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Abstract

REINFORCEMENT Learning (RL) has driven impressive advances in artificial in-
telligence in recent years for a wide range of domains, from robotic control to
financial trading. However, the performance of current RL methods is strongly

dependent on the hyperparameters of the algorithms, which practitioners usually need
to tune carefully, and on the environment design, where the control frequency plays
a dominant role. The consequent engineering procedures are prone to errors and are
time-consuming, especially if they are started from scratch for each task modification.
The subject of this dissertation is the development of automatic techniques to enhance
the learning capabilities of RL algorithms in a twofold direction.

In the first part, we address the Hyperparameter Optimization (HO) problem, with
a particular focus on policy-based techniques for RL: indeed, they rely on strong theo-
retical guarantees that play a very important role but do not help in the selection of the
hyperparameters. To enhance the learning capabilities of this class of algorithms, we
frame HO as a Sequential Decision Process and design a solution that allows selecting
a dynamic sequence of hyperparameters adaptive to the policy and the context of the
environment. Hence, the reward function of the learning process is performance gain,
and the action consists in the hyperparameter selection. With this problem definition, it
is possible to adopt RL algorithms on a more abstract level to optimize the progress of
the whole learning instance.

The second part is devoted to improving RL agents by leveraging the frequency of
the agent-environment interaction, which has a deep impact on the control opportuni-
ties and the sample complexity of the learning algorithms. We introduce and discuss
the concept of action persistence or action repetition: leveraging theoretical results
and bounds on the performance loss incurred while employing persistence, we pro-
vide algorithmic contributions to detect the most promising frequency. As a conclusive
contribution, we employ a new operator that allows for effective use of the experience
collected at any time scale to learn a dynamic adaption of the persistence or, in other
terms, the best duration of each action.

All contributions are empirically validated through experimental assessments on
challenging benchmarks.
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Sommario

NEGLI ultimi anni, l’apprendimento tramite rinforzo (Reinforcement Learning,
RL) ha ottenuto progressi impressionanti in una vasta gamma di domini, dal
controllo robotico al trading finanziario. Tuttavia, le prestazioni dei metodi

attuali sono fortemente dipendenti dai loro iperparametri, da regolare con cura, e dalla
configurazione dell’ambiente, in cui la frequenza di controllo svolge un ruolo domi-
nante. Le conseguenti procedure di progettazione sono soggette a errori e richiedono
molto tempo, soprattutto se avviate da zero per ogni modifica del sistema. Oggetto di
questa dissertazione è lo sviluppo di tecniche automatiche per migliorare le capacità di
apprendimento degli algoritmi RL in due direzioni.

Nella prima parte, affrontiamo il problema dell’ottimizzazione dei iperparametri,
con particolare attenzione alle tecniche di RL tramite gradiente: queste si basano su im-
portanti garanzie teoriche che non aiutano nella selezione dei iperparametri. Per miglio-
rare le capacità di apprendimento di questa classe di algoritmi, definiamo il problema
come un processo decisionale sequenziale e progettiamo una soluzione che consente
di attuare una sequenza dinamica di iperparametri adattiva alla politica e al contesto
dell’ambiente. Di conseguenza, il guadagno dell’istanza di apprendimento è dato dal
miglioramento delle performances e l’azione consiste nella scelta degli iperparametri.
Con questa definizione, si possono adottare gli algoritmi di RL su un livello più astratto
per ottimizzare il progresso dell’intera istanza di apprendimento.

La seconda parte è dedicata al miglioramento degli agenti RL sfruttando la fre-
quenza di interazione agente-ambiente, che ha un impatto profondo sulle potenzialità e
sulla complessità degli algoritmi di apprendimento. Introduciamo e discutiamo il con-
cetto di persistenza o ripetizione dell’azione: sfruttando i risultati e i limiti teorici sulle
perdite di prestazione durante l’utilizzo della persistenza, forniamo contributi algorit-
mici per rilevare la frequenza di controllo più promettente. Come contributo conclu-
sivo, utilizziamo un nuovo operatore che consente un efficace utilizzo dell’esperienza
raccolta in qualsiasi scala temporale per imparare un adattamento dinamico della per-
sistenza o, in altri termini, della durata migliore di ogni azione.

Tutti i contributi vengono validati empiricamente attraverso valutazioni sperimentali
su benchmark complessi.

III
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CHAPTER1
Introduction

Artificial Intelligence (AI) has come a long way since its inception in the 1950s. In
the early days of AI, researchers focused on creating programs that could perform spe-
cific tasks, such as playing chess or solving mathematical problems. Advances in this
field experienced a drastic acceleration in the 1990s, partly thanks to the availability
of more powerful computers and the development of new algorithms and techniques.
Researchers began to progress significantly on tasks such as image and speech recog-
nition, natural language processing, and decision-making. In the 21st century, AI has
made tremendous progress and is now being used in a large variety of fields, including
healthcare, finance, and education. A significant impact on the field has been provided
by Machine Learning, which opened up many new possibilities for solving complex
problems. The main focus of Machine Learning is the development of algorithms and
models that can learn from and make predictions on data or, using the words in Diet-
terich 1990, from one of the pioneers in the field:

“Machine learning is the study of methods for constructing and improving
software systems by analyzing examples of their desired behavior rather than
directly programming them.”

Thomas Dietterich, Machine Learning, Annual review of computer science, 1990.

From this definition of machine learning, we understand the paramount importance of
data, from which models can learn and improve their performance over time. Another
important definition that represents a motivation for this thesis is from Mitchell 1997:

“Machine Learning is the study of computer algorithms that improve auto-
matically through experience.”

Tom Mitchell, Machine Learning, McGraw-Hill, 1997.
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This second definition not only confirms once more the significance of experience,
which can be represented by data, but also underlines that the learning process needs
to be as autonomous as possible from human intervention. The learning process should
be autonomous to improve, for instance, its robustness and the adaptability of an AI
system to task modifications.

1.1 Reinforcement Learning: Learning to Act

From the perspective of taxonomy, Machine Learning can be partitioned into three main
paradigms: Supervised Learning, Unsupervised Learning, and Reinforcement Learn-
ing. In Supervised Learning, a complete data set is provided, meaning that the correct
output (or target) is provided for each sample in the training set. The main goal is to
learn a mapping between the input data to the corresponding target values. A further
dichotomy can be provided in this field, depending on the target space: if the output be-
longs to a finite set, the problem is denoted as classification; instead, in regression the
goal is to make predictions in the (eventually multi-dimensional) real space. Supervised
Learning has been applied to a wide range of problems, including image classification
(Lu and Weng, 2007), natural language processing (Chowdhary, 2020), and recom-
mendation systems (Isinkaye et al., 2015): we invite the reader to refer to Bishop and
Nasrabadi 2006 for an extensive introduction on the topic.

In Unsupervised Learning, the algorithm is not provided with target values. Instead,
it must discover the patterns and relationships in the data through techniques such as
clustering (Xu and Wunsch, 2005) or anomaly detection (Chandola et al., 2009).

The last category is reinforcement learning (RL, Sutton and Barto 1998), where the
goal is to learn a policy of actions in a Sequential Decision Process by interacting with
an environment. In other terms, the RL objective is to train the agent to maximize
some reward signal by observing a series of states of the environment and choosing
consequent actions. Due to the sequential nature of the agent-environment interaction,
RL can be considered the closest approach to artificial intelligence: indeed, the agents
need to learn and adapt to the environment via trial and error in a way similar to how
humans and animals learn. Therefore, it is unsurprising that the main inspiration for
this field comes from the psychology of animal learning and neuroscience. Despite the
simplicity of the general framework, RL has achieved many significant successes in
various challenging fields in recent years, especially when combined with deep neural
networks: huge results were obtained in games, beating, for instance, the world cham-
pion in the board game of Go (Silver et al., 2016) or achieving super-human perfor-
mances in video-games (Mnih et al., 2015), even with multi-agent frameworks (Berner
et al., 2019). However, impressive advances are recently being also attained in real-
world applications, such as robotic control (Levine et al., 2016), autonomous driving
(Shalev-Shwartz et al., 2016) or healthcare (Thapa et al., 2005).

1.2 Motivations and Research Problems

RL researchers have achieved numerous impressive accomplishments in recent years,
to a large extent thanks to the application of deep learning techniques. However, the
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1.3. Original Contribution

learning process when complex models are adopted is not so straightforward: config-
uring and setting up RL algorithms efficiently can be challenging since many factors
can significantly impact their ability to learn. The tuning process regards two different
macro-elements:

• the first element to be set up is the environment: this process requires a thorough
comprehension of the problem at hand and a careful design of the fundamental
components, such as the reward function. This can require a lot of thought and
attention to detail, as each factor must be carefully defined to accurately model the
problem so that the selected algorithms can detect efficient policies. Furthermore,
most RL algorithms deal with discrete-time environments where interactions hap-
pen at a fixed time scale. Therefore, if the true system evolves in continuous
time, there is the need to configure the control frequency of the agent, which has
a non-negligible effect on the learning capability of the algorithms.

• The second element is hyperparameter tuning: RL techniques often have a large
number of hyperparameters that need to be tuned to achieve good performance.
Finding the optimal values for these hyperparameters can be time-consuming, and
it requires a good understanding of the algorithm and the environment in which it
is being applied.

Overall, the difficulty of setting up RL environments and algorithms can vary signif-
icantly depending on the specific problem being addressed, but in any case, it requires a
large amount of handcrafting. This can be considered as one of the major limitations in
this research field, especially if we recall that the main goal is to develop automatically
improving machines, according to Mitchell’s definition of AI. This dissertation founds
its main motivation in this direction: the goal is to enhance and automatize RL algo-
rithms through a dynamic adaptation of the hyperparameters and the control frequency.

1.3 Original Contribution

After introducing the purpose of our work, we still need to define the specific research
directions of our contribution. As a source of inspiration, we reckon with one of the
most popular and discussed claims in RL, the reward hypothesis (Sutton and Barto,
2018):

“That all of what we mean by goals and purposes can be well thought of
as maximization of the expected value of the cumulative sum of a received
scalar signal.”

Richard Sutton and Andrew Barto, Reinforcement learning: An introduction. MIT press, 2018.

This concept can be further summarized in the emblematic sentence “Reward is enough”
(Silver et al., 2021), and is the source of many discussions and inspirations for many
research directions (Vamplew et al., 2022; Abel et al., 2021). In particular, we follow
two completely different questions that arise from this sentence:

• (Q1) If any task can be represented as a sequential problem with appropriate re-
ward signals, can learning be framed as an RL environment?
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• (Q2) The reward signal is essential to train RL agents. But how frequently should
it be collected?

These two separate questions drive the contributions presented in this dissertation.

Hyperparameter Optimization through Meta-RL In Part I, we try to answer (Q1) and ad-
dress the hyperparameter optimization problem for RL. In particular, we frame this
problem as a Markov Decision Process, which can be tackled through RL techniques
in a meta-learning manner: in this abstract environment, the observed features sum-
marize the current state of the learning process on a set of closely related tasks. The
action represents the hyperparameter choice used for the update rule selected. The
reward process, instead, is modeled as the gain obtained in terms of expected return.
In other terms, we satisfy Sutton and Barto’s hypothesis by designing the reward as
learning. Thanks to this definition of the problem, it is possible to adopt RL algo-
rithms to learn a meta-policy, able to provide a dynamic selection of hyperparameters,
which can be adapted throughout the learning process to the current policy and the task.
Besides the general framework, which can be adapted to any learning algorithm (not
only RL based), we apply this meta-RL approach to policy-based methods, where the
(inner) policies are directly parametrized, and the update rule is based on stochastic
gradients. The reason for this choice is related to the fact that, especially for this class
of algorithms, the choice of the learning rates is particularly challenging since large
stepsizes are riskier but can lead to fast improvements, while smaller steps are safer
and, with the effect of slowing down the convergence, can provide monotonic improve-
ment guarantees (Kakade and Langford, 2002; Pirotta et al., 2013b; Schulman et al.,
2015). Furthermore, the research regarding learning rate control led to the develop-
ment of several techniques, including adaptive learning rates schedules (Kingma and
Ba, 2014), trust-region updates (Schulman et al., 2015) or approaches aimed at maxi-
mizing the immediate gains in terms of performance improvement (Paul et al., 2019).
Therefore, we implement the meta-MDP configuration for the dynamic selection of the
learning rate for gradient-based update rules and of the trust region constraint for one
of the most successful state-of-the-art algorithms: Trust Region Policy Optimization
(Schulman et al., 2015).

Control Frequency Adaptation In the second part, we address (Q2) and the problem of
setting up the environment in terms of retrieving the best possible control frequency. In-
deed, the choice of this parameter has a relevant impact on the ability of RL algorithms
to learn a highly performing policy, especially for this class of methods, where models
are used to estimate the value of actions affecting the environments in one time unit.
Trivially, acting with the highest possible frequency leads to the best control opportuni-
ties, but the worse signal-to-noise ratio of the rewards collected challenges the learning
capabilities of the models, badly affecting their sample complexity. We exploit this
trade-off thanks to the introduction of the concept of action persistence, which refers
to the repetition of a specific action for a predetermined number of time steps. After an
analysis of how the persistence affects the performance of the optimal policy, we de-
velop a novel approach to identify the optimal persistence. Successively, we consider
dynamically adapting the persistence in an online setting: indeed, in different regions
of the state space, the agent may be required to act more frequently to have more active
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1.4. Structure and Content Outline

control. Hence, we developed modified versions of the classic Q-learning (Watkins,
1989) and of the state-of-the-art DQN algorithm (Mnih et al., 2015) to make the agent
capable of learning the expected gain related not only to the choice of a specific action
but also its duration is time.

1.4 Structure and Content Outline

This dissertation is organized as follows. Before diving into our main contributions,
we present in the first two chapters the foundations of reinforcement learning. This
is not intended to be exhaustive, but only an ancillary introduction of the background
knowledge required for the comprehension of our work:

• In Chapter 2 we introduce the fundamental elements of reinforcement learning: at
first, we provide the definition of Markov Decision Process and of policy, which
are commonly adopted to respectively model the environment (Puterman, 2014)
and the agent. The most important tools for RL are then presented in the form of
Bellman equations (Bellman et al., 1957), along with exact solution methods, that
can be applied under perfect knowledge of the models.

• Chapter 3 is devoted to show an overview of a variety of RL algorithms, essential
for the comprehension of the material discussed in the later chapters.

After the introduction, the dissertation is divided in two parts, which represent the orig-
inal contribution of this thesis. In Part 1 we focus on Hyperparameter Optimization,
and to device learning as a Sequential Decision Problem, providing some solution ap-
proaches to enhance the learning capabilities of RL algorithms.

• Chapter 4 represents the first original contribution. The main subject is the devel-
opment of Meta-RL techniques for improving learning and hyperparameter opti-
mization in new tasks. After briefly analyzing the related works in the literature,
we devise the problem as a Meta-Markov Decision Process, where the actions cor-
respond to the hyperparameters selection, and the reward is learning. In the first
instance, we considered some assumptions related to the smoothness of the envi-
ronment with respect to the task and obtained interesting bounds on the difference
in terms of performances within two different tasks. We then applied the meta-
learning concept to the selection of the step size for policy gradient approaches
and adopted FQI (Ernst et al., 2005), a value-based RL algorithm, to select the
most promising learning rates. The effectiveness of the approach is then evaluated
on simulated domains, showing the advantages of the selection of an adaptive step
size. The content of this chapter has been presented at the 8th ICML Workshop on
Automated Machine Learning (AutoML) in 2021 (Sabbioni et al., 2021) and will
be published as a conference paper for ECML 2023 (Sabbioni et al., 2023).

• In Chapter 5, we analyze the main drawbacks of the previously introduced ap-
proach, which shows unfeasible scaling with the dimensionality of the problem.
We attempt to solve such limitations through the introduction of a specific set of
features motivated by Information Theory. In this way, it is possible for us to build
a policy-agnostic and task-agnostic meta-agent, which is then applied to optimize
the hyperparameters of one of the state-of-the-art approach in policy-based RL,
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Trust Region Policy Optimization (Schulman et al., 2015). The content of the
chapter has been published in (Occorso et al., 2022) at ECML-PKDD Workshop
on Meta-Knowledge Transfer in 2022.

While in the first part, the aim is to improve learning capabilities for RL algorithms by
dynamically optimizing the hyperparameters, in part II the research is focused on the
configuration of the control frequency.

• In Chapter 6, we introduce the literature related to the selection of the frame rate
and the control frequency in RL, as well as a survey of the methods devoted to
the detection of the best frequency. We then introduce the notion of action per-
sistence, showing that it can be understood as either a model configuration or a
policy parameter. After an analysis of how a fixed persistence affects the perfor-
mance, we present a novel algorithm, PFQI, with the goal of learning the optimal
value function at a given persistence and a heuristic approach to identify the op-
timal control frequency. The material covered in this chapter has been taken and
adapted from (Metelli et al., 2020), published at ICML 2020. Among the ex-
perimental campaign performed to validate the approach, we furthermore present
the results obtained from the application of our approach in the financial setting,
in which an artificial agent trades foreign exchange currencies at different time
scales. The results of this section are extracted from (Riva et al., 2021), published
at ICAIF 2021, as part of a wider series of publications in the financial field (Bisi
et al., 2020a; Riva et al., 2022).

• Chapter 7 studies the problem of choosing a dynamic control frequency. The
action space is therefore enlarged to the space of persistence options, in such a way
that the agent selects both the action and its duration. We introduce a new Bellman
operator, thanks to which, using the information collected from the environment, it
is possible to update the knowledge of the whole persistence space. After proving
the contraction properties of the new operator, we then extend two well-known
algorithms, Q-learning (Watkins and Dayan, 1992) and DQN (Mnih et al., 2015),
to operate within the persistence option framework. The content of this chapter,
available from (Sabbioni et al., 2022), has been presented at RLDM 2022 and has
been published as a conference paper for AAAI 2023.

• In conclusion, in Chapter 8, the overall contribution of this dissertation is sum-
marized, and the main limitations are discussed. Additionally, potential future
directions for research in this area are suggested.

Additional results and the proofs that were left out of the main text of the disser-
tation can be found in the Appendices A, B and C. In Appendix D we present some
preliminary results related to a gradient-based approach for persistence learning.
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CHAPTER2
Foundations of Reinforcement Learning

2.1 Introduction

In this chapter we introduce the core components of the Reinforcement Learning (RL)
framework: the process of making decisions over time to reach a goal is commonly
framed as a Sequential Decision Making (SDM) problem. In this model, the agent is
the entity making the decisions and interacts with an uncertain environment. The agent
has the opportunity to collect information related to the environment, and to choose the
action accordingly. The environment is then subject to a dynamic transition, in part
influenced by the decisions of the agent, and the latter one is given a feedback signal,
called reward.

This framework is very general and can be adopted as a common model across mul-
tiple disciplines, including automatic control, neuroscience, operations research, and
economics (Hutter, 2004; Sutton, 2022), even though the adopted terminology might
be different: for instance, in control theory, the decision maker is addressed as con-
troller sending a control signal to the environment, while in psychology, the agent is an
organism, which receives stimuli and sends responses.

In many real-world scenarios, the environment dynamics and the interaction can
be thought of as continuous (Doya, 2000); however, a common restriction adopted in
literature formalizes the problem by providing a time discretization into a sequence
of decision steps with a fixed control frequency. Of course, a more fine-grained dis-
cretization provides a better approximation of a continuous process, but there are many
drawbacks in the identification of the best action. The topic of the identification of the
best control frequency is discussed in more detail in Chapter 6.

The consequent interaction is formalized as a Markov Decision Process (MDP, Put-
erman (2014)), providing the ideal theoretical framework for RL. In this Chapter, we
will introduce the fundamental elements useful to understand the rest of the disserta-
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Figure 2.1: Graphical representation of the agent-environment interaction in a Markov Decision Pro-
cess. Source: Sutton and Barto (1998)

tion. For an extended analysis of the most important aspects related to the formulation,
we suggest the reader refer to some of the main textbooks on this topic (Bertsekas and
Tsitsiklis, 1996; Sutton and Barto, 2018; Szepesvári, 2010; Bertsekas, 2005; Agarwal
et al., 2019).

Chapter Outline This chapter is organized as follows. In Section 2.2 we provide a for-
mal definition of a Markov Decision Process and an explanation of the agent-environment
interaction. In particular, in Subsection 2.2.2 we present a list of possible extensions,
some of which will be taken into account in the next chapters. We furthermore define
some of the most useful concepts, such as the policy and the trajectories, that are used
then in Section 2.3 to introduce some fundamental notions such as of value function
and expected return. as well as the Bellman operators, that are paramount to solve
an MDP. Finally, in Section 2.4, we exploit the dynamic programming principle and
present some techniques to find the optimal policy in finite MDPs under perfect knowl-
edge of the environment.

2.2 Markov Decision Processes

As mentioned in the previous Section, a SDM is formally framed thanks to the defini-
tion of MDPs. The first introduction of this terminology belongs to Bellman (1954),
while the core elements were analyzed in Bellman et al. (1957) and Howard (1960).

Definition 2.1 (Markov Decision Process, Puterman 2014). A discrete-time, discounted
Markov Decision Process (MDP) is a tupleM = ⟨S,A, P, R, µ, γ⟩, where:

• S is denoted as the state space and is a measurable set representing all the possi-
ble states of the environments.

• A, referred to as action space, is a (non-empty) measurable set representing all
the available actions for the agent. In a more general formulation, the set of
available actions is state dependent. In this case, it is possible to consider a
collection of sets As for each state s ∈ S , in the sense that for each state s there
is a different subset of available actions belonging to the action space. In the
following, we will assume a single action space.

8
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2.2. Markov Decision Processes

• P : S × A → ∆S is the transition model or transition kernel. It provides, for
each state-action pair (s, a) ∈ S × A, the probability distribution P (·|s, a) of
reaching the next state over the state space S.

• R : S×A → ∆R is the reward model, which assigns for each tuple (s, a) ∈ S×A
a probability measure R(·|s, a) over R. The reward model induces the reward
function r, which is the expected reward when performing action a ∈ A in
state s ∈ S, i.e. r(s, a) :=

∫
S drR(r|s, a). In other, more general formula-

tions, the reward model is also considered dependent on the next state s′ ∈ S
reached according to the transition model P . In this case, the reward function
considers also the expectation over s′, hence it would be defined as r(s, a) =∫
S P (ds

′|s, a)
∫
R rR(dr|s, a, s′).

• µ ∈ ∆S is the starting-state distribution.

• γ ∈ [0, 1) is the discount factor. It has the purpose of measuring the current utility
of rewards obtained in the future.

2.2.1 Interaction

The interaction between the agent and the environment happens at each decision step t.
Once the agent observes the current state st ∈ S, an action at ∈ A is decided according
to its policy; One time step later, the agents receives the reward rt ∼ R(·|st, at), and
the environment transitions to a new state st+1 according to the transition model, i.e.
st+1 ∼ P (·|st, at).

A scheme of the agent-environment interaction is depicted in Figure 2.1.

The formalization of the transition kernel in the MDP definition embeds two as-
sumptions:

1. the process is stationary, meaning that the transition kernel P is time-invariant;

2. the transition satisfies the Markov property (Durrett, 2019): once the current state
st is known (as well as the action at), the dynamics of the process is independent
of the past. In other terms:

P (st+1|st, at) = P (st+1|st, at−1, st−1, . . . , a1, s0). (2.1)

A third important assumption usually adopted is the existence of a bound on the
support of the reward model:

Assumption 2.1 (Bounded Rewards). There exists a finite constant Rmax ∈ R>0 uni-
formly bounding the support of the random model for each state-action pair, such that
R : S ×A → ∆[−Rmax,Rmax].

As a consequence, the reward function r is uniformly bounded, i.e.

∥r(s, a)∥∞ = sup
(s,a)∈S×A

|r(s, a)| ≤ Rmax

9
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Remark 2.2. The transition kernel P includes the transition to a new state conditioned
on the action chosen. However, there are several cases in which the agent has limited
effect on the dynamics of the states. Therefore, it is often possible to partition the
features observed in the state into two classes (Chitnis and Lozano-Pérez, 2020): N is
the space of endogenous states, the ones possibly affected by the agent decisions, while
X is the exogenous space. An exogenous state contains the features of the environment
that can only be observed by the agent. Hence, S = N × X , and the current state is
the combination of the two parts st = (nt, xt), with nt ∈ N , xt ∈ X , and the same
partition can be applied to the transition process, split into the two kernels PN and
PX . The exogenous kernel is only dependent on the previous exogenous state, while the
endogenous transition is conditioned on the action chosen, and the overall state of the
environment st:

P (st+1|st, at) = PN (nt+1|st, a)PX (xt+1|xt).

2.2.2 MDP Extensions

As described in the previous sections, MDPs build the general framework to solve
sequential decision processes. However, this formulation might be limited in several
real-world scenarios and need peculiar generalizations, some of which will be briefly
described and taken into account throughout this dissertation.

• Many RL applications are designed under the assumption that the state is fully
observable, meaning that the agent is capable of observing all the features deter-
mining the dynamics of the environment. However, in a large variety of problems,
this assumption does not hold, as the agent is only capable of observing a differ-
ent set of features: this framework is modeled as a Partially Observable Markov
Decision Process (POMDP, Åström (1965); Monahan (1982)), defined as a tuple
⟨S,A, P, R,Ω,O, µ, γ⟩. At each discrete time step t, the state evolves to st+1 as
usual according to the transition kernel P , while the agent is capable of observ-
ing a vector of features ωt belonging to Ω, defined as observation space. The
observation is given by a (conditioned) probability distribution according to the
observation modelO, such that ot ∼ O(·|st, at). We will deal with a peculiar case
of POMDP in Chapter 5.

• The evolution towards a new state may be not conditioned on a pre-determined
time discretization, but transitions can happen with different timings. This is
the case of Semi-Markov Decision Processes (Semi-MDP, Howard (1963); Sutton
et al. (1999b)), for which the time between consecutive decision steps is variable.
A definition can be found in (Lippman, 1973), where a Semi-MDP is described
as a tuple ⟨S,A, P, R, T, µ, γ⟩. The main difference consists in the presence of
a model of the transition durations T : S × A × S → ∆R>0 , such that the time
for the system to evolve from state s to s′ given action a is a (non-negative) ran-
dom variable, distributed as T (·|s, a, s′). Consequently, the reward is also subject
to the time passed between the steps. This concept is usually considered in the
context of Hierarchical-RL (Pateria et al., 2021), and we will briefly consider this
framework in Chapter 7.

• RL problems are usually formulated as discrete-time problems with a specific time
discretization derived from continuous-time processes. A branch of RL literature

10
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2.2. Markov Decision Processes

is focused on the research regarding Continuous-time MDP (Cont-MDP, Bradtke
and Duff (1994); Doya (2000); Yildiz et al. (2021)), which are very often less
tractable than standard decision processes. The definition of a Cont-MDP consid-
ers a continuous state function st and a continuous control input at. A transition
rate p replaces the transition kernel P . If the process is stochastic, the dynamics
also include a diffusion rate σ (Seierstad, 2009). In other terms, the state evolves
from time t to T according to the dynamics of p and σ:

sT =

∫ T

t

p(su, au)du+

∫ T

t

σ(su, au)dwu,

where dw is a (possibly multivariate) Brownian Motion. An analogous transfor-
mation is applied to the reward process, which is replaced with a continuous-time
reward rate rt.

• The dynamic and reward processes of the decision problem can depend on external
parameters. For instance, the performance of a race car might be affected by tire
wear or the friction of the circuit. This framework can be modeled thanks to the
introduction of exogenous variables, called contexts. The problem is then devised
as a Contextual Markov Decision Process (CMDP, Hallak et al. (2015); Sodhani
et al. (2021)), a tuple ⟨Ω,S,A,M⟩ where Ω is called the context space. The
state and action spaces S and A are shared, and M is a function that maps any
context ω ∈ Ω to a standard MDP, such that M(ω) = ⟨S,A, Pω, Rω, γω, µω⟩.
In brief, a CMDP includes in a single entity a set of tasks. Each context can
be seen as a different task with a potentially different solution. One might be
interested in training an agent with the goal of generalizing across all the set of
possible tasks (Multi-task RL, Sodhani et al. (2021); Calandriello et al. (2014)1),
or with the purpose of rapidly adapting to the new context with small amounts of
experience (Meta-RL, Rakelly et al. (2019)). The definition of a Hidden-Mode
MDP in Hadoux et al. (2014) in the context of Non-stationary RL is also closely
related to the one provided for a CMDP. Part I in this dissertation deals with
CMDPs.

• A variant of the CMDP introduces the possibility of configuring the model param-
eters that affect the system dynamics. This is the case of Configurable Markov De-
cision Processes (Conf-MDPs, Metelli et al. (2018); Silva et al. (2019); Ramponi
et al. (2021)), where the goal is to jointly train the model and the policy to opti-
mize the return. In Chapter 6, we deal with a particular environment parameter,
the action persistence.

2.2.3 Trajectories and Return

The interaction of an agent with the MDP generates a sequence of states, actions, and
rewards, that can be collected to form a history. Starting from the initial state s0, a
history ht with length t ∈ N is hence:

ht = (s0, a0, r0, s1, a1, . . . , rt−1, st)

1In the last case, the framework is instead defined as a Multi-Task MDP, although the definition coincides with the CMDP one.
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We will define as Ht = (S × A × R)t × S the set of all possible histories with length
t. The generated episode then continues up to a certain horizon T , the time at which
the interaction ends, and the history can also be defined as trajectory τ = hT . The
horizon can be either finite (T < ∞) or infinite (T = ∞), in such a way that the
set of all possible trajectories T degenerates to (S × A × R)N. In many practical
cases, the MDPs are embedded with a fixed horizon T , or with a set SA of absorbing
states2. Under these circumstances, the trajectory length can vary, and, without loss of
generality, we can define T (τ) the trajectory length (finite or infinite) associated with
each trajectory τ ∈ T . At the end of each trajectory τ ∈ T we can observe its return
function Gγ , defined as the cumulative sum of the rewards encountered, discounted by
the discount factor γ:

G(τ) :=

T (τ)∑

t=0

γtrt.

Sometimes we will be interested in sub-trajectories τt1:t2 of a complete trajectory τ , for
0 ≤ t1 < t2 ≤ T (τ), i.e., the part of history seen starting from time t1 up to time t2. In
this case, the partial return is clearly computed as:

G(τt1:t2) :=

t2−t1∑

t=0

γtrt1+t =

t2∑

t=t1

γt−t1rt. (2.2)

In the specific case of t2 = T (τ), the sub-trajectory starting from t1 = t will be more
briefly denoted as τt, and the related return as G(τt) or Gt(τ). Moreover, we will often
be interested in taking into account transitions, i.e., sub-trajectories involving a single
step in the environment. These transitions are then considered as tuples (st, at, rt, st+1).

From the definition of return, the significance of the discount factor becomes clear
from many points of view: first, there is an economic meaning: future rewards are as-
signed a lower value with respect to the same value obtained immediately, with a strong
connection to econometrics. Higher values of γ are related to a more far-sighted view,
while a more myopic point of view is associated with a low γ, as the effective horizon
becomes equivalent to 1/(1− γ). From another perspective, the presence of the dis-
count factor allows infinite-long trajectories to maintain a well-defined return: this is an
important property, as the return function becomes bounded by Rmax/(1 − γ), avoid-
ing divergence to infinite. If the length of the trajectories is almost surely finite (either
finite-horizon or MDPs for which the probability of entering an absorbing state in a
finite time is 1), it is also possible to consider a discount factor equal to 1, making the
return function the sum of the rewards collected. The opposite case, γ = 0, transforms
the problem into a single-step decision problem. The whole RL framework related to
control and planning collapses to a supervised learning problem, as the main goal is
reduced to provide an approximation of the reward function. As a consequence, it is
common to consider γ as a parameter related to the MDP formalization, as it is a com-
ponent strongly impacting the reward signal. However, sometimes it is considered as
a hyperparameter of the training algorithms (Paul et al., 2019). In this dissertation, we

2A state s ∈ S is defined as absorbing or terminal if the MDP, once reached s, remains in the same state with no further
rewards, i.e., P (·|s, a) = δs(·), r(s, a) = 0∀a ∈ A

12
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2.2. Markov Decision Processes

will always consider the discount factor as a fixed value embedded with the definition
of the MDP.

2.2.4 Policies

The purpose of RL agents is to make decisions based on the observed states of the
environment. The mathematical formalization to describe the decision rule of an agent
is provided with the definition of the policy. In the most general definition, for each
decision step t, a policy πt provides a probability distribution over the Action space A,
based on the current history ht of states, actions and rewards collected:

Definition 2.3 (Policy). Given a MDPM with horizon T (either finite or infinite), a
history-dependent policy acting onM is a sequence π = (πt)t∈[T ], such that, for each
t, πt : Ht → ∆A.

The set of all possible history-dependent policies will be denoted as ΠH . In many
scenarios, the current state provides enough information for the agent to make it able
to select the best action. Hence, a very important subset πM ⊂ πH contains all the
Markovian policies, which depend only on the current state. More formally, we can say
that a policy π ∈ ΠH is Markovian if there exists a collection π̃ = (π̃t)t∈[T ] such that,
for each t, π̃t : S → ∆A is a.s. equal to πt, i.e. πt(·|ht) = π̃t(·|st) a.s.
Furthermore, as the transition process in a MDP is stationary, we are usually inter-
ested in stationary policies as well. A markovian policy π is defined as stationary if
∀t, t′ ∈ [T ], s ∈ S , πt(·|s) = πt′(·|s). We will usually deal with Markovian, stationary
policies, for which we will use a simpler notation π(·|s) to denote a specific policy and
Π for the related policy set. For the rest of this dissertation, we will adopt the general
term "policy" to refer to a Markovian, stationary policy. In Chapter 7, and more in gen-
eral in the framework of Option Learning, we can adopt temporally-extended policies,
acting on macro-actions or options (Precup, 2001; Mann et al., 2015). As a conclusive
remark, a policy π is denoted as deterministic if the probability distribution over the
action space is reduced to a Dirac delta measure. In this case, the policy can be con-
sidered as a mapping π : S → A, and for each state s ∈ S, the prescribed action is π(s).

The common (non-limiting) assumption is that each policy π ∈ Π admits a probability
density function with respect to the Lebesgue measure, as well as the transition kernel
P and the initial distribution µ. Under these assumptions, we are, for instance, allowed
to denote with π(a|s) to refer to the probability associated with a specific state-action
pair (s, a) ∈ S × A. The same assumption can be applied to all history-dependent
policies in ΠH . In this way, it is possible for us to determine the distribution of the
trajectories gathered through the interaction of a policy π ∈ ΠH with the environment
M. Specifically, each trajectory τ = (s0, a0, r0, . . . , aT−1, sT ), which can be decom-
posed in the whole set of sub-histories ht for all t ∈ [T ] , is associated to a probability
measure ρπ(τ):

ρπ(τ) = µ(s0)
T∏

t=1

πt(at|ht)P (st+1|at, st). (2.3)

As a small remark, Equation 2.3 can be simplified in the case of a stationary Markovian
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policy as follows:

ρπ(τ) = µ(s0)
T∏

t=1

π(at|st)P (st+1|at, st). (2.4)

Transition Kernels

The combination of an MDPM and a policy π ∈ Π gives rise to a Markov Chain (MC,
Norris (1997)) on the state space S, which evolves according to the transition kernel
pπ.

pπ(·|s) =
∫

A
π( da|s)P (·|s, a) (2.5)

Sometimes, we will slightly abuse the notation when dealing with the state-action ex-
tension of Equation 2.5, which includes in the process a further application of the policy
π, starting from a fixed state-action pair:

pπ(s
′, a′|s, a) =

∫

S
P ( ds′|s, a)

∫

A
π( da′|s′). (2.6)

The consequent t-step transition kernel represents the probability distribution on the
state space S for the MC after t steps, starting from s and following the policy π, and
is recursively defined as follows:

p1π(·|s) := pπ(·|s);

pt+1
π (·|s) :=

∫

S
ptπ(s

′|s)pπ(·|s′) ds′.
(2.7)

In practice, ptπ(s
′|s) represents the probability of reaching state s′ ∈ S in t-step, starting

from s ∈ S and following π thereafter. The same recursive definition can be applied
to the state-action extensions, by following 2.6. These distributions can be combined,
keeping into account the discount factor, to define the (discounted) state-occupancy
measure δsπ:

δsπ(·) :=
1− γ
γ

∞∑

t=1

γtptπ(·|s)

This measure represents the (discounted) probability of reaching a state in the future,
starting from s0 and following π. If we want to consider the overall distribution over
the state space in any point of the interaction, we need to consider also the initial dis-
tribution µ, to retrieve δµπ as follows:

δµπ(·) := (1− γ)µ(·) + γ

∫

S
µ(s0)δ

s0
π (·) ds0 (2.8)

Finally, once the distribution over the states is known, the distribution over the state-
action pairs can be easily computed from the composition with the policy π:

νµπ (s, a) := δµπ(s)π(a|s) ∀(s, a) ∈ S ×A (2.9)

When γ = 1, δµπ becomes equivalent to the stationary distribution of the MC with
transition pπ, in such a way that δµπ(s) =

∫
S δ

µ
π(s

′)pπ(s|s′) ds′ or, in operator form,
δµπ = δµπpπ.
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2.3. Expected Return and Value Functions

2.3 Expected Return and Value Functions

In standard RL, the main objective is to maximize the expected return, where the ex-
pectation is with respect to the stochasticity of the environment and/or the policy. The
expected return can then be considered the main performance index for the evaluation
of a policy, and its improvement.

Formally, the objective function is expressed as follows: 3

max
π∈Π

J(π) := E
τ∼ρπ

[Gγ(τ)] = E
s0∼µ

at∼π(·|st)
st+1∼P (st,at)

[ ∞∑

t=0

γtr(st, at)
]

(2.10)

One of the key concepts in RL is the value function (Sutton and Barto, 1998), which
provides a value associated with a state s Thanks to the exploitation of Markov’s prop-
erty of the MDP, this function allows to transform the multi-step optimization problem
2.10 into a fixed-point problem.

Definition 2.4 (Value function). LetM be an MDP, π a policy in Π and s any state in
S. The value function V π : S → R is defined as the expected return starting from the
state s, and following the policy π:

V π(s) := E
at∼π(·|st)

st+1∼P (·|st,at)

[ ∞∑

t=0

γtr(st, at)|s0 = s

]
= E

τ∼ρπ
[G(τ)|s0 = s] . (2.11)

In the same fashion, it is also possible to define the state-action value function,
addressed also as Q-function or action-value function.

Definition 2.5 (Action-Value function). LetM be an MDP, π a policy in Π and (s, a)
any state-action pair in S × A. The action-value function Qπ : S × A → R is defined
as the expected return starting from (s, a), and then following the policy π:

Qπ(s, a) := E
st+1∼P (·|st,at)
at+1∼π(·|st+1)

[ ∞∑

t=0

γtr(st, at)|s0 = s, a0 = a

]
. (2.12)

While the main purpose of the state value function is the evaluation of a policy, the
action-value function finds its application in the context of policy improvement, since
it allows detecting the most profitable actions. In this direction, it may be useful to
define also the advantage function, which measures the expected return gain obtained
by choosing an action a instead of following the policy π in a state s:

Aπ(s, a) = Qπ(s, a)− V π(s), (2.13)

In conclusion, the expected return J(π) or Jπ can also be defined in terms of the
state-value function by marginalizing over the initial state distribution:

J(π) =

∫

S
µ( ds)V π(s) (2.14)

3For the sake of simplicity, the summation over the time-steps t in Equation 2.10 and following has ∞ as upper limit without
loss of generality.
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2.3.1 Bellman Equations

The definitions introduced for the value functions are expressed in terms of expectations
of the return on the trajectories produced by the agent-environment interaction. How-
ever, we can exploit the Markov structure of the transition process (and the Markovian-
stationary policy space Π) to relate the value in subsequent time steps in a recursive
manner. The relations obtained are usually denoted as Bellman Equations (Bellman
et al., 1957), and represent one of the cornerstones in RL, perhaps being also the main
reason why stationary, Markovian policies are so important in this field.

Proposition 2.6 (Bellman Equations, Bellman 1954). LetM be an MDP and π ∈ Π
be a policy, then:

Qπ(s, a) = r(s, a) + γ

∫

S
P (ds′|s, a)V π(s′), (2.15)

V π(s) =

∫

A
π(da|s)Qπ(s, a). (2.16)

These equations can also be defined in a more useful way in the form of operators.

Definition 2.7 (Bellman Expectation Operators, Bellman et al. 1957). Let M be an
MDP and π ∈ Π be a policy. Consider a bounded, measurable function f : S → R
and a state s ∈ S . The Bellman expectation operator for state value functions T π is
defined as:

(T πf)(s) :=

∫

A
π(da|s)

(
r(s, a) + γ

∫

S
P (ds′|s, a)f(s′))

)
, (2.17)

Moreover, considering a bounded, measurable function f : S × A → R and a state-
action pair (s, a) ∈ S × A, the Bellman expectation operator for state-action value
functions T π is defined as:

(T πf)(s, a) := r(s, a) + γ

∫

S
P (ds′|s, a)

∫

A
π(da′|s′)f(s′, a′), (2.18)

Remark 2.8. Equations 2.15,2.17 and 2.18 make sense if the reward model R depends
only on the state-action pair (s, a). In more general formulations, r is dependent also
on the next state s′ according to the transition model P . Under this framework, the
Bellman Equation for the Q-value function becomes:

Qπ(s, a) =

∫

S
P (ds′|s, a)

[
r(s, a, s′) + γV π(s′)

]
,

and the Bellman Expectation Operators need to be modified accordingly.

It is important to remark that the Bellman Operators are linear operators. Moreover,
they enjoy the following properties:4

4The same consideration hold for the operators for state-action functions.
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2.3. Expected Return and Value Functions

• Monotonicity: indeed, consider two bounded, measurable functions f and g such
that f(s) ≥ g(s) ∀s ∈ S. Then:

T πf(s) =

∫

A

π(da|s)
(
r(s, a) + γ

∫

S
P (ds′|s, a)f(s′)

)

≥
∫

A

π(da|s)
(
r(s, a) + γ

∫

S
P (ds′|s, a)g(s′)

)
= T πg(s)

• γ-Contraction in L∞ norm (Puterman, 2014): indeed, consider two bounded,
measurable functions f and g. Then:

∥T πf − T πg∥∞ = ∥
∫

A
π(da|s)γ

∫

S
P (ds′|s, a)(f(s′)− g(s′))∥∞

≤ γ∥f − g∥∞
∫

A
π(da|s)

∫

S
P (ds′|s, a) = γ∥f − g∥∞

As a consequence, the Banach-Caccioppoli fixed-point theorem (Banach, 1922) holds,
and T π admits a unique fixed point: the value function V π and the action-value function
Qπ:

V π = T πV π,

Qπ = T πQπ.

In Section 3.3, we will iteratively adopt the Bellman Expectation Operators to per-
form policy evaluation. However, in order to improve the expected return of the policy,
we will need further tools, as seen in the next section.

2.3.2 Optimality Criteria

As mentioned at the beginning of Section 2.3, the goal is the maximization of the
expected return. For practical approaches, it can be easier to define the optimality
criteria for value functions; indeed, in the following, we will introduce the Bellman
Optimality Operators, which can be iteratively applied to improve the policy and to
retrieve the optimal one.

Definition 2.9 (Optimal State Value Function and Optimal Action Value function). Let
M be an MDP. A policy π⋆ ∈ Π is optimal if:

V π⋆

(s) ≥ V π(s) ∀π ∈ Π,∀s ∈ S
Qπ⋆

(s, a) ≥ Qπ(s, a) ∀π ∈ Π,∀(s, a) ∈ S ×A
The optimal state value function and optimal action-value function are then defined
according to the values attained by the optimal policy:

V ⋆(s) := V π⋆

(s) ∀π ∈ Π,∀s ∈ S
Q⋆(s, a) := Qπ⋆

(s, a) ∀π ∈ Π,∀(s, a) ∈ S ×A
Remark 2.10. Definition 2.9 can be trivially extended for all history-dependent poli-
cies in ΠH . However, the optimal value functions will remain constant. This holds since
for every policy π̃ ∈ ΠH , there exist a stationary, Markovian policy π ∈ Π such that
V π(s) = V π̃(s) ∀s ∈ S (Puterman 2014, Theorem 5.3.3, part a).
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Remark 2.11. Definition 2.9 of optimal policy denotes a stronger goal than the max-
imization of the expected return expressed as the main objective function 2.10: since
Jπ is the expected value function marginalized over the initial distribution, the optimal
policy maximizes the expected return for any initial distribution µ, while the converse
does not necessarily hold. In some cases, a policy maximizing the return is denoted as
J-optimal.

In the same fashion as the Bellman Equations, we can define recursive relations also
for the optimal value functions:

Proposition 2.12 (Bellman Optimality Equations). LetM be an MDP, then:

Q⋆(s, a) = r(s, a) + γ

∫

S
P (ds′|s, a)V ⋆(s′), (2.19)

V ⋆(s) = sup
a∈A

Q⋆(s, a). (2.20)

Analogously, T ⋆ is the operator form related to these Equations:

Definition 2.13 (Bellman Optimality Operators). LetM be an MDP. Consider a bounded,
measurable function f : S → R and a state s ∈ S. The Bellman optimality operator
for state value functions T ⋆ is defined as:

(T ⋆f)(s) := sup
a∈A

{
r(s, a) + γ

∫

S
P (ds′|s, a)f(s′)

}
(2.21)

Moreover, considering a bounded, measurable function f : S × A → R and a state-
action pair (s, a) ∈ S × A, the Bellman optimality operator for state-action value
functions T ⋆ is defined as:

(T ⋆f)(s, a) := r(s, a) + γ

∫

S
P (ds′|s, a)max

a′∈A
f(s′, a′), (2.22)

While the Bellman Optimality Equations and Operator enjoy the same generaliza-
tion as in Remark 2.8, the main difference is the presence of the supremum, for which
the operators are no longer linear. On the other side, monotonicity and contraction
properties still hold:

• Monotonicity: consider two bounded, measurable functions f and g such that
f(s) ≥ g(s) ∀s ∈ S. Then:

(T ⋆f)(s) = sup
a∈A

{
r(s, a) + γ

∫

S
P (ds′|s, a)f(s′)

}

≥ sup
a∈A

{
r(s, a) + γ

∫

S
P (ds′|s, a)g(s′)

}
= (T ⋆)g(s).

• γ-contraction inL∞ norm: as before, consider two bounded, measurable functions
f and g. Then:

∥T ⋆f − T ⋆g∥∞ =

∥∥∥∥ sup
a∈A

γ

∫

S
P (ds′|s, a)(f(s′)− g(s′))

∥∥∥∥
∞

≤ γ∥f − g∥∞ sup
a∈A

∫

S
P (ds′|s, a) = γ∥f − g∥∞.
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2.4. Dynamic Programming

Again, all the hypotheses for the fixed-point theorem hold, hence T ⋆ admits a unique
fixed point: the optimal value function V ⋆ and the optimal action-value function Q⋆:

V ⋆ = T ⋆V ⋆,

Q⋆ = T ⋆Q⋆.

A complete analysis and discussion on Bellman operators can be found on (Puter-
man, 2014; Szepesvári, 2010).

Greedy Policy

In the previous subsection, we defined the optimal policy as the one attaining the opti-
mal (action) value function. Consequently, the knowledge of the optimal action-value
function Q⋆ is a sufficient condition to retrieve the optimal behavior, which acts greed-
ily to maximize the expected return in each possible state:

Definition 2.14 (Greedy Policy). Let f : S × A → R be a bounded, measurable
function. A policy π′ ∈ Π is defined as greedy5 with respect to f if:

∀s ∈ S : π′(s) ∈ argmax
a∈A

f(s, a). (2.23)

Puterman 2014 shows that the greedy policy w.r.t. the optimal action-value function
exists and, at least in discrete state spaces, it is an optimal policy:

Theorem 2.15 (Theorem 6.2.7, (Puterman, 2014)). Let M be an MDP. Let the state
space S be discrete, and suppose that the supremum V ⋆(s) = supa∈AQ

⋆(s, a) is at-
tained ∀s ∈ S. Then:

1. There exists a deterministic Markovian, stationary optimal policy according to
Definition 2.9;

2. π⋆ ∈ Π, greedy w.r.t. Q⋆ is an optimal policy.

As a consequence of the theorem, a greedy policy w.r.t. Q⋆ allows us to retrieve
an optimal policy, which is stationary and it may not be unique. Moreover, optimal
stochastic policies may exist. In the case of a continuous state space this theorem does
not hold, and an optimal policy may even not exist (Bertsekas and Tsitsiklis, 2008).

2.4 Dynamic Programming

In this section, we consider methods aimed to find the optimal policy in finite MDPs,
in the case of perfect knowledge of the transition kernel P and of the reward model R.
These methods take into account the Bellman Equations defined in the previous sections
to exploit the dynamic programming principle (Bertsekas and Tsitsiklis, 1996). They
consist in iterative approaches that convert Bellman Equation to update rules, leverag-
ing the contraction properties to grant convergence to optimal solutions. The transi-
tion or the reward model of the MDP is seldom known, hence dynamic programming
methods cannot be usually applied, and we need to resort to Reinforcement Learning
algorithms, introduced in the next chapter.

5In Puterman 2014 a greedy policy is denoted as conserving.
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2.4.1 Value Iteration

One of the most straightforward approaches to solve a finite MDP is Value Iteration (VI,
Bellman et al. (1957)). The general idea is, starting from an arbitrary value function
V0, to iteratively apply the Bellman Optimality Operator T ⋆ defined in Equation 2.13;
hence, at iteration k = 0, 1, . . . , the next value function is simply computed as:

Vk+1 = T ⋆Vk. (2.24)

In this way, a sequence of value functions is produced, and the algorithms are stopped
when

∥Vk+1 − Vk∥∞ ≤ ϵ
1− γ
2γ

. (2.25)

At this point, the greedy policy π related to the last value function VT is retrieved, as
follows:

π(s) ∈ argmax
a∈A

(
r(s, a) + γ E

s′∼P (·|s,a)
[VT (s

′)]

)
. (2.26)

The VI algorithm is then granted to converge to V ⋆ thanks to the following Theorem:

Theorem 2.16 (Theorem 6.3.1, Puterman 2014). LetM be an MDP. Let V0 : S → R
be an arbitrary measurable bounded function, and let {Vn} satisfy 2.24. Then, for all
ϵ > 0:

1. Vn converges to V ⋆ in L∞ norm.

2. There exists a finite N from which Equation 2.25 holds for all n ≥ N ;

3. The stationary greedy policy π defined in Equation 2.26 is ϵ-optimal, i.e.:

V π(s) ≥ V ⋆(s)− ϵ ∀s ∈ S.

4. ∥Vn+1 − V ⋆∥∞ < ϵ/2 whenever 2.25 holds.

The fundamental concept leading to the proof of the previous theorem is the con-
traction property of the operator T ⋆, thanks to which:

∥Vt − V ⋆∥∞ ≤ γ∥Vt−1 − V ⋆∥∞.
Consequently, VI has linear convergence with rate γ (Theorem 6.3.3, Puterman 2014):

∥VT − V ⋆∥∞ ≤
γT

1− γ ∥V1 − V0∥∞ ≤
2γT

(1− γ)2Rmax.

2.4.2 Policy Iteration

VI algorithm does not need an explicit notion of policy for the intermediate value func-
tions computed in the process; an alternative approach, instead, starts from an arbitrary
policy π0 and iteratively improves it until ϵ−convergence to the optimal policy. This is
the case of Policy Iteration (PI, Howard (1960)), which is decoupled into two alternate
steps:

• Policy Evaluation: a prediction task, aimed at computing the action value function
Qπ related to a stationary policy π ∈ Π;
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2.4. Dynamic Programming

• Policy Improvement: a control task, consisting in the extraction of a greedy policy
π′ from Qπ.

In the Policy Evaluation step, the value function Qπ of a given policy π ∈ Π is
computed by means of the Bellman Expectation Operator (Definition 2.7): at each
iteration k =, 1, . . . the next value function is computed as:

Vk+1 = T πVk. (2.27)

In this way, a sequence of value functions is produced, and the algorithm is stopped
when ∥Vk+1 − Vk∥ ≤ ϵ(1− γ), meaning that an ϵ−approximation of the fixed point of
the Bellman Equation is found, which is the value function V π:

∥Vk − Vk−1∥∞ ≤ ϵ(1− γ) =⇒ ∥Vk − V π∥∞ ≤ ϵ

Another way of computing the value function involves solving a linear system of Bell-
man Equations extracted from Equations 2.15 and 2.16 in the case of a finite MDP,
which can be solved in closed form with a potentially expensive computational time
(Sutton and Barto, 2018). In other variants of the algorithm, e.g. modified policy iter-
ation (Puterman and Shin, 1978), the repetition of Equation 2.27 is iterated for a fixed
amount T since it is not strictly necessary to wait to get the best possible approximation
of the value function V π.
The policy improvement step returns instead the policy that maximizes the utility es-
timated from the last value function obtained, i.e. the greedy policy π w.r.t. V π as in
Equation 2.26. This procedure allows to obtain a non-decreasing performance for each
complete iteration of PI algorithm: indeed, the following result holds:

Theorem 2.17 (Policy Improvement Theorem, Sutton and Barto 2018). LetM be an
MDP. Let π, π ∈ Π be two stationary, Markovian policies. If it holds that

∫

A
π(da|s)Qπ(s, a) ≥ V π(s) ∀s ∈ S;

then:
V π(s) ≥ V π(s) ∀s ∈ S.

