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1. Introduction

During the last years, wireless networks gained
increasing importance in humans life, becom-
ing leading actors in many scenarios, especially
thanks to their �exibility. Consider for example
the incredible spread of the Internet of Things
devices. In the consumer space several commer-
cially successful wireless network protocols exist,
which are usually targeted to either high perfor-
mance or low power networks, such as WiFi or
ZigBee. The mentioned technologies though are
not suitable for real-time applications, in which
guarantees on the expected latency bounds are
required. Low power protocols based on the
IEEE 802.15.4e [1] standard exist too. Neverthe-
less, to the best of the author's knowledge, none
of the protocols built on top of the mentioned
standard combines support to multi-hop net-
work topologies with bounded latency. An ex-
ample is LLDN [2], which provides latency guar-
antees but is limited to single-hop star topolo-
gies. Moreover, the packets delivery guarantees
that some of these technologies provide are not
compatible with the need for deterministic and
predictable latency in real-time applications.
In this context, TDMH1 (Time Deterministic
Multi-Hop) [3] presents itself as a wireless com-

1https://github.com/fedetft/tdmh

munication stack that supports multi-hop mesh
networks and provides low power medium ac-
cess control (MAC). The TDMH protocol is
organized in tiles, which in turn are divided
into time slots. The �rst fraction of each tile
is assigned either to the uplink or the down-
link phase, while the remaining time slots are
allocated to the data phase. The network
topology is collected during the uplink phase,
through the neighbors tables that each node
transmits. Topology collection makes TDMH
able to adapt to changes in the topology itself.
Low power is achieved through time synchro-
nization among all the network nodes, employ-
ing the FLOPSYNC-2 [5] algorithm, which en-
ables the nodes to access the physical transmis-
sion medium only when required, in a TDMA
(Time Deterministic Multiple Access) fashion,
avoiding access contention and random expo-
nential backo� [6]. The TDMH session layer
provides to applications the streams abstraction
to establish communication among two network
nodes. Each stream is a data �ow associated to
a period, which is always guaranteed. At each
period, a single data unit, called packet, can
�ow through a stream, which thus holds a single
packet bu�er. Reliability is achieved through re-
dundant packets transmissions, which can also
follow di�erent paths across the network, that
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do not rely on packet queues or acknowledg-
ments. The network coordination relies on a
centralized streams routing and scheduling al-
gorithm, executed on the master node. Schedul-
ing takes place every time the network topology
changes and is necessary for the TDMA medium
access. Schedules are �ooded to all the nodes in
the network during the downlink phase. Dur-
ing the data phase, the schedule is reproduced
managing transmissions and receptions. The de-
scribed features make TDMH suitable for real-
time wireless applications, running on battery-
powered devices and targeting industrial control
use cases. In such applications. guarantees on
the expected latency bounds for all the packets
�owing through the network is crucial. In the
following, the author's contribution is presented,
including the strategies implemented to enforce
guarantees on the latency bounds, not only at
the physical layer but also up to the application
one, together with their validation in a feedback
control loop scenario.

2. Problem Statement

As mentioned, TDMH targets real-time process-
ing, which fails if tasks are not completed within
a speci�ed deadline. In a network, latency mea-
sures the time it takes for some data to get from
its source to its destination across the network.
Thus, for real-time tasks, low latency is desir-
able, but a consistent and bounded latency is
usually more important.
Being TDMH a TDMA network protocol, each
time slot is dedicated to the transmission of spe-
ci�c streams. Despite the usage simplicity of the
current streams API, which is based on the two
read and write primitives, it leaves to the appli-
cation the task of synchronizing the data pack-
ets generation and transmission request with the
actual transmission slot. If the application un-
conditionally generates data packets one after
the other, the session layer bu�er may remain
occupied while a new packet is produced. Since
TDMH always complies with streams' periods,
successive transmissions are delayed in the fu-
ture (i.e. to the next stream period), increasing
packets latency. After very few iterations the
latency converges to a value that is as high as
two times the stream period, as shown in Fig. 1.
Right now latency is a multiple of the stream pe-
riod, which should only represent the worst-case
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Figure 1: Undesired behavior in which write op-
erations wi are delayed by two periods. pi rep-
resent ready for transmission packets and ti the
transmission slots, with period P .

maximum latency. Latency itself should only de-
pend on the active schedule and the stream re-
dundancy level. Redundancy directly a�ects the
number of time slots needed to deliver a packet.
As a consequence, each stream latency has to
be, not only measurable but also predictable by
knowing the current schedule.

3. Proposed Solution

Two distinct, but interoperable, APIs to inter-
face the application code with the underlying
network stack layers are discussed and imple-
mented. Some updates to existing TDMH mod-
ules have also been necessary.

