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Abstract

Structure-from-Motion (SfM ) is the problem of recovering the 3D structure of a scene
from n images of the same scene taken at different viewpoints. The 3D structure can
be recovered by estimating the position of the cameras from which images were taken
(camera pose) as well as depth measurements at each pixel of the images (depth map). SfM
pipelines are useful in many applications spanning from autonomous driving to augmented
reality.
The number n of images used to infer a single depth map is crucial to reduce noise in the
depth estimates and better handle occlusions. Neural networks have been used throughout
the SfM pipeline to improve performance and robustenss. However, in the general case
of n images neural networks typically do not take advantage of well known 3D geometric
constraints. All the solutions proposed to alleviate this are limited to the base case of
n = 2 views.
In this work we propose an SfM pipeline for the general n-view case which efficiently
couples neural networks with the use of 3D geometric constraints. The pipeline leverages
the Trifocal tensor and presents a novel pose chaining algorithm to expand camera pose
estimation to the general case of n images. We also provide a comparison between different
Trifocal tensor estimation algorithms together with their implementation.
We empirically show that our pipeline outperforms previous state-of-the-art SfM pipelines
on the KITTI dataset while displaying promising results on ETH3D.

Parole chiave: depth estimation, trifocal tensor, pose estimation, plane sweep





Sommario

Structure-from-Motion (SfM ) è il problema che consiste nello stimare la struttura tridi-
mensionale di una scena a partire da n immagini della stessa, scattate da diversi punti
di vista. La struttura 3D può essere recuperata stimando la posizione delle fotocamere
da cui sono state scattate le immagini (posa della camera) e stimando la profondità per
ogni pixel (mappa di profondità). Gli algoritmi di SfM sono utili in molte applicazioni
che spaziano dalla guida autonoma alla realtà aumentata.
Il numero n di immagini usate per ricavare una singola mappa di profondità è un parametro
cruciale che permette di ridurre il rumore nelle stime di profondità e di gestire meglio le
occlusioni. Le reti neurali sono state utilizzate in tutte le fasi degli algoritmi SfM per
migliorarne prestazioni e robustezza. Tuttavia, nel caso generale di n immagini le reti
neurali spesso fanno un uso limitato o inefficiente di noti vincoli geometrici tridimension-
ali. Tutte le soluzioni proposte per alleviare questi svantaggi sono limitate al caso base di
n = 2 immagini.
In questo lavoro proponiamo un algoritmo SfM ad n immagini che accoppia in modo
efficiente le reti neurali con l’uso di vincoli geometrici 3D. La nostra proposta sfrutta il
tensore Trifocale e inlcude un nuovo algoritmo di concatenamento della posa per espan-
dere la stima della posa delle camere al caso generale di n immagini. Oltre a ciò, forniamo
anche un confronto tra diversi algoritmi di stima del tensore Trifocale insieme alla loro
implementazione.
Infine, mostriamo empiricamente che il nostro algoritmo proposto supera i precedenti al-
goritmi stato dell’arte di SfM sul dataset KITTI e ottiene risultati promettenti su quello
di ETH3D.

Parole chiave: stima della profondità, tensore trifocale, stima della posa, plane sweep
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1| Introduction

In this work we address the problem of Structure-from-Motion (SfM ), a fundamental
task in Computer Vision. The problem of SfM consists in recovering the 3D structure of
a scene starting from n images taken from different viewpoints but with some degree of
overlap in their content. The 3D structure of a scene can be represented in many different
ways, for example as a point cloud expressed in the reference frame of a camera. In this
work we focus on retrieving the position of the cameras from which images were taken
(camera pose) as well as depth measurements at each pixel of the images (depth maps).
This is sufficient to recover a point cloud by merging the depth and pose estimates from
the different views. Figure 1.1 shows an example of depth map obtained from an urban
scene.

SfM algorithms are extremely useful in many applications spanning from autonomous
driving to augmented reality, where they are mainly used to recover the depth of objects
and obstacles or as basis for other tasks such as scene understanding, localization and
path planning. In robotics, depth estimation is essential for obstacle avoidance, grasping,
and navigation. Compared to other technologies, depth estimation based on imaging has
several advantages. It can be applied to a wide range of scenarios, including indoor and
outdoor environments, and works with passive sensors such as cameras, which are widely
available and inexpensive. Notably, depth can be estimated at a fine scale, down to the
level of individual pixels or sub-pixel accuracy, and depth information can be integrated
with other computer vision tasks such as object detection, segmentation, and tracking. On
the other hand, depth estimation algorithms are typically sensitive to lighting conditions,
texture, and occlusions, which can affect the accuracy of the depth maps.

Figure 1.1: An urban scene and the corresponding estimated depth map.
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Previously, SfM pipelines only relied on handcrafted tools such as point and feature match
search over different images. With the advent of deep learning, neural networks have been
employed throughout the pipeline. Both supervised and unsupervised learning approaches
have been devised to tackle the depth estimation task. In the present work, we focus
exclusively on the supervised learning approaches. Here, the neural networks are trained
on large-scale datasets of RGB-D images, where the ground-truth depth maps are obtained
from depth sensors such as LiDAR, structured light, or time-of-flight cameras.

An important parameter that determines the quality of the 3D reconstruction is the num-
ber n of images (or views) used to produce a single depth map. The objective is to
produce a depth map for a specific reference image using information from the neighbour-
ing target images. Hence, all pipelines leverage at least n = 2 images, where the base
case consists of using a single target image together with the reference image. Generally,
a higher number of images n provides better results as the effect of occlusions and noisy
estimates tends to decrease. The typical SfM pipeline proceeds in two main stages: (i)
recover camera pose (ii) use the estimated camera pose to compute depth maps. In this
work, we focus on improving the camera pose estimates. Indeed, the majority of deep
learning SfM pipelines directly regress the camera pose, providing the images as input to
a neural network. Such pipelines have two main limitations: (i) they do not exploit the
relationships and constraints of 3D geometry, over-relying on neural networks and (ii)
they estimate the real scale of the scene, which is an ill-posed problem as it cannot be re-
covered from any number of images, unless specific information is provided. Overall, this
leads to unreliable and biased camera pose estimates, which can limit the performance
of the pipeline. Some pipelines try to alleviate this by refining the camera poses through
additional computation in the form of repeated iterations of pose estimation, which is
very expensive. A recent proposal tries to fully leverage the 3D constraints and couple
it with the use of neural networks. However, the proposed pipeline is limited to the case
n = 2 views. The present work aims to expand this approach to the general n-view case.

1.1. Contributions

In the present work we make the following contributions:

(i) we propose an SfM pipeline which uses the Trifocal tensor to expand the camera
pose estimation to the general n-view case. The pipeline couples the use of neural
networks with the 3D geometrical constraints.

(ii) we release a Python library [10] containing several algorithms to estimate the Tri-
focal tensor, a mathematical object which we use to recover camera pose estimates
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over 3 views.

We perform different experiments on widely used datasets such as ETH3D [13] and KITTI
Depth [2], comparing the proposed solution with existing work on the depth estimation
task. The experiments show that our method improves over state-of-the-art pipelines
on the KITTI Depth dataset by around 18% to 47% depending on the metric, while it
displays promising results on ETH3D.

1.2. Structure

The structure of our work is organized as follows. In Chapter 2 we provide the fundamen-
tal theory from the domains of computer vision and projective geometry which we use
throughout the rest of our work. Expert readers in such domains can skip the chapter.
In Chapter 3 we formalize the problem statement, while Chapter 4 provides an overview
of recent work produced to tackle the SfM problem, with particular focus on algorithms
that leverage deep learning and neural networks. Chapter 5 details our proposed solution
which we test extensively in chapter 6. Finally, Chapter 7 summarises our findings and
achievements, proposing future improvements.
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2| Domain Background

In the following, we illustrate the fundamental elements of the classic Computer Vision
pipeline used to solve the SfM problem. In particular, we start from illustrating the basic
building blocks of projective geometry, such as the Camera Matrix, triangulation routines
and useful algorithms. Following, we explore the epipolar geometry, that is the geometry
induced by 2-views. This is very useful to understand concepts in a simpler setting with
respect to the 3-views setting. The theoretical results obtained in this section are then
extended to account for 3-views, which are at the core of our method. We present both the
theoretical results both the computational algorithms used to estimate the mathematical
objects we are dealing with. Most of the fundamental techniques mentioned are embedded
in recent neural network based techniques. For example, we will build our algorithm
around the estimation of the Trifocal tensor, which is explored in section 2.4.

2.1. Camera matrix

The camera matrix P is a 3x4 matrix that maps the 3D world points to their corresponding
2D image points. That is, given a 3D point in space visible to a camera, it is possible to
find the exact 2D coordinates of the projection of the 3D point on the image plane, which
is the plane on which the 3D world is projected to obtain an image. Both the 3D point and
2D point are expressed in homogeneous coordinates that can be subsequently transformed
in Euclidean coordinates. The 3D point is commonly referred to as X, while it’s projection
is x. The camera matrix thus encodes the projective relationship: PX = x. The camera
matrix can be decomposed in two matrices: P = K[R|t]. The intrinsic matrix K contains
the internal parameters of the camera, such as the focal length, the principal point, and
the skew coefficient. The extrinsic matrix [R|t] contains the external parameters of the
camera, such as the rotation and translation of the camera with respect to the world
coordinate system. The camera matrix decomposition is very useful as it illustrates the
conceptual difference between intrinsics and extrinsics. Indeed, the intrinsic parameters of
the camera matrix are the properties that are specific to the camera and remain constant
regardless of the scene being captured. Such parameters determine for example the size of
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the image that the camera can capture. On the other hand, the extrinsic parameters of the
camera matrix are the properties that describe the position and orientation of the camera
with respect to the world coordinate system. These parameters include the rotation and
translation of the camera. Rotation and translation can be expressed respectively through
a 3× 3 rotation matrix R and a 3× 1 translation vector t. Together, they represent the
camera pose with a total of 6 degrees of freedom. In particular, it is useful to note that the
extrinsic parameters describe the transformation that maps world coordinates to camera
coordinates, rather than the opposite. This means that the translation vector represents
the world center in camera coordinates, rather than the position of the camera in world
coordinates, while the columns of R represent the directions of the world-axes in camera
coordinates.

Remark 2.1.1 (Pose chaining). Pose estimation is a central part of the SfM algorithms.
As we will deal with multiple views, a common operation will be to chain relative poses.
Let Ca,Cb,Cc be 3 cameras. Let [Rab|tab] and [Rbc|tbc] be the extrinsic matrices containing
the pose of Cb with respect to Ca and of Cc with respect to Cb. This can be viewed as
the extrinsic camera matrix of Ca in the world frame of Cb and Cb in the world frame of
Cc respectively. We are interested in [Rac|tac], which is the pose of Cc with respect to Ca.
Then, it can be derived that

Rac = RbcRab

tac = tab +Rabtbc

Sometimes, it could also be useful to invert a relative pose [Rab|tab] from [Rba|tba]. This
can be accomplished as:

Rab = R⊤
ba

tab = −R⊤
batba

2.2. Triangulation

A frequent operation in 3D reconstruction algorithms is to triangulate the 3D position of
a point given it’s 2D position in M cameras. The problem for M = 2 can be formulated
as:

Find X such that x = PX and x′ = P′X

where x and x′ are two matching points while P and P′ are two camera matrices.
Of course, if both the camera matrices and the 2D points are measured exactly, it is suffi-
cient to intersect the back-projected rays. In the case in which the point correspondences
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are not exact however, the rays will not intersect. This can be equivalently formulated as
noting that the corresponding points do not satisfy the Fundamental matrix constraint.
In the following, we detail a simple linear estimate of the 3D point.
From x = PX we can equivalently obtain x × (PX) = 0. By expanding the cross prod-
uct we obtain 3 homogeneous equations, of which only 2 are linearly independent. Such
equations can be arranged in the system:

AX = 0

where A is of shape 2 × 4 as 2 equations are used and the 3D point is a homogeneous
quantity. Since the system is homogeneous, one possible solution is to factorise A with
SVD as A = UDV⊤. Then, the last column of V is the eigenvector associated to the
smallest eigenvalue of A, which must be 0. Indeed, A must have rank 3 as X is a
homogeneous quantity. Such eigenvector is a solution of the system and provides the
homogeneous coordinates of the 3D point X.

2.3. Epipolar Geometry

Epipolar geometry is the term used to describe the relationships between 3D points in
space and 2D points in the images. The epipolar geometry of a scene can be characterized
through point matches, also called point correspondences. Suppose there exists a 3D point
X imaged in two different views. Given that X is pictured in point x in the first view,
where is the corresponding point x′ located in the second view? What is the relationship
between these two points? It turns out that such geometry can be fully encoded and
described by a matrix F called the Fundamental matrix. Before analysing its properties,
we lay out some important terms and definitions.

