
 

Dosiomics analysis to predict 

local recurrence in patients 

affected by skull-base chordoma 

treated with proton therapy 

TESI DI LAUREA MAGISTRALE IN  

BIOMEDICAL ENGINEERING 

INGEGNERIA BIOMEDICA 

Author: Gloria Rizzato 

 

Student ID: 967036 

Advisor: Chiara Paganelli 

Co-advisors: Letizia Morelli, Giovanni Parrella 

Academic Year: 2021-22 



 

 

 

 

 



 iii 

 

 

Summary 

Skull-base chordoma (SBC) is a rare and radioresistant tumour and its complete 

surgical resection is often unfeasible. Particle therapy with proton beams is a 

promising approach to control SBC tumour progression thanks to its improved 

physical properties (i.e. linear energy transfer, LET) and radiobiological effectiveness 

(RBE) with respect to conventional radiotherapy. At the same time, the extraction of 

quantitative features from patient-specific medical imaging has become a promising 

approach for treatment outcome prediction. Quantitative features can in principle be 

extracted from any volumetric map, such as also dose maps defined during the 

radiotherapy treatment planning, with the so-called dosiomics framework. The 

purpose of this thesis was to investigate dosiomics in predicting local recurrence for 

SBCs patients treated with proton therapy, by exploring how different features 

extraction settings can influence model’s performance. Features were extracted from 

dose-averaged LET (LETd), physical and RBE-weighted dose maps by varying the 

setting of parameters related to dose map intensity discretization (binwidth/bincount), 

and then fed into a prediction model of local recurrences. Two features selection 

approaches have been implemented to evaluate models’ performance by varying the 

binwidth/bincount values across each dose map type (approach 1) and by fixing the 

binwidth/bincount value across different dose maps (approach 2). In both cases, 

stratified 5-fold cross-validation routine repeated 10 times was used and Harrell 

Concordance index (CI) employed to evaluate models’ performance. In approach 1, a 

greater stability was obtained in models trained by varying the bincount parameter 

with respect to the binwidth parameter for physical dose (CI 0.62) and LETd (CI 0.60); 

for RBE-weighted dose no marked difference in models’ performance stability was 

present between the two intensity discretization methods. In approach 2, a higher 

number of significant first-order features were found in LETd for both 

binwidth/bincount methods with respect to physical and RBE-weighted dose maps. 

Concerning models’ performance, by fixing the binwidth value, better models’ 

performance was obtained for physical and RBE-weighted dose maps; whereas, by 

fixing the bincount value, better performance was obtained for LETd maps rather than 

physical dose maps in most cases. Nevertheless, no relevant findings have been found 

on the optimal value of binwidth/bincount to be used in the dosiomics pipeline, but 

further investigations are needed, also considering a larger population.  

Key-words: dosiomics, local recurrence, proton therapy, skull-base chordoma, dose 

maps, intensity discretization. 
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Sommario 

Il cordoma della base cranica (SBC) è un tumore raro e radioresistente e la resezione 

totale è spesso infattibile. La terapia con raggi protonici è un approccio promettente 

per controllare la progressione del tumore grazie alle sue migliori proprietà fisiche (i.e. 

trasferimento lineare di energia, LET) e all'efficacia radiobiologica (RBE) rispetto alla 

radioterapia convenzionale. Allo stesso tempo, l’estrazione di caratteristiche 

quantitative da immagini biomediche paziente-specifiche si è rivelata un approccio 

promettente per la predizione di outcome del trattamento. In linea di principio, 

caratteristiche quantitative possono essere estratte da qualsiasi mappa volumetrica, 

come anche da mappe di dose definite durante la pianificazione del trattamento di 

radioterapia, attraverso la cosiddetta dosiomica. Lo scopo di questa tesi è quello di 

investigare la dosiomica nella predizione della recidiva locale in pazienti affetti da SBC 

trattati con protonterapia, esplorando come diversi settings di estrazione delle 

caratteristiche possano influenzare le performance dei modelli. Le caratteristiche sono 

state estratte da mappe di LET mediate sulla dose (LETd), mappe di dose fisica e di 

dose ponderate su RBE variando il setting dei parametri relativi alla discretizzazione 

dell'intensità della mappa della dose (binwidth/ bincount), e poi inserite in un modello 

di previsione delle recidive locali. Due approcci di selezione delle caratteristiche sono 

stati implementati per valutare la prestazione dei modelli variando i valori 

binwidth/bincount per ogni tipo di mappa di dose (approccio 1) e fissando il valore 

binwidth/bincount per diverse mappe di dose (approccio 2). In entrambi i casi è stata 

utilizzata una routine di cross-validazione con un k-fold di 5 ripetuta 10 volte e l’indice 

di concordanza di Harrell (CI) è stato impiegato per valutare le prestazioni dei modelli. 

Nell’approccio 1, è stata ottenuta una maggiore stabilità nei modelli addestrati 

variando il parametro bincount rispetto al parametro binwidth per la dose fisica (CI 

0.62) e per LETd (CI 0.60); per la mappa di dose ponderata su RBE nessuna differenza 

marcata nella stabilità delle prestazioni dei modelli era presente tra i due metodi di 

discretizzazione dell'intensità. Per quanto riguarda la prestazione dei modelli, 

fissando il valore binwidth, sono state ottenute prestazioni migliori per le mappe di 

dose fisiche e di dose pesate su RBE; mentre, fissando il valore bincount, prestazioni 

migliori sono state ottenute per le mappe LETd rispetto alle mappe di dose fisiche nella 

maggior parte dei casi. Tuttavia, non sono stati trovati risultati rilevanti sul valore 

ottimale di binwidth/bincount da utilizzare nella pipeline dosiomica, ma sono 

necessarie ulteriori indagini, anche considerando una popolazione più ampia. 

Parole chiave: dosiomica, recidiva locale, protonterapia, cordoma della base cranica, 

mappe di dose, discretizzazione dell’intensità. 
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1 Introduction  

1.1. Chordoma 

Definition and origin 

Chordomas are neoplasms which develop at the level of the spine; mostly they arise 

at the ends of it, i.e. in skull-base or at the level of sacrum, but they can grow from any 

anatomical location along the length of spine. Chordomas are radioresistant malignant 

cancers, locally aggressive, invasive and characterized by slow-growing [1].  

Their origin may derive from undifferentiated notochordal remnants which remain in 

vertebral bodies and axial skeleton. The notochord is a flexible rod-shaped 

embryologic structure which develops in the third week of gestation and serves as 

primitive axial skeleton. As the vertebral column develops, the notochord degrades in 

what later becomes the nucleus pulposus: after birth, notochordal cells are replaced by 

small cartilage-like nucleus pulposus cells. In early adulthood this process is usually 

concluded. However, there are cases where foetal notochord cells still persist in the 

axial skeleton, and especially at the caudal and cranial ends, through life: it is thought 

that those remnants may proliferate into chordoma [2] [3]. During years, different 

benign tumours with notochordal cell origin have been discovered: it is still a 

discussion whether those benign tumours may undergo to malignant transformation 

leading to chordoma. 

Incidence 

The incidence of chordoma is 0.08/100,000 people/year and it most arise in patients 

between 40 and 60 years of age, but it can occur also in childhood and teenagerhood 

(less than 5% of cases occurs before the age of 20 years). In Europe, as for primary site 

distribution, 36% of chordoma cases are sacral, 30% cranial, 23% spinal and 11% have 

other primary sites distribution [4] [5].  

Clinical presentation  

Chordomas show a slow growth rate, hence they are clinically silent in early stage: the 

lack of symptoms in the first phase makes the tumour to be quite large when 

manifestations appear. Depending on the anatomical location of the lesion, patients 

affected by chordoma have different signs: head-ache, neck pain and cranial nerve 



 

 

palsies arise in case of skull-base chordomas (SBCs), chronic back pain or 

urinary/bowel dysfunction due to nerve root compression are present in case of spinal 

and sacral chordomas [6].  

In this thesis, a study on patients affected by skull-base chordoma was conducted. 

SBCs are deep-seated tumours, closely located to vital structures such as optic nerves 

and brainstem (Figure 1. 1 [7]). More in details, SBCs commonly arise in the spheno-

occipital synchondrosis of the clivus, basiocciput clivus, or at the petrous apex, while 

intradural areas, sella turcica, sphenoid sinus, nasopharynx, maxilla, and paranasal 

sinuses are less common sites of origin. Patients with this kind of lesion show different 

symptoms based on the origin site: among the main ones there are dysphagia, 

chocking on water, decreased pharyngeal reflex due to cranial nerves compression [5] 

[7].  

The access to the lesion is often difficult due to its deep anatomical position. For this 

reason, a detailed histological analysis is not always possible leading to a poor 

characterization, which is fundamental for treatment decision making. 

 

 

Figure 1. 1 - Contrast-enhanced sagittal T1 (a) and axial T2 (b) MRI exams of a 56-

year-old male with a skull-base chordoma (white arrows) with brainstem 

compression (white stars). 
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Diagnosis - Imaging  

Computed tomography (CT) and magnetic resonance imaging (MRI) are the two 

imaging techniques which allow the characterization of SBC and surrounding tissues. 

In particular, the delineation of the lesion and surrounding soft tissues are crucial for 

the optimization of the treatment that will be delivered. 

MRI allows the characterization of tumours’ morphologic characteristics and 

extension thanks to the higher intrinsic soft tissue contrast than CT. This technique is 

able to identify the intradural extension and allows the delineation of margins of both 

tumour and relevant soft tissue structures which will be useful during the treatment 

phase. On contrary, CT is involved to discover osseous invasions and bone 

abnormalities: this technique is used to delineate the extent of bony involvement [7]. 

Skull-base chordoma: therapeutical approaches 

Different kinds of therapeutical approaches can be considered for the treatment of SBC 

patients and their application depend on several factors such as the nature of the 

neoplasm, its localization, its diffusion and on patient’s overall health condition. 

Typically, surgical resection is the first therapeutic strategy that is commonly applied: 

endoscopic endonasal approach (EEA) is commonly performed, but also minimally 

invasive open techniques such as microsurgical craniotomy are considered. SBCs are 

surrounded by critical anatomical structures such as optic system, carotid artery and 

brainstem that hamper the complete surgical eradication of the tumour, with the 

frequent identification of local residuals. It is known that SBC will recur from residuals 

of cells tumour or remnants (even if microscopic) located where surgical resection was 

applied. Therefore, radiotherapy is the recommended technique to be applied in 

combination with surgical resection [9] [10]. In literature different studies show the 

efficacy of combination of surgery and radiotherapy with respect to surgery alone in 

obtaining local control [11].   

The ultimate objective in radiation oncology is the achievement of local control: local 

control of the primary site consists in the achievement of a condition of no-progression 

or complete eradication of the tumoral mass (favourable event), in contrast to tumour 

progression/local recurrence (adverse event). SBC is a radioresistant tumour if 

managed with conventional fractionated radiotherapy: this is challenging for the 

application of radiotherapy treatment, hence particle therapy has revealed to be a 

promising approach since it allows a dose escalation to the tumour while sparing 

healthy structures surrounding the lesion [6] [10]. Detailed explanations of 



 

 

conventional fractionated radiotherapy and particle therapy are reported in paragraph 

1.2 and 1.4, respectively. 

Local control and survival rate 

Although the combination of surgery with radiotherapy has been demonstrated to 

achieve greater local control and greater overall survival (i.e. the global survival, so if 

the patient will survive) and some improvements have been reached with particle 

therapy (such as proton and carbon ion radiotherapy), tumour response remains not 

satisfactory [4]. Considering the 5-year survival rate it is estimated to be 45% for 

conventional radiotherapy, 87% for carbon ion radiotherapy [12], while as for  5-year 

local control, it is 48–60% [13] and 72% [14], respectively. The high tendency to recur 

after the first treatment represents one of the major clinical challenges.  

Regarding metastases, they may occur in bone, lungs, skin and liver with a percentage 

between 6 and 30, but their impact is still to be clarified [7]. 
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1.2. Conventional radiotherapy 

Radiation therapy is the use of directed X-rays or subatomic particles primarily for 

cancer management in both curative and palliative settings [15]. Ionizing radiations 

are targeted to malignant cells inducing apoptosis, one of cell death that can occur after 

irradiation [16]. The interaction between cell DNA and radiation provokes an 

irreparable DNA damage leading to cell death, thus avoiding proliferation and 

progression of tumour [17]. However, also healthy cells are involved in radiation 

damages, but their tolerance to radiations differs from the one of tumoral cells. The 

aim of radiotherapy is to reach maximal therapeutic benefit in terms of probability of 

tumour local control while minimizing side effects to surrounding healthy structures.  

Conventional radiotherapy is performed by the usage of high-energy photons 

generated by linear accelerator mounted on a rotation gantry. Photons are referred to 

as indirectly ionizing radiation: the interactions between photons and tissue generate 

fast moving electrons which will directly provoke damages to DNA cells by 

propagating through tissue [18]. Radiation dose refers to the amount of energy 

absorbed per unit mass at a specific point, in other words, it describes how much 

energy from ionizing radiation has been absorbed in a small volume centred at a point 

and it is measured in Grays (1Gy=1J/kg) [19]. Considering the dose-depth curve, 

photons deposit a significant amount of dose at body surface entrance since the 

entrance dose decreases exponentially while increasing tissue depth. To better 

conform the dose to tumour volume while sparing healthy tissues, intensity 

modulated radiotherapy (IMRT) is one of the techniques which can be implemented: 

it allows irradiating the tumour from different directions while modulating beam 

intensities to vary delivery in depth. IMRT is realised with a moving multi-leaf 

collimator able to conform the dose to tumour volume and the dose is delivered by a 

medical linear accelerator mounted on a gantry able to rotate around the patient [20]. 

1.2.1.  Imaging in radiotherapy 

Imaging in radiotherapy plays a fundamental role in every phase of radiotherapy 

process. Firstly, images can be considered as a diagnostic tool to identify the presence 

of a tumour, then during treatment planning phase, they allow delineating the tumour 

and healthy structures. Concerning treatment delivery phase, images are involved to 

monitor the accuracy of treatment and lastly, during follow-up, imaging can be 

considered to verify if the desired treatment outcome has been achieved monitoring 

the treatment response.  



 

 

To reach tumour local control while minimizing side effects to healthy organs, an 

accurate localization and extension of both tumour and normal structures must be 

performed. To accomplish this, imaging modality for delineation of structures must 

have high spatial resolution (for an accurate contouring), high sensitivity (to 

individuate all structures involved in lesion) and high specificity (to identify all normal 

tissues).  

Concerning computed tomography, it plays a fundamental role in treatment planning. 

In a standard diagnostic CT scanner, an X-ray source and a detector are mounted on a 

rotational gantry which moves around the patient. Due to high spatial resolution, a 

three-dimensional and detailed image of the internal anatomy of the patient is 

produced by CT scan allowing the contouring of the lesion and healthy structures: still 

nowadays, CT is considered the mainstay in segmentation [21]. CT images are also 

given as input in treatment planning systems to calculate the dose which will be 

deposited in both tumour and healthy structures since they provide density tissue 

information (in Hounsfield units). However, the main disadvantages of this technique 

are the lack of contrast in soft tissue and artifacts (for example due to the presence of 

metal implants such as coils, stents and dental fillings).  

Magnetic resonance imaging provides a great soft tissue contrast thanks to the 

magnetic properties of hydrogen protons within a tissue, thus MRI can complement 

CT images during treatment planning improving target and organs at risk delineation. 