3.1. Callbacks API

The �rst presented new API relies on a callback
functions mechanism. After opening a stream,
the application can specify two functions, ad-
dressed as send and receive callbacks. In order
to retrieve the data to be sent from the appli-
cation, the send callback is executed before the
�rst redundant transmission of each packet. On
the contrary, the receive callback is called after
a packet is received (or missed) R times, where
R is the redundancy level required by the men-
tioned stream. Indeed, if some data is received,
it is delivered to the application only after the
R redundant receptions (or misses) have com-
pleted. To allocate time for callbacks execu-
tion, their computation time (Tcallback) has to
be taken into account when computing the du-
ration of each single TDMH slot. Tcallback is a
single �xed value that the user can specify in the
network con�guration. The described API ex-
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ploits the existence in TDMH of the data phase
module, which is already in charge of managing
transmissions and receptions from the opened
streams at the correct time and slot. In this
way, callbacks are executed in the same thread of
the MAC, which has the highest possible prior-
ity. The drawback is that these functions imple-
mentation may a�ect the entire network stack.
Moreover, the user has to provide a reasonable
estimation of the callbacks execution time.

3.2. Write/Wait API

Although having a very low overhead, the call-
backs API makes the network slot size depen-
dent on the callbacks execution time. It is suit-
able for deeply embedded applications where the
callbacks carry out simple operations, but is not
�exible enough for more general computation.
The second proposed API extends the exist-
ing one by adding the wait and wakeup prim-
itives, which are intended for streams that have
to transmit data. The write and read prim-
itives remain available. The application code
can specify a time advance value, based on the
worst-case execution time, when opening a new
stream and should put itself into a waiting state
on the transmitting stream. The session layer
internally manages the wake-up of the stream
and, consequently, of the application, accord-
ing to the speci�ed time advance with respect
to the assigned transmission slot. After waking
up, the application can proceed to produce new
data and to use the write primitive to trigger
a transmission. The algorithm relies on an or-
dered list containing the wake-up time of all the
streams that use the write/wait API. This data
structure is computed at the end of the schedule
distribution. At each schedule repetition, the
algorithm traverses the mentioned list, waking
up streams according to their speci�c time ad-
vance. The list also contains the end time of all
the downlink slots in the schedule, since in cor-
respondence of these slots it is needed to check
if a newer schedule has been received. If it is the
case, the algorithm enters a state in which both
the current data structure and the one related
to the newer schedule are compared when taking
the next stream to be woken up. This is needed
because streams may specify a time advance that
makes their wake-up time belong to the previous
tile with respect to the transmission one. Thus,

the two lists may contain elements with over-
lapped wake-up times. One tile is the maximum
allowed wake-up advance, thus it is required to
receive schedules at least one tile before their
own activation. When the new schedule activa-
tion time is reached, the older list is discarded
and replaced by the newer one. Through the
possibility of specifying a time advance, if cor-
rectly sized, the algorithm guarantees to the ap-
plication to always �nd the session layer bu�er
empty when calling the write primitive. There-
fore, the new packet transmission can take place
in the �rst scheduled stream slot, without fur-
ther delays. The described algorithm is imple-
mented in a separate thread with respect to the
TDMH MAC, due to implementation simpli�-
cations, and with lower priority. Moreover, the
application may require some computation for
generating a new packet, for which no additional
and dedicated time is added to the slot duration,
as it happens for the callback functions, which
are also executed in the highest priority thread.
For these reasons, the achieved latency jitter is
in general lower when using the �rst API.
The two APIs behavior is exempli�ed in Fig. 2.

Downlink
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Downlink
phase 

Packet
transmission

S1 
wakeup

TS1,advance

S1

S2 send
callback 

S2

Tcallback

S2

S2 receive
callbak 

New schedule
received? Tslot

Sender node

Receiver node

Figure 2: Example of tile composed by 8 slots.
The downlink phase occupies 2 of them. Stream
S1 uses the write/wait API, while stream S2
uses the callbacks one, with no redundancy.

3.3. Data Phase

In the current data phase implementation, on
the reception side, the received data is deliv-
ered to the application after all the redundant
packet receptions (or misses) have been com-
pleted. When the last redundant packet is
missed though, if some data was received dur-
ing the previous transmissions, it is immediately
delivered to the application, leading latency to
�uctuate. To overcome this problem, the data
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phase has to treat each packet as a maximum
size one, whose transmission time is Ttx,max.
The maximum packet size is limited by TDMH
itself, so Ttx,max is an upper bound of any real
packet transmission time. The received data (if
any) will always be delivered to the application
only Ttx,max after the last redundant slot start
time. This mechanism slightly increases the end-
to-end latency but avoids it to assume di�erent
values according to whether the last redundant
packet is received or missed.