Definition 2.3.1. Let C and C′ be two camera centres, we define:

• Camera Plane: the plane on which the 3D points are projected to obtain an image

• Baseline: the line connecting camera centres C and C′

• Epipole: the intersection between the baseline and one of the camera planes. It
represents the projection of the camera center of one image in the other image

• Epipolar plane: any plane which contains the baseline

• Epipolar line: the intersection between an epipolar plane and a camera plane.
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Figure 2.1: The epipolar plane and induced epipolar lines. Adapted from [3]

2.3.1. Fundamental matrix

As seen in the previous section, given a point x in the first view, we are interested in
finding the coordinates of the corresponding point x′ in the second view. It turns out
that such point in the first view is located on an epipolar line of the other view. This
is a strong constraint which can be exploited when searching for correspondences. The
Fundamental matrix is a convenient way to encode such epipolar geometry.

Definition 2.3.2 (Fundamental matrix). Given 2 images with non coincident camera
centres, there exists a unique 3x3 rank 2 homogeneous matrix F such that:

x′⊤Fx = 0 (2.1)

for any corresponding points x and x′.

There are a few important properties that characterize all fundamental matrices.

Property 2.3.1. Let F be a Fundamental matrix. Let x be a point in the first view and
x′ a point in the second view. Then,

• F displays seven degrees of freedom

• Given point x, the corresponding epipolar line is l′ = Fx

• Given x′, the corresponding epipolar line is l = F⊤x′

• Fe = 0 and F⊤e′ = 0 where e and e′ are the 2 epipoles

• For two general camera matrices P and P′, F = [e′]× P′P+, where P+ is the pseudo-
inverse of P, and e′ = P′C, where C is the camera centre of the first view

• For two canonical cameras P = [I | 0] and P′ = [M | m], F = [e′]×M = M−T[e]×,
where e′ = m and e = M−1m



2| Domain Background 9

Note that a homogeneous 3x3 matrix has 8 degrees of freedom, as one is lost due to the
homogeneous coordinates. On top of this, the remaining degree of freedom is reduced
since the Fundamental matrix also satisfies the following constraint:

det(F) = 0 (2.2)

Such constraint will be enforced to obtain a valid estimate of the Fundamental matrix in
the following sections.

An interesting remark is that F depends on projective properties of the camera matrices
P and P′. In contrast, the Fundamental matrix is unchanged when changing the world
frames. More in general, F is invariant with respect to projective transformations. Let H
be a homography. Computing F between (P,P′) and (PH,P′H) yields the same result.
For this reason, given a Fundamental matrix from which we want to extract the camera
matrices, it makes sense to assume the first view to simply be: [I | 0]. Indeed, we have
seen that given two canonical camera matrices, we can recover a Fundamental matrix.
At the same time however, we can recover a couple of canonical camera matrices from a
Fundamental matrix.

Property 2.3.2. Given a Fundamental matrix F, a couple of corresponding camera ma-
trices can be set as:

P = [I | 0] and P′ = [[e′]×F | e′],

where e′ is such that F⊤e′ = 0.

2.3.2. Essential matrix

There is another important matrix capable of encoding scene geometry. In particular, in
the case of known intrinsic camera parameters, one can define the Essential matrix e.

Definition 2.3.3 (Essential matrix). The point-point correspondence is very similar to
the definition 2.3.2 of F:

x̂′⊤Ex̂ = 0 (2.3)

where x̂ and x̂′ are two corresponding points in normalized coordinates.

It is possible to obtain the normalized coordinates from a point in homogeneous coordi-
nates as:
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x̂ = K−1x (2.4)

That is, the Essential matrix describes the geometry induced by 2 normalized camera
matrices P = [I|0] and P′ = [R|t]. Following the properties of the Fundamental matrix
expressed in Property 2.3.1, E can be expressed as:

E = [t′]× R (2.5)

Remark 2.3.1. An interesting remark that can be deduced from this equation is that E
has 5 degrees of freedom. Indeed, the rotation matrix R and the translation t have both
3 degrees of freedom. There is however a scale ambiguity as the Essential matrix is an
homogeneous quantity exactly as the Fundamental matrix. Hence, the overall degrees of
freedom is reduced by 1.

From the previous point-point correspondence equations, one can deduce that the rela-
tionship between E and F is:

E = K′⊤FK

Remark 2.3.2. It is important to notice that given the Essential matrix E, it is not
possible to recover the scale of translation t, but rather it can be estimated only up to
scale. There are two different ways to think about this fact. The first is simply to notice
that the Essential matrix is a homogeneous quantity, hence up to scale. For this reason,
extracting the value of t from equation 2.5 leads to an up to scale value. Another way
to view this fact is instead to define the Essential matrix, including scale, with equation
2.5 and determining E up to scale from equation 2.3. Indeed, this last equation does not
impose any scale restriction on E. In general, the translation vector is simply normalized
to have ∥t∥ = 1. Of course, the same holds for the Fundamental matrix too.

2.3.3. Linear Estimation

In the following sections we detail the main methods and algorithms used to estimate the
Fundamental matrix. As will be seen further on, they are extremely useful and can be
adapted to estimate other objects too, such as the Trifocal tensor. While we focus on the
Fundamental matrix, the same algorithms also apply to the Essential matrix. The Linear
estimation methods arises from the definition of the Fundamental matrix, in particular
from equation 2.1. Given the 2D point correspondence x↔ x′ expressed in homogeneous
coordinates as (x, y, 1) and (x′, y′, 1), the equation x′⊤Fx = 0 can be expanded as:
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x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0

By collecting in a 9 dimensional vector f the entries of F and considering the general case
of n points, we obtain the following linear system:

Af =


x′
1x1 x′

1y1 x′
1 y′1x1 y′1y1 y′1 x1 y1 1

...
...

...
...

...
...

...
...

x′
nxn x′

nyn x′
n y′nxn y′nyn y′n xn yn 1

 f = 0

As the linear system is homogeneous, the solution f can be found only up to scale. In
particular, if the rank of A is exactly 8, the solution is unique (up to scale). However, if
there is noise in the measurements, A could end up having rank 9 and being inconsistent.
In that case, one must resort to the least squares estimation and SVD decomposition of
A.

Remark 2.3.3. As seen in equation 2.2, the Fundamental matrix must have a null de-
terminant, which is equivalent to not having a full rank. The previous estimates obtained
from f however do not impose this constraint in any way, meaning that the estimated
Fundamental matrix in general will not be valid. This would be an issue as such a matrix
would have misbehaving epipolar lines, that is epipolar lines in the same camera plane
which do not intersect in the same epipole.

To solve this issue and obtain a valid Fundamental matrix, there are 2 main methods.
The first option is to estimate the Fundamental matrix without imposing any constraint
on the determinant, for example with the previous linear estimates. Then, compute a
new F′ = Udiag(r, s, 0)V⊤ obtained by SVD decomposition of the original Fundamental
matrix as F = Udiag(r, s, t)V⊤. The new matrix F′ is the nearest singular matrix in
Frobenius norm to F.
Alternatively, one can directly parametrize F with a 3x3 singular matrix. For example,
one can choose

F = [t]×M (2.6)

which is a singular matrix since [t]× is singular. This parametrization requires a total of 12
parameters, 9 coming from M and 3 from t. While this provides an over-parametrization
since F only has 7 degrees of freedom, in general it is not a problem.

Remark 2.3.4. To improve the numerical performance of the linear algorithm, it is
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generally considered a good practice to normalize the data, in this case the point corre-
spondences. Here, we refer to an actual translation and scaling of the coordinates, rather
than the normalization concept refered to when talking about the Essential matrix and
the intrinsic parameters. Generally, the normaliaztion is carried out in order to obtain
the centre of the points in the origin and a root mean square distance of

√
2. Notice

that since the 2D point correspondences are homogeneous quantities, it is possible to
express both the translation and the scaling with a single 3x3 matrix T. Hence, the point
correspondences used as input to the linear algorithm will be: x̂i = Txi and x̂′

i = Tx′
i.

2.3.4. Gold Standard

The Gold Standard algorithm is one of the best options to estimate the Fundamental
matrix. In the case of Gaussian noise perturbation of the point correspondences, this
method returns the Maximum Likelihood Estimation of the Fundamental matrix. The
main difference with respect to the previous methods is in both the minimization target
and the quantities parametrized. Indeed, in this case there will be 12 parameters for the
direct singular parametrization of F as shown in equation 2.6 and also the n 3D points
will be parametrized, yielding other 3n parameters as the last homogeneous coordinate is
set to 1. The distance to be minimized in this case coincides with the reprojection error,
which can be defined as:

D =
∑
i

d (xi, x̂i)
2 + d (x′

i, x̂
′
i)
2 (2.7)

with xi ↔ x′
i the measured correspondences, and x̂i and x̂′

i are estimated "true" cor-
respondences that satisfy x̂′⊤

i Fx̂i = 0 exactly for some rank-2 matrix F, the estimated
Fundamental matrix.
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Algorithm 2.1 Gold Standard estimation of F
1: N : total number of iterations
2: n: total number of point correspondances available
3: Collect xi ↔ x′

i for i = 1, ..., n, with n ≥ 8

4: Compute an initial estimate F̂ with the normalized linear method from section 2.3.3
5: if det(F̂) ̸= 0 then
6: Correct F̂ by SVD decomposition
7: end if
8: Extract the epipole e′ from F̂, using F′⊤e′ = 0.
9: Recover the camera matrices associated to F̂ through: P = [I|0] and P′ = [[e′]×F̂ | e′]

10: Triangulate the 2D point correspondences xi ↔ x′
i using P,P′ and obtain an initial

estimate of the 3D points X̂i

11: for i in 1 : N do
12: Minimize

∑
i d
(
xi,PX̂i

)2
+ d

(
x′
i,P

′X̂′
i

)2
over F and {X̂i}ni=1 using Levenberg-

Marquardt
13: Update the camera matrix P′ from the new values of F̂
14: end for

Notice that by parametrizing the 3D points {X̂i}ni=1 and projecting them to {x̂i}ni=1 with
camera matrices obtained from F, we are sure that the condition x̂′⊤Fx̂ = 0 is always
valid.

2.4. Trifocal tensor

In the previous sections we introduced the main tools and concepts to deal with 2-view
geometry. In the following section, we focus on the Trifocal Tensor T, which can be
thought of as a generalization to the Fundamental matrix. As such, it expresses the
relationship between lines and points in 3 different views.

2.4.1. Definition and properties

We will mainly characterize the Trifocal tensor based on the point-point-point relation-
ships as they turn out to be the most useful in our application. T is a collection of three
3 × 3 matrices {Ti}3i=1 accounting for a total of 27 elements. The {Ti}3i=1 are such that
T = [T1,T2,T3] Excluding the overall scale, or considering the tensor in homogeneous co-
ordinates, we actually have 26 independent parameters. Still, it turns out that T displays
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only 18 degrees of freedom. As a result, there must be 26− 18 = 8 algebraic constraints
that the tensor fulfills.

Definition 2.4.1. Let us set P1 = [I|0], P2 = [A|a4] and P3 = [B|b4] to be three canoni-
cal camera matrices. Then:

Ti = aib
⊤
4 − b4a

⊤
i (2.8)

where ai and bi are the columns of A and B.

Equation 2.8 is very important as it characterizes the tensor based on 3 canonical camera
matrices. This relationship is used in several algorithms to estimate T.
We now introduce the correspondence equations over three views. They can be viewed as
the extension of the equations 2.3 for the Fundamental matrix.

Property 2.4.1. Let x,x′,x′′ be 3 point matching points in the first, second and third
view, while l, l′, l′′ are 3 corresponding lines in the same views. The correspondences in-
duced by the Trifocal tensor can be summarised as:

• Line-line-line correspondence

1′T [T1, T2, T3] l
′′ = lT for a correspondence l↔ l′ ↔ l′′

• Point-line-line correspondence

l′⊤

(∑
i

xi Ti

)
l′′ = 0 for a correspondence x↔ l′ ↔ l′′

• Point-line-point correspondence

1′⊤

(∑
i

xi Ti

)
[x′′]× = 0⊤ for a correspondence x↔ l′ ↔ x′′

• Point-point-line correspondence

[x′]×

(∑
i

xi Ti

)
l′′ = 0 for a correspondence x↔ x′ ↔ l′′
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• Point-point-point correspondence

[x′]×

(∑
i

xi Ti

)
[x′′]× = 03×3 (2.9)

where xi represents the ith coordinate of x.

Given the point-line-line correspondence, we can now derive an important property of
epipoles.

Property 2.4.2. Let X be a point in 3D space and l′ its epipolar line in the 2nd image.
Then:

l′⊤

(∑
i

xi Ti

)
= 0

meaning that the left null vector of
∑

i xi Ti is the epipolar line in the 2nd image.
The same can be obtained for the epipole in the 3rd image:

(∑
i

xi Ti

)
l′′ = 0

That is, the epiolar line l′′ is the right null vector of T.