Contrary to CT technique, MRI has the advantage to acquire images without exposing 

the patient to further ionizing radiation [21]. As for disadvantages, geometric 

distortions appear deforming images (including structures of interest). MRIs, 

nevertheless, can not be used alone in radiotherapy treatment planning due to the 

absence of information about tissue density needed to calculate dose deposition. 

Positron emission tomography (PET) involves radioactive tracer (i.e. a positron emitter 

attached to targeted biologically active molecules) to construct three-dimensional 

images of tracer distribution within the body. PET images provide information about 

biological characteristics of tumour such as metabolism, oxygenation and proliferation 

allowing the identification of radio-resistance areas. Since the poor spatial resolution, 

PET images are never used alone for segmentation purpose, instead  the integration of 

PET and CT scanners may lead to a better contouring of tumour with respect to CT 

alone [22].  

As cited before, images are also involved in treatment delivery to improve tumour 

targeting while sparing healthy tissues and in follow-up to monitor treatment’s results. 
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Before each treatment delivery, cone beam CT images are acquired to correct errors 

(such as patient positioning, gain/loss weight, tumour swelling/reduction) which may 

occur just before treatment delivery, thus influencing the success of treatment (see next 

paragraph for major details). Cone-beam CT technique is the most used technique to 

compensate for day to day variations, but recently novel systems based on  MRI 

combined with a linear accelerator are emerging [23].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1.3. Radiotherapy workflow 

The radiotherapy workflow can be summarized into two main phases: treatment 

planning and treatment delivery. Before these two stages, a phase of patient’s 

diagnosis is conducted by collecting data such as patient’s medical history, his 

symptoms and comorbidities, information related to previous diagnostic studies and 

images where cancer disease can be identified [24].  

Treatment planning  

Different stages characterize the treatment planning process. First of all, the acquisition 

of CT images (and MRIs if characterization of soft tissue is required when contouring) 

allows the construction of a three-dimensional patient specific model where tumour 

and relevant healthy organs are defined. Different are the techniques which can be 

employed in segmenting structures, but manual segmentation is still considered the 

ground truth. This technique requires a radiation oncologist which manually contour 

relevant structures. Focusing on tumour segmentation, four different volumes are 

generated according to International Commission on Radiation Units (ICRU, report 50 

[25] and report 62 ): 

▪ Gross Tumour Volume (GTV) representing the tumour volume which can be 

detected by CT and MRI and defined as the palpable or visible extent of the 

malignant tumour; 

▪ Clinical Tumour Volume (CTV) made by GTV with additional margins 

including probable microscopic diseases and other areas (i.e. lymph nodes); 

▪ Internal Target Volume (ITV) which includes CTV and internal margin taking 

into account possible uncertainties related to variations in size and position of 

CTV due to organ motions; 

▪ Planning Target Volume (PTV) where are considered not only all possible 

geometrical uncertainties of the same nature of the ones of CTV and internal 

margin, but also all possible systematic (tumour reduction/swelling, loss/gain 

in patient’s weight) and random set-up errors (patient positioning).  

In Figure 1. 2 different volumes defined for radiation therapy planning are reported.  
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The segmentation of CTV plays an important role since this will be the irradiated target 

determining the achievement of local control, but also the reduction of set-up errors 

and organ motion understanding are essential to optimise the dose delivered to 

tumour while preserving organs at risk. During segmentation a critical aspect regards 

inter-operator variability: as reported in different studies (such as [26] and [27]), even 

if contouring is done by expert radiation oncologists, significant differences in target 

delineation are still present. Those uncertainties can lead to underdosing or 

overdosing: the result will be a decrease in the probability of obtaining local control or 

an increase in risk of toxicities. Semi-automatic and fully automatic segmentations 

methods are being developed to overcome inter-operator variability [28].  

After having segmented all the relevant structures, the optimal patient treatment plan 

is generated involving treatment planning system (TPS) with the aim to achieve an 

optimal dose distribution according to prescribed dose objectives for target volume 

and doses constraints for surrounding healthy tissues. TPS makes use of CTs to 

generate treatment plan and it includes optimization of several parameters such as 

beam positioning, directions, shapes, but also dose calculation based on patient 

anatomy and type of particle involved to treat the tumour [29]. While designing a 

treatment plan, fractionation is also taken into account, indeed it can influence the 

effect of treatment. Fractionation is related to the way the dose is given to the patient 

over time. By fractionating the dose delivered to malignant cells in daily fractions, the 

number of tumoral cells that will survive decreases due to less ability to repair 

damages over short periods of time with respect to normal tissue cells (Figure 1. 3) 

[30].  

Figure 1. 2 – Defined volumes in radiation therapy planning. OAR = organ at risk 



 

 

 

 

 

Isodose maps representing lines of constant absorbed dose and dose volume 

histograms (i.e. a plot of cumulative dose-volume frequency distribution) are 

graphical tools used in treatment planning summarizing the simulated radiation dose 

distribution through target volume and anatomical structures of interest [31]. 

Examples of axial CT and three-dimensional view with isodose lines for a brain 

treatment plan are shown in Figure 1. 4 (left) and Figure 1. 4 (right) [32], instead in 

Figure 1. 5 [32] the cumulative dose volume histogram is reported. 

 

Figure 1. 3 [30] – Surviving cells curves of cancer cells and 

normal tissue cells over time. Fractionation technique for dose 

delivery enhances the difference between malignant and 

normal cells to repair damages provoked by irradiation.  
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Figure 1. 4 [32] – left: Axial CT with isodose lines, right: Three-dimensional axonometric view 

with isodose map. 

Figure 1. 5 [32] – Cumulative dose volume histogram for a brain 

treatment plan. PTV = planning target volume, LON = left optic 

nerve, RON = right optic nerve. 



 

 

Treatment setup and delivery  

After some checks performed by medical physicist and radiation oncologist (such as 

verification of plan made by radiation oncologist and quality assurance checks related 

to technical components involved in treatment delivery), the phase of treatment 

delivery starts. Treatment plan has to be precisely and accurately replicated during 

delivery phase and in every irradiation session, so imaging techniques are required for 

treatment verification. One of the crucial steps in delivery phase regards the patient’s 

positioning: patient has to be placed in the same position at which treatment plan was 

built, indeed any difference in patient positioning with respect to the original plan 

leads to errors in dose delivery (both to the target and to healthy structures). The 

introduction of image guided radiotherapy (IGRT) helps in detecting and correcting 

deviations associated to patient positioning and motion by the acquisition of in-room 

images. In addition to patient set-up error, anatomical changes such as patient weight 

gain/loss and alterations in tumour geometries (shrinkage/growth) occur between 

different fractions. As previously mentioned, Cone-beam CT (CBCT) is the most used 

technique to quantify errors before treatment delivery: it allows the acquisition of in-

room CT images which will be compared with the ones acquired in treatment planning 

to correct errors due to patient positioning and anatomo-pathological variations. It is 

useful to point out the fact that with CBCT the dose delivered to patient increases 

because of the usage of X-rays to collect CT images. If variations between treatment 

plan and delivery can not be ignored, treatment plan has to be adapted to those 

variations [29].  

 

 

 

 

 

 

 

 

 

 

 



 19 

 

 

1.4. Particle Therapy 

Particle therapy refers to the clinical use of ion beams (i.e. protons or carbon ions) to 

treat patients with tumours. Cyclotrons or synchrotrons (i.e. particle accelerators) are 

involved to produce monoenergetic beams which will be spread to conform the dose 

to target volume. With respect to conventional X-rays radiotherapy, particle therapy 

presents both physical and radiobiological advantages, which make this advanced 

treatment particularly suited for deep-seated and radioresistant tumours [33]. 

Physical characteristics  

A substantial clinical advantage in using particle therapy with respect to conventional 

radiotherapy relies in the dose-depth characteristic of ion beam. As shown in Figure 1. 

6a [34], while for photon the dose decreases exponentially as function of depth, 

charged particle beam can penetrate through tissues depositing low energy at the 

surface of the body and most of its energy near the end of the track, known as the 

Bragg peak. By changing the velocity of the ion beam it is possible to control the depth 

at which the maximum dose deposition occurs, indeed an ion beam with higher kinetic 

energy travels longer ranges within the patient body.  

The physical characteristic of low entrance dose and no dose beyond a certain range 

of ion beam results in a highly-localized dose distribution, thus reduction of integral 

dose outside the target volume. Due to the fact that for a given energy of particles a 

narrow Bragg peak is created (the dose deposition regards a narrow depth in tissue), 

the necessity to spread particle energy to cover the entire volume of the lesion is 

needed: beams of different energies are superimposed thus creating a spread-out 

Bragg peak (SOBP). This effect can be seen in Figure 1. 6b [15]. SOBP can be obtained 

by active beam scanning, also called pencil beam scanning: this technique uses 

magnets (one for vertical, the other for horizontal steering) to steer charged particles 

of the beam towards the target so that he tumour is irradiated voxel by voxel and layer 

by layer. Due to dose conformality of particle therapy (i.e. a higher geometrical 

selectivity), a higher dose deposition in tumour region can be obtained as to optimize 

tumour local control probability, minimizing the dose deposited to surrounding 

healthy tissues [35]. This is the reason why charged particles are usually looked at 

when dealing with cancers at significative depth and near to sensitive healthy 

structures (e.g. brainstem). In addition to the physical advantages of particles due to 

the depth-dose distribution compared to the one of X-rays, particles show 

radiobiological advantages related to the density of dose deposition around Bragg-

peak, indeed due to interactions between particles and cell’s DNA, more severe 



 

 

damages can be produced [36]. To account for biological aspects, relative biological 

effectiveness and linear energy transfer have to be introduced. 

 

 

 

 

 

 

Figure 1. 6 [15] – a: Depth–dose relationships for X‑rays 

and ion beams. Bragg peak is highlighted with 

rectangular box. b: Spread-out Bragg peak for particle 

beams.  
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Relative biological effectiveness 

Different ionizing radiations leads to different biological effect. To understand the 

radiobiological response of different particles on tissues, relative biological 

effectiveness (RBE) has to be characterized. RBE is defined as the ratio between the 

absorbed dose of a reference beam (commonly the photon beam, e.g. 250 kVp X-rays 

or 60Co γ-rays) and the one of a test radiation (protons, carbon ions) to produce the 

same biological effect [15]. In Equation 1. 1 RBE formula is reported. 

 

For protons RBE is typically set at 1.1, whereas for carbon ions, an approximated value 

of 3.0 is taken into account. However, it must be pointed out that RBE is not a constant 

value, but it can vary depending on several different factors such as linear energy 

transfer (LET), particle species, tissue radiosensitivity and microenvironment [37]. 

Biologically, protons and carbon ions cause cellular damage more effectively than 

photons, this is the reason why protons and carbon ions are involved when dealing 

with radioresistant tumours [36]. 

Considering the different biological effect of different ionizing radiations, in clinical 

practise the absorbed radiation dose is weighted by RBE factor which depends on the 

type of radiation used. This quantity is called biologically effective dose and it is 

measured in Gy(RBE) (for example for X-rays the weighing factor is 1.0, so the 

equivalent dose is 1Gy(RBE)) [38]. 

Linear energy transfer 

Linear energy transfer (LET) describes the amount of energy that a particle transfers 

to the material per unit length of track. In Equation 1. 2 LET formula is reported: dE 

represents the amount of energy that is lost by particle while travelling the distance 

dx. The LET unit of measure is keV/μm [37]. 

 

 

 

𝑅𝐵𝐸|𝑏𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡 =
𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑑𝑜𝑠𝑒 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑎𝑚

𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑑𝑜𝑠𝑒 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛
 (1.1) 

Equation 1. 1- RBE definition 



 

 

 

LET value depends on the charge and on the velocity of the particle: if charged particle 

slows down, LET value increase. 

Due the interactions occurring between particles and matter, energy loss and 

secondary ion emissions occur [39]. For this reason, different particle species has to be 

accounted for LET calculation: primary and secondary particles are taken into account 

in case of protons, while for carbon ions, LET is an averaged value resulting from 

different fragments until oxygen.  

Particle energy spectrum has to be known to characterise beam at a specific location. 

Typically, track-averaging LET (LETt) and dose-averaging LET (LETd) are the 

considered averaged LET metrics to represent particle spectrum.  

In Equation 1. 3 the definitions of LETt and LETd are reported [39]. 

In addition to higher RBE of protons and carbon ions with respect to the one of 

photons, another advantage of particle therapy is the fact that around Bragg peak 

 

 

 

𝐿𝐸𝑇 =
𝑑𝐸 

𝑑𝑥
 (1.2) 

Equation 1. 2 – LET definition 

 

 

 

𝐿𝐸𝑇𝑡 =
∑ 𝜙𝑖𝑖 ∙ 𝐿𝐸𝑇𝑖  

∑ 𝜙𝑖𝑖
 (1.3a) 

 

 

 

𝐿𝐸𝑇𝑑 =
∑ 𝑑𝑖𝑖 ∙ 𝐿𝐸𝑇𝑖  

∑ 𝑑𝑖𝑖
 (1.3b) 

Equation 1. 3—a: LETt definition. Φi represents the fluence of charged particle i having a certain 

energy and charge and a certain LETi for the medium of interest. b: LETd definition. di 

represents the microscopic dose given in an infinitesimally small volume by the track of a 

single particle i.  
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charged particles show a high LET [35]. The dense ionization gives rise to clustered 

DNA damages difficult to be repaired, thus a greater tumoral cell inactivation [36]. 

RBE vs LET relationship 

In Figure 1. 7 the relationship between RBE and LET is reported: RBE increases as LET 

increases until a maximum RBE is reached, then decreases due to overkilling effect (i.e. 

a greater energy dose deposition in cell and DNA with respect to the one required to 

kill the cell leading to a less effective process per unit dose).  

For clinical energy range (1.8-2.0 Gy once a day for 5 days/week over 4-6 week period), 

RBE and LET present a monotonic correlation: it increases toward the distal edge of 

the Bragg peak, reaching a maximum at the falloff region.  

 

 

 

Treatment planning and treatment delivery for particle therapy  

As in conventional radiotherapy, also in particle therapy, a treatment planning system 

is employed to optimize the dose objectives and constraints for tumour and organs at 

risk.   

Figure 1. 7 [40] – Relationship between RBE vs LET.  



 

 

Focusing on the physical properties of ion beam, by changing the velocity of particle 

beam it is possible to control the depth at which Bragg peak occurs within the body to 

deliver the maximum dose to tumour while preserving healthy tissues. However, 

electron density and tissue composition influence particle energy loss. In order to 

define particle range, proton stopping powers (i.e. how effective a given material is at 

slowing down protons) have to be determined for anatomy of the patient. Since CTs 

provides measurements in Hounsfield unit (HU) of anatomical structures crossed by 

ion beam during its travel towards the target, a conversion algorithm is used to 

determine the stopping powers, considering the composition of human tissues. The 

major sources of uncertainties during treatment planning phase are related to both the 

determination of patient’s anatomy properties and to the algorithm used to calculate 

the range of particle beams [40]. Uncertainties in calculating particle range, even if of 

the order of millimetre, can give rise to overdosage in healthy tissues and underdosage 

in tumour volume, thus compromising the success of treatment. 

