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1. Introduction
Helicopter ground resonance is a phenomenon
that may develop when a helicopter has an im-
balance in the axis of rotation of the hub and
is spinning near or on the ground. This type
of instability can lead to the destruction of the
structure and injuries to the crew, in a mod-
ern helicopter, this occurs rarely but still is one
of the more dangerous situations that can lead
to the complete loss of the aircraft. The use of
linearized equations of motion has been shown
to produce very accurate frequency predictions,
but the damping has proven much more difficult
to predict. This is particularly true for rotor
systems that include elastomeric lag dampers,
which exhibit highly nonlinear response charac-
teristics.

2. Hammond model of ground
resonance

To understand the ground resonance a classical
model, which became a de-facto benchmark, was
proposed by Hammond in a seminal 1974 paper
[2]. A sketch is presented in Fig. 1. The model
is a simplified system of the hub and blades cou-
pling, there exits another model i.e. Kunz [3],
in which a damper is made inoperative to obtain

the effect of self-excited vibrations.
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Figure 1: Hammond model from [2].

The data of the model are presented in Table ??.
The equations of motion of the system without
the assumption of small Lead-Lag angle (ad-hoc
model), are thus

Ibζ̈i − fi(ζ̇i) + kiζi + eΩ2Sb sin ζi

− Sb[ẍh sin(ψi + ζi)−
ÿh cos(ψi + ζi)] = 0 i = 1 . . . Nb

(1)

for each blade, where fi(ζ̇i) is the blade damping
moment, with fi(ζ̇i) = −ciζ̇i when the linear
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damper of [2] is considered, and

(mx +Nbmb)ẍh + cxẋh + kxxh

− Sb

Nb∑
i=1

[ζ̈i sin(ψi + ζi) + (Ω+

ζ̇i)
2 cos(ψi + ζi) +

eΩ2

ρ
cosψi] = 0

(my +Nbmb)ÿh + cyẏh + kyyh

− Sb

Nb∑
i=1

[ζ̈i cos(ψi + ζi)− (Ω+

ζ̇i)
2 sin(ψi + ζi)−

eΩ2

ρ
sinψi] = 0

(2a)

(2b)

with ρ = Sb/mb, for the airframe. The numeri-
cal data proposed in [2] are reported in Table ??.

3. Lyapunov Characteristic Ex-
ponents

Lyapunov Characteristic Exponents (LCEs) are
used for the analysis of stability of non linear dy-
namical system. From the Oseledec Multiplica-
tive Ergodic Theorem [5] states that the follow-
ing limit exists

Λ±(t) = lim
t→±∞

1

2t
log([Y†(t, t0)Y(t, t0)]) (3)

or can be written in the following form

λi = lim
t→∞

1

t
log(

||Y(t, t0) · w⃗i(t0)||
||w⃗i(t0)||

) (4)

Where w⃗ is the deviator vector and Y(t, t0) is
the State Transition Matrix. From the limit
with the QR method [4] is possible to obtain
all the LCEs.

4. LCEs of the Hammond
model

To study the stability of the Nonlinear, time-
periodic model LCEs approach is used. The
first case with all Lead-Lag Dampers operative
is presented in Fig. 2. The second case with one
Lead-Lag Damper inoperative (the third Lead-
Lag Damper) is presented in Fig. 3. As expected
the first case with all Lead-Lag Dampers opera-
tive converges to the one obtained by Hammond
[2]. For the second case, a different result is ob-
tained in the instability region, the LCEs show

that the solution after a transient region con-
verges to a stable limit cycle so thus the first
LCE converges to zero.
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Figure 2: LCE of isotropic case.
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Figure 3: LCE of non-isotropic case.

The LCEs spectrum is local and depends on the
initial value of the system. For all the calcula-
tions an initial value of x0 = 0.1[m] is used. The
Fig. 3 show that as expected the instability re-
gion is a limit cycle and the interval follows the
Floquet results.