As in the case of the Fundamental matrix, T also encodes information on the homographies
between different views. For example, it is possible to determine the homography H

between the 1st and the 3rd images by using a line in the 2nd image. Let l′ be a line in
the 2nd image. Then:

H = [h1,h2,h3], where hi = T⊤
i l

′

Remark 2.4.1. Some useful properties of the T include:

• Ti has rank 2 ∀ i = 1, ..., 3

• l′′i = e′′ × bi is the right null-vector of Ti

• Epipolar lines l′′i for i = 1, 2, 3 intersect in the epipole e′′

• l′i = e′ × ai is the left null-vector of Ti
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• Epipolar lines l′i for i = 1, 2, 3 intersect in the epipole e′

Property 2.4.3. A useful property of the Trifocal tensor is that we can recover the
fundamental matrices between different views by leveraging previous relationships. The
epipolar line corresponding to point x can be computed by projecting x to the other view
and linked the projected point to the epipole. Let x be in the first view. We showed
that we can recover the homography between view 1 and 2 by computing [T1, T2, T3] l

′′.
Applied to x, it transfers the point from view 1 to view 2. So, l′ = [e′]× ([T1, T2, T3] l

′′)x.
By choosing l′′ = e′′ we obtain:

F21 = [e′]× [T1, T2, T3] e
′′

Similarly,

F31 = [e′′]× [T1, T2, T3] e
′

Property 2.4.4. To recover camera matrices from T, we can resort to the previous
computations of the fundamental matrices. As the geometry is defined up to a projective
ambiguity, we can define P1 = [I|0]. Giver our knowledge of F21, we can derive that:

P′ = [[T1, T2, T3] e
′′|e′]

which implies that the couple {P,P′} have Fundamental matrix F21. While one could
expect to define:

P′′ = [[T1, T2, T3] e
′|e′′]

it turns out that the triplet {P,P′,P′′} would be inconsistent. Rather, the correct defini-
tion of the third camera matrix is:

P′′ = [
(
e′′e′′⊤ − I

)
[T1, T2, T3] e

′|e′′]

Given that it is possible to compute T from the camera matrices, and also to compute
the camera matrices given T, the Trifocal tensor fully captures the 3D geometry in the
3-view setting. As usual, this holds up to a projective equivalence.
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2.4.2. Estimation algorithms

In the following sections we explore the several algorithms available to compute a numer-
ical estimate of T. One key ingredient in the numerical estimate is to remember that the
Trifocal tensor must be a valid one. As such, it must satisfy the condition expressed in
Equation 2.8. If there exist 3 camera matrices associated to T that satisfy this expression,
the Trifocal tensor is said to be "geometrically valid". Failing to satisfy these constraints
implies that the induced geometry might not be consistent. For example, the final posi-
tion of a point transferred from one view to another will depend on which relationship is
used, rather than being unique.
Section 2.4.3 details the linear estimation of T. While this can be a helpful initialization
for more advanced numerical schemes, it doesn’t always provide a good estimate if used
by itself. For this reason, section 2.4.4 introduces the Gold Standard algorithm based on
minimization of reprojection error. Section 2.4.5 provides an overview of the relationship
between T and F. All the algorithms can be implemented in couple with the RANSAC
algorithm described in section 2.6 to obtain more robust estimates.

2.4.3. Linear estimation

The linear estimate of T is obtained by setting up a linear system and trying to satisfy the
point-point-point relationship. For each point X, the relationship 2.9 implies 9 constraints,
that is 9 linear equations. Actually, of those 9, only 4 are linearly independent. Given
that T has 26 degrees of freedom, at least 7 points are needed to estimate it fully. As for
the Fundamental matrix, normalizing the input data is of great help to obtain a better
conditioned numerical problem. By expanding 2.9 and rearranging the terms, one can
obtain a linear system of the shape Ax = 0. As soon as there are more than 7 points
however, the system can only be solved by performing a least squares approximation due
to the error on the measurements of corresponding points. As such, the linear estimation
method will, in general, yield a non valid tensor.

2.4.4. Gold Standard

The Gold Standard algorithm proceeds by minimizing the reprojection error. To make
sure that the computed Trifocal tensor is valid, the algorithm directly parametrizes the
3 projection matrices. By choosing P1 = [I|0], one can simply parametrize P2 and P3.
As they are both 3× 4 matrices, the total parameters are 24. While this means that the
Trifocal tensor is overparametrized, indeed only 18 parameters are needed, this is not a
problem in the optimization procedure. In the 3-view setting, the reprojection error can
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be expressed as:

D =
∑
i

d (xi, x̂i)
2 + d (x′

i, x̂
′
i)
2
+ d (x′′

i , x̂
′′
i )

2

where xi,x′
i,x

′′
i are matched points and x̂i,x̂′

i, x̂
′′
i the estimated points in the 3 views. In

the Gold Standard algorithm, the optimization is carried out not only with respect to
the camera matrices, but also with respect to a set of 3D points. Once the 3D points are
projected to the 2D points in the 3-views, the reprojection error is minimized iteratively.
As such, one can compute a set of point correspondences {x̂i ↔ x̂′

i ↔ x̂′′
i }, which exactly

satisfy the trilinear relations of the estimated tensor in 2.9. Overall, the minimization is
carried out over a total of 3n + 24 variables: 3n for the n 3D points X̂i, and 24 for the
elements of the camera matrices P′,P′′.

Algorithm 2.2 Gold Standard estimation of T
1: N : total number of iterations

2: n: total number of point correspondances available

3: Collect xi ↔ x′
i ↔ x′′

i for i = 1, ..., n, with n ≥ 7

4: Compute a valid initialization of T̂ through a linear estimate

5: Compute the camera matrices P′, P′′ from T̂ using 2.8.

6: Triangulate {X̂}ni=1 from the correspondences xi ↔ x′
i ↔ x′′

i using camera matrices

P = [I | 0],P′,P′′

7: for i in 1 : N do

8: Minimize
∑

i d
(
xi,PX̂i

)2
+ d

(
x′
i,P

′X̂i

)2
+ d

(
x′′
i ,P

′′X̂i

)2
over P′, P′′ and {X̂i}ni=1

using Levenberg-Marquardt

9: end for

2.4.5. Trifocal tensor from Fundamental matrix

Rather than directly estimating the Trifocal tensor from the trilinear constraints, one
could prefer to estimate it from Fundamental matrices. That is, given F12 and F13, we
are interested in recovering a valid Trifocal tensor. Of course, one can extract the two
couples R12, t12 and R13, t13, however both the translation vectors have unknown scale,
hence it is necessary to find a relative scale between the two. To start, one is free to set
||t12|| = 1, thanks to the 3D reconstruction being up to a projective transformation. At
this point, one has to determine the scale λ of t13, relative to t12. Fortunately, [7] shows
that it is possible to recover this relative scale by solving a minimization problem which
has a closed form solution. To do this, one has to triangulate the 2D points xi and x′

i in
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order to recover the 3D points {Xi}Nn=1. Then, minimization of algebraic error is carried
out:

argmin
λ∈R

N∑
n=1

∥∥∥∥x3,n ×
(
K3

(
R31Xn + λ

t31
∥t31∥

))∥∥∥∥2
In case one has a very accurate algorithm to compute the Fundamental matrices, this is
a great way to leverage it for the 3-view case.

2.5. Sampson Error

Most of the estimation algorithms we introduce require to minimize some error. The
common choices are to minimize either the reprojection error or the algebraic error. The
reprojection error generally requires a more complex minimization process. For exam-
ple, the Gold Standard estimates of the Fundamental matrix and Trifocal tensor, which
minimize the reprojection error, not only require to parametrize F or T, but also the 3D
points Xi. This is in contrast with the algebraic error, which has a simpler formulation.
The Sampson error is an attempt to strike a balance between the two aforementioned ap-
proaches. Indeed, it attempts to linearize the reprojection error in the neighbourhood of
the point. The Fundamental matrix and Trifocal tensor implicitly define a variety through
a linear system of shape Ax = 0, where A depends on the point correspondences. Hence,
any point matches which are consistent with F or T satisfy the linear system. In the case
of the Fundamental matrix, A depends on the coordinates of the matching points, that
can be seen as a vector X = (x, y, x′, y′). Since Ax is a 2D vector which represents the
variety, we refer to it as C(X). One can think of C(X) as a cost function. Indeed, the
matching points that do not satisfy the epipolar constraints will not lie on the variety,
while points that are consistent with F will lie on it. By performing a first order Taylor
expansion to approximate such cost, on obtains: cost function may be approximated by
a Taylor expansion:

C (X+ δX) = C(X) +
∂C
∂X

δX.

The distance from a point X to the variety is the minimum distance between X and a
point on the variety X̂. Here, we assume that X is sufficiently near the variety, so that
one can choose δX = X̂ −X. Since X̂ lies on the variety, we know that C(X̂) = 0. By
substituting this inside the equation, we obtain

C(X) +
∂C
∂X

δX = 0

By noticing that the partial derivative is a Jacobian matrix J, and letting ϵ be the cost
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C(X) , we can simplify the expression to:

JδX = −ϵ

By ssing lagrangian multipliers to minimize the norm of the error δX, one can finally
obtain the expression for the Sampson error:

∥δX∥2 = δ⊤
XδX = ϵ⊤

(
JJ⊤

)−1
ϵ (2.10)

When estimating the Trifocal tensor or the Fundamental matrix, a very useful remark
to simplify the computation of the Jacobian is that C is multilinear with respect to the
coordinates of the point matches. One can check this by recalling the definition of the
cost C, which in such cases follows the point-point or point-point-point correspondences.
Then, the following equation:

∂C
∂Xi

(X) = C(X+ ui)− C(X)

holds exactly, rather than being an approximation. Here, ui is a unit vector with value
1 in index i. This equation can hence be leveraged to compute the Jacobian without the
need to compute explicitly any partial derivative.

2.6. RANSAC

In this section we describe the RANSAC algorithm [1], which is used throughout our
work to perform robust estimates of 3D reconstruction models, such as the Essential
matrix, the Fundamental matrix the and the Trifocal tensor. RANSAC, which stands for
Random Sample Consensus, is an iterative algorithm used to estimate the parameters of
a model from a dataset which could contain outliers. Given that the procedure is based
on repeated sub-samples from the initial dataset, the algorithm is stochastic and produces
a good result only with a certain probability. This probability however increases as more
samples are performed.

The algorithm assumes that the dataset contains a certain amount of outliers: such points
should be disregarded when estimating the model’s parameters. Indeed, begin outliers,
they cannot fit the true underlying model we are looking to estimate in the first place.
The algorithm also assumes that the inliers are a set of points which can be explained
by some choice of the model parameters, at least up to small noise perturbations. In the
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domain of 3D reconstruction, for example when estimating the Fundamental matrix and
Trifocal tensor, a common source of outliers are erroneous measurements or erroneous
point matches from the optical flow. When dynamic objects are present in the scene, the
point matches obtained for such objects can be considered as outliers with respect to the
set of point matches obtained from the images. Indeed, their position cannot be explained
by the epipolar constraints which are obtained from the static scene.

A common example to showcase RANSAC is fitting a line to a set of points. The points are
a mixture of both inliers and outliers. The outliers do not fit the model, while the inliers
can be obtained by perturbing some line with a small amount of noise. A simple least
squares regression on the whole dataset will poorly fit all data points, as the error accounts
for both the distance to the line of inliers and outliers. To overcome this, RANSAC tries to
exclude the outliers from the estimation, leading to more robust estimates. The main idea
is to take a small random sub-sample of the dataset, fit the model to such data and then
expand the set of points which fit such model. If the initial sub-sample mainly consists
of inliers, inliers which were not included in the sub-sample will fit well the estimated
model. Once such points are found, one can fit again the model on this bigger subset of
data and obtain a better estimate. Repeating this simple operation for many iterations
can lead to excellent results.
When using RANSAC in the domain of Trifocal tensor or Fundamental matrix estimation,
one needs a good measure to estimate the error between the fitted model and the other
points in the dataset. This can be achieved by using the Sampson error described in
section 2.5. Algorithm 2.3 provides an overview of the main steps involved in RANSAC.
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Algorithm 2.3 RANSAC Algorithm
1: n – Sample size
2: N– Maximum iterations
3: t – Threshold to accept data point as inlier with respect to a model
4: d – Minimum number of points to believe that model is fitting well the data
5: for i in 1 : N do
6: DataSample = Sample n data points from Data
7: ModelSample = Fit model to DataSample
8: ConsensusPoints = DataSample
9: for every DataPoint in Data do

10: if DataPoint not in DataSample and error (DataPoint , ModelSample) < t then
11: add DataPoint to ConsensusPoints
12: end if
13: end for
14: if size(ConsensusPoints) > d then
15: ImprovedModel = Fit model to ConsensusPoints
16: Err = error(ConsensusPoints,ImprovedModel)
17: if Err < BestErr then
18: BestErr = Err
19: BestModel = ImprovedModel
20: end if
21: end if
22: end for
23: Return BestModel, BestErr, ConsensusPoints

Of course, RANSAC has some limitations. First of all, there is no upper bound on its
convergence to the optimal model apart from the exhaustion of all possible sub-samples.
If the iterations are interrupted too early, the model obtained might not fit data well at
all, hence it requires some external knowledge of the problem to set correct thresholds.
Moreover, the proportion of contamination of outliers in the data can challenge the al-
gorithm. In most of our use-cases, it is sufficient to place more effort on pre-filtering the
data in order to reduce as possible such contamination proportion.
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3| Problem Formulation

We provide an overview of the problem formulation and the notation used in upcoming
sections. Our main goal is to recover the 3D reconstruction of a scene starting from n 2D
images of the scene taken from different viewpoints.