Another critical aspect of particle treatment planning is related to RBE: regarding 

protons, even if RBE value is variable, in TPS it is considered as a constant value for 

biologically effective dose calculation. This leads to errors in dose deposition 

calculation, which could result in an increased risk of radiation-induced toxicity 

especially in high-LET locations. Studies related to models to predict RBE as function 

of tissue type, dose and LET have been published, however, RBE is still considered 

constant while planning the treatment [41]. Concerning carbon ions, radiobiological 

models accounting for RBE variations have been developed (e.g. local effect model, 

which can be described as a track-structure model characterizing the radiobiological 

features of ions as an effect of the localization of deposited dose around the ion path 

[42]), however the model’s choice during treatment planning is not unique, but 

depends on the treating institution [36].  

As in conventional radiotherapy, TPS provides optimization of parameters related to 

ion beams and dose calculations based on the type of particle involved. RBE-weighted 

dose maps and averaged LETd dose maps are evaluated to select the best plan which 

will be delivered to the patient. 
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1.5. National Center of Oncological Hadrontherapy: 

treatment strategy for skull-based chordoma 

The National Center of Oncological Hadrontherapy (CNAO, Pavia, Italy) is a cancer 

treatment structure where proton therapy and carbon ion therapy are offered to treat 

patients affected by radio-resistant tumours or tumours positioned in particularly 

difficult locations (such as skull-base chordomas, ocular melanomas, prostate 

adenocarcinoma,...) since physical and radiobiological advantages over conventional 

radiotherapy. Concerning carbon ion therapy, CNAO is the only center in Italy which 

provides this kind of treatment.  

To treat tumours with hadrontherapy (i.e. the usage of hadrons such as protons and 

carbon ions to treat tumours), a particle accelerator is needed: at CNAO a ring-shaped 

synchrotron 80 meters long is employed for this purpose. Synchrotron is connected to 

different rooms where patients are treated. Particularly, before targeting the tumour, 

a particle beam travels 30.000 kilometres in half a second in the synchrotron to reach 

the energy required for the therapy. The number of treatment sessions depends on 

tumour characteristics (such as type, volume and location), but also on the type of 

particle involved: a common protocol involves one session per day, five days per week 

for a period ranging from two to seven weeks. 

Once a patient is elected as treatable at CNAO, CT for treatment planning and MRIs 

for segmentation of target and organs at risk are acquired. Successively, a patient-

specific treatment plan is built. Once the treatment plan has been optimized, the 

delivery phase starts.  

Concerning SBC, characteristics such as tumour location and tumour radiosensitivity 

lead to focus on particle therapy to manage this lesion. Indeed, different studies report 

the benefits of particle therapy treatments over conventional radiotherapy approach 

both in terms of overall survival [12] and tumour local control [43], thus particle 

therapy turned out to be the most effective radiation modality for the treatment of SBC 

[44]. Patient affected by this kind of tumour are treated with particle therapy at CNAO 

after surgical resection (when it is possible). The choice of particle type depends on 

tumour characteristics: in a study published by Iannalfi et al. [44], indication about 

particle type to be used are provided based on the GTV after surgery. In this thesis, 

patients with SBCs treated with protons at CNAO were analysed. Typical at CNAO, a 

74 Gy(RBE) delivered in 37 fractions is administered for proton therapy [44]. Once the 

radiant treatment has been concluded, a follow-up period starts involving imaging 

acquisition (typically MRIs) and clinical investigation to monitor treatment result.  



 

 

Nowadays one of the main objectives in clinical field is the building of personalized 

treatment based on patient-specific characteristics to improve clinical outcomes. In this 

context, prognostic factor analysis is needed. Considering SBC, in literature different 

studies aim to this scope [44] [45] [6]: some clinical prognostic factors have been widely 

evaluated to be of predictive value such as GTV after surgical resection, dose target 

coverage and proximity of tumour to organs at risk.  
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1.6. Radiomics  

In medical field, imaging plays an important role in clinical practice, indeed this 

technology can aid clinicians in decision making. During last years, the role of imaging 

has rapidly evolved from being primarily a diagnostic tool to being used as a source 

for the extraction of patient-specific quantitative information [46]. Due to the amount 

of information contained in imaging data, a timely evaluation in clinical routine is 

costly and hardly feasible without the support of computer tools. As a matter of fact, 

different studies have been focused on the discovery of quantitative features inside 

images to build mathematical models which can be used in clinical decision-making: 

all those steps can be summarized under the name of Radiomics.  

Quoting Robert J. Gilles and colleagues, “images are more than pictures, they are data” 

[47]: this citation helps in understanding what Radiomics is. Radiomics consists both 

in automatic extraction of quantitative imaging characteristics from medical images 

(for example CT, MRI, positron emission tomography), in their analysis and in 

building mathematical models by combining those features with patient’s 

characteristics (i.e. clinical information) in relation to prediction targets (for example 

clinical end points) to assist physicians in clinical decision making. Radiomics can be 

applied in different fields, especially in oncology where medical images are acquired 

since the beginning of radiotherapy workflow [46]. It has been demonstrated that 

radiomic features reveal not only information on tumour genomics [48], whose 

heterogeneity is theorized to be the major cause of failure and resistance to treatment, 

but also they can be useful in predicting treatment response and differentiating benign 

and malignant tumours [49].  

The main hypothesis behind Radiomics is the fact that biomedical imaging 

characteristics contain physio-pathological tissue information which can not be 

detected by human eye, thus they are made accessible through quantitative imaging 

biomarkers [50] [51].  

As cited in Paragraph 1.1, since the deep anatomical location of SBC and its proximity 

to vital structures, the access to the lesion is often hardly leading to a poor 

histopathological analysis. However, to make a decision about treatment that will be 

applied, it is necessary a characterization of the tumour. To deal with this, Radiomics 

can be applied to imaging data which can be considered as source of prognostic 

factors.    



 

 

1.6.1. Radiomic features 

As reported in image biomarker standardization initiative (IBSI) [52], which is an 

independent international collaboration working towards standardising the extraction 

of image biomarkers from imaging data to high-throughput quantitative image 

analysis, a biomarker is “a characteristic that is objectively measured and evaluated as 

an indicator of normal biological processes, pathogenic processes, or pharmacologic 

responses to a therapeutic intervention”. Focusing on image biomarkers, they can be 

qualitative (requiring expert evaluation) and quantitative (based on mathematical 

definitions); particularly, the retrieval of the latter enables high-throughput analyses. 

Radiomic features can be classified in four categories [53]: shape, first-order statistics, 

textural (or second-order statistics) and higher-order statistics features, particularly 

they are extracted from a volume of interest VOI (typically from gross tumour volume 

or clinical target volume) that is previously segmented [46].  

Focusing on the description of different types of features, shape characteristics are 

descriptors of geometric relations and properties of the segmented VOI; first-order 

features describe the distribution of voxel intensity within the image VOI; textural 

features represent statistical relationships between intensities levels of neighbouring 

pixels or voxels and lastly higher-order statistics features are retrieved by statistical 

methods usually after the application of mathematical transformations. It is useful to 

point out the fact that mathematical definition of features is well known, so it is 

plausible to make a biological analogy interpretation. However, since most of image 

biomarkers are quite complex, a direct relationship between physio-pathological 

meaning and textural parameters results hard.  

1.6.2. Radiomics workflow 

A typical study of Radiomics is structured different steps [53]: 

1. image pre-processing and tumour segmentation; 

2. features extraction and selection; 

3. model generation and evaluation.  

Image pre-processing and tumour segmentation 

In the first phase, as Radiomics is a retrospective study, heterogeneities in imaging 

protocols, such as acquisition and reconstruction of the image, appear leading to a loss 

of repeatability and reproducibility of radiomic features. Several studies highlight this 

problem aiming to analyse the impact of these settings on image biomarkers or trying 
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to reduce as much as possible their influence by removing the most influenced 

radiomic features. In addition, patient movements influence radiomic features leading 

to artifacts in images [50]. To overcome this issue, different pre-processing steps are 

applied such as intensity normalization and noise reduction.  

Then the definition of volume of interest VOI is performed: as previously cited, 

different methods to segment image exist, but manual segmentation of tumour 

structures is still considered the ground truth even if this method is time consuming 

and despite inter-observer variability[54]. Since the latter influences Radiomics 

analysis results (because features extraction is based on segmented structures), semi-

automatically and fully automatically techniques are being developed. 

Features extraction and selection 

Regarding features extraction and feature selection steps, imaging characteristics can 

be retrieved by using different open-source packages like PyRadiomics [55]. Also, they 

depend upon several factors such as the pre-processing of the image and its 

reconstruction. Lack of reproducibility and validation of radiomic studies is the major 

challenge: to solve this problem IBSI works towards the standardization of imaging 

biomarkers extraction. Fixed bin number and fixed bin width discretization are the 

two common methods applied to calculate features from images and depending on 

those parameters, values of radiomics features vary: variability and influence on 

features reliability due to different discretization methods are still under research.   

As reported in IBSI, in the fixed bin number method, intensities Xgl are discretised to a 

fixed number of Ng bins. Specifically, the intensity Xgl,k of voxel k is corrected by the 

lowest occurring intensity Xgl,min in the ROI, divided by the bin width  

(Xgl,max − Xgl,min) / Ng, and subsequently rounded down to the nearest integer (floor 

function).  In Equation 1. 4 it is reported the correction applied to the intensity Xgl,k of 

voxel k. 

 

By the usage of this method, a normalising effect is implemented and if a link between 

image intensity and physiological meaning is present, it is broken by this method. 

𝑋𝑑,𝑘 = {
⌊𝑁𝑔

𝑋𝑔𝑙,𝑘 −  𝑋𝑔𝑙,𝑚𝑖𝑛

𝑋𝑔𝑙,𝑚𝑎𝑥 − 𝑋𝑔𝑙,𝑚𝑖𝑛
⌋ + 1

𝑁𝑔

 
𝑋𝑔𝑙,𝑘 <  𝑋𝑔𝑙,𝑚𝑎𝑥 

𝑋𝑔𝑙,𝑘 = 𝑋𝑔𝑙,𝑚𝑎𝑥 
(1.4) 

Equation 1. 4 – Definition of correction applied to the intensity Xgl,k of voxel k 



 

 

Fixing the bin number is considered helpful in different circumstances, such as in case 

of arbitrary intensity units, (for example in MRIs) since the introduction of a 

normalising effect. In addition, by discretizing images with fixed number of bins it is 

possible to directly compare features values between different regions of interest 

(values of some features, i.e. texture ones, depend on the number of grey levels present 

in the region of interest).  

In the fixed bin size method, a new bin is assigned for every intensity interval with 

width wb starting at a minimum Xgl,min, where wb represents the bin width. In Equation 

1. 5 the discretised intensities are reported: the minimum intensity Xgl,min is subtracted 

from intensity Xgl,k in voxel k and then divided by the bin width wb. The resulting value 

is subsequently rounded down to the nearest integer (floor function), and 1 is added 

to arrive at the discretised intensity. 

 

 

 

Contrary to fixed number of bin method, the fixed bin width approach maintains 

direct relationship with the original intensity scale and this could be helpful in cases 

where functional imaging modalities are the analysed data (i.e. positron emission 

tomography and single positron emission tomography). 

Due to the fact that the number of available samples (patients) for medical studies is 

usually lower than the number of extracted characteristics and since the number of 

radiomic features is often vast, feature selection is required before training the model 

to prevent overfitting. Most of the characteristics are indeed redundant and highly 

correlated, hence non robust. This is a crucial aspect, especially in the medical field. 

Feature selection has the purpose to eliminate a subset of variables which do not held 

relevant information for machine learning activities.   

Feature selection is used to avoid overfitting (because model complexity is directly 

linked to the number of features: the higher the number of features, the higher the 

model complexity) and different approaches can be considered to skim features before 

moving on the following learning phase: a common one is called filter method. In this 

method, a subset of features is selected by considering a metric. An example of filter 

 

 
𝑋𝑑,𝑘 = ⌊

𝑋𝑔𝑙,𝑘 − 𝑋𝑔𝑙,𝑚𝑖𝑛

𝑤𝑏
⌋ + 1 (1.5) 

 

Equation 1. 5 – Definition of the discretized intensities 
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method is Spearman’s correlation coefficient which measures the degree of 

relationship between two variables: in case of high correlation one of the two 

characteristics is excluded.  

The phenomenon of overfitting is related to the model complexity and the error made 

on training and test data. As shown in Figure 1. 8, as the model complexity increases 

the error committed on training data decreases, while the one on test data increases 

therefore the overfitting phenomenon occurs. In contrast, if the model complexity 

decreases too much, the error committed in both cases will be high: this phenomenon 

is called underfitting. The ideal case is the one where a balance between model 

complexity and committed error is found: this reduces both the computational time 

required in building the model and improves the model performances.  

 

Model generation and evaluation 

The ultimate goal of Radiomics is the building of an accurate model able to predict 

clinical scores such as tumour diagnosis and treatment response: after having selected 

the relevant characteristics, statistical models or algorithms from machine learning can 

be trained depending on the goal of the study (see paragraph 1.6.3 for further details). 

After models’ building, a step of validation is required: in this phase a prediction is 

made on data which were not used in models creation, then considering a metric such 

as accuracy, models performances are calculated [56]. The aim of this phase is to select 

the best model for actual future predictions.  

Figure 1. 8 – Error vs model complexity. Overfitting and 

underfitting problems.  



 

 

A typical Radiomics workflow is summarized in Figure 1. 9 illustrating the main steps. 

 

 

 Figure 1. 9 – Workflow of a typical Radiomics study showing the main steps. 

 

1.6.3. Machine learning 

Radiomics can be seen as a machine learning based approach. Machine learning is a 

subfield of artificial intelligence whose aims are to extract relevant knowledge and to 

obtain meaningful rules by exploring and analysing a dataset. Starting from a dataset, 

machine learning explores the available data to build models trained on them which 

will be able to make predictions on future data, such as the prediction of tumour 

response to a particular treatment.  

There are different ways to subdivide machine learning [57]:  

▪ considering the presence or not of the target variable, it is possible to refer to 

supervised learning in case of the target attribute represents either a class to 

which a sample belongs or a measurable quantity. The aim of supervised 

learning is to find a general rule to associate the input with the output.  

Unsupervised learning refers to those cases where the target variable is not 

present, so the learning analysis is not guided by the target attribute. The goal, 

indeed, is to find a pattern or recurrencies in the dataset. Lastly semi-supervised 

learning refers to a learning problem involving a small portion of labelled 

samples with which a model is trained and a large number of unlabelled 

samples to which the just trained model is applied; 

▪ regarding the aim of the machine learning problem, in classification models the 

goal is to predict a categorical target attribute (in those cases samples are 

divided into two or more classes), while if the target variable can assume 

continuous numerical values, regression problem is the case. Time series 
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analysis refers to cases where target attribute evolves over time, so the aim is 

the prediction of one or more values assumed by the target attribute in future 

periods; whereas clustering techniques are intended to identify homogeneous 

groups (clusters) of records made by samples which share similar 

characteristics. Lastly, if the goal is the investigation about the incidence of a 

certain event in a particular time window (e.g. tumour local recurrence during 

research time) survival analysis is applied. With the aim to build a model to 

predict SBC’s local recurrence, survival analyses will be adopted for this thesis 

(specifically, Cox proportional hazards model will be built) and will be 

discussed in section 2.4. 

The training process is made by three different steps: training, validation and testing. 

Starting from the original dataset, it is split into three subsets (i.e. training, validation 

and testing set) since in each phase of the training process different set of data are 

considered. This leads to the building of a robust model.  