5. Maximum LCE
In most applications it can be useful just to es-
timate the Maximal LCE, Rosenstein algorithm
[7] is able to estimate the MLCE just from a
short time series. Let a time series the trajec-
tory, X, can be reconstructed using the time de-
lay method. The reconstructed trajectory can
be expressed as a matrix where each row is a
phase-space vector. That is,

X = [X1,X2, ...,Xm] (5)

For an N-point time series, {x1, x2, ..., xN}, each
Xk is given by

Xk = [x1+(k−1)J , x2+(k−1)J , ..., xM+(k−1)J ]
T

(6)
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where k = 1, ...,m.
Thus, X is an M × m matrix, and the constants
m, M , J , and N are related as

M = N − (m− 1)J (7)

where m is the embedding dimension, N length
of the time series and J the reconstruction de-
lay.
The embedding dimension is usually estimated
in accordance with Takens’ theorem, i.e. m >
2n.
After reconstructing the dynamics, the algo-
rithm locates the nearest neighbor of each point
on the trajectory. The nearest neighbor, Xĵ , is
found by searching for the point that minimizes
the distance to the particular reference point,
Xj . This is expressed as

dj(0) = min
Xĵ

||Xj − Xĵ || (8)

where dj(0) is the initial distance from the jth

point to its nearest neighbor, and ||..|| denotes
the Euclidean norm. Also an additional con-
straint is that nearest neighbors have a tem-
poral separation greater than the mean period
(T̄ ) (the reciprocal of the mean frequency of the
power spectrum, although it can be expected
that any comparable estimate, e.g., using the
median frequency of the magnitude spectrum,
yield equivalent results) of the time series:

|j − ĵ| > T̄ (9)

This allows to consider each pair of neighbors
as nearby initial conditions for different trajec-
tories. The largest Lyapunov exponent is then
estimated as the mean rate of separation of the
nearest neighbors.
The jth pair of nearest neighbors diverge approx-
imately at a rate given by the largest Lyapunov
exponent:

dj(i) ≈ Cje
λ1(i∆t) (10)

where Cj is the initial separation.
By taking the logarithm of both sides

ln dj(i) ≈ lnCj + λ1(i∆t) (11)

a set of approximately parallel lines (for j =
1, 2, ...,M), each with a slope roughly propor-
tional to λ1. The largest Lyapunov exponent is

calculated using a least-squares fit to the “aver-
age” line defined by

y(i) =
1

∆t
⟨ln dj(i)⟩ (12)

where ⟨..⟩ denotes the average over all values of
j.

6. MLCE of the MBDyn model
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Figure 4: Sketch of the MBDyn model of Ham-
mond’s system [2].

One application of the Maximum LCE method
(5) is to study the stability of time series. By
using MBDyn is possible to obtain the time evo-
lution of a more complex model, to validate the
method Hammond model is recreated using the
MBDyn environment. However, owing to the
peculiar modeling characteristics of the solver,
the different equivalent inertia terms of the air-
frame respectively associated with motion in the
x and y directions have been obtained by split-
ting the airframe into two parts:
• the first part is connected to the ground by

a constraint that only allows its absolute
displacement in the x direction;

• the second part is connected to the first one
by a constraint that only allows its displace-
ment relative to the first one in the y direc-
tion.

The mass of the second part is my, whereas that
of the first one is mx−my, such that the overall
mass associated with the absolute motion of the
hub center in the x direction is mx.
The first part is connected to the ground by a
spring and a damper, of characteristics kx and
cx. Another spring and damper, of characteris-
tics ky and cy, connect the second to the first
part.
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The rotor hub is modeled as a third, massless
part, whose relative motion with respect to the
second part of the airframe is a prescribed rota-
tion about axis z with constant rpm.
The blades are described as rigid bodies through
their absolute displacement and orientation,
constrained to the hub by revolute joints that
only allow their relative rotation about the lead-
lag hinge, whose axis is parallel to the global z
axis, and thus to the axis of rotation of the ro-
tor. Such rotation is restrained by an angular
damper that represents the equivalent lead-lag
damper torque. A sketch of the model is shown
in Fig. 4.
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Figure 5: estimated MLCE of non-isotropic case,
using Jacobian-less method.