Inputs Our inputs consist in:

• n 2D images in RGB format {Ii}ni=1 such that Ii ∈ RH×W×3 ∀i = 1, ..., n

• The intrinsic parameters {Ki}ni=1 of the cameras from which {Ii}ni=1 are taken, where
Ki ∈ R3×3 ∀i = 1, ..., n

Output The output is a 3D reconstruction of the scene. While there are different formats
to characterize it, in this work we focus on recovering camera pose and depth maps, which
are sufficient to compute the 3D reconstruction. Specifically, the outputs are:

• a pair (Ri, ti) ∀ i = 1, ..., n with Ri ∈ SO(3) representing the camera rotation and
ti ∈ R3 being the translation vector of the camera centre.

• a depth map Di ∈ [dmin, dmax]
H×W, where dmin, dmax are the minimum and maxi-

mum depth values.

Objective Given the n images as input, we aim to reconstruct the scene by predicting
camera pose [Ri|ti] and depth maps Di for every image Ii provided.

Assumptions The main assumptions of the method are common to most of the SfM
work. Such assumptions can be expressed in several key points:

1. Static and rigid scene: the scene being reconstructed is static and rigid, i.e. it
contains no moving objects and the relative position between objects is fixed

2. Constant lighting conditions: the lighting conditions in the scene should be consis-
tent across all images

3. Sufficient overlap between images: some portion of the scene has to be visible in
different images in order to match points
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4. Sufficient texture in the scene: images with extended texture-less regions provide
less diversity in the extracted features and make point matching more noisy

Challenges We now list some of the main challenges that must be accounted for in the
SfM task.

1. Inconsistent assumptions: it is common that the assumptions from the previous
sections are rarely met. For example, we carry out some experiments on urban scenes
from several different datasets. As such, it is frequent to encounter moving objects
such as cars, pedestrians and buses. The movement of pedestrians in particular is
also non-rigid, which makes it even more difficult to correctly estimate their depth.

2. Computational load: while there are several algorithms based on neural networks
that can handle the general n-view case, increasing the number of images used in
the reconstruction requires more memory. In particular, due to such computational
limitations, it is common to train the neural networks in the 2-view setting and use
more views only at inference time. This makes it easier to train the model with
bigger batch sizes while running on the same GPU.

Figure 3.1 and 3.2 show examples of challenging scenes with dynamic objects and low
overlap.

Figure 3.1: An indoor scene with low overlap. The two frames only share the column and
a small part of the truck.
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Figure 3.2: Two different urban scenes with dynamic objects. Cars and pedestrians are
moving, the latter with non-rigid motion. Dynamic objects cause outliers both during
camera pose and depth map estimation.
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4| Related Work

In recent years there has been a rapid increase in the number of techniques using neural
networks to solve the 3D reconstruction problem [19]. Their performance has improved
upon traditional techniques on several available benchmarks. Generally, neural network
based approaches to SfM involve learning the relationships between the 2D images and the
3D structure of the scene by leveraging deep neural architectures. This involves training
the neural network on a dataset of images and corresponding measured depth maps. One
advantage of using neural networks for 3D reconstruction is that they can learn to handle
a wide range of variations in the input data, such as changes in lighting, appearance,
viewpoint and dynamic motion. Moreover, by leveraging the strong priors learnt during
training, neural networks can better handle situations of uncertainty such as occlusions or
modest camera translation, regularizing the problem in such degenerate configurations.
This makes them well-suited for handling real-world scenes, which frequently display such
features. Overall, the combination of traditional techniques and deep learning approaches
can offer a powerful way to solve the SfM problem and enable the creation of high-quality
3D models from 2D images.

4.1. Taxonomy of methods

In the coming sections we illustrate how deep learning approaches to 3D reconstruction
implement and expand on traditional geometric techniques. One of the primary distinc-
tions among the available methods lies in whether they adopt a supervised or unsupervised
learning approach. While the unsupervised methods have delivered impressive results, this
work exclusively focuses on the supervised approaches. Figure 4.1 provides a taxonomy
of recent literature.
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Figure 4.1: Taxonomy of pipelines. Most of the pipelines proposed in literature make
limited or no use of the epipolar constraints during the camera pose estimation step. 2-
ViewRevisited [16] couples neural networks with the epipolar constraints, but is limited
to the 2-view case. No pipelines with the same properties have been proposed for the
general n-view setting.

In section 4.2, we discuss how [14] employs neural networks to estimate camera poses and
depth maps in the 2-view case. We argue that the pipeline neglects the well known 3D
geometric constraints and solves an ill-posed problem. In section 4.3, we demonstrate how
recent pipelines have expanded [14] to the n-view case by introducing two powerful tools,
namely (i) cost volumes and (ii) the plane sweep algorithm. While such pipelines can
deal with the n-view case, they rely on camera poses from [14] and still try to recover the
real scale of the scene, which is ill-posed. Lastly, section 4.4 provides an overview of the
pipeline introduced by [16], which proposes an alternative approach to the 2-view case.
This pipeline tries to couple neural networks with the 3D constraints and does not try to
recover the real scale of the scene. While this provides excellent results, the pipeline is
limited to the 2-view case only.

4.2. 2-view deep pose estimation

In this section we focus on 2-view pipelines for SfM. The 2-view case can be seen as the
base case of n-view SfM, and the pipelines which tackle the general n-view problem usually
leverage algorithms and ideas originated in the 2-view setting. In particular, we focus on
the work from [14], which is a neural network based pipeline to the SfM problem. Section
4.4 presents another 2-view method. We decide to leave if for the following sections as it
uses some tools which are only presented in section 4.3.
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4.2.1. DeMoN

DeMoN [14] is one of the first approaches to formulate SfM as a learning problem in the
domain of neural networks. The main contributions of the approach are: (i) propose an
end-to-end differentiable neural architecture to estimate camera pose and depth maps and
(ii) propose a neural network component which can jointly optimize the camera pose and
depth map estimates through iterative application.

This approach has three major limitations: (i) it can only handle the 2-view case, (ii)
it has to regress the ground truth scale and (iii) it does not leverage 3D geometrical
knowledge. Limitation (iii) is given by the use of a neural network in all stages of the
estimation. As such, the authors do not inject any knowledge of the epipolar constraints
in the scene, nor the relationship between optical flow and camera pose. Rather, this
knowledge has to be learnt by the network, which could struggle to generalise. We now
provide some details on the neural artchitecture.

The pipeline is based on 3 main modules: the Boostrap net, the Iterative net and the
Refinement net.

• The Boostrap net consists of 2 consecutive encoder-decoder blocks. The encoder-
decoder blocks are obtained by stacking several convolutional layers. The first block
receives as input an image pair (I1, I2) and outputs an estimate of the optical flow.
The second block uses the optical flow to estimate a depth map as well as the camera
motion and a scale parameter s. The scale parameter is used to match the estimated
depth D with the absolute ground truth scale of the scene. Indeed, the translation
vector t and the depth values are normalised so that the network predicts a unit
norm translation vector. In particular, to fully parametrize R, t and s, 7 parameters
are output from the last layer of a dense feed-forward network - commonly referred
to as Pose Net.

• The Iterative net follows the same architecture of the Boostrap net but is applied
multiple times to optimize the camera pose and depth estimates.

• The Refinement net upscales the depth maps to the higher resolution of 256×192

pixels. Indeed, all computations up to this stage are carried out at a lower resolution
of 64× 48 pixels in order to reduce computational burden.
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Figure 4.2: The architecture of DeMoN. Each network component contains convolutional
encoder-decoder stacks. The camera pose is parametrized by the two vectors r and t.
Adapted from [14].

Figure 4.2 shows an overview of the network architecture. In their work, the authors
notice that forcing the network to produce an intermediate optical flow before the depth
estimation greatly enhances the training procedure. This is achieved by adding a loss term
which accounts for the ground truth supervision on the optical flow. Without this addi-
tional loss term, the network tends to rely on a single image to perform depth estimation,
exactly as monocular estimators.

As for the optical flow, all the final and intermediate estimated objects require ground
truth supervision. Since the supervision is a simple L1 loss between the estimated value
and ground truth value, the network is forced to learn the scale of the scene directly from
the images through s. As previously remarked, this is an ill-posed problem which can
hurt the overall performance of the network. Indeed, as it is not possible to recover the
scale from the images, the network weights could end up overfitting the dataset scale,
reducing the performance on unseen datasets.

The training loss is composed of a total of 7 different loss terms. This is due to the
ground truth supervision of all intermediate estimates, such as the optical flow. Such
losses are required to stabilise the training, but have to be correctly weighted, adding
further complexity to the algorithm. The loss function for a single depth map is:

Ldepth =
∑
i,j

|ξgt(i, j)− sξ(i, j)|

where ξ = 1/D is the estimated inverse depth. As most other methods, the depth esti-
mates are carried out in the inverse depth space. This enables the depth estimation of
points at infinity, for example the sky, which thus has inverse depth equal to 0.
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4.3. Cost volumes and plane sweep

In this section, we detail two important tools to estimate camera pose and depth maps
used in recent methods. The first is the plane sweep algorithm, which can be used to
verify hypotheses or, stated differently, to search for an optimal value. The second is
the cost volume, which is generated by the plane sweep algorithm. Indeed, the plane
sweep algorithm sweeps through different values in a pre-defined range and produces a
cost volume which encodes information on the goodness of a specific value. If the cost
of a value is low, the value is a likely hypothesis, while if the cost is high, the value is
unlikely to be a good solution of the search problem. While this definition is general and
vague, we now contextualize it:

(i) subsection 4.3.1 discusses the general plane sweep algorithm used for depth map
estimation

(ii) subsection 4.3.2 provides more details on the use of cost volumes for depth map
estimation

(iii) subsection 4.3.3 discusses cost volumes applied to camera pose estimation

4.3.1. Plane sweep

The main idea behind plane sweep in the domain of depth map estimation is to find the
most likely depth value for a specific pixel. Since the estimated camera pose is available,
this can be carried out by comparing the position of the pixel in different views. As
detailed in section 2.3.1, a point in the first view is projected along the corresponding
epipolar line in the second view. The position on the epipolar line depends on the depth
of the point. With this information, one can try to recover the most likely depth values.
Such mechanism is now explained in detail.

Let I1 and I2 be two images and R, t be the relative camera pose between them. The
plane sweep algorithm can be carried out in four main steps:

1. choose a pixel x and sample a depth hypothesis d

2. project x from the 2D image I1 to the 3D space point X, assuming it has depth d

3. re-project X on I2 at the point x′

4. compute a cost metric as the incompatibility between the features of I1 in x and the
features of I2 in x′

Figure 4.3 provides a visualization of the projection and re-projection operations.
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Figure 4.3: Points are projected from the reference image to fronto-parallel planes and
re-projected to the target images. Adapted from [9].

By repeating this process for all the pixels in I1 and for S depth samples, one can compute
a cost volume which encodes how likely a specific pixel is to have a specific depth value.
This process yields a cost volume for every couple of images. If the camera pose is known
between more than two images, it is possible to repeat the process keeping I1 fixed and
aggregating the new cost volumes with the already computed ones. The projection and
re-projection operations are encoded by the following equations:

ũ ∼ K [R | t]

[
(K−1u) d

1

]
F̃(u) = F (ũ)

(4.1)

(4.2)

where u and ũ are the homogeneous coordinates of the pixel before and after the warping,
F and F̃ are the feature maps in the original view and the corresponding warped features,
while d is one of the S depth hypotheses.

The same could be carried out considering the image RGB pixel values rather than a
feature map F, but the result would be less robust. Indeed, feature maps can cope
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better with different lighting and other perturbations as they are the output of learnt
convolution filters. Moreover, as they encode semantic knowledge of the image, it makes
sense to match the features rather than the direct RGB values.

Overall, the algorithm has many advantages:

• n-view It can handle the general case of n-view depth map estimation. As long
as the camera poses are coherent and expressed in the same scale, it makes sense
to aggregate several cost volumes to improve the depth map estimate of one spe-
cific image. The recent works that tackle the general n-view case all adopt this
framework, as will be detailed in the coming sections.

• Knowledge injection Since the plane sweep explicitly makes use of the feature
warping operation, the neural network is working on top of geometrical knowledge of
the scene. This is extremely useful as the network does not need to learn to recover
such relationships, which are instead provided directly. Without this knowledge,
the network would have to use a portion of its parameters just to learn the feature
warping operation, which would still be learnt in a statistical framework. Overall,
this increases the ability of the network to generalise in unseen datasets and stabilizes
the training.