By looking deeper, training set is used to fit the model, so the algorithm sees and learns 

from this subset; after having fit the model, it is applied to the validation set to provide 

an unbiased evaluation of the model. During this phase model’s hyperparameters 

tuning is performed. 

Training and validation sets are usually exploited in cross-validation (CV). CV is 

commonly applied in case of limited available dataset and procedure widely used to 

evaluate the model performance. In a classical K-fold CV the original training dataset 

is split into K subsets having the same number of samples: in turn, K-1 subsets are 

considered as training set, while the remaining subset is used as validation set to 

evaluate prediction accuracy of the just trained model. This kind of training-validation 

operation is repeated K times so that each subset is used exactly once as validation set 

[58]. The final evaluation is given by the mean of a chosen metric which is estimated 

for each validation fold. 

Lastly, concerning the test data, it is taken into account to provide an unbiased 

evaluation of final model which was fit on the training dataset.  

It is important to highlight the fact that data belonging to test dataset have never been 

seen during model construction phases: in fact, a model applied to the same data used 

as training set will result in a perfect prediction, but will fail in predicting anything 

useful on unseen data. This leads also to overfitting problem.  



 

 

In Figure 1. 10 a schema representing the partitioning of original data used during a 

machine learning study is reported. Particular attention is given to cross-validation 

technique. 

 

 

Figure 1. 10 - In this figure a focus on cross-validation and partitioning of original dataset is 

shown. Starting from the available dataset, it is divided into two subsets: usually 80% of the 

entire dataset is used as training set, while the remaining 20% as test set. During cross-

validation procedure, the original training set is partitioned into k folds. In particular, in turn 

k-1 folds are used as training data, while the remaining fold as validation set. At the end of 

cross-validation phase, k performances are retrieved considering the validation set: the aim is 

to find the best set of parameters for the model. Then these parameters will be used in the 

model during the test phase to calculate model performance on test dataset. 

1.6.4. Radiomics in oncology 

In a review made by Song et al., it is reported that the annual grow rate of published 

articles related to Radiomics field from 2013 to 2018 is 177.82%. Particurarly, CT is the 

most frequent imaging modality considered followed by MRI, while concerning tuour 

site, lung, breast and prostate tumours are the ones much more investigated. Among 

the goals most often explored, characterization and monitoring of tumours are the 

most common [59]. To make some examples, Aerts et al. focused one of their works on 

radiomics features as prognostic factors in patients affected by lung and head-and-

neck cancers using CTs founding that features related to intratumour heterogeneity 

can be used for that purpose [60], while in another research Urraro and collegues 

investigated reliability of MRI features in identifying patient affected by prostate 

cancers [61]. 
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For chordomas, due to the rarity of tumour, the number of studies published in 

literature decreases drastically. By reducing the field of interest to articles where SBC 

is treated with particle therapy, even a more restricted number of works are present. 

To cite some studies, Xiyin and collegues investigated radiomics features combined 

with diagnostic characteristics to evaluate local control and toxicity in skull-base and 

cervical spine chordoma treated with proton and carbon ion radiations founding that 

tumour volume was a significant prognostic factor for overall survival and for 

progression-free survival (i.e. the length of time during and after the cancer treatment 

where patient lives with the disease but it does not get worse) [62]. Instead, Dominietto 

et al. made use of deep learning to investigate the role of radiomic features in 

predicting recurrence of  SBC in patient treated with pencil beam scanning proton 

therapy concluding that shape and texture features play a potential role in predicting 

treatment outcome [63]. Still nowadays the potential role of radiomics features as 

prognostic and predictive factors in SBC is under investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1.7. Dosiomics 

During last years an extension of Radiomics has emerged: this new approach, known 

as Dosiomics, considers three-dimensional radiotherapy dose distributions to extract 

features which can be useful to predict treatment-related toxicity and prognosis, 

achievement of local control and overall survival in radiation oncology [64] [65]. 

Dosiomics workflow perfectly replicates the one of Radiomics, the only difference lies 

in considering dose distributions as input images. 

Dosiomics studies are more rare with respect to Radiomics, since Dosiomics has 

emerged only in recent years. Wu and collegues investigated on the role of dosiomic 

features in predicting locoregional recurrence in cases of head and neck cancer treated 

with intensity modulated radiotherapy with respect to radiomic ones discovering that 

the integration of dosiomic features in modeling leads to a successful patient 

classification in high-risk and low-risk of recurrence [66]. Dai et al. analyzed patients 

with nasopharyngeal carcinoma treated with intensity modulated radiotherapy in 

order to predict recurrence-free survival (which is the period of time after primary 

treatment for the cancer ends that the patient survives without any signs or symptoms 

of the cancer) founding that the integration of dosiomic features with radiomic ones 

leads to better model’s performance [67]. Concerning chordomas, only two literature 

works are present to the best of our knowledge: Buizza et al. applied Radiomics and 

Dosiomics in order to build survival models to stratify patients affected by SBC 

according to the risk of adverse local control treated with carbon ions discovering that 

dosiomic features reveal the most promising for the purpose [68], while Morelli et al. 

focused the analysis on Dosiomics considering patients affected by sacral chordomas 

and treated with carbon ion therapy showing that dosiomic features extracted from 

dose averaged LETd maps result promising as prognostic factors [69].  

To summarize, in literature a poor number of dosiomic studies are present, expecially 

if the population under investigation relates to patients affected by chordomas; in 

addition, none of them is related to treatment with proton therapy. 
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1.8. Aim of the thesis 

In literature different radiomics studies exist, particularly they are focused on CTs and 

MRIs, which are the images that are mostly considered to investigate what kind of 

biomarkers are relevant in predicting local control and overall survival in 

radiotherapy. Dosiomics, instead, is a more recent research field and a limited number 

of studies are reported in the literature, especially on patient affected by chordomas 

and treated with particle therapy. Up to now, just  two studies investigated Dosiomics 

on chordomas treated with carbon ion therapy, but no applications are present for 

proton therapy.  

Due to the lack of researches focused on SBCs treated with proton therapy, the purpose 

of this thesis was to explore how different features extraction settings can influence 

model’s performance in predicting local recurrence for SBCs patients treated with 

proton therapy. 

The available dataset consists of physical dose, LETd and RBE-weighted dose maps 

acquired from patients affected by SBC at CNAO. These patients were treated with 

protons after a partial surgical resection and CTV was the considered lesion 

segmentation from which image biomarkers were extracted.  

To achieve the goal, different values of parameters were set to guide features extraction 

from dose maps, then, after a step of feature selection, a time-to-event model was fed 

with the chosen characteristics.   

 

 

 

 



 

 

2 Materials and methods  

2.1. Patient Data 

Fifty patients affected by skull-base chordoma and treated with a macroscopic surgical 

resection followed by proton therapy at CNAO between 2012 and 2018 were 

considered for this study. Detailed clinical information of patient population are 

reported in Table 2. 1 and Table 2. 2. 

 

Continuous Variables Median (Range) 

Age (years) 51.5 (14 - 81) 

GTV (cm3) 4.06 (0.0 – 99.32) 

Follow-up time (months) 63.22 (23.83 – 98.80) 

Table 2. 1 – Continuous clinical variables describing the available population for the study 

reported as median (range).  

 

Categorical 

Variables 

Details Frequency Percentage % 

Gender  Male 

Female 

24 

26 

48 

52 

Local Control  Favorable 

(censored) 

Adverse  

(adverse event) 

44 

 

6 

88 

 

12 

Table 2. 2 – Categorical clinical variables describing the available population for the study 

reported as recurrence and percentage. 

 

Concerning proton therapy, the dose was delivered in 37 fractions for a prescribed 

biologically effective dose of 74 Gy(RBE); only in one case it was 72 Gy(RBE) delivered 
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in 36 fractions. Then, patients underwent to follow-up (median and range are reported 

in Table 2. 1), where treatment outcome was retrieved in terms of local control LC (no-

progression or complete eradication of the tumoral mass) and tumour 

progression/local recurrence TR (accessed by imaging acquisition). LC and TR were 

classified as favourable and adverse events, respectively. After a median follow-up 

time of 63.22 months, TR was found in 6 patients (12% of population) with a median 

time-to-recurrence event of 26.82 months, while 44 patients (88% of population) were 

included in favourable event group with 65.20 months as median follow-up time. In 

Table 2. 2 are reported the number of patients which experienced LC or TR both in 

terms of percentage and frequency.  

For each patient, CT images were acquired by the usage of Sensation Open CT scan 

(Siemens, Erlangen, Germany) to manually contour both the tumour and the organs at 

risk. In Figure 2. 1 examples of CTs overlapped with the correspondent CTVs (in red) 

are shown.  

 

 

 

Subsequently, CT images and relevant segmented structures were exploited to 

calculate the dose distribution which will be administered during the delivery phase: 

to optimize the dose which will be delivered to the target while sparing healthy 

structures, RayStation (10B version) was adopted. 

With the aim of conducting a Dosiomics study, for each patient three different kinds 

of dose maps were analysed: physical dose, LETd and RBE-weighted dose maps. 

Medians and ranges of the three dose maps are reported in  

Figure 2. 1 – Examples of axial CT images overlapped with correspondent 

CTVs (red structures). CTs and CTVs belong to different patients. 



 

 

Table 2. 3. Since the treatment was delivered by the usage of two proton beams, for 

both physical dose and RBE-weighted dose maps the total physical dose map and the 

total RBE-weighted dose map were retrieved by summing maps relative to the two 

beams for each patient, while LET maps were elaborated into a dose-averaged LET 

map (LETd) following Matsumoto’s formula reported in  

Equation 2. 1 [70].  

 

Equation 2. 1 – Matsumoto’s formula to calculate the dose-averaged LETd map starting from 

LET distribution by beam k. 𝐿𝑑
̅̅ ̅(r) is the dose-averaged LET distribution at location r, Dk(r) 

represents the physical dose distribution by beam k, nk is the number of fractionations and 

Lk(r) is the LET distribution by beam k. 

 

Type of map Median (range) 

Physical dose (Gy) 70.99 (58.96 – 78.32) 

LETd (keV/μm) 2.9 (2.23 – 4.32) 

RBE-weighted dose (Gy(RBE)) 78.09 (64.86 – 86.16) 

 

Table 2. 3 – Details about available dose maps shown as median (range) values. 

 

In Figure 2. 2, Figure 2. 3 and Figure 2. 4 examples of physical dose, RBE-weighted 

dose and dose-averaged LETd maps belonging to the same patient are shown.  

 
𝐿𝑑
̅̅ ̅(𝐫)  =

∑ [𝑛ₖ ∙ 𝐷ₖ(𝒓) ∙ 𝐿ₖ(𝒓)]𝑘

∑ [𝑛ₖ ∙ 𝐷ₖ(𝒓)]𝑘
 (2.1) 
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Figure 2. 2 - Physical dose map. 

Figure 2. 3 – RBE-weighted dose map. 



 

 

 

In Figure 2. 5 it is summarized the followed dosiomics workflow which will be 

discussed in the next paragraphs. Briefly, features were calculated from the available 

dose maps by the customization of some parameters related to discretization of image 

intensity. Then after a step of features selection (carried out by ICC, significance 

analysis and correlation), modelling was performed, particularly, survival analysis by 

the usage of Cox proportional hazards model was conducted. Lastly, performances of 

the built survival models were retrieved. 

 

 

 

 

 

Figure 2. 4 – LETd map. 
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Figure 2. 5 – Followed dosiomics workflow.
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2.2. Features extraction  

Following the guidelines reported by IBSI [52], quantitative imaging biomarkers were 

extracted from CTV for each patient and for each dose map using PyRadiomics 

(v2.2.0). PyRadiomics is an open-source python package employed for the extraction 

of radiomic features from medical imaging. The goal of this package is to lend a 

standard for radiomic analysis proving a simple and reproducible way to extract 

imaging biomarkers. Specifically, image data are loaded and pre-processed using 

SimpleITK, which is an open-source python package developed for multi-dimensional 

image analysis. PyRadiomics allows both the image pre-processing and the 

application of different built-in filters to original or pre-processed image. In addition, 

by specifying some settings (such as discretization type of image intensities, features 

classes, image normalization and image resampling,…), it is also possible to customize 

features extraction. 

Particularly, in this thesis:  

▪ no image pre-processing was applied to any dose maps (neither filters, nor 

normalization or resampling); 

▪ features were extracted in 3D from each original map. 

In the next paragraph the customization of grey levels intensities discretization will be 

illustrated. 

2.2.1. Customization of features extraction: fixed number of bins and 

fixed bin width 

 Before the effective features extraction, discretization of image intensities inside the 

region of interest is required. Two are the common approaches which can be followed: 

discretisation with a fixed number of bins or discretization with a fixed bin width 

(definitions are reported in Paragraph 1.6.2, specifically in Equation 1. 4 and Equation 

1. 5). By varying the number of bins and the bin width, different characteristics of the 

image can be revealed [52], indeed, considering wider bins, noise is reduced but at the 

same time too large bin leads to not enough differentiation. Whereas, the usage of 

narrow bins gives a greater precision, but it can bring to a poor data grouping [71]. For 

example, considering [0; 100] as the range of gray levels intensities, fixing to 20 the bin 

with, 5 discretization levels will be the obtained; instead considering 4 as bin width, 

20 grey levels will be retrieved. In Figure 2. 6 a graphical example is shown.  
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Figure 2. 6 – Different bin width discretization. At left side a greater bin width is set (wider 

bins), while at right side a smaller one is considered (narrower bins). 

 

PyRadiomics allows the customization of both bin width and number of bins 

parameters, as there is no concrete evidence in favour of using one method over the 

other in all types of images. Since gray-level discretization affects the values of 

extracted features, different studies analysed its impact on PET [72], CT [73] and MRI 

[74] images, while, concerning dose maps, no researches address this kind of analysis. 

In this thesis, particular attention was paid to the customization of number of bins and 

bin width since the final goal was to explore how different settings of parameters could 

influence the performance of trained model in predicting local recurrence. To 

determine the range of values to be assigned to the bin width parameter, the range of 

each kind of dose map was retrieved (reported in  

Table 2. 3), while regarding the values assigned to the parameter bin count, a common 

practise is to consider powers of two [53]. In  

Table 2. 4 fixed number of bins and fixed bin size which were explored are reported 

for each type of dose map. 

 

 

 

 

 

 



 

 

Dose map Fixed bin size Fixed number of bins 

Physical dose 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.0, 

2.0, 3.0, 4.0, 5.0, 8.0, 10.0, 16.0 

2, 3, 4, 5, 8, 10, 16, 32, 64, 

128, 256, 512 

 

  

RBE-weighted dose  

LETd 0.01, 0.02, 0.03, 0.04, 0.05, 

0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 

1.0 

 

 

Table 2. 4 – Explored fixed bin size and fixed number of bins for each type of dose map. 

 

From now on, the terms “binwidth” and “bincount” will refer to fixed bin width and 

fixed number of bins methods, respectively.  

Features extraction was guided by the customization of binwidth or bincount 

configuration: after having set the value of the chosen parameter (binwidth/bincount), 

a pxn matrix was created, where p represents the number of samples (i.e. the number 

of patients) and n the number of extracted characteristics (i.e. n = 107). Considering 

bincount method, for all dose maps features extraction was repeated 12 times, one for 

each bincount configuration, while concerning binwidth method, the extraction was 

repeated 14 times for physical dose and RBE-weighted dose maps, while 13 times for 

LETd. 

