trend but a necessity. With projects 

becoming more complex and the stakes higher than ever, there is an urgent need for tools that can 

predict, analyze, and mitigate risks efficiently. AI and ML, given their advanced processing 

capabilities, ease of implementation, and automated learning, can significantly benefit the 

construction RM domain by extracting insights from already completed projects' databases. 

Moreover, probabilistic ML models like FL and BNs provide the opportunity to translate the 

experience-based tacit knowledge of experts in the field into quantified and understandable 

formats, which can be merged with objective historical data to create augmented, comprehensive, 

and balanced training sets. This is a huge advantage of probabilistic models, especially in the 

construction domain, where data is scarce and unstructured, and historical records are unable to 

represent the actual risk conditions realistically. 

9.1.2. Key Drivers for AI Adoption 

The key drivers of AI and ML adoption in construction projects are identified as the following: 

a) he complexity of modern construction projects brings with it a myriad of risks that need 

advanced tools for on-time and optimum identification, assessment, and mitigation. 

b) Demand for efficiency, where ML-based RM tools can optimize processes, ensuring 

projects stay on track, on budget, and in compliance with quality and safety standards. 

c) Massive data production, which enables AI and ML algorithms to go through this data, 

extracting valuable insights for efficient decision-making. 

9.1.3. Advantages of AI-driven Risk Management 

a) Automation and Optimization of RM processes, from data collection to risk analysis, AI 

can handle repetitive tasks efficiently, ensuring that human resources are utilized for more 

critical decision-making processes. 

b) Fostering informed and strategic decision-making for risk mitigation and resource 

allocation by providing data-driven insights derived from analyzing vast amounts of data. 

c) Standardization of the RM process stages, as AI-driven processes are consistent regardless 

of the project's scale or location, ensures the quality and predictability of the risk 

assessments. 

d) Experience-based judgment quantification brings in a level of objectivity that was lacking 

in previously applied RM methods. 

e) Focus on the role of intelligent project management in the construction sector, which is an 

area often overlooked in construction literature. However, due to the complex and unique 

nature of construction projects, intelligent and strategic project management can play a key 

role in ensuring project success, for which AI can be an instrumental tool. 

f) ML models continuous learning and improvement over time. As they are exposed to more 

data and different scenarios, their accuracy and reliability increase. This means that the 

longer they are in use, the better they become at identifying and mitigating risks. 

g) Optimized resource allocation, based on an ML-based analysis of project requirements 

against available resources, ensures optimal allocation; that is, the right personnel, 
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machinery, and materials are always in the right place at the right time, leading to increased 

efficiency and reduced risks. 

h) Enhanced safety protocols, as AI can be used to monitor construction sites in real-time, 

identifying potential safety hazards and ensuring compliance with safety standards, 

preventing accidents, ensuring the well-being of the site workers, and avoiding costly legal 

complications. 

i) Customized solutions for clients, as ML algorithms can analyze client preferences and 

requirements to offer tailored solutions to their specific portfolio of projects. 

j) Efficient Supply Chain Management by real-time risk assessment, predicting demand, 

managing inventory, and ensuring timely delivery of materials. An efficient supply chain 

reduces project delays and cost overruns and keeps the project on track. 

 

9.1.4. Challenges of AI-driven Risk Management 

a) Data Scarcity and lack of open access databases in the construction sector, especially at the 

project level, which hinder the application of most ML methods. 

b) Overfitting, that is, tailoring models too closely to a specific dataset, like a client's database, 

can lead to overfitting.  

c) Reliability and trust issues; that is, for many in the construction industry, trusting an 

algorithm over years of experience can be challenging. Building trust in AI-driven 

processes is crucial for their widespread adoption. 

d) Specific and Technical knowledge requirement to understand the ML processes and use it 

efficiently, which is lacking among construction professionals. 

e) Improper choice of ML models. Most of the time, the developed models do not comply 

with the studied problem regarding the available data, specific requirements, complexity 

of the problem, role of uncertainty, and application scope, which leads to poor performance 

of the model. 

f) Complexity and difficulty in interpreting the ML models, especially deep learning models, 

which make it challenging for construction professionals to interpret and understand the 

model's predictions. Therefore, the engagement rate and usability of the models decrease. 

g) Change-resistant and traditional culture of the construction industry, its professionals, and 

its processes, which slows down the adoption and integration rate of ML. Moreover, 

Integrating AI and ML solutions with existing systems can be challenging and might 

require significant changes to current workflows and processes, which requires great effort 

and capital investment. 

 

9.2. Research Limitations, Solutions, and Future Prospects 

9.2.1. Research limitations 

a) Data scarcity and existence of missing values in project-level risks of the case study. This 

is a common issue with most construction companies, as construction projects take a long 

time to complete, and data registration is not done frequently and in a standardized manner.  

b) The context-driven nature of the risk analysis domain, which hindered the integration of 

other construction projects with the project portfolio conducted by the research industry 
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partner. It was not even possible to add the projects' construction by other branches of the 

corporation in other countries, as the scope and type of projects varied drastically, resulting 

in poor performance of the model predictions. 

c) Lack of open access databases on construction projects that could be used for model 

validation. 

d) Lack of similar studies that could serve as a benchmark. 

9.2.2. Research Solutions 

The data scarcity issue was addressed with two solutions. First, synthetic data generation using 

GANs, which is one of the first of its kind on tabular data. Usually, GANs are used for image data 

augmentation, and this research contributed to the GAN body of knowledge for tabular data. 