• Regularization Once a cost volume is constructed, there are several operations
which can be performed to further improve the quality of the final depth maps.
Such operations are detailed in the next sections.

• Robustness Since the cost volume is constructed by comparing feature maps,
rather than RGB values, the algorithm is more robust to changes in lighting and
other perturbations. On top of this, the n-view setting allows more robustness in
handling occlusions, as an object which is not visible from a camera could become
visible from a different one. In general, aggregating more cost volumes tends to
output better results.

The plane sweep algorithm still has some drawbacks:

• Dynamic objects In presence of dynamic objects, the plane sweep outputs in-
correct cost volumes. This happens due to the feature warping equations. Indeed,
equations 4.2 assume that the scene is rigid and warp all points in the same way.
However, if a dynamic object is captured in the scene, its position differs based on
the image. Hence, when a point x is re-projected to a different view, the corre-
sponding pixel of the dynamic object has moved and the cost volume estimates a
wrong depth.
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• Camera pose coherence A key point is that the camera poses used in equation
4.2 must be coherent. That is, they must have a common scale. This scale can
either be the real scale of the scene or any other scale which keeps the proportions
of the real scene. Performing the plane sweep with non-coherent camera poses will
mix incompatible cost volumes.

Algorithm 4.1 encapsulates all the steps that make up the plane sweep algorithm.

Algorithm 4.1 Plane Sweep
Reference: reference frame
Targets : target frames
Depths ← SampleDepths(S,dmin,dmax)
Fref ← ExtractFeatures(Reference)
for Target in Targets do
Ftar ← ExtractFeatures(Target)
[R|t] ← ComputePose(Reference,Target)
for d in Depths do
F̃tar ← WarpFeatures(Ftar,[R|t],d)
Vcouple(d,Target) ← ComputeCostVolume(Fref ,F̃tar)

end for
V ← AggregateCostVolumes(Vcouple)

end for

4.3.2. Depth cost volume

In this section we provide further details about the main operations performed on cost
volumes. Indeed, while the plane sweep algorithm is performed in the same way across
most works in the literature, cost volumes are treated differently. First, we list the main
steps a cost volume usually goes through:

• Construction: The first step is the construction of the cost volumes. This step
is conducted through the plane sweep algorithm. The construction step outputs a
4D volume V ∈ RH×W×L×S, where S is the number of depth hypotheses and L is
the number of remaining feature channels and depends on the aggregation strategy.
Aggregation is the operation which collects the reference and target feature maps. In
presence of multiple target images, each pair of reference and target images produce
a cost volume Vi which are then condensed in a final cost volume V. V encapsulates
the depth information from all the available views.

• Regularization: Regularization is the process of taking an aggregated 4D cost
volume and transforming it in a 3D probability volume. The regularized cost vol-
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ume V is such that V ∈ [0, 1]H×W×S. For each point x in the image, V(x) is the
distribution of probability over the S depth samples of x having a specific depth.

We now compare the main strategies adopted by relevant works in the literature.

MVSNet

One of the first methods to employ cost volumes for 3D reconstruction is MVSNet [18].
The cost volume construction step is very similar to the general plane sweep algorithm
illustrated in previous sections, hence we do not discuss it further. An overview of the
achitecture is available in figure 4.4.

Figure 4.4: The architecture of MVSNet. The input cost volume before regularization is
4D, which is then reduced to 3D after regularization. Adapted from [18].

The main peculiarities of the work are:

• An aggregation strategy based on a variance metric

• A multi-scale regularization network

• A regression objective for the depth estimation

We now discuss the details of every choice

• Aggregation Cost volume aggregation is carried out by using a variance metric
M that maps multiple feature maps into one cost volume:

M : RH×W×Ch×S × · · · × RH×W×Ch×S︸ ︷︷ ︸
n

→ RH×W×Ch×S
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such that the aggregated 4D cost volume V is:

V =M (F1, · · · ,Fn) =

∑n
i=1

(
Fi − Fi

)2
n

(4.3)

where Fi are the feature volumes warped from source to target view and Fi is the
average feature volume. All the operations carried out are point-wise. By using this
cost metric, the authors measure the multi-view feature difference. Previous meth-
ods such as [4] instead leveraged the mean operation to aggregate feature volumes,
loosing such information.

• Regularization The regularization is carried out by using multi-scale 3D convo-
lutions on the 4D cost volume, regressing an initial depth map which is then refined.
The regularization network is a 3D extension of UNet [11], with an encoder-decoder
structure based on convolutions. Neighboring information is aggregated from a large
receptive field without excessive memory and computation cost. Another strategy
to reduce the computational burden is to reduce the input feature map dimension
from 32-channel to 8-channel after the first 3D convolutional layer. The last convo-
lutional layer outputs a 1-channel volume so that the cost volume is reduced from 4D
to 3D. Finally, softmax is applied along the depth direction to obtain a probability
distribution V(x, d) over depth hypotheses for every pixel x.

• Depth regression Rather than performing classification on the depth hypotheses
using the computed probability distribution, the authors proceed to compute a
weighted regression. The weights are extracted from the probability volume. Indeed,
given the probability distribution over depth hypotheses, the best estimate would
correspond to the argmax operation. However, this would break the differentiability
of the network. Given this observation, the authors prefer instead to compute the
expected value over such distribution:

D(x) =
dmax∑

d=dmin

d V(x, d) (4.4)

where depth d is weighted by the corresponding value of the probability volume
V(x, d). This estimate is pixel-wise, meaning it is repeated for each pixel, and has
the advantage of being a continuous value rather than being a sample from the
discrete uniform distribution of depth hypotheses.

The authors also show that the output probability distribution is a useful tool to gauge
the quality and reliability of the estimates. Indeed, a single-modal distribution is generally
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associated to correct pixel matches, while multi-modal distributions can be used to flag
falsely matched pixels. The last step of the pipeline is to refine depth estimates to improve
estimation, specifically in boundary regions. A residual network takes care of transforming
the initial depth estimate D0(x) into a refined depth Dr(x).

The training loss for a single depth map is defined as:

L =
∑

x∈xval

∥Dgt(x)−D0(x)∥1︸ ︷︷ ︸
Loss 0

+ ∥Dgt(x)−Dr(x)∥1︸ ︷︷ ︸
Loss 1

(4.5)

where xval are the valid pixels (ground truth depth maps are not always complete) and
Dgt(x) the ground truth depth in pixel x. By comparing this loss with the one used
in DeMoN [14] it is possible to notice another advantage provided by the cost volume
architecture. Indeed, this network requires far less supervision signals, while DeMoN
required not only the final depth maps but also intermediate supervision. This approach
is more aligned with the end-to-end training framework which has commonly showed
excellent performance in the majority of deep learning tasks.

While the results improve upon previous methods, some points must be noted.

• The network uses ground truth camera poses as input, hence only performs the
depth estimation task. Having a correct camera pose helps to obtain quality depth
maps both in training and inference.

During training, the authors choose to employ n = 3 views, while other works only use
n = 2 during training.

DPS

Deep Plane Sweep Stereo Net, or DPSNet [6], is a concurrent effort to MVSNet [18].
While the approaches are very similar, [6] proposes:

• A different aggregation strategy based on feature concatenation, rather than com-
puting a cost metric directly on the feature volumes. The resulting volume V is
such that V ∈ RH×W×2Ch×S, with Ch being the dimension of feature channels ex-
tracted for each image. In presence of multiple target images, the cost volumes can
be further aggregated with a simple average operation.

• A cost volume refinement strategy which employs a so called Context Network that
tries to preserve the edges and contours of the image. By feeding both the cost
volume and the original feature maps in a 2D convolutioanl network, authors can
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partially prevent the depth maps from loosing sharpness near edges. Such operation
is carried out using a residual connection and is performed on every slice of the cost
volume, where the slicing is performed along dimension of the S depth planes.

Figure 4.5: An overview of the Context network. Adapted from [6].

During training, the authors only use n = 2 views to reduce the computational load, but
the inference can be carried out with any n. Also in this case, the authors leverage the
ground truth pose to skip the camera pose estimation step.

4.3.3. Pose cost volume

A very interesting proposal by [17] is to expand the cost volume and plane sweep tools
to the camera pose estimation. This can further inject physical world knowledge in the
neural network, with all the benefits previously discussed. The main contributions of this
work are:

• Introduce a cost volume for camera pose estimation

• Connect the pose cost volume and depth cost volume to emulate the traditional
Bundle Adjustment algorithm, iteratively and jointly optimizing camera pose and
depth map
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Figure 4.6: Pose samples centered around the initial rotation matrix and translation
vector. Adapted from [17].

We now discuss each of the contributions separately:

• Pose cost volume As the plane sweep sampled depth hypotheses to generate
the depth cost volumes, pose cost volumes are built by sampling camera positions
centered on an initial camera pose estimate. Let [R|t] be an initial camera pose. To
obtain new rotation matrices, the authors sample a rotation matrix Rhyp uniformly
in the Euler angle space in a predefined range, then use it to perturb the initial
matrix through R∗ = RhypR. To obtain new translation vectors, the authors sample
a translation vector thyp uniformly around (0, 0, 0) and use it to perturb the initial
translation through t∗ = thyp+t. Following this procedure, a group of P new camera
poses [R∗

p|t∗p]Pp=1 around the input camera pose are obtained and can be used for the
construction of camera pose cost volume. As an initial estimate is necessary, the
authors use poses estimated from [14] to initialize the algorithm. The pose cost
volume can be generated by warping the features following a similiar homography
to that of 4.4:

ũ ∼ K
[
R∗

p | t∗p
] [ (K−1u)D

1

]
(4.6)

where D is the initial estimate of the depth map. Figure 4.6 provides a visualization
of the camera pose hypotheses sampling.

• Iterative optimization Since the cost volume construction requires initial esti-
mates of camera pose and depth maps, the network can be applied multiple times
in iterative fashion. By using previous outputs as new inputs, the network can con-
verge to good estimates starting from relatively inaccurate inputs. Moreover, since
the pose cost volume is estimated using the depth maps, this connects the opti-
mization of the pose with that of the depth. Hence, running the network iteratively
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allows for a joint optimization of the two estimates, rather than a disjoint process.

The training of the network is performed in the 2-view setting only, as [6]. In this case,
the authors set as loss function:

L = λrLrotation + λtLtranslation + λdLdepth

with
Ldepth =

∑
i

H (D0,i,Dgt,i) +H (Di,Dgt,i)

where Dgt,i is the ith ground truth depth, D0,i the non refined estimated depth, Di the
refined estimated depth and H being the Huber loss function. The rotation and translation
losses are instead obtained with the usual L1 distance between the ground truth and
estimated values. All values for λ are determined experimentally.

Overall, the proposed framework is very interesting as it further incorporates domain
knowledge in the network, obtaining better generalisation. However, the computational
burden of building two cost volumes through plane sweep are very high. Moreover, several
iterations are needed to reach convergence. This can be traced back to the quality of
the initial camera pose and depth estimates, which are taken from [14]. We previously
argued that such method has some limitations, for example the scale bias and the limited
geometrical knowledge. As a consequence, integrating such estimates in the pipeline
requires a big computational effort to get better measurements. The authors show than
on average, convergence can be reached in about 4 to 6 iterations. We thus strongly
believe that incorporating a better camera pose estimation technique as initialization can
at least reduce computational burden and potentially even improve results.

4.4. Revisiting 2-view deep pose estimation

We now discuss the work from [16], which proposes a novel mixed approach to estimate
camera pose for the 2-view SfM problem. The main contribution of this work is to wisely
balance the use of neural networks and traditional SfM pipeline tools. The proposed
pipeline involves the following steps:

1. Estimate optical flow using a neural network.

2. Retrieve a normalized camera pose from the optical flow using the Essential matrix
E.

3. Use plane sweep in a scale-invariant framework.
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Figure 4.7 provides an overview of the pipeline.

Figure 4.7: An overview of the pipeline. Optical flow is extracted and filtered using SIFT.
Adapted from [16].

We discuss the main contributions of this work:

Optical flow The proposed pipeline leverages neural networks in a task that
they excel at. Since neural networks have a high level of semantic understanding of
images, the neural network optical flow estimators prove to be very effective. To this
end, the authors use DICL [15], which is a state-of-the-art optical flow estimator.
The authors note that SIFT [8] keypoint locations can be used to produce a mask
and discard the noisy point matches from DICL. If a better optical flow estimator
is introduced in the future, it can be easily swapped out and substituted, with no
impact on the pipeline and without needing to retrain the networks.

Essential matrix Once the optical flow is recovered, the authors use the equations
that describe the epipolar geometry to extract the camera pose. The tools described
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in 2.3.1 are used to estimate E and recover the camera pose from it. Since the
translation vector can only be recovered in direction and not in scale, the authors set
∥t∥ = 1. This approach is expected to perform better as it directly uses the epipolar
geometry knowledge, rather than trying to learn it through a neural network. This
is in contrast to [14], which uses a neural network to regress the camera pose from
the optical flow. Learning a relationship through neural network training when it
is already available in a simple equation is unnecessary and can potentially degrade
performance.