A total of 107 features were retrieved for each type of dose map. Below are reported 

the number of extracted characteristics for each features type and their definitions. 

Shape features 

Shape features are referred to the geometry of the three-dimensional size and shape of 

the region of interest. A total of 14 shape features were retrieved: Elongation, Flatness, 

Least Axis Length, Major Axis Length, Maximum 2D Diameter Column, Maximum 2D 

Diameter Row, Maximum 2D Diameter Slice, Maximum 3D Diameter, Mesh Volume, 
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Minor Axis Length, Sphericity, Surface Area, Surface Volume Ratio and Voxel 

Volume. 

First-order features 

Concerning the first-order features, they describe the distribution of voxel intensities 

within the image region defined by a mask. Eighteen were the first-order extracted 

characteristics: 10 Percentile, 90 Percentile, Energy, Entropy, Interquartile Range, 

Kurtosis, Maximum, Mean Absolute Deviation, Mean, Median, Minimum, Range, 

Robust Mean Absolute Deviation, Root Mean Squared, Skewness, Total Energy, 

Uniformity and Variance. 

Texture features (high-order features) 

Texture features were not computed directly from the original image, but from 

different descriptive matrices encoding spatial relationships between voxels in the 

original image. Specifically:  

▪ Gray Level Co-occurrence Matrix (GLCM) represents the number of times the 

combination of two intensity levels occurs in neighbouring voxels within a 

specific distance along a fixed direction;  

▪ Gray Level Run Length Matrix (GLRLM) quantifies the gray level runs defined 

as the length of consecutive pixels or voxels sharing the same gray level value; 

▪ Gray Level Size Zone Matrix (GLSZM) retrieves the number of connected 

voxels having the same gray level intensity;  

▪ Gray Level Dependence Matrix (GLDM) quantifies gray level dependencies in 

an image, which is defined as the number of connected voxels within a specific 

distance that are dependent on the centre voxel; 

▪ Neighbourhood Gray Tone Difference Matrix (NGTDM) quantifies the 

difference between a gray level value and the average value of its neighbours 

within a certain distance. 

A total of 75 texture features were retrieved. 

Details of Dosiomics features used in this thesis are reported in Appendix (A.1) 

 



 

 

2.3. Features selection 

To reduce data abundance and to prevent overfitting due to the high number of 

extracted features, a step of features selection was performed before training the 

model. Specifically, three different features selection methods have been applied: 

▪ significance; 

▪ intra-class correlation coefficient; 

▪ correlation. 

Significance  

With the aim of accessing the significance of features in discriminating patients with a 

favourable treatment outcome (LC) from those with an adverse outcome (TR), 

statistical tests were applied after the step of features extraction. First of all, for each 

extracted feature, the distribution of its values has been tested applying Shapiro test: 

it is a normality test employed to verify the null hypothesis that data come from a 

normal distribution (significance level α = 0.05). According to data distribution, 

indeed, it is considered either a parametric statistics, which assumes that the data are 

taken from a population normally distributed, or a non-parametric statistics, which 

makes no assumption on the distribution of population. In case of normal distribution, 

if patients who experienced a local recurrence and the ones who reached local control 

showed different variances, Welch’s t-test for unpaired samples was applied to test 

whether the means of the two population are statistically equals (significance level α = 

0.05); on contrary in case of equal variances, t-test was considered to test both the 

equality of means and of variances (significance level α = 0.05). Concerning non-

parametric statistics, Mann-Whitney test was taken into account to test the null 

hypothesis that data come from independent distributions with equal medians 

(significance level α = 0.05). 

Intra-class Correlation Coefficient  

Intra-class correlation coefficient (ICC) is an index used to measure reliability both in 

terms of correlation and agreement between measurements [75]. Reliability is 

mathematically defined as true variance over true variance plus error variance. In 

literature different types of ICC exist, leading to different results when applied to the 

same data. For this reason, it is important to choose the appropriate form of ICC 

considering the specific problem to deal with. To do that, “model”, “type” and 

“definition” have to be taken into account [75]. Concerning the “model”, it is referred 

to the set of raters (i.e. values which can assume binwidth/bincount parameter) 
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employed to measure all subjects (i.e. features): one-Way Random-Effects model is 

considered if each subject is rated by a different set of raters randomly chosen from a 

larger population of possible raters; in case of raters are chosen from a population 

showing similar characteristics (for example clinicians with the same years of 

experience to evaluate passive range of motion) two-Way Random-Effects Model is 

chosen; lastly, if the selected raters are the only raters of interest, two-Way Mixed-

Effects Model is taken into account [75]. “Type” selection is related to the number of 

chosen raters: if it is greater than one, a “mean of k raters” type is considered (for 

example considering 4 raters, mean of k raters, with k = 4, is the selected type) [75]. 

“Definition” selection regards 2-way random and 2-way mixed-effects models: if the 

goal is to identify absolute differences between different raters, “absolute agreement” 

is taken into account, whereas if systematic differences between raters is under 

analysis, “consistency” is considered [75].   

For this thesis: 

▪ two-Way Mixed-Effects Model was selected as “model”, indeed the same set of 

raters is considered for all subjects; 

▪ for “type” definition, 12 was the considered number of raters in case of fixed 

number of bins for all the available dose maps, so a mean of 12 raters was the 

selected type. Instead, in case of fixed bin width, 14 raters were considered for 

physical dose and RBE-weighted dose maps while 13 raters in case of dose-

averaged LETd maps. A mean of 14 and 13 raters were the selected “types”, 

respectively; 

▪ consistency was the chosen “definition” since consistency between raters was 

under analysis. 

ICC was applied as feature selection method aiming to the identification of robust 

features: for each extracted feature, the correspondent ICC value was calculated. To 

do this, a matrix of dimension pxm was constructed (where p represents the number of 

patients and m the number of raters) and it was given as input to intraclass_corr() 

function present in pingouin library (v0.4.0). This was repeated for each feature. It is 

suggested that [75]: 

▪ ICC values less than 0.5 are indicative of poor reliability; 

▪ ICC values between 0.5 and 0.75 indicate moderate reliability; 

▪ ICC values between 0.75 and 0.95 indicate good reliability; 

▪ ICC values greater than 0.95 are indicative of excellent reliability. 

 



 

 

Correlation 

Correlation is a statistical measure describing the dependency level between pairs of 

features and, in feature selection field, it belongs to filter methods. The level of 

correlation between couples of imaging biomarkers was identified based on the value 

assumed by Spearman correlation coefficient (SCC), which can vary between -1 and 1.  

Considering a couple of features, if the absolute value of SCC was found to be greater 

than 0.80, the two considered characteristics were labelled as highly correlated, so one 

of the two was deleted (since highly correlated features do not provide additional 

information to the model which will be trained, on contrary they will lead to 

overfitting phenomenon). 

With the aim to reduce the total number of features to 10, two different approaches 

were adopted by combining the just explained different feature selection methods:  

▪ approach #1 – a specific ICC threshold value was found for each dose map type 

such that a maximum of 10 characteristics have been selected. This approach 

has been implemented considering only texture features with the aim to analyse 

how model performances vary by changing the value of binwidth and bincount 

parameters across each dose map type.  

▪ approach #2 – an ICC threshold value common to all dose map types was 

experimentally found for texture features with the aim to reduce to a maximum 

of 10 the total number of texture characteristics, while significance analysis was 

applied to shape and first order features to discard the non-significant ones. At 

this point, in case the total number of selected features (texture, shape and first 

order ones) exceeded 10, correlation method was applied until the total number 

of selected characteristics reached 10. The goal of this approach was to compare 

models’ performance across different dose map types by fixing the value of 

binwidth or bincount parameter. 
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2.4. Modelling 

In clinical trials, outcomes can have different statistical forms: they can be continuous, 

such as the size of a lesion, and can be analysed with linear regression, while others 

can assume the form of “either-or”, e.g. if a patient has been diagnosed with cancer or 

not, so logistic regression can be employed. On the other hand, if a study is oriented 

towards to the time-to-event outcome, such as the time until a patient experiences a 

tumour’s local recurrence, survival analysis is considered [76].  

2.4.1. Survival analysis 

Survival analysis refers to those researches where the goal is the investigation about 

the time at which a particular event occurs in a certain time window. In clinical field, 

time (also called survival time) can be defined as the time from the beginning of 

patient’s follow-up period until an event occurs which depends on the type of the 

study (e.g. death, appearance of a disease, TR) [77]. Since the limited duration of the 

observation period, some of the involved patients may not experience the event of 

interest before the end of the study or they are dropped out before the occurrence of 

the interested event, thus the survival time is unknown. These subjects are called 

censored data and can not be ignored. To sum up, survival analysis is applied in those 

cases where the event of interest is analysed both in terms of its occurrence or non-

occurrence during the period of time of the study and it provides tools to incorporate 

variables to predict the time of the event of interest.  

Survival and hazard functions 

In the context of survival analysis, different quantities of interest such as survival and 

hazard functions have to be defined. Survival function S(t) refers to the probability 

that the event of interest has not yet occurred by time t (Equation 2. 2) [78]. For 

example, if the interested event is “local recurrence of tumour”, S(t) represents the 

“probability of not having tumour local recurrence beyond time t”. 

 

 
𝑆(t) = Pr {𝑇 ≥ 𝑡} = 1 − 𝐹(𝑡) = ∫ 𝑓(𝑥)𝑑𝑥

∞

𝑡

 (2.2) 

Equation 2. 2 – Definition of survival function S(t), where T is a random variable 

characterizing the time of the event, t refers to any specified time point, Pr { T ≥ 

t } is the probability of not experiencing the event up to a time t, F(t) represents 

the cumulative distribution function and f(t) the probability density function. 



 

 

Concerning the hazard function h(t), it is defined as the rate at which the event of 

interest occurs instantaneously given that upon that point in time the event had not 

yet happened (Equation 2. 3) [78].  

Through some calculations it is possible to find the relationship between hazard and 

survival functions (reported in Equation 2. 4). 

 

 

2.4.2. Cox proportional hazards model 

Cox proportional hazards model is one of the most popular survival analysis 

techniques considered when dealing with censored data in medical studies [76] [79]. 

Particularly, it investigates the relationship between covariates (i.e. features) and time-

to-event (e.g. local SBC recurrence) through the hazard function. In other words, the 

model evaluates how different factors influence the rate of the event happening at a 

particular point in time [76]. In Equation 2. 5 it is reported the hazard function for the 

Cox proportional hazards model: xi is the i-th covariates, while bi is the parameter to 

be estimated which represents the effect of the covariate on the outcome. 

 

Equation 2. 3 – Definition of hazard function h(t), where the numerator inside 

the limit function represents the conditional probability that the time T of event  

will occur in the interval [t, t+k) given that the event has not occurred before, 

while the denominator k represents the width of the interval. The ratio between 

the numerator and the denominator defines a rate of occurrence of event per 

unit of time. Passing to the limit, the instantaneous rate of occurrence is 

obtained. 

 
ℎ(t)  = lim

𝑘→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝑘 | 𝑇 ≥ 𝑡)

𝑘
 (2.3) 

 
ℎ(t)  =

𝑓(𝑡)

𝑆(𝑡)
 (2.4) 

Equation 2. 4 – Relationship between hazard and survival functions. 

Equation 2. 5 – Definition of hazard function ℎ(𝑡|𝑥) for a subject with a set of 

predictors x (i.e. features), where t refers to survival time, bi represents the effect 

size of the covariate xi, h0(t) is the baseline hazard (i.e. the value of the hazard 

function if all the covariates are equal to zero). 

 ℎ(𝑡|𝑥) = ℎ0(𝑡) ∙ 𝑒∑ 𝑏𝑖∙𝑥𝑖𝑖  (2.5) 
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In this thesis, with the goal to develop a model for survival analysis, the interested 

event was identified as TR and the time-to-event as the time in which TR appeared in 

acquired images during follow-up, starting from the date of the last treatment. 

Concerning patients who experienced a favourable event (LC), they were labelled as 

censored data and the time was calculated starting from the date of last therapy 

treatment to the one of last follow-up.  

2.4.3. Model's building 

Cox proportional hazards model (r-Cox, scikit-survival v0.17.2) regularized with an 

elastic-net penalty was developed considering 80% of the dataset (p = 40) within a 

cross-validation procedure, while the remaining 20% of the data (p = 10) was exploited 

to evaluate the trained model on totally unseen samples. More in detail, the dataset 

was split randomly, but a stratification on the local control variable was applied to 

ensure an equal proportion of samples belonging to adverse and favourable local 

control in both sets (85% and 90% local control rate for train- and test-set, respectively). 

Before the training of the model, features were normalized with L2-norm, then 

survival model was built. During model’s development, hyper-parameters tuning was 

performed through grid-search with a stratified 5-fold cross-validation routine 

repeated 10 times (stratification was performed considering LC). The best hyper-

parameters’ set was associated to the highest predictive performance in terms of 

Harrell Concordance index which will be discussed in paragraph 2.4.4. In Table 2. 5 

possible values that each tuned hyperparameter could assume are reported. 

Specifically, the hyper-parameter “l1-ratio” refers to a trade-off between L1 and L2 

penalization inside the elastic net parameter: if l1-ratio equals 0, then L2 penalization 

is employed, whereas for a value of 1, L1 penalty is considered. For 0 < l1-ratio < 1, the 

penalty is a combination of L1 and L2. Concerning “penalty factor” hyperparameter, 

it is related to the penalty which can be applied to each feature, separately. 

 

Hyper-parameter Possible values 

Penalty factor 0.1, 1 

L1-ratio 1e-5, 1e-4, 0.001, 0.01, 0.2, 0.5, 0.8, 1 

 

Table 2. 5 – Possible values that penalty factor and L1-ratio can assume during grid-search 

optimization. 



 

 

 

Different survival models were built, specifically, for each value that binwidth and 

bincount parameter and for each dose map type, a Cox proportional hazards model 

was created.  

2.4.4. Model’s evaluation 

With the purposes of both comparing models’ performance across the same dose map 

type varying the binwidth/bincount parameter and across different dose map types 

fixing the value of binwidth/bincount parameter, a 5-fold cross-validation routine was 

randomly repeated 10 times. Harrell Concordance index (C-index) was the employed 

metric to evaluate models’ predictive performance. C-index is defined as the 

proportion of all comparable patient pairs in which the predictions and outcomes are 

concordant [80]. As for the prediction of the time until local recurrence, C-index is 

calculated by considering all possible pairs of patients where at least one of whom 

experienced local recurrence. Two samples are labelled as “comparable” if both 

experienced the event at different times or if one sample had a shorter observed 

survival time, while the second one is known to have a survival time at least to the 

survival time of the first. In the latter case, the second sample is assumed to outlive the 

first. A pair of samples is defined as “not comparable” if the two experienced the event 

at the same time or if one of the two experienced the event and the other does not, but 

the second one has not been followed long enough to determine whether it will 

experience the event or not. The probability of concordance between the predicted and 

the observed outcomes is estimated by C-index [80]. This metric can assume values 

between 0 and 1: a value of 1 implies perfect concordance, while a value of 0 describes 

the opposite situation of perfect anti-concordance. C-index equal to 0.5 refers to 

completely random assignments [81].   

To evaluate the performances of the built models, since a repeated cross-validation 

routine was employed, the median value and the interquartile range of C-indexes 

computed from the validation fold were calculated.   
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3 Results and discussion 

In this chapter both the results related to features selection and the performances of 

developed models will be presented and discussed. 