Trivially, the condition is satisfied by construction from a greedy policy, hence the
theorem is valid, granting to obtain an overall policy improvement (Theorem 6.4.1,
Puterman 2014). Finally, if we find out that the greedy policy π has the same value
function as π, i.e. ∥V π − V π∥∞ ≤ ϵ, it means that the value function is the fixed point
of the Bellman Optimal Equation: the value function obtained is hence the optimal
value function V ⋆, and the related policy is the optimal policy π⋆. Despite an increased
computational cost per iteration than VI, due to an explicit computation of the policies,
the rate of convergence for PI is quadratic (Mansour and Singh, 1999). Moreover, since
the number of deterministic policies in a finite MDP is finite (at most |S||A|), it can be
shown that PI converges to the optimal policy in a finite number of iterations (at most
O
( |A|
1−γ log

1
1−γ
)

(Scherrer, 2013; Ye, 2011)).

2.4.3 Linear Programming Method

Solving a finite MDP under the perfect knowledge of the transition and reward models
can be coped with linear programming: indeed, the optimality conditions obtained
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from the Proposition 2.12 can be formulated as a linear problem:

min
V ∈R|S|

∑

s∈S
ρ(s)V (s)

s.t. V (s) ≥ r(s, a) + γ
∑

s′∈S
P (s′|s, a)V (s′) ∀s ∈ S,∀a ∈ A,

where ρ ∈ ∆S is a distribution over the state space S, such that ρ(s) > 0 ∀s ∈ S.
This is a linear problem with |S| variables, and |S||A| constrains, which admits as
solution V ⋆. As many cases in LP problems, dual formulation is more tractable (Wang
et al., 2007):

max
ν∈R|S||A|

∑

s∈S

∑

a∈A
r(s, a)ν(s, a)

s.t.
∑

a∈A
ν(s′, a) = ρ(s′) + γ

∑

s∈S

∑

a∈A
ν(s, a)P (s′|s, a) ∀s′ ∈ S,

ν(s, a) ≥ 0 ∀s ∈ S, ∀a ∈ A.

This formulation is usually preferred, as it is an LP problem with |S||A| variables,
|S| constraints, and |S||A| non-negativity conditions. Its solution ν⋆ represents the
occupancy measure νρπ⋆ , as in Equation 2.9, induced by initial distribution ρ and the
optimal policy π⋆. Consequently, it is possible to retrieve the optimal policy from the
primal LP problem as the greedy policy w.r.t. V ⋆, or from the optimal distribution of
the dual as:

π⋆(a|s) = ν⋆(s, a)∑
a′∈A ν

⋆(s, a′)
.

This linear programming formulations can be solved in polynomial time, and their
worst-case convergence guarantees are better than the ones achieved by VI and PI.
However, it is empirically observed that Dynamic Programming methods usually tend
to perform better(Littman, 1996).
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CHAPTER3
Reinforcement Learning

3.1 Introduction

Dynamic Programming methods introduced in Chapter 2 provide useful approaches for
solving Sequential Decision Processes under two strong assumptions: full knowledge
of the transition and reward models and finite state and action spaces (with extensions
to compact spaces (Puterman, 2014)). Unfortunately, in real-world problems, they do
not hold, as the state spaces are usually continuous and too large to be solved with such
techniques. Moreover, the exact dynamics of the process are seldom known or uncer-
tain. Hence, these problems need to be tackled using RL approaches since they aim to
find the optimal policy without prior knowledge of the model. Therefore, it becomes
essential for the agent to collect information on the world the agent is interacting with,
as sampling is necessary to build statistical models to predict the value of the agent’s
behavior, and to control the interaction to maximize the returns.

Uncertainty and stochasticity in the process are important, and to make improvements,
it is fundamental to explore unseen regions of the state and action spaces. Once the
available knowledge is rich enough to understand how to perform well, it is possible to
exploit it to improve the policy. RL algorithms need to deal with a trade-off between
the two concepts in the so-called exploration-exploitation dilemma.

A further building block for RL algorithms is the concept of function approximation:
dynamic programming techniques fail in the case of a large (and finite) state or action
space because the computational time and the memory required to store information
and update the value functions become unfeasible: this problem, known as the curse
of dimensionality (Szepesvári, 2010; Sutton and Barto, 1998) can only be dealt with
function approximation, also needed in the case of continuous spaces.
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All these concepts and tasks are tackled with completely different approaches, and
this chapter is meant to provide a brief overview of several methodologies, useful for a
deeper understanding of the subsequent parts of this dissertation. Of course, providing
a complete and exhaustive presentation is impossible, for which we refer the reader to
(Sutton and Barto, 1998; Szepesvári, 2010).

Chapter Outline This chapter is organized as follows: in Section 3.2, we review some
of the most important dichotomies that categorize the several approaches adopted. The
most important classification distinguishes the goal of the algorithm: if the goal is to
refine the prediction of the expected returns of a policy, the task is denoted as policy
evaluation, and the related techniques are discussed in Section 3.3. The remaining
algorithms are aimed at optimizing the policy: this task can be dealt with by means of
an explicit model of the value functions, leading to value based approaches (Section
3.4), or thanks to a parametrization of the policy. The techniques in this category are
referred to as policy-search approaches, or policy based and are discussed in Section
3.5. Often, algorithms combine the two approaches, leading to actor-critic methods.

3.2 A Taxonomy for Reinforcement Learning Algorithms

RL literature has provided a plethora of different approaches, which can be categorized
according to a variety of criteria. In this section, we try to enlist and describe some of
the most important dichotomies:

• Objective. The first distinction follows the same path traveled by dynamic pro-
gramming: as mentioned in the previous section, there are two main tasks that RL
algorithms aim to solve:

– Prediction, or Evaluation, is the task of estimating the performances of a
given policy. These approaches mirror the Policy Evaluation step introduced
in section 2.4.2.

– Control, or Optimization, directly follows policy iteration and value iteration
methods in dynamic programming, as it consists in solving an MDP by find-
ing the best-performing policy.

In this manuscript, we will mainly focus on the optimization task, although the es-
timation of the value function of a policy is a fundamental concept in all RL. The
vast majority of control-based approach in RL literature is focused on optimizing
the expected return, albeit several branches and research fields are involved with
optimizing other objective functions. As a simple example, Risk-Averse Rein-
forcement Learning (RARL) deals with the optimization of specific risk measures
related to the worst possible outcomes of the learned policy (Artzner et al., 1999;
Chow et al., 2015; Bisi et al., 2020b).

• Model Estimation. In the absence of perfect knowledge of the MDP, sampling is
necessary to collect information on the environment. The object learned with this
information can differ:
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3.2. A Taxonomy for Reinforcement Learning Algorithms

– the collected samples can be used to create an explicit model of the deci-
sion process, upon which dynamic programming techniques can be directly
applied. This is the case of model-based algorithms (Deisenroth and Ras-
mussen, 2011; Nagabandi et al., 2018), which lie beyond the purpose of this
dissertation. For additional information, the reader can refer to extensive sur-
veys on Model-based algorithms in (Nguyen-Tuong and Peters, 2011; Poly-
doros and Nalpantidis, 2017).

– A large portion of RL algorithms do not build an explicit model and the tran-
sition or the reward processes but directly try to optimize the value func-
tions and/or the policies. For this reason, they are classified as Model-free
approaches (Sutton and Barto, 1998; Szepesvári, 2010), which will be exten-
sively adopted in the next chapters.

• Object Estimator. Among the model-free approaches, it is possible to distinguish
the object which is iteratively optimized:

– in a similar fashion as in VI described in section 2.4.1, in Value-based ap-
proaches (Watkins and Dayan, 1992; Scherrer, 2013; Mnih et al., 2015), the
goal is to learn the optimal (action-)value function, from which the greedy,
optimal policy is extracted. These methods are further discussed in section
3.4.

– In other cases (Williams, 1992; Baxter and Bartlett, 2001; Schulman et al.,
2015; Papini et al., 2017), the optimized object is the policy itself, which
is parametrized and updated through gradient ascent. These are denoted as
Policy-Based methods and will be analyzed later in section 3.5.

– Actor-Critic algorithms (Peters et al., 2005; Lillicrap et al., 2015) combine
the two approaches, as the optimization is performed on both the actor (the
policy) and its related value function estimation (the critic).

• Interaction: as said, the agent needs to collect some samples from the interaction
with the environment to gather useful information. The collected dataset is sup-
posed to be adequate to learn the optimal policy and is adopted throughout the
learning process. This is the case of offline or batch algorithms (Thomas et al.,
2015; Ernst et al., 2005). In other cases, the last chosen policies might reach re-
gions in state-action space that were not explored enough in the initial sampling
process. Hence online approaches allow the agent to learn while interacting with
the environment and collecting new samples (Watkins and Dayan, 1992; Schul-
man et al., 2017).

• Sampling policies. The data used to learn is collected by the interaction of a spe-
cific policy with the environment, denoted as behavioral policy. This policy might
differ from the one that is optimized (referred to as target policy), as one might
choose, for instance, more exploratory behavior to gather more useful informa-
tion. This is the case of off-policy RL (Watkins and Dayan, 1992; Silver et al.,
2014). Otherwise, the target and behavioral policies coincide, and the method is
classified as on-policy (Williams, 1992; Schulman et al., 2015).

25



i
i

“output” — 2023/6/14 — 7:29 — page 26 — #48 i
i

i
i

i
i

3.3 Policy Evaluation

In this section, we briefly review some of the main methods for prediction in a model-
free scenario, with no claim to be exhaustive but only ancillary for understanding the
control methods that will be analyzed later, as they represent the main focus of this
dissertation. For a more complete coverage of the topic, we suggest the reader see
Sutton and Barto 2018.

The policy evaluation task consists of best approximating the value function V π

related to a given policy π in an unknown MDP. In other terms, the objective can be
formulated as the minimization of the Root Mean Squared Error (RMSE) L between
the true value function V π and its approximation V̂ with respect to the state-space
occupancy measure δµπ :

L(V̂ ) :=

(
E

s∼δµπ

[
(V π(s)− V̂ (s))2

])1/2

(3.1)

In a more general direction, we can consider the Lp norm under a general probability
measure ρ, with p ∈ [1,∞):

Lp,ρ(V̂ ) := ∥V π − V̂ ∥p,ρ =
(∫

S

ρ( ds)(V π(s)− V̂ (s))p
)1/p

,

If the state space is discrete the value function can be represented as a vector (or a
tensor), and the tabular representation of the value function for each state is directly
minimized. In this setting, the minimization of Equation 3.1 is equivalent to minimizing
the L1 norm of the vector V π − V̂ ,1 under the assumption that the induced Markov
chain with transition pπ is irreducible.
In continuous state spaces, there is no tabular representation: function approximation is
needed; hence the value functions are approximated through a function space F , which
can be either parametric or non-parametric. In the former case, the value function is
represented through a set of parameters ω belonging to a parameter space Ω ∈ Rd,
for some dimension d > 0. Given a parametrization, V ω : S → R represents an
approximation of the target value function V π, and the objective in Equation 3.1 is
reformulated, as minω∈Ω L(V ω). Often it is required for the optimization that V ω is
differentiable w.r.t. ω.
A direct generalization of the tabular setting previously mentioned can be performed
utilizing a linear approximation as:

V ω(s) = ω⊤ϕ(s), (3.2)

where ϕ : S → Rd is an appropriate feature representation function. Linear MDPs
with matching features (Cai et al., 2020) are the only framework where the linear ap-
proximation is exact, i.e., there exists some feature vector such that the value function
perfectly matches the target value function V π. In all the other cases, as with general
function approximations, one has to deal with the bias introduced with the considered
parameter space Ω:

Bias(Ω) := min
ω∈Ω
L(V ω)

1in this case, V denotes the vector representation of V (s) for each state s ∈ S.
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3.3. Policy Evaluation

This bias represents the function-class error, i.e., the distance between the target value
function V π and the space of value functions that can be represented, denoted as VΩ :=
{V ω : ω ∈ Ω}. If V π ∈ VΩ, the bias is zero, and the approximation of the target value
function is said to be realizable in the function-class VΩ.
The main approaches to perform Policy Evaluation are Monte Carlo approximations or
involve Temporal-Difference learning.

3.3.1 Monte Carlo Prediction

The term Monte Carlo (Robert et al., 1999) is used in statistics to denote any estimation
method which relies on averaging repeated random samples. We recall that the value
function of a state s ∈ S is defined as the return obtained in expectation starting from
the same state s and then following the policy π. As a consequence, a straightforward
estimator of such a value can be obtained from the average of independent realizations
of the process, under the assumption that experience is episodic, and an absorbing
state is reached almost certainly in finite time. Therefore, we can collect a batch of N
trajectories {τ (n)}Nn=1 such that the initial state sn0 in each trajectory coincides with the
goal state s, and consider as estimator for such state:

V̂ π
N (s) :=

1

N

N∑

n=1

G(τ (n)) =
1

N

N∑

n=1

T (τ (n))∑

t=0

γtrt. (3.3)

Each return G(τ (n)) starting from state s in an unbiased estimator, therefore each aver-
age built from i.i.d. trajectories is an unbiased estimator: E

[
V̂ π
N (s)

]
= V π(s). More-

over, V̂ π
N (s)

a.s.−−→ V π(s) in the limit for N → ∞ and the variance of the estimate is
inversely proportional to N according to the central limit theorem. Sampling a differ-
ent batch of trajectories starting from each state s is very sample inefficient, and one
can consider sub-trajectories transiting in such state s, even if the initial point was dif-
ferent: in this case, we can consider the first passage time ts for a trajectory τ , defined
as:

ts := inf{t ∈ T (τ) : st = s}, (3.4)

Consequently, we can still have an unbiased and consistent estimate for V π(s) by con-
sidering the average of the partial returnsG(τ (n)ts ), related to the sub-trajectories starting
from {τ (n)ts } for each n in the batch: this approach is denoted as first-visit Monte Carlo
estimator. This estimator, albeit unbiased, is affected by high variance; hence con-
vergence is very slow (Kearns and Singh, 2000). Sometimes, it is more efficient to
consider the every-visit variant, for which the estimators consider the partial returns for
each occurrence of the target state. Since there is the possibility of having more values
for the same trajectory, the estimator is biased but still consistent.

To perform the updates in a more computationally efficient manner, e.g., without
the need to store the whole sets or partial returns, the estimations can be updated with
incremental updates.

V̂ π
N (s) = V̂ π

N−1(s) + αN(G(τ
(N))− V̂ π

N−1(s))

= (1− αN)V̂ π
N−1(s) + αNG(τ

(N)),
(3.5)
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where αN is the learning rate or stepsize, and G(τ (N)) is the latest partial return ob-
served in the N -th trajectory starting from state s. In the case αN = 1/N , the esti-
mation turns out to be equivalent to the empirical mean in equation 3.3, but one can
use different learning rate schedules, and the estimators is still granted to be consistent
(V̂ π
N

a.s.−−→ V π(s)) if the step-sizes satisfy the Robbins-Monro conditions (Robbins and
Monro, 1951): ∑

N

αN =∞,
∑

N

α2
N <∞. (3.6)

3.3.2 Temporal Difference Learning

The main alternative to Monte Carlo is Temporal Difference Learning (TD, Sutton
and Barto (1998)), which tries to address the problem of high variance by means of
truncation in the considered history of future rewards. In this way, the updates are
performed in an online manner without the need to wait until the end of the episode.
For this reason, TD learning can also be applied in the case of non-episodic interactions
with the environment.

TD can be thought of as an approximation to the application of the Bellman Equality
in Equation 2.16, as the core idea consists in minimizing the discrepancy between the
value estimation in a state and the result of the Bellman Operator. This discrepancy can
be mathematically framed as the Bellman Error (BE) defined, for an estimator V̂ , in the
state s, as

BE(s) = E
a∼π(·|s)

[
r(s, a) + γ E

s′∼P (·|s,a)
[V̂ (s′)]

]
− V̂ (s). (3.7)

The goal of the evaluation problem can then be considered as the minimization of the
BE since, by considering the Bellman Equations, in the case V̂ = V π the error is uni-
formly zero in the whole state space. To minimize the BE, TD evaluates the mismatch
in the encountered sub-trajectories: the samples collected, denoted as (1-step) transi-
tions, are in the form (st, at, rt, st+1), and the related Temporal Difference Error (TDE)
δt is computed as:

δt := rt + γV̂ (st+1)− V̂ (st). (3.8)

Trivially, the TDE represents a single realization to estimate the BE, as:

E
at∼π(·|st)

st+1∼P (·|st,at)

[δt] = BE(st).

Starting from a given estimation V̂ (0), the well-known TD(0) method employs an iter-
ative correction according to the following update rule:

V̂ (t+1)(s) = V̂ (t)(s) + αtδt, (3.9)

where αt > 0 is the learning rate. This update rule can be easily seen as

V̂ (t+1)(st) = (1− αt)V̂ (t)(st) + αt
[
rt + γV̂ (t)(st+1)

]
︸ ︷︷ ︸

TD target

.

It is clear that this approach takes into account previous estimates to perform the online
updates: this process is denoted as bootstrap. Furthermore, the TDE boils down to
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3.3. Policy Evaluation

make updates in the direction of the TD target, which is the (one-step) estimation of the
return rt + V̂ (t)(st+1). This term, unless V (t) = V π, is a biased estimate of V π(st), but
accounts for a lower variance than the Monte Carlo approach, because its stochasticity
is only dependent on a single transition instead of a whole trajectory. Furthermore, the
estimator is still consistent under the Robbins-Monro conditions (equation 3.6). As a
final comparison, while TD is usually more efficient than Monte-Carlo, its sensitivity
to the initial guess for the value function is larger.

Monte-Carlo and TD learning trade-off: TD(n) and TD(λ). Both Monte-Carlo and TD learn-
ing have a similar form of update rule, which involves a different estimator of the value
function, said G(t), as

V̂ (t+1)(st) = (1− αt)V̂ (t)(st) + αtG
(t), (3.10)

where G(t) represents the return of a trajectory from Monte-Carlo value estimation or
the TD target in TD(0) learning. To fill the gap between the two approaches, instead
of simply considering one-step transitions, one can resort to updating the estimates
using longer sequences of states and rewards encountered within a trajectory: the re-
sulting approach, denoted as TD(n), performs updates in the direction of the n-step
TD target G(t)

n , i.e., the discounted sum of n rewards, and the expected return boot-
strapped at the n-th next state. In mathematical terms, the algorithm considers a history
(st, at, rt, st+1, . . . , rt+n−1, st+n), and the update assumes the following form:

V̂ (t+1)(st) = (1− αt)V̂ (t)(st) + αt
[ n−1∑

i=0

γirt+i + γnV̂ (t)(st+n)
]

︸ ︷︷ ︸
=:G

(t)
n

.

A further trade-off between Monte-Carlo and TD involves the exponential average
among TD targets with different horizons to obtain TD(λ) algorithm; in this case, a new
parameter λ ∈ [0, 1] is included, and the resulting estimator takes the following form:

G
(t)
λ := (1− λ)

∞∑

n=1

G(t)
n .

Depending on λ, this approaches ranges from TD(0) for λ = 0 to Monte-Carlo (λ = 1)
but, as in the latter case, updates can be performed only at the end of an episode. Eli-
gibility traces (Singh et al., 2000; Sutton and Barto, 1998) can be adopted to overcome
this issue and to weigh the updates properly.

Action Value Prediction In the previous sections, we presented several techniques aimed
at learning the best possible approximation of the value function V π of a policy π. The
prediction task can be easily extended to learn action-value functions Qπ(s, a) for all
state-action pairs since the same update rule adopted in equation 3.10 can be applied
to quality functions, with the purpose of minimizing the mismatch between the current
solution Q̂(t), and an estimator of the expected return starting from each state-action
pairs. Trivially, the partial return G(τ (N)) collected in the trajectory τ (N) starting from
the pair (st, at) is an unbiased estimate of Qπ(st, at), hence the Monte-Carlo approach
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can be directly applied. A small modification is required for TD(0) since the transitions
needed to perform an update require the observation of the next chosen action at+1.
Thus, the TD error is modified accordingly:

δt = rt + γQ̂(t)(st+1, at+1)− Q̂(t)(st, at). (3.11)

Prediction with Function Approximation In the introduction of Policy Evaluation in Sec-
tion 3.3, an important building block for RL was mentioned: function approximation.
When state and action spaces are continuous, algorithms must be modified to account
for the parametrization ω of the (action) value functions. Therefore, letting V ωt be the
approximation of V π at step t, the general update rule in equation 3.10 is modified as
follows:2

ωt+1 = ωt + αt
(
G(t) − V̂ ωt(st)

)
∇ωV̂

ωt(st). (3.12)

The Monte-Carlo version of the algorithm is then an instance of Stochastic Gradient
Descent (SGD), where the loss function is the Mean Squared Error (MSE) from equa-
tion 3.1, while the TD approach follows only a semi-gradient update since the TDE is
considered as constant instead of dependent on the current parametrization ωt in the
computation of the gradient. Convergence to a local minimum of Monte-Carlo can be
proved under Robbins-Monro conditions for the learning rate and regularity assump-
tions for V ω (Bottou et al., 1998). Global minimum can be provably reached in the
case of linear function approximation (3.2) if the approximation is realizable. For what
concerns TD learning, due to bootstrapping, convergence is guaranteed only for linear
approximations with Robbins-Monro step-sizes (Tsitsiklis and Van Roy, 1996).

3.4 Value-Based Control

In this section, we move from the prediction task to control. While policy-based algo-
rithms directly optimize a parametric representation of the policy (section 3.5), Value-
based approaches retrieve an approximation of the optimal policy starting from an es-
timation of the optimal value function. In this sense, these methods are based upon
estimations of the Q-value function to have the possibility to extract its greedy pol-
icy. In the following, we introduce some fundamental value-based control algorithms,
SARSA and Q-Learning, which respectively represent the TD generalizations of policy
iteration 2.4.2 and value iteration 2.4.1. They focus on learning the optimal quality
function Q⋆(s, a) for all state-action pairs in a tabular setting. The adopted algorithms
must once again deal with function approximation to deal with realistic settings. In
section 3.4.3, we introduce some important approaches that will extensively be adopted
in the rest of this dissertation.

Notation For ease and clarity, in the following sections, we will drop the notation Q̂ to
denote an estimation of the value function in favor of a simple Q term whenever clear
from the context.

2under the assumption that V ω is differentiable w.r.t. ω for all ω ∈ Ω.
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3.4. Value-Based Control

3.4.1 SARSA

One of the most adopted value-based algorithms is SARSA (Rummery and Niranjan,
1994). It is the RL analogous of Policy Iteration, as it comprises two main steps: Policy
Evaluation and Policy Improvement.

Policy Evaluation In this case, there is no knowledge of the dynamics of the environ-
ment; thus Policy Evaluation step is performed by means of TD learning. This algo-
rithm is on-policy; hence it performs updates using the experience gathered by fol-
lowing the same policy being learned. Formally, at iteration t an interaction tuple
(st, at, rt, st+1, at+1) is collected, and the Q value function is modified according to
the general TD update rule:

Q(t+1)(st, at) = Q(t)(st, at) + αtδt,

where δt is the TD error defined in Equation 3.11. As with the prediction task, it is
possible to consider longer trajectories in the update rule to obtain SARSA(n) in the
same fashion as with TD(n), or to adopt eligibility traces (Van Seijen et al., 2016).
A further refinement allows reducing the variance related to the next action at+1 by
computing an expectation w.r.t. the current policy. The resulting algorithm, named
Expected SARSA, considers then the following TD error:

δt = rt + γ E
a′∼π(·|st+1)

[
Q(t)(st+1, a

′)

]
−Q(t)(st, at).

Policy Improvement As in Policy Iteration, the first step allows to obtain an estima-
tion of the value function of a policy πt. In Dynamic Programming, the Policy Im-
provement step involves then the extraction of the greedy-policy w.r.t. Q(t) to retrieve
a better-performing policy πt+1. If the information on the environment is only pro-
vided through empirical interactions, greedy policies are not the best choice, as they
perform exploitation of the limited experience collected, which might be insufficient.
More exploration is needed, and literature provided different solutions to balance the
exploration-exploitation trade-off.

The most adopted techniques do not account for uncertainty in the estimations to
drive the exploratory behavior: for this reason, they are denoted as undirected explo-
ration strategies. In the case of a discrete action space, the most adopted solution is the
ϵ−greedy policy:

Definition 3.1 (ϵ-Greedy Policy). Let f : S × A → R be a bounded, measurable
function, and let ϵ ∈ [0, 1]. A policy π ∈ Π is denoted as ϵ-greedy with respect to f if,
for all (s, a) ∈ S ×A:

π(a|s) =
{

ϵ
|A| + 1− ϵ if a = argmaxa∈A f(s, a),
ϵ

|A| otherwise.
(3.13)

In brief, the greedy action is chosen with probability 1 − ϵ; otherwise, the action is
sampled uniformly in the whole action space. In later sections, we will refer to an ϵ-
greedy policy w.r.t. a value function Q as πϵQ. If ϵ = 0, it reduces to the greedy policy.
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The main drawback of ϵ-greedy policies is that they do not leverage the information
available to the agent to drive the distribution over the actions. The estimations of the
value functions are instead considered in the case of Boltzmann policies (or Softmax):

Definition 3.2 (Boltzmann Policy). Let f : S × A → R be a bounded, measurable
function, and let τ > 0. A policy π ∈ Π is denoted as Boltzmann with respect to f if,
for all (s, a) ∈ S ×A:

π(a|s) = e
Q(s,a)

τ

∑
a′∈A e

Q(s,a′)
τ

. (3.14)

The parameter τ , called temperature, controls the exploration rate, and the greedy
policy is the degenerate case for τ → 0. Clearly, this technique can be extended for
continuous action spaces. Convergence to the optimal policy is granted for SARSA if
the exploration policies are GLIE (Greedy in the Limit with Infinite Exploration), i.e.,
all state-action pairs are visited an infinite number of times and, in the limit for t→∞,
they tend to the greedy policies:

Theorem 3.3 (Convergence of SARSA, Theorem 1 (Singh et al., 2000)). LetM be a
discrete MDP, with the Q-values stored in a lookup table. If:

1. each action is executed infinitely often in every state, which is visited infinitely
often;

2. in the limit for t → ∞, the learning policy is a.s. greedy with respect to the
Q-value function Q(t);

3. The step sizes {αt}t satisfy the Robbins-Monro conditions;

4. Var[R(s, a)] <∞ ∀(s, a) ∈ S ×A;3

then, Q(t) converges to Q⋆, and the learning policy πt converges to π⋆.

In the case of ϵ-greedy policies, the GLIE assumption hold if ϵ → 0, while Boltz-
mann policies require that τ → 0.

Albeit the optimal policy is guaranteed to be reached, these exploration methods are
far from being efficient. Provable efficiency holds instead for directed methods, which
account for uncertainty in theQ value estimation, and formalize exploration in the form
of a bonus function (Kearns and Singh, 2002; Strehl and Littman, 2005, 2008; Jin et al.,
2020). Often, these methods are count-based, meaning that the number of visitations
to each state-action pair is explicitly stored. The effect is to direct the agent to explore
actions with uncertain utility.

3.4.2 Q-learning

While SARSA is the TD learning version of Policy Iteration, the corresponding algo-
rithm for Value Iteration is Q-learning (Watkins and Dayan, 1992). Unlike SARSA,
it is an off-policy approach; hence a behavioral policy is responsible for exploration,
while the value function learned is related to a different policy, in our case, the optimal
one. Q-learning relies upon the iterative application of the empirical version of the
Bellman Optimality Operator T ⋆:

3this assumption is trivially satisfied under Assumption 2.1.
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3.4. Value-Based Control

Algorithm 1 Q-learning

Require: Learning rate sequence {αt}t, exploration coefficient ϵ, number of episodes N
Ensure: Q-function estimation

1: Initialize Q(0) arbitrarily
2: for episode = 1, . . . , N do
3: t← 0
4: while st is not terminal do
5: at ∼ πϵ

Q(t)(st)
6: Take action at, observe st+1, rt
7: Compute TDE:

δt = rt + γmax
a∈A

{
Q(t)(st+1, a)

}
−Q(t)(st, at)

8: Update Q:
Q(t+1)(st, at) = Q(t)(st, at) + αtδt

9: t← t+ 1
10: end while
11: end for

Definition 3.4 (Empirical Bellman Optimality Operators). Let M be an MDP. Con-
sider a bounded, measurable function f : S ×A → R and a transition (s, a, r, s′). The
Empirical Bellman optimality operator T̂ ⋆ is defined as:

(T̂ ⋆f)(s, a) := r + γmax
a′∈A

f(s′, a′). (3.15)

In this case, convergence to the optimal policy is guaranteed without the need for
GLIE policies: the only assumptions, at least in the bounded reward scenario, are in-
finite visitation of each state-action pair and Robbins-Monro conditions (Singh et al.,
2000). The most adopted behavioral policy is the ϵ−greedy policy: the pseudocode of
Q-learning, with random exploration ratio driven by ϵ, is reported in Algorithm 1. In
Chapter 7, we will deal with an extension of this algorithm by means of action repeti-
tion.

3.4.3 Approximate Value Iteration

As presented in section 3.3, function approximation is needed when the environment is
complex or continuous. Therefore, we need to resort to a function spaceF ⊆ B(S×A)
of measurable functions on S ×A, and the goal is to find the best approximation of the
optimal value function within such space:

Q̃ ∈ argmin
f∈F

{
∥f −Q⋆∥p,ρ

}
,

for some distribution ρ over S × A, and p ≥ 1. The case p = 2 reduces to the mini-
mization of the RMSE, while for p =∞ we try to minimize the maximum discrepancy
between Q̃ and Q⋆ on the whole space S×A. The solution Q̃ attains a loss equal to the
bias of the function class and allows to extract a greedy policy π̃ whose performances
are close to the optimal policy, as in (Singh and Yee, 1994):

V π̃(s) ≥ V ⋆(s)− 2

1− γ ∥Q̃−Q
⋆∥∞ ∀s ∈ S.
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Figure 3.1: Illustration of AVI. T̂ ⋆ is the empirical Bellman Optimal Operator 3.4. Y are the estimates
produced by such operator. The next estimation of the optimal value function is then retrieved through
to the projection ΠF of the targets Y on the functional space F .

Function approximation methods can be either applied to extend Policy Iteration or
Value Iteration approaches; thus the resulting classes of algorithms are referred to as
Approximate Policy Iteration (API, Scherrer (2014)) and AVI. In particular, in the latter
family of algorithms, the optimal value function estimations are updated by employing
the empirical Bellman Operator T̂ ⋆: this operator is applied on a batch of transitions
D = {(si, ai, ri, s′i)}i, collected following a certain distribution ρ. Eventually, the next
estimator of the optimal quality function is retrieved by applying a projection (denoted
as ΠF ) of the targets onto the function space F . In brief, the update rule can be sum-
marized as Q(t+1) = ΠF T̂ ⋆Q(t). A graphical representation of the update sequence is
reported in Figure 3.1. Consequently, AVI methods suffer from two different sources of
approximations: the first is the estimation error due to the application of the empirical
version of the Bellman operator. The second one is generated from the projection pro-
cedure, usually performed through least square regression. These two effects generate
an overall approximation error denoted as ϵ:

ϵ(t) := T ⋆Q(t) −Q(t+1).

Several contributions in literature (Bertsekas and Tsitsiklis, 1996; Munos, 2005; An-
tos et al., 2008; Munos and Szepesvári, 2008) provide important theoretical results on
convergence properties and error propagation in AVI. In particular, we report a result
presented in Farahmand 2011, which studies the propagation of approximation errors to
bound the distance between the optimal value function Q⋆ and the Q-function obtained
after T iterations of AVI.

Theorem 3.5 (Error Propagation for AVI. Farahmand 2011, Theorem 3.4). Let p ≥ 1.
Consider a target distribution ρ ∈ ∆S×A, a sampling distribution ν ∈ ∆S×A. Finally,
consider any sequence (Q(t))Tt=0 ⊂ F uniformly bounded by Qmax ≤ Rmax

1−γ generated
by performing AVI with a dataset of tuples sampled from ν, and the corresponding
sequence of approximation errors (ϵ(t))T−1

t=0 . Then, for any r ∈ [0, 1], it holds that:

∥Q⋆ −Qπ̃∥p,ρ ≤
2γ

(1− γ)2
[

2

1− γ γ
T
pRmax + C

1
2p

VI,ρ,ν(T, r)E
1
2p (ϵ(0), . . . , ϵ(T−1); r)

]
,

where the full expressions of CVI,ρ,ν(T ; r) and E can be found in (Farahmand, 2011).

The term CVI,ρ,ν(T ; r) is a concentrability coefficient taking into account the dis-
tribution shift between the sampling distribution ν and the joint distribution obtained
from the target ρ and the policies {π(t)}t. The error term E instead accumulates the ap-
proximation errors and can be further analyzed for specific choices of function spaces.
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3.4. Value-Based Control

Algorithm 2 Fitted Q-Iteration

Require: T number of iterations, Q(0) initial action-value function,
F functional space, D = {(si, ai, s′i, ri)}

|D|
i=1 batch samples

Ensure: greedy policy π̃
1: for t = 0, . . . , T − 1 do
2: Build TS = {(xi, yi)}i:

xi = (si, ai)

yi = ri + γmax
a∈A

Q(t)(si, a)

3: perform regression on TS to induce Q(t+1):

Q(t+1) ∈ arginf
f∈F

∥f − y∥22,D

4: end for

5: Extract greedy policy
π̃(s) ∈ argmax

a∈A
Q(T )(s, a), ∀s ∈ S.

While a complete analysis of the error propagation of AVI algorithms is in general out
of the scope of this dissertation, we will extend and compare the results of Theorem 3.5
in Chapter 6.

A plethora of different algorithms have been developed inside the class of value-
based methods with function approximation, especially due to their impressive result
in very complex domains (Mnih et al., 2015), or real-world scenarios (Castelletti et al.,
2010; Bisi et al., 2020b; Riva et al., 2021). The majority of the literature is devoted to
studying discrete action spaces, although several extensions have also been proposed to
deal with the continuous setting (Antos et al., 2007; Gu et al., 2016). In the following,
we provide further details regarding two practical AVI algorithms: the first is Fitted Q-
Iteration (FQI, Ernst et al. (2005)), an offline algorithm adopted multiple times within
this dissertation (4 5 and 6), and Deep Q-Network (DQN, Mnih et al. (2015, 2016)),
an online method that became very popular for its effectiveness albeit the lack of con-
vergence guarantees. In particular, DQN is parameter-based, as the Q-value function is
approximated through a parameter vector ω in a parameter space Ω. In this case, the
general update rule to detect the next Q estimation follows the (semi-)gradient induced
by the empirical Bellman optimality operator:

ωt+1 = ωt + αt

(
r + γmax

a′∈A

{
Qωt(s, a′)

}
−Qωt(s, a)

)
∇ωQ

ωt(s, a), (3.16)

under the non limiting assumption that the Q-value function is differentiable w.r.t.
∀ω ∈ Ω.

FQI Fitted Q-Iteration (Ernst et al., 2005) is an off-policy and offline AVI algorithm.
While standard methods adopt least square regression to project the empirical Bellman
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targets on the selected function space F , the innovative approach of FQI consists of
the iterative application of Supervised Learning techniques to provide more refined es-
timations of the optimal value function. These techniques can be either parametric, as
multilayer perceptrons (Riedmiller, 2005), or parameter-free, like the original (Ernst
et al., 2005) which adopted a tree-based regression. In our work, we will extensively
adopt Extra Trees and Random Forests (Geurts et al., 2006; Breiman, 2001) as regres-
sion methods. Being an offline algorithm, FQI considers a dataset D containing the
information collected from experience in the form of transitions. At each iteration of
the algorithm, the horizon considered for the Q-value estimation increases by one step:
specifically, given Q(t−1), the training set TS = {(xi, yi)}i=1,...,|D| is built, where each
input is equivalent to the state-action pair (i.e., xi = (si, ai)), and the target is the result
of the empirical Bellman optimality operator T̂ ⋆: yi = ri + γmaxa∈AQ(t−1)(s′i, a). In
this way, the regression algorithm adopted is trained on TS to learn Q(t), with the goal
of minimizing the overall MSE. After T iterations, the greedy policy is extracted to
obtain an approximation of the optimal one.

DQN One of the groundbreaking works that brought RL research into the spotlight
in recent years is DQN. This algorithm combines the large the powerful approxima-
tion capabilities of Deep Learning to address function approximation in RL. Although
this Deep Reinforcement Learning (DRL) algorithm does not have robust convergence
guarantees, the huge success of DQN is due to its extraordinarily successful application
in playing Atari 2600 games from visual input. The most important features, albeit the
adoption of convolutional neural networks to deal with image-based state representa-
tions, are some tweaks that allow for avoiding divergent learning, a very common and
undesired behavior in complex MDPs. The first contribution is the introduction of tar-
get networks: they are a copy of the network parameters ω− that is kept as constant
with only a periodic update and used to evaluate the empirical Bellman operator T̂ ⋆ as
follows:

ωt+1 = ωt + αt

(
r + γmax

a′∈A

{
Qω−

(s, a′)
}
−Qωt(s, a)

)
∇ωQ

ωt(s, a);

in this way, the very frequent changes in the parameters ω do not show drastic impacts
on the TD errors for the next updates, with the result of stabilizing the overall learning
process. The second, equally important feature is the adoption of experience replay
buffer. When the interaction with the environment is performed to collect samples,
contiguous transitions within the same trajectories are usually correlated. In the replay
buffer, past transitions are stored and, at each iteration, a batch of tuples is randomly
sampled; hence the collected data is less correlated. While in the original version of
DQN, a uniform distribution is used to extract the tuples in the batch, later implemen-
tations adopted prioritized experience replay (Schaul et al., 2015), which increases the
weight of tuples related to higher TD errors. In Chapter 7 we will introduce a variant
of the DQN algorithm to take into account different durations of the actions.

Double Q-learning As the iterative application of the operator T̂ ⋆ is performed, the se-
quence of Q-value function approximations can degrade the overall performance of the
algorithm. One result regarding error propagation is, for instance, reported in Theorem
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3.5. Policy Search

3.5. In particular, one of the sources of errors is the overestimation bias due to the
computation of the maximum over a noisy Q function. To countermeasure this ten-
dency, (Hasselt, 2010) introduces Double Q-Learning, where the action selection and
the value estimation are decoupled through two different value function estimations,
Q

(t)
1 and Q(t)

2 . In the update step, for each transition (s, a, r, s′), each target for one Q
function is computed by considering its greedy action evaluated by the other one:

y1 = r + γQ
(t)
1 (s′,max

a∈ A
Q

(t)
2 (s′, a));

y2 = r + γQ
(t)
2 (s′,max

a∈A
Q

(t)
1 (s′, a)).

Therefore, the next estimations are induced by performing the projections of the result-
ing targets over the selected function space. (Fujimoto et al., 2018) suggests instead
using the overestimations to build approximate upper bounds to the true value esti-
mate to drive the estimators in the opposite direction. This results in Clipped Double
Q-learning, where the targets of the operators are the same for the two estimators:

y1 = y2 = r + γmax
a∈A

{
min
i=1,2

Q
(t)
i (s′, a)

}
.

Another variant is introduced with Dueling DQN (Wang et al., 2016), where the Q-
value function is decomposed into the sum of a value function V and of the advantage
function A so as to include an inductive bias. The Double Q-learning modification and
other refinements were combined and applied on DQN to form Rainbow (Hessel et al.,
2018), one of the state-of-the-art algorithms for value-based RL.

3.5 Policy Search

In the previous section, we provided some of the most known value-based algorithms,
where the main task is the best representation of the optimal value function. When
the action space is continuous, the identification of the greedy action can be compu-
tationally expensive, even after a fine-grained discretization. One solution consists in
adopting policy optimization or policy search algorithms (Deisenroth et al., 2013): they
are designed to search for the optimal solution directly over the space of policies with-
out the need to retrieve the target policy from other learned objects, such as the value
function. The vast majority of policy search algorithms belongs to the class of Pol-
icy Gradient (PG, Williams (1992); Baxter and Bartlett (2001)) methods, which adopt
parametric policies: the solution is thus searched within the space ΠΘ of policies that
can be represented through a parameter vector θ ∈ Θ ⊆ Rm. For each parameter vector
θ, the related policy is denoted as πθ : S → ∆A. An important assumption usually
adopted in this framework is that πθ is a stochastic policy and differentiable w.r.t. θ for
all θ ∈ Θ.

Notation When parametric policies are considered, we will often abbreviate the depen-
dency on πθ as θ in function arguments, superscripts, and subscripts. for instance, the
state-occupancy measure δµπθ will be denoted as δµθ ; Qθ is the short version of Qπθ and
J(θ) is the short version of J(πθ).
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Policy Optimization and Policy Gradient Theorem As said, instead of trying to approximate
the optimal value function, Policy Search algorithms directly try to optimize the policy.
To do that, a total order relation is required among parametrizations. The value func-
tion V provides only a partial order; hence the optimization is performed on a scalar
performance measure, the return J(π). Indeed, we can say that a policy π′ is better
or equivalent than π if J(π′) ≥ J(π). Under the assumption that a policy is differen-
tiable w.r.t. the policy parameters θ, then the same property also holds for J(θ). As
a straightforward consequence, if we can compute the gradient of the expected return,
then we can follow it in a Stochastic Gradient Ascent (SGA) manner to optimize the
policy. Fortunately, the Policy Gradient Theorem (PGT) provides a very useful way to
compute this gradient term, providing thus a fundamental building block for all pol-
icy search methods, for this reason, also denoted as Policy Gradient approaches. To
provide the reader with the Theorem, we first need to include a useful lemma:

Lemma 3.6 (From Lemma 20 in (Ciosek and Whiteson, 2020)). Let π : S → ∆A, and
let f and g be integrable functions on S such that, for all s ∈ S:

f(s) = g(s) + γ

∫

S
pπ(s

′|s)f(s′) ds′.

Then:
f(s) = g(s) +

γ

1− γ

∫

S
dπs (s

′)g(s′)ds′.

The importance of this lemma is twofold: firstly, it will be used later to prove the
Policy Gradient Theorem 3.8; furthermore, it allows us to completely rethink the ex-
pected return in terms of the only reward function and the visitation probability of
each state-action pair according to the state-occupancy measure. Indeed, the following
corollary holds:

Corollary 3.7. LetM be an MDP, and let π : S → ∆A. Then:

J(π) =
1

1− γ E
(s,a)∼νµπ

[
r(s, a)

]
. (3.17)

Proof. We start by considering the value function of the policy π

V π(s) =

∫

A
π(a|s)Qπ(s, a) da

=

∫

A
π(a|s)r(s, a) da+ γ

∫

A
π(a|s)

∫

S
p(s′|s, a)V π(s′) ds′ (3.18)

=

∫

S
π(a|s)r(s, a) da+ γ

1− γ

∫

S
δπs (s

′)

∫

A
π(a′|s′)R(s′, a′) da′ ds′, (3.19)

where in 3.18 we simply applied the Bellman equation 2.15 and in 3.19 we used the
previous Lemma 3.6. Now, we simply recall definition 2.14 for the expected return:

J(π) =

∫

S
µ(s)V π(s) ds

=

∫

S

[
µ(s) +

γ

1− γ

∫

S
δπs0µ(s0) ds0

] ∫

A
π(a|s)r(s, a) da ds

=
1

1− γ

∫

S
δπµ(s)

∫

A
π(a|s)r(s, a) da ds, (3.20)
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3.5. Policy Search

where in 3.20 we applied the definition of δπµ in Equation 2.8.

We can now state the main theorem:

Theorem 3.8 (Policy Gradient Theorem (Sutton et al., 1999a)). Let M be an MDP,
and let π : S → ∆A be differentiable w.r.t. θ. Then:

∇θJ(θ) =
1

1− γ

∫

S
δθµ(s)

∫

A
πθ(a|s)∇θ log πθ(a|s)Qθ(s, a) da ds. (3.21)

Proof. Starting once again from the Bellman equation 2.15:

∇θQ
θ(s, a) = ∇θ

[
r(s, a) + γ

∫

S
p(s′|s, a)V θ(s′) ds′

]

= γ

∫

S
p(s′|s, a)∇θV

θ(s′) ds′

Furthermore:

∇θV
π(s) = ∇θ

∫

A
πθ(a|s)Qθ(s, a) da

=

∫

A
∇θπθ(a|s)Qθ(a|s) da+

∫

A
πθ(a|s)∇θQ

θ(s, a) da

=

∫

A
∇θπθ(a|s)Qθ(a|s) da+ γ

∫

A
πθ(a|s)

∫

S
p(s′|s, a)∇θV

θ(s′) ds′ da

=

∫

A

∇θπθ(a|s)Qθ(s, a) da+
γ

1− γ

∫

S
δθs (s

′)

∫

A
πθ(a

′|s′)R(s′, a′) da′ ds′,

where in the last equality we applied Lemma 3.6, with g(s) =
∫
A∇θπθ(a|s)Qθ(s, a) da.

Using the same arguments as in Corollary 3.7:

∇θJ(θ) = ∇θ

∫

S
µ(s)V θ(s) ds

=

∫

S

[
µ(s) +

γ

1− γ

∫

S
δθs0(s)µ(s0) ds0

] ∫

A
∇θπθ(a|s)Qθ(s, a) da ds

=
1

1− γ

∫

S
δθµ(s)

∫

A
∇θπθ(a|s)Qθ(s, a) da ds

=
1

1− γ

∫

S
δθµ(s)

∫

A
πθ(a|s)∇θ log πθ(a|s)Qθ(s, a) da ds,

where in the last equation we applied the log-trick: ∇f = f∇ log f .

From the statement, a new term is introduced, the score function of a policy, i.e.,
∇θ log πθ(·|s). In a sense, the score can be understood as the direction in the parameter
space Θ that allows maximization of the likelihood that an action is chosen by the policy
in a state. The policy gradient can then be understood as the expected value under the
state-action occupancy measure of the Q value function multiplied by the policy score.
As a final remark, one of the most important generalizations of the Policy Gradient
Theorem consists in the inclusion of a baseline in the gradient term, i.e., an integrable
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Algorithm 3 Actor-only Policy Gradient

Require: initial policy parametrization θ0, stepsize sequence {αt}t, batch size N .
Ensure: policy πθT

1: for t = 0, 1, . . . do
2: Collect N trajectories {τi}Ni=1 such that τi ∼ ρθt .
3: Compute Policy Gradient estimate ∇̂J(θt).
4: Update parameters θt+1 = θt + αt∇̂J(θt).
5: end for

function b : S → R that allows reducing the variance of the related estimators. Indeed,
we can first consider that:

∫

S
δθµ(s)

∫

A
∇θπθ(a|s)b(s) da ds =

∫

S
δθµ(s)b(s)∇θ

∫

A
πθ(a|s) da

︸ ︷︷ ︸
1

ds = 0.

As a consequence, the Policy Gradient Theorem also holds in the following form:

∇θJ(θ) =
1

1− γ E
(s,a)∼νθ

[
Qθ(s, a)− b(s)

]
. (3.22)

One of the most common baselines adopted (if explicitly computed) is the value func-
tion V θ. In this case, the gradient is retrieved by considering the advantage function
Aθ.

Policy Gradient estimators The policy-gradient-based algorithms that do not compute an
explicit estimation of the action-value function Qθ are denoted as actor-only, and they
typically resort to an estimator ∇̂J(θ) of the true policy gradient. Hence, the general
procedure of these techniques, denoted as vanilla policy gradient, is the one reported
in Algorithm 3(Peters and Schaal, 2006): at each iteration, a batch of N trajectories
is collected from the interaction of the current policy πθt with the environment, in an
on-policy fashion. The generated batch is then used to compute an unbiased Monte
Carlo estimator of the policy gradient ∇̂θJ(θt). Finally, the next parameterization is
obtained through a SGA update rule:

θt+1 = θt + αt∇̂θJ(θt),

where αt is the learning rate. Differently from Value Based approaches, Policy-based
methods can only be proven to converge to a local optimum (Bottou et al., 1998; Sutton
et al., 1999a) under regularity assumptions on J(θ) and on the stepsizes, which need to
satisfy limt→∞ αt = 0 and that

∑
t αt =∞. However, PG estimators usually have high

variance, for which tuning the stepsize can be very difficult: lower learning rates grant
safer but slow learning, while high learning rates can lead to instabilities (Papini et al.,
2019). The learning rate then requires careful tuning, and different solutions have been
provided. Further discussions are provided in Part I.

REINFORCE The first and most known estimator for the policy gradient was intro-
duced in (Williams, 1992). It is actually derived from a different version of the PG
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3.5. Policy Search

Theorem; indeed, a non trivial consequence of Corollary 3.7 is the following:

J(π) =
1

1− γ E
(s,a)∼νµπ

[r(s, a)] = E
τ∼ρπ

[G(τ)],

where G(τ) is the return of the trajectory τ and the distribution over trajectories ρπ
is defined in 2.4. Consequently, the gradient of the expected return w.r.t. the policy
parameters can be computed as follows:

∇θJ(θ) = ∇θ

∫

T
ρθ(τ)G(τ) dτ =

∫

T
∇θρθ(τ)G(τ) dτ

= E
τ∼ρθ

[
∇θ log ρθ(τ)G(τ)

]
= E

τ∼ρθ

[ T (τ)−1∑

t=0

∇θ log πθ(at|st)G(τ)
]

REINFORCE algorithm is trivially the Monte-Carlo (unbiased) estimation of this equa-
tion through a batch of N trajectories:

∇̂θJ(θ) :=
1

N

N∑

i=1

T (τi)−1∑

t=0

∇θ log πθ(a
i
t|sit)G(τi). (3.23)

PGT and G(PO)MDP REINFORCE estimator 3.23 suffers from high variance. To re-
duce it, one can resort to a state-dependent baseline. Otherwise, it is possible to con-
sider that this estimator contains many redundant terms: indeed, the policy score re-
lated to a specific action at in a trajectory is multiplied by its overall return G(τ), even
though past rewards are independent of that future action. Trivially, the causality be-
tween actions and future rewards can be considered by removing past rewards from the
gradient computation. The result is another estimator, simply denoted as Monte-Carlo
PGT (Sutton et al., 1999a):

∇̂θJ(θ) :=
1

N

N∑

i=1

T (τi)−1∑

t=0

∇θ log πθ(a
i
t|sit)Gt(τi). (3.24)

As the name suggests, this estimator is actually the Monte-Carlo version of Equation
3.21. Its unbiasedness is straightforward, once we recall that the return-to-go Gt(τ)
observed starting from (st, at) and then following policy πθ is an unbiased estimate of
Qθ(st, at). Another estimator, developed in (Baxter and Bartlett, 2001), directly ex-
ploits the independence of actions and past rewards to refine REINFORCE. The result-
ing estimator, G(PO)MDP was implemented autonomously from Monte-Carlo PGT,
although later (Peters and Schaal, 2008) proved that they are equivalent.

Actor-Critic Algorithms

In the previous sections, we have seen that the variance of the policy gradient estimators
can be reduced via baseline functions. In this sense, one can include estimators of the
value function V θ. Algorithms that adopt a value function estimation to improve the
policy gradient updates are denoted as Actor-Critic methods (Konda and Tsitsiklis,
1999); the actor is the policy, and the actions are evaluated by the critic, which is
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the value function estimator V ω, that can be learned through any of the prediction
methods reviewed in Section 3.3. Thus, instead of taking into account the entire batch
of trajectories to provide an estimation of the Q function, we can consider the TD(0)
target G(t). Moreover, we can also replace the baseline b(s) from 3.22 with the critic
V ω(s), and no bias is added to the estimator. This choice leads to the following gradient
computation:

∇θJ(θ) =
1

N

N∑

i=1

T (τi)−1∑

t=0

∇θ log πθ(a
i
t|sit)

(
rt + γV ω(st+1)− V ω(st)

)
.

This approach is known by the name of Advantage Actor Critic (A2C, Sutton and Barto
(1998)) since the TD target represents an estimation of the advantage function. Another
solution consists in directly replacing the Q-value function in the policy gradient theo-
rem with a parametrized estimator Qω. This choice usually introduces a small bias in
the policy update. To avoid this bias, a sufficient condition in the design of the critic is
the compatible critic hypothesis, i.e.

∇ωQ
ω(s, a) = ∇θ log πθ(a|s) ∀(s, a) ∈ S ×A.

Natural Policy Gradient

One of the major drawbacks of the vanilla policy gradient approaches introduced in
the previous section is the high sensitivity of the gradient ∇θJ(θ) w.r.t. the policy
parametrization. This means that some parameter updates might have negligible effects,
while others might lead to unsafe behaviors with undesired performances. One solution
to avoid this behavior can be attained by applying a specific preconditioning matrix to
the estimated gradient employing the Fisher Information Matrix (FIM, Amari (1998)).
The FIM of a state s ∈ S is mathematically defined as the covariance of the score, or
likelihood, of a probability measure: it measures the amount of information related to
θ carried by the sampled action:

Fs(θ) := E
a∼πθ(·|s)

[
∇θ log πθ(a|s)∇θ log πθ(a|s)⊤

]
.