The results of Fig. 5 show that with the MLCE
method is possible to obtain the maximum LCE
and thus is possible to evaluate the stabil-
ity/instability of the system. The results follow
the one obtained in section 4. As a comparison
the Fig. 7 for the non-isotropic case with one
damper inoperative and Fig. 6 for the isotropic
one.
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Figure 6: LCE of isotropic case.
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Figure 7: LCE of non-isotropic case.

7. The Inter-Blade Lead-Lag
Damper model

A different approach to reduce the instability is
presented [1], the use of a different configuration
for the Lead-Lag Damper, one of the solutions
proposed is the inter-blade damper (7.1) and an-
other one is the Inter-2-Blade damper (7.2).

7.1. Inter-Blade Lead-Lag Damper
For the inter-blade Lead-Lag Damper configu-
ration the equations of motion of the ad-hoc in
the x-direction (2a) and y-direction (2b) re-
main unchanged. The main difference is thus in
the blades equation as follows

Ibζ̈i − fi(ζ̇i, ζ̇i+1, ζ̇i−1) + kiζi + eΩ2Sb sin ζi

− Sb[ẍh sin(ψi + ζi)

− ÿh cos(ψi + ζi)] = 0 i = 1 . . . Nb

(13)

for each blade, where fi(ζ̇i, ζ̇i+1, ζ̇i−1) is the
blade damping moment, with fi(ζ̇i, ζ̇i+1, ζ̇i−1) =
− ci

2 (ζ̇i − ζ̇i−1) − ci
2 (ζ̇i − ζ̇i+1) when the linear

damper of [2] is considered, and the same as
equation as before. The numerical data pro-
posed in [2] are reported in Table ??.
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Figure 8: LCEs of Inter-Blade Damper configu-
ration with the third damper inoperative.
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Figure 9: LCEs of Inter-Blade Damper config-
uration with the third damper inoperative, en-
largement of the unstable LCEs.

7.2. Inter-2-Blade Lead-Lag Damper
For the Inter-2-Blade Lead-Lag Damper config-
uration the equations of motion of the ad-hoc in
the x direction (2a) and y direction (2b) remain
unchanged. The main difference is thus in the
blades equation as follows

Ibζ̈i − fi(ζ̇i, ζ̇i−2, ζ̇i+2) + kiζi + eΩ2Sb sin ζi

− Sb[ẍh sin(ψi + ζi)

− ÿh cos(ψi + ζi)] = 0 i = 1 . . . Nb

(14)

for each blade, where fi(ζ̇i, ζ̇i−2, ζ̇i+2) is the
blade damping moment, with fi(ζ̇i, ζ̇i−2, ζ̇i+2) =
− ci

4 (ζ̇i − ζ̇i−2) − ci
4 (ζ̇i − ζ̇i+2) when the linear

damper of [2] is considered, and the same as
equation as before. The numerical data pro-
posed in [2] are reported in Table ??.
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Figure 10: LCEs of Inter-2-Blade Damper con-
figuration with the third damper inoperative.
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Figure 11: LCEs of Inter-2-Blade Damper con-
figuration with the third damper inoperative,
enlargement of the unstable LCEs.