It must be pointed out that for the calculation of biologically effective dose, RBE value 

was considered constant in TPS (specifically equal to 1.1 for proton case). Since the 

RBE-weighted dose maps can be defined as the physical dose map weighted for the 

RBE factor and recalling the formula reported in Equation 1. 4, related to gray levels 

discretization method with fixed number of bins, it can be noticed that these kind of 

gray levels discretization is invariant to the product of the map by a constant factor. 

These leads to have equal features values for both RBE-weighted dose maps and 

physical dose maps, thus the analysis related to fixed number of bin method was 

performed only one time by considering physical dose maps (since the same results 

will be obtained for both physical and RBE maps). 

Concerning the customization of the parameters related to intensity discretization, as 

regards the bin width parameter, ranges of the three dose maps types were calculated 

(19.36, 2.09 and 21.3 for physical dose, LETd and RBE-weighted dose maps, 

respectively), then values inside those ranges were chosen and assigned to the bin 

width parameter. Regarding the bincount parameter, powers of two were considered 

[53] with the addition of 3.0, 5.0 and 10.0 values. In Table 2. 4 are reported the set of 

chosen values related to intensity discretization for each dose map type. 

3.1. Selected features 

3.1.1. Selected features - Approach 1 

In this paragraph the selected texture features for the three dose maps types using 

intra-class correlation coefficient are discussed. This approach was employed to 

identify robust characteristics. Specifically, considering a particular dose map type at 

a time, two ICC threshold values were experimentally found (one related to bincount 

method the other to binwidth one) aiming to select at maximum 10 texture features. 

Following this strategy, by fixing the dose map type, we perform a comparison of 

models’ performance across different settings of binwidth/bincount values; in fact, the 

same 10 features will be obtained for all the settings of bincount/binwidth values. 



 

 

In Table 3. 1, ICC threshold values are reported for physical dose, LETd and RBE-

weighted dose maps respectively, divided by binwidth and bincount methods.  

 ICC threshold 

Dose map type Binwidth Bincount 

Physical dose 0.97 0.95 

LETd 0.98 0.96 

RBE-weighted dose 0.98 0.95 

 

Table 3. 1 - ICC threshold values for the three dose maps divided by binwidth and bincount 

methods.  

 

Since for all the three dose maps types and for both binwidth and bincount method 

the ICC threshold value is greater or equals to 0.95, features that were selected and 

then used in building survival models are considered as robust. Details of the 

dosiomics selected features are reported in Appendix A.2593.2.1. It can be noticed that 

for all the dose maps, texture features related to gray level co-occurrence matrix were 

the most selected in both binwidth and bincount methods.  

3.1.2. Selected features - Approach 2 

To compare models’ performance across different dose maps types by fixing the value 

of binwidth/bincount parameter, ICC, significance analysis and correlation were 

applied in features selection step. With the aim to reduce to a maximum of 10 the total 

number of texture characteristics, ICC threshold value was set to 0.95 for all types of 

dose maps (good robustness), instead, concerning significance analysis, it was 

employed to discard non-significant shape and first order features. Lastly, if the total 

number of selected characteristics (texture, shape and first order) exceeded 10, 

correlation was taken into account: a threshold of 0.8 was set to identify highly 

correlated features and among couples of features labelled as such, one of the two was 

discarded until the final total number of characteristics reached 10.  

No-one of shape features turned out to be significant (p-value < 0.05) in all possible 

settings of binwidth/bincount values. Selected features for each dose map type and for 

each binwidth/bincount value are illustrated in Appendix A.2.2. Below bar plots 

reporting the number of selected features belonging to first-order and texture classes 
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are shown for each dose map type and for each value binwidth/bincount parameter 

can assume (Figure 3. 1 and Figure 3. 2). 

Binwidth case 

Due to the different grey levels ranges of the three dose maps types, different settings 

of binwidth values were employed to discretize grey levels values for LETd maps with 

respect to physical dose and RBE-weighted dose maps. In Figure 3. 1, considering the 

common set of binwidth values for all the three dose maps types, it can be noticed that 

the number of selected texture features is greater with respect to the one of the first-

order for all dose maps types. Concerning the binwidth values belonging to the 

interval [0.01, 0.08], employed only in LETd map for intensity discretization, the same 

number of features belonging to first-order and to texture classes was selected for 0.02, 

0.04 and 0.08 binwidth values, while for 0.01, 0.03 and 0.05 binwidth values, texture 

features prevailed. Lastly, considering binwidth values ranging from 2.0 to 16.0, 

employed only for physical and RBE-weighted dose maps, still a prevalence of texture 

features on those of the first-order was present. 

 

Figure 3. 1 - Bar plot grouped by binwidth value showing the number of 

selected features for physical dose, RBE-weighted dose and LETd maps. 

 

 



 

 

Bincount case 

In Figure 3. 2 a bar plot is reported showing the number of selected features belonging 

to texture and first-order for physical dose and LETd maps grouped by bincount 

parameter. It can be noticed that for each value the bincount parameter can assume, 

the number of selected texture features was greater than the one of first-order features 

for physical dose map, while considering LETd map, the same number of features 

belonging to the two features types was selected (except for bincount equals to 2.0 and 

to 3.0). Comparing the selected features for the two types of dose maps, a greater 

number of first-order features was taken into account for LETd map with respect to the 

one on physical dose.  

 

Figure 3. 2 – Bar plot grouped by bincount value showing the number of 

selected features for physical dose and LETd maps. 
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3.2. Models’ performance 

After features selection phase, features were normalized with L2-norm, then survival 

models were trained to discriminate patients who experienced TR from patients which 

reached LC. In this section, results in terms of models’ performance are reported and 

discussed. Approach 1 and approach 2 refer to the two features selection strategies.  

With the aim to compare models’ performance across different settings of 

bincount/binwidth values fixing a dose map type (approach 1) and across different 

dose maps types by fixing the value of binwidth/bincount parameter (approach 2), 

different Cox proportional hazards models were trained. In particular: 

▪ considering physical dose maps, a total of 12 models were built for bincount 

method, while 14 models for the binwidth one; 

▪ 12 and 13 models were developed for bincount and binwidth methods 

respectively, feeding the algorithms with features extracted from LETd maps; 

▪ a total of 14 models were built for RBE-dose weighted maps in case of binwidth 

method. 

Models’ performance were accessed in terms of C-index, specifically, since a repeated 

cross-validation routine was employed, the median value and the interquartile range 

of C-indexes computed from the validation fold were retrieved and considered to 

evaluate the models (tables showing medians and interquartile ranges are reported in 

Appendix A.3). 

3.2.1. Models’ performance - Approach 1 

Physical dose maps 

In Figure 3. 3 the medians of C-indexes in function of the different bincount values are 

shown. The best model’s performance (0.76/0.14 median/interquartile range) was 

retrieved for a discretization with a fixed number of bins equals to 256. Focusing on 

bincount values belonging to the interval [3.0, 16.0], even if C-indexes values resulted 

low, models showed stable performances (since the same C-index value is obtained), 

whereas increasing the bincount value stability was lost. 

Concerning models’ performance obtained by varying the binwidth parameter, from 

Figure 3. 4 it can be noticed that the best model’s performance was retrieved for 

binwidth equals to 5.0 (0.76/0.19); stability was reached for binwidth values between 

0.8 and 2. 



 

 

Comparing the two discretization methods, bincount method showed better stability 

in models’ performance with respect to binwidth one. 

 

  

Figure 3. 3 - Medians of C-indexes versus bincount values for physical dose maps. 
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Figure 3. 4 - Medians of C-indexes versus binwidth values for physical dose maps. 



 

 

LETd maps 

In Figure 3. 5 it is possible to notice that the best value of C-index resulted from 

bincount value equals to 2 (0.64/0.24): this was an unexpected result since discretizing 

an image with only two grey levels intensities leads to a very poor differentiation 

between image intensities, so poor performance was foreseen. A more reliable result 

was obtained for bincount value equals to 16 (0.63/0.14). For bincount values ranging 

from 32 to 512, models’ performance stability was reached, while decreasing the 

number of bins it was lost. 

Concerning image discretization with binwidth method, it is possible to state that 

stability in models’ performance was found in binwidth values between 0.01 and 0.04 

(included), while the best performance was achieved with binwidth equals to 0.8 

(0.69/0.18). Also in this latter case, intensity discretization performed by 0.8 as bin 

width leads to not enough differentiation in image intensities (since the very restricted 

range of LETd maps), so poor performance was expected. Figure 3. 6 shows the 

performances of the built models (median of C-indexes) in function of the binwidth 

value. 

As in physical dose maps, a greater stability is reached in case of bincount as intensity 

discretization method with respect to binwidth one. 
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Figure 3. 6 - Medians of C-indexes versus binwidth values for LETd maps. 

Figure 3. 5 - Medians of C-indexes versus bincount values for LETd maps. 



 

 

RBE-weighted dose maps 

The best model’s performance (0.71/0.14) was retrieved for images discretized with a 

bin width equals to 2. Focusing on binwidth values belonging to the interval [3.0, 16.0], 

even if C-indexes values resulted low, models showed stable performances; on 

contrary, decreasing the binwidth value, stability is lost. These results can be seen in 

the graph reported in Figure 3. 7Figure 3. 8. 

 

None of the two methods of intensity discretization turned out to be better regarding 

models’ performance stability (as reported in paragraph 3, results obtained with 

bincount discretization method for physical dose map are the same of RBE-weighted 

dose map). 

 

 

 

 

Figure 3. 8 - Medians of C-indexes versus binwidth values for RBE-weighted dose maps. 

Figure 3. 7 - Medians of C-indexes versus binwidth values for RBE-weighted dose maps. 
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3.2.2. Models’ performance - Approach 2 

Binwidth case 

Considering the bar plot shown in Figure 3. 9, it is possible to explore how models’ 

performance vary between dose maps types by fixing the value of binwidth parameter. 

As already pointed out in paragraph 3.1.2, different settings of binwidth values were 

employed to discretize grey levels values for LETd maps with respect to physical dose 

and RBE-weighted dose maps due to the different grey levels ranges of the three dose 

maps types. 

A common value of the binwidth parameter showing the best model’s performance 

for all dose maps types was not found, indeed concerning LETd map type the highest 

C-index is associated to 0.03 and 1.0 as binwidth values, while for RBE-weighted and 

physical dose maps, 0.5 and 8.0 binwidth values were those related to best 

performances, respectively.  

Focusing on possible values which binwidth parameter can assume in the interval [0.1, 

1.0], performances related to LETd map resulted lower with respect to the ones 

associated to physical and RBE-weighted dose maps (except for binwidth equals to 1). 

 

 

Figure 3. 9 - Median of C-indexes obtained through repeated cross-validation routine for physical 

dose, RBE-weighted dose and LETd maps types grouped by binwidth values. 



 

 

Bincount case 

In Figure 3. 10 a bar plot grouped by bincount value reports models’ performance 

related to physical dose and LETd maps types.  

As in binwidth case, a common value of bincount parameter showing best models’ 

performance for both the two dose maps type wasn’t found (since 2 and 32 were the 

bincount values related to highest C-indexes for LETd and physical dose maps types, 

respectively). 

Considering bincount values lower than 8 (with 8 included), by fixing the value of the 

parameter, comparable performances were obtained for LETd and physical dose maps; 

whereas, increasing the bincount value, a greater gap can be noticed between the 

performances of the two maps types (except for bincount equals to 16, 64 and 512). 

 

 

 

Figure 3. 10 - Median of C-indexes obtained through repeated cross-validation routine for 

physical dose and LETd maps types grouped by bincount values. 
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4 Conclusions 

In this chapter the main results are summarized and possible future works are 

presented. 

The purpose of this thesis was to explore how different features extraction settings can 

influence model’s performance in predicting tumour recurrence for skull-base 

chordomas patients treated with proton therapy after a partial surgical resection. 

To achieve this goal, starting from three available types of dose maps (physical dose, 

RBE-weighted dose and LETd maps) dosiomics features were extracted from CTV 

manually segmented by experts during treatment planning. Specifically, two different 

methods for image discretization were followed (fixed bin number and fixed bin 

width) and depending on those parameters, different values of dosiomics features 

were obtained. Then, after a features selection step, survival models (Cox proportional 

hazards model) were built. By the implementation of two different features selection 

strategies (approach 1 and approach 2), two analyses were conducted: a comparison 

between models’ performance across the same dose map type by varying the value 

assumed by binwidth/bincount parameter and a comparison between models’ 

performance across different dose maps types by fixing the value of 

binwidth/bincount parameter.  

Considering the features selection – approach 1, the chosen ICC threshold values have 

brought to good robustness in selected texture features for all the dose maps types and 

for both binwidth/bincount intensity discretization methods, since ICC threshold 

values were equal or higher to 0.95 (Table 3. 1)[75]. Concerning models’ performance, 

no high values of C-indexes were obtained: this could be explained by the fact that the 

usage of ICC as features selection method allows selecting robust characteristics, but 

these characteristics might not be the most informative. As regards stability of models’ 

performance, it can be stated that a greater stability was obtained in models trained by 

varying the bincount parameter with respect to the binwidth parameter in case of 

physical dose. The same results were obtained for LETd. Concerning RBE-weighted 

dose, no marked difference was present between the two intensity discretization 

methods (e.g. results obtained with bincount discretization method for physical dose 

map are the same of RBE-weighted dose map).  



 

 

Concerning features selection – approach 2, since none of shape features turned out to 

be significant for all the dose maps and for both binwidth/bincount methods in 

discriminating patients who achieved LC from those who experienced TR, the 

conducted dosiomics analysis was not linked to contours (in contrast with the study 

of  Buizza et colleagues [68], which found shape features to be promising); while as for 

first-order features a greater number of significant first-order features were found in 

LETd for both the two intensity discretization methods with respect to physical and 

RBE-weighted dose maps. 

Focusing on models’ performance and considering the binwidth interval [0.1,1], 

performances related to physical and RBE-weighted dose maps resulted better with 

respect to the ones associated to LETd in most cases. This could be linked with the 

range of image gray levels intensity, indeed physical and RBE-weighted dose maps 

showed greater ranges with respect to the one of LETd maps, thus image discretization 

with bin width values belonging to the interval [0.1, 1] can lead to a not enough 

differentiation in case of LETd maps compared to physical and RBE-weighted dose 

maps cases. Considering bincount case, by fixing the bincount value, in most cases 

better results in terms of models’ performance were obtained for LETd maps rather 

than physical dose maps: this is probabily related to the fact that a greater number of 

first order features were selected for LETd maps.  

From this study it is possible to state that by selecting only robust texture features, the 

discretization with fixed number of bins leads to better results for both physical dose 

and LETd maps (considering values of parameter in the interval [3.0, 16.0] and [32, 512], 

respectively), while for RBE-weighted dose maps no marked difference is present 

between the two intensity discretization methods. 

Concerning approach 2, the addition of significant first-order features in 

discriminating patients which experienced tumour recurrence from those who 

obtained local control did not lead to improvements in models’ performance. 