Scale invariant module By using a normalized camera pose as input to the
plane sweep, the output depth map D is also normalised. The authors then rescale
the depth map to match the ground truth, thereby obtaining the final depth map
output. Setting α = ∥t∥, αD matches the scale of the ground truth. By using
a normalised camera pose in the plane sweep algorithm, the distribution of depth
hypotheses is not distorted by the scale of t, which instead is fixed to 1. The authors
refer to this as scale invariant depth module.

The proposed algorithm tackles the weakness of previous deep pose estimation algorithms.
In this case, the authors focus on solving a well-posed problem, rather than focusing on
predicting the ground truth scale. There remain two limitations of the method:

• By computing E from the optical flow, the pipeline ceases to be differentiable end-
to-end. Instead, the optical flow estimator has to be trained separately from the
cost volume networks.

• The method is inherently two-view. As the pose extracted from E has unknown
scale and is only pairwise, there is no way to even recover the relative position
between more than two cameras. This is different from [14], which instead recovers
the absolute scale of t.
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In this chapter we provide an overview of the pipeline we propose to extend [16] to the
general n-view case. Section 5.1 discusses the motivations behind our proposal. Section
5.2 illustrates our proposed pipeline, detailing the main steps and algorithmic choices.
Section 5.3 provides specific details on our implementation. Section 5.4 highlights the
main advantages and limitations of our pipeline.

5.1. Motivation

In this section we provide the motivations underlying our proposed pipeline.
Our objective is to expand the pipeline proposed in [16] to the n-view setting. The ad-
vantage of using multiple target images {Itari}n−1

i=1 to estimate the depth map D of the
reference image Iref is that the noise can be decreased and occlusions can be better han-
dled. Indeed, by gathering depth information from multiple target images, bad estimates
coming from a single target image due to variable lighting conditions and object occlusion
are less relevant.

Since [16] uses the Fundamental matrix F, the authors are unable to leverage more than
2-views. Indeed, all scale information between different camera pose estimates [Ri|ti]ni=1

is lost as each translation vector ti is such that ∥ti∥ = 1. This happens because the
Fundamental matrix F is limited to 2-views and cannot provide information on the relative
scale between different camera poses. Such poses cannot be used in the plane sweep
algorithm with n > 2 as they distort the scene geometry. By estimating the camera poses
through the Trifocal tensor T we can instead collect relative scale information between
3 images and recover all the camera poses [Ri|ti]ni=1 in a common scale. This preserves
the original proportions and geometry of the scene, hence it makes sense to use the plane
sweep also with n > 3.

On top of this, we maintain the coupling of neural networks and epipolar constraints.
This provides domain knowledge to the neural network and leads to better camera pose
estimates. We achieve this by using neural networks to estimate the optical flows, which
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provide the point matches used to estimate the Trifocal tensors Ti. Finally, the camera
poses [Ri|ti] are recovered from Ti.

This is advantageous with respect to [17] as we do not require multiple expensive iterations
to refine an initial noisy camera pose estimate.

5.2. Proposed pipeline

We now provide an overview of our pipeline, while the next sections dive deeper on our
specific proposals. The pipeline is composed of three main steps:

1. 3-view point matching We start off by selecting n − 2 triplets which are used
to estimate [Ri|ti]ni=1. For every triplet (Ia, Ib, Ic), we recover 3-view point matches
x↔ x′ ↔ x′′ by estimating the optical flows Oab and Obc between the couples (Ia, Ib)
and (Ib, Ic).

2. Pose estimation Using the 3-view point matches x ↔ x′ ↔ x′′ we estimate the
Trifocal tensor T. The camera poses [Rba|tba] and [Rbc|tbc] are extracted from T.
We then rescale and chain the camera pose estimates obtained in different triplets
to recover the n-view normalised camera poses [Ri|ti]ni=1 with a shared scale.

3. Depth estimation Finally, the plane sweep algorithm is carried out by using the
normalised camera poses [Ri|ti]ni=1. Even though the camera configuration is nor-
malised, it preserves the original geometry of the scene and the plane sweep algo-
rithms outputs a normalised depth map D for the reference frame Iref .

Figure 5.1 provides a summary of the pipeline in the case n = 4.
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Figure 5.1: Our proposed pipeline when n = 4. The pipeline is a sequence of three main
steps: 3-view point matching, pose estimation and depth estimation.

In the following sections we dive deep into the details of the steps.

5.2.1. 3-view point matching

The inputs to this step are a sequence of n ordered cameras (C1, ...,Cn) and the corre-
sponding images (I1, ..., In). The outputs are a set of n−2 overlapping triplets {(Cai ,Cbi ,Cci)}n−2

i=1

and a set of 3-view point matches {{xj ↔ x′
j ↔ x′′

j}
ki
j=1}n−2

i=1 for each triplet, where ki is
the number of matching points in the i-th triplet.

The triplet selection strategy is an important part of our pipeline. We propose two
different strategies that output overlapping triplets. Given two triplets, we consider them
as overlapping when they share 2 out of the 3 cameras. We look for overlapping triplets
as it prevents the relative scale information from going lost. For example, let us consider
two non overlapping triplets (C1,C2,C3) and (C4,C5,C6). The Trifocal tensor will return
four camera poses such that ∥t21∥ = 1,∥t54∥ = 1, ∥t23∥ = λ1 and ∥t56∥ = λ2. The main
problem is that λ1 > λ2 does not always imply that ∥tgt,23∥ > ∥tgt,56∥, where tgt,23 and
tgt,56 are the ground truth translation vectors expressed in absolute scale, for example
meters. Figure 5.2 provides an example of this issue.
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Figure 5.2: Ground truth measurements are in the same scale, i.e. meters. Trifocal tensor
estimates instead are in different scales. Each translation is normalised with respect to the
translation between the first two cameras of the triplet, namely t21 and t54. It does not
make sense to compare their relative scales, for example λ1 > λ2 but ∥tgt,23∥ < ∥tgt,56∥.

This happens because both λ1 and λ2 are expressed in different scales, rather than the
same scale. By choosing two overlapping triplets instead we will estimate the same trans-
lation vector twice and can recover the proportions between such scales.
Once the overlapping triplets are available, we need to find point matches over 3 views.
These will be used in the next step of the pipeline to estimate T. Since the optical flow
can only provide point matches over 2 views, we propose to intersect the point matches
between (Iai , Ibi) and (Ibi , Ici).

The 3-view point matching step of our pipeline can be subdivided in:

1.1 Triplet selection The triplets are selected following one of our proposed triplet
selection strategies, namely (i) the sliding window strategy or (ii) the pivot strategy.
Both strategies provide overlapping triplets. The sliding window strategy slides over
the sequence of cameras (C1, ...,Cn) with a window size of 3 and a stride of 1. The
obtained triplets thus are: {(Ci,Ci+1,Ci+2)}n−2

i=1 . The pivot strategy instead keeps a
two fixed cameras and slides over the rest. For example, one can keep C1 and C2 as
fixed cameras. This generates the triplets {(C1,C2,Ci)}ni=3. While this strategy has
the advantage of already rescaling all camera poses with respect to t21, it requires
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to compute poses between cameras that have a bigger index distance. As the frames
are ordered, computing the camera pose between C2 and C4 (index distance 2) in
general will yield higher errors than when computing the relative pose between C2

and C1 (index distance 1). This holds as there is a wider baseline between the
images, making the task of matching points more complex.

1.2 Optical flows Two optical flows Oai,bi and Obici are computed between the neigh-
bouring couples of cameras (Iai , Ibi) and (Ibi , Ici). This outputs two sets of matching
points {xj ↔ x′

j}
k′ab
j=1 and {x′

l ↔ x′′
l }

k′bc
l=1. As in [16], we use DICL [15], a neural

network trained to output optical flows.

1.3 SIFT filtering SIFT keypoint locations filter the noisy matches {xj ↔ x′
j}

k′ab
j=1

and {x′
l ↔ x′′

l }
k′bc
l=1, reducing the point matches to {xj ↔ x′

j}
kab
j=1 and {x′

l ↔ x′′
l }

kbc
l=1,

where kab < k′
ab and kbc < k′

bc.

1.4 Match intersection To recover the 3-view point matches, the two sets of match-
ing points are intersected. The point match intersection yields the 3-view point
matches {{xj ↔ x′

j ↔ x′′
j}

ki
j=1}n−2

i=1 , where the point match intersection is defined as:

xj ↔ x′
j ∧ x′

l ↔ x′′
l =

{
xj ↔ x′

j ↔ x′′
j if x′

j = x′
l

∅ otherwise

5.2.2. Pose estimation

The inputs to this step are a set of n − 2 overlapping triplets {(Cai ,Cbi ,Cci)}n−2
i=1 and a

set {{xj ↔ x′
j ↔ x′′

j}
ki
j=1}n−2

i=1 of 3-view point matches for each triplet. The outputs are
a sequence of relative camera poses [Ri|ti]ni=1 between the reference frame Iref and the
target frames {Itari}n−1

i=1 .

Given the overlapping triplets {(Cai ,Cbi ,Cci)}n−2
i=1 , we can now estimate the Trifocal tensor

Ti in every triplet. As mentioned in 5.2.1, the camera poses [Ri|ti] extracted from Ti are
expressed in different scale for every i-th triplet. To perform the n-view plane sweep
algorithm however, the camera poses have to share a common scale. If this condition is
not met, the 3D geometry of the scene is distorted. Our proposal is to rescale all camera
poses [Ri|ti] with respect to the scale of t1. This can be achieved thanks to our choice of
overlapping triplets.
Once the camera poses are expressed in the same scale, it is possible to recover the camera
pose between the reference frame Iref and each target frame {Itari}n−1

i=1 . We propose to
achieve this by chaining the neighbouring camera poses.
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The pose estimation step of our pipeline can be subdivided in:

2.1 RANSAC Trifocal tensor The Trifocal tensor is estimated in each triplet from
the 3-view correspondences x ↔ x′ ↔ x′′. We propose to estimate T following the
approach discussed in section 2.4.5. Given a triplet (Ca,Cb,Cc), we estimate two
Fundamental matrices Fab and Fbc with the RANSAC algorithm. The relative scale
of tbc is then computed through the closed form solution of

argmin
λ∈R

N∑
k=1

∥∥∥∥x′′
k ×

(
K

(
RbaXk + λ

tbc
∥tbc∥

))∥∥∥∥2

2.2 Pose scaling Given two overlapping triplets (C1,C2,C3) and (C2,C3,C4) ob-
tained with sliding window strategy, we rescale translation vectors from (C2,C3,C4)

to match the scale of (C1,C2,C3). Let t1,2,323 be the translation between C2 and C3

computed in triplet (C1,C2,C3) and t2,3,432 the translation between C3 and C2 com-
puted in triplet (C2,C3,C4). Since we have estimated the translation vector t23 in
two different triplets, we can match the scale of t2,3,432 to that of t1,2,323 . Indeed,

λ1t
2,3,4
32 ≈ t1,2,332

since
∥t1,2,323 ∥ = λ1

∥t2,3,432 ∥ = 1

Therefore, we can conclude that λ1t
2,3,4
32 and λ1t

2,3,4
34 match the scale of the previous

triplet. Figure 5.3 shows the pose scaling between two triplets.
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Figure 5.3: Two overlapping triplets before and after their scales are matched. Since t23

is estimated twice in different scales, we can match the scale of t2,3,432 to that of t1,2,323 .

As a result, the camera poses [R1,2,3
21 |t

1,2,3
21 ], [R1,2,3

23 |t
1,2,3
23 ], [R2,3,4

34 |λ1t
2,3,4
34 ] share a com-

mon scale that preserves the proportions induced by the real scene. This is achieved
even if the scale does not match the ground truth scale (e.g. meters). The key
is that the proportions of the real 3D scene are preserved without any distor-
tion. We can now drop the triplet notation and refer to the camera poses as
[R21|t21], [R23|t23], [R34|λ1t34].

2.3 Pose chaining The camera poses computed in step 2.2 are a sequence of relative
poses between neighbouring cameras. The plane sweep algorithm requires the cam-
era pose between the reference frame Iref and each target frame {Itari}n−1

i=1 . Let image
I3 be the reference frame. Then, the plane sweep requires [R31|t31], [R32|t32], [R34|λ1t34].
We are thus missing: [R31|t31] and [R32|t32].
We can recover [R32|t32] by inverting the pose [R23|t23], which we already computed.
Similarly, we can also recover [R31|t31]. This can be achieved by chaining available
poses. In this case, we can chain the pose [R32|t32] to [R21|t21]. As before, [R32|t32]
is obtained by inverting [R23|t23]. The inversion and chaining transformations are
defined in section 2.1.1. Figure 5.4 shows the chaining of camera poses from two
different triplets with matching scales.
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Figure 5.4: Neighbouring camera poses are chained to obtain camera pose between refer-
ence and target frames. [R31|t31] is computed by chaining [R32|t32] to [R21|t21].