As described in (Amari, 1998), the FIM is invariant w.r.t. changes in the parameter
space Θ. To relate this information measure to the likelihood of the actions taken into
account in the computation of the policy gradient, we need to marginalize the Fisher
information under the state-occupancy measure:

F (θ) :=
1

1− γ E
s∼δθµ

[Fs(θ)].

An important variation on the PG approach consists then in the application of the in-
verse FIM as a preconditioning matrix of the policy gradient:

g(θ) := F (θ)−1∇θJ(θ). (3.25)

The resulting methodology is denoted as Natural Policy Gradient (NPG, Kakade (2001))
and is indeed covariant with respect to the policy parametrization (Peters et al., 2005).
Sometimes, this technique is also denoted as Natural Gradient Ascent (NGA). Another
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3.5. Policy Search

benefit of this new gradient is that the FIM includes information regarding the curva-
ture of the return manifold over the policy space; hence it follows the steepest ascent
direction and is close to a second-order method: this holds since F (θ) is equivalent to
the negative Hessian of the score function:

F (θ) = E
(s,a)∼νθµ

[−∇2
θ log πθ(a|s)].

Trivially, as PG approaches need estimators for the gradient, the FIM should be esti-
mated as well, but the computation of the inverse might become unfeasible for large
policy spaces: a common approach to avoid long computational times is to directly
provide an estimate of the natural gradient g(θ) by using the same batch of trajectories
considered for the gradient estimator, and through the iterative application of conjugate
gradient methods with the application of the Fisher-vector products (Schulman et al.,
2015).

3.5.1 Trust-Region Update

Policy Gradient Methods, if Natural Gradient is not taken into account, are first-order
methods and do not include any information related to the neighborhood of the current
policy. Thus, the choice of proper step sizes is very difficult due to the locality and the
variance in the estimations. Furthermore, the new policies obtained through linear up-
dates might induce a completely different occupancy distribution over the state-action
space, possibly leading to pejorative results.

An important result in this direction is provided in (Kakade and Langford, 2002),
where we can compare the performances of two policies as an expected advantage

Theorem 3.9 (Performance Difference, Kakade and Langford 2002, Lemma 6.1). Let
M be an MDP, and π, π′ ∈ Π be two policies. Then:

J(π′)− J(π) =
∫

S
δπ

′

µ (s)

∫

A
π′(a|s)Aπ(s, a) da ds. (3.26)

Starting with this result, it is possible to derive some lower bounds of the perfor-
mances on the next policy from the advantage and the returns from the previous one.
Starting from API, (Kakade and Langford, 2002) provided the first monotonic improve-
ment guarantees, then extended in the policy search framework (Pirotta et al., 2013a,
2015; Papini et al., 2017). These works provide useful rules to select safe stepsizes
and, therefore, avoid catastrophic degeneration of the performances. In complex envi-
ronments, the required learning rates are usually very low for safety guarantees to hold,
and practitioners in RL seldom adopt these approaches for their slow learning.

One of the alternatives for this issue comes from Convex Optimization: while Line
Search (LS) methods first compute the update direction and afterward the stepsize,
Trust Region (TR) approaches aim to find the best solution within a certain region of
the parameter space. In this sense, they first set the trust region, i.e., the subspace of
solutions whose distance from the current one is lower than a certain threshold; af-
terward, they solve the subproblem constrained inside the trust region. In this way,
the next updates cannot differ too much from the previous iterations, and we can have

43



i
i

“output” — 2023/6/14 — 7:29 — page 44 — #66 i
i

i
i

i
i

reliable estimates of the future performance starting from the data gathered by the cur-
rent policy. In the following, we will provide further details regarding one of the most
known policy search algorithms: Trust Region Policy Optimization (TRPO, Schulman
et al. (2015)).

Trust Region Policy Optimization

The core idea of TRPO is directly related to the results presented in (Kakade and Lang-
ford, 2002). Indeed, starting from Theorem 3.9, we can notice that, to compute the
performance difference between the current policy π and the next candidate π′, we
need knowledge of the occupancy measure δπ′

µ , making the optimization process very
complex. Instead, from the computation of the policy gradient, we can have some
knowledge of the distribution δπµ ; thus, one can be interested in the optimization of a
surrogate objective:

Lπ(π
′) := J(π) +

∫

S
δπµ(s)

∫

A
π′(a|s)Aπ(s, a) da ds. (3.27)

This objective is a local approximation of J(π′) to the first order; hence it provides
some useful information on a neighborhood of π. Hence, a notion of distance in the
policy space is needed: in particular, we take into account the Kullback-Leibler diver-
gence (KL) divergence, a common (asymmetric) measure of dissimilarity between two
distributions, which will be fully defined in Chapter 5:

DKL(π(·|s)||π′(·|s)) :=
∫

A
π(a|s) log π(a|s)

π′(a|s) da.

The main result provided in (Schulman et al., 2015) allows relating the distance
between two policies and a lower bound on the expected improvement:4

Theorem 3.10 (Schulman et al. 2015, Theorem 1). Let α be the maximum KL diver-
gence, defined as:

α = Dmax
KL (π||π′) := max

s∈S
DKL

(
π(·|s)||π′(·|s)

)
.

Then:

J(π′) ≥ Lπ(π
′)− 4ϵγ

(1− γ)2α,

where ϵ := max(s,a)∈S×A |Aπ(s, a)|.

This equation trivially implies that the expected return J(π′) can be worse than its
surrogate approximation, but the loss is limited by a term directly depending on the
maximum KL distance. Consequently, the core idea of TRPO is the following: for
each iteration, instead of finding the optimal direction given by the gradient and then
following it for a given step-size, we can define a trust region around πθt and then

4In Theorem 3.10, we provide the formulation under the KL divergence as a distance between policy. In (Schulman et al.,
2015), a tighter bound is provided by using the total variation divergence.
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3.5. Policy Search

solving the following constrained optimization subproblem:5

argmax
θ∈Θ

Lθt(θ)

s.t. Dmax
KL (πθt || πθt+1) ≤ λ.

(3.28)

Here, we have introduced a new hyperparameter, λ, that replaces the stepsize term from
PG approaches. Fortunately, this problem admits a solution in closed form, which can
represent the entire TRPO in a single update rule:

θt+1 = θt +

√
2λ

∇θJ(θ)⊤F (θ)−1∇θJ(θ)
︸ ︷︷ ︸

=α(λ)

F (θ)−1∇θJ(θ) (3.29)

This last result represents the main relationship between the Trust Region update
in TRPO, and the Natural Policy Gradient presented in the previous section: Equation
3.29 is exactly the NPG update rule, with a stepsize αt dependent on the trust-region
constraint λ and on the second-order included within the FIM F (θ). This is actually be-
cause the FIM and the KL divergence are strictly connected, as the latter is the quadratic
approximator of the former:

DKL

(
πθ(·|s) || πθ′(·|s)

)
=

1

2
(θ′ − θ)⊤Fs(θ)(θ

′ − θ) + o
(
∥θ′ − θ∥3

)
.

A further approximation to TRPO is introduced in Proximal Policy Optimization (PPO,
Schulman et al. (2017)). It can be considered state of the art along with TRPO for its
impressive empirical results. In this algorithm, the KL constraint is removed, in favor of
a clipping factor added in the surrogate objective, with a similar ratio as the trust region.
The main important results of this algorithm are not only related to the experimental
improvements on some benchmark domains (Schulman et al., 2017) but also to the
lower computational complexity required to perform the iterations since it avoids the
estimation of the natural gradient.

TRPO implementation From a theoretical point of view, the results provided in (Schul-
man et al., 2015) justify the algorithm as a safe RL approach due to its monotonic
improvement guarantees, in the sense that, once the constraint λ is selected, the subse-
quent iterations of the update rule in Equation 3.29 are guaranteed to be better as the
lower bounds. From the empirical point of view, TRPO is considered a state-of-the-art
deep RL algorithm for continuous control due to its successful results in challeng-
ing high-dimensional control environments. However, the practical implementation of
TRPO, shown in Algorithm 4, is slightly different from the theoretical foundation, ar-
guably leading to question the true guarantees properties of the algorithm, sometimes
considered as a heuristics (Papini et al., 2019; Shani et al., 2020). Indeed, later works
provided theoretical justifications for the empirical algorithm (Neu et al., 2017) with
no monotonic guarantees (Shani et al., 2020). Apart from some approximations intro-
duced to estimate divergences and advantages, the main TRPO implementation requires

5As mentioned in Section 3.5, we slightly abuse the notation, and represent the parameters θ instead of the related policy πθ
as the arguments for the various terms. We keep the π term within the KL divergence term to remark that it is not a distance on the
parameter space Θ but on the policy space Π.
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Algorithm 4 Trust Region Policy Optimization (TRPO)

Require: initial policy parameter θ0, batch size N , maximum KL threshold λ
Ensure: policy πθT

1: for t = 0, . . . , T − 1 do
2: Collect N trajectories with θ0
3: Compute Monte-Carlo estimation of J(θt)
4: Estimate advantage values Aθt(s, a) (using any method of advantage estimation)
5: Use conjugate method to estimate natural gradient gt = ∇̃θt

J(θt)
6: Set initial stepsize as α = α(λ) from 3.29
7: while θt+1 is not set do
8: Set θ̃ = θt + αgt
9: Compute surrogate objective Lθt

(θ̃)

10: if Dmax
KL (πθt ||πθ̃) > λ or Lθt(θ̃) < J(θt) then

11: Set θt+1 = θ̃
12: else
13: Set α← α/2

14: end if
15: end while
16: end for

Double Check

Halving stepsize

two phases for each iteration: The first phase uses an iterative conjugate gradient op-
timization to find the search direction, to approximate the natural gradient using the
Fisher information matrix, as in Kakade and Langford (2002). Afterward, TRPO levers
a criteria-based line-search to obtain a feasible step size; starting from a maximum
threshold and following the direction found in the previous phase, the stepsize is iter-
atively halved if the trust region constraint in 3.28 is not satisfied or if the surrogate
function does not predict a return improvement w.r.t. the previous expected return.
These double checks are needed because the noise introduced in the aforementioned
approximations makes the empirical algorithm more unstable, and consequently, the
tuning process required to obtain an effective and reliable trust region constraint λ is
not trivial, as discussed later in Chapter 5.

3.6 Lipschitz MDP

We conclude the chapter by introducing some concepts of Lipschitz continuity and
Lipschitz MDPs. The seminal works in this direction are provided by (Rachelson and
Lagoudakis, 2010; Pirotta et al., 2015), to which the reader is invited to refer for a more
detailed overview. These notions will be adopted in Chapters 4 and 6 with other ad-hoc
assumptions to derive new results in specific settings.

The core idea in (Pirotta et al., 2015) is to provide a set of regularity assumptions on
the MDP under which it is possible to provide an upper bound for the stepsize in classic
PG algorithms with monotonic convergence guarantees. The main rationale is the same
as TRPO, related to the difficulty of tuning the stepsize in a trade-off between conver-
gence issues and slow learning. The introduced Lipschitz assumptions are related to the
smoothness of the transition and reward models: whenever similar actions are executed

46



i
i

“output” — 2023/6/14 — 7:29 — page 47 — #69 i
i

i
i

i
i

3.6. Lipschitz MDP

in similar states, the rewards and the next states will be similar. It is possible to prove
that, if the model and the policy adopted are Lipschitz-continuous, this property also
holds for the expected return and the policy gradient. The smoothness of the gradient
can then be adopted to the same extent as in standard optimization (Armijo, 1966) to
detect step sizes for which monotonic improvements are guaranteed.

Definition 3.11. Consider two metric spaces (X , dX ) and Y , dY).
A function f : X → Y is called Lf−Lipschitz continuous (in brief, Lf -LC), with
Lf > 0 denoted as Lipschitz constant, if:

dY
(
f(x), f(x′)

)
≤ LfdX

(
x, x′

)
, ∀x, x′ ∈ X . (3.30)

A function f : X → Y is called Pointwise Lipschitz continuous (PLC) in x ∈ X if there
exists Lf (x) < Lf such that:

dY
(
f(x), f(x′)

)
≤ Lf (x)dX

(
x, x′

)
, ∀x′ ∈ X .

Moreover, we can define the Lipschitz semi-norm of a function f in a function space
F(X ,Y):

∥f∥L := sup
x,x′∈X ,
x ̸=x′

{
dY
(
f(x), f(x′)

)

dX
(
x, x′

)
}
. (3.31)

When dealing with real functions, the usual metric adopted is the Euclidean distance:
d(x, x′) = ∥x − x′∥2, while for probability distributions, we usually employ the Kan-
torovich metric (or L1-Wasserstein): for p and q probability measures:

d(p, q) =W1(p, q) := sup
f :∥f∥L≤1

∣∣∣∣
∫

X
f(x)(p− q) dx

∣∣∣∣.

We now introduce the main assumptions leading to the definition of Lipschitz-MDP
and Lipschitz policy (Rachelson and Lagoudakis, 2010; Pirotta et al., 2015). A prelim-
inary, non-limiting assumption is that the state and action spaces S andA are complete
and separable metric spaces, respectively endowed with distances dS and dA. More-
over, the joint state-action space S × A is endowed with the taxicab norm:(Hinderer,
2005)

dS×A((s, a), (s, a))) = dS(s, s) + dA(a, a) ∀(s, a), (s, a) ∈ S ×A.
Assumption 3.1 (Lipschitz MDP). LetM be an MDP.M is called (LP , LR)−LC if
the transition model and the reward function are respectively LP−LC and LR−LC;
i.e., for all (s, a), (s, a) ∈ S ×A:

W1(P (·|s, a), P (·|s, a)) ≤ Lp dS×A((s, a), (s, a))

|r(s, a)− r(s, a)| ≤ LR dS×A((s, a), (s, a)).

The previous definition of Lipschitz return generally refers to the expected reward
r; of course, it is possible to generalize the concept to the reward model R.

Assumption 3.2 (Lipschitz Policy). Let π ∈ Π be a Markovian stationary policy. π is
called Lπ−LC if, for all s, s ∈ S:

W1(π(·|, s), π(·|, s)) ≤ LπdS(s, s).
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These assumptions are enough to prove that also the value functions are Lipschitz
continuous (LC):

Lemma 3.12 (Lipschitz value functions, Lemma 1 from Rachelson and Lagoudakis
2010). LetM be an (LP , LR)−LC MDP, and let π ∈ Π be Lπ-LC. If γLP (1+Lπ) < 1,
then the Q-function Qπ is LQπ -LC, and the value function Vπ is LVπ -LC with respect to
the joint state-action space:

LQπ =
LR

1− γLP (1 + Lπ)
; LVπ = LQπ(1− Lπ).

In policy-based algorithms, we usually deal with parametric policies; sometimes,
we will need to define the continuity of a policy in terms of its parameters:

Assumption 3.3 (Lipschitz Parametric Policy). Let Θ be a parameter space with dis-
tance dΘ. Let πθ ∈ Π be a Markovian stationary policy parametrized by θ ∈ Θ. π is
LC if it satisfies the following conditions:

1. State LC:W1

(
πθ(·|s), πθ(·|s)

)
≤ LπθdS(s, s) ∀θ ∈ Θ, ∀s, s ∈ S;

2. Parametric PLC:W1

(
πθ(·|s), πθ(·|s)

)
≤ Lπ(θ)dΘ(θ,θ) ∀s ∈ S, ∀θ,θ ∈ Θ.

From Assumption 3.3, the first condition requires that each parametrized policy
chooses similar actions in similar states; moreover, the second condition is related to
the smoothness of the parameter space, as similar parametrizations select similar ac-
tions in the same state.

Some final assumptions are related to the Lipschitz continuity and boundedness of
the gradient of the score function:

Assumption 3.4 (Lipschitz Score Gradient). Let Θ be a parameter space with distance
dΘ. Let πθ ∈ Π be a Markovian stationary policy parametrized by θ ∈ Θ. The gradient
of the policy logarithm satisfies the following conditions:

1. Uniformly bounded gradient: ∀(s, a) ∈ S ×A,∀θ ∈ Θ, ∀i = 1, . . . , d

|∇θi
log πθ(a | s)| ≤M i

θ;

2. State-action LC: ∀ (s, s, a, a) ∈ S2 ×A2,∀θ ∈ Θ, ∀i = 1 . . . , d

|∇θi
log πθ(a | s)−∇θi

log πθ (a | s)| ≤ Li∇ log πdS×A ((s, a), (s, a))
)
;

3. Parametric LC: ∀
(
θ,θ

)
∈ Θ,∀(s, a) ∈ S ×A,∀i = 1, . . . , d

|∇θi
log πθ(a | s)−∇θi

log πθ(a | s)| ≤ Li∇ log π(θ)dΘ
(
θ,θ

)
.

Given these assumptions, it is possible to prove the smoothness of both the expected
performance and the policy gradient (Pirotta et al., 2015):

Lemma 3.13 (Lipschitz continuity of the return). Given an (LP , LR)−LC MDP, the
expected return is Lipschitz Continuous w.r.t. the state-occupancy measure:

|Jθ − Jθ| ≤ LR
1− γW1(δ

θ
µ , δ

θ
µ) ∀θ,θ ∈ Θ.
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3.6. Lipschitz MDP

Moreover, if Assumption 3.3 holds with γLP (1 + Lπθ) < 1, the performance measure
if PLC w.r.t. the policy parameters:

|Jθ − Jθ| ≤ LJ(θ)dΘ(θ,θ),

where

LJ(θ) =
LRLπ(θ)

(1− γ)(1− γLP (1 + Lπθ))
. (3.32)

This result provides some guarantees that if the policy parametrization does not
change too much, the expected performances are similar: if the stepsize is small enough,
the result cannot be much worse. In conclusion, adding Assumption 3.4, the Policy
Gradient is also LC for a certain Lipschitz constant L∇J

, hence in similar parametriza-
tions, the directions of the updates are close. This result is then adopted to provide
some performance improvement guarantees, and to find the maximum constant stepsize
αt = 1/L∇J

for which we are guaranteed to obtain a minimum performance improve-
ment. For the purposes of this dissertation, we will not be interested in this particular
result. Instead, in Chapter 4 we will generalize the provided Lipschitz assumptions on a
family of MDPs to show that in similar environments the expected performance cannot
differ too much. Instead, in Chapter 6 we will add an assumption regarding the speed
of the evolution of the system, to bound the divergence in the occupancy measures
obtained through action repetition.
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Part I

Hyperparameter Optimization
through Meta Reinforcement Learning
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The main goal of Reinforcement Learning (RL, Sutton and Barto 1998) is to build
an agent capable of learning a behavior that maximizes the amount of reward collected
while interacting with the environment. One of the most successful streams of model-
free RL applications adopts policy-based algorithms, which provide solid theoretical
groundings and good empirical properties in continuous-action spaces. These tech-
niques make extensive use of hyper-parameters to let the user control their behavior,
such as the learning speed, the bias-variance trade-off, and many other aspects. Usually,
those hyper-parameters are fine-tuned by hands, which means that the same algorithm is
run multiple times to then select the best model in a validation instance. The choice of
those values may change the learning performance of the algorithm drastically, and the
same values may not perform equally on very similar tasks; this may require perform-
ing very careful fine-tuning sessions or starting from scratch the learning procedure
when the framework of the problem is modified.

In this part, we deal with the problem of Hyperparameter Optimization of policy-
based RL algorithms in the case the underlying MDP may be subject to variations in
the transition process or the reward model. In chapter 4, after providing a brief survey
of the related works, we devise the problem as a Meta-MDP, where the actions are the
hyperparameters selected. The consequent framework then allows increasing the num-
ber of degrees of freedom of the update rules adopted, with the consequent chance to
enhance its learning capabilities by adapting the hyperparameters to the current pol-
icy and the task provided. The per-step reward is learning: consequently, the goal is
optimizing the overall learning instance, differently from several other hyperparame-
ter optimization techniques, where the focus is on one-shot learning. Afterward, the
main approach is applied to selecting the learning rate in a SGA manner. In chapter
5, we try to overcome the main limitations of the previous approach by means of a set
of meta-features directly estimated on the sampled trajectories. The resulting method-
ology is then task-agnostic, i.e., it does not rely on an explicit parametrization of the
latent context, and it is policy-agnostic, meaning that it can generalize across different
policy classes. The resulting algorithm is then tested on the dynamic selection of the
trust region constraint for another well-known policy-based algorithm, TRPO.
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CHAPTER4
Hyperparameter Optimization as a Sequential

Decision Problem: Meta Learning the Step Size

4.1 Introduction

In the previous chapter, we have reviewed some of the most known RL algorithms:
in particular, policy-based algorithms are among the most widely adopted techniques
in model-free RL, thanks to their strong theoretical groundings and good properties in
continuous action spaces. Unfortunately, these methods require precise and problem-
specific hyperparameter tuning to achieve good performance and, as a consequence,
they tend to struggle when asked to accomplish a series of heterogeneous tasks. In
particular, the selection of the step size has a crucial impact on their ability to learn a
highly performing policy, affecting the speed and the stability of the training process
and often being the main culprit for poor results.

In this chapter, we introduce the general topic of Hyperparameter Optimization
(HO). In the related literature, a solution to the problem is usually searched within
a form of a static optimization process, where the configuration of the learning algo-
rithms is set as fixed throughout the whole training process. Instead, we tackle such a
problem as a Markov Decision Process, where the selection of each hyperparameter is
framed as a policy action, and the reward is provided by the improvement concerning
the expected return. In this manner, we adopt a dynamic hyperparameter selection with
more degrees of freedom. The goal is to train an adaptive model with respect to the
current solution and the context of the problem: in this regard, we take into account
families of environments where the overall dynamics depend on external parameters,
denoted as contexts or tasks (Hallak et al., 2015).

The formulation of the problem we provide, denoted as meta-MDP, can be classi-
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fied as a meta learning (ML) approach: this term is usually used to imply a raise in
the level of abstraction in the problem to be solved, and it is applied with a twofold
meaning. Very frequently, the main focus is devoted to learning how to learn (Schmid-
huber, 1987), i.e., developing models capable of exploiting and improving the learning
capabilities of standard algorithms. In this sense, HO operates within this point of
view since the goal is to tune the hyperparameter configurations to obtain better and
faster learning. Besides, meta-learning is also often referred to denote the generaliza-
tion capabilities of a learning algorithm with respect to the task it is aimed to solve
(Vanschoren, 2018). In this sense, the main idea is to gather information on how an al-
gorithm learns in some training instances, to then transfer learning to new tasks, which
can be solved more easily without the necessity of starting a learning procedure from
scratch. Following this line of thought, we want to exploit the learning capabilities of a
RL algorithm on a variable environment, i.e., where the transition process or the reward
model can vary with some latent variables: our meta-MDP approach can be adopted to
solve any hyperparameter selection problem for RL in contextual processes.

Chapter Outline This chapter is organized as follows: we start with Section 4.2, where
we motivate our approach, and we introduce the definition of a CMDP, with some
useful examples. Before delving into the main contributions, we briefly review the
literature related to HO and Meta-RL (Section 4.3). The definition of the problem as
a Meta-MDP is provided in Section 4.4: we discuss the main elements of the model,
such as the meta objective function, which is performance learning, and the meta ac-
tion, consisting in the hyperparameter selection for a policy update. In this framework,
we then add an assumption of Lipschitz continuity of the meta-MDPs, in which trajec-
tories sampled from similar contexts are similar. This is a reasonable assumption on
contextual processes, where a small change in the settings slightly changes the effects
on the dynamics of the environment. Under such conditions, it is possible to derive
some guarantees on the Lipschitz continuity of the expected return and its gradient
(Section 4.5). This is relevant, as it provides insight into the generalization capabili-
ties of meta-RL approaches, where the performance of policies selected by observing
tasks during training can be bounded for test tasks. Finally, in Section 4.6, we adopt
the proposed framework to the problem of optimizing the stepsize in policy gradient
instances. We attempt to solve the problem by learning a model trained by means of a
batch RL algorithm (FQI) to dynamically recommend the most adequate step size for
different policies and tasks. The learning procedure is based on a regression through
ExtraTrees (Geurts et al., 2006), which shows low sensitivity to the choice of its own
hyperparameters. In conclusion, we present an experimental campaign to show the ad-
vantages of selecting an adaptive learning rate in heterogeneous environments 4.7 and
try to provide some conclusions underlying the benefits and limitations of our approach
in Section 4.8. The proofs of all results are available in Appendix A.1.

4.2 Motivations

The main goal of Reinforcement Learning is to build an agent capable of learning the
behavior that maximizes the amount of reward collected while interacting with the en-
vironment. Among the most successful streams of model-free RL applications, we
can find policy-based algorithms 3.5, which provide solid theoretical groundings and
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4.2. Motivations

good empirical properties in continuous-action spaces. Unfortunately, these methods
require precise and problem-specific hyperparameter tuning to achieve good perfor-
mances, causing them to struggle when applied to a series of heterogeneous tasks. The
fundamental parameter to tune is the step size, which has a crucial impact on the ability
to learn a highly performing policy, affecting the speed and the stability of the train-
ing process and often being the main culprit for poor results. SGD theory provides
useful convergence guarantees to local optima under specific assumptions on the reg-
ularity of the environment (Bottou et al., 1998; Pirotta et al., 2015) and on the step-
size sequence, e.g., Robbins-Monro conditions. However, the typical environments are
complex, and the adopted assumptions can hold only with smaller and smaller learning
rates, often leading to unfeasible computational times required to reach convergence.
Consequently, practitioners usually do not rely on the theoretical properties related to
the selection of a specific learning rate but adopt several techniques based only on their
empirical results: among the most widely used methods, we can include monotonically
decreasing learning rate schedules (linearly or with exponential decay) and adaptive
optimizers, such as the very popular Adam optimizer (Kingma and Ba, 2014) and RM-
SProp (Tieleman and Hinton, 2017)), based on estimates of first and second moments of
the gradients. Despite their resulting efficiency in a large variety of environments, they
introduce more hyperparameters that still need to be tuned: indeed, the performances of
the related algorithms are typically very sensitive with respect to the hyperparameters
selected, and there is usually a very small range of effective values (Henderson et al.,
2018). From these considerations, the need of HO becomes clear: in Section 4.3 we
briefly review the most adopted methods for hyperparameter tuning.

A further complication of this framework comes from the fact that, in real-world
scenarios, there may be exogenous variables that can affect the whole dynamics of the
processes, which can be denoted as contexts or tasks. One way to accurately design this
kind of framework is by employing Contextual MDPs, introduced in Chapter 2:

Definition 4.1 (Contextual Markov Decision Process Hallak et al. 2015). A discrete-
time Contextual MDP is a tuple ⟨Ω,S,A,M⟩. Ω is called context space. S and A are
the state space and the action space, andM is a function mapping any context ω ∈ Ω
to an MDP with shared state and action spacesM(ω) = ⟨S,A, Pω, Rω, µω, γω⟩.

In brief, a CMDP includes in a single entity a set of tasks parametrized by a context
ω, affecting the dynamics of the environment and the reward process. In the following,
we will suppose that the initial distribution µ and the discount factor γ are also fixed
among the whole set of tasks. To have a clearer understanding of a CMDP, we provide
some examples.

Notation When CMDPs are considered, the performance of a policy π and the related
value functions are context-dependent. Consequently, we will include the subscript
ω, whenever needed. for instance, the expected return is denoted as Jω(π), or Jπω,
the contextual version of the action-value function is referred to as Qπ

ω, and the state-
occupancy measure is denoted as δµπ,ω. We remind the reader that the term ω in the
previous chapters was sometimes intended to denote the parameters of value function
estimators. In the following, we will only denote with ω the MDP context.
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Example 4.1 (Minigolf). Suppose the main goal is to learn how to play minigolf. The
overall environment is composed of the main field, the hole (goal), the ball, and the
club (one can also consider the player as part of the environment). The dynamics are
governed by the physical laws that provide the relationship between the input force
the player provides through the club and the ball (Penner, 2002). The dynamics are
influenced by many factors, such as the friction of the field, the size of the ball, or the
length of the club. Furthermore, a high reward is obtained when the ball reaches the
goal, which can differ for each hole. Hence, the player must plan his strategy (i.e., the
policy) based on the features of the field, the distance from the goal, and the size of the
club. A further distinction can be provided if we consider that the player can choose
among different clubs; hence the related features can be considered as configurable
(Metelli et al., 2018).

Example 4.2 (CartPole). Consider the classic CartPole problem introduced in (Barto
et al., 1990), where the goal is to balance a pole attached to a cart. The state of the
environment is usually designed as a four-dimensional vector: the position and the
velocity of the cart, the angle of the pole, and its rotation rate. The action space is
{0, 1}, denoting the direction (with a fixed force) the cart is pushed with (left or right).
Considering that the pole length and mass can vary, the optimal policy can change,
and the problem can become easier or more difficult. Hence we can consider as context
a bi-dimensional vector composed of these two features, affecting the transition of the
system.

Example 4.3 (Car race). Suppose a driver must learn to drive an F1 car and find the
best policy within a fixed track. The environment is composed of the car with all its
components and the road, and it is governed by the physical laws related to the car and
its interaction with the road. Even if the physical structure of the track and the car is the
same, the best policy can change with several external factors, such as the friction to
the road, its temperature, the weather, or tire consumption. Moreover, the driver must
adapt his strategy also concerning several possible vehicle configurations, such as the
engine setup and the kind of tires (soft, medium, hard). On the one hand, these can be
considered as configurable variables; on the other, each setup is related to a different
optimal behavior.

From the examples, it is clear that the goal in all these cases is not to find the best
policy in a fixed context but to be able to generalize to a possibly large set of tasks.
In some cases, these variables can be configured, and the objective is reduced to the
detection of the best policy-configuration pair (π,ω) such that the related expected
return is maximized. This particular framework is dealt with Configurable MDPs and
is out of the scope of this dissertation (we invite the reader to refer to (Metelli, 2021)
for a complete overview of the topic.

When dealing with a set of possible contexts, one can be interested in transfer learn-
ing (Lazaric et al., 2008; Lazaric, 2012), i.e., storing knowledge from already solved
tasks that can be useful to solve new, unseen contexts. Another possibility is to search
for a single efficient policy on the whole set of possible tasks: this is the case of multi-
task learning (Brunskill and Li, 2013; Sodhani et al., 2021). However, a larger number
of works in literature is devoted to Meta-learning, which is devoted to exploiting the
knowledge from already seen tasks, to rapidly adapt the learning algorithms to unseen
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4.3. Related Work

ones. For example, several works (Finn et al., 2017; Nichol and Schulman, 2018) are
focused on finding a suitable initial parametrization of the policy in such a way that
a low amount of gradient steps on a new task is enough to provide an efficient agent.
However, different contexts might present different challenges in the optimization pro-
cesses, and while being optimal for some tasks, a set of hyperparameters might be inef-
ficient and unsafe for others. Even though HO and Meta-Learning are often handled as
separate fields, they are often interconnected (Franceschi et al., 2017). In the following,
we consider the specific problem of learning how to dynamically tune the hyperparam-
eters (in particular, the step size) adaptively with respect to the policy parametrization
and the context of a CMDP. As a final remark, we consider that HO solutions are often
adapted to optimize any kind of learning process, not only RL-based. However, the
high computational complexity usually required by RL methods raises the advantage
of learning how to automatically provide the optimal hyperparameters for each task
without having to train multiple times the same model with different hyperparameters.

4.3 Related Work

The importance of hyperparameter tuning is widely known in the general Machine
Learning field, because it can significantly improve the performance of a model (Hen-
derson et al., 2018; Weerts et al., 2020; Jastrzebski et al., 2020). Therefore, Hyperpa-
rameter Optimization (HO) is an important component of Automated Machine Learn-
ing (AutoML) with a rich stream of research literature: for an exhaustive introduction
and survey on this topic, we invite the reader to check Hutter et al. 2019. Instead,
Afshar et al. 2022 and Parker-Holder et al. 2022 provide more specific overviews of
algorithm configuration methods for Reinforcement Learning, or AutoRL.

The tuning process is usually approached by practitioners as a black-box approach:
the most common methods are simple, such as grid search or random search (Bergstra
and Bengio, 2012). More advanced methods are obtained by relying on sequential
model-based Bayesian optimization (Hutter et al., 2011; Feurer et al., 2015; Snoek
et al., 2012), where a probabilistic model is trained to fit the underlying fitness function
of the main learning algorithm. In some recent works (Eiben et al., 2007; Sehgal et al.,
2019), Genetic Algorithm (GA)s are employed to automatically learn the most per-
forming parameters on RL applications. The main limitation in this kind of approach
consists of the need for complete learning instances to evaluate each hyperparameter,
which is kept fixed throughout the whole process

A completely different solution consists in training an outer network, typically an
RNN (Meier et al., 2018; Ravi and Larochelle, 2017; Andrychowicz et al., 2016; Im
et al., 2021) since it is often possible to compute the gradient of the objective function
w.r.t. the hyperparameters through implicit differentiation, as shown in Maclaurin et al.
(2015) and Lorraine et al. (2020). These methods are often referred to as bilevel opti-
mization procedures, where the outer loop updates the hyperparameters on a validation
set, and the inner one is used for training the models with a specific hyperparameter
set.

Recent independent papers introduced the formal paradigm of Algorithm Configu-
ration and HO as a Sequential Decision Process (Biedenkapp et al., 2020; Jomaa et al.,
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2019), albeit many other works developed solutions in this direction, employing RL-
based methods (Zhu et al., 2019; Li and Malik, 2016; Xu et al., 2017; Zoph and Le,
2017) or contextual bandits (Li et al., 2017). However, these works are rarely adopted
in RL, as they become computationally intractable and sample inefficient. Furthermore,
gradient-based methods (Xu et al., 2018) compute the gradient of the return function
with respect to the hyperparameters: they rely on a strong assumption that the up-
date function must be differentiable and that the gradient must be computed on the
whole chain of training updates. In addition, these approaches are typically online,
with limited exploration (as discussed in (Biedenkapp et al., 2020)), or they make use
of gradient-based meta-algorithms, where the high level of sensitivity to new meta-
hyperparameters makes the problem even more challenging, as the models may be
harder to train and may require more data.

When the specific task of learning rate tuning in a policy-gradient framework, Paul
et al. (2019) proposed a sample efficient algorithm to learn a hyperparameter schedule
employing a Weighted Importance Sampling approach, while Paine et al. (2020) deals
with the offline hyperparameter selection for offline RL. In these proposed approaches,
HO is meant to optimize the objective function in the next step, similarly to a bandit
problem, which favors convergence to local optima.

The concept of rapid adaptation to unseen tasks is usually denoted as meta-learning
(Schmidhuber, 1987), and has recently emerged as a fertile and promising research
field, especially with regard to gradient-based techniques. One of the cornerstones in
this area is MAML (Finn et al., 2017), which learns a model initialization for fast adap-
tation and has been a starting point for several subsequent works (Nichol and Schulman,
2018; Park and Oliva, 2019). PEARL (Rakelly et al., 2019) decouples the problem of
making an inference on the probabilistic context and solving it by conditioning the pol-
icy in meta Reinforcement Learning problems. However, all these works heavily rely
on choosing (multiple) learning rates.

4.4 Meta-MDP

We now present the concept of meta-MDP, a framework for solving meta-RL tasks that
extends the CMDP definition to include the learning model and the policy parameter-
ization. Similar approaches can be found in Garcia and Thomas (2019) and in Li and
Malik (2016). In our case, we assume to be able to fully represent the task by the
parameterized context itself ω ∈ Ω. The collection of tasks can be framed as a set
of MDPs {Mω}ω∈Ω, such that each task Mω can be sampled from a distribution ψ
defined on ∆Ω. This set can be seen equivalently as the CMDP provided with Defini-
tion 4.1: M := ⟨Ω,S,A,M⟩, whereM(ω) = Mω. Moreover, we need to define a
distribution ρ over the policy space ∆Θ, which provides the initial policy parametriza-
tion for each learning instance. In this way, the initial state of the meta-environment
is determined by the MDP-policy pair (Mω, πθ0), where ω ∼ ψ, and θ0 ∼ ρ. The
hyperparameter selection in a learning instance of a general optimization algorithm can
then be designed as a Meta-MDP, for which we provide the formal definition:

Definition 4.2. Let M be a CMDP, and consider a parametric space Ω. A meta-MDP
over M with update f is defined as a tuple M := ⟨X ,H,L, (M , ψ), (Θ, ρ), f, γ̃⟩,
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4.4. Meta-MDP

where:

• X is called meta observation space;

• H is denoted as learning action space or meta action space

• L is the meta reward function;

• (M , ψ) and (Θ, ρ) contain respectively a CMDP M with distribution over tasks
ψ, and the policy space, with initial distribution ρ;

• f is the update rule of the learning model chosen;

• γ̃ is a discount factor.

In particular, a meta-MDP attempts to enclose the general elements needed to learn
an RL task into a model with properties similar to a classic MDP. A representation of
the main features of the current condition of the learning instance is provided by the
task-policy pair (Mω, πθ). Indeed, the meta-state corresponds to the distribution over
the trajectories τ induced by the interaction of the policy πθ with the MDPMω, which
can be referred to also as inner-task. Of course, the inclusion of a complete represen-
tation of the trajectories is unfeasible: in other words, the meta-state is hidden, and
we will encode it using a set of observed meta-features through the meta observation
spaceX , which can be considered as the generalization of the observation space in clas-
sic Partially-Observable MDPs (POMDP, Section 2.2.2). Since it is meant to include
information regarding the current condition of the learning process, it is (eventually
implicitly) dependent on θ and the context ω.

Interaction The definition of the meta-MDP tries to design the learning process as a
sequential decision-making problem, where a step involves the application of the update
rule f , and a meta-agent selects the related hyperparameter. The initial state represents
the starting setting for the learning instance: it depends on the joint distribution over
the policy space and the set M . We consider an episodic setting: each (meta) episode
consists of a learning instance, and it is based on a different initial policy and a different
task. Moreover, we will consider a very important assumption:

Assumption 4.1 (Episodic context). Once a context ω in a CMDP is sampled from ψ
to determine the initial state, it is fixed throughout a meta-episode.

Each action hk ∈ H performed on the meta-MDP with policy parametrization θk at
the k-th step, represents a specific hyperparameter that regulates the stochastic update
rule f , i.e., θk+1 = f (θk, hk, τω(θk)), where τω(θk) is the batch of trajectories sampled
under the task-policy pair (ωk,θk). For the sake of clarity, we will often drop the
dependency on τ when considering the application of the update rule. In general, we
can consider any update function with a set of tunable hyperparameters; in particular,
we can focus on policy gradient approaches, in which the action h determines the step
size, and a new batch of trajectories is iteratively sampled to compute ∇̂θJω(θ), general
estimator of the policy gradient ∇θJω(θ) under context ω. We consider a normalized
setting, in such a way that the gradient defines only the update direction, and the action
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determines the distance from the previous policy. Consequently, the update rule takes
the following form:

f(θ, h) = θ + h
∇̂θJω(θ)

∥∇̂θJω(θ)∥2
.

In our experimental campaign in Section 4.7, we will include information from the
curvature of the return by employing the natural gradient (NPG, Section 3.5).

Unlike a standard MDP, a meta-MDP does not need to include a Markovian transi-
tion model that regulates its dynamics: given xt ∈ X , the transition to the next meta-
state xt+1 is, of course, stochastic, but it is induced by the distribution of the trajectories
induced by the pair (θt,Mω) and on the update rule f . The initial state hence implic-
itly depends on ψ and ρ, and the transition to the next state is still Markovian, as it is
independent of the previous states observed (once xt is known). In other terms, condi-
tional to the current parametrization of the policy and the task, the environment can be
considered independent of the past policies encountered during the episode.

Learning as Reward As in a standard RL problem, the optimization of a meta-MDP is
accomplished by maximizing the collected rewards. The main goal of HO and meta-
learning is learning how to learn: as a consequence, we want to consider performance
improvement as our main reward. To accelerate the learning over the current MDP
Mω, this function should reflect variations between the returns obtained in different
learning steps. To accomplish this, definition 4.2 included the meta reward L(θ,ω, h)
as a function mainly dependent on the current policy parameters θ and of the meta-
action h once the context ω is fixed:

L(θ,ω, h) := Jω(f(θ, h))− Jω(θ);

where Jω(θ) and Jω(f(θ, h)) are respectively the expected returns in the task Mω

before and after one update step according to the function f , estimated through a batch
of sampled trajectories. In the particular case of (normalized) SGA, the function takes
the following form:

L(θ,ω, h) = Jω

(
θ + h

∇̂θJω

∥∇̂θJω∥2

)
− Jω(θ).

A trajectory can be thought of as an entire learning instance of the selected task, where
the length represents the number of policy updates. The overall return of a trajectory
with length T can be easily defined as in the general case:

G =
T−1∑

t=0

γ̃tL(θt, ω, ht) = γ̃T−1Jω(θT ) +
T−1∑

t=1

γ̃tJω(θt)− Jω(θ0).

Consequently, the return of a learning instance corresponds to a weighted sum of the
returns of the encountered policies. In particular, if the meta discount factor is set to 1,
the return reduces to Jω(θT ) − Jω(θ0), i.e., the total performance gain. Similarly, we
can define the meta value functions, which will be denoted as Q and V .
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4.4. Meta-MDP
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Figure 4.1: Example of an optimization setting where a Bandit approach would be suboptimal: starting
from θ0, the optimal bandit agent will choose to reach θ+, a local maximum. An RL agent, however,
may plan to make a larger step, up to θ1, to reach the global optimum θ∗ on the next update. Left
Figure: 3D surface plot. Right Figure: objective function heatmap in the parameter space Θ.

Discount Factor, Contextual Bandit, and Meta-MDP. The choice of the meta-discount factor
γ̃ is critical: meta-learning is very often considered as paired with few-shot learning,
where a short horizon is taken into account for the learning process. γ̃, if lower than
1, explicitly translates into an effective horizon of 1

1−γ̃ . However, a myopic behavior
induced by a low discount factor might lead the meta-agent to prefer actions leading
to local optima, while sometimes it might be necessary to take more cautious steps to
reach the global optima of the learning process. Setting γ̃ = 0, the problem degener-
ates into a contextual bandit, where the goal is to maximize the immediate reward, in
a similar fashion as in Paul et al. (2019). However, it might be inefficient to directly
maximize the immediate reward, as an agent might prefer to choose a different hyper-
parameter to reach the global optimum, which is possibly unreachable in just one step.
Figure 4.1 provides an example in this direction, where a bi-dimensional parametriza-
tion is considered: starting from the initial parametrization θ0, the maximization of the
immediate return would lead to a local optimum θ+. We want our agent to be able to
plan the updates to maximize the final policy’s performance: this is the main reason for
the design of HO as a sequential decision-making problem.

Meta-Space Features In this subsection, we deal with the choice of the features observed
in the meta-observation xt. Some properties are generally desirable for its formulation:
first of all, it needs to include policy-specific information, as some form of knowledge
about the current policy is necessary to adapt the meta-actions to the current setting of
the model. Ideally, we can include all current policy parameters θt, even if this ap-
proach might be difficult for large policy spaces. Finding an informative meta-feature
set remains an open problem for future research, as recalled in Section 4.8. Addition-
ally, task-specific features may be informative. The information about the task ω is
used to achieve an implicit task-identification, a necessary step to optimize learning in
new tasks based on similarities to older ones. Finally, some relevant information could
be included in the gradient estimation ∇̂θJω: this vector is implicitly dependent on the
stochasticity of the inner MDPMω under policy θt according to the batch of trajecto-
ries sampled for its estimation. In our experiments, we will consider the concatenation
of all these features xt = ⟨θt, ∇̂θJω,ω⟩. From a more technical point of view, the
meta-observation xt relies on a conditional observation probability O(·|θt,ω). The
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transition of the observation process evolves then as follows:

ω ∼ ψ, θ0 ∼ ρ, x0 ∼ O(·|θ0,ω)

θt = f(θt−1, ht, τω(θt−1)), xt ∼ O(·|θt,ω)

4.5 Context Lipschitz Continuity

We consider a meta-MDP in which all tasks satisfy the Lipschitz continuity assump-
tion. Under this condition, we can derive a set of bounds on the approximation errors
obtained by the meta-agent when acting on unseen tasks. Among others, we obtain that
the expected return Jω(θ) and its gradient are LC w.r.t. the context ω, providing useful
theoretical foundations for the meta-RL general framework and inspiring motivation to
look for solutions and models capable of generalizing on large task spaces. Let’s sup-
pose to be provided with a CMDP (Ω,S,A,M), such that Assumption 3.1 is verified
∀ω ∈ Ω, meaning that ∀ω ∈ Ω the MDP Mω is (LP (ω) − Lr(ω))-LC. Let us also
assume that the set of MDPs is LC in the context ω:

Assumption 4.2. Let M be a CMDP. M is called (LωP
, Lωr)-Context Lipschitz Con-

tinuous (CLC) if, for all (s, a), (s, a) ∈ S ×A, ∀ω,ω ∈ Ω:

W1 (Pω(·|s, a), Pω(·|s, a))) ≤ LωP
dΩ(ω,ω)∣∣∣∣Rω(s, a)−Rω̂(s, a)

∣∣∣∣ ≤ LωrdΩ(ω,ω);

This means that we have some notion of continuity w.r.t. the task: when two MDPs
with similar contexts are considered, then their transition and reward processes are
similar. These assumptions, along with Assumption 3.2, allow us to make some con-
siderations regarding the inference on the Q-value function:

Theorem 4.1. Let M be a (LωP
, Lωr)-CLC CMDP for whichM(ω) is (LP (ω), LR(ω))-

LC ∀ω ∈ Ω. Given a Lπ-LC policy π, the action value function Qπ
ω(s, a) is LωQ

-CLC
w.r.t. the context ω, i.e.:

∣∣∣∣Qπ
ω(s, a)−Qπ

ω(s, a)

∣∣∣∣ ≤ LωQ
(π)dΩ(ω,ω) ∀(s, a) ∈ S ×A, ∀ω,ω ∈ Ω;

where

LωQ
(π) =

Lωr + γLωpLVπ(ω)

1− γ , LVπ(ω) =
Lr(ω)(1 + Lπ)

1− γLP (ω)(1 + Lπ)
(4.1)

As a consequence, also the return function Jω(π) is context-LC:

|Jω(π)− Jω(π)| ≤ LωQ
(π)dΩ(ω,ω).

In simpler terms, Theorem 4.1 exploits the LC property to derive an upper bound on
the distance between the returns in different tasks. This result represents an important
guarantee of the generalization capabilities of the approach, as it provides a boundary
on the error obtained in testing unseen tasks. This explains the successful behavior of
Meta-learning approaches such as MAML (Finn et al., 2017), which typically assume
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4.5. Context Lipschitz Continuity

full access to the task distribution ρ. Hence, they can build meta-models capable of
quickly adapting to new tasks, with good empirical results for tasks drawn from the
same distribution. On the other hand, when test tasks are sampled from a different
distribution, the context difference greatly impacts the models learned, and the models
can no longer be adequate (Tirinzoni et al., 2018).

Proof for Theorem 4.1 is provided in Appendix A.1, where we also prove that the
analytic gradient ∇θJ

θ
ω is CLC w.r.t. the context ω, too. In particular, a boundary on

the distance between the gradients of different tasks ensures regularity in the surface of
the return function, which is important since the gradient is included in the meta state
to capture implicit information about the context space.

As a final consideration, the Lipschitz behavior of the CMDP is inherited by the
meta-MDP. The smoothness of this decision problem is transferred from the state-action
spaces to the related meta versions. Furthermore, the most important property of a
meta-MDP is perhaps more trivial:

Lemma 4.1 (Bounded reward). Let M be a CMDP, such that |Rω| ≤ Rmax ∀ω ∈ Ω.
Then, a meta-MDP M defined over such CMDP has bounded rewards, i.e.

L(θ,ω, h) ≤ 2

1− γRmax.

The proof of this Lemma is trivial since it relies on the consideration that the ex-
pected return Jω(θ) is bounded by Rmax/(1− γ).

Lemma 4.2 (Lipschitz meta-MDP). Let M be a Lipschitz- CMDP, for which Assump-
tions 3.1 and 3.3 hold. Let the update rule f be Lf -LC, i.e.

∥f(θ, h)− f(θ, h)∥ ≤ LfdΘ×H((θ, h), (θ, h)).

Then, the meta-MDP is Lipschitz continuous, i.e., for all θt,θt, ht, ht ∈ Θ2 ×H2:

dΘ(θt+1,θt+1) ≤ LfdΘ×H((θ, h), (θ, h));

|L(θ, h)− L(θ, h)| ≤ (1 + Lf )LJdΘ×H((θ, h), (θ, h)),

where LJ is the Lipschitz constant of the return defined in Equation 3.32 (Pirotta et al.,
2015), supposed uniform over Θ.

Proof. We report here only the proof of the Lipschitz meta-reward, for which we rely
on the smoothness of the update rule, and on the Lipschitz guarantees provided for
general MDPs. The proof of the smoothness of the transition is even simpler and not
reported.

|L(θ, h)− L(θ, h)| = |Jω(f(θ, h))− Jω(θ)− Jω(f(θ, h)) + Jω(θ)|
≤ |Jω(f(θ, h))− Jω(f(θ, h))|+ |Jω(θ)− Jω(θ)∥
≤ (1 + Lf )LJdΘ×H((θ, h), (θ, h))
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Algorithm 5 Meta-MDP Dataset Generation

Require: CMDP M (with task distribution ψ, policy space Θ, initial policy distribution ρ),
number of learning instances K, number of learning steps T , number of inner trajectories n.

Ensure: dataset of transitions D
Initialize: D = {},
for k = 1, . . . ,K do

Sample context ω ∼ ψ(Ω), initial policy θ0 ∼ ρ(Θ)

Sample n trajectories in taskMω under policy π(θ0)

Estimate Jω(θ0), ∇̂θJω(θ0)

for t = 0, . . . , T − 1 do
Sample meta-action h ∈ H
Update policy

θt+1 = θt + h
∇̂θJω(θt)

∥∇̂θJω(θt)∥

Sample n trajectories in (Mω, π(θt))

Estimate Jω(θt+1), ∇̂θJω(θt+1)

Set
x = ⟨θt, ∇̂θJω(θt),ω⟩;

x′ = ⟨θt+1, ∇̂θJω(θt+1),ω⟩;
l = Jω(θt+1)− Jω(θt).

Append {(x, h, x′, l)} to D
end for

end for

Remark 4.3. This result considers only the smoothness w.r.t. the parametrization θ and
the hyperparameter h; We did not include the variations w.r.t. the context ω, since we
deal with the assumption of a fixed context, the context has no impact on the transition
and reward processes. Of course, these results can be extended to consider also the
context ω.

Lemma 4.2 seems to provide nice properties to the overall learning decision pro-
cess: when the task and the context are similar, the next updates will not differ too
much. However, it relies on the major assumption of smoothness of the update rule.
Unfortunately, this holds only for the exact policy gradient, which is proven to be Lip-
schitz continuous w.r.t. the parametrization (Theorem 3 in Pirotta et al. 2015) and the
context (Theorem A.4). However, we cannot rely on such properties when estimators
are considered, as the noisy trajectories can lead to very different results.

4.6 Fitted Q-Iteration on Meta-MDP

In this section, we define our approach to learn a dynamic learning rate in the frame-
work of a meta-MDP. As a meta-RL approach, the objectives of our algorithm are to
improve the generalization capabilities of PG methods and to remove the need to tune
the learning rate for each task manually. Finding an optimal dynamic step size increases
the number of degrees of freedom w.r.t. a static learning rate, and it mainly serves
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4.6. Fitted Q-Iteration on Meta-MDP

two purposes: it maximizes the convergence speed by performing large updates when
allowed and improves the overall training stability by selecting low values when the
return is close to the optimum or the current region is uncertain. To accomplish these
goals, we propose the adoption of the FQI algorithm (Ernst et al., 2005) presented in
Section 3.4.3 (Algorithm 2) to the problem of meta-hyperparameter optimization. We
will refer to this methodology as MetaFQI. As seen, FQI is an off-policy and offline
algorithm designed to learn a good approximation of the optimal action-value func-
tion by exploiting the Bellman optimality operator. The approach consists in applying
Supervised Learning techniques as, in our case, Extra Trees (Geurts et al., 2006), to
generalize the estimation of the optimal action-value function Q⋆ over the entire state-
action space. The algorithm considers a full dataset F = {(xkt , hkt , lkt , xkt+1)}k, where
each tuple represents an interaction with the meta-MDP: in the k−th tuple, xkt and xkt+1

are respectively the current and next meta-state, hkt the meta-action and lkt the meta
reward function, as described in Section 4.4. To consider each meta-state x, there is
the need to sample n trajectories in the inner MDP to estimate return and gradient.
At the iteration N of the algorithm, given the (meta) action-value function Q(N−1) of
the previous iteration, the training set TSN = {(ik, ok)}k is built, where each input
is equivalent to the state-action pair ik = (xkt , h

k
t ), and the target is the result of the

Bellman optimal operator (definition 2.13):

ok = lkt + γ̃max
h∈H

Q(N−1)(xkt+1, h).

In this way, the regression algorithm adopted is trained on TS to learn Q(N) with the
learning horizon increased by one step.