Comparing the obtained performances with those already present in literature, Buizza 

et al. [68] conducted a radiomics and dosiomics study where SBCs patients treated 

with carbon ions were analysed: focusing on dosiomics model, Cox proportional 

hazards model was built and its performance resulted higher with respect to the ones 

obtained in this thesis. Higher performances were also obtained by Morelli et al. [69], 

where patients affected by sacral chordomas and treated with carbon ion radiotherapy 

were enrolled. Considering models’ performance related to physical dose and to LETd 

maps, better results were obtained for LETd maps in bincount case, probably related 

to a greater number of selected first-order features. 
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The main limitation of this work is related to the sample size, which has affected the 

obtained results: only fifty patients were enrolled for the study, of which only 12% 

experienced TR. The reason why such a small dataset has been analysed is the fact that 

skull-base chordoma is a rare tumour and the chosen particle therapy approach was a 

peculiar one, so to conduct a survival analysis both the label related to LC and the 

time-to-event variable were needed.  

Possible future developments may be related firstly to an increase in sample size by 

enrolling more patients for survival analysis since a limited number of patients’ data 

was the one available for this study, then an exploration of other survival models and 

an improvement in already implemented one (Cox proportional hazards model). 

Finally, as regards the values assigned to fixed bin width and fixed number of bins 

discretization methods, different values from the ones considered in this thesis can be 

set to explore firstly whether models’ performance remain stable inside and around 

the identified ranges, and if better performances can be achieved. 
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Appendix 

A.1 Features classes 

Features were extracted from physical dose, RBE-weighted dose and LETd maps 

through PyRadiomics open-source python package (v.2.2.0). Features were extracted 

in 3D without the application of filters, normalization and resampling. Below are listed 

the extracted features divided by classes: 

▪ Shape 

Elongation, Flatness, Least Axis Length, Major Axis Length, Maximum 2D 

Diameter Column, Maximum 2D Diameter Row, Maximum 2D Diameter Slice, 

Maximum 3D Diameter, Mesh Volume, Minor Axis Length, Sphericity, Surface 

Area, Surface Volume Ratio and Voxel Volume. 

▪ First-order 

10 Percentile, 90 Percentile, Energy, Entropy, Interquartile Range, Kurtosis, 

Maximum, Mean Absolute Deviation, Mean, Median, Minimum, Range, Robust 

Mean Absolute Deviation, Root Mean Squared, Skewness, Total Energy, 

Uniformity and Variance 

▪ Texture: 

▪ Gray Level Co-occurrence Matrix (GLCM)  

Autocorrelation, cluster prominence, cluster shade, cluster tendency, 

contrast, correlation, difference average, difference entropy, difference 

variance, inverse difference, inverse difference moment, inverse 

difference moment normalized, inverse difference normalized, 

information measure of correlation 1, information measure of correlation 

2, inverse variance, joint average, joint entropy, joint energy, maximal 

correlation coefficient, maximum probability, sum average, sum 

entropy, sum squares; 

▪ Gray Level Run Length Matrix (GLRLM)  

GL non uniformity, GL non-uniformity normalized, GL variance, high 

GL run emphasis, long-run emphasis, long-run high GL emphasis, long 

run low GL emphasis, low GL emphasis, run entropy, run length non-

uniformity, run length non-uniformity normalized, run percentage, run 

variance, short run emphasis, short run GL emphasis, short run low GL 

emphasis; 

▪ Gray Level Size Zone Matrix (GLSZM)  
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GL non uniformity, GL non uniformity normalized, GL variance, high 

GL zone emphasis, large area emphasis, large area high GL emphasis, 

large area low GL emphasis, low GL zone emphasis, size zone non 

uniformity, size zone non uniformity normalized, small area emphasis, 

small area high GL emphasis, small area low GL emphasis, zone entropy, 

zone percentage, zone variance; 

▪ Gray Level Dependence Matrix (GLDM) 

Dependence entropy, dependence non uniformity, dependence non 

uniformity normalized, dependence variance, GL non uniformity, GL 

variance, high GL emphasis, large dependence emphasis, large 

dependence high GL emphasis, large dependence low GL emphasis, low 

GL emphasis, small dependence emphasis, small dependence high GL 

emphasis, small dependence low GL emphasis; 

▪ Neighbourhood Gray Tone Difference Matrix (NGTDM)  

Busyness, coarseness, complexity, contrast, strength. 

 

A.2 Selected features  

A.2.1 Approach 1 

In this section selected features related to approach 1 are reported in Table A. 1, Table 

A. 2 and Table A. 3for physical dose, LETd and RBE-weighted dose maps, respectively, 

divided by binwidth and bincount methods.  

GLCM correlation, inverse 

difference, inverse 

difference moment, inverse 

difference moment 

normalized, inverse 

difference normalized 

GLCM difference entropy, inverse 

difference, inverse difference 

moment, inverse difference 

normalized, sum entropy 

 

GLRLM gray level non uniformity, 

run length non uniformity 

normalized 

GLRLM gray level non uniformity, 

run entropy 

GLSZM zone entropy GLSZM zone entropy 

Physical dose map   - selected texture features 

Bincount method Binwidth method 
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GLDM dependence entropy, small 

dependence low gray level 

emphasis 

GLDM dependence entropy, small 

dependence low gray level 

emphasis 

Table A. 1 - Selected features for physical dose map. 

 

 

 

 

 

 

 

 

 

 

 

GLCM correlation, inverse 

difference, inverse 

difference moment, inverse 

difference moment 

normalized, inverse 

difference normalized 

GLCM difference entropy, inverse 

difference, inverse difference 

moment, inverse difference 

moment normalized, inverse 

different normalized, sum 

entropy 

GLRLM gray level non uniformity, 

run length non uniformity 

normalized, run entropy 

GLRLM run entropy 

GLDM small dependence low gray 

level emphasis 

GLSZM zone entropy 

NGTDM coarseness  GLDM dependence entropy, small 

dependence low gray level 

emphasis 

LETd map   - selected texture features 

Bincount method Binwidth method 

Table A. 2 - Selected features for LETd map. 
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RBE-weighted dose map – selected features 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Binwidth  method 

GLCM difference entropy, 

inverse difference, 

inverse difference 

moment, inverse 

difference moment 

normalized, inverse 

different normalized, 

sum entropy 

GLRLM run entropy 

GLSZM zone entropy 

GLDM dependence entropy 

Table A. 3 - Selected features for RBE-weighted dose map. 
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A.2.2 Approach 2 

In this section selected features related to approach 2 are reported in the following 

tables (for each value the binwidth/bincount parameters can assume). From Table A. 

4 to Table A. 29 results for physical dose are shown, from Table A. 30 to Table A. 54 

the ones related to LETd are reported and from Table A. 55 to Table A. 68 those referred 

to RBE-weighted dose.   

Physical dose  

Binwidth: 0.1  

GLCM correlation, difference entropy, inverse difference, inverse difference 

moment 

GLRLM run length non uniformity normalized, gray level non uniformity 

first-order uniformity, minimum, range 

Table A. 4  

Binwidth: 0.2  

GLCM correlation, difference entropy, inverse difference, inverse difference 

moment 

GLCM sum entropy 

GLRLM sum entropy, run entropy 

first-order entropy, minimum, range 

Table A. 5 

Binwidth: 0.3  

GLCM correlation, inverse difference, inverse difference moment, joint 

entropy 

GLRLM run entropy, run length non uniformity normalized 

GLSZM gray level non uniformity 

first-order entropy, minimum, range 

Table A. 6 
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Binwidth: 0.4  

GLCM correlation, inverse difference, inverse difference moment, joint 

entropy 

GLRLM run length non uniformity normalized 

GLSZM gray level non uniformity, zone entropy 

first-order entropy, minimum, range 

Table A. 7 

Binwidth: 0.5  

GLCM correlation, difference entropy, inverse difference, inverse difference 

moment, sum entropy 

GLRLM run entropy, run length non uniformity normalized 

first-order entropy, minimum, range 

Table A. 8 

Binwidth: 0.8  

GLCM correlation, inverse difference, inverse difference moment, joint 

entropy 

GLRLM run length non uniformity normalized 

GLSZM gray level non uniformity, zone entropy 

first-order entropy, minimum, range 

Table A. 9 

Binwidth: 1  

GLCM correlation, inverse difference, inverse difference moment, joint 

entropy, sum entropy 

GLRLM run length non uniformity normalized 

GLSZM gray level non uniformity 
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first-order entropy, minimum, range 

Table A. 10 

Binwidth: 2  

GLCM correlation, inverse difference, inverse difference moment, inverse 

difference normalized 

GLRLM run length non uniformity normalized 

GLSZM gray level non uniformity, zone entropy 

first-order entropy, minimum, range 

Table A. 11 

Binwidth: 3  

GLCM correlation, inverse difference, inverse difference moment, inverse 

different moment normalized, inverse difference normalized, joint 

entropy, sum entropy 

GLRLM run length non uniformity normalized 

GLSZM gray level non uniformity 

first-order minimum 

Table A. 12 

Binwidth: 4  

GLCM correlation, inverse difference, inverse difference moment, , inverse 

different moment normalized, inverse difference normalized, sum 

entropy 

GLRLM run length non uniformity normalized 

GLSZM gray level non uniformity 

first-order minimum, range 

Table A. 13 
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Binwidth: 5  

GLCM inverse difference, inverse difference normalized 

GLRLM gray level non uniformity, run length non uniformity, run length non 

uniformity normalized 

GLSZM gray level non uniformity, zone entropy, small dependence low gray 

level emphasis 

first-order minimum 

Table A. 14 

Binwidth: 8  

GLCM correlation, inverse difference normalized 

GLRLM run length non uniformity, run length non uniformity normalized 

GLSZM gray level non uniformity, zone entropy, dependence entropy, small 

dependence low gray level emphasis 

first-order minimum, range 

Table A. 15 

Binwidth: 10  

GLCM correlation, inverse difference normalized, joint entropy 

GLRLM gray level non uniformity, run length non uniformity, run length non 

uniformity normalized 

GLSZM gray level non uniformity, zone entropy, dependence entropy, small 

dependence low gray level emphasis 

Table A. 16 

Binwidth: 10  

GLCM correlation 

GLRLM run entropy, run length non uniformity, run length non uniformity 

normalized 
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GLSZM gray level non uniformity, zone entropy, dependence entropy, small 

dependence low gray level emphasis 

Table A. 17 

 

Bincount: 2  

GLCM correlation, inverse difference, inverse difference moment, inverse 

difference moment normalized, inverse difference normalized 

GLRLM gray level non uniformity 

GLSZM zone entropy 

GLDM dependence entropy, small dependence low gray level emphasis 

first-order range 

Table A. 18 

Bincount: 3  

GLCM correlation, inverse difference moment, inverse difference moment 

normalized, inverse difference normalized 

GLRLM gray level non uniformity 

GLSZM zone entropy 

GLDM dependence entropy, small dependence low gray level emphasis 

first-order minimum, range 

Table A. 19 

Bincount: 4  

GLCM correlation, inverse difference moment normalized, inverse difference 

normalized 

GLRLM gray level non uniformity, run length non uniformity normalized 

GLSZM zone entropy 

GLDM dependence entropy, small dependence low gray level emphasis 
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first-order minimum, range 

Table A. 20 

Bincount: 5  

GLCM correlation, inverse difference moment normalized, inverse difference 

normalized 

GLRLM gray level non uniformity, run length non uniformity normalized 

GLSZM zone entropy 

GLDM dependence entropy, small dependence low gray level emphasis 

first-order minimum, range 

Table A. 21 

Bincount: 8  

GLCM correlation, inverse difference moment normalized, inverse difference 

normalized 

GLRLM gray level non uniformity, run length non uniformity normalized 

GLSZM zone entropy 

GLDM dependence entropy, small dependence low gray level emphasis 

first-order minimum, range 

Table A. 22 

Bincount: 10  

GLCM correlation, inverse difference moment, inverse difference moment 

normalized, inverse difference normalized 

GLRLM run length non uniformity normalized 

GLSZM zone entropy 

GLDM dependence entropy, small dependence low gray level emphasis 

first-order minimum, range 
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Table A. 23 

Bincount: 16  

GLCM correlation, inverse difference moment normalized, inverse difference 

normalized 

GLRLM gray level non uniformity, run length non uniformity normalized 

GLSZM zone entropy 

GLDM dependence entropy, small dependence low gray level emphasis 

first-order minimum, range 

Table A. 24 

Bincount: 32  

GLCM correlation, inverse difference moment, inverse difference moment 

normalized, inverse difference normalized 

GLRLM gray level non uniformity 

GLSZM zone entropy 

GLDM dependence entropy, small dependence low gray level emphasis 

first-order minimum, range 

Table A. 25 

Bincount: 64  

GLCM correlation, inverse difference, inverse different moment, inverse 

difference moment normalized, inverse difference normalized 

GLRLM run length non uniformity normalized 

GLSZM zone entropy 

GLDM dependence entropy 

first-order minimum, range 

Table A. 26 
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Bincount: 128  

GLCM correlation, inverse difference, inverse different moment, inverse 

difference moment normalized, inverse difference normalized 

GLRLM run length non uniformity normalized 

GLSZM zone entropy 

GLDM dependence entropy 

first-order minimum, range 

Table A. 27 

Bincount: 256  

GLCM correlation, inverse difference moment, inverse difference moment 

normalized, inverse difference normalized 

GLRLM gray level non uniformity, run length non uniformity normalized 

GLSZM zone entropy 

GLDM dependence entropy 

first-order minimum, range 

Table A. 28 

Bincount: 512  

GLCM correlation, inverse difference moment, inverse difference moment 

normalized, inverse difference normalized 

GLRLM gray level non uniformity, run length non uniformity normalized 

GLSZM zone entropy 

GLDM dependence entropy 

first-order minimum, range 

Table A. 29 
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LETd 

Binwidth: 0.01  

GLCM difference entropy, inverse difference moment 

GLRLM run length non uniformity normalized, run percentage 

GLSZM zone percentage 

GLDM small dependence emphasis 

first-order 10 Percentile, mean, median, root mean squared 

Table A. 30 

Binwidth: 0.02  

GLCM difference entropy 

GLRLM run length non uniformity normalized, run percentage 

GLSZM zone percentage 

GLDM small dependence emphasis 

first-order 10 Percentile, mean, median, minimum, root mean squared 

Table A. 31 

Binwidth: 0.03  

GLCM difference entropy, inverse difference moment 

GLRLM run length non uniformity normalized, run percentage 

GLSZM zone percentage 

GLDM small dependence emphasis 

first-order 10 Percentile, mean, median, root mean squared 

Table A. 32 
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Binwidth: 0.04  

GLCM difference entropy, sum entropy 

GLRLM run percentage 

GLSZM zone percentage 

GLDM small dependence emphasis 

first-order 10 Percentile, mean, median, minimum, root mean squared 

Table A. 33 

Binwidth: 0.05  

GLCM difference entropy, sum entropy 

GLRLM run length non uniformity normalized, run percentage 

GLSZM zone percentage 

GLDM small dependence emphasis 

first-order 10 Percentile, mean, median, root mean squared 

Table A. 34 

Binwidth: 0.08  

GLCM difference entropy, joint entropy, sum entropy 

GLSZM zone percentage 

GLDM small dependence emphasis 

first-order 10 Percentile, mean, median, minimum, root mean squared 

Table A. 35 

Binwidth: 0.1  

GLCM difference entropy, inverse difference, inverse difference moment, 

joint entropy, sum entropy 

GLSZM zone percentage 



 91 

 

 