3.4. Schedule Expansion

At the end of the schedule distribution phase,
the schedule expansion process takes place. It is
needed to move from an implicit schedule form,
that is �ooded through the network, to an ex-
plicit one, in which every schedule element is
associated to an action (e.g. transmission or
reception). The expansion mechanism was up-
dated to compute the data structures required
by the write/wait API. Indeed, during the ex-
pansion, all the information about streams and
their o�set inside the schedule (and so their re-
quired wake-up time) is known. Since this pro-
cess can become relatively long when the number
of streams increases, it was also modi�ed in or-
der to be possible to split its execution over mul-
tiple downlink slots. During the schedule distri-
bution, the master node computes the required
number of downlink slots, also accounting for
the fact that the write/wait API requires new
schedules to be received by each node at least
one tile before their own activation time.

4. Latency Computation

In order to compute a lower bound for a spe-
ci�c stream latency assume that the application
computation for generating a new packet is null
and that it takes place exactly in correspondence
to the transmission slot start. By knowing the
current schedule, the lower bound expression is:

Llow = (nslots − 1)Tslot + Ttx,max (1)

where Tslot is the time slot duration and nslots is
the number of slots spanned by the considered
stream, including the intermediate ones, which
may not be allocated to the same stream. As
a consequence nslots is always greater than or
equal to the stream redundancy level.

The latency upper bound instead depends on
the used API. When using the callbacks API,
the latency upper bound can be computed in a
scenario in which on the transmission side the
application computation takes zero time, while
on the reception side it takes the entire speci�ed
Tcallback. Indeed, a new packet is produced as
soon as the send callback is called, while the
received data is delivered to the application as
late as possible. In such a scenario the latency
upper bound is:

Lup = Llow + 2Tcallback (2)

Now consider the case in which the write/wait
API is used. Assuming that the write operation
is called as soon as the application is woken up
from its waiting state (null processing time), the
latency can be derived as:

Lup = Llow + Tadvance (3)

In a real scenario, on the transmission side, the
application may need some time to generate the
new data, delaying it towards the transmission
slot start. Moreover, a receive callback function
may also need less time to be completed than
the user-provided execution time. As such, when
receiving a packet, it would be delivered to the
application before the Lup time. Therefore, in
both APIs scenarios, Lup represents the latency
upper bound.
If cryptography is enabled, the time needed to
encrypt and decrypt packets is non-null. Also,
in a real-world device, the physical radio chan-
nel takes some time to startup every time it has
to be used. Both the mentioned time amounts
have to be considered for the computation of the
latency bounds.
It is important to underline that, in any case,
the value of the lower and upper bounds does
not depend on the speci�c stream period, but
only on the current schedule. Furthermore,
any schedule change (e.g. stream scheduled in
non-consecutive transmission slots) would a�ect
both bounds by the same amount, through the
value of nslots. This is also the only variable fac-
tor on which Llow (so Lup too) depends. Thus,
the bounds di�erence is kept constant across dif-
ferent schedules and so is also the maximum jit-
ter with respect to the latency mean value. Only
around new schedules activation a high varia-
tion on the latency value (and on its bounds too)
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may be experienced, since the value of nslots may
change. This phenomenon is limited to a sin-
gle packet and during all the plateaus between
schedules the considerations made on the jitter
are valid. Anyway, scheduling is intrinsic to the
TDMA nature of TDMH and, thus, inevitable.
Moreover, re-schedulings triggered by network
topology changes are infrequent and, when new
streams are opened, the scheduler tries to avoid
overturning the already existing ones. In con-
clusion, changes in the schedule structure only
a�ect the latency absolute value, not its vari-
ability.

5. Experiments

The conducted experiments are divided into two
categories. The �rst ones aim at evaluating
streams reliability and latency, by validating the
implemented APIs and proving that they do
not interfere with the overall network reliability.
Successively, the implementation is evaluated in
a control loop scenario over a wireless network.
TDMH is designed to run on top of the Miosix
OS 2 and on the WandStem3 nodes, equipped
with a single-core microcontroller. These are the
devices used during all the experiments.

5.1. Validation Experiments

During validation experiments, all nodes open a
stream to the master (node 0), using triple spa-
tial redundancy. The packet payload contains an
incremental counter that allows evaluating pack-
ets. When creating a new packet, sender nodes
also add to its payload the current network time
timestamp. As soon as the packet is received
by the master, it takes the reception timestamp
and logs the elapsed time between the creation
and the reception of the packet. Through mas-
ter's logs, the history of each packet's latency
can be reconstructed. All the available Wand-
Stem nodes were deployed on the �rst �oor of
the Building 21 of Politecnico di Milano, repro-
ducing the node placement seen in the paper pre-
sented by Terraneo et al. at the RTSS 2018 con-
ference [4], allowing to have a set of reference
results. For both APIs, two experiments were
conducted for several hours and under di�erent
electromagnetic interference conditions.
During these validation experiments, all the

2https://miosix.org
3https://miosix.org/wandstem.html

streams achieved a reliability higher than
99.50%, with half of them reaching a stable at
100%. For what concerns latency, streams had
a worst-case jitter, with respect to the average
latency value, in the order of one hundred mi-
croseconds, even in the described setup, in which
the master node is highly loaded. The achieved
jitter is multiple orders of magnitude lower than
the streams period (1 s) and the low standard
deviation underlines how the highest spikes are
limited to very few samples. As anticipated, the
callbacks API is able to reach a lower jitter.
Results about latency and network reliability,
which was not worsened by the introduced fea-
tures, are reported in Tab. 1.