In general, the dataset is created by followingK learning trajectories over the CMDP:
at the beginning of each meta-episode, a new context ω and initial policy θ0 are respec-
tively sampled from ψ and ρ; then, for each of the T learning steps, the meta action
h is randomly sampled to perform the policy update (we consider a uniform distribu-
tion over the meta action space H). In this way, the overall dataset is composed of
KT tuples. It is also possible to explore the overall task-policy space Ω × Θ through
a generative approach: instead of following the learning trajectories, both ω,θ and h
are sampled every time (equivalent to 1-step long trajectories). We will refer to this
last method as “generative” approach, while the former will be referred to as “trajec-
tory” approach. The pseudo-code for the dataset generation process with trajectories is
provided in Algorithm 5.

Double Clipped Q Function As mentioned, each FQI iteration approximates the action-
value function using the estimates made in the previous step. As the process goes on,
the sequence of these compounding approximations can degrade the overall perfor-
mance of the algorithm. In particular, FQI tends to suffer from overestimation bias,
similar to other value-based approaches that rely on taking the maximum of a noisy
Q function. To countermeasure this tendency, we adopt a modified version of Clipped
Double Q-learning, introduced by Fujimoto et al. (2019) and mentioned in Section
3.4.3, to penalize uncertainties over future states. This approach consists in maintaining
two parallel functions Q(N)

{1,2} for each iteration and choosing the action h maximizing a
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convex combination of the minimum and the maximum between them:

l + γ̃max
h∈H

[
λmin
j=1,2

Q
(N)
j (x, h) + (1− λ)max

j=1,2
Q

(N)
j (x, h)

]
,

with λ > 0.5. If we set λ = 1, the update corresponds to Clipped Double Q-learning.
The minimum operator penalizes high variance estimates in regions of uncertainty and
pushes the policy towards actions that lead to states already seen in the dataset.

The overall procedure introduces external hyperparameters, e.g., the number of de-
cision trees, the minimum number of samples for a split (min split), and λ. However,
the sensitivity on these parameters is minimal (Geurts et al., 2006), as a different set
of hyperparameters does not impact the ability of FQI to converge. This fact helps
us in avoiding a conceptual problem related to the selection of a gradient-based meta-
algorithm, which usually shows a very high sensitivity w.r.t. the network adopted and
the hyperparameters used: trying to optimize the meta hyperparameters introduced
would make the whole approach useless since the same problem of hyperparameter
optimization would only be set on a more abstract level.

4.7 Experimental Evaluation

In this section, we show an empirical analysis of the performance of our approach in
different environments. As we shall see, the meta action allows selecting the best step
size and dynamically adapting it to fine-tune the learning procedure. As metaFQI itera-
tions proceed, new estimation errors are gradually introduced, resulting in overfitting of
the model (with the target loss minimized on the training dataset) and consequently in
a degradation of out-of-sample performances over time. This is due to the error prop-
agation w.r.t. the optimal Q−value function in the whole state-action space (and task
space, in our case), as in Farahmand et al. (2010). Consequently, the model iterations
are evaluated in a validation process, as in the standard model selection procedure, on
a set of out-of-sample tasks and policies. From this set, the model obtaining the best
mean return, said N is selected. The results of the selected models are shown in Figure
4.2, along with NGA performed with fixed step size, tested on the same 20 trials (i.e.,
on the same random test tasks and initial policies), and performed with the same batch
size for each trial. Our code is based upon OpenAI Gym (Brockman et al., 2016), and
Baselines (Dhariwal et al., 2017) toolkits.

Navigation2d: For our first evaluation of the approach, we consider one of the
environments presented in Finn et al. (2017), called Navigation2D. This environment
consists of a unit square space where an agent aims to reach a random goal in the plane.
The task distribution is such that, at each episode, a different goal point is uniformly
selected in the unit square. As we can note in the left plots of Figure 4.2, the algorithm
is able to select large step sizes with a good starting return gain without suffering from
any drop. The algorithm is able to calibrate its action, starting with larger improvements
and slowing down once the policy gets good results. In addition, all trajectories reach
convergence in fewer steps than any other method.

Minigolf: In our second experiment, inspired by Penner (2002) and Tirinzoni et al.
(2019), we consider the scenario of a flat minigolf green, in which the agent has to
hit the ball with a putter and place the ball inside the hole in the minimum number of
strokes. The CMDP is built by varying the putter length and the friction coefficient.

68



i
i

“output” — 2023/6/14 — 7:29 — page 69 — #91 i
i

i
i

i
i

4.7. Experimental Evaluation
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Figure 4.2: metaFQI model performance against NGA with fixed step size h. The top plots for each
environment show the expected returns or the return gain. The bottom plots show the meta-actions
chosen through learning iterations. N represents the metaFQI iteration selected. (20 runs/random
test contexts, avg ± 95 % c.i.)

The environment is Lipschitz w.r.t. the context, but it is the only framework where the
reward is non-Lipschitz since, for each step, it can be either 0 if the shot is a success, -1
if the ball does not reach the goal (and the episode continues) or -100 for overshooting.
The central plot in Figure 4.2 illustrates the performance of our approach in the same
set of random test tasks. We can see that the algorithm is able to consistently reach
the optimal values by choosing an adaptive step size. In addition, the convergence
to the global optimum is achieved in around 10 meta steps of training, a substantial
improvement w.r.t. the choice of a fixed learning rate, which leads (when it converges)
to a local minimum, meaning constantly undershooting until the end of the episode.

CartPole: For our third experiment, we examine the CartPole balancing task (Barto
et al., 1990), which consists of a pole attached to a cart, where the agent has to move to
balance the pole as long as possible. The CMDP is induced by varying the pole mass
and length. To be more focused on the very first steps and to better generalize on the
overall policy and task space, the training dataset was built considering trajectories with
only 15 total updates. To have a fair comparison, the right-hand side plots of Figure
4.2 illustrate an evaluation of the approach in the selected environment, where we have
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Figure 4.3: metaFQI model performance comparison against benchmarks (20 runs, 95% c.i.).

tested the resulting metaFQI model (and NGA with fixed step sizes) performing the
same number of total updates as the training trajectories.1 In Appendix A.2, we provide
more results where the models are tested for a longer horizon T = 60.

Differently from before, it is possible to see that the best model (solid blue line) is
choosing to update the policy with small learning rates: this leads to a lower immediate
return gain (high rates have a better learning curve in the first steps) but allows to
improve the final performances. This is because the model is planning to maximize the
meta action value function with a horizon of N = 5 policy updates. Indeed, we also
included the results of the first metaFQI iteration, which tries to optimize the immediate
reward similarly as a contextual bandit agent. As expected, the agent selects high step
sizes for the first iterations, obtaining high immediate rewards only in the first learning
steps.

Half-cheetah with goal velocity: As a last environment, we considered the half-
cheetah locomotion problem introduced in Finn et al. (2017) with MuJoCo simulator
(Todorov et al., 2012), where a planar cheetah has to learn to run with a specific goal
velocity. This is the most complex environment among the ones presented since the
policy, albeit linear, comprises 108 parameters. From the rightmost plot of Figure 4.2
we can see the performance gain J(θt) − J(θ0).2 The FQI model, trained with NGA
trajectories with T = 80 total updates, is learning faster than benchmarks, although far
from convergence. Interestingly, the fixed learning rates between 0.5 and 1 have almost
the same gain return; however, even though the meta actions chosen by the model are
almost always within this range, it can still adapt the steps to get higher meta rewards.

1Being this environment an alteration of the classic Cartpole, different contexts may reach different convergence returns from
the standard policy gradient results.

2The expected return changes deeply w.r.t. the task ω, hence the learning curves as in the other plots in Figure 4.2 show very
high variance, independently from the robustness of the learning process.
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4.8. Conclusions

Since all these models are far from convergence, one might wonder if metaFQI can still
provide good results for a longer horizon: in Appendix A.3, Figure A.5 we provide
more results, where the models are tested for a longer horizon T = 60. In brief, if
metaFQI models have never seen advanced policies in the training dataset, performance
can be negatively affected. To overcome this issue, the learning trajectories sample to
produce the batch of tuples should be increased with a sufficiently long horizon.

Comparison with Learning Rate Schedules and Other Benchmarks. In Figure 4.2 we com-
pared our approach with the choice of a fixed step size. Other schedules are often
considered. There are, of course, many different gradient descent optimization algo-
rithms for the choice of the learning rate, and among the most widely adopted there are
RMSProp and Adam (Kingma and Ba, 2014). The former considers an adaptive learn-
ing rate by introducing a momentum term and normalizing the step direction through a
moving average of the square gradient. Adam (Adaptive Moment Estimation) also takes
advantage of the exponentially decaying average of the second moments of the gradi-
ents. We compared our results (metaFQI) against tuned implementations of the update
rules mentioned (Adam, RMSProp) and with the best-fixed stepsize (NGA). Moreover,
we include in the comparison also two other benchmarks for learning rate adaptation:
HOOF, Paul et al. (2019) and metagrad, Xu et al. (2018), which have been imple-
mented to optimize the stepsize for NGA (more details are included in Appendix A.2).
the results are shown in Figure 4.3, in the same settings as the ones provided in Section
4.7. Our approach outperforms the previous methods, showing better learning with, in
general, lower variance in the returns obtained. Furthermore, all the considered bench-
marks heavily rely on the initial stepsize chosen and on the outer meta-hyperparameters,
which deeply affect the learning capabilities.

In conclusion, many other benchmarks and questions are analyzed in Appendix A.3.
for instance, we compared the different iterations of metaFQI (Figure A.2) and the
results provided by the commonly used exponentially decaying learning rate schedule
(Figure A.3).

4.8 Conclusions

In this chapter, we considered the problem of hyperparameter tuning for policy gradient-
based algorithms in Contextual Markov Decision Processes, where heterogeneous con-
texts may require different solutions. In particular, we modeled the general problem
through the definition of the meta-MDP, for which any policy-based update rule can be
optimized by the choices made by an agent where learning is the reward. We analyzed
the case of Lipschitz meta-MDPs, deriving some general guarantees that hold if the
reward model and the transition process are smooth with respect to the context. Finally,
we implemented the Fitted Q-Iteration algorithm on the meta-MDP where the update
rule is the Natural Gradient Ascent, and we used it to choose an adaptive step size
through the learning process. The approach has been evaluated in different settings,
where we observed good generalization capabilities of the model, which can reach fast
convergence speed and robustness without the need for manual hyperparameter tuning.

There are many important challenges to be still addressed for this approach to be
effective in real-life applications. First of all, this method can be theoretically extended
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to any hyperparameter choice. One direct extension of our approach can be applied to
the choice of the max Kullback-Leibler divergence constraints in Trust-Region-based
approaches (Schulman et al., 2015, 2017), as will be done in Chapter 5. Moreover, the
main limitation of our current approach is the same as for many hyperparameter tuning
approaches, and it consists of the computational time required to build the training
dataset. One possible way to improve the sample efficiency might consist in evaluating
the meta-reward by means of importance sampling, similar to Paul et al. (2019). In
realistic settings, where deep policies are required, the inclusion of all policy parameters
in the meta-state might be inefficient; a solution might consist in learning a compressed
representation of the policy through the choice of specific informative meta-features:
in this way, our approach would be independent on the policy architecture and scalable
for large domains. This last topic, as the application of the meta-MDP approach on a
different kind of hyperparameter, is studied in more detail in Chapter 5.
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CHAPTER5
Trust Region Meta Learning for Policy

Optimization

5.1 Introduction

In Chapter 4 we introduced the concept of the Meta Markov Decision Process, an ab-
stract formalism to design the problem of hyperparameter tuning as a Sequential Deci-
sion Making problem, where the hyperparameters of a specific update rule are seen as
the actions of a meta agent. RL aims to train autonomous agents in their interaction with
the environment, maximizing a given reward signal. Hence we considered the Fitted
Q-Iteration to solve the meta-MDP, where learning is the (meta) reward. In particu-
lar, the resulting Meta-Reinforcement Learning algorithm was applied to the step size
selection for a gradient-based optimization process. However, the meta-environment
was designed to include the observation of the whole policy parametrization, as well
as the explicit knowledge of the task: these are strong limitations, as the problem be-
comes strongly dependent on the neural architecture adopted for the parametrization
of the policy, being consequently exposed to the curse of dimensionality. In this chap-
ter, we aim to optimize the trust region constraint of the well-known TRPO algorithm
(Schulman et al., 2015). Furthermore, the goal is to consider a set of policy-agnostic
observed features by relying on the information experienced from the interaction with
the environment. In this way, we can build a single meta-model capable of predicting
the optimal hyperparameter for TRPO at each step, generalizing across different tasks
and policy spaces.

Chapter Outline This chapter is organized as follows: Section 5.2 analyses the main
motivations behind the choice of a different design of the meta-MDP, applied to over-
come the limitations due to the inclusion of the complete policy parametrization pro-

73



i
i

“output” — 2023/6/14 — 7:29 — page 74 — #96 i
i

i
i

i
i

vided in Chapter 4. Moreover, we recall some of the main properties of TRPO and
the selection of a trust region constraint, which is the main goal of this chapter. The
conclusion of the section is devoted to a brief presentation of some information the-
ory concepts, which will be applied later. The main methodology is explained in more
detail in Section 5.3, where we devote particular attention to the selection of an infor-
mative set of meta-features, which can be estimated through some nearest neighbors
techniques described later, in Section 5.4. The experimental campaign is then shown in
Section 5.5, with some explicative domains.

5.2 Motivations

In Chapter 4, we presented the Meta-MDP approach to frame the hyperparameter op-
timization problem for RL as an abstract Sequential Decision-Making process. In the
design of a possible application of this concept to the optimization of (natural) policy
gradient steps, we included in the set of observations for each learning step the follow-
ing features:

• The current parametrization θt ∈ Θ, where Θ identifies the policy class;

• The explicit parametrization of the context ω ∈ Ω;

• The current estimation of the (natural) gradient of the return function w.r.t. the
current parameters, ∇̂θJω(θt), assessed through a batch of trajectories sampled
under the policy-task pair (θt,ω).

Albeit the good results achieved from this approach, there are some assumptions
and drawbacks that limit its range of application:

• The context might be unknown, not observable, and non-stationary. for instance,
if we think of a locomotion task, a robot might be influenced by the road surface,
by weather factors, and by the inner mechanical structure that can slightly change
during the transitions. However, the whole composition of such features and their
impact on the transition dynamics can be unknown or cannot be measured. How-
ever, while this is indeed a limitation, the overall approach can also be considered
as task-agnostic, as the exclusion of the explicit context parametrization still pro-
vides good empirical results, as seen in Section A.2.

• The inclusion of the complete parametrization can be effective only with reduced
dimensionality. Real-world RL applications usually involve policies parametrized
with multi-layer perceptron (MLP) with several hidden layers and thousands (if
not millions) of parameters. Trivially, this meta-feature design is subject to the
curse of dimensionality, with bad scaling properties concerning the policy space
considered.

• Moreover, practitioners usually deal with multiple architectures at once: the num-
ber of hidden layers, neurons, and the choice of activation function are often con-
sidered as hyperparameters that are subject to a coarse tuning to trade-off the bet-
ter approximation capabilities of large neural networks, with the related difficulty
of training. Very often, taking into account a different policy architecture means

74



i
i

“output” — 2023/6/14 — 7:29 — page 75 — #97 i
i

i
i

i
i

5.2. Motivations

that all the learning processes performed to tune the hyperparameters of the learn-
ing algorithm are no longer valid, and the HO procedure must start again from
scratch. In our case, including the policy parametrization and the policy gradient
in the observation, not only causes dimensionality issues as previously mentioned,
but also limits the range of application to a fixed policy class since the consequent
meta-MDP becomes architecture-dependent.

• The final limitation is related to the inclusion of the policy gradient, which can be
reasonably adopted only when policy-gradient-based update rules are taken into
account, and it is usually very noisy, even when the natural gradient is taken into
account.

One of the possible solutions that can come to mind to overcome the dimensional-
ity issue involves the trivial application of dimensionality reduction techniques, such
as Principal Component Analysis (PCA) or autoencoders. However, while these ap-
proaches might work in practice, they still provide architecture-dependent features, as
different policy classes may require different applications of these methods. A com-
pletely different approach can be applied if we consider that the meta-agent is not
responsible for finding the best parameters of the problem but for selecting the hy-
perparameter that provides the best learning improvements for the update rule taken
into account. The improvement is due to a better distribution of the trajectories induced
by the interaction of the environment (and its context) and the policy, where the term
better can be related to an improvement of the direct performances or of the information
gathered for future updates. for instance, we might think of a policy update leading to a
more explorative policy, with slightly worse performances but with the ability to collect
more useful information for future performance exploitation. Hence, the real object of
interest for the meta-agent is not the perfect knowledge of the task and the policy, but
a representation of the trajectory distribution ρθ,ω, which can be defined generalizing
Equation 2.4 to include also the context ω:

ρθ,ω(τ) := µω(s0)
T∏

t=1

πθ(at|st)Pω(st+1|at, st).

The main goal of this chapter is hence to provide a set of information related to the
distribution of trajectories, which is jointly induced by the policy parameters θ and
the context ω, without the explicit knowledge of either. Consequently, the approach
provided can be task-agnostic and does not need the Assumption 4.1 of a fixed con-
text throughout the learning instances: if the task implicitly changes among the steps,
the trajectory distribution observed is modified accordingly. Moreover, it is policy-
agnostic, or architecture-agnostic, meaning that it is not limited to selecting a specific
policy class but can include the distribution induced by multiple parametrizations all at
once. Considering the trajectory distribution instead of the task-policy parametrization
is appealing but has major difficulties, as it cannot be analytically observed. In Section
5.3 we consider a set of meta-features that tries to extract some related useful informa-
tion related to such distribution.
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5.2.1 Trust Region Policy Optimization.

Besides selecting a different set of observations, this chapter aims to propose a Meta-
RL approach aimed at optimizing the hyperparameters of a different learning algorithm,
TRPO (Schulman et al., 2015). As already seen in Section 3.5, at each iteration of the
optimization process, TRPO defines a Trust Region around the previous solution, then
builds a local approximation of the performance measure and searches for the next
candidate agent inside the trust region.

TRPO generally provides good empirical performances in many different kinds of
tasks but heavily relies on the trust region constraint, as it may have a huge impact on
the learning capabilities of the algorithm. Another important aspect of the trust region
constraint, and perhaps the biggest difference w.r.t. the selection of the stepsize for
SGA updates, is that it is usually fixed across all the learning steps: since we will try
to adapt the hyperparameter selection throughout the whole learning process automat-
ically, we provide new degrees of freedom, having the possibility of a change at each
TRPO learning step.

As already explained in the explanation provided in Section 3.5, the TRPO update
rule attempts to solve a trust region subproblem introduced in 3.28, where the goal is to
maximize the surrogate objective function Lθt(θ) (Equation 3.27) among the policies
πθ within the trust region of the policy space with radius λ and center in the previous
policy θt. As seen, this problem admits a closed-form solution, as in 3.29. Here we
provide the context-based version of the update rule, where the policy gradient and the
FIM simply include the dependency w.r.t. the context ω:

θt+1 = f(θt,ω, λ) = θt + α(λ,ω)Fω(θ)
−1∇θJω(θ),

where λ is the trust region constraint, or trust radius, and where the initial stepsize
α(λ,ω) is computed as:

α(λ,ω) :=

√
2λ

∇θJω(θ)⊤Fω(θ)−1∇θJω(θ)
. (5.1)

While the theoretical nature of TRPO provides strong monotonic improvement guaran-
tees, the practical algorithm introduces several approximations: as shown in Algorithm
4, the TRPO implementation requires two phases for each iteration: The first phase
adopts an iterative conjugate gradient optimization to find the search direction, to ap-
proximate the natural gradient, i.e., a variation of Equation 3.25 by means of the Fisher
information matrix (Kakade, 2001).In this way, it is possible to estimate the update di-
rection and the initial stepsize α(λ). During the second phase, it levers a criteria-based
line-search to obtain a feasible step size; starting from a maximum threshold following
the direction found in the previous phase, the stepsize is halved if the trust region con-
straint is not satisfied or if the surrogate function does not predict a return improvement.

Furthermore, the hyperparameter λ is kept constant for all iterations, but this may
be a major limitation: the trust region concept imposes a limit in which the surrogate
function Lωt(ω) is trusted to provide a good approximation of the return Jω(θ) and to
improve the real performances; however, different performance surfaces in the param-
eters space might have a different complexity of approximation: a very smooth Jω(θ)
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5.2. Motivations

surface can be easily approximated within a large trust-region, while the approxima-
tion of a stiff return manifold cannot be trusted in the same area. At the same time,
always imposing a very small trust region makes the algorithm slower, giving up on
some advantages of using TRPO instead of a classical PG gradient algorithm.

A fixed-size trust region also has some more subtle consequences on the effects
of the algorithm: the double-checking procedure carried out during the second phase
at each iteration is needed because of the approximations errors introduced with the
estimations, and its accuracy depends on the trust region constraint; the shrinking steps
during this second phase are mainly applied to mitigate the bad effects of a too big trust-
region. The shrinking process is thus very conservative, slowing down the algorithm.
Our goal in this chapter, besides the selection of an informative and dimensionally
adequate set of meta-features, is to provide a robust method to find an adaptive selection
of the trust region, which can be trusted without the need for a second check: as a
consequence, in our implementation of the solution, we modified the double check
procedure by not checking whether the surrogate function predicts an improvement.
The version of Algorithm 4 where the double-check (light blue box) is simplified as
Dmax
KL (πθt ||πθ̃) > λ will be denoted in the following as xTRPO.

5.2.2 Information Theory

In this section, we provide some basic concepts and mathematical tools of Information
Theory, which has become very influential in many engineering and scientific fields.
The main source, directly or indirectly used for building this section, is (Shannon,
1948). The basic intuition behind Shannon’s information theory relies on the infor-
mation provided by the likelihood of an event, as "to know that an unlikely event has
occurred is more informative than knowing that a likely event has occurred" (Goodfel-
low et al., 2016). Given a density f over the space of events X , Shannon Information
aims at quantifying the informativeness (unlikeliness) of an event x ∈ X through its
likelihood − log f(x).

Entropy Entropy is a measure that describes the amount of expected information re-
lated to the distribution f :

Definition 5.1 (Differential Entropy). Let X be a measurable space, and let f ∈ ∆X
be any distribution defined over X . The differential entropy (or just entropy) H(f) of
f is the average information of the events drawn from the distribution:

H(f) = E
x∼f

[hf ] = − E
x∼f

[log f(x)]

The formal interpretation of such measure is related to the amount of information
gathered by f , i.e., the minimum average amount of bits needed to encode an event
sampled from the distribution f . An interesting property of the entropy is related to
conditional distributions, as it is possible to rewrite the conditional entropy in a useful
way: first of all, we provide the definitions of joint and conditional entropy:

Definition 5.2 (Joint Entropy and Conditional Entropy). LetX ,Y be measurable spaces,
and let fj ∈ ∆X×Y be a joint distribution defined over X ×Y . The joint entropy H(fj)
of fj is defined as:

H(f) = − E
(x,y)∼fj

[log fj(x, y)];
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Moreover, let fc the conditional distribution of y|x for any (x, y) ∈ X × Y . The
conditional entropy of Y given X under fc is defined as:

H(fc) = − E
(x,y)∼fj

[log fc(y|x)].

While the joint entropy represents the amount of information needed in expectation
to specify the joint outcome of the two values, the conditional entropy instead repre-
sents the expected extra information needed to specify the outcome of Y conditioned to
the knowledge of the outcome x ∈ X . A basic relation that we will use in the following
section is the following:

Fact 5.1. Let X ,Y be two measurable spaces, with marginal distributions fx ∈ ∆X
and fy ∈ ∆Y . Let fj and fc be the joint and conditional distributions, respectively.
Then:

H(fc) = H(fj)−H(fx). (5.2)

Cross Entropy Cross Entropy is a measure that builds upon both the notions of entropy
and information and attempts to measure the amount of information required to encode
the difference between two distributions.

Definition 5.3 (Cross Entropy). Let X be a measurable space, and let f1, f2 ∈ ∆X be
two distributions defined over X such that f1 ≪ f2, i.e., f1 is absolutely continuous
w.r.t. f2. The cross entropy of f2 from f1 is defined as

C(f1, f2) = E
x∼f1

[hf2(x)] = − E
x∼f1

[log f2(x)] .

The usual interpretation of this measure is the minimum amount of information
needed to efficiently encode the events, meaning that the cross-entropy, in a sense,
measures the information of the events in X encoded as if they were sampled from f2,
while they were drawn from f1. Trivially, if the two distributions are a.e. identical, the
amount of information is the same, and the cross entropy is reduced to the entropy, i.e.,
C(f1, f2) = H(f1) = H(f2). If the two distributions are different, the cross-entropy
increases accordingly.

A similar property as Fact 5.1 holds for the cross conditional entropies:

Fact 5.2. Let X ,Y be two measurable spaces, with two marginal distributions f 1
x , f

2
x ∈

∆X and f 1
y , f

2
y ∈ ∆Y . Let f 1

j and f 1
c be respectively the joint and conditional distribu-

tions related to f 1
x and f 1

y , and analogously for f 2
j and f 2

c . Then:

C(f 1
c , f

2
c ) = C(f 1

j , f
2
j )− C(f 2

x , f
2
x). (5.3)

Kullback-Leibler divergence Similarly to cross-entropy, the Kullback-Leibler divergence
(KL) is commonly adopted to describe the divergence between two distributions, as it
measures the loss of information due to encoding events drawn from a distribution as if
they were drawn from a different one:

Definition 5.4 (Kullback-Leibler Divergence). Let X be a measurable space, and let
f1, f2 ∈ ∆X be two distributions defined overX such that f1 ≪ f2, i.e., f1 is absolutely
continuous w.r.t. f2. The cross entropy of f2 from f1 is defined as

DKL(f1 || f2) = E
x∼f1

[
log

f1(x)

f2(x)

]
.
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5.3. Methodology

This measure is strictly related to the cross-entropy since:

DKL(f1 || f2) = C(f1, f2)−H(f1). (5.4)

As a consequence of the linear relation w,r,t, entropy, and cross-entropy, for KL
divergences, the same properties of conditional distributions hold:

Fact 5.3. Let X ,Y be two measurable spaces, with two marginal distributions f 1
x , f

2
x ∈

∆X and f 1
y , f

2
y ∈ ∆Y . Let f 1

j and f 1
c be respectively the joint and conditional distribu-

tions related to f 1
x and f 1

y , and analogously for f 2
j and f 2

c . Then:

DKL(f
1
c || f 2

c ) = C(f 1
c , f

2
c )−H(f 1

c )

=
[
C(f 1

j , f
2
j )− C(f 1

x , f
2
x)
]
−
[
H(f 1

j )−H(f 1
x)
]

= C(f 1
j , f

2
j )−H(f 1

j )− C(f 1
x , f

2
x) +H(f 1

x)

= DKL(f
1
j || f 2

j )−DKL(f
1
x || f 2

x).

(5.5)

In conclusion, it is worth noting that, albeit being commonly used as dissimilarity
measures between probability distributions, neither cross-entropy nor KL divergences
are truly metrics, since they do not satisfy the triangle inequality. Furthermore, they are
not symmetric, as C(f 1, f 2) ̸= C(f 2, f 1).

5.3 Methodology

5.3.1 Optimizing the KL Constraint through Meta-MDPs

In Section 3.5, we presented TRPO, which introduces a new hyper-parameter λ to con-
strain the trust region at each step: the fact that this constraint is usually kept as fixed
throughout the whole learning session suggests that there will probably be some in-
efficiencies that can be solved only through an adaptive selection (as in our case), or
through line-search heuristics: as seen, TRPO implementation in Algorithm 4 trans-
forms the KL constraint into a line-search procedure, with double checks to deal with
the approximations introduced.

Consequently, with our contribution, we aim to improve TRPO by reducing the
conservativity on the step sizes adopted: as mentioned in Section 5.2, we will work on
a modified version of the algorithm, denoted as xTRPO, that does not shrink the step
size when the surrogate loss does not predict an improvement; in other words, we are
deactivating the feature that attempts to mitigate the effects of a bad trust region, since
we aim to provide the optimal trust region at each step automatically. Our approach is
in line with the previous chapter: We want to apply the meta-MDP devised in Section
4.4 to the problem of HO of the trust radius λ, which will be the main meta-action of
the agent.

Update Rule the first and most straightforward modification we need to apply with
respect to the previous implementation (aimed at optimizing the step size) consists
in the replacement of the update rule: our update rule f is one step of xTRPO: the
step takes as input a batch of trajectories collected with the current policy πθt and the
trust region constraint λt. In this way, it is possible to compute an approximation of
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the natural gradient and then apply a line search starting from an estimation of the
maximum stepsize α(λ,ω) defined in Equation 5.1, which then is iteratively halved
until the main trust region constraint is satisfied.

Encoding the Meta-State As described in Section 5.2, we want to avoid the inclusion in
the meta-observation space of an explicit representation of the task, or the complete
parametrization, but a representation of the trajectory distribution ρθ,ω induced by the
interaction of the policy and the context. This distribution provides a complete repre-
sentation of the behavior of the policy, but it is not injective, as different parametriza-
tions might induce the same distribution: for instance, one might think of a wide neural
network parametrization that simply emulates the same behavior of a linear policy. The
resulting trajectory distribution is the same, but applying a TRPO (or xTRPO) update
under the same hyperparameters might lead to different results. Hence, it is relevant to
keep in mind that, while the trajectory distribution is indeed useful, it implies a loss of
information.
Unfortunately, there is no analytical representation of ρθ,ω: consequently, starting from
a batch of n sampled trajectories, we need to extract some useful features directly rely-
ing on ρθ,θ:

• H(·): the entropy measure introduced with Definition 5.1 describes the expected
amount information related to the distribution. In literature, it is often adopted to
measure the amount of exploration of a policy (Hazan et al., 2019).

• C(·, ·): it might be useful to consider if previous updates provided major changes
in the trajectory distributions, dependent on the return manifold w.r.t. the pol-
icy space. In some regions of the policy space, small updates can provide major
changes in the policy behavior, with the consequent need for a more careful trust
region to avoid worse performances. Hence, it is possible to consider the impact
of the last update by directly comparing the dissimilarities of the trajectory distri-
butions induced by two policies in consecutive learning steps.

• DKL(· || ·): for the same reason as the cross entropy, the KL-divergence between
different distributions induced by the policies encountered during the learning pro-
cess can help to predict the effects on the performance provided by different hy-
perparameters.

Potentially, we can consider the entire history of meta-features encountered in the learn-
ing process up to the current time t, e.g., measure C(θt,θt′) for all t′ < t, in a similar
way as in (Li and Malik, 2016). However, this idea will scale badly with the learning
horizon and would make the set of meta-features entirely dependent on the previous
updates. Instead, we limit ourselves to the last update, hence considering only the tim-
ings t and t − 1. Hence, we will consider the trajectory distributions ρt and ρt−1 to
denote the distributions of trajectory induced respectively by the policies θt and θt−1

and their related tasks (fixed or variable). Hence we will select as meta-features the fol-
lowing quantities: the related entropies H(ρt) and H(ρt−1), the backward dissimilarity
measures C(ρt, ρt−1), DKL(ρt, ρt−1) and the same forward features, where the two dis-
tributions are in reverted order: C(ρt−1, ρt), DKL(ρt−1, ρt). The motivation behind the
choice of both orders is related to the asymmetry of the dissimilarity measures, as one
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5.3. Methodology

Measure Distribution Timing

Trajectory-based
H p(s), p(a|s), p(s′|a,s) (t) and (t− 1)
C p(s), p(a|s), p(s′|a,s) ((t), (t− 1)) and ((t− 1), (t))
DKL p(s), p(a|s), p(s′|a,s) ((t) || (t− 1)) and ((t− 1) || (t))

Return-based E[J ] (t)
Var[J ] (t)

Table 5.1: Summary of all the meta-features ϕ used as observation for the meta-MDP. Distribution
refers to the type of distribution considered instead of the trajectory distribution. Timing refers to the
learning step considered for the distribution.
for instance, for H , p(s) and (t) we mean H(p(s)(t)), while for DKL, p(a|s) and ((t) || (t − 1)) we
mean DKL(p(a|s)(t) || p(a|s)(t− 1)).

of the two measures is usually more meaningful than the other.

Furthermore, the distribution of the overall trajectories of a policy in the state space
is unfeasible to be computed; hence, we need a simpler set of distributions that can
be more easily estimated: since a trajectory can be represented through a sequence of
states and actions, we can represent the distribution on trajectories through the distribu-
tion over the states p(s) ∈ ∆S , the distribution over the state-action pairs p(s,a) ∈ ∆S×A
and finally p(s,a,s′) ∈ ∆S×A×S , which is the distribution over the transitions (s, a, s′).
However, it is more meaningful to include in the set of meta-features the conditional
distributions: the probability of choosing an action given a state, measured within the
distribution p(a|s) represents the set of choices made from the policy πθ and is inde-
pendent of the task; in the same way, the distribution p(s′|a,s) represents the context-
dependent transition kernel Pω. Hence, these conditional distributions will be adopted
instead of the joint ones while keeping the same computational complexity for the esti-
mation thanks to the linear relation provided with Equations 5.2, 5.3 and 5.5.

At last, the trajectory distribution with all related measures does not keep into ac-
count the rewards collected: we can include information about the current policy per-
formance since it is crucial for the dynamics of the meta-MDP: in this case, we simply
opted for the inclusion of the mean and variance of the estimated returns Jω(θt), under
the current policy parametrization θt, which can be easily approximated from the tra-
jectories.

In summary, the overall set of meta-features can be found in Table 5.1: for the
trajectory-based features, we consider all the possible combinations of measure (H,C,
or DKL), distribution (p(s), p(a|s), or p(s′|a,s)) and timings; in addition, the return-based
meta-features are simply the mean and variance of the return. In this way, we have
provided a set of meta-features ϕ(ρt, ρt−1) dependent on the trajectories observed under
timings t and t− 1. In the next section, we will provide the techniques used to estimate
the trajectory-based meta-features from a batch of samples τt and τt−1 (Singh et al.,
2003). Thus, we can finally apply Meta-FQI under the xTRPO update rule to optimize
the trust region constraint λt. In the same fashion, also the collection of the training
dataset must be modified accordingly, as depicted in Algorithm 6.

81



i
i

“output” — 2023/6/14 — 7:29 — page 82 — #104 i
i

i
i

i
i

Algorithm 6 Meta-features Dataset Generation

Require: CMDP M (with task distribution ψ, policy space Θ, initial policy distribution ρ),
number of learning instances K, number of learning steps T , number of inner trajectories n.

Ensure: dataset of transitions D
Initialize: D = {},
for k = 1, . . . ,K do

Sample context ω ∼ ψ(Ω), initial policy θ0 ∼ ρ(Θ)

Collect τ0, from n trajectories in taskMω under policy π(θ0)

Estimate Jω(θ0), ∇̂θJω(θ0)

Compute meta-features x0 = ϕ(τ0, τ−1 := ∅)
for t = 0, . . . , T − 1 do

Sample meta-action h ∈ H
Update policy θt+1 = f(θt, h, τt−1)
Collect τt+1, from n trajectories in (Mω, π(θt+1))

Estimate Jω(θt+1), ∇̂θJω(θt+1)

Compute meta-features xt+1 = ϕ(τt+1, τt)

Set
l = Jω(θt+1)− Jω(θt).

Append {(xt, h, xt+1, l)} to D
end for

end for

5.4 Meta-Features Estimation

In the previous section we analyzed how to represent informatively and in a very com-
pressed way the complex meta-state of the meta-MDP framework, we introduced a set
of meta-features which is both policy-agnostic and task-agnostic, so it can be adopted
without explicit knowledge of the context, without the assumption of a fixed context for
the duration of the learning sessions, and with the possibility to generalize over differ-
ent policy spaces and architectures. In this section, we discuss how the trajectory-based
meta-features can be estimated starting from a batch of trajectories. More specifically,
we want to estimate the meta-features H , C and DKL for the distributions p(s), p(a|s)
and p(s′|a,s), using the trajectories τ(t) and τ(t − 1) sampled using a policies πθt and
πθt+1 .

An important remark to keep in mind is that we do not have full knowledge of
the distributions we want to represent, but we can only have some samples that are
iteratively drawn from a batch of trajectories. From the batch of n trajectories τi =
{si0, ai0, ri0, si1, . . . , aiT−1, s

i
T}, we will extract the information required in the form of

three new datasets, containing the states encounter, the state-action pairs and the tran-
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5.4. Meta-Features Estimation

sitions in the form (s, a, s′):

Ds =
n⋃

i=1

T (i)⋃

j=0

(sij)

Dsa =
n⋃

i=1

T (i)−1⋃

j=0

(sij, a
i
j)

Dsas =
n⋃

i=1

T (i)−1⋃

j=0

(sij, a
i
j, s

i
j+1)

(5.6)

Afterward, we can consider these datasets as they were drawn from the respective joint
distributions p(s), p(s,a), and p(s,a,s′). In the following, we provide a K-Nearest Neigh-
bors (KNN)-based method for the estimation of entropies and cross-entropies provided
in (Singh et al., 2003), which implicitly rely on the estimates of densities and volumes
from samples. In this way, we can easily take advantage of Equation 5.4 to retrieve the
estimation of KL divergences from the approximations obtained. In conclusion, thanks
to the conditional properties from 5.2, 5.3 and 5.5, we can obtain the final set of the
considered meta-features.

5.4.1 Density and Volumes Estimation

In this subsection, we will provide a useful methodology to provide consistent esti-
mators for the entropy of a distribution, and the cross-entropy among two absolutely
continuous distributions in a general context. The estimation of a probability distri-
bution p ∈ ∆X defined on a metric space (X , dX ) can be done by means of a KNN
approach, as described in Singh et al. (2003): first of all, since we deal with vectors,
neighbors and distances, we define the knn-distance of a point using the samples in a
dataset D as:

∆D
k (x) = dX (x;xk);

where xk is the k-th nearest neighbor of the input x ∈ X in the dataset D. In practice,
for any x, we consider ∆D

k (x) as the distance from x to the kth closest point in the
dataset. In this case, k is a parameter, which controls the variance of the estimation.
We are dealing with real vectors, hence, the metric space is Rd, for some dimension
d > 0, and the distance is the usual Euclidean metric. Afterwards, we can estimate the
minimum volume V D

k (x) of an hypersphere centered in x with radius ∆D
k (x), which

should contain k samples from the dataset D as:

V̂ D
k (x) =

π
d
2∆D

k (x)
d

Γ(d
2
+ 1)

, (5.7)

where Γ(d
2
+1) is the Gamma function. Then, knowing that this is the minimum volume

containing k drawn samples, a reasonable estimate of the density is provided.

Definition 5.5 (KNN-Estimator of density function). Let D = {xi}i be a dataset of n
samples drawn from p ∈ ∆X . The KNN-Estimator p̂(x; k,D) for every x ∈ X can be
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computed as:

p̂(x; k,D) = p̂Dk (x) =
1

n
k
V̂ D
k (x)

=
k

n

Γ(d
2
+ 1)

π
d
2∆D

k (x)
d

5.4.2 KNN-Estimator

Given the density or volume estimation, we can provide consistent estimators for the
entropy, cross-entropy, and KL-divergence, by transforming the expected values into
discrete sums:

Starting from the entropy, we can compute the estimation Ĥ(p) for the entropy of
the distribution p ∈ ∆X , using a dataset D = {xi ∼ p(·)}.
Definition 5.6 (Entropy KNN-Estimator). Let D = {xi}i be a dataset of n samples
drawn from p ∈ ∆X . the KNN-Estimator Ĥ(p) for the entropy H(p) can be computed
as follows:

Ĥ(p) := − 1

n

∑

xi∈D
log p̂Dk (xi) + ln k −Ψ(k)

=
1

n

∑

xi∈D
log

nV̂ D
k (xi)

k
+ log k −Ψ(k),

(5.8)

where ln k +Ψ(k) is a bias correction term in which Ψ(k) is the Digamma function.

This estimator is consistent:

Proposition 5.7 (Consistent KNN-entropy estimator, Theorems 8 and 11 in Singh et al.
2003). Let D = {xi}i be a dataset of n samples drawn from p ∈ ∆X . Consider the
KNN entropy estimator from Equation 5.8. Then:

lim
n→∞

E[Ĥ(p)] = H(p)

lim
n→∞

Var[Ĥ(p)] = 0

For the cross entropies, we need instead two datasets D1 and D2 drawn from the
respective distributions p1,p2 ∈ ∆X for which we want to estimate the cross entropy
C(p1, p2). What changes w.r.t. the entropy estimation is that we will use the KNN-
Estimator for the volume trained on dataset D1 to compute the information of the sam-
ples coming fromD2. Hence we will compute the sample mean over the distribution p2
of the information h(p1).

Definition 5.8 (Cross Entropy KNN-Estimator). Let D1 = {xi} be a dataset of n1 of
i.i.d samples drawn from p1 ∈ ∆X , and let D2 = {xj} be a dataset of n2 samples
drawn from p2 ∈ ∆X . The KNN-Estimator Ĉ(p1, p2) of the cross entropy C(p1, p2) can
be computed as follows:

Ĉ(p1, p2) :=
1

n2

∑

xj∈D2

log
n1V̂

D1
k (xj)

k
+ log k −Ψ(k).

In conclusion, we can also estimate the KL-divergenceDKL(p1 || p2) easily, remem-
bering from 5.4 that the DKL is the difference between the cross entropy C(p1, p2) and
the entropy H(p1).
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Figure 5.1: Fine-tuned hyper-parameter TRPO vs meta-model with linear policies. Top Figure: Com-
parison of the average performances of the tested FQI models (Meta-KL) w.r.t the baselines (Fixed-
KL) and the results from the learning trajectories in the meta-training dataset (random KL) Cartpole
training dataset is composed of learning trajectories with 15 only total updates, while the evaluation
process is performed on 45 learning steps. Bottom Figure: meta-action selected at each learning
step. 30 runs, avg ±90% c.i.

Definition 5.9 (KL-Divergence KNN-Estimator). Let D1 = {xi} be a dataset of n1 of
i.i.d samples drawn from p1 ∈ ∆X , and letD2 = {xj} be a dataset of n2 samples drawn
from p2 ∈ ∆X . The KNN-Estimator D̂KL(p1 || p2) of the KL-divergence DKL(p1, p2)
can be computed as follows:

D̂KL(p1 || p2) = Ĉ(p1, p2)− Ĥ(p1),

where Ĉ(p1, p2) and Ĥ(p1) are defined in 5.6 and 5.8.

5.5 Experiments

The experimental environments we used for our tests are Elikoeidis, Meta Minigolf
(Tirinzoni et al., 2019) and Meta Cartpole (Penner, 2002).

While Minigolf and Cartpole are the same environments introduced in Chapter 4,
with the same contextual generalizations leading to Meta Minigolf and Meta Cartpole
environments, Elikoeidis is specifically designed to challenge the learning capabilities
of the original TRPO algorithm, and see whether our approach could perform better
with only linear policies. More technically, it is a single-state environment, which
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Figure 5.2: Meta Minigolf: Performances by different Policy Parametrizations. Top figure: Compari-
son, across different architectures, of the metaFQI model against the baselines, including training
trajectories. Bottom figure: meta-action selected at each learning step. 30 runs per architecture.
MLP(h, n) denotes an MLP with h hidden layers and n neurons per layer. MLP(0,0) denotes a linear
policy. MLP(2,32) (rightmost plot) is only tested, i.e. no policies with this architecture were consid-
ered in the training dataset.

lets us control the complexity of the reward given the action through its task; the re-
ward functions are of the kind R(a) = N (c1a sin(a

1+ 1
c2 ) + c3a, c4), where the vector

c = {c1, c2, c3, c4} is the task. In our case, we want to analyze the effects on a single-
task MDP, with c = [0.5, 3, 0.5, 1]. FQI dataset collection is made of 100 tuples, and for
each one, the meta-features are extracted from sets of n = 8 linear policy trajectories.
Instead, for Minigolf and Cartpole environments, the FQI datasets (containing respec-
tively 7000 and 15000 tuples) are made by considering linear policies and Multi-Layer
Perceptrons with different numbers of hidden layers (3 maximum) and hidden neurons.
n is set to 64 for the evaluation of meta-features.

The settings are typical of Meta-Learning, with a meta-training phase and a meta-
testing phase: in our case, the meta-training is composed by a meta-dataset collection
phase, followed by the training phase, since FQI is an off-line algorithm; further, we
also had a meta-validation phase to select the best across different meta-models, which
were trained on the same datasets but using different a different number of iterations
and min-splits. As commonly done in meta-learning, during the meta-tests we com-
pare the performances of learning sessions collected using our meta-models to those
collected using a fixed-value hyper-parameter fine-tuned adopting a grid search, which
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Figure 5.3: Cartpole: Performances across different Policy Parametrizations. Comparison, split across
different architectures, of the metaFQI model against the baselines, including training trajectories.
30 runs per architecture. MLP(h, n) denotes an MLP with h hidden layers and n neurons per layer.
MLP(0,0) denotes a linear policy. MLP(1,16) and (3,64) are not in the training dataset, i.e. no
policies with these architectures were considered for FQI training.

are referred to as baselines.
In 5.1 we show the main experimental results of our work: for each iteration of

the TRPO algorithm, we report the sample mean of the performances and the average
selected hyper-parameter using the resulting model, compared to the baselines. The
Training Meta-Dataset curves represent the average performances and λ values ob-
tained in the dataset for training metaFQI models, with a random hyper-parameter at
each step. We show it to provide a glimpse of how much information has been learned:
for instance, in Cartpole the meta-training dataset contained only information about
the first 15 steps of learning, while the meta-model has been tested on trajectories 45
steps long, requiring good generalization capabilities. The baselines are composed of a
set of trajectories collected by applying a constantly constrained trust region on TRPO
across the same set of test meta-tasks. Figure 5.1 depicts the performances of the best-
validated FQI model, compared with the best-performing baselines. The comparison
shows clearly how the meta-model can always perform as well as the best baseline
found, and many times even better, by choosing an adaptive trust region, decreasing
with time.

Figures 5.2 and 5.3 show the results across different policy architectures respec-
tively regarding the Minigolf and Cartpole environments. In the first scenario, we can
observe that the FQI model is able to reach better results than the baselines in the case
of linear policies and with MLP with 1 hidden layer. This last case is emblematic, as
also selecting a random trust region seems to bring an improvement with respect to the
fixed case. The rightmost plot, instead, depicts the results on a set of instances where
the selected parametrizations is an MLP with 2 hidden layers and 32 hidden neurons,
which was never seen by the FQI model during training (in a sense, it is a test architec-
ture or test policy class: the model is able to reach the same results as the best baseline,
computing using a grid-search, hence proving its generalization capabilities. The same
conclusions can be taken for the Cartpole case (Figure 5.3), where the resulting FQI
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model can outperform the baselines for the linear case (leftmost plot) and generalize
well for unseen architectures (central and rightmost plots), by using only trajectories
with 15 updates.

5.6 Conclusions

The general goal of this chapter is to improve TRPO by applying meta-learning to the
trust region hyper-parameter optimization, with a dynamic adaptation at each learning
step. We proposed a solution capable of building a parametrization-agnostic and task-
agnostic meta-model, which can generalize across different policy parametrizations
(or policy classes), and even being adaptive and robust w.r.t. new architectures, i.e.
policy classes that were never seen during the training phase, without the need to restart
the HO process. Performing better than the optimal (fixed) baseline means that we
developed a method to train a meta-model that can substitute and improve the hand-
crafted choice of the trust region hyper-parameter, work that must be done for each
new task or policy parametrization. All the experiments carried out suggest that the
meta-MDP direction is promising: the results obtained in the Elikoeidis environment,
which was specifically designed with the intent to be easily learned by using actions
provided by a meta-model on linear policies, show the feasibility of our approach, while
the standard application of TRPO algorithm has far worse performances. Furthermore,
the experiments on Minigolf and Cartpole show how it is possible to fully reach our
goals, improving the learning algorithm over a set of tasks, and automatizing the hyper-
parameter selection.

There are anyhow many drawbacks and situations in which a meta-learning ap-
proach does not bring any advantage: when the optimal fixed-size trust region does not
change across different parametrizations or different tasks, it is not computationally ef-
ficient to take the effort of building the meta-model to automatize the hyper-parameter
choice; on the other hand, the new degrees of freedom on the trust region may result in
finding optimal models that cannot be retrieved by means of a fixed-size trust region.
Moreover, in complex environments, it may require a lot of meta-training data, as in the
classic applications of FQI. Alongside these considerations, our approach involved the
computation of a set of informative meta-features, which were reasonable, but with no
theoretical grounding: as future research directions, we may wonder how to generate
and select more informative meta-features with a solid validation theory, and to de-
velop online approaches, that can bring the advantages of a dynamic choice of learning
hyperparameters.
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In Part I we were focused on enhancing the learning capabilities of RL models by
optimizing the hyperparameter selection procedure. The contributions we made may
be leveraged to automatize the fine-tuning process, that practitioners always have to
perform when facing new tasks. However, they also need to carefully configure the
environment, in such a way that the information gathered from the sample trajectories
is useful enough to detect the most promising actions. In particular, peculiar attention
is given to the control frequency of the environment, which defines the duration of the
actions and the amount of time between two consecutive observations. Acting with the
highest possible frequency allows the best control opportunities, but deeply increases
the complexity of the problem.

In this part, we deal with the problem of Control Frequency Adaptation, with a par-
ticular focus on value-based algorithms. In Chapter 6 we introduce the main tool to
work with different frequencies: action persistence. It consists of a parameter defin-
ing the number of repetitions of an action and helps us analyze in detail the effects
of different frequencies on the trade-off between the learning opportunities and the
performances of the optimal policies. In this direction, we implement a value-based al-
gorithm, able to learn with different persistence values, and heuristic methods to learn
effective frequencies. Further improvements are provided in Chapter 7, where we deal
with a dynamic selection of the persistence: the action space is enlarged to the space of
persistence options, in such a way that the agent selects both the action and its duration.
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CHAPTER6
Control Frequency Adaptation via Action

Persistence

6.1 Introduction

In the previous chapters, we have described and implemented some of the most popular
RL algorithms, which are all aimed at solving discrete-time MDPs (Puterman, 2014),
introduced with Definition 2.1. In this framework, the interaction between the agent
and the environment is issued in equally distanced time instants, specified by a con-
trol frequency. However, numerous real-world problems are more naturally defined in
the continuous–time domain (Luenberger, 1979), such as robotic manipulation (Kober
et al., 2013; Haarnoja et al., 2019; Kilinc et al., 2019), autonomous driving (Kiran et al.,
2021) or continuous system control (Lillicrap et al., 2015; Yildiz et al., 2021). It is pos-
sible to provide ad-hoc definitions of MDPs in the continuous setting (Cont-MDPs,
Section 2.2.2), and several works are focused on such setting (Munos and Bourgine,
1997; Bradtke and Duff, 1994; Doya, 2000), but the majority of research is devoted to
the discrete case. Consequently, practitioners often need to deal with the problem of the
selection of the time discretization: the choice of the control frequency of a system has
a relevant impact on the ability of reinforcement learning algorithms to learn a highly
performing policy.

In this chapter, we introduce the notion of action persistence that consists of the
repetition of an action for a fixed number of decision steps, having the effect of modi-
fying the control frequency. The base MDP we work under the assumption that there
exists a base control time step ∆t0 inducing the dynamics of the base MDP M∆t0 .
Equivalently, we can define the base control frequency as f0 = 1

∆t0
. In this setting, we

want to select a suitable control time step ∆t that is multiple of the base time step, i.e.,
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∆t = k∆t0 with k ∈ N+. Typically, a lower bound on ∆t0 is imposed by the physical
limitations of the system (e.g., the frequency of the sensors and of the actuators in a
physical system, or the clock time in processors). Thus, we restrict the search of ∆t
to the discrete set {k∆t0 , k ∈ N+}. Any choice of k generates an MDP Mk∆t0 ac-
cording to Definition 6.2. Therefore, we describe k as the persistence of the action, or
in other words, the number of base time intervals during which an action is kept fixed.
In a sense, we can see persistence as an environmental parameter (time discretization)
that can be tuned to enhance the learning capabilities of an RL algorithm. We ana-
lyze how action persistence affects the performance of the optimal policy, and then we
present a novel algorithm, Persistent Fitted Q-Iteration (PFQI), that extends FQI (Ernst
et al., 2005), with the goal of learning the optimal value function at a given persistence.
Furthermore, we introduce a heuristic approach devoted to identifying the optimal per-
sistence, which is then tested on benchmark domains to show the advantages of action
persistence and prove the effectiveness of our persistence selection method.