8. Hammond model with non
linear dampers

The case of a more realistic damper model, char-
acterized by a nonlinear constitutive law studied
in [8], is considered. The equations of motion
of the ad-hoc in the x hub direction (2a) and
y hub direction (2b) remain unchanged. The
main difference is thus in the blades equation as
follows

Ibξ̈i + fdi + kiξi + eΩ2Sbsin(ξi)

− Sb[ẍh sin (ψi + ξi)−
ÿh cos (ψi + ξi)] = 0 i = 1, ..., N

(15)

(16)

where

fdi =

{
χξ̇i|ξ̇i|+ CLξ̇i |ξ̇i| < |ξ̇L|
χ̄ξ̇L|ξ̇L| |ξ̇i| ≥ |ξ̇L|

(17)

with χ = χ̄ − CLξ̇L and χ̄ = 1.2203 × 106 [N ·
m · s2/rad2] , ξ̇L = 1.0[deg/s] , CL = ci.

8.1. All Lead-Lag Dampers operative
In the first case study, the condition is that all
Lead-Lag dampers are operative with different
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initial conditions of the third blade angular ve-
locity. This is because of the nonlinear law of
the damper after a threshold is saturated. So by
showing that the solution reaches a limit cycle
if the initial condition is higher than the level of
saturation is possible to have ground resonance
even if all the dampers are operative.
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Figure 12: MLCE with different inital condition
of ξ̇03.

Figure 13: 3D plot of the MLCE with different
inital condition of ξ̇03.

8.2. One Lead-Lag Damper inopera-
tive

In this case study, the condition is that the third
Lead-Lag damper is inoperative with different
initial conditions of the third blade angular ve-
locity. This is because in the non-linear law of
the damper after a threshold is saturated. So by
showing that the solution reaches a limit cycle
if the initial condition is higher than the level
of saturation is possible to have ground reso-
nance even if all the dampers are operative. One
damper is inoperative, with the different initial
conditions, after a value, the damper is already
saturated.
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Figure 14: MLCE with the third damper inop-
erative and different inital condition of ξ̇03.

Figure 15: 3D plot of the MLCE with the third
damper inoperative and different inital condi-
tion of ξ̇03.

8.3. MLCE at fixed rpm for one Lead-
Lag Damper inoperative

The results presented in [8] in terms of LCEs
are here reproduced and presented in Fig. 16,
considering the ad-hoc model, which includes
the geometric nonlinearities associated with the
finite motion of the parts, and the multibody
model, which on top of that adds the formula-
tion of the blade motion concerning the absolute
reference frame, in form of a set of differential-
algebraic equations (DAEs). The two analyses
show essentially identical results since the result-
ing time histories are quite similar. The para-
metric stability of the isotropic problem at fixed
rpm is then studied by varying the linear contri-
bution in Eq. (17), namely the term −CLζ̇i, with
CL ∈ [0, ci], as proposed in [8], after the insur-
gence of a limit cycle for CL = 0 was observed
in [6].
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Figure 16: MLCE of isotropic case with nonlin-
ear ad-hoc model and nonlinear damper, using
discrete QR and Jacobian-less method.

9. Conclusions
The use of LCEs the Ground Resonance, Fig. 3,
shows that the method gives an accurate indi-
cation of the type of dynamical instability that
occurs in a limit cycle. The LCEs method also
was implemented for more complex cases as for
the Inter-Blade Lead-Lag configuration (subsec-
tion 7.1) and the Inter-2-Blade Lead-Lag config-
uration (subsection 7.2). The method’s strength
is that can provide a stability analysis even for
systems that don’t have periodicity or are strong
non-linear where Floquet fails. The drawbacks
are the computational cost of performing this
type of analysis this is because to have an ac-
curate estimate of the time series a longer one
is needed and the problem also scales with the
degrees of freedom very quickly. A way to make
a stability analysis more computational advan-
tage is by only computing the MLCE (subsection
5) with this method also the knowledge of the
Jacobian matrix is no longer necessary, for this
reason, it was implemented in MBDyn (section
6). One drawback of the method is the neces-
sity of estimating some parameters a priory, i.e.
the embedding dimension and the time delay.
Then the method was applied to a more complex
system to show the potential application in the
MBDyn environment. This thesis’s main objec-
tive was to show the LCEs and MLCE’s possible
application in multibody dynamics with a focus
on the ground resonance problem.
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