Second, the integration of subjective expert opinions, based on their experience, using elicitation, 

with objective project data, which was made possible by the BN application. As BNs benefit from 

the Bayes inference and can use multiple sources of data and judgments, they significantly solve 

data scarcity issues and perform well in small databases, like the research’s first case study. Using 

white-box models like BN or FL over Blackbox models increases the model explainability and 

transparency, which makes it easier to comprehend for industry professionals. 

While the study was developed for a specific client, and the model cannot be automatically 

scaled to other types of projects due to the context-drivenness of the risk realm, it has high 

adaptability and can be tailored to other companies with unique project portfolios with minor 

modifications. That is, the general framework and application steps remain unchanged, while the 

variables in the developed BN or deterministic ML models can easily be updated and modified 

when new data is inserted, making them applicable to different databases. However, the scalability 

of the FL model is lower since it completely relies on the tacit knowledge and experience of 

specific experts, which is highly subjective and differs significantly from one company to another 

or in different countries. 

Finally, to build trust toward the ML-based model, this research conducted a vast review of 

literature on all possible harms, biases, discriminations, and moral/ ethical/ social issues caused by 

digital technologies applications. Based on the findings, a generic framework addressing all the 

possible threats toward trust-building that could occur during data collection, model development, 

and implementation phases was listed with their designated solutions, which will serve as a basis 

for the practical implementation strategy of the proposed model. It is expected that by addressing 

these issues, the acceptance rate and engagement of the industry professionals would increase. 

Figure 9.1. graphically presents the research solutions to each of the initial issues and limitations, 

proposing BN as the final solution of the research. 



211 
 

 

Figure 9.1. Proposed research solutions to each of the initial issues and limitation, and the final solution 

 

9.2.3. Bayesian Approaches in Construction RM 

Given the unique conditions of construction projects, which often involve a mix of quantitative 

data, expert judgment, and evolving scenarios, Bayesian Networks might offer the most tailored 

approach. Their ability to continuously update risk assessments based on new data and prior 

knowledge aligns well with the dynamic nature of construction projects. However, the choice of 

algorithm should also consider the available data, expertise, and specific project requirements. In 

many cases, a hybrid approach, combining the strengths of multiple algorithms, might be the most 

effective strategy. 

In the realm of construction RM, Bayesian methods provide a dynamic way to assess and 

manage risks based on both prior knowledge and project data. The structure and parameter learning 

can be done using both expert opinions and project data, and the beliefs can be updated once new 

data is available. BNs graphically represent probabilistic relationships among a set of variables 

and can be used to model complex interdependencies between different risks in construction 

projects, which makes them a perfect solution to address the shortcomings of conventional 

methods. Moreover, with their graphical representation, they can model complex environments, 

like construction projects, and offer a transparent view of the interdependencies between different 

risks, making it easier for stakeholders to understand the risk landscape. However, the downside 

is the exponential growth of the model complexities as more features and variables are added to 

the model, making the risk modeling process complicated and requiring specialized knowledge. 

Additionally, while Bayesian methods can work with limited data, their accuracy and reliability 

improve with more data, the gathering of which is not easy in construction projects. In conclusion, 



212 
 

Bayesian approaches offer a robust and dynamic framework for construction risk management. 

While they come with their set of challenges, their ability to provide real-time, data-driven risk 

assessments makes them invaluable in the ever-evolving landscape of construction projects. Proper 

training and the integration of Bayesian tools can help construction firms harness the full potential 

of these methods. 

9.2.4. Future Research Prospects 

a) Integration with other project management areas, like scheduling and cost management, 

offering a holistic approach to more efficient and intelligent project management in 

construction projects. 

b) Scaling the model to operation-level risks. While this research focuses on project-level 

risks, the potential of AI in operation-level risk is even greater, due to the daily production 

of data. With more data available at this level, there's scope for more advanced risk analysis 

and mitigation strategies. 

c) Automated and frequent documentation using AI, ensuring that reports, change orders, and 

other essential documents are generated, updated, and maintained, with active 

consideration of the risks identified by the proposed model.  

d) Active supervision of risks and their consequences, linking the proposed model with 

progress reports and accident reports. 

e) Automated intervention planning, based on historical data, to mitigate the risks and post-

intervention risk modeling to assess the residual risks after taking preventive or corrective 

actions. This is a very new and understudied area, even in engineering RM. However, it 

can bring huge advantages to informed decision making on risk mitigation plans. 

9.3. Summary 

In conclusion, while the integration of AI and ML in construction RM presents numerous 

advantages and holds immense potential to revolutionize the construction industry, it's essential to 

be cognizant of the challenges. With continued research and collaboration between experts and 

technologists, the construction industry can harness the full potential of digital technologies. 

Proper training, collaboration, and continuous evaluation can ensure that ML models serve as 

valuable tools in the ever-evolving landscape of construction RM. From enhanced efficiency and 

safety to improved quality and client satisfaction are the contributions of an intelligent and 

automated RM framework with the help of ML-based models. This dissertation tried to delineate 

a portion of the numerous advantages of ML-based RM methods with a practical and problem-

driven approach. Moreover, the extensive literature review and comparative analysis between 

deterministic and probabilistic ML models contribute to the AI in construction body of knowledge. 
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