Chapter Outline This chapter is organized as follows: the main motivation of our ap-
proach is described in Section 6.2, along with a couple of examples to underline the
empirical importance related to the time discretization problem. Some of the analyses
and solutions provided in the literature are provided in Section 6.3. The main contri-
bution starts with Section 6.4, where we elaborate on the concept of action persistence:
we show that it can be understood as a tunable environment parameter or as a modifica-
tion of the solution class to a set of non-Markovian policies. A low persistence value,
i.e., the repetition of the same action for a small amount of (base) time steps, reflects
the selection of a high control frequency: from one side, there are more control oppor-
tunities leading to better optimal policies, but at the same time the sample complexity
increases leading to more difficult learning. We provide a bound for the performance
loss generated by action persistence is analyzed in Section 6.5, under Lipschitz assump-
tions on the environment. The result confirms the intuition that the performance loss
is strictly related to how fast the environment evolves as an effect of the actions (Sec-
tion 6.5). Then, we apply the notion of action persistence in the batch RL scenario,
and we extend the FQI algorithm (Ernst et al., 2005), introduced in Section 3.5, to keep
into account action persistence. We denote the resulting algorithm as Persistent Fitted
Q-Iteration (PFQI), which estimates the optimal value function of a policy with a target
persistence (Section 6.6). The value function estimation for a set of candidate persis-
tencesK ⊂ N+ can then be compared to select the best performing greedy policy: thus,
we introduce in Section 6.7 a persistence selection heuristic to approximate the optimal
persistence. The approach is then experimentally evaluated on benchmark domains,
whose goal is to confirm our theoretical findings and evaluate our persistence selection
method (Section 6.8). An interesting application of our approach is provided in Section
6.9, where we trained an artificial agent to trade into the Foreign Exchange (FX) market.
The experimental campaign is not enough to answer all the possible questions related
to action persistence, some of which are presented and discussed in Section 6.10. The
proofs of all the results and further analyses are available in Appendix B.1.
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6.2. Motivations

6.2 Motivations

The choice of the control frequency of a system has a relevant impact on the ability
of reinforcement learning algorithms to learn a highly performing policy. Intuitively,
a higher control frequency of the system allows the agent to make more frequent deci-
sions, possibly improving the performance. This may lead to an incorrect suggestion
of controlling the system at the highest possible frequency, within its physical limits.
RL techniques, however, are adopted when the environment dynamics are unknown: a
too-fine discretization could result in the opposite effect, making the problem harder
to solve. Indeed, any RL algorithm needs to (implicitly or explicitly) evaluate the ef-
fects of the actions chosen by the agent: if the time interval between two observations
is too narrow, the effect of the action may be limited, and the related advantage is
consequently infinitesimal. Indeed, for standard value-based RL, (Tallec et al., 2019)
proved than, under suitable smoothness assumption, in the limit for ∆t0 → 0, the Q-
value function collapsed to the value function V . This was empirically observed also
in (Baird, 1994). This issue does not only affect value-based algorithms: Park et al.
(2021) proved that, for stochastic MDPs, the variance of the return function is propor-
tional to f0. Consequently, a higher control frequency leads to an increase of sample
complexity. Instead, low frequencies allow the environment to evolve for a longer time,
making the effect of individual actions more easily detectable. Furthermore, in a sys-
tem characterized by a “slowly evolving” dynamics, the gain obtained by increasing the
control frequency might become negligible. Finally, lower frequencies help overcome
some partial observability issues in robotics, like action execution delays (Kober and
Peters, 2014).

Therefore, we experience a fundamental trade–off in the control frequency choice
that involves control opportunities (higher in high–frequency) and the sample complex-
ity (smaller in low–frequency). This problem is not only intriguing from a theoretical
point of view but is also very important from a practical perspective: we now provide
some scenarios as examples in which tuning the frequency is of fundamental impor-
tance.

Example 6.1 (Robotic Manipulation). One of the most straightforward frameworks
where control frequency adaptation is relevant is the robotic manipulation field (Shahid
et al., 2022): the dynamic systems evolve in continuous time, but the sensors and actu-
ators are governed by a natural control frequency. In the design of the control problem,
actions changed with high frequency can place a lot of strain on the robot mechanics
and lead to oscillations or too dangerous positions (Kober et al., 2013). Conversely,
simulated control environments often rely on Euler-like approximations of the dynam-
ical systems, which are feasible only with small time steps. Thus, simply reducing the
base control frequency might lead to inefficiencies, Persistence comes into help, as it
allows to keep the system under surveillance, with frequent observations and less dan-
gerous actions.

Example 6.2 (Locomotion). Consider a simple locomotion task, where the agent needs
to navigate to reach a goal, as a Grid maze or as a more complex race track. If an agent
changes the direction with high frequency, the resulting trajectories keep returning to
a region closer to the starting area, thus leading to relevant exploration issues (Park
et al., 2021). By repeating the actions, it is possible to generate self-avoiding trajec-
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tories with higher probability, dramatically improving the exploration. This particular
phenomenon is studied in more detail in Chapter 7.

Example 6.3 (Atari games: frame skip). In the previous examples, we often took into
account near-continuous systems, which are subject to time discretization. Action per-
sistence might be useful also in virtual environments virtually embedded with a specific
base frequency, such as videogames. In some of the most famous value-based RL im-
plementations (Bellemare et al., 2013; Mnih et al., 2015), the authors designed the
environment introducing a frame-skip parameter, which controls the number of frames
between two consecutive actions. This parameter is equivalent to action persistence
and was introduced for empirical reasons; its importance was then analyzed more care-
fully in (Braylan et al., 2015; Kalyanakrishnan et al., 2021).

Example 6.4 (Financial Trading). One last, very important framework where persis-
tence can bring several advantages is financial trading: the application of RL in this
field has been revealed to be successful since the pioneering work of (Moody and Saf-
fell, 2001). Autonomous agents are able to detect patterns in the market and can take
advantage of profitable signals that may span from a few minutes to a few hours. How-
ever, even if trading opportunities are present at many different time scales, learning
them is not equally difficult. Most of the autonomous agents that populate the market
today operate at a very high frequency, but their behavior is usually hard-coded since,
at such time scales (milliseconds), the main opportunities are constituted by ephemeral
arbitrages. On the other hand, operating at very low frequency (e.g. days, months) is
impossible without including exogenous inputs regarding the market, such as economic
data releases or market news. Precisely determining the best time scale for the learning
process is fundamental to learning profitable policies. In fact, while higher frequencies
always allow, in principle, for better control, they may present a worse signal-to-noise
ratio, which can deeply impact the learning performance. Moreover, financial traders
always have to deal with transaction costs: frequent portfolio modifications induce
higher global costs and might lead to inefficient strategies. In the field of RL for trad-
ing, the study of the impact of the trading time scale hasn’t been a primary focus. Most
works do not consider changing the frequency of interaction with the environment even
though the variety of time scales across papers ranges from high-frequency to daily to
even longer periods. Some works highlight the effect of assumptions on the trading
frequency, such as transaction costs or the agent’s risk aversion (Bisi et al., 2020a). In
the experimental campaign (extracted from Riva et al. 2021), we analyze the impact of
persistence in the Foreign Exchange Trading scenario.

6.3 Related Work

In this section, we revise the works connected to persistence, focusing on continuous–
time RL and temporal abstractions.

Continuous–Time RL Among the first attempts to extend value-based RL to the con-
tinuous time domain, there is advantage updating (Bradtke and Duff, 1994), in which
Q-learning is modified to account for infinitesimal control time steps. Instead of stor-
ing the Q-function, the authors rely on a rescaling of the advantage function Ãπ =
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(Q(s,a)−V (s)
∆t

), where ∆t is the time discretization. In Baird (1994), a continuous-time
MDP (Cont-MDP) is addressed by means of the semi-Markov decision processes (Howard,
1963) (SemiMDP, described in Section 2.2.2) for finite–state problems. The optimal
control literature has extensively studied the solution of the Hamilton-Jacobi-Bellman
equation (Kirk, 2004), i.e., the continuous-time counterpart of the Bellman equation,
when assuming the knowledge of the environment (Bertsekas, 2005; Fleming and Soner,
2006). The model-free case has been addressed by resorting to time discretizations (Pe-
terson, 1993), which also provides convergence guarantees (Munos, 1997; Munos and
Bourgine, 1997), and by utilizing functions function approximation (Dayan and Singh,
1995; Doya, 2000). The learning issues when dealing with the near-continuous setting
have been analyzed for both policy-based algorithms (Munos, 2006; Park et al., 2021),
and value-based RL (Baird, 1994; Tallec et al., 2019).

Temporal Abstractions The idea of persisting an action can be considered as a form of
temporal abstraction (Sutton et al., 1999b; Precup, 2001). Temporally extended actions
have been employed in the hierarchical RL to model different time resolutions (Singh,
1992a,b), subgoals (Dietterich, 1998), and combined with the actor–critic (Bacon et al.,
2017). Persisting an action is a particular instance of a (time-based) semi-Markov op-
tion, where an action is temporally extended for k steps. According to the flat option
representation (Precup, 2001), the option framework can be considered by setting the
option initiation set as the whole state space (I = S); the intra-option policy plays
deterministically the action selected when the option is issued (the non-Markovian k–
persistent policy introduced in Section 6.4); finally, the termination condition is times
based, as the option ends when k time steps have passed after the option started, i.e.,
β(Ht) = 1{t mod k=0}. Interestingly, in Mann et al. (2015), approximate value iteration
for options lasting at least a given number of steps is proposed and analyzed, sharing
some similarities with persistence, and the authors show that action repetition leads to
faster convergence (and lower approximation errors). The connections between con-
trol frequency adaptation and action persistence are interesting, but we consider the
temporal abstraction introduced within the option framework to be more general and
related to the semantics of the task to solve rather than the exploitation of the informa-
tion collected by the agent via action persistence. A more detailed discussion on the
relationship persistence-option framework is provided in Chapter 7

Action repetition has acquired practical relevance since the introduction of Deep
RL (Mnih et al., 2013), by leveraging the frame skip parameter (Bellemare et al., 2013).
In this direction, several works (Braylan et al., 2015; Khan et al., 2019) had shown the
importance of different frame skips for Atari games on exploration and convergence
speed. In Grigsby et al. 2021 the authors proposed an algorithm to automatically tune
the control frequency, along with other learning hyperparameters. At last, an interesting
research direction in literature regards the dynamic selection of the control frequency
by employing repetition rates: these related works are discussed in the next chapter
since the main goal in Chapter 7 is to learn an adaptive persistence rate.
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s0 s1 s2
sk−1 sk sk+1

a0∼π(·|s0) a1∼π(·|s1) ak−1∼π(·|sk−1) ak∼π(·|sk)

s0 s1 s2
sk−1 sk sk+1

a0∼π(·|s0) [a1=a0] [ak−1=a0] ak∼π(·|sk)

a0 is persisted ak is persisted

Figure 6.1: Agent-environment interaction without (top) and with (bottom) action persistence, highlight-
ing duality. The transition generated by the k-persistent MDPMk is the cyan dashed arrow, while
the actions played by the k-persistent policies are inside the cyan rectangle.

6.4 Persisting Actions in MDPs

In this section, we introduce the concept of action persistence. The execution of an
action with a persistence value equal to k ∈ N+ is equivalent to the repetition of such
action for a total number of (base) time steps equal to k. In other words, at decision
step t = 0, the agent selects an action according to its policy a0 ∼ π(·|s0). Action a0 is
kept fixed, or persisted, for the subsequent k−1 decision steps, i.e., actions a1, ..., ak−1

are all identical to a0. Then, at decision step t = k, the agent queries again the policy
ak ∼ π(·|sk) and persists action ak for the subsequent k − 1 decision steps and so on.
Hence, the agent employs its policy only at decision steps t that are integer multiples
of the persistence k (t mod k = 0). Trivially, the usual execution of π corresponds to
persistence 1.

6.4.1 Duality of Action Persistence

Unsurprisingly, the execution of a Markovian stationary policy π at persistence k > 1
produces a behavior that, in general, cannot be represented by executing any Marko-
vian stationary policy at persistence 1. Indeed, at any decision step t, such policy is
dependent on the action pursued at the last decision step multiple of k (thus it is non-
Markovian with memory k) and has to understand whether to select a new action based
on t (so it is non-stationary).

Definition 6.1 (k-persistent policy). Let π ∈ Π be a Markovian stationary policy. For
any k ∈ N+, the k-persistent policy induced by π is a non–Markovian, non–stationary
policy, such that, for each a ∈ A and t ∈ N as:

πk,t(a|ht) =
{
π(a|st) if t mod k = 0

δat−(t mod k)
(a) otherwise

(6.1)

where ht = (s0, a0, . . . , st) and δ is the Dirac distribution. Moreover, we denote with
Πk = {(πk,t)t∈N : π ∈ Π} ⊂ ΠH The set of k-persistent policies.

Clearly, for k = 1 we recover policy π as we always satisfy the condition t mod k =
0 i.e., π = π1,t for all t ∈ N. We refer to this interpretation of action persistence as
policy view, as it looks at the problem from the angle of the control policy.

An alternative perspective consists in looking at the effect of the original policy π
in a suitably modified MDP. To this purpose, we introduce the (state-action) persistent
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transition probability kernel πδ : S ×A → ∆S ×A defined for all (s, a) ∈ S ×A as:

pδ(s
′, a′|s, a) =

∫

S
P (s′|s, a)δa(a′). (6.2)

The crucial difference between pπ and pδ is that the former samples the action a′ to
be executed in the next state s′ according to π, whereas the latter replicates in state s′

action a. We are now ready to define the k-persistent MDP.

Definition 6.2 (k-persistent MDP). Let M = (S,A, P, R, γ) be an MDP. For any
k ∈ N+, the k-persistent MDP is defined as MDPMk =

(
S,A, Pk, Rk, γ

k
)
, where Pk

and Rk are respectively the k-persistent transition model and reward distribution such
that, for each state-action pair (s, a) ∈ S ×A, the following hold:

Pk(·|s, a) =
(
(pδ)

k−1P
)
(·|s, a), (6.3)

Rk(·|s, a) =
k−1∑

i=0

γi
(
(pδ)

iR
)
(·|s, a); (6.4)

analogously, rk(s, a) =
∫
R xRk( dx|s, a) =

∑k−1
i=0 γ

i ((pδ)
ir) (s, a) is the expected re-

ward, uniformly bounded by Rmax
1−γk
1−γ .

The k-persistent transition model Pk keeps action a fixed for k − 1 base steps while
making the state evolve according to P . Similarly, the k-persistent reward Rk provides
the cumulative discounted reward over k steps in which a is persisted. For a Markovian
stationary policy π ∈ Π, we define the transition kernel pπk , analogously to pπ, as in
Equation (2.6)1. In the same fashion, we will denote the expected return of a policy π
in the k–persistent MDPMk as Jk(π). Clearly, for k = 1 we recover the base MDP, i.e.,
M =M1 =M∆t0 , and we will remove the subscript ∆t0 for brevity: IfM is the base
MDPM∆t0 , the k–persistent MDPMk corresponds toMk∆t0 . Therefore, executing
policy π inMk at persistence 1 is equivalent to executing policy π at persistence k in
the original MDPM. We refer to this interpretation of persistence as environment view
(Figure 6.1). Thus, solving the base MDPM in the space of k-persistent policies Πk

(Definition 6.1), thanks to this duality, is equivalent to solving the k-persistent MDP
Mk (Definition 6.2) in the space of Markovian stationary policies Π.

Remark 6.3. It is worth noting that the persistence k ∈ N+ can be seen as an environ-
mental parameter(affecting P , R, and γ, which can be externally configured with the
goal to improve the learning process for the agent. In this sense, the MDPMk can be
seen as a Conf-MDP (Section 2.2.2) with parameter k ∈ N+ (Metelli et al., 2018): the
joint tuning of the learning algorithm adopted and the persistence value might allow
enhancing the overall performance of the resulting agents. Furthermore, a persistence
of k induces a k-persistent MDPMk with smaller discount factor γk. Therefore, the
effective horizon inMk is 1

1−γk <
1

1−γ . Interestingly, this effect of persistence is similar
to the reduction of the planning horizon by explicitly reducing the discount factor of the
task (Petrik and Scherrer, 2008; Jiang et al., 2016).

1Notation: as the reader may notice, we have changed the notation, as the policy π is in the superscripts and the persistence
value is placed in the subscript. This is made in order to avoid confusion with the usual notation for the multi-step kernel introduced
in Equation 2.7 .
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6.4.2 Persistent Bellman Operators

When executing policy π at persistence k in the base MDP M, we can evaluate its
performance starting from any state-action pair (s, a) ∈ S × A, inducing a Q-function
that we denote with Qπ

k and call k-persistent action-value function of π. In a straight-
forward way, we can define the k–persistent value function V π

k as the expected action
value function following π, i.e., V π

k (s) =
∫
A π( da|s)Qπ

k(s, a) ∀s ∈ S.
Thanks to duality, Qπ

k is also the action-value function of policy π when executed in
the k-persistent MDPMk. Therefore, we can naturally extend the Bellman Expectation
Operators (Definition 2.7 to their k–persistent versions, where the transition kernel P k

is taken into account:

Definition 6.4 (k–Persistent Bellman Expectation Operators). LetM be an MDP and
π ∈ Π be a policy. Consider a bounded, measurable function f : S → R and a
state s ∈ S. Given a persistence value k ∈ N+, the k–Persistent Bellman expectation
operator for state value functions T πk is defined as:

(T πk f)(s) :=

∫

A
π(da|s)

(
rk(s, a) + γk

∫

S
Pk(ds

′|s, a)f(s′))
)
, (6.5)

Moreover, considering a bounded, measurable function f : S × A → R and a state-
action pair (s, a) ∈ S × A, the k–Persistent Bellman expectation operator for state-
action value functions T πk is defined as:

(T πk f)(s, a) := rk(s, a) + γk
∫

S
Pk(ds

′|s, a)
∫

A
π(da′|s′)f(s′, a′), (6.6)

Trivially, operators T πk are γk contractions in L∞-norm., and Qπ
k and V π

k are their
fixed points. Similarly, again thanks to duality, the optimal Q-function in the space of
k-persistent policies Πk, denoted by Q⋆

k and called k-persistent optimal action-value
function, corresponds to the optimal Q-function of the k-persistent MDP, and can be
formally framed generalizing Definition 2.9:

Definition 6.5 (k-Persistent Optimal Value Functions). Let M be an MDP. Given a
persistence value k ∈ N+, a policy π⋆ ∈ Π is k-persistent optimal if:

V π⋆

k (s) ≥ V π
k (s) ∀π ∈ Π,∀s ∈ S

Qπ⋆

k (s, a) ≥ Qπ
k(s, a) ∀π ∈ Π,∀(s, a) ∈ S ×A

The k-Persistent optimal state value function and k-Persistent optimal action-value
function are then defined according to the values attained by the optimal policy:

V ⋆
k (s) := V π⋆

k (s) ∀π ∈ Π,∀s ∈ S
Q⋆
k(s, a) := Qπ⋆

k (s, a) ∀π ∈ Π,∀(s, a) ∈ S ×A
Analogously, Q⋆

k is the fixed point of the Bellman Optimal Operator ofMk, defined
as k–persistent Bellman Optimal Operator:

Definition 6.6 (k–Persistent Bellman Optimality Operators). LetM be an MDP. Con-
sider a bounded, measurable function f : S → R and a state s ∈ S . Given a per-
sistence value k ∈ N+, the k–Persistent Bellman optimality operator for state value
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functions T ⋆k is defined as:

(T ⋆k f)(s) := sup
a∈A

{
rk(s, a) + γk

∫

S
Pk(ds

′|s, a)f(s′)
}

(6.7)

Moreover, considering a bounded, measurable function f : S × A → R and a state-
action pair (s, a) ∈ S × A, the k–Persistent Bellman optimality operator for state-
action value functions T ⋆k is defined as:

(T ⋆k f)(s, a) := rk(s, a) + γk
∫

S
Pk(ds

′|s, a)max
a′∈A

f(s′, a′), (6.8)

Again, T ∗
k is a γk-contraction in L∞-norm, with Qπ⋆

k as fixed point.

In order to provide a complete relationship between the classic Bellman operators
and their k–persistent versions, we need to define also a (one-step) Bellman persistence
operator:

Definition 6.7 (Bellman Persistence Operators). Let M be an MDP and consider a
state-action pair (s, a) ∈ S × A. The Bellman persistence operator for state-action
value functions T δ is defined as:

(T δf)(s, a) := r(s, a) + γ

∫

S

∫

A
pδ( ds

′, da′|s, a)f(s, a). (6.9)

We now prove that the k-persistent Bellman operators are obtained as a composition
of the base operators T π and T ∗.

Theorem 6.8. LetM be an MDP, and letMk be the k-persistent MDP for a persis-
tence value k ∈ N+. Let π ∈ Π be a Markovian stationary policy. Then, T πk and T ∗

k

can be expressed as:

T πk =
(
T δ
)k−1

T π and T ∗
k =

(
T δ
)k−1

T ∗, (6.10)

Proof. The result can be derived by explicitly writing the definitions of Pk and Rk in
terms of P , R and γ (Equations 6.3 and 6.4) from the definition of k-persistent Bellman
expectation operator T πk (Definition 6.4). Consider a bounded, measurable function
f : S ×A → R and (s, a) ∈ S ×A:

(T πk f)(s, a) = rk(s, a) + γk(pπkf)(s, a)

=
k−1∑

i=0

γi
(
(pδ)

ir
)
(s, a) + γk((pδ)

k−1pπf)(s, a) (6.11)

=

(
k−1∑

i=0

γi(pδ)
ir + γk(pδ)

k−1pπf

)
(s, a)

=

(
k−2∑

i=0

γi(pδ)
ir + γk−1(pδ)

k−1 (r + γpπf)

)
(s, a) (6.12)

=

(
k−2∑

i=0

γi(pδ)
ir + γk−1(pδ)

k−1T πf

)
(s, a), (6.13)
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where (6.11) follows from Definition 6.2, line (6.12) is obtained by isolating the last
term in the summation γk−1(pδ)

k−1r and collecting γk−1(pδ)
k−1, and line (6.13) derives

from the definition of the Bellman expectation operator T π. It remains to prove that for
a measurable g : S ×A → R and (s, a) ∈ S ×A, we have the following identity:

(T δ)k−1g =
k−2∑

i=0

γi(pδ)
ir + γk−1(pδ)

k−1g. (6.14)

We prove it by induction on k ∈ N+. For k = 1 we have only g = (T δ)0g. More
formally, it holds also for k = 2, as (T δ)g = r + γ(pδ)g by definition.

Let us assume that the identity hold for k − 1, we prove the statement for k:
(
(T δ)kg

)
(s, a) = (Tδ)k−1T δg(s, a)

=

(
k−2∑

i=0

(pδ)
ir + γk−1(pδ)

k−1pδg

)
(s, a)

=

(
k−2∑

i=0

(pδ)
ir + γk−1(pδ)

k−1r + γk(pδ)
kg

)
(s, a) (6.15)

=

(
k−1∑

i=0

γi(pδ)
ir + γk(pδ)

kg

)
(s, a)

where line (6.15) derives from the definition of pδ. We get the result by taking g = T πf .
Concerning the k-persistent Bellman optimal operator the derivation is analogous.

For simplicity, we define the max-operatorM : S×A → S defined for a bounded mea-
surable function f : S × A → R and a state s ∈ S as (Mf)(s) = maxa∈A f(s, a). As
a consequence, the Bellman optimal operator becomes: T ∗f = r+ γPMf . Therefore,
we have:

(T ∗
k f)(s, a) = rk(s, a) + γk

∫

S
Pk( ds

′|s, a)max
a′∈A

f(s′, a′)

= rk(s, a) + γk
∫

S
Pk( ds

′|s, a)Mf(s′) (6.16)

=
(
rk + γkPkMf

)
(s, a) (6.17)

=

(
k−1∑

i=0

γi(pδ)
ir + γk(pδ)

k−1PMf

)
(s, a)

=

(
k−2∑

i=0

γi(pδ)
ir + γk−1(pδ)

k−1 (r + γPMf)

)
(s, a) (6.18)

=

(
k−2∑

i=0

γi(pδ)
ir + γk−1(pδ)

k−1T ∗f

)
(s, a), (6.19)

where line (6.16) derives from the definition of the max-operator M and line (6.16)
from the definition of the operator Pk. By applying Equation (6.14) we get the result.
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Therefore, the fixed point equations for the k-persistent Q-functions become:

Qπ
k =

(
T δ
)k−1

T πQπ
k

Q⋆
k =

(
T δ
)k−1

T ∗Q⋆
k.

6.5 Bounding the Performance Loss

Learning in the space of k-persistent policies Πk can only lower the performance of the
optimal policy, i.e., Q⋆(s, a) ≥ Q⋆

k(s, a) for k ∈ N+ (since the general policy class is
reduced to Πk. The goal of this section is to provide some measures of the performance
loss induced by persistence, i.e., to bound ∥Q⋆ −Q⋆

k∥p,µ as a function of the persistence
k. To this purpose, we focus on ∥Qπ −Qπ

k∥p,µ for a fixed policy π ∈ Π, since denoting
with π⋆ an optimal policy ofM and with π⋆k an optimal policy ofMk, we have that:

Q⋆ −Q⋆
k = Qπ⋆ −Qπ⋆

k
k ≤ Qπ⋆ −Qπ⋆

k ,

Since Qπ⋆
k
k (s, a) ≥ Qπ⋆

k (s, a). We can start with the following result, where no
assumption on the structure of the underlying MDP is considered. Afterward, we will
provide a more particular result in the case of Lipschitz MDPs.

Theorem 6.1. LetM be an MDP and π ∈ Π be a Markovian stationary policy. Let
Qk = {

(
T δ
)k−2−l

T πQπ
k : l ∈ {0, . . . , k−2}} and for all (s, a) ∈ S ×A let us define:

dπQk
(s, a) = sup

f∈Qk

∣∣∣∣
∫

S

∫

A
(pπ( ds

′, da′|s, a)− pδ( ds′, da′|s, a)) f(s′, a′)
∣∣∣∣

Then, for any µ ∈ ∆S×A, p ≥ 1, and k ∈ N+, it holds that:

∥Qπ −Qπ
k∥p,µ ≤

γ(1− γk−1)

(1− γ)(1− γk)
∥∥dπQk

∥∥
p,ηµ,πk

,

where ηµ,πk ∈ ∆S×A is a probability measure defined for all (s, a) ∈ S ×A as:

ηµ,πk (s, a) =
(1− γ)(1− γk)
γ(1− γk−1)

∑

i∈N
i mod k ̸=0

γi
(
µ (pπ)

i−1
)
(s, a).

The bound shows that the Q-function difference depends on the discrepancy dπQk

between the transition-kernel pπ and the corresponding persistent version pδ, which is a
form of integral probability metric (Müller, 1997), defined in terms of the set Qk. This
term is averaged with the distribution ηµ,πk , which encodes the γ-discounted probability
of visiting a state-action pair (Sutton et al., 1999a), but ignoring the visitations made
at decision steps multiple of k. Indeed, in those steps, policy π is followed regardless
of persistence. The dependence on k is represented in the term 1−γk−1

1−γk . When k → 1

this term displays a linear growth in k, being asymptotic to (k − 1) log 1
γ

, and, clearly,
vanishes for k = 1. Instead, when k →∞ this term tends to 1.

If no structure on the MDP/policy is enforced, the dissimilarity term dπQk
may be-

come large enough to make the bound vacuous, and lead to arbitrarily large losses.
Indeed, it is possible to provide the following negative result:
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s− s1 s2

s3

(a1, 1, 0) (a2, 1, R)

(a
1 , 1,−

R)

(⋆, 1, R)

(⋆, 1,−R)
(a2 , 1, 0)

Figure 6.2: MDP counter-example of Proposition 6.9, whereR > 0. Each arrow connecting two states s
and s′ is labeled with the 3-tuple (a, P (s′|s, a), r(s, a)); the symbol ⋆ denotes any action inA. While
the optimal policy in the original MDP starting in s− can avoid negative rewards by executing an
action sequence of the kind (a1, a2, . . . ), every policy in the k-persistent MDP, with k ≥ 2, inevitably
ends in the negative terminal state, as the only possible action sequences are of the kind (a1, a1, . . . )
and (a2, a2, . . . ).

Proposition 6.9. For any MDPM and k ∈ N≥2 it holds that:

V ∗
k (s) ≥ V ⋆(s)− 2γRmax

1− γ , ∀s ∈ S. (6.20)

Furthermore, there exists an MDPM− (Figure 6.2) and a state s− ∈ S such that the
bound holds with equality for all k ∈ N≥2.

Proof. First of all, we recall that V ⋆(s) − V ⋆
k (s) ≥ 0 since we cannot increase perfor-

mance when executing a policy with a persistence k. Let π⋆ an optimal policy on the
MDPM, we observe that for all s ∈ S:

V ∗(s)− V ∗
k (s) ≤ V π∗

(s)− V π∗

k (s), (6.21)

since V π∗
(s) = V ∗(s) and V ∗

k (s) ≥ V π∗

k (s). Let us now consider the corresponding
Q-functions Qπ∗

(s, a) and Qπ∗

k (s, a). Recalling that they are the fixed points of the
Bellman operators T π∗ and T π∗

k we have:

Qπ∗ −Qπ∗

k = T π
∗
Qπ∗ − T π∗

k Qπ∗

k

= r + γpπQ
π∗ − rk − γkpπkQπ∗

k

= r + γpπQ
π∗ −

k−1∑

i=0

γi (pδ)
i r − γkpπkQπ∗

k

= γpπQ
π∗ −

k−1∑

i=1

γi (pδ)
i r − γkpπkQπ∗

k ,

where we exploited the definitions of the Bellman expectation operators in the k-
persistent MDP. As a consequence, we have that for all (s, a) ∈ S ×A:

Qπ∗
(s, a)−Qπ∗

(s, a) ≤ γ
Rmax

1− γ +Rmax

k−1∑

i=1

γi + γk
Rmax

1− γ

= γ
Rmax

1− γ +Rmax
γ(1− γk−1)

1− γ + γk
Rmax

1− γ =
2γRmax

1− γ ,
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6.5. Bounding the Performance Loss

where we considered that
(
pπQ

π⋆)
(s, a) ≤ Rmax

1−γ ,
(
(pδ)

i r
)
(s, a) ≤ Rmax, and that

(
pπkQ

π⋆

k

)
≤ Rmax. The result follows since V π⋆

(s)−V π⋆

k (s) = E
[
Qπ⋆

(s, a)−Qπ⋆
(s, a)

]
,

where a ∼ π⋆(·|s).
Furthermore, the counterexample in Figure 6.2 proves that the bound is tight: the

optimal policy must reach the terminal state s2 yielding the positive reward R > 0.
Thus the optimal policy plays action a1 in state s− and action a2 in state s1, generating
a value function V ∗(s−) = γR

1−γ . No persistent policies starting in state s− can reach
state s2, since they will always end up in state s3, yielding the negative reward−R < 0.
Thus, the optimal value function will be V ∗

2 (s
−) = − γR

1−γ for all k ≥ 2.

Essentially, since action persistence repeats previous actions in new situations, it is
necessary to ensure that the environment state changes relatively slowly over time and
that the control policy executes similar actions in similar states. This implies that if an
action is effective in a particular state, it will also likely be effective for similar states
encountered in the near future. Although the condition on π is directly enforced by
Assumption 3.2, we need a new notion of regularity over time for the MDP.

Assumption 6.1. LetM be an MDP.M is LT–Time-Lipschitz Continuous (LT–TLC)
if for all (s, a) ∈ S ×A:

W1 (P (·|s, a), δs) ≤ LT . (6.22)

This assumption requires that the distance between the distribution of the next state
s′ and the deterministic distribution centered in the current state s is bounded by LT ,
i.e., the system does not get too quickly far from s (see Appendix B.2.2). We can now
state the following result.

Theorem 6.2. LetM be an MDP and π ∈ Π be a Markovian stationary policy. Under
Assumptions 3.1, 3.2, and 6.1, if γmax {LP + 1, LP (1 + Lπ)} < 1 and if µ(s, a) =
µS(s)π(a|s) with µS ∈ ∆S , then for any k ∈ N+:

∥∥dπQk

∥∥
p,ηµ,π

k

≤ LQk
[(Lπ + 1)LT + σp] .

where:

σpp = sup
s∈S

∫

A

∫

A
dA (a, a′)

p
π( da|s)π( da′|s),

LQk
=

Lr
1− γmax {LP + 1, LP (1 + Lπ)}

.

The dissimilarity dπQk
between pπ and pδ can be bounded with four terms:

1. LQk
is an upper-bound of the Lipschitz constant of the functions in the set Qk.

Indeed, under Assumptions 3.1 and 3.2 we can reduce the dissimilarity term to
the Kantorovich distance (Lemma B.5):

dπQk
(s, a) ≤ LQk

W1 (pπ(·|s, a), pδ(·|s, a)) ;

2. (Lπ + 1) accounts for the Lipschitz continuity of the policy, i.e., policies that pre-
scribe similar actions in similar states have a small value of this quantity;
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Algorithm 7 Persistent Fitted Q-Iteration PFQI(k).

Require: k persistence, J number of iterations (T mod k = 0), Q(0) initial action-value function,
F functional space, D = {(si, ai, s′i, ri)}

|D|
i=1 batch samples

Ensure: greedy policy π̃
1: for j = 0, . . . , J − 1 do
2: Build TS = {(xi, yi)}i:

xi = (si, ai),

3: if t mod k = 0 then
4:

yi = T̂ ⋆Q(j)(si, ai)

5: else
6:

yi = T̂ δQ(j)(si, ai)

7: end if

8: Perform regression on TS to induce Q(j+1):
9:

Q(j+1) ∈ arginf
f∈F

∥∥f − y
∥∥2
2,D

10: end for

11:
π̃(s) ∈ argmax

a∈A
Q(J)(s, a), ∀s ∈ S

Phase 1

Phase 2

Phase 3

3. LT represents the speed at which the environment state evolves over time;

4. σp denotes the average distance (in Lp-norm) between two actions prescribed by
the policy in the same state. This term is zero for deterministic policies and can
be related to the maximum policy variance (Lemma B.6).

6.6 Persistent Fitted Q-Iteration

In this section, we introduce an extension of FQI, introduced in Section 3.5 and adopted
in the previous chapters, that employs the notion of persistence. Consequently, we will
assume that the action space is discrete (|A| < +∞). Persisted Fitted Q-Iteration
(PFQI(k)) takes as input a target persistence k ∈ N+ and its goal is to approximate the
k-persistent optimal action-value function Q⋆

k. Starting from an initial estimate Q(0),
at each iteration we compute the next estimate Q(j+1) by performing an approximate
application of k-persistent Bellman optimal operator (definition 6.6) to the previous
estimate Q(j), i.e., Q(j+1) ≈ T ⋆kQ

(j).
Trivially, when samples are collected from the k-persistent MDPMk, the process

outlined above becomes equivalent to the standard FQI. However, our algorithm needs
to be able to estimate Q⋆

k for different values of k, using the same dataset of samples
collected in the base MDP M (at persistence 1, or with base control time step ∆t0).
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6.6. Persistent Fitted Q-Iteration

For this purpose, we can exploit the decomposition T ⋆k = (T δ)k−1T ⋆ of Theorem 6.8
to reduce a single application of T ⋆k to a sequence of k applications of the 1-persistent
operators. Specifically, at each iteration j with j mod k = 0, given the current estimate
Q(j), we need to perform (in this order) a single application of T ⋆ followed by k − 1
applications of T δ, leading to the sequence of approximations:

Q(j+1) ≈
{
T ∗Q(j) if j mod k = 0

T δQ(j) otherwise
. (6.23)

To estimate the Bellman operators, we have access to a dataset of transitions D =

{(si, ai, s′i, ri)}|D|
i=1 collected, as in standard FQI, in the base MDP M. In particular,

(si, ai) ∼ ν, where ν ∈ ∆S×A is the sampling distribution; moreover, s′i ∼ P (·|si, ai),
ri ∼ R(·|si, ai) following the MDP dynamics. We employ D to compute the empirical
Bellman operators (Farahmand, 2011) defined for e bounded, measurable function f :
S ×A → R as:

(T̂ ∗f)(si, ai) = ri + γmaxa∈A f(s
′
i, a)

(T̂ δf)(si, ai) = ri + γf(s′i, ai).

These operators are unbiased conditioned to D (Farahmand, 2011):

E[(T̂ ∗f)(si, ai)|si, ai] = (T ∗f)(si, ai)

E[(T̂ δf)(si, ai)|si, ai] = (T δf)(si, ai).

The pseudocode of PFQI(k) is summarized in Algorithm 7. At each iteration j =
0, . . . J−1, the target values are computed by applying the empirical Bellman operators,
T̂ ∗ or T̂ δ, on the current estimate Q(j) (Phase 1). Then, the targets are projected onto
the functional space F by solving the least squares problem (Phase 2):

Q(j+1) ∈ arginf
f∈F

∥f − y∥22,D =
1

n

n∑

i=1

|f(si, ai)− yi|2 .

Finally, the policy π̃, which acts greedily w.r.t. Q(J) is extracted to approximate the
optimal policy (Phase 3).

6.6.1 Theoretical Analysis

In this section, we present the computational complexity analysis and the study of the
error propagation in PFQI(k).

Computational Complexity The computational complexity of PFQI(k) decreases mono-
tonically with the persistence k. Whenever applying T̂ δ, we need a single evaluation
of Q(j), while |A| evaluations are needed for T̂ ∗ due to the max over A. Thus, the
overall complexity of J iterations of PFQI(k) with n samples, disregarding the cost of
regression and assuming that a single evaluation of Q(j) takes constant time, is given
by O

(
Jn
(
1 + |A|−1

k

))
(Proposition B.1).
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Persistence trade-off We now consider the error propagation in PFQI(k). As in stan-
dard FQI, we have two sources of approximation: the representation of the Q-function
through a functional space F to represent Q(j), and the approximate estimation of the
(persistent) Bellman optimal operator T ⋆k from samples.

Given the sequence of Q-functions estimates {Q(j)}Jj=0 ⊂ F produced by PFQI(k),
we define the approximation error at each iteration j = 0, . . . , J − 1 as:

ϵ(j) =

{
T ∗Q(j) −Q(j+1) if j mod k = 0

T δQ(j) −Q(j+1) otherwise
. (6.24)

The goal of this analysis is to bound the distance between the k–persistent optimal
Q-function Q⋆

k and the Q-function Qπ(J)

k of the greedy policy π(J) w.r.t. Q(J), after J
iterations of PFQI(k). The following result extends Theorem 3.4 of Farahmand (2011)
to account for action persistence.

Theorem 6.3 (Error Propagation). Let p ≥ 1, k, J ∈ N+ with J mod k = 0 and
µ ∈ ∆S×A. Then for any sequence {Q(j)}Jj=0 ⊂ F uniformly bounded byQmax ≤ Rmax

1−γ ,
the corresponding {ϵ(j)}J−1

j=0 defined in Equation (6.24) and for any r ∈ [0, 1] and
q ∈ [1,+∞] it holds that:

∥∥∥Q⋆
k −Qπ(J)

k

∥∥∥
p,µ
≤ 2γk

(1− γ)(1− γk)

[
2

1− γ γ
J
pRmax

+ C
1
2p

VI,µ,ν(J, r, q)E
1
2p (ϵ(0), . . . , ϵ(J−1); r, q)

]
.

The expression of CVI,µ,ν(J ; r, q) and E(·; r, q) can be found in Appendix B.1.2, where
the proof of the theorem is also provided.

We immediately observe that for k = 1 we recover Theorem 3.4 of Farahmand
(2011). The term CVI,µ,ν(J ; r, q) is defined in terms of suitable concentrability coeffi-
cients (Definition B.8) and encodes the distribution shift between the sampling distribu-
tion ν and the one induced by the greedy policy sequence {π(j)}Jj=0 encountered along
the execution of PFQI(k). E(·; r, q) incorporates the approximation errors {ϵ(j)}J−1

j=0 . In
principle, it is hard to compare the values of these terms for different persistences k
since both the greedy policies and the regression problems are different. Nevertheless,
it is worth noting that the multiplicative term γk

1−γk decreases in k ∈ N+. Thus, other
things being equal, the bound value decreases with increasing persistence.

Thus, we can formally state the trade-off in the choice of control frequency, which
motivates action persistence: the goal is finding the persistence k ∈ N+ that, for a fixed
J , allows learning a policy π(J) whose Q-function Qπ(J)

k is the closest to Q⋆. Consider
the decomposition:

∥∥∥Q⋆ −Qπ(J)

k

∥∥∥
p,µ
≤ ∥Q⋆ −Q⋆

k∥p,µ +
∥∥∥Q⋆

k −Qπ(J)

k

∥∥∥
p,µ
.

The term ∥Q⋆ −Q⋆
k∥p,µ accounts for the performance degradation due to action per-

sistence: it is algorithm–independent, and it increases in k (Theorem 6.1). Instead,
the second term ∥Q⋆

k −Qπ(J)

k ∥p,µ decreases with k and depends on the algorithm (The-
orem 6.3). Unfortunately, optimizing their sum is hard since the individual bounds
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6.7. Persistence Selection

Algorithm 8 Heuristic Persistence Selection.

Require: Batch samples D = {τi)}mi=1, set of persistences K,
set of Q-functions {Qk : k ∈ K}, regressor Reg

Ensure: Approximate optimal persistence k̃
1: for k ∈ K do
2: Ĵk = 1

m

∑m
i=1 Vk(s

i
0)

3: Use Reg to get an estimate Q̃k of T ⋆
kQk

4:
∥∥Q̃k −Qk

∥∥
1,D =

∑m
i=1

∑T (τi)−1
t=0 |Q̃k(s

i
t, a

i
t)−Qk(s

i
t, a

i
t)|∑m

i=1Hi

5: end for
6:

k̃ ∈ argmax
k∈K

Bk = Ĵk −
1

1− γk
∥∥Q̃k −Qk

∥∥
1,D.

contain terms that are not known in general (e.g., Lipschitz constants, ϵ(j)). The next
section proposes heuristics to overcome this problem.

6.7 Persistence Selection

In this section, we analyze the problem of persistence selection (or control frequency
adaptation), i.e., how to select k in a setK ⊂ N+ of candidate persistences, when we are
given a set of estimated Q-functions: {Q̂k}k∈K. For instance, the Q̂k can be obtained by
executing PFQI(k) with different target persistences k ∈ K. Each Q̂k induces a greedy
policy πk. Our goal is to find the persistence k ∈ K such that πk has the maximum
expected return in the corresponding k–persistent MDPMk:

k⋆ ∈ argmax
k∈K

Jk(πk). (6.25)

In principle, we could execute πk in Mk to get an estimate of Jk(πk) and employ it
to select the persistence k. However, in the batch setting, further interactions with the
environment might be not allowed. On the other hand, directly using the estimated
Q-function Q̃k is inappropriate, since we should take into account the approximation
error w.r.t. the true value functionQπk

k . This trade-off is encoded in the following result,
which makes use of the expected Bellman residual.

Lemma 6.10. LetQ : S×A → R be a bounded, measurable action-value function, and
let π be a greedy policy w.r.t. Q. Let J =

∫
µ( ds)V (s), with V (s) = maxa∈AQ(s, a)

for all s ∈ S. Then, for any k ∈ N+, it holds that:

Jk(π) ≥ J(π)− 1

1− γk ∥T
⋆
kQ−Q∥1,ηµ,π

k
, (6.26)

where ηµ,πk = (1 − γk)µπ
(
Id− γkpπk

)−1, is the γ-discounted stationary distribution
induced by policy π and initial distribution µ in MDPMk.

Some simplifications are needed in order to obtain a practical bound. First, we
assume that the batch of tuplesD ∼ ν is composed of m trajectories, i.e.,D = {τi}mi=1,
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Table 6.1: Results of PFQI in different environments and persistences. For each persistence k, we report
the sample mean and the standard deviation of the estimated return of the last policy Ĵk(πk). For
each environment, the persistence with the highest average performance and the ones not statistically
significantly different from that one (Welch’s t-test with p < 0.05) are in bold. The last column reports
the mean and the standard deviation of the performance loss δ between the optimal persistence and
the one selected by the index Bk (Equation (6.27)).

Environment Expected return at persistence k (Ĵk(πk), mean ± std)
k = 1 k = 2 k = 4 k = 8 k = 16 k = 32 k = 64

Cartpole 169.9 ± 5.8 176.5 ± 5.0 239.5 ± 4.4 10.0 ± 0.0 9.8 ± 0.0 9.8 ± 0.0 9.8 ± 0.0
MountainCar −111.1 ± 1.5 −103.6 ± 1.6 −97.2 ± 2.0 −93.6 ± 2.1 −94.4 ± 1.8 −92.4 ± 1.5 −136.7 ± 0.9
LunarLander −165.8 ± 50.4 −12.8 ± 4.7 1.2 ± 3.6 2.0 ± 3.4 −44.1 ± 6.9 −122.8 ± 10.5 −121.2 ± 8.6
Pendulum −116.7 ± 16.7 −113.1 ± 16.3 −153.8 ± 23.0 −283.1 ± 18.0 −338.9 ± 16.3 −364.3 ± 22.1 −377.2 ± 21.7
Acrobot −89.2 ± 1.1 −82.5 ± 1.7 −83.4 ± 1.3 −122.8 ± 1.3 −266.2 ± 1.9 −287.3 ± 0.3 −286.7 ± 0.6
Swimmer 21.3 ± 1.1 25.2 ± 0.8 25.0 ± 0.5 24.0 ± 0.3 22.4 ± 0.3 12.8 ± 1.2 14.0 ± 0.2
Hopper 58.6 ± 4.8 61.9 ± 4.2 62.2 ± 1.7 59.7 ± 3.1 60.8 ± 1.0 66.7 ± 2.7 73.4 ± 1.2
Walker 2D 61.6 ± 5.5 37.6 ± 4.0 62.7 ± 18.2 80.8 ± 6.6 102.1 ± 19.3 91.5 ± 13.0 97.2 ± 17.6

Environment Performance loss
(δ mean ± std)

Cartpole 0.0 ± 0.0
MountainCar 1.88 ± 0.85
LunarLander 2.12 ± 4.21
Pendulum 3.52 ± 0.0
Acrobot 0.80 ± 0.27
Swimmer 2.69 ± 1.71
Hopper 5.33 ± 2.32
Walker 2D 5.10 ± 3.74

where the initial states si0 are sampled from µ. In this way, the expected returns can
be estimated from samples as Ĵ = 1

m

∑m
i=1 V (si0). Moreover, since we are unable to

compute expectations over ηµ,πk , we replace it with the sampling distribution ν and,
by means of an approach similar to (Farahmand and Szepesvári, 2011), we assume
to have a regressor Reg able to output an approximation Q̃k of T ⋆kQ, thanks to which
we can we replace ∥T ⋆kQ−Q∥1,ν with ∥Q̃k − Q∥1,D. The discussion regarding these
approximation steps is delicate, and a more detailed discussion is provided in Appendix
C.1 in Metelli et al. 2020. In practice, we set Qk = Q

(J)
k from PFQI(k) with target

persistence k, and we obtain Q̃k through k additional iterations of the algorithm, setting
Q̃k = Q(J+k). Thus, the procedure (Algorithm 8) reduces to optimizing the index:

k̃ ∈ argmax
k∈K

Bk = Ĵk −
1

1− γk
∥∥∥Q̃k −Qk

∥∥∥
1,D

. (6.27)

6.8 Experimental Evaluation

In this section, we provide the empirical evaluation of PFQI, with different goals: prov-
ing that a persistence k > 1 can boost learning, possibly leading to more profitable
policies, and assessing the quality of our persistence selection heuristics, We invite
the reader to refer to Appendix B.3 for details regarding the experimental settings, the
hyperparameters adopted, and further results. Moreover, in the original paper Metelli
et al., 2020, further results are provided as, for instance, an analysis of the influence
of the batch size on the performance of PFQI policies for different persistences. We
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6.8. Experimental Evaluation
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Figure 6.3: Expected return Ĵk(πk), estimated return Ĵk, estimated expected Bellman residual ∥Q̃k −
Qk∥1,D, and persistence selection index Bk in the Cartpole experiment as a function of the number
of iterations for different persistences. 20 runs, 95 % c.i.

train PFQI, using ExtraTrees (Geurts et al., 2006) as a regression model, for J itera-
tions and different values of k, starting with the same dataset D collected at persistence
1. To compare the performance of the learned policies πk at the different persistences,
we estimate their expected return Ĵk(πk) with 10 runs in the corresponding MDPMk.
Table 6.1 shows the results for different continuous environments and different persis-
tences averaged over 20 runs of PFQI(k). We highlight in bold the persistence with the
highest average performance and the ones that are not statistically significantly differ-
ent from that one. Across the different environments, we observe some common trends
in line with our theory: persistence 1 seldom leads to the best performance, and exces-
sively increasing persistence prevents control at all. In Cartpole (Barto et al., 1990),
we easily identify a persistence (k = 4) that outperforms all the others. In the Lunar
Lander (Brockman et al., 2016) persistences k ∈ {4, 8} are the only ones that lead to
positive return (i.e., the lander does not crash) and in the Acrobot domain (Geramifard
et al., 2015) we identify k ∈ {2, 4} as optimal persistences. A qualitatively different be-
havior is displayed in Mountain Car (Moore, 1991), Pendulum (Brockman et al., 2016),
and Swimmer (Coulom, 2002), where we observe a plateau of three persistences with
similar performance. An explanation for this phenomenon is that, in those domains, the
optimal policy tends to persist actions on its own, making the difference less evident.
Intriguingly, more complex Mujoco domains, like Hopper and Walker 2D (Erickson
et al., 2019), seem to benefit from the higher persistence values.

To test the quality of our persistence selection method, we compare the performance
of the estimated optimal persistence, i.e., the one with the highest estimated expected
return k̂ ∈ argmax Ĵk(πk), and the performance of the persistence k̃ selected by max-
imizing the index Bk (from (6.27)). For each run i = 1, . . . , 20, we compute the per-
formance loss δi = Ĵk̂(πk̂) − Ĵk̃i(πk̃i) and we report the mean and standard deviations
in the “Performance loss” column of Table 6.1. In the Cartpole experiment, we ob-
serve a zero loss, which means that our heuristic always selects the optimal persistence
(k = 4). Differently, non–zero loss occurs in the other domains, which means that
sometimes the index Bk mispredicts the optimal persistence. Nevertheless, in almost
all cases the average performance loss is significantly smaller than the magnitude of the
return, proving the effectiveness of our heuristics.

In Figure 6.3, we provide an in-depth analysis of the learning curves for the Cartpole
environment, highlighting the components that contribute to the indexBk. The first plot
reports the estimated expected return Ĵk(πk), obtained from 10 trajectories executing
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πk in the environmentMk throughout PFQI(k) iterations, which confirms that k = 4 is
the optimal persistence. In the second plot, we report the estimated return Ĵk obtained
by averaging the Q-function Qk learned with PFQI(k), over the initial states sampled
from µ. We can see that for k ∈ {1, 2}, PFQI(k) tends to overestimate the return, while
for k = 4 we notice a slight underestimation. The overestimation phenomenon can
be explained by the fact that, with small persistences, we perform a large number of
applications of the operator T̂ ⋆, which involves a maximization over the action space,
injecting an overestimation bias. By combining this curve with the expected Bellman
residual (third plot), we get the value of our persistence selection index Bk (fourth
plot). Finally, we observe that Bk is able to correctly rank persistences 4 and 8, but
overestimates persistences 8 and 16, compared to persistence 1. The results related to
the other environments are reported in Appendix B.3.

6.9 Application to Foreign Exchange Trading

In this Section, we provide an application of the proposed PFQI approach in the finan-
cial field. As shown in Example 6.4, RL applications to finance have drawn more and
more attention for its goal being well aligned with trading objectives (Fischer, 2018;
Meng and Khushi, 2019; Bacoyannis et al., 2018). Due to the diversity of market partic-
ipants and investment strategies (Mantegna and Stanley, 1999; Bouchaud and Potters,
2003), it is reasonable to consider that the market is built upon different time scales. It
is therefore of interest, for the designer of a trading algorithm, to select the elementary
scale at which the algorithm will interact with the market. However, in the field of RL
for trading, the study of the impact of the time-scale hasn’t been a primary focus: thus
we wonder what is the impact of persistence for artificial traders acting on FX, one of
the most liquid markets. We extend a previous work (Bisi et al., 2020a), where FQI
was adopted to retrieve an agent acting every minute on a single FX currency pair. The
following results are extracted from Riva et al. 2021.

6.9.1 MDP Model for FX Trading

We model a generic trading task on a single asset as an MDP with a discrete action set.
In the simplest case, three possible allocations are sufficient: Long, Short, or Flat.
These actions are referred to a fixed quantity of an asset we want to trade. The reward
is modeled as follows:

Rt+1 = at(Pt+1 − Pt)︸ ︷︷ ︸
P&L from market changes

− ft|at − at−1|︸ ︷︷ ︸
transaction costs

(6.28)

where s is the portfolio, a is the action, P is the price of the asset expressed in some
currency, and f is the fee multiplier, set to 1$ for a fixed total allocation of 100k$. The
first part consists of the gain (loss) derived from trades, and the second one corresponds
to costs due to changing allocation. We assume that the dynamic of the MDP is not
controllable for what concerns the exchange rates, meaning that the allocations are not
large enough to move the market. The only feature of the state which is affected by the
agent’s actions is its current allocation. The considered episodes are only one business
day long, from 8:00 to 18:00 CET, with 1-minute long time steps; hence, we use the
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6.9. Application to Foreign Exchange Trading

Figure 6.4: Cumulative return (P&L stands for Profit&Loss) in test for each of the different currency
pairs combinations and different persistence values. Results are shown together with B&H and S&H
baselines. Performances are reported as percentages w.r.t. the invested amount.

undiscounted setting (i.e. γ = 1). The features adopted to represent the state are the
following:

• the last 60 exchange rate variations between consecutive minutes;

• the corresponding time of the day, expressed in minutes;

• the current portfolio position w.r.t the currency pairs, equivalent to the previous
action selected as allocation.