5.2.3. Depth estimation

The inputs to this step are a sequence of relative camera poses [Ri|ti]ni=1 between the
reference frame and the target frames. The outputs are a depth map D for the reference
frame Iref , obtained by leveraging the n− 1 target images. The depth map is normalised
with respect to the scale of t1.

Since the camera poses [Ri|ti]ni=1 are normalised and now share a common scale, the
proportions of the real 3D scene are preserved without distortion. Hence, the n-view
plane sweep algorithm can be applied to construct the cost volumes Vi and regress the
depth map D.

• Plane sweep Plane sweep is carried out by warping the target feature maps Fi

through:

x̃ ∼ K [Ri | ti]

[
(K−1x) d

1

]
F̃i(x) = Fi (x̃)

where [Ri|ti]ni=1 are our normalised camera poses. The plane sweep algorithm sam-
ples S = 128 depth plane hypotheses.

• Cost volume construction One cost volume Vi is obtained for each couple of
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reference and target images. The features are aggregated following [17], yielding a
4D cost volume such that Vi ∈ RH×W×2Ch×S, where Ch is the channel size of Fi.
As [17], the pairwise cost volumes Vi obtained between each couple of reference and
target image are averaged to produce a single cost volume V, which contains all
depth information collected between the n views.

• Depth map regression The 4D cost volume V is regularized through a series of
convolutional layers to output a 3D cost volume V ∈ RH×W×S. The depth map is
regressed using the probability distribution Vx) following:

D(x) =
S∑

s=1

ds V(x, ds)

5.3. Implementation details

We train our network on the KITTI Depth training dataset. The training is carried out
for only 6 epochs as it is very time consuming. [16] performs 10 epochs on the same
dataset, which takes 40 hours on 8 NVIDIA V100 GPU cards. We instead perform the
training on a single NVIDIA A100 GPU. We use PyTorch with mixed precision training
to lower the computational burden. We crop the images to the size H = 256,W = 768

and set a batch size of 4. During training, we use n = 3 images. The initial learning rate
is set to 0.0005 and dropped by half at 3 and 8 epochs. The convolutional networks that
perform feature extraction, cost volume construction and depth map regression follow the
same architecture as [6][16][17].

5.4. Discussion

We provide a comparison between our method and previous ones, discussing its strenghts
and weaknesses.

1. Trifocal tensor and Fundamental matrix Compared to [16], our method has the
advantage of handling the n-view case. As the authors make use of the Fundamental
matrix F to estimate the camera pose, it simply is not possible to recover the relative
scales between cameras from different couples. The only thing that [16] can do is
normalise the scale. However, if they proceed to use the plane sweep with n > 2, the
geometry of the scene would be distorted, as it would not respect the proportions
between the ground truth camera poses.

2. Point correspondences To estimate the Trifocal tensor T, our method requires
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correspondences over three views. As we use the optical flow to match points, we
are left with two sets of corresponding points for every triplet. By intersecting this
set however we decrease the number of available point correspondences. In some
situations, where the available matches are already scarce, this could lead to worse
pose estimates.

3. Computational Cost While [17] requires multiple iterations to recover and specif-
ically to refine the initial pose, our method focuses on providing a precise pose
without the need of further expensive computations. Since handling 4D cost vol-
umes is expensive both in terms of memory and computation, we can reasonably
expect the camera pose estimation step to be more light-weight with respect to [17].

4. Well-posedness By estimating normalised depths rather than real-scale depth
maps, our method does not need to estimate the ground truth scale. This means
that we are solving a well-posed problem, rather than an ill-posed one. Therefore,
we can expect our network to be less biased by the dataset scale, as it is not forced
to learn it.
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6| Experimental Evaluation

In this chapter we illustrate the experiments to validate the performance of our proposed
pipeline. Section 6.1 provides some details on the general setting of our pipeline. Section
6.2 first illustrates the KITTI Depth and ETH3D datasets as well as the metrics used to
measure the performance of our proposed SfM pipeline, then reports our main results and
findings. Section 6.3 provides some additional experiments on the Herz-Jesu and Fountain
datasets to compare the implemented Trifocal tensor estimation algorithms and motivate
on our choice.

6.1. General setting

As the KITTI Depth dataset consists of frames from a video sequence, we have some
freedom on the choice of target frames used to predict the reference frame. In particular,
we consider two main configurations: (i) a frame buffer configuration and (ii) a centered
configuration. To predict the depth map of reference image Ii, the n-view frame buffer
strategy select frames Ii−1, ..., Ii−n+1. The centered strategy instead samples the frames
around Ii, providing the frames Ii−n

2
, ..., Ii+n

2
−1. Notice that this step is independent

from the triplet choice strategy, which acts on the selected target frames with the sliding
window. In general, unless specified differently, we will use the centered configuration.
As the distance between the reference frame and last target frame is of n

2
frames, rather

than n as happens in the frame buffer configuration, we can expect this to help during
the plane sweep algorithm.

Following the experiments detailed in section 6.3, our proposed pipeline estimates the
Trifocal tensor through the Fundamental-T routine. This is the algorithm described in
section 2.4.5. Given triplet (Ca,Cb,Cc), we estimate Fba and Fbc using the RANSAC
algorithm. Then, we use the 3-view correspondences {xj ↔ x′

j ↔ x′′
j} to recover the

correct relative scale between tba and tbc.

Unless stated differently, the camera pose is always estimated through this algorithm. In
some cases, which we denote as Oracle pose, the ground-truth camera pose is used instead.
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This can be useful to understand the upper bound on the performance of our pipeline.

6.2. Proposed pipeline

We now illustrate our main results on the KITTI Depth and ETH3D datasets. Section
6.2.1 defines the main metrics, 6.2.2 discusses the KITTI Depth and ETH3D datasets,
while sections 6.2.3 and onwards provide experimental evalutaion of the proposed pipeline.

6.2.1. Metrics

The main metrics used to evaluate a depth map D with respect to the ground truth
depth map Dgt are the Absolute relative difference, the Squared relative difference and the
RMSE. They can be computed as:

Absolute rel. diff. =
1

n

n∑
i=1

∥Di −Di,gt∥1/Di,gt

Square rel. diff. =
1

n

n∑
i=1

∥Di −Di,gt∥22/Di,gt

RMSE =

√√√√ 1

n

n∑
i=1

∥Di −Di,gt∥22

RMSElog =

√√√√ 1

n

n∑
i=1

∥log(Di)− log(Di,gt)∥22

Additionally, the αi metric can be used to evaluate the performance at different levels
of precision. This is commonly defined as the percentage of elements in D which are
sufficiently near to Dgt:

αi = % of D s.t. max

(
D

Dgt

,
Dgt

D

)
< δi

Three levels of precision widely adopted, each with its threshold, are:

• High precision: δ1 = 1.25

• Medium precision: δ2 = 1.252

• Coarse precision: δ3 = 1.253
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6.2.2. Datasets

We now provide an overview of the datasets on which we run the experimental evaluation
of our proposed pipeline. As we are mainly comparing our pipeline to [16] and [17], we
use the same datasets. In particular, we run our experiments on KITTI Depth [2] and
ETH3D [13]. The results from [16] and [17] are taken directly from their work and we do
not re-run their pipelines.

KITTI Depth

The KITTI Depth dataset is mainly designed to evaluate the performance of monocular
depth estimation algorithms in self-driving cars. A popular benchmark used as test set
is the Eigen split, which consists of 697 individual frames. By extracting neighbouring
frames, one can use this benchmark to test SfM algorithms with any number of views.
For example, [16] uses paired nearby frames to compute pose and depth. As the dataset
is collected on public roads, it contains lots of dynamic objects such as cars, buses and
pedestrians. In some sequences, the camera is nearly static, for example when stopping at
a red light. As these scenarios break the main assumptions of SfM, [16] proposed a subset
of the Eigen split, namely the Eigen SfM split. This split contains 256 frames filtered from
the original 697 such that no large dynamic objects are present and all frames contain
at least a displacement in the camera of 0.5 meters. The raw images have a variable
resolution but are generally resized to a fixed resolution of H = 256 W = 512 during
training while H = 370 W = 1240 during evaluation.

As can be seen in figure 6.1 the difference between images from the KITTI Eigen split
and KITTI Eigen SfM split is important. Indeed, figure 6.1b contains multiple dynamic
objects that perturb the plane sweep, while figure 6.1a is a static scene.
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(a) A frame of a static scene from KITTI Depth Eigen SfM split. All cars are parked and still.

(b) A frame of a dynamic scene from KITTI Depth Eigen split. Cars, buses and pedestrians are
moving.

Figure 6.1: Comparsion between static and dynamic scenes in KITTI Depth dataset.

Figure 6.1a instead is static hence it verifies the main assumptions of SfM algorithms.

An important characteristic of the dataset is the baseline between consecutive frames. The
baseline is the distance ∥tab∥ between the two cameras Ca and Cb that took the images Ia
and Ib. Figure 6.2 shows that the baseline in the KITTI Depth dataset is generally quite
small. Such conditions are optimal for neural network based optical flow estimators.

Figure 6.2: Two consecutive frames from KITTI Depth dataset

Overall, the KITTI Depth dataset has some recurring patterns in the scene: the depth
tends to increase following the road, the horizon and deepest points are always in the top
of the image, and nearby objects tend to be at the right and left borders of the image.
This geometry can be different from other datasets and could potentially bias the neural
network.
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ETH3D

The ETH3D dataset contains both indoor and outdoor scenes collected with the aid of
very accurate laser measurements. As such, the 3D groundtruth points are reliable and
account for a solid benchmark. While the original dataset provides 3D point clouds of
different scenes, it is possible to obtain depth maps from the 3D point clouds by projecting
the 3D points on the provided camera planes. We use the splits made available from [5],
which contain a total of 454 frames over 13 different scenes. The images are provided
in high resolution but we follow previous works and downsize them to a fixed H = 540

W = 810 pixels.

Figure 6.3 shows two sample frames taken from the Courtyard and Delivery Area se-
quences of ETH3D. In this case, the geometry of the scene has greater variability with
respect to KITTI Depth.

(a) Delivery Area (b) Courtyard

Figure 6.3: A comparison between different sequences from ETH3D.

While the scene is static, the baseline between cameras is bigger than what can be observed
in KITTI. This is clear from figure 6.4 which shows two consecutive frames from the
same sequence from ETH3D dataset. This can be a challenge to the deep optical flow
computation as it works best in regimes with smaller baseline.
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Figure 6.4: Two consecutive frames from the Courtyard sequence of ETH3D dataset

6.2.3. KITTI Depth

We report the results obtained on the two KITTI Depth splits, starting off with the KITTI
Depth Eigen split and subsequently focusing on the KITTI Depth Eigen SfM split. For
both splits, we set dmin = 1.0 and choose S = 128 depth samples. As the depth hypothesis
samples are obtained through dl =

Sdmin

l
∀ l ∈ {1, 2, ..., S}, the depth hypothesis range

is [1, 128]. Note that the depth hypotheses are expressed with respect to the normalised
camera pose.

KITTI Depth - Eigen split

Pipeline
lower is better higher is better

Abs Rel Sq Rel RMSE RMSElog α1 α2 α3

2-ViewRevisited [16] 0.055 0.224 2.273 0.091 0.956 0.984 0.993
Ours, n = 3 0.056 0.261 2.264 0.095 0.951 0.983 0.992
Ours, n = 4 0.090 0.419 2.670 0.128 0.899 0.968 0.987

Table 6.1: Results on KITTI Depth Eigen split.

We run our pipeline with different configurations of n. The numerical results of table 6.1
show very similiar performance to previous work [16] when n = 3 and a worse performance
when n > 3. To better understand the obtained results, we now report some samples of
estimated depth maps. Through a visual inspection, it is possible to notice two main
patterns: (i) depth map estimates in static regions of scene seem to improve when n > 2

and (ii) dynamic objects seem to increasingly perturb the depth map estimates when
n > 2.
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Figure 6.5 shows the estimated depth map of a static scene when using different values
of n. Some interesting details can be observed. First, the depth maps obtained with
n = 3 contain much less noise with respect to frames obtained with n = 2. The noise in
the depth map can be observed from the irregular patterns that emerge in neighbouring
pixels. While such pixels should have almost identical estimated depth, there tends to be
too much variability in the estimated values. Similarly to noise, one can also observe the
presence of depth artefacts. In this case, figure 6.5a displays inconsistent depth in the top
left corner and the grey railing presents artefacts. Both the noise and artefact issues can
be traced back to the 2-view setting and tend to disappear with increasing n.
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(a) Depth map obtained with 2 frames

(b) Depth map obtained with 3 frames

(c) Reference image

Figure 6.5: Depth maps obtained with n = 2, n = 3 and the original image. In the depth
maps, dark color represents low depth, i.e. low distance between camera and object,
brighter colors imply higher depth. The noise present when n = 2 is strongly reduced
setting n = 3. The grey railing and bushes have better depth estimates and contours
when n = 3.