GLDM small dependence emphasis 

first-order mean, median, root mean squared 

Table A. 36 

Binwidth: 0.2  

GLCM difference entropy, inverse difference, inverse difference moment, 

joint entropy 

GLRLM run percentage 

GLSZM gray level non uniformity, zone percentage 

GLDM small dependence emphasis 

first-order minimum, root mean squared 

Table A. 37 

Binwidth: 0.3  

GLCM difference entropy, inverse difference, inverse difference moment, 

joint entropy 

GLRLM run length non uniformity normalized, run percentage 

GLSZM gray level non uniformity 

GLDM small dependence emphasis 

first-order mean, root mean squared 

Table A. 38 

Binwidth: 0.4  

GLCM difference entropy, inverse difference, inverse difference moment, 

joint entropy, sum entropy 

GLRLM run length non uniformity normalized 

GLSZM gray level non uniformity, zone percentage 

GLDM small dependence emphasis 
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first-order minimum 

Table A. 39 

Binwidth: 0.5  

GLCM inverse difference, inverse difference moment, inverse difference 

normalized, sum entropy 

GLRLM run length non uniformity normalized, run percentage 

GLSZM gray level non uniformity, zone percentage 

GLDM small dependence emphasis 

first-order minimum 

Table A. 40 

Binwidth: 0.8  

GLCM inverse difference moment normalized, sum entropy 

GLRLM run length non uniformity normalized, run percentage 

GLSZM gray level non uniformity, zone entropy, zone percentage 

GLDM dependence entropy, small dependence emphasis, small dependence 

low gray level emphasis 

Table A. 41 

Binwidth: 1  

GLCM inverse difference moment normalized, sum entropy 

GLRLM run length non uniformity 

GLSZM gray level non uniformity, zone entropy, zone percentage 

GLDM dependency entropy, small dependence emphasis, small dependence 

low gray level emphasis 

first-order minimum 

Table A. 42 
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Bincount: 2  

GLCM correlation, inverse difference, inverse difference moment, inverse 

difference moment normalized, inverse difference normalized 

GLSZM zone entropy 

GLDM dependence entropy 

first-order minimum, root mean squared 

Table A. 43 

Bincount: 3  

GLCM correlation, inverse difference, inverse difference moment, inverse 

difference normalized 

GLSZM zone entropy 

GLDM dependence entropy 

first-order mean, median, minimum, root mean squared 

Table A. 44 

Bincount: 4  

GLCM correlation 

GLSZM zone entropy 

GLDM dependence entropy, small dependence low gray level emphasis 

first-order 10 percentile, mean, median, minimum, root mean squared 

Table A. 45 

Bincount: 5  

GLCM correlation 

GLSZM zone entropy 

GLDM dependence entropy, small dependence low gray level emphasis 
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NGTDM coarseness 

first-order 10 percentile, mean, median, minimum, root mean squared 

Table A. 46 

Bincount: 8  

GLCM correlation 

GLRLM run percentage, short run emphasis 

GLSZM zone entropy 

GLDM dependence entropy 

first-order 10 percentile, mean, median, minimum, root mean squared 

Table A. 47 

Bincount: 10  

GLCM correlation, inverse difference normalized 

GLRLM run percentage, zone entropy 

GLDM dependence entropy 

first-order 10 percentile, mean, median, minimum, root mean squared 

Table A. 48 

Bincount: 16  

GLCM correlation, inverse difference, inverse difference moment 

GLRLM run entropy, zone entropy 

first-order 10 percentile, mean, median, minimum, root mean squared 

Table A. 49 
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Bincount: 32  

GLCM correlation 

GLRLM run percentage, short run emphasis 

GLSZM zone entropy 

GLDM small dependence low gray level emphasis 

first-order 10 percentile, mean, median, minimum, root mean squared 

Table A. 50 

Bincount: 64  

GLCM correlation, inverse difference normalized 

GLRLM run entropy 

GLSZM zone entropy 

GLDM small dependence low gray level emphasis 

first-order 10 percentile, mean, median, minimum, root mean squared 

Table A. 51 

Bincount: 128  

GLCM correlation, inverse difference normalized 

GLRLM run entropy 

GLSZM zone entropy 

GLDM small dependence low gray level emphasis 

first-order 10 percentile, mean, median, minimum, root mean squared 

Table A. 52 
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Bincount: 256  

GLCM correlation, inverse difference moment 

GLRLM run entropy 

GLSZM zone entropy 

GLDM small dependence low gray level emphasis 

first-order 10 percentile, mean, median, minimum, root mean squared 

Table A. 53 

Bincount: 512  

GLCM correlation, inverse difference normalized 

GLRLM run entropy 

GLSZM zone entropy 

NGTDM coarseness 

first-order 10 percentile, mean, median, minimum, root mean squared 

Table A. 54 

RBE-weighted dose 

Binwidth: 0.1  

GLCM correlation, difference entropy, inverse difference, inverse difference 

moment, maximal correlation coefficient 

GLSZM zone percentage 

GLDM small dependence emphasis 

first-order minimum, range, uniformity 

Table A. 55 
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Binwidth: 0.2  

GLCM difference entropy, inverse difference, inverse difference moment, joint 

entropy 

GLRLM run percentage 

GLSZM zone percentage 

GLDM gray level non uniformity, small dependence emphasis 

first-order minimum, root mean squared 

Table A. 56 

Binwidth: 0.3  

GLCM difference entropy, inverse difference, inverse difference moment, joint 

entropy 

GLRLM run length non uniformity normalized, run percentage 

GLSZM gray level non uniformity 

GLDM small dependence emphasis 

first-order mean, root mean squared 

Table A. 57 

Binwidth: 0.4  

GLCM difference entropy, inverse difference, inverse difference moment, joint 

entropy, sum entropy 

GLRLM run length non uniformity normalized 

GLSZM gray level non uniformity, zone percentage 

GLDM small dependence emphasis 

first-order minimum 

Table A. 58 
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Binwidth: 0.5  

GLCM inverse difference, inverse difference moment, inverse difference 

normalized, sum entropy 

GLRLM run length non uniformity normalized, run percentage 

GLSZM gray level non uniformity, zone percentage 

GLDM small dependence emphasis 

first-order minimum 

Table A. 59 

Binwidth: 0.8  

GLCM correlation, inverse difference normalized, joint entropy, maximal 

correlation coefficient, sum entropy 

GLSZM zone percentage 

GLDM small dependence emphasis 

first-order entropy, minimum, range 

Table A. 60 

Binwidth: 1  

GLCM correlation, joint entropy, maximal correlation coefficient, sum entropy 

GLSZM zone entropy, zone percentage 

GLDM small dependence emphasis 

first-order entropy, minimum, range 

Table A. 61 

Binwidth: 2  

GLCM inverse difference, inverse difference moment, maximal correlation 

coefficient 

GLRLM run length non uniformity normalized, run percentage 
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GLSZM gray level non uniformity, zone percentage 

GLDM small dependence emphasis 

first-order minimum, range 

Table A. 62 

Binwidth: 3  

GLCM correlation, inverse difference, inverse difference moment, inverse 

difference normalized, maximal correlation coefficient 

GLRLM run length non uniformity normalized 

GLSZM gray level non uniformity, zone percentage 

GLDM small dependence emphasis 

first-order minimum 

Table A. 63 

Binwidth: 4  

GLCM inverse difference, inverse difference moment normalized, inverse 

difference normalized 

GLRLM run length non uniformity, run length non uniformity normalized 

GLSZM gray level non uniformity, zone percentage 

GLDM small dependence emphasis, small dependence low gray level emphasis 

first-order minimum 

Table A. 64 

Binwidth: 5  

GLCM inverse difference moment normalized, inverse difference normalized 

GLRLM run length non uniformity normalized, run percentage 

GLSZM gray level non uniformity, zone entropy, zone percentage 
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GLDM small dependence emphasis 

first-order Minimum, range 

Table A. 65 

Binwidth: 8  

GLCM correlation, inverse difference moment normalized, maximal 

correlation coefficient 

GLRLM run percentage 

GLSZM gray level non uniformity, zone percentage 

GLDM small dependence emphasis, small dependence low gray level emphasis 

first-order minimum, range 

Table A. 66 

Binwidth: 10  

GLCM correlation, maximal correlation coefficient 

GLRLM run entropy, run length non uniformity 

GLSZM gray level non uniformity, zone entropy 

GLDM dependence entropy, small dependence low gray level emphasis 

first-order minimum, range 

Table A. 67 

Binwidth: 10  

GLCM correlation, inverse difference moment normalized, maximal 

correlation coefficient 

GLRLM run length non uniformity 

GLSZM gray level non uniformity, zone entropy 

GLDM dependence entropy, small dependence low gray level emphasis 
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first-order minimum, range 

Table A. 68 

 

A.3 Models’ performance 

A.3.1 Approach 1 

In Table A. 69, Table A. 70, Table A. 71, Table A. 72 and Table A. 73 are reported both 

the values employed in features selection for the parameter bincount/binwidth and the 

corresponding model’s performance in terms of C-index (median/interquartile range). 

Tables refer to physical dose, LETd and RBE-weighted dose maps, respectively. 
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Binwidth 0.1 0.2 0.3 0.4 0.5 0.8 1.0 

C-index 0.64/0.14 0.67/0.14 0.65/0.14 0.62/0.14 0.67/.14 0.63/0.14 0.62/0.14 

 

 

 

 

 

Bincount 2.0 3.0 4.0 5.0 8.0 10.0 16.0 32.0 64.0 128.0 256.0 512.0 

C-index 0.67/0.19 0.62/0.14 0.62/0.23 0.62/0.14 0.62/0.19 0.62/0.18 0.62/0.19 0.71/0.1 0.67/0.1 0.71/0.14 0.76/0.14* 0.67/0.24 

Table A. 69 – Bincount values employed for features extraction with relative model’s performance (C-index) for physical dose maps. Results 

are shown in terms of median/IQR. The best value is highlighted with the symbol *. 

 

 

 

Binwidth 2.0 3.0 4.0 5.0 8.0 10.0 16.0 

C-index 0.64/0.14 0.67/0.11 0.62/0.14 0.76/0.19* 0.71/0.21 0.62/0.14 0.62/0.19 

Table A. 70  – Binwidth values employed for features extraction with relative model’s performance (C-index) for physical dose maps. Results 

are shown in terms of median/IQR. The best value is highlighted with the symbol *. 
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Binwidth 0.01 0.02 0.03 0.04 0.05 0.08 0.1 

C-index 0.57/0.16 0.57/0.14 0.58/0.14 0.57/0.14 0.62/0.17 0.59/0.14 0.62/0.14 

 

 

 

  

 

 

 

Bincount 2.0 3.0 4.0 5.0 8.0 10.0 16.0 32.0 64.0 128.0 256.0 512.0 

C-index 0.64/0.24* 0.62/0.19 0.62/0.19 0.59/0.18 0.6/0.21 0.57/0.13 0.63/0.14 0.6/0.15 0.6/0.14 0.6/0.17 0.6/0.15 0.6/0.17 

Table A. 71 – Bincount values employed for features extraction with relative model’s performance (C-index) for LETd maps. Results are 

shown in terms of median/IQR. The best value is highlighted with the symbol *. 

Binwidth 0.2 0.3 0.4 0.5 0.8 1.0 

C-index 0.57/0.1 0.57/0.14 0.62/0.16 0.62/0.14 0.69/0.18* 0.67/0.14 

Table A. 72 – Binwidth values employed for features extraction with relative model’s performance in terms (C-index) for LETd maps. Results 

are shown in terms of median/IQR. The best value is highlighted with the symbol *. 
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Binwidth 0.1 0.2 0.3 0.4 0.5 0.8 1.0 

C-index 0.62/0.17 0.67/0.14 0.64/0.13 0.64/14 0.67/0.14 0.64/0.17 0.62/0.17 

 

  

Binwidth 2.0 3.0 4.0 5.0 8.0 10.0 16.0 

C-index 0.71/0.14* 0.62/0.21 0.62/0.1 0.63/0.22 0.62/0.14 0.62/0.1 0.62/0.14 

Table A. 73 – Bin width values employed for features extraction with relative model’s performance (C-index) for RBE-weighted dose maps. 

Results are shown in terms of median/IQR. The best value is highlighted with the symbol *. 
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A.3.2 Approach 2 

In Table A. 74, Table A. 75, Table A. 76, Table A. 77 and Table A. 78 are reported both 

the values employed in features selection for the parameter bincount/binwidth and the 

corresponding model’s performance in terms of C-index (median/interquartile range). 

Tables refer to physical dose, LETd and RBE-weighted dose maps, respectively. 
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Bincount 2.0 3.0 4.0 5.0 8.0 10.0 16.0 32.0 64.0 128.0 256.0 512.0 

C-index 0.67/0.19 0.63/0.14 0.62/0.19 0.62/0.19 0.62/0.14 0.52/0.14 0.61/0.19 0.68/0.14* 0.55/0.14 0.52/0.17 0.67/0.17 0.63/0.24 

 

Table A. 74 - Bincount values employed for features extraction with relative model’s performance (C-index) for physical dose maps. Results 

are shown in terms of median/IQR. The best value is highlighted with the symbol *. 

 

 

Binwidth 0.1 0.2 0.3 0.4 0.5 0.8 1.0 

C-index 0.67/0.14 0.67/0.16 0.67/0.14 0.62/0.14 0.66/.16 0.67/0.19 0.64/0.18 

 

  

 

Binwidth 2.0 3.0 4.0 5.0 8.0 10.0 16.0 

C-index 0.66/0.17 0.62/0.14 0.6/0.19 0.61/0.14 069/0.17* 0.67/0.22 0.67/0.19 

Table A. 75 - Binwidth values employed for features extraction with relative model’s performance (C-index) for physical dose maps. Results 

are shown in terms of median/IQR. The best value is highlighted with the symbol *. 
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Bincount 2.0 3.0 4.0 5.0 8.0 10.0 16.0 32.0 64.0 128.0 256.0 512.0 

C-index 0.68/0.18* 0.62/0.14 0.61/0.16 0.64/0.19 0.64/0.17 0.64/0.19 0.62/0.19 0.64/0.19 0.57/0.19 0.64/0.19 0.57/0.22 0.64/0.19 

 

Table A. 76 - Bincount values employed for features extraction with relative model’s performance (C-index) for LETd maps. Results are 

shown in terms of median/IQR. The best value is highlighted with the symbol *. 

 

  

Binwidth 0.01 0.02 0.03 0.04 0.05 0.08 0.1 

C-index 0.6/0.19 0.62/0.19 0.67/0.22* 0.62/0.21 0.64/0.19 0.57/0.21 0.62/0.18 

  

Binwidth 0.2 0.3 0.4 0.5 0.8 1.0 

C-index 0.6/0.19 0.6/0.22 0.6/0.17 0.6/0.21 0.62/0.19 0.67/0.22* 

Table A. 77– Binwidth values employed for features extraction with relative model’s performance in terms (C-index) for LETd maps. Results 

are shown in terms of median/IQR. The best value is highlighted with the symbol *. 
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Binwidth 0.1 0.2 0.3 0.4 0.5 0.8 1.0 

C-index 0.64/0.19 0.67/0.18 0.67/0.14 0.68/19 0.71/0.14* 0.62/0.17 0.62/0.21 

 

 

Binwidth 2.0 3.0 4.0 5.0 8.0 10.0 16.0 

C-index 0.63/0.13 0.62/0.14 0.63/0.15 0.65/0.21 0.57/0.18 0.67/0.19 0.64/0.14 

Table A. 78 – Bin width values employed for features extraction with relative model’s performance (C-index) for RBE-weighted dose maps. 

Results are shown in terms of median/IQR. The best value is highlighted with the symbol *. 
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