Three-Currencies Model In this work, we consider also a three-currencies scenario, which
can be seen as a trading task in which two assets can be traded (e.g., USD-EUR and
USD-GBP, where USD is considered as domestic currency). We disallow the positions
involving simultaneous allocations on different foreign currencies, i.e., it is only possi-
ble to be long or short w.r.t to one pair at each timestep. Therefore, we allow the agent
to take the 5 possible positions which correspond to being long (or short) w.r.t. each
of the foreign currencies, or to being flat w.r.t both. The agent can switch from one
currency pair to the other one in just one step, but such an operation would involve a
doubled transaction cost.

Results We trained PFQI models using data regarding USD-EUR and USD-GBP pairs
from 2017 to 2020 and built the full transition tuples associating to market values all
the possible portfolio-action configurations and the correspondent rewards, computed
using Equation 6.28. In order to analyze the impact of the persistence on the trading
algorithm performances, we chose to consider three different persistence values (1, 5,
and 10) w.r.t. a 1-minute sampling frequency, both in the multi-currency scenario and
in the single-currency one. For each persistence value and scenario, PFQI was trained
in 2017-2018 using differentmin_split thresholds and with 5 maximum iterations, and
the best models were selected using 2019 market values as validation set. Finally, we
tested the performance of these models in 2020, and the results are shown in Figure
6.4. The returns are denoted as P&L and represent the incurred Profit&Loss. We com-
pared the performance of the two-currencies models with two benchmark strategies:
the Buy&Hold and the Sell&Hold. Both are passive strategies that consist in keeping
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Figure 6.5: Portfolio allocation chosen by the three-currency agent trained with persistence equal to 10.
Each row corresponds to a different business day, and each column is specific for a trading minute.

a constant position, respectively, long or short. As shown in Figure 6.4, models trained
with persistence equal to 5 outperform all the other models and both the benchmark
strategies. On the other hand, models trained with persistence equal to 1 are those char-
acterized by the lowest cumulative returns at the end of the year. Moreover, looking at
the policies learned by the models, we can also notice that the higher the persistence
is, the better the agent exploits temporal patterns. As we can observe in Figure 6.5,
these patterns can be identified by looking for vertical stripes of the same color in the
allocation heatmaps. For instance, the agent of the three-currencies model trained with
persistence equal to 10 learned to be long w.r.t USD-GBP during the first hour of most
of the days, then it usually changes the portfolio allocation moving to a short posi-
tion w.r.t USD-EUR and keeping it until 10:00. Some of these patterns are associated
with particular events which characterize the trading day: when American traders en-
ter in the FX market around 14:00, the agent usually changes its position with respect
to USD-EUR from long to short. Finally, it is worth noting that the performances of
all the models are strongly affected by multiple drawdowns registered between March
and May of 2020, which might be related to the high volatility and unpredictability of
the Forex market due to the spread of the Covid-19 pandemic. This strong impact of
the pandemic can also be observed by looking at the portfolio allocations displayed in
Figure 6.5, where it can be easily noticed how the solid temporal patterns learned by
the agent do not hold during the whole month of March when the pandemic exploded.
Nevertheless, higher persistence models were able to recover from the drawdown, end-
ing up with a positive cumulated return. For further analysis and discussions, we invite
the reader to refer to Riva et al. (2021).

6.10 Conclusions

In this chapter, we formalized the notion of action persistence, i.e., the repetition of a
single action for a fixed number k of decision epochs, having the effect of altering the
control frequency of the system. We have shown that persistence leads to the definition
of new Bellman operators and that we are able to bound the induced performance loss,
under some regularity conditions on the MDP. Based on these considerations, we pre-
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6.10. Conclusions

sented and analyzed a novel batch RL algorithm, PFQI, able to approximate the value
function at a given persistence. The experimental evaluation justifies the introduction
of persistence, since reducing the control frequency can lead to an improvement when
dealing with a limited number of samples. Furthermore, we introduced a persistence
selection heuristic, which can identify good persistence in most cases. As a realistic
application of our approach, we also performed PFQI to train artificial traders on the
FX market: the resulting agent acting once every 5 minutes could better exploit the
control frequency trade-off, detecting patterns more easily than the one acting every
minute and obtaining more profitable strategies than the one persisting its position for
10 minutes. This works makes a step towards understanding why repeating actions may
be useful for solving complex control tasks. Numerous questions remain unanswered,
leading to several appealing future research directions, some of which are discussed in
Appendix B.4. For instance, we may wonder how well the same sampling policy (e.g.,
the uniform policy over A), executed at different persistences, explores the environ-
ment. A clear example is provided by Mountain Car, where high persistences increase
the probability of reaching the goal, generating more informative datasets (preliminary
results in Appendix B.4.1). These preliminary results act as the main motivation for
considering an adaptive control frequency, as will be discussed in more detail in Chap-
ter 7. Furthermore, we empirically analyzed what happens when a policy is learned by
PFQI with a certain persistence level k and executed later on with a different persistence
level k′ ̸= k. This helped us understand that policies that are learned on an MDP with
a high persistence can be useful also in the environment with base time discretization.

115



i
i

“output” — 2023/6/14 — 7:29 — page 116 — #138 i
i

i
i

i
i



i
i

“output” — 2023/6/14 — 7:29 — page 117 — #139 i
i

i
i

i
i

CHAPTER7
All-persistence Bellman Update

7.1 Introduction

In Chapter 6, we introduced action persistence to deal with the selection of the best
choice of time discretization: indeed, the performance of RL learning agents is highly
sensitive to the frequency of the interaction with the environment. Agents acting at high
frequencies have the best control opportunities, along with some drawbacks, for in-
stance, the increasing sample complexity due to the vanishing of the action advantages.
Another possible limitation of a high-frequency agent is the inefficiency of exploration
and the vanishing of action advantages. As seen, the repetition of the actions through
action persistence comes into help, as it allows the agent to visit wider regions of the
state space and improve the estimation of the action effects. One of the main limitations
related to the previous approach is related to the selection of a fixed persistence value
throughout the entire learning session: in this chapter, we wonder whether it is possi-
ble to consider a dynamic persistence i.e., an adaptive selection of the duration of the
selected actions. To this extent, we derive a novel All-Persistence Bellman Operator,
which allows for effective use of both the low-persistence experience, by decomposi-
tion into sub-transition, and the high-persistence experience, thanks to the introduction
of a suitable bootstrap procedure. In this way, we employ transitions collected at any
time scale to update simultaneously the action values of the considered persistence
set. This novel operator maintains all the contraction properties of its standard ver-
sions (the Bellman Expectation and Optimality Operators), hence we have the chance
to build learning algorithms with useful convergence guarantees. Therefore, we start
by extending classic Q-learning, and we can empirically analyze the main advantages
introduced with a dynamic selection of action persistence: more efficient exploration
and faster propagation of the updates. Furthermore, we provide also an extension of
one of the most known value-based algorithms, DQN. In conclusion, we experimen-
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tally evaluate our approach in both tabular contexts and more challenging frameworks,
including some Atari games.

Chapter Outline This chapter is organized as follows: In Section 7.4 we introduce the
All-persistence Bellman Operator. We prove that such an operator enjoys a contrac-
tion property analogous to that of the traditional optimal Bellman operator. Conse-
quently, in Section 7.5 we embed the All-persistence Bellman operator into the clas-
sic Q-learning algorithm, obtaining Persistent Q-learning (PerQ-learning). This novel
algorithm, through effective use of the transitions sampled at different persistences,
displays two main advantages. First, since each transition is employed to update the
value function estimates at different persistences, we experience a faster convergence.
Second, the execution of persistent actions, given the nature of a large class of environ-
ments, fosters exploration of the state space, with a direct effect on the learning speed
(Section 7.6). Furthermore, to deal with more complex domains, we move, in Sec-
tion 7.7, to the Deep RL scenario, extending the Deep Q-Network (DQN) algorithm
to its persistent version, called Persistent Deep Q-Network (PerDQN). Finally, in Sec-
tion 7.8, we evaluate the proposed algorithms, in comparison with state-of-the-art ap-
proaches, on illustrative and complex domains, highlighting strengths and weaknesses.
Further discussions and results are reported in Appendix C.

7.2 Motivations

As seen in the previous chapters, sequential decision-making problems are typically
modeled as a MDP, a formalism that addresses the agent-environment interactions
through discrete-time transitions. This holds also for continuous-time control prob-
lems, which are usually addressed by means of time discretization, which induces a
specific control frequency (Park et al., 2021). From Chapter 6, we considered it as an
environment hyperparameter, which may have dramatic effects on the learning process.
Indeed, higher frequencies allow for greater control opportunities, but they have signif-
icant drawbacks. Among the most important drawbacks we have reported in Section
6.2, we remark on the vanishing effect on the advantage functions (Baird, 1994; Tallec
et al., 2019). Another consequence of the use of high frequencies is related to the inef-
ficiency of exploration: a random uniform policy played at high frequency may not be
adequate, as in some classes of environments, including the majority of real-world con-
trol problems, it tends to visit only a local neighborhood of the initial state (Amin et al.,
2021; Park et al., 2021; Yu et al., 2021). This is problematic, especially in goal-based
or sparse rewards environments, where the most informative states may never be vis-
ited. On the other hand, larger time discretizations benefit from a higher probability of
reaching far states, but they also deeply modify the transition process, hence a possibly
large subspace of states may not be reachable.

As seen, one of the solutions to achieve the advantages related to exploration and
sample complexity, while keeping the control opportunity loss bounded, consists in ac-
tion persistence, introduced in the previous chapter and also adopted in (Schoknecht
and Riedmiller, 2003; Braylan et al., 2015; Lakshminarayanan et al., 2017). Thus, the
agent can achieve, in some environments, a more effective exploration, better capture
the consequences of each action, and fasten convergence to the optimal policy. In the
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7.3. Related Work

previous chapter, we exploited this trade-off to detect a static action persistence, i.e.,
the most effective duration of the actions, fixed for all states, and throughout the whole
learning instances. Instead, in this chapter we aim to enhance learning by selecting a
dynamic persistence: we propose a value-based approach in which the agent does not
only choose the action, but also its persistence, with the goal of making the most effec-
tive use of samples collected at different persistences. Indeed, the information collected
from the interaction with the environment at one persistence is used to improve the ac-
tion value function estimates of all the considered possible persistences. On one hand,
the multi-step transitions can be decomposed to consider trajectories of reduced length
and used to update knowledge related to lower persistence values. On the other hand,
these same transitions represent partial information for the estimation of the effects of
higher persistent actions. Therefore, they can be employed to update the estimates by
using a suitable bootstrapping procedure of the missing information. Thus, all value
function estimates are updated simultaneously for each of the available persistences
k ∈ K.

7.3 Related Work

In this section, we revise some approaches that take into account adaptive action du-
rations. We recall that some related works on general temporal abstraction and tem-
porally extended actions in RL are presented in Section 6.3. Among the first works
extending RL agents with a dynamic action repetition go back to Schoknecht and Ried-
miller 2003. In this paper, the authors introduce Multi-Step Action (MSA)s, which are
equivalent to action persistence since they “consist of a sequence of the same primitive
action that is applied for consecutive tome steps”. They show that making the time scale
coarser through MSAs helps reduce the number of decisions needed to reach the goal
by lowering its First Passage Time. The exploration boost obtained with temporally
extended actions is fundamental also in Dabney et al. 2020, which extends the defini-
tion of ϵ−greedy policy (Definition 3.1) with a random exploratory variable deciding
the duration of each action (ϵz−greedy exploration). In recent works, researchers have
been trying to include the possibility to dynamically learn the control frequency dur-
ing learning: in Augmented-DQN (Lakshminarayanan et al., 2017), the action space
is duplicated to be able to choose actions with two previously selected repetition rates.
A different approach is proposed in Sharma et al. 2017, which introduces the concept
of skip network, a second network used to select the persistence in a specific state, re-
gardless of the chosen action. However, the independence of the second network to
the selected action leads only to learning persistences that work well on average for all
actions. One way to differentiate persistences with actions is proposed by TempoRL
(Biedenkapp et al., 2021), where the skip network depends on both state and action (and
the estimated Q-value functions) to evaluate the effects for different possible frequen-
cies. The dedicated network is trained to learn the persistence at each state-action pair
and employs a standard replay buffer, ignoring the persistence at which samples have
been collected. In G. Bellemare et al. 2016 persistent advantage learning is proposed,
in which advantage learning from (Baird, 1994) is overridden by a Q-learning update
with repeated actions when the latter promises better Q-values.

In the framework of policy-gradient methods, persistence is introduced in Yu et al.
2021, with the introduction of a secondary policy for choosing whether to repeat the
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previous action or to change it according to the principal agent. A completely different
approach is presented by Park et al. 2021: the authors show that when δ → 0 policy-
based methods tend to degrade. Thanks to the introduction of a safe region, the agent
keeps repeating an action until the distance of the visited states overcomes a certain
threshold. This state locality can guarantee reactivity but may lead to unsafe behaviors.

7.4 All-Persistence Bellman Update

In this section, we introduce our approach to make effective use of the samples collected
at any persistence. We first introduce the notion of persistence option and then, we
present the all-persistence Bellman operator.

7.4.1 Persistence Options
We formalize the decision process in which the agent chooses a primitive action a
together with its persistence k, belonging to a persistence space K, which we assume
to be discrete and limited, i.e., there exist a maximum persistence Kmax ∈ N+ such that
K = [Kmax]. To this purpose, we introduce the persistence option.

Definition 7.1. Let A be the space of primitive actions of an MDP M and K :=
{1, . . . , Kmax} be the persistence space, where Kmax ∈ N+. A persistence option o :=
(a, k) is the decision of playing primitive action a ∈ A with persistence k ∈ K. We
denote with O(k) := {(a, k) : a ∈ A} the set of options with fixed persistence k ∈ K
and O :=

⋃
k∈KO(k) = A×K.

The decision process works as follows. At time t = 0, the agent observes s0 ∈
S, selects a persistence option o0 = (a0, k0) ∈ O, observes the sequence of states
(s1, . . . , sk0) generated by repeating primitive action a0 for k0 times, such that si+1 ∼
P (·|si, a0) for i ∈ {0, . . . , k0 − 1}, and the sequence of rewards (r1, . . . , rk0) with
ri+1 = r(si, a0) for i ∈ {0, . . . , k0 − 1}. Then, in state sk0 the agent selects another
option o1 = (a1, k1) ∈ O and the process is repeated. During the execution of the
persistence option, the agent is not allowed to change the primitive action.1

Remark 7.1. (Persistence and Options) The persistence option (Definition 7.1) is
in all regards a semi-Markov option (Precup, 2001), where the initiation set is the set
of all states S, the termination condition is only time-dependent, and the intra-option
policy is constant. Indeed, the described process generates a semi-Markov decision
process (Puterman, 2014), fully determined by the behavior ofM, as shown in Sutton
et al. (1999b).

Remark 7.2. (Persistence Options vs Augmented Action Space) There is an impor-
tant difference between using persistence optionsO in the original MDPM and defin-
ing an augmented MDPMK with new action spaceA×K and properly redefined tran-
sition model and reward function (Lakshminarayanan et al., 2017; Biedenkapp et al.,
2021): when executing a persistence option ot = (at, kt) ∈ O at time t, we observe
the full sequence of states (st+1, . . . , st+kt) and rewards (rt+1, . . . , rt+kt). Instead, in
the augmented MDPMK we only observe the last state skt and the cumulative reward
rkt+1 =

∑k−1
i=0 γ

irt+i+1. We will heavily exploit the particular option structure, re-using
fragments of experience to perform intra-option learning.

1From this definition, it follows that A is isomorphic to O(1).
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7.4. All-Persistence Bellman Update

We now extend the policy and state-action value function definitions to consider
this particular form of options. A Markovian stationary policy over persistence options
ψ : S → ∆O is a mapping between states and probability measures over persistence
options. We denote with Ψ the set of policies of this nature. We can therefore extend
Definition 2.12 of action-value function to the set of persistence options:

Definition 7.3 (State-Option Value function). LetM be an MDP, ψ a policy in Ψ and
(s, a, k) any state-action pair in S ×A×K. The state-option value function Qψ :
S ×A×K → R is defined as the expected return starting from (s, a, k), and then
following the policy ψ:

Qψ(s, a, k) := E
ψ

[ ∞∑

t=0

γtr(st, at)|s0 = s, a0 = a, k0 = k

]
. (7.1)

In the same fashion, we can define the optimal action-value function:

Q⋆
K(s, a, k) = sup

ψ∈Ψ
Qψ(s, a, k).

7.4.2 All-Persistence Bellman Operator

Our goal is to leverage any κ-persistence transition to learn Q⋆
K(·, ·, k) for all the pos-

sible action-persistences in k ∈ K. Suppose that κ ≥ k, then, we can exploit any sub-
transition of k steps from the κ-persistence transition to update the value Q⋆

K(·, ·, k).
Thus, we extend the Bellman optimal operator from Definition 2.13 to persistence op-
tions T ⋆, defined over functions in S ×O:

Definition 7.4 (Bellman Optimality Operator for Persistence Options).
LetM be an MDP and K a persistence space. Consider a bounded, measurable func-
tion f : S ×A×K → R and a state-option pair (s, a, k) ∈ S ×A×K. The Bellman
optimality operator for state-option value functions T ⋆ is defined as:

(T ⋆f) (s, a, k) = rk(s, a) + γk
∫

S
Pk(ds

′|s, a) max
(a′,k′)∈O

f(s′, a′, k′). (7.2)

If, instead, κ < k, in order to update the value Q⋆
K(·, ·, k), we partially exploit the κ-

persistent transition, but then, we need to bootstrap from a lower persistence Q-value,
to compensate the remaining k − κ steps. To this end, we introduce the bootstrapping
operator T κ:

Definition 7.5 (Bellman Bootstrap Operator on Persistence Options). Let M be an
MDP. Let K be a persistence space, with κ ∈ K. Consider a bounded, measurable
function f : S ×A×K → R and a state-option pair (s, a, k) ∈ S ×A×K, with
k > κ. The Bellman Bootstrap operator for state-option value functions T κ is defined
as: (

T κf
)
(s, a, k) = rκ(s, a) + γκ

∫

S
Pκ(ds

′|s, a)f(s′, a, k − κ). (7.3)

By combining these two operators, we obtain the All-Persistence Bellman operator
Hκ defined for every bound measurable functions f : S ×A×K → R as:
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Definition 7.6 (All-Persistence Bellman operator). LetM be an MDP. Let K be a per-
sistence space, with κ ∈ K. Consider a bounded, measurable function f : S ×A×K →
R and a state-option pair (s, a, k) ∈ S ×A×K. The All-Persistence Bellman opera-
tor for state-option value functions T κ is defined as:

(Hκf)(s, a, k) =
(
(1k≤κT

⋆ + 1k>κT
κ)f
)
(s, a, k), (7.4)

where T ⋆ and T κ are the operators respectively defined in Definitions 7.4 and 7.5.

Thus, given a persistence κ ∈ K, Hκ allows updating all the Q-values with k ≤ κ
by means of T ⋆, and all the ones with k > κ by means of T κ. We want to demonstrate
its soundness by means of contraction properties. First, we need the following useful
Lemma:

Lemma 7.7 (Decomposition of rk). Let rk(s, a) the expected k-persistent reward. Let
k′ < k, then it holds that:

rk(s, a) = rk′(s, a) + γk
′
∫

S
Pk′(ds

′|s, a)rk−k′(s′, a) ∀(s, a) ∈ S ×A.

Proof. From the definition of rk, it holds that rk(s, a) =
∑k−1

i=0 γ
i
(
(pδ)

ir
)
(s, a), where

pδ is the Persistent Kernel defined in equation 6.2. Hence:

rk(s, a) =
k−1∑

i=0

γi
(
(pδ)

ir
)
(s, a)

=
k′−1∑

i=0

γi
(
(pδ)

ir
)
(s, a) +

k−1∑

i=k′

γi
(
(pδ)

ir
)
(s, a)

= rk′(s, a) +
k−1∑

i=k′

γi
∫

S
Pi(ds

′|s, a)r(s′, a)

= rk′(s, a) +
k−1∑

i=k′

γi
∫

S
Pk′(ds

′′|s, a)
∫

S
Pi−k′(ds

′|s′′, a)r(s′, a)

= rk′(s, a) + γk
′
∫

S
Pk′(ds

′′|s, a)
k−k′−1∑

j=0

γj
∫

S
Pj(ds

′|s′′, a)r(s′, a)

= rk′(s, a) + γk
′
∫

S
Pk′(ds

′′|s, a)rk−k′(s′′, a).

Thanks to the previous Lemma, we can provide the following result:

Theorem 7.1. The all-persistence Bellman operator Hκ fulfills the following proper-
ties:

1. Hκ is a γ-contraction in L∞ norm;

2. Q⋆
K is its unique fixed point;
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7.4. All-Persistence Bellman Update

3. Q⋆
K is monotonic in k, i.e., for all (s, a) ∈ S ×A if k ≤ k′ then

Q⋆
K(s, a, k) ≥ Q⋆

K(s, a, k
′).

Proof. (i) First, we prove the contraction property: we consider the L∞-norm applied
to the state-action-persistence space S ×A×K:

∥HκQ1 −HκQ2∥∞ = sup
s,a,k∈S×A×K

∣∣HκQ1(s, a, k)−HκQ2(s, a, k)
∣∣

= sup
s,a,k

∣∣∣∣1k≤κ ((T ⋆Q1) (s, a, k)− (T ⋆Q2) (s, a, k))

+ 1k≤κ
((
T κQ1

)
(s, a, k)−

(
T κQ2

)
(s, a, k)

) ∣∣∣∣

= sup
s,a,k

∣∣∣∣γk1k≤κ
∫

S
Pk(ds

′|s, a)
[
sup
a′,k′

Q1(s
′, a′, k′)− sup

a′,k′
Q2(s

′, a′, k′)

]

+ γκ1k>κ

∫

S
Pκ(ds

′|s, a) [Q1(s
′, a, k − κ)−Q2(s

′, a, k − κ)]
∣∣∣∣

≤ sup
s,a,k

{
γk1k≤κ

∫

S
Pk(ds

′|s, a)
∣∣∣∣ sup
a′,k′

Q1(s
′, a′, k′)− sup

a′,k′
Q2(s

′, a′, k′)

∣∣∣∣

+ γκ1k>κ

∫

S
Pκ(ds

′|s, a)
∣∣∣∣Q1(s

′, a, k − κ)−Q2(s
′, a, k − κ)

∣∣∣∣
}

≤ sup
s,a,k

{
γk1k≤κ

∫

S
Pk(ds

′|s, a) sup
ã,k̃

∣∣∣∣Q1(s
′, ã, k̃)−Q2(s

′, ã, k̃)

∣∣∣∣

+ γκ1k>κ

∫

S
Pκ(ds

′|s, a) sup
s̃,ã

∣∣∣∣Q1(s̃, ã, k − κ)−Q2(s̃, ã, k − κ)
∣∣∣∣
}

≤ sup
s,a,k

{
γk1k≤κ

∫

S
Pk(ds

′|s, a) sup
s̃,ã,k̃

∣∣∣∣Q1(s̃, ã, k̃)−Q2(s̃, ã, k̃)

∣∣∣∣

+ γκ1k>κ

∫

S
Pκ(ds

′|s, a) sup
s̃,ã,k̃

∣∣∣∣Q1(s̃, ã, k̃)−Q2(s̃, ã, k̃)

∣∣∣∣
}

≤ sup
s,a,k

{(
γk1k≤κ + γκ1k>κ

)
∥Q1 −Q2∥∞

}

= ∥Q1 −Q2∥∞ sup
k∈K

γmin{k,κ} = γ∥Q1 −Q2∥∞.

(ii): Since the contraction property holds, and being (S ×A×K, d∞) a complete
metric space (with d∞ being the distance induced byL∞ norm), the Banach Fixed-point
theorem holds, guaranteeing convergence to a unique fixed point.

We now show that Q⋆
K is a fixed point of T ⋆. We first need to define the extended

Bellman expectation operators in Definition 2.7 to Tψ with f : S ×A×K → R being
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a bounded and measurable and ψ ∈ Ψ:2

(Tψf)(s, a, k) = rk(s, a) + γk
∫

S
Pk(ds

′|s, a)V (s′),

V (s) =
∑

(a,k)∈O
ψ(a, k|s)f(s, a, k)

As with standard Bellman operators, it trivially holds that TψQψ = Qψ ∀ψ ∈ Ψ. Thus,
we can take into account the definition of value function V ψ of a policy ψ and the
standard Bellman Equations:

Qψ(s, a, k) = rk(s, a) + γk
∫

S
Pk(ds

′|s, a)V ψ(s′)

V ψ(s) =
∑

(a,k)∈O
ψ(a, k|s)Qψ(s, a, k)

(7.5)

Following the same argument as in Puterman (2014), it holds that the optimal operator
T ⋆ improves the action-value function, i.e. T ⋆Qψ ≥ Qψ, and consequently Q⋆

K is the
(unique) fixed point for T ⋆, i.e., T ⋆Q⋆

K = Q⋆ by contraction mapping theorem.
Moreover, it holds that T κQψ = Qψ:

(T κQψ)(s, a, k) = rκ(s, a) + γκ
∫

S
Pκ(ds

′|s, a)Qψ(s′, a, k − κ)

= rκ(s, a) + γκ
∫

S
Pk(ds

′|s, a)
[
rk−κ(s

′, a) + γk−κ
∫

S
Pk−κ(ds

′′|s′, a)V ψ(s′)

]

= rκ(s, a) + γκ
∫

S
Pk(ds

′|s, a)rk−κ(s′, a)
︸ ︷︷ ︸

rk(s,a)

+γk
∫

S
Pκ(ds

′|s, a)
∫

S
Pk−κ(ds

′′|s′, a)V ψ(s′′)

(7.6)

= rk(s, a) + γk
∫

S
Pk(ds

′|s, a)V ψ(s′) = Qψ(s, a, k),

where in Equation (7.6) we used Lemma 7.7.
In conclusion,

HκQ⋆
K =

(
1k≤κT

⋆ + 1k>κT
κ

)
Q⋆

K

= 1k≤κT
⋆Q⋆

K + 1k>κT
κQ⋆

K
= 1k≤κQ

⋆
K + 1k>κQ

⋆
K = Q⋆

K.

(iii) We provide the proof of monotonic property: given (s, a) ∈ S × A, and given

2The following can be extended without loss of generality to a continuous action space.
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7.5. Persistent Q-learning

k ≤ k′, we have:

Q⋆
K(s, a, k) = (T ⋆Q⋆

K)(s, a, k)

= rk(s, a) + γk
∫

S
Pk(ds

′|s, a) max
a,k∈A×K

Q⋆
K(s

′, a, k)

≥ rk(s, a) + γk
∫

S
Pk(ds

′|s, a)Q⋆
K(s

′, a, k′ − k)

= T kQ⋆
K(s, a, k

′) = Q⋆
K(s, a, k

′).

Thus, operatorHκ contracts to the optimal action-value function Q⋆
K, which, thanks

to monotonicity, has its highest value at the lowest possible persistence. In particular,
we report the following corollary:

Corollary 7.1 (Equivalence of Q⋆
K and Q⋆). For all (s, a) ∈ S×A, the optimal action-

value function Q⋆ and the optimal option-value function restricted to the primitive ac-
tions coincide, i.e.

Q⋆
K(s, a, 1) = Q⋆(s, a)

Proof. Trivially, Q⋆
K, defined on Ψ, coincides with the classic Q⋆ defined on the prim-

itive policies π ∈ Π: in a first instance, we remark that Π ⊂ Ψ, hence all the poli-
cies defined on the space of primitive actions belong to the set of persistent poli-
cies. Furthermore, we can consider property (iii) of Theorem 7.1. As a consequence
Q⋆

K(s, a, 1) ≥ Q⋆(s, a, k)∀k ∈ K, i.e., for each state s ∈ S there is at least one optimal
primitive action a ∈ A which is optimal among all the option set O. Consequently, the
two optimal action-value functions coincide.

Corollary 7.1 shows that, by fixing the persistence to k = 1, we retrieve the op-
timal Q-function in the original MDP, and consequently, we can reconstruct a greedy
optimal policy. This highlights that the primitive action space leads to the same op-
timal Q-function as with persistence options. Persistence, nevertheless, is helpful for
exploration and learning, but for an optimal persistent policy ψ⋆, there exists a primitive
policy π⋆ with the same performance.

7.5 Persistent Q-learning

The advantages ofHκ over traditional updates may not be immediately clear. These
become apparent with its empirical counterpart Ĥκ

t = 1k≤κT̂ ⋆t + 1k>κT̂
κ
t , where:

(
T̂ ⋆t Q

)
(st, at, k) = rkt+1 + γk max

(a′,k′)∈O
Q(st+k, a

′, k′),

(
T̂ κt Q

)
(st, at, k) = rκt+1 + γκQ(st+k, at, k − κ).

These empirical operators depend on the current partial history, which we define as:
Hκ
t := (st, at, rt+1, st+1, rt+2, . . . , st+κ), used by Algorithm 9 to update each persis-

tence in a backward fashion. At timestep t, given a sampling persistence κt, for all sub-
transitions ofHκ

t , starting at t+i and ending in t+j, we apply Ĥj−i
t toQ(st+i, at, k+d),
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Algorithm 9 All Persistence Bellman Update

Require: Sampling persistence κt, partial history Hκt
t , Q-function Q, stepsize α.

Ensure: Updated Q-function Q
1: for j=κt,κt−1...,1 do
2: for i=j−1,j−2,...,0 do
3: k←j−i
4: Q(st+i,at,k)←(1−α)Q(st+i,at,k)+αT̂

⋆
t+iQ(st+i,at,k)

5: for d=1,2,...,Kmax−k do
6: Q(st+i,at,k+d)←(1−α)Q(st+i,at,k+d)+αT̂

k
t+iQ(st+i,at,k+d)

7: end for
8: end for
9: end for

st st+1 st+2

rt+1 rt+2

max
(j = 2, i = 1)

max
(j = 2, i = 0)

max

(j = 1, i = 0)

Figure 7.1: An example of the update order for Algorithm 9 with κt = 2 and Kmax = 3. Applications
of T̂ ⋆

t and T̂κt
t are denoted, respectively, by magenta and blue nodes, while dashed arrows represent

the bootstrap persistence.

for all d ≤ Kmax − k, where k = j − i. In Figure 7.1 we present a scheme that shows
an example of the update order for Algorithm 10.

With these tools, it is possible to extend Q-learning (Watkins, 1989) to obtain the
PersistentQ-learning algorithm (abbreviated as PerQ-learning), described in Algorithm
10. The agent follows a policy ψϵQ, which is ϵ-greedy w.r.t. the option space and the
current Q-function.

This approach extends the MSA-Q-learning (Schoknecht and Riedmiller, 2003), by
bootstrapping higher persistence action values from lower ones. More precisely, both
methods apply the update related to T̂ ⋆, but MSA-Q-learning does not use T̂ κ instead.
As shown in the empirical analysis, in some domains this difference can be crucial
to speed up the convergence. Similarly to MSA-Q-learning, we perform backward
updates to allow for an even faster propagation of values. The proposed approach also
differs from TempoRL Q-learning (Biedenkapp et al., 2021), where action-persistence
is selected using a dedicated value function, learned separately from the Q-function.
The asymptotic convergence of PersistentQ-learning toQ⋆

K directly follows Singh et al.
(2000), beingHκ a contraction and since their (mild) assumptions are satisfied.

7.6 Empirical Advantages of Persistence

In this section, we provide some numerical simulations to highlight the benefits of our
approach. The settings are illustrative, to ease the detection of the individual advantages
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7.6. Empirical Advantages of Persistence

Algorithm 10 Persistent Q-learning (PerQ-learning)

Require: Learning rate α, exploration coefficient ϵ, number of episodes N
Ensure: Q-function estimation

1: Initialize Q arbitrarily, except Q(terminal, ·, ·) = 0
2: for episode = 1, . . . , N do
3: t← 0
4: while st is not terminal do
5: at, κt ∼ ψϵ

Q(st)
6: for τ = 1, . . . , κt do
7: Take action at, observe st+τ , rt+τ

8: end for
9: Store partial history Hκt

t

10: Update Q according to Alg. 9
11: t← t+ κt
12: end while
13: end for

2 4 6 8 10 12 14 16

Max Persistence

K
em

Open
Cliff

Bridge
Zigzag

Figure 7.2: Normalized Kemeny’s constant in tabular environments as function of Kmax. Bullets repre-
sent the minimum.

of persistence, before presenting more complex applications.

Exploration One of the main advantages of persistence is related to faster exploration,
especially in goal-based environments (e.g., robotics and locomotion tasks). Indeed,
persisting an action allows for reaching faster states far from the starting point and,
consequently, propagating faster the reward. The reason is due to the increased chances
of 1-persistent policies of getting stuck in specific regions. As explained in Amin et al.
(2021), persistence helps to achieve self-avoiding trajectories, by increasing the ex-
pected return time in previously visited states. Hence, we study the effects of a per-
sisted exploratory policy on the MDP, i.e., a policy ψ ∈ Ψ over persistence options O
(details in Appendix C.1.1).

To this purpose, we compute the Kemeny’s constant (Catral et al., 2010; Patel et al.,
2015), which corresponds to the expected first passage time from an arbitrary starting
state s to another one s′ under the stationary distribution induced by ψ. We consider
four discrete tabular environments: Open is a 10x10 grid with no obstacles, while the
others, presented in Biedenkapp et al. (2021), are depicted in Figure C.6. In Figure 7.2,
we plot the variations of Kemeny’s constant as a function of the maximum persistence
Kmax, while following a uniform policy ψ over O. We observe that increasing Kmax

promotes exploration and highlights the different Kmax attaining the minimum value of
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Figure 7.3: L∞ error on 6x6 grid-world between synchronous Q-learning and PerQ-learning (left) and
for different persistence options k ∈ {1, ..., 6} of PerQ-learning (right). (100 runs, avg ± 95 % c.i.)

the constant, due to the different complexity of the environments.

Sample Complexity The second relevant effect of persistence concerns sample complex-
ity. The intuition behind persistence relies on the fact that the most relevant information
propagates faster through the state-action space, thanks to multi-step updates. More-
over, these updates are associated with a lower discount factor, for which it is possible
to obtain better convergence rates, as seen in Chapter 6, in which the sample complex-
ity in a k−persistent MDP is reduced by a factor (1 − γk)/(1 − γ) > 1. In order to
evaluate the sample efficiency of PerQ-learning, separately from its effects on explo-
ration, we considered a synchronous setting (Kearns and Singh, 1999; Sidford et al.,
2018) in a deterministic 6x6 Gridworld. At each iteration t, the agent has access to a
set of independent samples for each state-action pair. In standard Q-learning, for each
(s, a) ∈ S ×A, Q(s, a) is updated. In PerQ-learning, the samples are combined to ob-
tain each possible set of κ-persistent transitions, i.e., the tuples related to each possible
(s, a, k) ∈ S ×O, with Kmax = 6; finally, the persistent Q function is updated.

In Figure 7.3 left, we compare the L∞ error of Q-learning estimating Q⋆(s, a), i.e.,
maxs,a∈S×A |Qt(s, a) − Q⋆(s, a)|, and that of PerQ-learning estimating Q⋆

K(s, a, k),
i.e., maxs,a,k∈S×O |Qt(s, a, k) − Q⋆

K(s, a, k)|, as a function of the number of iterations
t. We observe that, although estimating a higher-dimensional function (as Q⋆

K(s, a, k)
is a function of the persistence k too), PerQ-learning converges faster than Q-learning.
In Figure 7.3 right, we plot the L∞ error experienced by PerQ-learning for the different
persistence options O(k), i.e., Error∞(k) := maxs,a∈S×A |Qt(s, a, k) − Q⋆(s, a, k)| for
k ∈ K. As expected, higher values of k lead to faster convergence; consequently,
the persistent Bellman operator helps improve the estimations also for the lower option
sets. Indeed, we can see that alsoQt(·, ·, 1), the primitive actionsQ-function, converges
faster than classic Q-learning (details in Appendix C.1.3).

7.7 Persistent Deep Networks

In this section, we develop the extension of PerQ-learning to high-dimensional set-
tings. Deep RL methods are becoming of fundamental importance when learning on
real systems, as well as the research of methods to improve exploration and learn-
ing speed. It is straightforward to exploit DQN, introduced in Chapter 3, for learning

128



i
i

“output” — 2023/6/14 — 7:29 — page 129 — #151 i
i

i
i

i
i

7.8. Experimental Evaluation

Algorithm 11 Multiple Replay Buffer Storing

Require: Maximum persistence Kmax, replay buffers (Dk)
Kmax

k=1 , transition tuple (st, at, κt, H
κt
t ).

1: for k = 1, . . . ,Kmax do
2: for τ = 0, . . . ,max{κt − k, 0} do
3: Dk ← Dk ∪ (st+τ , at, st+τ+k, r

k
t+1+τ , k)

4: end for
5: for τ = 1, . . . ,min{κt, k − 1} do
6: Dk ← Dk ∪ (st+κt−τ , at, st+κt , r

τ
t+1+κt−τ , τ)

7: end for
8: end for

in the options space O. Standard DQN is augmented with Kmax distinct sets of ac-
tion outputs, to represent Q-value of the options space O = A×K, while the first
layers are shared, similarly to previous works (Arulkumaran et al., 2016; Lakshmi-
narayanan et al., 2017; Biedenkapp et al., 2021). The resulting algorithm, Persistent
Deep Q-Network (PerDQN) is obtained by exploiting the application of the empirical
all-persistence Bellman operator. The main differences between PerDQN and standard
DQN are two:

1. A modified ϵ-greedy strategy, which is equivalent to the one described for its tab-
ular version, in the same way as in (Dabney et al., 2020). Moreover, as in the
common DQN implementation, the ϵ probability is reduced over time to ensure
convergence.

2. The use of multiple replay buffers accounting for persistence.

Persistence Replay Buffers Whenever an option ot = (at, κt) is executed, the partial
history Hκt

t is decomposed in all its sub-transitions, which are used to update Q-values
at any persistence, as shown in Section 7.5. The sub-transitions are stored in multiple
replay buffers Dk, one for each persistence k ∈ K. Specifically, Dk stores tuples in the
form (s, at, s

′, r, κ), as summarized in Algorithm 11, where s and s′ are the first and
the last state of the sub-transition, r is the κ-persistent reward, and κ is the true length
of the sub-transition, which will then be used to suitably apply Ĥκ

t .
Finally, the gradient update is computed by sampling a mini-batch of experience tu-

ples from each replay bufferDk, in equal proportion. Given the current network and tar-
get parametrizations θ and θ−, the temporal difference error of a sample (s, a, r, s′, κ)

is computed as ĤκQθ−(s, a, k) − Qθ(s, a, k). Our approach differs from TempoRL
DQN (Biedenkapp et al., 2021), which uses a dedicated network to learn the persis-
tence at each state and employs a standard replay buffer, ignoring the persistence at
which samples have been collected. This affects the learning procedure, especially in
the case of mini-batch sampling prioritizing tuples with higher temporal difference er-
rors since, trivially, predictions related to longer transitions are more difficult and are
usually related to higher errors.

7.8 Experimental Evaluation

In this section, we show the empirical analysis of our approach on both the tabular
setting (PerQ-learning) and the function approximation one (PerDQN).
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Figure 7.4: MountainCar results. Parentheses in the legend denote Kmax. 20 runs (avg± 95% c.i.).
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Figure 7.5: Results on tabular environments. Top row: performances with different maximum per-
sistences. In the legend, parentheses denote the selected Kmax. Bottom row: PerQ-learning and
TempoRL comparison, Kmax = 8. 50 runs (avg± 95% c.i.).

PerQ-learning We present the results of the experiments in tabular environments, par-
ticularly suited for testing PerQ-learning because of the sparsity of rewards. We start
with the deterministic 6x10 grid-worlds introduced by Biedenkapp et al. 2021. In these
environments, the episode ends if either the goal or a hole is reached, with +1 or −1
points respectively. In all the other cases, the reward is 0, and the episode contin-
ues (details in Appendix C.2.1). Moreover, we experiment with 16x16 FrozenLake,
from OpenAI Gym benchmark (Brockman et al., 2016), with rewards and transition
processes analogous to the previous case, but with randomly generated holes at the
beginning of the episode. The results are shown in Figure 7.5. In the top row, we
compare the results on the performance when applying PerQ-learning with different
Kmax ∈ {4, 8, 16}. We can detect a faster convergence when passing from Kmax = 4
to 8. However, the largest value of Kmax is not always the best one: while Bridge and
Cliff show a slight improvement, performances in ZigZag and FrozenLake degrade.
This is probably due to the nature of the environment: when there are many obstacles,
high persistences might be inefficient, as the agent can get stuck or reach holes more
easily. In the bottom plots of Figure 7.5 we selected the results with Kmax = 8 and
compared them with TempoRL (with the same maximum skip-length J = 8) and clas-
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Figure 7.6: Atari games results. Parentheses in the legend denote the maximum persistence Kmax. 5
runs (avg± 95% c.i.).

sic Q-learning. In all cases, PerQ-learning outperforms the other methods, especially
Q-learning, whose convergence is significantly slower. exploration is very small. With
this maximum persistence value PerQ-learning outperforms TempoRL. Further experi-
ments with different values of Kmax have been reported in Appendix C.3.1. In general,
PerQ-learning shows faster rates of improvements than TempoRL, especially in the first
learning iterations. However, this advantage may not be consistent for every value of
Kmax, and every environment, as also shown in Appendix C.3.1.

PerDQN Our implementation of PerDQN is based on OpenAI Gym (Brockman et al.,
2016) and Baselines (Dhariwal et al., 2017) Python toolkits. We start with Mountain-
Car (Moore, 1991), as it is perhaps the most suited to evaluate the performance of
persistence options. As shown in Table B.1, 1-step explorative policies usually fail to
reach the goal. Figure 7.4 shows that TempoRL and DQN cannot converge to the op-
timal policy, as already noticed in Biedenkapp et al. (2021), while PerDQN attains the
optimal solution, that reaches the top of the mountain with the minimum loss.

The algorithm is then tested in the challenging framework of Atari 2600 games,
where we want to validate that action persistence is beneficial to speed up the initial
phases of learning also in large environments.

The same architecture from Mnih et al. (2013), suitably modified as in Section 7.7,
is used for all environments. For a fair comparison with TempoRL and standard DQN,
persistence is implemented on top of the frame skip. Thus, a one-step transition corre-
sponds to 4 frame skips. In Figure 7.6 we compare PerDQN with TempoRL and classic
DQN. In five games out of six, our PerDQN displays a faster learning curve thanks
to its ability of reusing experience, although in some cases (e.g. Kangaroo) PerDQN
seems to inherit the same instability issues of DQN, we conjecture due to the overes-
timation bias (van Hasselt et al., 2016). In order to better understand which beneficial
effects are provided by action persistence alone and which ones derive from the use of
the bootstrap operator, we run an ablation experiment on the same tasks removing the
latter one. The resulting algorithm is then similar to the Deep RL version of MSA-Q-
learning (Schoknecht and Riedmiller, 2003), which we called MSA-DQN. The results
show that PerDQN always dominates over its counterpart without bootstrap. The cru-
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cial importance of the bootstrap operator is confirmed also in the MountainCar setting
where removing this feature causes a performance decrease, making its score compara-
ble to TempoRL (see Appendix C.3.2). Finally, we notice that in Seaquest persistence
seems to be detrimental to learning, as DQN outperforms PerDQN. In this task, agents
have to choose either to move or to shoot some moving targets. Persisting the shooting
action, thus, may force the agent to stay still for a long time, hitting nothing. A pos-
sible solution could consist in the introduction of interrupting persistence, in a similar
fashion to interrupting options (Sutton et al., 1999b; Mankowitz et al., 2014), which is
an interesting future research direction. Further discussions, analyses, and results are
provided in Appendix C.3.

7.9 Conclusions

In this chapter, we considered RL policies that implement action persistence, modeled
as persistence options, selecting a primitive action and its duration. We defined the all-
persistence Bellman operator, which allows for effective use of the experience collected
at any time scale, as action-value function estimates can be updated simultaneously on
the whole persistence set. In particular, low persistences (and primitive actions) can
be updated by splitting the samples into their sub-transitions; high persistences can
instead be improved by bootstrap, i.e. by estimating the partial missing information.
After proving that the new operator is a contraction, we extended classic Q-learning
and DQN to their persistent version. The empirical analysis underlines the benefits of
the new operator for exploration and estimation. Furthermore, the experimental cam-
paign on tabular and deep RL settings demonstrated the effectiveness of our approach
and the importance of considering temporally extended actions, as well as some lim-
itations. There are still numerous open questions and future research directions, such
as the possibility to introduce persistence interruption and techniques to overcome the
overestimation bias. Furthermore, one could investigate the use of the operator in the
actor-critic framework to cope with continuous actions. Some preliminary results in
this direction can be found in Appendix D, where the persistence selection is entrusted
to a persistor, i.e., a specifically designed secondary policy, with the possibility to learn
when to act via stochastic gradient ascent.
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CHAPTER8
Discussion and Conclusions

The conclusion of this thesis is devoted to providing a summary of our contributions,
with further discussions on the advantages and the limitations, and inspiring some ideas
for future research directions.

In this dissertation, we addressed different approaches to enhance the learning capa-
bilities of RL techniques providing both algorithmic and theoretical contributions. We
are motivated by the challenges faced by practitioners in the RL field, where real-world
applications need careful engineering of both the environment and the algorithm se-
lected. We explained the basic concepts related to the interaction between the agent and
the environment (Chapter 2) and presented the most important algorithmic solutions in
Chapter 3. In particular, we have shown that the fundamental theoretical guarantees
play a very important role in policy-based techniques, but they do not help in the selec-
tion of the hyperparameters. Consequently, in Part I we aimed to enhance the learning
capabilities of this class of algorithms: we framed the HO problem as a Sequential
Decision Process and designed a solution that allows selecting a dynamic sequence
of hyperparameters, adaptive to the policy and the context of the MDP. On the other
hand, environment configuration is paramount to make RL algorithms able to detect
the most promising actions: in this sense, the duration of the actions is significant, as
it defines the control opportunities and the sample complexity. Part II is therefore de-
voted to making further steps in the control frequency analysis and to fostering adaptive
algorithms with the introduction of the persistence concept.

8.1 Hyperparameter Optimization through Meta RL

Part I of this thesis is focused on Hyperparameter Optimization through Meta Rein-
forcement Learning. This field addresses the challenges and the new opportunities
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that arise with a dynamic selection of hyperparameters, that can be adapted with re-
spect to the task determining the dynamics and reward process in the environment.
Indeed, in Chapter 4 we introduced the Contextual Markov Decision Processes (Hal-
lak et al., 2015), where a variable context defines the properties of the environment
in a classic Meta-Learning framework. In the first instance, we considered some as-
sumptions related to the smoothness of the environment with respect to the task and
obtained interesting bounds on the difference in terms of performances within two dif-
ferent tasks. This result explains the behavior of related Meta-Learning approaches
(e.g., Finn et al. 2017), whose models empirically show bad generalization capabilities
when training and test tasks are drawn from different distributions. Successively, we
took into account the hyperparameter selection problem, and we framed it as a Sequen-
tial Decision Making problem. The independence of the return function to previous
policy updates (when the current policy is accessible) is equivalent to the Markov as-
sumption requested for standard RL approaches. Hence, the whole problem can be
addressed as a Meta-Markov Decision Process, where the reward function is the per-
formance gain. This concept has interesting connections with the learning to learn
paradigm predominant in Meta-Learning literature, but differs from the common ap-
proach of the maximization of the immediate (meta) reward, in the same fashion as
MDPs differ from bandits. We then applied the Meta-MDP concept to the selection of
the step size for policy gradient approaches and included in the observations provided
to the meta agent the explicit parametrization of the context, of the policy and its gradi-
ent, computed on a batch of trajectories. In this way, we could rely on FQI (Ernst et al.,
2005), a batch value-based RL algorithm, to learn the expected performance gain for
each policy-stepsize pair. The proposed method is then tested on simulated domains,
showing an improvement concerning the most common learning rate schedules. More-
over, the stepsizes selected are adaptive to the selected task, and decrease throughout
the learning instances without explicit knowledge of the number of steps, meaning that
the model is capable of detecting the distance from (local) optima from the observations
provided.

Further improvements are obtained in Chapter 5, where the Meta-MDP design is
deeply modified to overcome the curse of dimensionality related to the inclusion of the
whole policy parametrization in the observation space. Indeed, we leveraged Informa-
tion Theory concepts to retrieve a set of informative features that can be approximated
by employing KNN-based estimators (Singh et al., 2003). In this way, the resulting
models can gather information based only on the trajectories generated by the inter-
action of the current policy with the environment: therefore, they are context-agnostic
and policy-agnostic, in the sense that there is no explicit parametrization of the context
or the policy. Therefore, they can potentially be applied to any learning algorithm with
any hyperparameter, and are able to generalize across different policy architectures (in
the case of policy-based methods). The resulting approach is then applied to the op-
timization of the trust-region constraint, the main hyperparameter introduced in one
of the most common RL policy-based algorithms, TRPO (Schulman et al., 2015). All
the experiments carried out suggest that the meta-MDP direction is promising, as the
increased number of degrees of freedom obtained through a dynamic selection of the
hyperparameter can help improve the learning capabilities across different policy ar-
chitectures and unseen contexts, without the need of restarting hyperparameter tuning
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8.2. Dynamic Step and Control Frequency

procedures from scratch for each new task.

8.1.1 Limitations and Future Works

In the first part of this dissertation, we have investigated the automatic tuning of one
hyperparameter, i.e., the stepsize or the trust radius. However, in the majority of the
algorithms, the dimensionality of the tuning procedure is way larger. As a simple ex-
ample, the same TRPO algorithm approximates the value function to provide a critic
for the selected actions, and depends on the learning rate for the value function up-
dates, the number of conjugate gradient steps for the natural gradient approximation,
the entropy coefficient to enhance exploration, just to mention a few. The meta-MDP
formulation allows to generalize to any number of hyperparameters but, of course, the
complexity of value-based algorithms increases accordingly. This is an important limi-
tation, especially if we consider the large amount of data required to train our meta-FQI
models (and to train meta-RL models, in general). In this direction, a possible solution
can be detected with online approaches, similar to Xu et al. 2018: however, the high
sensitivity of the current approaches to the new meta-hyperparameter risks making the
problem vacuous, as the models might be even more difficult to train and requiring
more data. Alongside these considerations, the set of informative meta-features we de-
tected in Chapter 5 was reasonable, but it is not justified by any theoretical grounding:
as future research directions, we may wonder how to generate and select more informa-
tive meta-features with a solid validation theory. Furthermore, the smoothness analysis
we included was interesting but unrelated to the solution we proposed: as a future re-
search direction, the proved bounds can be leveraged to detect more robust models with
respect to the context provided. Finally, we focused our research on HO for RL, but we
may analyze the effects of our contributions on other Machine Learning fields, such as
Supervised Learning.

8.2 Dynamic Step and Control Frequency

Part II of the dissertation is devoted to enhancing the learning capabilities of RL by con-
figuring the control frequency of a system. We have shown its importance, especially
in robotic manipulation problems, although in literature particular attention is also de-
voted to the frame-skip parameters in image-based environments (Lakshminarayanan
et al., 2017), with the same meaning. On one side, this parameter has a deep impact on
the control opportunities; on the other, rapid action changes may prevent the agent to be
able to detect (and reward) the most useful ones. Under the assumption of the existence
of a base frequency, we introduced the concept of action persistence, i.e., the repetition
of an action for a fixed amount of base steps, having the effect of altering the control
frequency of the system. We have shown in Chapter 6 that persistence can be described
as a context of the environment with the definition of the k−persistence MDP, with
appropriate transition processes and reward functions, or as a non-Markovian policy
working at the highest frequency. We derived a bound of the performance loss induced
by persistence under some regularity conditions. In particular, we assumed standard
Lipschitz continuity properties on the MDP, with the inclusion of an additional hypoth-
esis on the speed at which the environment evolves over time (Time-Lipschitz Conti-
nuity). Based on these considerations, we provided an algorithmic contribution with
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PFQI, an extension of FQI to take into account action persistence. Furthermore, we
leveraged some error propagation bounds to retrieve a persistence selection heuristic.
The experimental evaluation justifies the introduction of persistence, since increasing
the action duration can lead to an improvement when dealing with a limited number of
samples. Furthermore, the persistence selection heuristic often identified reliable per-
sistence values. An important application of our approach was detected in the problem
of financial trading, where persistence helped detect profitable policies and patterns in
market behavior.