While increasing n yields multiple benefits in static scenes, dynamic scenes display the
opposite behaviour. A clear example of this can be observed in figure 6.6.
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(a) Depth map obtained with 2 frames

(b) Depth map obtained with 3 frames

(c) Difference between depth maps

Figure 6.6: Depth maps obtained with n = 2, n = 3 and their difference. Dynamic objects
estimated with n = 3 show significant artefacts. The reverse happens for static objects.

This happens mainly due to a bad cost volume construction. Indeed, when building the
cost volumes through plane sweep, points are not matched correctly. As the warping
accounts for the camera motion but not for the specific motion of each object, points
belonging to a dynamic object are not transferred correctly from the reference image to
the target images. In this case, the front of the truck is moving in opposite direction to
that of the camera. The points near the boundary of the truck are incorrectly matched.
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This effect worsens with the number of views and produces a characteristic blur which
becomes especially clear on the boundaries of the dynamic object.

KITTI Depth - Eigen SfM split

We proceed to test our proposed pipeline on the KITTI Depth Eigen SfM split. As this
split is designed to only select sequences that respect the main SfM assumptions, we can
expect our pipeline to achieve better performance compared to the Eigen split. The results
obtained in table 6.2 show a very good performance of our proposed pipeline, which is
capable of improving by around 18% to 47% over [16] when setting n = 3. Given the
promising performance, we test up to a total of n =? views. Figure ?? shows the results
obtained with respect to the number of views n.

Pipeline
lower is better higher is better

Abs Rel Sq Rel RMSE RMSElog α1 α2 α3

2-ViewRevisited [16] 0.034 0.103 1.919 0.057 0.989 0.998 0.999
Ours, n = 3 0.027 0.071 1.617 0.048 0.992 0.998 0.999
Ours, n = 4 0.028 0.070 1.599 0.049 0.992 0.998 0.999
Ours, n = 5 0.031 0.073 1.593 0.052 0.991 0.998 0.999

Table 6.2: Results on the KITTI Depth Eigen SfM split. Increasing n yields benefits
ranging from 18% to 47 %.

While the results show an average improvement of the metrics, applications of this tech-
nology also require the pipelines to be reliable. For example, a pipeline which achieves
better results on average but completely blunders in certain situations can be dangerous
in certain situations. We provide a brief analysis of the performance of our pipeline at
different levels. Figure 6.7 displays the Absolute Relative error for each frame, sorted
in ascending order by value. We can see that the performance of our proposed pipeline
improves across the whole spectrum of errors.
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Pipeline Quantile (Abs Rel Error)
0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

2-View
Revisited [16] 0.023 0.024 0.026 0.028 0.030 0.032 0.037 0.045 0.072

Ours, n = 3 0.019 0.021 0.022 0.023 0.025 0.026 0.029 0.033 0.050

Table 6.3: Quantiles of the Absolute Relative Error. Our pipeline improves over [16] at
all quantiles considered.

Figure 6.7: A comparison between the sorted Absolute Relative errors obtained on the
KITTI Depth Eigen SfM split dataset. The 3-view pipeline consistently provides better
and more reliable depth estimates compared to the 2-view pipeline [16].

Both the best and worse case scenarios improve when adding more views, providing a
more reliable pipeline. A rather extreme case of improvement can be observed in figure
6.8. Here, the 2-view camera pose estimate is imprecise due to low displacement between
the frames and negatively affects the depth map estimate. By choosing n = 3, the camera
pose estimates are less affected by the reduced motion and the cost volume averaging
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reduces the relevance of wrong estimates.

(a) Depth map obtained with 2 frames

(b) Depth map obtained with 3 frames

Figure 6.8: A comparison between depth maps for the same frame obtained with n = 2

and n = 3. The frame is an extreme case of bad camera pose estimates damaging depth
estimation.

6.2.4. ETH3D

In this section we provide the numerical results obtained by testing our pipeline on the
ETH3D dataset. While [17] and others train their pipeline on the DeMoN datasets,
which are similar to ETH3D, we do not perform any other training and use the same
pipeline trained on KITTI Depth. This represents a notable handicap for our pipeline
when compared to the other works in the literature as both the optical flow and depth
network are not fine tuned to handle indoor scenes and wider camera baselines. Indeed,
the training of [16] on DeMoN datasets has a duration of 85 hours on eight parallel GPUs.
On our hardware, this would roughly translate to more than three weeks of continuous
training.
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Camera
pose

Pipeline
lower is better higher is better

Abs Rel Sq Rel RMSE RMSElog α1 α2 α3

2-View
Revisited [16]

0.210 0.601 1.869 0.282 0.708 0.876 0.940

Oracle Ours-3 0.190 0.519 1.763 0.251 0.739 0.901 0.956
Ours-4 0.196 0.537 1.810 0.259 0.722 0.894 0.953

2-View
Revisited [16]

0.456 2.702 4.055 0.508 0.374 0.645 0.812

Estimated Ours-3 0.277 1.078 2.466 0.339 0.590 0.824 0.922
Ours-4 0.290 1.156 2.611 0.353 0.554 0.811 0.917

COLMAP [12] 0.324 / 2.370 0.349 0.865 0.903 0.927
Estimated DeMoN [14] 0.191 0.365 1.059 0.240 0.733 0.898 0.951

DeepSfM [17] 0.127 0.278 1.003 0.195 0.841 0.938 0.969

Table 6.4: Results on ETH3D sequences. Increasing n yields benefits, especially when the
camera pose is noisy. Our pipeline is not fine-tuned for this dataset and performs worse
with respect to other fine-tuned pipelines.

From table 6.4 we can see that increasing n has an important effect on the performance
of our pipeline. The effect seems particularly strong when the camera pose estimates are
noisy. In such case, our pipeline provides an improvement which ranges from 49% to
150%. When using the ground-truth camera poses instead, the improvement of n > 3

views over the 2-view pipeline from [16] is reduced to a smaller 6% to 15%. Of course, as
our pipeline has not been explicitly fine-tuned on the DeMoN datasets, it would be best
to run these experiments with the fine-tuned pipeline and check that the obtained results
still hold.

6.2.5. Detecting pose drift

In the majority of our experiments, our proposed pipeline definitely improves over [16]
when n = 3, then provides minor improvement until around n = 4 and n = 5. Beyond
this, the pipeline starts to struggle significantly and produces worse results. We believe
that this can happen for two reasons, namely (i) there is a pose drift during the pose
chaining or (ii) the cost volumes produced by target frames with big distance from the
reference frame damage the pipeline.
The first issue could be caused by errors in the pose estimation accumulating through the
chain, while the second could be due to the neural network being trained only in a small
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range of camera poses. We show that (ii) is the most likely issue by running the same
experiments with the ground truth pose. Figure 6.9 compares the trend of the Absolute
relative error with respect to n on the KITTI Depth Eigen SfM split. As the error has
the same trend with respect to n both using ground truth camera poses and estimated
camera poses, we can conclude that pose drift is not the cause of this problem.

Figure 6.9: A comparison of the Absolute Relative error between the estimated pose and
the ground truth pose, when using different n. Both show the same trend, meaning that
pose drift is not the cause of worse performance when n ≥ 5.

6.3. Trifocal tensor estimation

In this section we compare different algorithms to estimate the Trifocal tensor. We are
mainly interested in the performance of the algorithms with respect to 3 main metrics:
angular error of R, angular error of t and error on the norm of t.
Let [R, t] and [Rgt, tgt] respecitvely be the estimated and ground truth camera pose. We
define the metrics as:
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• Angular error on rotation: α = arccos(
tr(R−1

gt R)−1

2
)

• Angular error on translation: β = arccos( t·tgt
∥t∥∥tgt∥)

• Scale error: max(∥tgt∥∥t∥ , ∥t∥
∥tgt∥)− 1

The main implementations we test are:

• Linear-T: a linear estimate as described in section 2.4.3

• Gold-T: an estimate using the Gold Standard as described in section 2.4.4.

• RANSAC-F: estimate obtained from two Fundamental matrices as described in sec-
tion 2.4.5. The Fundamental matrices are estimated through RANSAC.

• RANSAC-T: RANSAC algorithm performed with Linear-T and Gold-T as described
in section 2.6. Linear-T provides the initialization of T.

We carry out the experiments on the two datasets provided by [7], namely Herz-Jesu and
Fountain. As can be seen in the example frames of figure 6.10 and 6.11, the baseline be-
tween images is enough to prevent degenerate configurations which could lead to collinear
cameras. While the scenes are static, potentially reducing the benefits of RANSAC, the
point matches provided contain some noise which can perturb the Trifocal tensor estimates
obtained without RANSAC.

Figure 6.10: Two frames from Fountain dataset
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Figure 6.11: Two frames from Herz-Jesu dataset

The results obtained in table 6.5 show that algorithms using RANSAC match or outper-
form the ones without it. While the number of inliers is very high, indicating that the
matches are very accurate, the performance of Fundamental-T is very good and can be
attributed to better performance of the estimation of the two fundamental matrices F.
Indeed, we obtain the estimates of F using an implementation provided by [16], which has
been optimized for the task with more complex algorithms and supports parallel CUDA
computation to perform more computations in the same amount of time. For this reason,
the algorithms employing this routine turned out to be significantly faster than the others.

Dataset Algorithm R error (◦) t rot error (◦) t scale error

Fountain

Linear-T 0.128 0.477 0.004
Gold-T 0.122 0.498 0.004
RANSAC-T 0.117 0.463 0.003
RANSAC-F 0.081 0.190 0.003

Herz-Jesu

Linear-T 0.436 0.741 0.009
Gold-T 0.381 0.618 0.008
RANSAC-T 0.352 0.581 0.008
RANSAC-F 0.246 0.429 0.008

Table 6.5: Pose estimation results by estimating the Trifocal tensor on Fountain and
Herz-Jesu datasets.
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7| Conclusions and Future work

We now summarize important findings from this work and explore potential research
directions.

7.1. Developed pipeline

We started the present work by introducing the general problem of Structure-from-
Motion, focusing on the applications of supervised deep learning algorithms inside the
SfM pipeline. We then reviewed the recent state-of-the-art work in the literature, detail-
ing the current limitations. In particular, we highlighted that the majority of deep SfM
pipelines tackling the n-view case of SfM make limited or inefficient use of well know 3D
geometrical constraints and try to solve the ill-posed problem of recovering the real scale
of the scene. We then introduced our pipeline with the aim of solving such issues. We
achieved this by leveraging the Trifocal tensor to obtain camera pose estimates in triplets
of cameras and by proposing a pose chaining algorithm which recovers the configuration
of all the n cameras. Overall, the proposed pipeline strikes a balance between the use of
neural networks during the optical flow estimation and cost volume construction together
with the use of 3D geometrical constraints.

We then provided experimental evaluation of the pipeline on the KITTI Depth and
ETH3D datasets. We showed that using higher values of n in presence of dynamic objects
can lead to worse depth map estimates. We argue that this can be traced back to the
cost volume construction, which only accounts for the movement between cameras while
it disregards the motion of the single objects.
When the assumptions of the SfM problem hold and the scene is static, we showed signif-
icant improvements over 2-view state-of-the-art pipelines. In particular, the performance
of our pipeline on the KITTI Eigen SfM split displays improved performance when setting
n ≥ 3. The improvements on the main metrics range from 18% to 47%. Together with
quantitative measurements, we provide qualitative assessments of the output depth maps,
showing reduced noise and depth artefacts. On top of this, we note that the proposed
pipeline is more stable and less sensitive to adverse situations such as reduced camera
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motion, improving on relevant metrics throughout all the sprectrum of quantiles.
Our tests on ETH3D provide promising results. While our pipeline was not fine-tuned
for this dataset, we show that using more views has a strong positive effect, especially
when the camera pose estimate is noisy. We also argue that the computational cost of
our pipeline is reduced with respect to that of other state-of-the-art pipelines, a desirable
feature especially considering potential applications of the technology.

7.2. Future work

In this section we discuss some research directions which we believe could provide further
improvements to the algorithms.

As we have reported the negative effect of dynamic objects on the plane sweep algorithm,
we believe that an improved version of this algorithm could be proposed. In particular,
when projecting the pixels from the reference frame to each target frame, one could
account for the motion of each object. Of course, this would require to segment the
scene in two different categories, namely dynamic and static objects. For each dynamic
object, assuming it is rigid, one should estimate its motion between reference and target
frames. Overall, this should prevent dynamic objects from degrading the depth estimates,
especially near their boundaries.

Another useful improvement could be to provide loop constraints on the camera poses.
Indeed, by estimating the camera poses in such a way to obtain a cyclic graph, some
optimization can be carried out to reduce pose drift for higher values of n. By adding
further constraint on the camera poses, this could improve their consistency and reduce
the depth map estimate errors.

Finally, it would be interesting to adopt more advanced strategies when aggregating cost
volumes from different views. While we just take an average of the single cost volumes,
advanced strategies could leverage criteria based on overlap, distance between the cameras
and other features.
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