API Reliability Jitter Std. Dev.

High

interf.

Callbacks 99.88% 40.03 µs 1.47 µs

Write/Wait 99.88% 107.53 µs 4.93 µs

Low
interf.

Callbacks 99.94% 32.29 µs 0.82 µs

Write/Wait 99.97% 125.21 µs 6.40 µs

Table 1: Network reliability with triple spatial
redundancy, latency measured jitter and average
standard deviation among all the streams, under
high and low interference conditions.

5.2. Distributed Control Loop

An experiment in a real-world control loop sce-
nario was also conducted, aiming at proving
that a feedback control loop can be implemented
through a wireless network, by using TDMH.
The goal of this experiment is to control the
temperature of a tube furnace for semiconduc-
tors synthesis. The network setup consists of
a feedback controller running on the master
node. The furnace electronics outputs tempera-
ture measures (process variable) on a serial port,
which in turn are read by a sensor node and for-
warded to the controller. The actuator is exe-
cuted on another node that is connected to the
furnace input serial port: after receiving the con-
trol variable (i.e. heating element PWM duty
cycle) from the controller, it writes the value
to the serial port. The sensor node transmits
temperature data using the write/wait API and
also forwards the sampling timestamp, to enable
the actuator to measure the end-to-end latency.
Other nodes are connected to the network in or-
der to force data packets to traverse multiple
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hops to close the control loop. The complete de-
ployment topology is shown in Fig. 3. The tem-
perature sampling and the control period are set
to 1 s, as well as the streams period.

Figure 3: Control loop experiment network
setup. In orange the controller (0), sensor (12)
and actuator (9) nodes. The furnace (F ) is
shown in yellow. Dark blue lines are strong links,
while light blue indicates the weak ones.

The controller was designed through the direct
synthesis for setpoint tracking method, in which
the design is based on the process model and
the desired closed-loop transfer function, respec-
tively represented by P (z) and F (z) in discrete
time:

P (z) =
µTz

(Ts + τ)z − τ
F (z) =

1 − α

z(z − α)
(4)

where µ = 1250, τ = 200, Ts = 1 s and
α = 0.9985. Knowing the transfer function, the
process model and that F (z) = R(z)P (z)

1+R(z)P (z) , the

controller expression R(z) can be found.

Finally, knowing that R(z) = u(k)
e(k) , the expres-

sion for the control variable u(k) is derived:

u(k) = αu(k − 1) + (1 − α)u(k − 2)+

(1 − α)
Ts + τ

µTs
e(k − 2)

−(1 − α)
τ

µTs
e(k − 3)

(5)

where e(k) is the error between the required set
point and the process variable: e(k) = ȳ− y(k).
During the experiment, the controller reached
the setpoint of 1000 ◦C without no further os-
cillations (Fig. 4) and showed to be tolerant to
packets losses caused by the distributed wireless
setting.

Figure 4: Process variable plot.

Figure 5: Measured sensor-actuator latency.

The measured latency maximum deviation from
the mean value on the sensor-actuator path is
3.34 µs. The measured latency throughout the
entire experiment is reported in Fig. 5. It may
seem noisy, but the maximum measured peak-
to-peak di�erence is 4.62 µs, a lower value than
the one experienced during the previously pre-
sented validation experiments.

6. Conclusions

The two presented APIs o�er di�erent ways
of synchronizing the application with the un-
derlying layers of TDMH, a low-power wire-
less network stack designed for real-time appli-
cations over wireless mesh networks, also pro-
viding guarantees on the end-to-end latency
bounds. The design was driven by the neces-
sity of bounded latencies, which is a key aspect
of real-time applications. The latency bounds
provided by TDMH are deterministic and pre-
dictable. Moreover, their di�erence is constant,
independently of the schedule structure. Experi-
ments were conducted using the existing Wand-
Stem nodes and show that a latency having a
very low standard deviation is achieved, with-
out drawbacks to the network reliability pro-
vided by TDMH. The distributed temperature
control experiment also con�rms that the pro-
vided latency guarantees and high network reli-
ability make TDMH suitable for real-time appli-
cations, such as industrial control, over a wire-
less network.
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