While Chapter 6 was devoted to comparing the performances when acting at differ-
ent frequencies, in 7 we focused our attention to learn a dynamic persistence selection.
We implemented the selection of the action duration through the mechanism of persis-
tence options, giving the agent the ability to select both an action and its persistence.
We devised a new operator, the All-persistence Bellman operator, which allows for ef-
fective use of the experience collected at any time scale. Hence, action value function
estimates for the different possible persistences can be updated simultaneously: the
value of acting with high frequencies can be learned by splitting the transitions into
their components; instead, the expected return related to high persistence values can
be updated by bootstrapping the partial missing information by resorting to Bootstrap
operations. After proving the contraction properties of the new operator, we extended
standard Q-learning and DQN to operate within the persistence option framework. A
first experimental campaign was devoted to underlining the benefits of our approach,
in terms of better exploration (since the average time to reach far states is reduced) and
faster information propagation. The proposed algorithms were then tested on bench-
mark environments, including some Atari games, which highlighted the effectiveness
of temporally extended actions as well as some limitations.

8.2.1 Limitations and Future Works

The experimental sessions performed in Chapter 7 showed that persistence is not always
useful: indeed, it is always possible to design environments where the repetition of
an action provides only bad effects. Furthermore, we work under the hypothesis of
the existence of a base control frequency: our approach hence does not consider the
divergence effects emerging in the limit for time discretization going to 0, as shown
for example in Tallec et al. 2019. The provided algorithms do not scale well with this
limit, since one should greatly increase the persistence rates to keep the exploration
benefits: this significantly increases the computational requirements. A first idea to
overcome this limitation can be detected by relying on advantage updating, similarly
as in Bradtke and Duff 1994. Further research directions can be detected by recalling
the similarity of our approach with the option framework (Precup, 2001): advances
within this framework can be leveraged to extend the set of possible macro-action or
to better exploit the advantages of the multi-step transitions. In conclusion, with our
work, we focused on value-based approaches: an interesting research direction consists
in designing a secondary policy that learns the action duration with a policy-gradient
framework. Some preliminary results and discussions are provided in Appendix D.
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8.3. Final Remarks

8.3 Final Remarks

To conclude, we have highlighted the potential and the limitations of current RL algo-
rithms in view of real-world applications, where the interaction between the agent, the
environment, and the learning models must be carefully and continuously tuned. In this
dissertation, we attempted to enhance learning in a twofold direction: improving the al-
gorithm by optimizing the hyperparameters tuning procedure, or improving the model,
by resorting to action persistence. We believe that our work makes some small steps
towards the design of more efficient learning processes, and we offered some insights
for appealing research directions.
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APPENDIXA
Additional Results of Chapter 4

A.1 Proofs

A.1.1 Lipschitz Continuity of the Action-Value Function

Before describing the proof for Theorem 4.1, we need to recall the Bellman Expectation
Operator T π from equation 2.18 applied on the Action Value FunctionQπ

ω in the context
ω ∈ Ω:

T πQπ
ω(s, a) = rω(s, a) + γ

∫

S
Pω(s

′|s, a)
∫

A
Qπ

ω(s
′, a′)π(a′|s′)dads′

= rω(s, a) + γ

∫

S
Pω(s

′|s, a)V π
ω (s

′)ds′

where Qπ
ω is the fixed point. Moreover, let’s consider as preliminary result the LC-

continuity of the value functions (Lemma 3.12, Rachelson and Lagoudakis 2010) pre-
sented in section 3.6. We provide a generalization of this result on Lipschitz CMDPs.

Theorem 4.1. Let M be a (LωP
, Lωr)-CLC CMDP for whichM(ω) is (LP (ω), LR(ω))-

LC ∀ω ∈ Ω. Given a Lπ-LC policy π, the action value function Qπ
ω(s, a) is LωQ

-CLC
w.r.t. the context ω, i.e.:

∣∣∣∣Qπ
ω(s, a)−Qπ

ω(s, a)

∣∣∣∣ ≤ LωQ
(π)dΩ(ω,ω) ∀(s, a) ∈ S ×A, ∀ω,ω ∈ Ω;

where

LωQ
(π) =

Lωr + γLωpLVπ(ω)

1− γ , LVπ(ω) =
Lr(ω)(1 + Lπ)

1− γLP (ω)(1 + Lπ)
(4.1)
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Proof. We follow the same ideas as in Rachelson and Lagoudakis (2010): first of all,
given an LωQ

-LC continuous Q function Qπ
ω w.r.t. the task space ω, the related value

function V π
ω is LωQ

-LC. Indeed,

∣∣∣∣V π
ω (s)− V π

ω (s)

∣∣∣∣ =
∣∣∣∣
∫

A
π(a|s) (Qπ

ω(s, a)−Qπ
ω(s, a)) da

∣∣∣∣

≤
∫

A
π(a|s)

∣∣∣∣Qπ
ω(s, a)−Qπ

ω(s, a)

∣∣∣∣da

≤ max
a

∣∣∣∣Qπ
ω(s, a)−Qπ

ω(s, a)

∣∣∣∣ ≤ LωQ
dΩ(ω,ω).

Now, we consider the iterative application of Bellman Operators, in such a way that
Qπ,n+1

ω = T πQπ,n
ω , and we prove that Qπ,n

ω is LnωQ
-LC continuous, and that satisfies the

recurrence relation:

Ln+1
ωQ

= Lωr + γLπLV (ω) + γLnωQ
. (A.1)

Indeed, for n = 1 the property holds immediately, since:
∣∣Qπ,1

ω (s, a)−Qπ,1
ω (s, a)

∣∣ =
∣∣Rω(s, a)−Rω(s, a)

∣∣ ≤ LωrdΩ(ω,ω).

Now, let us suppose the property holds for n. Then:
∣∣∣∣Qπ,n+1

ω (s, a)−Qπ,n+1
ω (s, a)

∣∣∣∣ =
∣∣∣∣Rω(s, a)−Rω(s, a) + γ

∫

S
Pω (s′|s, a)V π,n

ω (s′) ds′ − γ
∫

S
Pω (s′|s, a)V π

ω (s′) ds′
∣∣∣∣

≤ LωrdΩ(ω,ω) + γ

∣∣∣∣
∫

S
(Pω (s′|s, a)− Pω (s′|s, a))V π,n

ω (s′) ds′
∣∣∣∣

+γ

∣∣∣∣
∫

S
Pω (s′|s, a) (V π,n

ω (s′)− V π,n
ω (s′)) ds′

∣∣∣∣

≤ LωrdΩ(ω,ω) + γLV (ω) sup
∥f∥L≤1

{∣∣∣∣
∫

S
(Pω (s′|s, a) − Pω (s′|s, a)) f (s′) ds′

∣∣∣∣
}

+γmax
s′

∣∣∣∣V π,n
ω (s′)− V π,n

ω (s′)

∣∣∣∣

≤
(
Lωr + γLωP

LV (ω) + γLnωQ

)
dΩ(ω,ω).

Consequently, Inequality A.1 holds. Now, if the sequence LnωQ
is convergent, it con-

verges to the fixed point of the recurrence equation:

LωQ
= Lωr + γLωP

LV (ω) + γLωQ
.

Hence the limit point is the one expressed in Equation 4.1, and the sequence can be
proven to be convergent since γ < 1.
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A.1. Proofs

As a consequence, the Proof that Jω(π) is CLC under ω is immediate:
∣∣∣∣Jω(π)− Jω(π)

∣∣∣∣ =
∣∣∣∣
∫

S
µ (s0) [V

π
ω (s0)− V π

ω (s0)] ds0

∣∣∣∣

≤
∫

S×A
µ (s0) π (a|s0)

∣∣Qπ
ω (s0, a)−Qπ

ω (s0, a)
∣∣dads0

≤ LωQ
(π)dΩ(ω,ω).

A.1.2 Lipschitz Continuity of the Gradient

In order to consider the Lipschitz continuity of the gradient of the return ∇Jω(θ), we
first need to introduce two more assumptions:

Assumption A.1 (Lipschitz Parametric Policy). Let πθ ∈ Π be a policy parametrized
in the parameters space θ ∈ Θ. An LC-policy π satisfies the following conditions:

∀θ ∈ Θ,∀s, s ∈ S W1 (πθ(·|s), πθ (·|s)) ≤ LπθdS (s, s) (A.2)

∀s ∈ S,∀θ,θ ∈ Θ W1 (πθ(·|s), πθ(·|s)) ≤ Lπ(θ)dΘ
(
θ,θ

)
. (A.3)

Assumption A.2 (Lipschitz Gradient of Policy Logarithm). The gradient of the policy
logarithm must satisfy the following conditions:

1. Uniformly bounded gradient: ∀(s, a) ∈ S ×A,∀θ ∈ Θ,∀i = 1, . . . , d

|∇θi
log πθ(a|s)| ≤M i

θ;

2. State-action LC: ∀ (s, s, a, a) ∈ S2 ×A2,∀θ ∈ Θ,∀i = 1 . . . , d

|∇θi
log πθ(a|s)−∇θi

log πθ (a|s)| ≤ Li∇ log πdS×A ((s, a), (s, a))
)
;

3. Parametric LC: ∀
(
θ,θ

)
∈ Θ,∀(s, a) ∈ S ×A,∀i = 1, . . . , d

|∇θi
log πθ(a|s)−∇θi

log πθ(a|s)| ≤ Li∇ log π(θ)dΘ
(
θ,θ

)
.

Lemma A.1 (Lemma 3 from Pirotta et al. (2015)). Given Assumptions 3.1, 3.3, if
γLP (1+ Lπθ) < 1, the Kantorovich distance between a pair of γ-discounted feature
state distributions is Parametric-LC (PLC) w.r.t. parameters Θ : ∀(θ, θ̂) ∈ Θ2:

W1

(
δµθ , δ

µ

θ

)
≤ Lδ(θ)dΘ(θ,θ); (A.4)

where Lδ(θ) =
γLPLπ(θ)

1−γLP (1+Lπθ)
.

In the same fashion, we can now define the state occupancy measure in the taskMω as
δµω,θ and we can prove the following lemma:1

Lemma A.2 (L-continuity of meta state occupancy measures). Given Assumptions 3.1,
3.3 and 4.2, if γLP (ω) (1 + Lπθ) < 1, then the Kantorovich distance between a pair of
γ-discounted feature-state distributions is CLC w.r.t. context ω:

W1

(
δµω,θ, δ

µ
ω,θ

)
≤ Lδ(ω)dΩ(ω,ω), ∀(ω,ω) ∈ Ω2; (A.5)

where Lδ(ω) =
γLωP

1−γLP (ω)(1+Lπθ)
.

1Assumption 3.3 is not entirely required, but only Inequality A.2 is required to hold.
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W1

(
δµω,θ, δ

µ
ω,θ

)
= sup

f

{∣∣∣∣
∫

S

(
δµω,θ(s)− δµω,θ(s)

)
f(s)ds

∣∣∣∣ : ∥f∥L ≤ 1

}

= sup
f

{∣∣∣∣
∫

S

(
µ(s) + γ

∫

S

∫

A
πθ (a|s′)Pω (s|s′, a) δµω (s′) dads′

)
f(s)−

−
(
µ(s) + γ

∫

A

∫

S
πθ (a|s′)Pω (s|s′, a) δµω (s′) dads′

)
f(s)ds

∣∣∣∣ : ∥f∥L ≤ 1

}

= γ sup
f :∥f∥L≤1

{∣∣∣∣
∫

S
f(s)

∫

A

∫

S

(
Pω (s|s′, a) πθ (a|s′) δµω,θ (s′)

−Pω (s|s′, a) πθ (a|s′) δµω,θ (s′)
)
ds′dads

∣∣∣∣
}

= γ sup
f :∥f∥L≤1

{∣∣∣∣
∫

S
f(s)

∫

A

∫

S
Pω (s|s′, a) πθ (a|s′)

(
δµω,θ (s

′)− δµω,θ (s′)
)
ds′dads

+

∫

S
f(s)

∫

A

∫

S
(Pω (s|s′, a)− Pω (s|s′, a))πθ (a|s′) δµω,θ (s′) ds′dads

∣∣∣∣
}

≤ γ sup
f :∥f∥L≤1

{∣∣∣∣
∫

S

(
δµω,θ (s

′)− δµω,θ (s′)
) ∫

A
πθ (a|s′)

∫

S
Pω (s|s′, a) f(s)dsdads′

∣∣∣∣
}

︸ ︷︷ ︸
(1)

+ γ sup
f :∥f∥L≤1

{∣∣∣∣
∫

S
δµω,θ (s

′)

∫ θ

π

(a|s′)
∫

S
(Pω (s|s′, a)− Pω (s|s′, a)) f(s)dsdads′

∣∣∣∣
}

︸ ︷︷ ︸
(2)

.

(A.6)

Now, we focus on term (1):

sup
f :∥f∥L≤1

{∣∣∣∣
∫

S

(
δµω,θ (s

′)− δµω,θ (s′)
) ∫

A
πθ (a|s′)

∫

S
Pω (s|s′, a) f(s)dsda

︸ ︷︷ ︸
hfω,θ(s

′)

ds′
∣∣∣∣
}

= LP (ω) (1 + Lπθ) sup
f :∥f∥L≤1

{∣∣∣∣∣

∫

S

(
δµω,θ (s

′)− δµω,θ (s′)
) hfω,θ (s

′)

LP (ω) (1 + Lπθ)
ds′

∣∣∣∣∣

}

≤ LP (ω) (1 + Lπθ) sup
f̃ :∥f̃∥L≤1

{∣∣∣∣
∫

S

(
δµω,θ (s

′)− δµω,θ (s′)
)
f̃ (s′) ds′

∣∣∣∣
}

(A.7)

≤ LP (ω) (1 + Lπθ)W1

(
δµω,θ, δ

µ
ω,θ

)
.

where inequality A.7 comes from the fact that
hfω,θ (s

′) :=
∫
A πθ (a|s′)

∫
S Pω (s|s′, a) f(s)dsda is LP (ω) (1 + Lπθ)-PLC w.r.t. the
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state space S. From the other side, the term (2) can be bounded as follows:

sup
f :∥f∥L≤1

{∣∣∣∣
∫

S
δµω,θ (s

′)

∫

A
πθ (a|s′)

∫

S
(Pω (s|s′, a)− Pω (s|s′, a)) f(s)dsdads′

∣∣∣∣
}

≤
∫

S
δµω,θ (s

′)

∫

A
πθ (a|s′) sup

f :∥f∥L≤1

{∣∣∣∣
∫

S
(Pω (s|s′, a)− Pω (s|s′, a)) f(s)ds

∣∣∣∣
}
dads′

≤
∫

S
δµω,θ (s

′)

∫

A
πθ (a|s′)W1 (Pω (·|s′, a) , Pω (·|s′, a)) dads′

≤ LωP
dΩ(ω,ω).

Finally, merging everything:

W1

(
δµω,θ, δ

µ
ω,θ

)
≤ γLP (ω) (1 + Lπθ)W1

(
δµω,θ, δ

µ
ω,θ

)
+ γLωP

dΩ(ω,ω)

≤ γLωP

1− γLP (ω) (1 + Lπθ)
dΩ(ω,ω).

As a direct consequence, we define the joint probability ζ(δµπ , π) between the state
distribution δµπ and the stationary policy π. In the case of a parametric policy πθ and a
ω-based MDP, we will denote it as ζµω,θ.It is then easy to prove that:

W1

(
ζθµ,ω, ζ

θ
µ,ω

)
≤ Lδ(ω) (1 + Lπθ) dΩ(ω,ω).

Proof.

W1

(
ζµω,θ, ζ

µ
ω,θ

)
= sup

f :∥f∥L≤1

{∥∥∥∥
∫

S
δµω,θ(s)

∫

A
πθ(a|s)f(s, a)dads

−
∫

S
δµω,θ(s)

∫

A
πθ(a|s)f(s, a)dads

∥∥∥∥
}

= sup
f :∥f∥L≤1

{∥∥∥∥
∫

S

(
δµω,θ(s)− δµω,θ(s)

) ∫

A
πθ(a|s)f(s, a)dads

∥∥∥∥
p,µ

}

≤ (1 + Lπθ)W1

(
δµω,θ, δ

µ
ω,θ

)
. (A.8)

where in A.8 we used the fact that, for a function f defined on S ×A such that ∥f∥L ≤
1, then

∫
A πθ(a|s)f(s, a)da is (1 + Lπθ)-LC.

Lemma A.3 (L-continuity of η). Given Assumptions 3.1, 4.2, 3.3 and 3.4,
ηiω,θ(s, a) := ∇θi

log πθ(s, a)Q
Θ
ω(s, a) is L-CLC w.r.t. the context ω:

∣∣ηθi,ω(s, a)− ηθi,ω(s, a)
∣∣ =

∣∣∇Θi
log πθ(a|s)

(
Qθ

ω(s, a)−Qθ
ω(s, a)

)∣∣
≤Mi

θ

∣∣Qθ
ω(s, a)−QΘ

ω(s, a)
∣∣

≤Mi
θLωQ

dΩ(ω,ω).

Moreover, η is also L-LC w.r.t. the joint state-action space S ×A:
∣∣ηiω,θ(s, a)− ηiω,θ(s, a)

∣∣ ≤ Liηθ(ω)dS×A((s, a), (s, a));

where Li
ηθ(ω)

= Rmax

1−γ L
i
∇ log πθ

+Mi
θLQθ(ω).
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Theorem A.4 (L-continuity of the performance gradient). Finally, given Assumptions
3.1, 4.2, 3.3 and 3.4, the return gradient is CLC w.r.t. the context ω:

|∇θi
Jω(θ)−∇θi

Jω(θ)| ≤ L∇J(ω)dΩ(ω,ω),

where L∇J(ω) = Li
ηθω

(1 + Lπθ)Lδ(ω) +Mi
θLωQ

.

Proof.

|∇θi
Jω(θ)−∇θi

Jω(θ)| =
∣∣∣∣ E
(s,a)∼ζµω,θ

[
ηiω,θ(s, a)

]
− E

(s,a)∼ζµω,θ

[
ηiω,θ(s, a)

] ∣∣∣∣

≤
∣∣∣∣
∫

S

∫

A

(
ζµω,θ − ζµω,θ

)
(s, a)ηiω,θ(s, a)dads

∣∣∣∣+
∣∣∣∣ E
(s,a)∼ζµω,θ

[
ηiω,θ(s, a)− ηiω,θ(s, a)

] ∣∣∣∣

≤ Liηθ(ω)W1

(
ζµω,θ, ζ

µ
ω,θ

)
+

∣∣∣∣
∫

S
δµω,θ(s)

∫

A
πθ(a|s)

(
ηiω,θ(s, a)− ηiω,θ(s, a)

)
da ds

∣∣∣∣

≤
[
Liηθω (1 + Lπθ)Lδ(ω) +Mi

θLωQ

]
dΩ(ω,ω).

A.2 Experiment Details

In this section, we provide more details regarding the experimental campaign provided.
In the following environments, all the policies considered are Gaussian, and linear w.r.t.
the state observed (with bias θ0), i.e. πθ(a|s) ∼ N (θ0 + θ⊤s, σ2), where σ is fixed
standard deviation, with a different setting for each environment.

A.2.1 Navigation2D Description

The Navigation2D environment consists of a 2-dimensional square space in which an
agent, represented as a point, aims to reach a goal in the plane traversing the minimum
distance.

At the start of the episode, the agent is placed in the initial position s0 = (0, 0).
Then, at each step t the agent observes its current position and performs an action at
corresponding to movement speeds along the x and y axes:

at = (vx, vy), where vx, vy ∈ [−vmax, vmax]. (A.9)

According to this action, the agent can move in every direction of the plane, with a
limit on the maximum speed vmax = 0.1 allowed in a single step. These parameters
determine the minimum number of steps necessary to reach the goal and can be varied
to tune the difficulty of the environment.

At each step, the environment produces a reward equal to the negative Euclidean
distance from the goal:

rt =
√

(xt − xgoal)2 + (yt − ygoal)2. (A.10)

An episode terminates when the agent is within a threshold distance dthresh from the
goal or when the horizon H = 10 is reached.
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A.2. Experiment Details

The distribution of tasks is implemented as a CMDP M(ω) in which, at each
episode, a different goal point is selected at random. The context ω is given by a
2D vector, such that:

ω = (xgoal, ygoal), where xgoal, ygoal ∼ U(−1, 1). (A.11)

Parameters used for experiments:

• initial policy distribution ρ = N (0, 0.1);
• discount factor γ = 0.99;
• policy standard deviation σ = 1.001;
• task distribution ψ = U([−0.5, 0.5]2);
• meta-discount factor γ̃ = 1;
• metaFQI dataset method: trajectories;
• metaFQI number of samples: K = 4000 with learning horizon T = 20;
• inner trajectories n = 200 with horizon H = 10;
• number of estimators = 50, minimum samples split = 0.01;
• step sizeH = [0, 8];
• step size sampling distribution: uniform inH;
• step size selected in evaluation from an evenly spaced discretization of 101 values

inH.

A.2.2 Minigolf Description

In the minigolf game, the agent has to shoot a ball with radius r inside a hole of diameter
D with the smallest number of strokes. The friction imposed by the green surface is
modeled by a constant deceleration d = 5

7
ρg, where ρ is the dynamic friction coefficient

between the ball and the ground and g is the gravitational acceleration. Given the
distance x of the ball from the hole, the agent must choose the force a, from which the
velocity of the ball v of the ball is determined as v = al2(1 + ϵ), where ϵ ∼ N (0, 0.25)
and l is the putter length. For each distance x, the ball falls in the hole if its velocity v
ranges from vmin =

√
2dx to vmax =

√
(2D − r)2 g

2r
+ v2min. In this case, the episode

ends with a null reward; if v > vmax the ball falls outside the green, and the episode
ends with a reward equal to -100. Otherwise, if v < vmin, the agents get a reward equal
to -1, and the episode goes on from a new position xnew = xold − v2

2d
. At the beginning

of each episode, the initial position is selected from a uniform distribution between 0m
and 20m from the hole. The stochasticity of the action implies that the stronger the
action chosen the more uncertain the outcome, as the effect of r.v. ϵ becomes more
effective. As a result, when it is away from the hole, the agent might not prefer to try
to make a hole in one shot, preferring to perform a sequence of closer shots. In this
case, the context is given by the friction coefficient ρ ∈ [0.065, 0.196] and by the putter
length l ∈ [0.7, 1]m.

During the experiment, the environment parameters are set to imitate the dynamics
of a realistic shot in a minigolf green, within the limits of our simplified simulation.
This is the complete configuration adopted:
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• horizon H = 20;

• discount factor γ = 0.99;

• angular velocity ω ∈ [1× 10−5, 10];

• initial distance x0 ∈ [0, 20] meters;

• ball radius r = 0.02135 meters;

• hole diameter D = 0.10 meters;

• gravitational acceleration g = 9.81 meters
second2 .

The distribution of tasks is built as a CMDP M(ω), induced by the pair ω = (l, ρ).
At each meta-episode, a new task is sampled from a multivariate uniform distribution
within this ranges:

• putter length l ∼ U(0.7, 1) meters;

• friction coefficient ρ ∼ U(0.065, 0.196).

Parameters used for experiments:

• initial policy distribution θ = (w, b) ∼ U((−1, 2), (−2, 3.5));
• policy standard deviation σ = 0.1;

• meta-discount factor γ̃ = 1;

• metaFQI dataset method: generative;

• metaFQI number of samples: K = 10000;

• inner trajectories n = 400 with horizon H = 20;

• number of estimators = 50, minimum samples split = 0.01;

• step size space: H = [0, 1]

• step size sampling distribution: uniform inH;

• step size selected in evaluation from an evenly spaced discretization of 101 values
inH.

A.2.3 CartPole Description

The CartPole environment (Barto et al., 1990), also known as the Inverted Pendulum
problem, consists of a pole attached to a cart by a non-actuated joint, making it an
inherently unstable system. The cart can move horizontally along a frictionless track to
balance the pole. The objective is to maintain the equilibrium as long as possible.

In this implementation, an episode starts with the pendulum in a vertical position.
At each step, the agent observes the following 4-tuple of continuous values:

• cart position xcart ∈ [−4.8, 4.8];
• cart velocity vcart ∈ R;

• pole angle ϕpole ∈ [−0.418, 0.418] rad;

• pole angular velocity ωpole ∈ R.
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A.2. Experiment Details

Given the state, the agent chooses an action between 0 and 1 to push the cart to the left
or to the right. For each step in which the pole is in balance, the environment produces a
reward of +1. An episode ends when the pole angle from the vertical position is higher
than 12 degrees, the cart moves more than 2.4 units from the center, or the horizon
H = 100 is reached.

In our experiments, we set the environment parameters to these values:

• mass of the cart mcart = 1 kg;
• length of the pole lpole = 0.5 m;
• force applied by the cart F = 10 N.

The CMDPM(ω) is induced by varying two environment parameters, the pole mass
mpole and the pole length lpole, that form the context parameterization ω = (mpole, lpole).
Each task in the meta-MDP is built by sampling ω from a multivariate uniform distri-
bution, within these ranges:

• pole length lpole ∼ U(0.5, 1.5)m;
• pole mass mpole ∼ U(0.1, 2) kg.

Parameters used for experiments:

• initial policy distribution θd ∼ N (0, 0.01) for each component θd;
• policy standard deviation σ = 1.001;
• meta-discount factor γ̃ = 1;
• metaFQI dataset method: trajectories;
• metaFQI number of samples: K = 3200 with learning horizon T = 15;
• inner trajectories n = 100 with horizon H = 100;
• number of estimators = 150, minimum samples split = 0.05;
• step sizeH = [0, 10];
• step size sampling distribution: uniform inH;
• step size selected in evaluation from an evenly spaced discretization of 101 values

inH.

A.2.4 Half Cheetah Description

The CMDP M(ω) is induced by varying the goal velocity of the half cheetah vgoal,
which defines the context ω, with uniform distribution U(0, 2).

Parameters used for experiments:

• initial policy distribution θd ∼ N (0, 0.1) for each component θd;
• policy standard deviation σ = 1.001;
• meta-discount factor γ̃ = 1;
• metaFQI dataset method: trajectories;
• metaFQI number of samples: K = 200 with learning horizon T = 80;
• inner trajectories n = 100 with horizon H = 100;
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• number of estimators = 150, minimum samples split = 0.05;
• step sizeH = [0, 1];
• step size sampling distribution: uniform inH;
• step size selected in evaluation from an evenly spaced discretization of 101 values

inH.

A.2.5 Metagrad Implementation

In Figure 4.3, we provided the comparison of the proposed approach with meta-gradient
(Xu et al., 2018). The algorithm performs an online update following the gradient of
the (differentiable) return function w.r.t. the hyperparameter set. In particular, after
updating the current parameter set θ to θ′ following the update rule f(θ, h, τ), the
hyperparameter gradient of the return function on a new batch of trajectories τ ′ is ap-
proximated as in equation A.12:

∂J(θ′, h, τ ′)

∂h
=
∂J(θ′, h, τ ′)

∂θ′
dθ′

dh
≈ ∂J(θ′, h, τ ′)

∂θ′ z′, (A.12)

where z ≈ dθ
dh

is update as an accumulative trace with parameter µ:

z′ = µz +
∂f(θ, h, τ)

∂h
.

In the original paper, the optimized hyperparameters (as well as in Yu et al. (2006) with
HOOF implementation) were the discount factor γ and the exponential weight coeffi-
cient λ related to the generalized advantage estimation. In our case, the hyperparameter
considered is the stepsize. Hence, from the NGA update function, the following hold:

θ′ = θ + h
∇̂θJω(θ)

∥widehat∇θJω(θ)∥2
z′ = µz +

widehat∇θJω(θ)

∥∇̂θJω(θ)∥2
.

After the update, the stepsize is updated through a meta-hyperparameter β and a
new batch of trajectories with policy πθ′:

h′ = h− β ∇̂θJω(θ
′)

∥∇̂θJω(θ′)∥2
z′

= h− β ∇̂θJω(θ
′)

∥∇̂θJω(θ′)∥2
(µz +

∇̂θJω(θ)

∥∇̂θJω(θ)∥2
)

In the case µ = 0, as adopted in Xu et al. (2018), the stepsize update function reduces
to computing the cosine similarity between consecutive gradients:

h′ = h− β sim
(
∇̂θJω(θ

′), widehat∇θJω(θ))
)
,

where sim(x, y) denotes the cosine similarity between vectors x and y.
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A.3. Other Results

A.3 Other Results

In this section of the appendix, we provide more experimental results.

A.3.1 Meta Cartpole SwingUp

For the experimental session, a variant of the Cartpole presented in Section 4.7 is the
Cartpole Swingup variant, introduced in Tornio and Raiko (2006) and implemented in
Duan et al. (2016). The main difference is the following: classic CartPole environment
provides a unitary reward per step until the end of the episode, which ends when the
pole angle from the vertical axis ϕpole is more than 12 degrees from vertical, or the
cart moves more than xthresh = 2.4 units from the center. CartPole Swingup, instead,
has a reward equal to cos(ϕpole), and equal to −100 if the cart threshold xthresh = 3 is
reached. Finally, the CMDP in this case is built by changing only the pole mass mpole

with a uniform distribution ∼ U(0.1, 2).
Parameters used for experiments:

• initial policy distribution θd ∼ N (0, 0.1) for each component θd;

• policy standard deviation σ = 1.001;

• meta-discount factor γ̃ = 1;

• metaFQI dataset method: trajectories;

• metaFQI number of samples: K = 300 with learning horizon T = 25;

• inner trajectories n = 100 with horizon H = 200;

• number of estimators = 150, minimum samples split = 0.05;

• step sizeH = [0, 0.5];

• step size sampling distribution: uniform inH;

• step size selected in evaluation from an evenly spaced discretization of 101 values
inH.

The results are depicted in Figure A.1: the model chosen is the one which maximizes
the reward, i.e. N = 1: however, all iterations have similar performances, which
resemble the choice of a fixed learning rate equal to 0.1. Indeed, the actions chosen are
almost always around this value, with the exception of the first two steps, where higher
step sizes are taken into account (with slightly better learning).

A.3.2 Comparison among MetaFQI Iterations.

As said, as the regression procedures are iterated in the application of the FQI algo-
rithm, there is a trade-off between a larger planning horizon and the accumulation of
new regression errors. In Figure A.2 we show some of the learning curves with differ-
ent metaFQI iterations. For all the environments considered, it is possible to see that
the direct regression on the meta reward (i.e. one metaFQI iteration) does not provide
the best performances, while from a certain point, the results start to get worse. As
far as the Meta Cartpole environment is concerned, we can clearly see that the models
select progressively more cautious steps in order to improve learning, as explained in
Section 4.7.
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Figure A.1: Meta Swingup metaFQI model performance on 20 random test contexts and initial policies
against fixed step sizes. The top left plot shows the 95% confidence intervals of the expected returns.
The bottom left plot shows the meta-action chosen through learning iterations. N represents the
metaFQI iteration selected. The right plot shows the performance among different iterations.
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Figure A.2: metaFQI model performance among different iterations. For the sake of clarity, only the
average values are shown.

A.3.3 Comparison with Learning Rate schedules: Details

In Figure 4.3, we compared our approach with three different baselines, where the
initial learning rate (denoted as α) was tuned by grid search on 20 random test contexts
and initial policies, and the best were selected for the comparison. Adam and RMSprop
updates have a poor performance when applied to the natural gradient g(θ), hence they
have been tuned by adopting the (standard) stochastic gradient ∇̂Nj(θ). While for the
decaying learning rate, the only hyperparameter is the initial rate, the other methods
depend also on other variables, which were kept fixed to the suggested values: for
RMSProp, the parameters were fixed as ρ = 0.9, ϵ = 1e − 7, while for Adam the
parameters were fixed as β1 = 0.9, β2 = 0.999, ϵ = 1e − 7. The notation for these
parameters follows the one used in the implementations of the optimizers within Python
Keras API (Gulli and Pal, 2017), used to perform the updates.

As far as the meta-gradient is concerned, the algorithm shows heavy dependence on
the initial stepsize h0 selected, while the impact of the meta-stepsize β is reduced. µ
is always set to 0. HOOF has been tested by selecting the KL-constraintsϵ in the set
[0.0001, 0.001, 0.01, 0.02, 0.05], and by sampling Z = 100 candidate hyperparameters
per iteration in the meta-action space.
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Figure A.3: metaFQI model performance against an exponentially decreasing (decaying) learning rate.
20 runs, avg± 95% c.i.

Table A.1: Best initial learning rate selected. Evaluation using 20 different random tasks and policies.

Nav2D Meta MiniGolf MetaCartpole Half-Cheetah

RMSProp 0.9 0.3 0.3 0.3
Adam 0.8 0.08 0.3 0.5

Metagrad: h0 3 0.3 1 0.5
Metagrad: β 0.001 5 0.1 0.01

decay 5 2 7.5 N/A

Another common step size schedule adopted to grant convergence is a decaying
step size ht+1 =

α
t

(similar as is an exponentially decreasing learning rate ht+1 = αht),
where h0 is the initial learning rate. The comparison of the model trained through
metaFQI and this baseline is shown in Figure A.3, while the best initial learning rates
chosen for each of the environments and of the baselines (and shown in Figure 4.3) can
be found in Table A.1.

A.3.4 Extension of Trajectory Length

Cartpole: In Figure 4.2 we have shown the performance of metaFQI models trained
on Cartpole trajectories with horizon T = 15 update steps. In order to have a fair com-
parison, we have tested the resulting metaFQI model (and NGA with fixed step sizes)
performing the same number of total updates as the training trajectories. However, as
the learning curves were far from convergence, one may ask what happens if the hori-
zon is increased: Figure A.4 depicts the performance of the same models (trained on
T = 15-steps long trajectories) with an increased horizon of 60 steps.

Half Cheetah: One of the main contributions of the work is to introduce an offline
algorithm to learn a schedule of stepsizes through metaFQI. The results on HalfCheetah
metaFQI model in Figure 4.2 show that it is possible to improve and speed up learning
in different contexts w.r.t. to a fixed stepsize (and other schedules) using a batch of
learning trajectories with horizon T = 80. While the figure shows the comparison on
test runs with the same horizon, convergence is again far from being reached. In Figure
A.5 we show the performance of the models on an increased horizon of 500 updates.
As we can see, the metaFQI model trained using trajectories with a total amount of
T = 80 steps (red line) is dominated by NGA using a fixed stepsize h = 0.2 and
h = 0.4 starting from 200 iterations: this is due to the fact that the meta-observations in
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Figure A.5: Top figure: metaFQI model performance in HalfCheetah against NGA with fixed size h.
Test on 500 updates. The red vertical line represents the training horizon of the trajectories used to
train one of the metaFQI agents (orange line). Bottom figure: meta actions chosen through learning
iterations. 20 runs, avg± 95% c.i.

this cases contain out-of-sample policy parametrizations, i.e. points in a policy space
that were far from the training space. To overcome this limitation, the solution simply
consists in collecting a batch of longer trajectories: when we consider a training horizon
of T = 500 steps, the selected metaFQI model is again able to show better learning
curves than using a fixed stepsize.

Explicit Knowledge of the Context: is it Informative?

In the experimental campaign, we assumed to be able to represent the parametrized
context ω, as this information can be used to achieve an implicit task-identification by
the agent. However, in some cases, the external variables influencing the process might
be not observable. Hence, the Meta-MDP can be modeled by creating a different task
representation. However, the gradient itself already implicitly includes information
regarding the transition and reward probabilities: what is lost when we do not consider
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Figure A.6: metaFQI model performance obtained by considering or excluding the explicit task
parametrization ω. (95% c.i.)

the explicit parametrization of the task? We address this question by retraining our
models, and showing the results in Figure A.6: in general, there is no big loss in the
performance, especially for the Minigolf environment; however, in Meta CartPole, the
task parametrization seem to be informative to the choice of the step size.

Robustness of MetaFQI Regression and Effects of Double Q learning.

In Figure 4.2, we analyzed the results of a metaFQI model, evaluating the performance
under different random policy initializations and tasks. One may wonder if our ap-
proach is robust with respect to the randomness included in the ExtraTrees regression.
Hence, we trained different metaFQI models by setting 5 different random states (from
0 to 4), which controls the sampling of the features to apply a split and the draw of
the splits. The random state is then equivalent to a seed for the Extra Trees, and it is
applied up to the third metaFQI iteration. At this point, the models are tested on 20
random task/policy pairs, and their average return gain is taken for each learning step.
As we can see in the left plot in Figure A.7, the 95% confidence interval, which is com-
puted by comparing the different random states, is small enough to claim the robustness
of our approach when applied to the Half-Cheetah environment.

Finally, the right plot in figure A.7 shows the effects of Clipped Double Q-Learning
described in Section 4.6, which is compared with the standard FQI approach with a
single Q value function (both are trained with the same number of iterations N = 3).
The latter is still capable of choosing a dynamic learning rate obtaining better results
than a fixed step while the former, as expected, provides even better return gains and
lower variance over the same set of random test tasks and initial policies.

A.3.5 Experiments with Fixed Contexts

The field of application of metaFQI was presented up to this point as a contextual
MDP, with a set of possible tasks. One natural question the reader might wonder is:
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Figure A.8: metaFQI model performance and tuned NGA on environments with fixed context.

can we apply this approach to a standard MDP? The answer is trivially positive: we
performed some experiments by fixing the task/context and the results are shown in
figure A.8. the metaFQI curve is related to the performance in test obtained by our
agent, and N denotes the iteration selected. Analogously, the NGA curve is related to
the best constant learning rate, optimized by means of a grid search. As in the related
meta-MDP environments, our approach can outperform the choice of a fixed step size.

A.3.6 Selection of a Single Learning Rate

One of the most important benefits of the adoption of an adaptive learning rate is pro-
vided by an increased number of degrees of freedom w.r.t. the choice of a single learn-
ing rate: hence, as an ablation study, we developed an agent capable of choosing only a
fixed learning rate in the meta-MDP setting. The learning process has been conducted
as follows: at first, we collected a set of trajectories by randomly varying the initial
policy and the context, and selecting a random stepsize. Then, we performed a regres-
sion (with the same Extra-Trees architecture used for the meta-FQI agent) giving as
input the context and the step size xi = (ωi, hi), and as output the final performance
obtained in the trajectory, said Ji. Finally, in the performance evaluation, the sampled
test context ωt is given as input to the agent, and the step size selected is then the one
that attains the maximum estimated performance ht = argmaxh Ĵωt(θ0, h). To have a
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A.3. Other Results
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Figure A.9: Comparison of performances obtained by a trained agent capable of choosing a fixed initial
learning rate.

fair comparison, the number of trajectories in the dataset is the same as for the Meta-
FQI case. However, this new agent is only interested in the final returns, and not in the
whole learning trajectory, hence the amount of data in input is reduced by a factor equal
to the learning horizonH . The results are shown in figure A.9, with the curve labeled as
Meta-single-action. As we can see the agents, even if capable of adapting the stepsize
with different contexts, it is still unable to improve the NGA baseline, which has the
same step size for each task. This is probably related to the fact that, to provide a fine
performance estimation, the model needs a larger amount of samples, while meta-FQI
uses all the single steps in the trajectory in the training dataset.
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APPENDIXB
Additional Results of Chapter 6

The contents of this Appendix can be summarized as follows:

– Appendix B.1 reports all proofs and derivations.

– Appendix B.2 provides additional considerations and discussion concerning the reg-
ularity conditions for bounding the performance loss due to action persistence.

– Appendix B.3 presents the experimental setting, together with additional experimen-
tal results (including an analysis of the effects of action persistence varying the batch
size).

– Appendix B.4 reports some preliminary experiments to motivate the open questions
stated in the main paper.

B.1 Proofs

In this section of the Appendix, we report the proofs of all the results presented in the
main paper. In the following, we will denote as B(X ) the set of bounded, measurable
functions on X .

B.1.1 Proofs of Section 6.5

Lemma B.1. LetM be an MDP and π ∈ Π be a Markovian stationary policy, then for
any k ∈ N+ the following two identities hold:

Qπ −Qπ
k =

(
Id− γk (pπ)k

)−1 (
(T π)kQπ

k −
(
T δ
)k−1

T πQπ
k

)

=
(
Id− γk (pδ)k−1 pπ

)−1 (
(T π)kQπ −

(
T δ
)k−1

T πQπ
)
,
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where Id : B(S ×A)→ B(S ×A) is the identity operator over S ×A.

Proof. We prove the equalities by exploiting the facts that Qπ and Qπ
k are the fixed

points of T π and T πk :

Qπ −Qπ
k = T πQπ − T πk Qπ

k

= (T π)kQπ −
(
T δ
)k−1

T πQπ
k (B.1)

= (T π)kQπ −
(
T δ
)k−1

T πQπ
k ± (T π)kQπ

k (B.2)

= γk (pπ)
k (Qπ −Qπ

k) +
(
(T π)kQπ

k −
(
T δ
)k−1

T πQπ
k

)
, (B.3)

where line (B.1) derives from recalling that Qπ = T πQπ and exploiting Theorem 6.8,
line (B.3) is obtained by exploiting the identity that holds for two generic bounded
measurable functions f, g ∈ B(S ×A):

(T π)k f − (T π)k g = γk (pπ)
k (f − g). (B.4)

We prove this identity by induction. For k = 1 the identity clearly holds. Suppose
equation (B.4) holds for k − 1, we prove that it holds for k too:

(T π)k f − (T π)k g = T π (T π)k−1 f − T π (T π)k−1 g

= r + γpπ (T
π)k−1 f − r − pπγ (T π)k−1 g

= γpπ

(
(T π)k−1 f − (T π)k−1 g

)
(B.5)

= γpπγ
k−1 (P π)k−1 (f − g) (B.6)

= γk (P π)k (f − g),

where line (B.5) derives from the linearity of operator pπ and line (B.6) follows from
the inductive hypothesis. From line (B.3) the result follows immediately, recalling that
since γ < 1 the inversion of the operator is well-defined:

Qπ −Qπ
k = γk (P π)k (Qπ −Qπ

k) +
(
(T π)kQπ

k −
(
T δ
)k−1

T πQπ
k

)
=⇒

(
Id− γk (P π)k

)
(Qπ −Qπ

k) =
(
(T π)kQπ

k −
(
T δ
)k−1

T πQπ
k

)
=⇒

Qπ −Qπ
k =

(
Id− γk (P π)k

)−1 (
(T π)kQπ

k −
(
T δ
)k−1

T πQπ
k

)
.

The second identity of the statement is obtained with an analogous derivation, in which
at line (B.2) we sum and subtract

(
T δ
)k−1

T πQπ and we exploit the identity for two
bounded measurable functions f, g ∈ B(S ×A):

(
T δ
)k−1

T πQf −
(
T δ
)k−1

T πQg = γk (pδ)
k−1 pπ(f − g). (B.7)

Lemma B.2. LetM be an MDP and π ∈ Π be a Markovian stationary policy, then for
any k ∈ N+ and any bounded measurable function f ∈ B(S × A) the following two
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B.1. Proofs

identities hold:

(T π)k−1 f −
(
T δ
)k−1

f =
k−2∑

i=0

γi+1 (pπ)
i (pπ − pδ)

(
T δ
)k−2−i

f

=
k−2∑

i=0

γi+1 (pδ)
i (pπ − pδ) (T π)k−2−i f.

Proof. We start with the first identity and we prove it by induction on k. For k = 1,
we have that the left-hand side is zero and the summation on the right-hand side has no
terms. Suppose that the statement holds for k − 1, we prove the statement for k:

(T π)k−1 f −
(
T δ
)k−1

f = (T π)k−1 f −
(
T δ
)k−1

f ± (T π)k−2 T δf (B.8)

=
(
(T π)k−2 T πf − (T π)k−2 T δf

)
+
(
(T π)k−2 T δf −

(
T δ
)k−2

T δf
)

= γk−2 (P π)k−2 (T πf − T δf
)
+
(
(T π)k−2 T δf −

(
T δ
)k−2

T δf
)

(B.9)

= γk−1 (P π)k−2 (pπ − pδ) f +
k−3∑

i=0

γi+1 (pπ)
i (pπ − pδ)

(
T δ
)k−3−i

T δf (B.10)

=
k−2∑

i=0

γi+1 (pπ)
i (pπ − pδ)

(
T δ
)k−2−i

f, (B.11)

where in line (B.9) we exploited the identity at equation (B.4), line (B.10) derives from
observing that T πf − T δf = γ (pπ − pδ) f and by inductive hypothesis applied on
T δf which is a bounded measurable function as well. Finally, line (B.11) follows from
observing that the first term completes the summation up to k− 2. The second identity
in the statement can be obtained by an analogous derivation in which at line (B.8) we
sum and subtract

(
T δ
)k−2

T πf and, later, exploit the identity at equation (B.7).

Lemma B.3 (Persistence Lemma). Let M be an MDP and π ∈ Π be a Markovian
stationary policy, then for any k ∈ N+ the following two identities hold:

Qπ −Qπ
k =

∑

i∈N
i mod k ̸=0

γi (pπ)
i−1 (pπ − pδ)

(
T δ
)k−2−(i−1) mod k

T πQπ
k

=
∑

i∈N
i mod k ̸=0

γi
(
(pδ)

k−1 pπ

)i div k
(pδ)

i mod k−1 (pπ − pδ) (T π)k−i mod kQπ,

where for two non-negative integers a, b ∈ N, we denote with a mod b and a div b the
remainder and the quotient of the integer division between a and b respectively.
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Proof. We start proving the first identity. Let us consider the first identity of Lemma B.1:

Qπ −Qπ
k =

(
Id− γk (pπ)k

)−1 (
(T π)kQπ

k −
(
T δ
)k−1

T πQπ
k

)

=

(
+∞∑

j=0

γkj (pπ)
kj

)(
(T π)kQπ

k −
(
T δ
)k−1

T πQπ
k

)
(B.12)

=

(
+∞∑

j=0

γkj (pπ)
kj

)
k−2∑

l=0

γl+1 (pπ)
l (pπ − pδ)

(
T δ
)k−2−l

T πQπ
k (B.13)

=
+∞∑

j=0

γkj (pπ)
kj

k−2∑

l=0

γl+1 (pπ)
l (pπ − pδ)

(
T δ
)k−2−l

T πQπ
k

=
+∞∑

j=0

k−2∑

l=0

γkj+l+1 (pπ)
kj+l (pπ − pδ)

(
T δ
)k−2−l

T πQπ
k ,

where line (B.12) follows from applying the Neumann series at the first factor, line (B.13)
is obtained by applying the first identity of Lemma B.2 to the bounded measurable
function T πQπ

k . The subsequent lines are obtained by straightforward algebraic manip-
ulations. Now we rename the indexes by setting i = kj+l+1. Since l ∈ {0, . . . , k−2}
we have that j = (i − 1) div k and l = (i − 1) mod k. Moreover, we observe that i
ranges over all non-negative integers values except for the multiples of the persistence
k, i.e., i ∈ {n ∈ N : n mod k ̸= 0}. Now, recalling that i mod k ̸= 0, we observe
that for the distributive property of the modulo operator, we have (i − 1) mod k =
(i mod k − 1 mod k) mod k = (i mod k − 1) mod k = i mod k − 1. The second
identity is obtained by an analogous derivation in which we exploit the second identi-
ties at Lemmas B.1 and B.2.

Proof of Persistence Bound (Theorem 6.1)

Theorem 6.1. LetM be an MDP and π ∈ Π be a Markovian stationary policy. Let
Qk = {

(
T δ
)k−2−l

T πQπ
k : l ∈ {0, . . . , k−2}} and for all (s, a) ∈ S ×A let us define:

dπQk
(s, a) = sup

f∈Qk

∣∣∣∣
∫

S

∫

A
(pπ( ds

′, da′|s, a)− pδ( ds′, da′|s, a)) f(s′, a′)
∣∣∣∣

Then, for any µ ∈ ∆S×A, p ≥ 1, and k ∈ N+, it holds that:

∥Qπ −Qπ
k∥p,µ ≤

γ(1− γk−1)

(1− γ)(1− γk)
∥∥dπQk

∥∥
p,ηµ,πk

,

where ηµ,πk ∈ ∆S×A is a probability measure defined for all (s, a) ∈ S ×A as:

ηµ,πk (s, a) =
(1− γ)(1− γk)
γ(1− γk−1)

∑

i∈N
i mod k ̸=0

γi
(
µ (pπ)

i−1
)
(s, a).
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Proof. We start from the first equality derived in Lemma B.3, and we apply the Lp(µ)-
norm both sides, with p ≥ 1:

∥Qπ −Qπ
k∥pp,µ =

∥∥∥∥∥∥∥

∑

i∈N
i mod k ̸=0

γi (pπ)
i−1 (pπ − pδ)

(
T δ
)k−2−(i−1) mod k

T πQπ
k

∥∥∥∥∥∥∥

p

p,µ

= µ

∣∣∣∣∣∣∣

∑

i∈N
i mod k ̸=0

γi (pπ)
i−1 (pπ − pδ)

(
T δ
)k−2−(i−1) mod k

T πQπ
k

∣∣∣∣∣∣∣

p

≤ µ

∣∣∣∣∣∣∣

∑

i∈N
i mod k ̸=0

γi (pπ)
i−1 sup

f∈Qk

|(pπ − pδ) f |

∣∣∣∣∣∣∣

p

(B.14)

=

(
γ(1− γk−1)

(1− γ)(1− γk)

)p
µ

∣∣∣∣∣∣∣
(1− γ)(1− γk)
γ(1− γk−1)

∑

i∈N
i mod k ̸=0

γi (pπ)
i−1 dπQk

∣∣∣∣∣∣∣

p

(B.15)

≤
(

γ(1− γk−1)

(1− γ)(1− γk)

)p
(1− γ)(1− γk)
γ(1− γk−1)

µ
∑

i∈N
i mod k ̸=0

γi (pπ)
i−1
∣∣dπQk

∣∣p (B.16)

=

(
γ(1− γk−1)

(1− γ)(1− γk)

)p
ηµ,πk

∣∣dπQk

∣∣p (B.17)

=

(
γ(1− γk−1)

(1− γ)(1− γk)

)p ∥∥dπQk

∥∥p
p,ηµ,π . (B.18)

where line (B.14) is obtained by bounding (pπ − pδ)
(
T δ
)x ≤ supf∈Qk

|(pπ − pδ) f |,
recalling the definition of Qk and that x = (i − 1) mod k ≤ k − 2 for all i ∈ N and
i mod k ̸= 0. Then, line (B.15) follows from deriving the normalization constant in
order to make the summation

∑
i∈N

i mod k ̸=0
γi (pπ)

i−1 a proper probability distribution.

Such a constant can be obtained as follows:
∑

i∈N
i mod k ̸=0

γi =
∑

i∈N
γi −

∑

i∈N
γki =

γ(1− γk−1)

(1− γ)(1− γk) .

Line (B.16) is obtained by applying Jensen inequality recalling that p ≥ 1. Finally,
line (B.17) derives from the definition of the distribution ηµ,πk and line (B.18) from the
definition of Lp(η

µ,π
k )-norm.

Lemma B.4. Let M be an MDP and π ∈ Π be a Markovian stationary policy. Let
f ∈ B(S × A) that is Lf–LC. Then, under Assumptions 3.1 and 3.2, the following
statements hold:

i) T πf is (Lr + γLP (Lπ + 1)Lf )–LC;

ii) T δf is (Lr + γ(LP + 1)Lf )–LC;
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iii) T ⋆f is (Lr + γLPLf )–LC.

Proof. Let f ∈ B(S×A) be Lf -LC. Consider an application of T π and (s, a), (s, a) ∈
S ×A:

|(T πf)(s, a)− (T πf)(s, a)| = |r(s, a) + γ

∫

S

∫

A
P ( ds′|s, a)π( da′|s′)f(s′, a′)

− r(s, a)− γ
∫

S

∫

A
P ( ds′|s, a)π( da′|s′)f(s′, a′)|

≤ |r(s, a)− r(s, a)|

+ γ

∣∣∣∣
∫

S
(P ( ds′|s, a)− P ( ds′|s, a))

∫

A
π( da′|s′)f(s′, a′)

∣∣∣∣ (B.19)

≤ |r(s, a)− r(s, a)|

+ γ(Lπ + 1)Lf sup
f :∥f∥L≤1

∣∣∣∣
∫

S
(P ( ds′|s, a)− P ( ds′|s, a)) f(s′)

∣∣∣∣ (B.20)

≤ (Lr + γLP (Lπ + 1)Lf ) dS×A ((s, a), (s, a)) , (B.21)

where line (B.19) follows from triangular inequality, line (B.20) is obtained from ob-
serving that the function gf (s′) =

∫
A π( da

′|s′)f(s′, a′) is (Lπ + 1)Lf–LC, since for
any s, s ∈ S:

|gf (s)− gf (s)| =
∣∣∣∣
∫

A
π( da|s)f(s, a)−

∫

A
π( da|s)f(s, a)

∣∣∣∣

=

∣∣∣∣
∫

A
π( da|s)f(s, a)−

∫

A
π( da|s)f(s, a)±

∫

A
π( da|s)f(s, a)

∣∣∣∣

≤
∣∣∣∣
∫

A
(π( da|s)− π( da|s)) f(s, a)

∣∣∣∣+
∣∣∣∣
∫

A
π( da|s) (f(s, a)− f(s, a))

∣∣∣∣

≤Lf sup
f :∥f∥L≤1

∣∣∣∣
∫

A
(π( da|s)− π( da|s)) f(a)

∣∣∣∣

+

∣∣∣∣
∫

A
π( da|s) (f(s, a)− f(s, a))

∣∣∣∣
≤LfLπdS(s, s) + LfdS(s, s),

where we exploited the fact that Lπ–LC. Finally, line (B.21) is obtained by recalling
that the reward function is Lr–LC and the transition model is LP–LC. The derivations

164



i
i

“output” — 2023/6/14 — 7:29 — page 165 — #187 i
i

i
i

i
i

B.1. Proofs

are analogous for T δ and T ⋆. Concerning T δ we have:

|(T δf)(s, a)−(T δf)(s, a)| ≤ |r(s, a)− r(s, a)|

+ γ

∣∣∣∣
∫

S

∫

A
(δa( da

′)P ( ds′|s, a)− δa( da′)P ( ds′|s, a)) f(s′, a′)
∣∣∣∣

≤LrdS×A ((s, a), (s, a))

+ γ

∣∣∣∣
∫

S
(P ( ds′|s, a)− P ( ds′|s, a))

∫

A
δa( da

′)f(s′, a′)

∣∣∣∣

+ γ

∫

S
P ( ds′|s, a)

∣∣∣∣
∫

A
(δa( da

′)− δa( da′)) f(s′, a′)
∣∣∣∣

≤ (Lr + γLfLP + γLf ) dS×A ((s, a), (s, a)) ,

where we observed that
∫
A δa( da

′)f(s′, a′) = f(s′, a) is Lf–LC and that∫
A |δa( da′)− δa( da′)| f(s′, a′) ≤ LfdA(a, a) ≤ LfdS×A((s, a), (a, a)).

Finally, considering T ⋆, we have:

|(T ⋆f)(s, a)−(T ⋆f)(s, a)| ≤ |r(s, a)− r(s, a)|

+ γ

∣∣∣∣
∫

S
(P ( ds′|s, a)− P ( ds′|s, a)) max

a′∈As
f(s′, a′)

∣∣∣∣
≤ (Lr + γLfLP ) dS×A ((s, a), (s, a)) ,

where we observed that the function hf (s′) = maxa′∈As f(s′, a′) is Lf–LC, since:

|hf (s)− hf (s)| =
∣∣∣∣max
a′∈As

f(s, a′)− max
a′∈As

f(s, a′)

∣∣∣∣
≤ max

a′∈A
|f(s, a′)− f(s, a′)|

≤ LfdS(s, s).

Lemma B.5. LetM be an MDP and π ∈ Π be a Markovian stationary policy. Then,
under Assumptions 3.1 and 3.2, if γmax{LP + 1, LP (Lπ + 1)} < 1, the functions
f ∈ Qk are LQk

–LC, where:

LQk
≤ Lr

1− γmax{LP + 1, LP (Lπ + 1)} . (B.22)

Furthermore, for all (s, a) ∈ S ×A it holds that:

dQk
(s, a) ≤ LQk

W1 (pπ(·|s, a), pδ(·|s, a)) . (B.23)

Proof. First of all consider the action-value function of the k–persistent MDP Qπ
k ,

which is the fixed point of the operator T πk that decomposes into (T δ)k−1T π accord-
ing to Theorem 6.8. It follows that for any f ∈ B(S ×A) we have:

Qπ
k = lim

j→+∞
(T πk )

j f = lim
j→+∞

(
(T δ)k−1T π

)j
f.
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We now want to bound the Lipschitz constant of Qπ
k . To this purpose, let us first com-

pute the Lipschitz constant of T πk f = ((T δ)k−1T π)f for f ∈ B(S×A) being anLf–LC
function. From Lemma B.4 we can bound the Lipschitz constant ah of (T δ)hT πf for
h ∈ {0, ...k − 1}, leading to the sequence:

ah =

{
Lr + γLP (Lπ + 1)Lf if h = 0

Lr + γ(LP + 1)ah−1 if h ∈ {1, ...k − 1}
.

Thus, the Lipschitz constant of ((T δ)k−1T π)f is ak−1. By unrolling the recursion we
have:

ak−1 = Lr

k−1∑

i=0

γi(LP + 1)i + γkLP (Lπ + 1)(LP + 1)k−1Lf

= Lr
1− γk(LP + 1)k

1− γ(LP + 1)
+ γkLP (Lπ + 1)(LP + 1)k−1Lf .

Let us now consider the sequence bj of the Lipschitz constants of (T πk )
jf for j ∈ N:

bj =

{
Lf if j = 0

Lr
1−γk(LP+1)k

1−γ(LP+1)
+ γkLP (Lπ + 1)(LP + 1)k−1bj−1 if j ∈ N+

.

The sequence bj converges to a finite limit as long as γkLP (Lπ + 1)(LP + 1)k−1 < 1.
In such case, the limit b∞ can be computed solving the fixed point equation:

b∞ =Lr
1− γk(LP + 1)k

1− γ(LP + 1)
+ γkLP (Lπ + 1)(LP + 1)k−1b∞

=⇒ b∞ =
Lr
(
1− γk(LP + 1)k

)

(1− γ(LP + 1)) (1− γkLP (Lπ + 1)(LP + 1)k−1)
.

Thus, b∞ represents the Lipschitz constant of Qπ
k . It is worth noting that when setting

k = 1 we recover the Lipschitz constant of the Qπ as in (Rachelson and Lagoudakis,
2010). To get a bound that is independent on k we define L = max{LP (Lπ +1), LP +
1}, assuming that γL < 1 so that:

b∞ =
Lr
(
1− γk(LP + 1)k

)

(1− γ(LP + 1)) (1− γkLP (Lπ + 1)(LP + 1)k−1)
≤ Lr

1− γL,

having observed that 1−γk(LP+1)k

1−γ(LP+1)
≤ 1−γkLk

1−γL . Thus, we conclude that Qπ
k is also Lr

1−γL–
LC for any k ∈ N+. Consider now the application of the operator T π to Qπ

k , we have
that the corresponding Lipschitz constant can be bounded by:

LTπQπ
k
≤ Lr + γLP (Lπ + 1)

Lr
1− γL ≤ Lr + γL

Lr
1− γL =

Lr
1− γL. (B.24)

A similar derivation holds for the application of T δ. As a consequence, any arbi-
trary sequence of applications of T π and T δ to Qπ

k generates a sequence of Lr

1−γL–LC

functions. Even more so for the functions in the set Qk = {
(
T δ
)k−2−l

T πQπ
k : l ∈

166



i
i

“output” — 2023/6/14 — 7:29 — page 167 — #189 i
i

i
i

i
i

B.1. Proofs

{0, . . . , k− 2}}. As a consequence, we can rephrase the dissimilarity term dπQk
(s, a) as

a Kantorovich distance:

dπQk
(s, a) = sup

f∈Qk

∣∣∣∣
∫

S

∫

A
(pπ( ds

′, da′|s, a)− pδ( ds′, da′|s, a)) f(s′, a′)
∣∣∣∣

≤ LQk
sup

f :∥f∥L≤1

∣∣∣∣
∫

S

∫

A
(pπ( ds

′, da′|s, a)− pδ( ds′, da′|s, a)) f(s′, a′)
∣∣∣∣

= LQk
W1 (pπ(·|s, a), pδ(·|s, a)) .

Theorem 6.2. LetM be an MDP and π ∈ Π be a Markovian stationary policy. Under
Assumptions 3.1, 3.2, and 6.1, if γmax {LP + 1, LP (1 + Lπ)} < 1 and if µ(s, a) =
µS(s)π(a|s) with µS ∈ ∆S , then for any k ∈ N+:

∥∥dπQk

∥∥
p,ηµ,πk

≤ LQk
[(Lπ + 1)LT + σp] .

where:

σpp = sup
s∈S

∫

A

∫

A
dA (a, a′)

p
π( da|s)π( da′|s),

LQk
=

Lr
1− γmax {LP + 1, LP (1 + Lπ)}

.

Proof. Let us now consider the dissimilarity term in norm:
∥∥dπQk

∥∥p
p,ηµ,πk

= E
(s,a)∼ηµ,πk

[ ∣∣∣∣ sup
f∈Qk

∣∣∣∣
∫

S

∫

A
(pπ( ds

′, da′|s, a)− pδ( ds′, da′|s, a)) f(s′, a′)
∣∣∣∣
∣∣∣∣
p ]

≤LpQk
E

(s,a)∼ηµ,πk

[ ∣∣∣∣∣ sup
f :∥f∥L≤1

∣∣∣∣
∫

S

∫

A
(pπ( ds

′, da′|s, a)− pδ( ds′, da′|s, a)) f(s′, a′)
∣∣∣∣

∣∣∣∣∣

p ]

where the inequality follows from Lemma B.5. We now consider the inner term and
perform the following algebraic manipulations:

sup
f :∥f∥L≤1

∣∣∣∣
∫

S

∫

A
(P π( ds′, da′|s, a)− pδ( ds′, da′|s, a)) f(s′, a′)

∣∣∣∣

= sup
f :∥f∥L≤1

∣∣∣∣
∫

S

∫

A
P ( ds′|s, a)π( da′|s′)f(s′, a′)−

∫

S

∫

A
P ( ds′|s, a)δa( da′)f(s′, a′)

±
∫

S

∫

A
δs( ds

′)π( da′|s′)±
∫

S

∫

A
δs( ds

′)δa( da
′)f(s′, a′)

∣∣∣∣

≤ sup
f :∥f∥L≤1

∣∣∣∣
∫

S
(P ( ds′|s, a)− δs( ds′))

∫

A
π( da′|s′)f(s′, a′)

∣∣∣∣

+ sup
f :∥f∥L≤1

∣∣∣∣
∫

S
(P ( ds′|s, a)− δs( ds′))

∫

A
δa( da

′)f(s′, a′)

∣∣∣∣

+ sup
f :∥f∥L≤1

∣∣∣∣
∫

S
δs( ds

′)

∫

A
(π( da′|s′)− δa( da′)) f(s′, a′)

∣∣∣∣ .

167



i
i

“output” — 2023/6/14 — 7:29 — page 168 — #190 i
i

i
i

i
i

We now consider the first two terms:

sup
f :∥f∥L≤1

∣∣∣∣
∫

S
(P ( ds′|s, a)− δs( ds′))

∫

A
π( da′|s′)f(s′, a′)

∣∣∣∣

+ sup
f :∥f∥L≤1

∣∣∣∣
∫

S
(P ( ds′|s, a)− δs( ds′))

∫

A
δa( da

′)f(s′, a′)

∣∣∣∣

≤ (Lπ + 1)W1 (P (·|s, a), δs) (B.25)
≤ (Lπ + 1)LT ,

where line (B.25) follows from observing that the function gf (s′) =
∫
A π( da

′|s′)f(s′, a′)
is Lπ-LC, and function hf (s′) =

∫
A δa( da

′)f(s′, a′) = f(s′, a) is 1-LC. Moreover, un-
der Assumption 6.1, we have that W1 (P (·|s, a), δs) ≤ LT . Let us now focus on the
third term:

sup
f :∥f∥L≤1

∣∣∣∣
∫

S
δs( ds

′)

∫

A
(π( da′|s′)− δa( da′)) f(s′, a′)

∣∣∣∣

= sup
f :∥f∥L≤1

∣∣∣∣
∫

A
(π( da′|s)− δa( da′)) f(s, a′)

∣∣∣∣

= sup
f :∥f∥L≤1

∣∣∣∣
∫

A
(π( da′|s)− δa( da′)) f(a′)

∣∣∣∣ (B.26)

= sup
f :∥f∥L≤1

∣∣∣∣
∫

A

(∫

A
π( da′′|s)δa′( da′′)− δa( da′)

)
f(a′)

∣∣∣∣ (B.27)

= sup
f :∥f∥L≤1

∣∣∣∣
∫

A
π( da′′|s)

∫

A
(δa′′( da

′)− δa( da′)) f(a′)
∣∣∣∣ (B.28)

≤
∫

A
π( da′′|s) sup

f :∥f∥L≤1

∣∣∣∣
∫

A
(δa′′( da

′)− δa( da′)) f(a′)
∣∣∣∣ (B.29)

=

∫

A
π( da′′|s)dA(a, a′′), (B.30)

where line (B.26) follows from observing that the dependence on s for function f
can be neglected because of the supremum, line (B.27) is obtained from the equal-
ity π( da′|s) =

∫
A π( da

′′|s)δa′( da′′), line (B.28) derives from moving the integral over
a′′ outside and recalling that δa′′( da′) = δa′( da

′′), line (B.29) comes from Jensen
inequality. Finally, line (B.30) is obtained from the definition of Kantorovich dis-
tance between Dirac deltas. Now, we take the expectation w.r.t. ηµ,πk . Recalling that
µ(s, a) = µS(s)π(a|s) it follows that the same decomposition holds for ηµ,πk (s, a) =
ηµ,πk,S (s)π(a|s). Consequently, exploiting the above equation, we have:

∫

S
ηµ,πk,S ( ds)

∫

A
π( da|s)

∣∣∣∣
∫

A
π( da′′|s)dA(a, a′′)

∣∣∣∣
p

≤
∫

S
(ηµ,πk )S( ds)

∫

A
π( da|s)

∫

A
π( da′′|s)dA(a, a′′)p

≤ sup
s∈S

∫

A

∫

A
π( da|s)π( da′′|s)dA(a, a′′)p = σpp,
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where the first inequality follows from an application of Jensen inequality. An applica-
tion of Minkowski inequality on the norm

∥∥dπQk

∥∥
p,ηµ,π

k

concludes the proof.

Lemma B.6. IfA = RdA , dA(a, a′) = ∥a− a′∥2, then it holds that σ2
2 ≤ 2 sups∈S Var[A],

with A ∼ π(·|s).

Proof. Let s ∈ S and define the mean–action in state s as:

a(s) =

∫

A
aπ( da|s).

Thus, we have:

σ2
2 = sup

s∈S

∫

A

∫

A
∥a− a′∥22 π( da|s)π( da′|s)

= sup
s∈S

∫

A

∫

A
∥a− a′ ± a(s)∥22 π( da|s)π( da′|s)

≤ sup
s∈S

∫

A

∫

A
∥a− a(s)∥22 π( da|s)π( da′|s)

+ sup
s∈S

∫

A

∫

A
∥a′ − a(s)∥22 π( da|s)π( da′|s)

= sup
s∈S

∫

A
∥a− a(s)∥22 π( da|s) + sup

s∈S

∫

A
∥a′ − a(s)∥22 π( da′|s)

= 2 sup
s∈S

∫

A
∥a− a(s)∥22 π( da|s) = 2 sup

s∈S
Var[A].

Remark B.7 (On the choice of dA when |A| < +∞). When the action space A is
finite but is a subset of a metric space, e.g., RdA we can employ the same metric as dA.
Otherwise, we use the discrete metric dA(a, a′) = 1{a ̸= a′} .

B.1.2 Proofs of Section 6.6

Proposition B.1. Assuming that the evaluation of the estimated Q-function in a state
action pair has computational complexity O(1), the computational complexity of J
iterations of PFQI(k) run with a dataset D of n samples, neglecting the cost of the
regression, is given by:

O
(
Jn

(
1 +
|A| − 1

k

))
.

Proof. Let us consider an iteration j = 0, . . . , J − 1. If j mod k = 0, we perform an
application of T̂ ∗ which requires performing n|A| evaluations of the next-state value
function in order to compute the maximum over the actions. On the contrary, when
j mod k ̸= 0, we perform an application of T̂ δ which requires just n evaluations, since
the next-state value function is evaluated in the persistent action only. By the definition
of PFQI(k), J must be an integer multiple of the persistence k. Recalling that a single
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evaluation of the approximate Q-function is O(1), we have that the overall complexity
is:

O


 ∑

j∈{0,...,J−1}∧ j mod k=0

n|A|+
∑

j∈{0,...,J−1}∧ j mod k ̸=0

n




= O
(
J

k
n|A|+ J(k − 1)

k
n

)

= O
(
Jn

(
1 +
|A| − 1

k

))
.

Theorem 6.3 (Error Propagation). Let p ≥ 1, k, J ∈ N+ with J mod k = 0 and
µ ∈ ∆S×A. Then for any sequence {Q(j)}Jj=0 ⊂ F uniformly bounded byQmax ≤ Rmax

1−γ ,
the corresponding {ϵ(j)}J−1

j=0 defined in Equation (6.24) and for any r ∈ [0, 1] and
q ∈ [1,+∞] it holds that:

∥∥∥Q⋆
k −Qπ(J)

k

∥∥∥
p,µ
≤ 2γk

(1− γ)(1− γk)

[
2

1− γ γ
J
pRmax

+ C
1
2p

VI,µ,ν(J, r, q)E
1
2p (ϵ(0), . . . , ϵ(J−1); r, q)

]
.

The expression of CVI,µ,ν(J ; r, q) and E(·; r, q) can be found in Appendix B.1.2, where
the proof of the theorem is also provided.

Before proving the main result, we need to introduce a variation of the concentrabil-
ity coefficients (Antos et al., 2008; Farahmand, 2011) to account for action persistence.

Definition B.8 (Persistent Expected Concentrability). Let µ, ν ∈ ∆S×A, L ∈ N+, and
an arbitrary sequence of stationary policies (π(l))Ll=1. Let k ∈ N+ be the persistence.
For any m1,m2,m3 ∈ N+ and q ∈ [1,+∞], we define:

cVI1,k,q,ρ,ν(m1,m2,m3; π) = E

[∣∣∣∣
d
(
µ(pπk)

m1(p
π⋆
k
k )m2(pδ)

m3
)

dν
(s, a)

∣∣∣∣
q

q−1

] q−1
q

,

cVI2,k,q,ρ,ν(m1,m2; (π
(l))Ll=1) = E

[∣∣∣∣
d
(
µ(pπ

(L)

k )m1pπ
(L−1)

k . . . pπ
(1)

k (pδ)
m2
)

dν
(s, a)

∣∣∣∣
q

q−1

] q−1
q

,

with (s, a) ∼ ν. If µ(pπk)
m1(p

π⋆
k
k )m2(pδ)

m3 (resp. µ(pπ
(L)

k )m1pπ
(L−1)

k . . . pπ
(1)

k (pδ)
m2) is

not absolutely continuous w.r.t. to ν, then we take cVI1,µ,ν(m1,m2,m3; π, k) = +∞
(resp. cVI2,µ,ν(m1,m2; (π

(l))Ll=1, k) = +∞).

This definition is a generalization of that provided in Farahmand (2011), that can be
recovered by setting k = 1, q = 2, m3 = 0 for the first coefficient and m2 = 0 for the
second coefficient..
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Proof. The proof follows most of the steps of Theorem 3.4 of Farahmand (2011). We
start by deriving a bound relating Q⋆ − Q(J) to (ϵ(j))J−1

j=0 . To this purpose, let us first
define the cumulative error over k iterations for every j mod k = 0:

ϵ
(j)
k = T ⋆kQ

(j) −Q(j+k). (B.31)

Let us denote with π⋆k one of the optimal policies of the k-persistent MDP Mk. We
have:

Q⋆
k −Q(j+k) = T

π⋆
k

k Q⋆
k ± T

π⋆
k

k Q(j) − T ⋆kQ(j) + ϵ
(j)
k ≤ γkp

π⋆
k
k (Q⋆

k −Q(j)) + ϵ
(j)
k ,

Q⋆
k −Q(j+k) = T ⋆kQ

⋆
k ± T π

(j)

k Q⋆ − T ⋆kQ(j) + ϵ
(j)
k ≥ γkpπ

(j)

k (Q⋆
k −Q(j)) + ϵ

(j)
k ,

where we exploited the fact that T ⋆kQ
(j) ≥ T

π⋆
k

k Q(j), the definition of greedy policy
π(j) that implies that T π(j)

k Q(j) = T ⋆kQ
(j) and the definition of ϵ(j)k . By unrolling the

expression derived above, we have that for every J mod k = 0:

Q⋆
k −Q(J) ≤

J
k
−1∑

h=0

γJ−k(h+1)
(
p
π⋆
k
k

)J
k
−h−1

ϵ
(j)
k + γJ

(
p
π⋆
k
k

)J
k
(Q⋆

k −Q(0))

Q⋆
k −Q(J) ≥

J
k
−1∑

h=0

γJ−k(h+1)
(
pπ

(J−k)

k pπ
(J−2k)

k . . . pπ
(k(h+1))

k

)
ϵ
(j)
k

+ γJ
(
pπ

(J)

k pπ
(J−k)

k . . . pπ
(k)

k

)
(Q⋆

k −Q(0)).

(B.32)

We now provide the following bound relating the differenceQ⋆
k−Qπ(J)

k to the difference
Q⋆
k −Q(J):

Q⋆
k −Qπ(J)

k = T
π⋆
k

k Q⋆
k ± T

π⋆
k

k Q(J) ± T ⋆kQ(J) − T π(J)

k Qπ(J)

k

≤ T
π⋆
k

k Q⋆
k − T

π⋆
k

k Q(J) + T ⋆kQ
(J) − T π(J)

k Qπ(J)

k

= γkp
π⋆
k
k (Q⋆ −Q(J)) + γkpπ

(J)

k (Q(J) −Qπ(J)

k )

= γkp
π⋆
k
k (Q⋆ −Q(J)) + γkpπ

(J)

k (Q(J) −Q⋆
k +Q⋆

k −Qπ(J)

k ),

where we exploited T ⋆kQ
(J) ≥ T

π⋆
k

k Q(J) and observed that T ⋆kQ
(J) = T π

(J)

k Q(J). By
using Lemma 4.2 of Munos (2007) we can derive:

Q⋆
k −Qπ(J)

k ≤ γk
(
Id− γkpπ(J)

k

)−1 (
p
π⋆
k
k − pπ

(J)

k

)
(Q⋆ −Q(J)). (B.33)

By plugging equation (B.32) into equation (B.33):

Q⋆
k −Qπ(J)

k ≤ γk
(
Id− γkpπ(J)

k

)−1

×
[ J

k
−1∑

h=0

γJ−k(h+1)

((
p
π⋆
k
k

)J
k
−h
−
(
pπ

(J)

k pπ
(J−k)

k pπ
(J−2k)

k . . . pπ
(k(h+1))

k

))
ϵ
(j)
k

+ γJ
((

p
π⋆
k
k

)J
k
+1

−
(
pπ

(J)

k pπ
(J)

k pπ
(J−k)

k . . . pπ
(k)

k

))
(Q⋆

k −Q(0))

]
.

(B.34)
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Now, we need to relate the cumulative errors ϵ(j)k to the single-step errors ϵ(j):

ϵ
(j)
k = T ⋆kQ

(j) −Q(j+k)

= (T δ)k−1T ∗Q(j) − (T δ)k−1Q(j+1) + (T δ)k−1Q(j+1) −Q(j+k)

= γk−1(pδ)
k−1
(
T ∗Q(j) −Q(j+1)

)
+ (T δ)k−1Q(j+1) −Q(j+k)

= γk−1(pδ)
k−1ϵ(j) + (T δ)k−1Q(j+1) −Q(j+k).

Let us now consider the remaining term (T δ)k−1Q(j+1) −Q(j+k):

(T δ)k−1Q(j+1) −Q(j+k) = (T δ)k−1Q(j+1) ± (T δ)k−2Q(j+2) −Q(j+k)

= γk−2(pδ)
k−2
(
T δQ(j+1) −Q(j+2)

)
+ (T δ)k−2Q(j+2) −Q(j+k)

= γk−2(pδ)
k−2ϵ(j+1) + (T δ)k−2Q(j+2) −Q(j+k)

=
k∑

l=2

γk−l(pδ)
k−lϵ(j+l−1),

where the last step is obtained by unrolling the recursion. Putting everything together,
we get:

ϵ
(j)
k =

k∑

l=1

γk−l(pδ)
k−lϵ(j+l−1). (B.35)

Consequently, we can rewrite part of the RHS in equation (B.34) as follows:

J
k
−1∑

h=0

γJ−k(h+1)

((
p
π⋆
k
k

)J
k
−h
−
(
pπ

(J)

k pπ
(J−k)

k pπ
(J−2k)

k . . . pπ
(k(h+1))

k

))

×
k∑

l=1

γk−l(pδ)
k−lϵ(j+l−1)

=

J
k
−1∑

h=0

k∑

l=1

γJ−kh−l
((

p
π⋆
k
k

)J
k
−h
−
(
pπ

(J)

k pπ
(J−k)

k pπ
(J−2k)

k . . . pπ
(k(h+1))

k

))
(B.36)

× (pδ)
k−lϵ(j+l−1)

=
J−1∑

j=0

γJ−j−1

((
p
π⋆
k
k

)J
k
−j div k

−
(
pπ

(J)

k pπ
(J−k)

k pπ
(J−2k)

k . . . pπ
(J−k(j div k+1))

k

))

× (pδ)
k−j mod k−1ϵ(j) (B.37)

where line (B.36) derives from rearranging the two summations, line (B.37) is obtained
from a redefinition of the indexes. Specifically, we observed that h = j div k, j + 1 =
kh+ l, and l = j mod k + 1. Finally, we can apply the absolute value to the RHS and
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use Jensen inequality to obtain:

Q⋆
k −Qπ(J)

k ≤
(
Id− γkpπ(J)

k

)−1

[ J−1∑

j=0

γJ−j−1

((
p
π⋆
k
k

)J
k
−j div k

+
(
pπ

(J)

k pπ
(J−k)

k pπ
(J−2k)

k . . . pπ
(J−k(j div k+1))

k

))

× (pδ)
k−j mod k−1

∣∣ϵ(j)
∣∣

+ γJ
((

p
π⋆
k
k

)J
k
+1

+
(
pπ

(J)

k pπ
(J)

k pπ
(J−k)

k . . . pπ
(k)

k

)) ∣∣Q⋆
k −Q(0)

∣∣
]

We now introduce the following terms: For all 0 ≤ j < J :

Aj =
1− γk

2

(
Id− γkpπ(J)

k

)−1
(
(p
π⋆
k
k )

J
k
−j div k

+ (pπ
(J)

k pπ
(J−k)

k pπ
(J−2k)

k . . . pπ
(J−k(j div k+1))

k )

)
(pδ)

k−j mod k−1

For j = J , we define the following:

AJ =
1− γk

2

(
Id− γkpπ(J)

k

)−1
((

p
π⋆
k
k

)J
k
+1

+
(
pπ

(J)

k pπ
(J)

k pπ
(J−k)

k . . . pπ
(k)

k

))

Now, from the definition of αj as in Farahmand (2011):

αj =

{
(1−γ)γJ−j−1

1−γJ+1 if 0 ≤ j < J
(1−γ)γJ
1−γJ+1 if j = J

. (B.38)

Recalling that
∣∣Q⋆

k −Q(0)
∣∣ ≤ Qmax+

Rmax

1−γ ≤ 2Rmax

1−γ and applying Jensen inequality we
get:

Q⋆
k −Qπ(J)

k ≤ 2γk(1− γJ+1)

(1− γk)(1− γ)

[
J−1∑

j=0

αjAj
∣∣ϵ(j)

∣∣+ αJ
2Rmax

1− γ 1

]
,

where 1 denotes the constant function on S ×A with value 1. We now take the Lp(µ)–
norm both sides, recalling that

∑J
j=1 αj = 1 and that the terms Aj are positive linear

operators Aj : B(S × A) → B(S × A) such that Aj1 = 1. Thus, by Lemma 12
of Antos et al. (2008), we can apply Jensen inequality twice (once w.r.t. αj and once
w.r.t. Aj), getting:

∥∥∥Q⋆
k −Qπ(J)

k

∥∥∥
p

p,µ
≤
(

2γk(1− γJ+1)

(1− γk)(1− γ)

)p
µ

[
J−1∑

j=0

αjAj
∣∣ϵ(j)

∣∣p + αJ

(
2Rmax

1− γ

)p
1

]
.

Consider now the individual terms µAj
∣∣ϵ(j)

∣∣p for 0 ≤ j < J . By the properties of the
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Neumann series we have:

µAj
∣∣ϵ(j)

∣∣p = 1− γk
2

µ
(
Id− γkpπ(J)

k

)−1

×
((

p
π⋆
k
k

)J
k
−j div k

+
(
pπ

(J)

k pπ
(J−k)

k pπ
(J−2k)

k . . . pπ
(J−k(j div k+1))

k

))

× (pδ)
k−j mod k−1

∣∣ϵ(j)
∣∣p

=
1− γk

2
µ

[ +∞∑

m=0

γkm
((

pπ
(J)

k

)m (
p
π⋆
k
k

)J
k
−j div k

+

((
pπ

(J)

k

)m+1

pπ
(J−k)

k pπ
(J−2k)

k . . . pπ
(J−k(j div k))

k

))]

× (pδ)
k−j mod k−1

∣∣ϵ(j)
∣∣p .

We now aim at introducing the concentrability coefficients and for this purpose, we
employ the following inequality. For any measurable function f ∈ (X ) → R, and the
probability measures µ1, µ2 ∈ P(X ) such that µ2 is absolutely continuous w.r.t. µ1,
we have the following Hölder inequality, for any q ∈ [1,+∞]:

∫

X
f dµ1 ≤

(∫

X

∣∣∣∣
dµ1

dµ2

∣∣∣∣
q

q−1

dµ2

) q−1
q (∫

X
|f |q dµ2

) 1
q

. (B.39)

We now focus on a single term µ
(
pπ

(J)

k

)m (
p
π⋆
k
k

)J
k
−j div k ∣∣ϵ(j)

∣∣p and we apply the above
inequality:

µ
(
pπ

(J)

k

)m (
p
π⋆
k
k

)J
k
−j div k

(pδ)
k−j mod k−1

∣∣ϵ(j)
∣∣p

≤



∫

S×A

∣∣∣∣∣∣∣

dµ
(
pπ

(J)

k

)m (
p
π⋆
k
k

)J
k
−j div k

(pδ)
k−j mod k−1

dν

∣∣∣∣∣∣∣

q
q−1

dν




q−1
q

×
(∫

S×A

∣∣ϵ(j)
∣∣pq dν

) 1
q

= cVI1,k,q,ρ,ν

(
m,

J

k
− j div k, k − j mod k − 1;π(J)

)∥∥ϵ(j)
∥∥p
pq,ν

.
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B.1. Proofs

Proceeding in an analogous way for the remaining terms, we get to the expression:

∥∥∥∥Q⋆
k−Qπ(J)

k

∥∥∥∥
p

p,µ

≤
(

2γk(1− γJ+1)

(1− γk)(1− γ)

)p [
1− γk

2

J−1∑

j=0

+∞∑

m=0

γkm

(
cVI1,k,q,ρ,ν

(
m,

J

k
− j div k, k − j mod k − 1;π(J)

)

+ cVI2,k,q,ρ,ν

(
m+ 1, k − j mod k − 1; {π(J−lk)}j div kl=1

))∥∥ϵ(j)
∥∥p
pq,ν

+ αJ

(
2Rmax

1− γ

)p ]
.

To separate the concentrability coefficients and the approximation errors, we apply
Hölder inequality with s ∈ [1,+∞]:

J∑

j=0

ajbj ≤
(

J∑

j=0

|aj|s
) 1

s (
|bj|

s
s−1

) s−1
s
. (B.40)

Let r ∈ [0, 1], we set

aj =α
r
j

∥∥ϵ(j)
∥∥p
pq,ν

bj =α
1−r
j

1− γk
2

J−1∑

j=0

+∞∑

m=0

γkm
(
cVI1,k,q,ρ,ν

(
m,

J

k
− j div k, k − j mod k − 1; π(J)

)

+ cVI2,k,q,ρ,ν

(
m+ 1, k − j mod k − 1; {π(J−lk)}j div kl=1

))
.

The application of Hölder inequality leads to:

∥∥∥∥Q⋆
k−Qπ(J)

k

∥∥∥∥
p

p,µ

≤
(

2γk(1− γJ+1)

(1− γk)(1− γ)

)p
1− γk

2

[
J−1∑

j=0

α
s(1−r)
s−1

j

×
( +∞∑

m=0

γkm
(
cVI1,k,q,ρ,ν

(
m,

J

k
− j div k, k − j mod k − 1;π(J)

)

+ cVI2,k,q,ρ,ν

(
m+ 1, k − j mod k − 1; {π(J−lk)}j div kl=1

))) s
s−1

] s−1
s

[
J−1∑

j=0

αsrj
∥∥ϵ(j)

∥∥sp
pq,ν

] 1
s

+

(
2γk(1− γJ+1)

(1− γk)(1− γ)

)p
αJ

(
2Rmax

1− γ

)p
.

Since the policies (π(J−lk))j div kl=1 are not known, we define the following quantity by
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taking the supremum over any sequence of policies:

CVI,µ,ν(J ; r, s, q) =

(
1− γk

2

)s
sup

π0,...,πJ∈Π

J−1∑

j=0

α
s(1−r)
s−1

j

( +∞∑

m=0

γkm
(
cVI1,k,q,ρ,ν

(
m,

J

k
− j div k, k − j mod k − 1; πJ

)

+ cVI2,k,q,ρ,ν

(
m+ 1, k − j mod k − 1; {πl}j div kl=1

))) s
s−1

.

(B.41)
Moreover, we define the following term that embeds all the terms related to the approx-
imation error:

E(ϵ(0), . . . , ϵ(J−1); r, s, q) =
J−1∑

j=0

αsrj
∥∥ϵ(j)

∥∥sp
pq,ν

. (B.42)

Observing that 1−γ
1−γJ+1 ≤ 1 and 1−γJ−1 ≤ 1, we can put everything together and taking

the p–th root and recalling that the inequality holds for all q ∈ [1,+∞], r ∈ [0, 1], and
s ∈ [1,+∞]:
∥∥∥Q⋆

k −Qπ(J)

k

∥∥∥
p,µ
≤ 2γk

(1− γk)(1− γ)

[
γ

J
p
2Rmax

1− γ

+ inf
q∈[1,+∞]
r∈[0,1]
s∈[1,+∞]

CVI,µ,ν(J ; r, s, q)
s−1
ps E(ϵ(0), . . . , ϵ(J−1); r, s, q)

1
ps

]
.

The statement is simplified by taking s = 2.

B.1.3 Proofs of Section 6.7

Lemma 6.10. LetQ : S×A → R be a bounded, measurable action-value function, and
let π be a greedy policy w.r.t. Q. Let J =

∫
µ( ds)V (s), with V (s) = maxa∈AQ(s, a)

for all s ∈ S. Then, for any k ∈ N+, it holds that:

Jk(π) ≥ J(π)− 1

1− γk ∥T
⋆
kQ−Q∥1,ηµ,πk

, (6.26)

where ηµ,πk = (1 − γk)µπ
(
Id− γkpπk

)−1, is the γ-discounted stationary distribution
induced by policy π and initial distribution µ in MDPMk.

Proof. We start by providing the following equality, recalling that T ⋆kQ = T πk Q, being
π the greedy policy w.r.t. Q:

Qπ
k −Q = T πk Q

π
k − T πk Q+ T ⋆kQ−Q

= γkpπk (Q
π
k −Q) + T ⋆kQ−Q

=
(
Id− γkpπk

)−1
(T ⋆kQ−Q) ,
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B.2. Details on Bounding the Performance Loss (section 6.5)

where the last equality follows from the properties of the Neumann series. We take the
expectation w.r.t. to the distribution µπ on both sides. For the left-hand side, we have:

Jk(π)− J(π) = µπQπ
k − µπQ.

Concerning the right-hand side, instead, we have:

µπ
(
Id− γkpπk

)−1
(T ⋆kQ−Q) =

1

1− γk η
µ,π
k (T ⋆kQ−Q) ,

where we introduced the γ–discounted stationary distribution (Sutton et al., 1999a)
after normalization. Putting all together, we can derive the following inequality:

Jk(π)− J(π) =
1

1− γk η
µ,π
k (T ⋆kQ−Q)

≥ − 1

1− γk η
µ,π
k |T ⋆kQ−Q|

= − 1

1− γk ∥T
⋆
kQ−Q∥1,ηµ,πk

.

B.2 Details on Bounding the Performance Loss (section 6.5)

In this section, we report some additional material that is referenced in Section 6.5,
concerning the performance loss due to the usage of action persistence.

B.2.1 On Using Divergences Other than the Kantorovich

The Persistence Bound presented in Theorem 6.1 is defined in terms of the dissimilarity
index dπQk

which depends on the set of functionsQk defined in terms of the k-persistent
Q-function Qπ

k and in terms of the Bellman operators T π and T δ. This bound is mean-
ingful when it yields a value that is smaller than 2γRmax

1−γ that we already know to be
the maximum performance degradation we experience when executing policy π with
persistence (proposition 6.9). Therefore, for any meaningful choice of Qk, we require
that, at least for k = 2, the following condition to hold:

γ(1− γk−1)

(1− γ)(1− γk)
∥∥dπQk

∥∥
p,ηρ,πk

∣∣∣∣
k=2

=
γ

(1− γ2)
∥∥dπQ2

∥∥
p,ηρ,π2

<
2γRmax

1− γ . (B.43)

If we require no additional regularity conditions on the MDP, we can only exploit the
fact that all functions f ∈ Qk are uniformly bounded by Rmax

1−γ , reducing dπQk
to the total

variation distance between pπ and pδ:

dπQk
(s, a) ≤ Rmax

1− γ sup
f :∥f∥∞≤1

∣∣∣∣
∫

S

∫

A
(pπ( ds

′, da′|s, a)− pδ( ds′, da′|s, a)) f(s′, a′)
∣∣∣∣

=
2Rmax

1− γ d
π
TV(s, a).

(B.44)
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We restrict our discussion to deterministic policies and, for this purpose, we denote
with π(s) ∈ A the action prescribed by policy π in the state s ∈ S. Thus, the total
variation distance as follows:

dπTV(s, a) =
1

2

∫

S

∫

A
|pπ( ds′, da′|s, a)− pδ( ds′, a′|s, a)|

=
1

2

∫

S
P ( ds′|s, a)

∫

A
|π( da′|s′)− δa( da′)|

=
1

2

∫

S
P ( ds′|s, a)

∫

A

∣∣δπ(s′)(a′)− δπ(s)( da′)
∣∣

=

∫

S
P ( ds′|s, a)1{π(s)̸=π(s′)},

where 1X denotes the indicator function for the measurable set X . Consequently, we
can derive the norm:

∥∥dπQ2

∥∥p
p,ηρ,π2

≤ 2Rmax

1− γ

∫

S

∫

A
ηρ,πk ( ds, da)

∣∣∣∣
∫

S
P ( ds′|s, a)1{π(s)̸=π(s′)}

∣∣∣∣
p

≤ 2Rmax

1− γ

∫

S

∫

A
ηρ,πk ( ds, da)

∫

S
P ( ds′|s, a)

∣∣1{π(s) ̸=π(s′)}
∣∣p

=
2Rmax

1− γ

∫

S

∫

A
ηρ,πk ( ds, da)

∫

S
P ( ds′|s, a)1{π(s)̸=π(s′)}.

Thus, such a term depends on the expected fraction of state-next-state pairs such that
their policies prescribe different actions. Consequently, considering the condition at
Equation (B.43), we have that it must be fulfilled:

∫

S

∫

A
ηρ,πk ( ds, da)

∫

S
P ( ds′|s, a)1{π(s) ̸=π(s′)} ≤ 1− γ2.

However, if for every state-next-state pair the prescribed actions are different (even if
very similar in some metric space), the left-hand side would be 1, and the inequality
would be never satisfied. To embed the notion of closeness of actions we need to resort
to distance metrics different from the total variation (e.g., Kantorovich distance). These
considerations can be extended to the case of stochastic policies.

B.2.2 Time–Lipschitz Continuity for Dynamical Systems

We now draw a connection between the rate at which a dynamical system evolves and
the LT constant of Assumption 6.1. Consider a continuous-time dynamical system
having S = RdS and A = RdA governed by the law ṡ(t) = f(s(t), a(t)) such that
sups∈S,a∈A ∥f(s, a)∥ ≤ F < +∞. Suppose to control the system with a discrete
time step ∆t0 > 0, inducing an MDP with transition model P∆t0 . Using a norm ∥·∥,
Assumption 6.1 becomes:

W1 (P∆t0(·|s, a), δs) = ∥s(t+∆t0)− s(t)∥

=

∥∥∥∥
∫ t+∆t0

t

ṡ( dt)

∥∥∥∥ ≤ F∆t0.

Thus, the Time Lipschitz constant LT depends on: i) how fast the dynamical system
evolves (F ); ii) the duration of the control time step (∆t0).
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B.3. Details on Experimental Evaluation

B.3 Details on Experimental Evaluation

In this section, we report the details about our experimental setting (Appendix B.3.1),
together with additional plots (Appendix B.3.2).

B.3.1 Experimental Setting

Table B.1 reports the parameters of the experimental setting, which are described in the
following.

Environments The implementation of the environments are the ones provided in
Open AI Gym (Brockman et al., 2016).

Action Spaces For the environments with finite action space, we collect samples
with a uniform policy over A; whereas for the environments with a continuous action
space, we perform a discretization, reported in the column “Action space”, and we
employ the uniform policy over the resulting finite action space.

Sample Collection Samples are collected in the base MDP at persistence 1, al-
though for some of them the uniform policy is executed at a higher persistence, ksampling,
reported in the column “Sampling Persistence”. Using a persistence greater than 1 to
generate samples has been fundamental in some cases (e.g., Mountain Car) to get a
better exploration of the environment and improve the learning performances.1

Number of Iterations In order to perform a complete application of a k-Persisted
Bellman Operator in the PFQI algorithm, we need k iterations, so the total number of
iterations needed to complete the training must be an integer multiple of k. In order
to compare the resulting performances, we chose the persistences as a range of powers
of 2. The total number of iterations J is selected empirically so that the estimated
Q-function has reached convergence for all tested persistences.

Time Discretization Each environment has its own way to deal with time dis-
cretization. In some cases, in order to make the benefits of persistence evident, we
needed to reduce the base control timestep of the environment w.r.t. to the original
implementation. We report in the column “Original timestep” (∆toriginal) the control
timestep in the original implementation of the environment, while the base time step
(∆t0) is obtained as a fraction of ∆toriginal. The reduction of the timestep by a factor
m = ∆toriginal/∆t0 results in an extension of the horizon of the same factor, hence
there is a greater number of rewards to sum, with the consequent need of a larger dis-
count factor to maintain the same “effective horizon”. Thus, the new horizon H (resp.
discount factor γ) can be determined starting from the original horizon Horiginal (resp.
original discount factor γoriginal) as:

H = mHoriginal, γ = (γoriginal)
1
m , where m =

∆toriginal

∆t0
.

For all the environment, the original discount factor γoriginal has been set to 0.99.
Regressor Hyperparameters We performed regression by means of Extra Trees

with the following parameters: n_estimators = 100, min_split = 5, and min_leaf = 2.
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Table B.1: Parameters of the experimental setting, used for the PFQI(k) experiments.

Environment A
Sampling

Persistence
ksampling

Original timestep
∆toriginal (sec)

Factor m =
∆toriginal/∆t0

Original
Horizon
Horiginal

Batch size n Iterations J

Cartpole {−1, 1} 1 0.02 4 128 400 512
Mountain Car {−1, 0, 1} 8 1 2 128 20 256

Lunar Lander {Nop, left,
main, right} 1 0.02 1 256 100 256

Pendulum {−2, 0, 2} 1 0.05 1 256 100 64
Acrobot {−1, 0, 1} 4 0.2 4 128 200 512
Swimmer {−1, 0, 1}2 1 2 (frame-skip) 2 128 100 128
Hopper {−1, 0, 1}3 1 1 (frame-skip) 2 128 100 128
Walker 2D {−1, 0, 1}9 1 1 (frame-skip) 2 128 100 128

B.3.2 Additional Plots

B.4 Preliminary Results on Open Questions

In this section, we report preliminary results related to some open questions about ac-
tion persistence.

B.4.1 Improving Exploration with Persistence

As we already mentioned, action persistence might have an effect on the exploration
properties of distribution ν used to collect samples. To avoid this phenomenon, in this
work, we assumed to feed PFQI(k) with the same dataset collected in the base MDP
M, independently on which target persistence k we are interested in. In this appendix,
we want to briefly analyze what happens when we feed standard FQI with a dataset col-
lected by executing the same policy (e.g., the uniform policy overA) in the k–persistent
MDPMk,2 To estimate the corresponding k–persistence action-value function Q⋆

k. In
this way, for each persistence k we have a different sampling distribution νk, but, being
the dataset Dk ∼ νk collected inMk, we can apply standard FQI to estimate Q⋆

k. Refer
to Figure B.2 for a graphical comparison between PFQI(k) executed in the base MDP
and FQI executed in the k–persistent MDP.

When we compare the performances of the policies obtained with different persis-
tence levels learned starting with a dataset Dk ∼ νk, we should consider two different
effects: i) how training samples are generated (i.e., the sampling distribution νk, which
changes for every persistence k); ii) how they affect the learning process in FQI. Un-
fortunately, in this setting, we are not able to separate the two effects.

Our goal, in this appendix, is to compare for different values of k ∈ K = {1, 2, . . . 64}
the performance of PFQI(k) and the performance of FQI run on the k–persistent MDP
Mk. The experimental setting is the same as in Appendix B.3, apart from the “sampling
persistence” which is set to 1 also for the Mountain Car environment. In Figure B.3,

1When considering a sampling persistence ksampling > 1, we record in the dataset all the intermediate repeated actions, so that
the tuples (St, At, S′

t, Rt) are transitions of the base MDP M.
2This procedure generates a different dataset compared to the case in which we use a “sampling persistence” ksampling > 1, as

illustrated in Appendix B.3. Indeed, in this case, we do not record in the dataset the intermediate repeated actions, since we want
a dataset of transition of the k–persistent MDP Mk .
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B.4. Preliminary Results on Open Questions

we show the performance at the end of training of the policies obtained with PFQI(k),
the one derived with FQI onMk, and the uniform policy over the action space. First
of all, we observe that when k = 1, executing FQI onM1 is in all regards equivalent
to executing PFQI(1) onM, since PFQI(1) is FQI andM1 isM. We can see that in
the Cartpole environment, fixing a value of k ∈ K, there is no significant difference in
the performances obtained with PFQI(k) and FQI onMk. The behavior is significantly
different when considering Mountain Car. Indeed, we notice that only FQI onMk is
able to learn a policy that reaches the goal for some specific values of k ∈ K. We can
justify this behavior with the fact that by collecting samples at a persistence k, like in
FQI onMk, the exploration properties of the sampling distribution change, as we can
see from the line “Uniform policy”. If the input dataset contains no trajectory reach-
ing the goal, our algorithms cannot solve the task. This is why PFQI(k), which uses
persistence 1 to collect the samples, is unable to learn at all.3

This experiment gives a preliminary hint on how action persistence can affect ex-
ploration. More in general, we wonder which are the necessary characteristics of the
environment such that the same sampling policy (e.g., the uniform policy over A) al-
lows performing a better exploration. More formally, we ask ourselves how persistence
affects the entropy of the stationary distribution induced by the sampling policy.

Learn inMk and Execute inMk′

In this appendix, we empirically analyze what happens when a policy is learned by
PFQI with a certain persistence level k and executed later on with a different persistence
level k′ ̸= k. We consider an experiment on the Cartpole environment, in the same
setting as Appendix B.3. We run PFQI(k) for k ∈ K = {1, 2, . . . , 256} and then
for each k we execute policy πk (i.e., the policy learned by applying the k–persistent
operator) in the k′–persistent MDPMk′ for k′ ∈ K. The results are shown in Table B.2.
Thus, for each pair (k, k′), Table B.2 shows the sample mean and the sample standard
deviation over 20 runs of the expected return of policy πk in MDPMk, i.e., Jk′(πk).
First of all, let us observe that the diagonal of Table B.2 corresponds to the first row of
Table 6.1 (apart from the randomness due to the evaluation). If we take a row k, i.e.,
we fix the persistence of the operator, we notice that, in the majority of the cases, the
persistence k′ of the MDP yielding the best performance is smaller than k. Moreover,
even if we learn a policy with the operator at a given persistence k and we see that such
a policy displays a poor performance in the k–persistent MDP (e.g., for k ≥ 8), when
we reduce the persistence, the performance of that policy seems to improve.

Figure B.4 compares different values of k, determining the persistence of the opera-
tor, the performance of the policy πk when we execute it inMk and the performance of
πk in the MDPM(k′)⋆ , where (k′)⋆ ∈ argmaxk′∈K Ĵk′(πk). We see that suitably select-
ing the persistence k′ of the MDP in which we will deploy the policy, allows reaching
higher performances.

3Recall that in our main experiments (Appendix B.3), we had to employ for the Mountain Car a “sampling persistence”
ksampling = 8. Indeed, for ksampling ∈ {1, 2, 4} the uniform policy is unable to reach the goal, while for ksampling = 8 it
allows reaching the goal in the 6% of the times on average.
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Table B.2: Results of PFQI execution of the policy πk learned with the k–persistent operator in the
k′–persistent MDPMk′ in the Cartpole experiment. For each k, we report the sample mean and the
standard deviation of the estimated return of the last policy Ĵk′(πk). For each k, the persistence k′

with the highest average performance and the ones k′ that are not statistically significantly different
from that one (Welch’s t-test with p < 0.05) are in bold.

k′ = 1 k′ = 2 k′ = 4 k′ = 8 k′ = 16 k′ = 32 k′ = 64 k′ = 128 k′ = 256

k = 1 172.0 ± 6.8 174.1 ± 6.5 113.0 ± 5.3 9.8 ± 0.0 9.7 ± 0.0 9.7 ± 0.1 9.8 ± 0.0 9.7 ± 0.0 9.7 ± 0.0

k = 2 178.4 ± 6.7 182.2 ± 7.2 151.6 ± 5.1 9.9 ± 0.0 9.8 ± 0.0 9.8 ± 0.0 9.8 ± 0.0 9.8 ± 0.0 9.8 ± 0.0

k = 4 276.2 ± 3.8 287.3 ± 1.1 237.0 ± 5.4 10.0 ± 0.0 9.8 ± 0.0 9.8 ± 0.0 9.9 ± 0.0 9.8 ± 0.0 9.9 ± 0.0

k = 8 284.3 ± 1.6 281.4 ± 3.0 211.5 ± 4.0 10.0 ± 0.0 9.8 ± 0.0 9.8 ± 0.0 9.8 ± 0.0 9.8 ± 0.0 9.9 ± 0.0

k = 16 285.9 ± 1.1 282.9 ± 2.6 223.5 ± 3.2 10.0 ± 0.0 9.9 ± 0.0 9.8 ± 0.0 9.9 ± 0.0 9.9 ± 0.0 9.8 ± 0.0

k = 32 285.7 ± 1.3 283.6 ± 2.7 222.2 ± 3.6 10.0 ± 0.0 9.9 ± 0.0 9.9 ± 0.0 9.8 ± 0.0 9.9 ± 0.0 9.9 ± 0.0

k = 64 283.6 ± 2.3 284.1 ± 2.0 225.5 ± 4.4 10.0 ± 0.0 9.9 ± 0.0 9.8 ± 0.0 9.9 ± 0.0 9.8 ± 0.0 9.9 ± 0.0

k = 128 282.9 ± 2.2 282.5 ± 3.1 221.9 ± 4.7 10.0 ± 0.0 9.8 ± 0.0 9.9 ± 0.0 9.9 ± 0.0 9.9 ± 0.0 9.9 ± 0.0

k = 256 282.5 ± 2.3 283.4 ± 2.4 224.3 ± 3.9 10.0 ± 0.0 9.9 ± 0.0 9.9 ± 0.0 9.9 ± 0.0 9.9 ± 0.0 9.9 ± 0.0
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B.4. Preliminary Results on Open Questions
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Figure B.1: Expected return Ĵk(πk), estimated return Jk, estimated expected Bellman residual ∥Q̃k −
Qk∥1,D, and persistence selection index Bk for the different experiments as a function of the number
of iterations for different persistences. 20 runs, 95 % c.i.
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Ĵ
k

0 50 100

0

10

20

30

40

Iteration

∥Q̃
k
−

Q
k
∥ 1

,D

0 50 100

−200

−100

0

Iteration

In
de

x
B

k
k = 1 k = 2 k = 4 k = 8 k = 16 k = 32 k = 64

(b) Swimmer

0 50 100

40

60

80

Iteration

E
xp

ec
te

d
re

tu
rn

Ĵ
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Figure B.1: Expected return Ĵk(πk), estimated return Ĵk, estimated expected Bellman residual ∥Q̃k −
Qk∥1,D, and persistence selection index Bk for the different experiments as a function of the number
of iterations for different persistences. 20 runs, 95 % c.i.
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Ĵ
k
(π

k
)

Dam

Figure B.3: Performance of the policies learned with FQI onMk, PFQI(k) onM and of the uniform
policies for different values of the persistence k ∈ K. 10 runs. 95% c.i.
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APPENDIXC
Additional Results of Chapter 7

The contents of this Appendix can be summarized as follows:

– Appendix C.1 provides additional information regarding the analysis of the advan-
tage of a dynamic persistence.

– Appendix C.2 we provide further details on the experimental framework.

– Appendix C.3 we report more experimental results and discussions on open ques-
tions.

C.1 Discussion on the Advantages of Dynamic Persistence

C.1.1 Details on Persistent Markov Chains and Kemeny Constant

In this section, we provide more details regarding how to obtain the transition Ker-
nel implied from a persistent random variable acting on the environment, and how to
compute its Kemeny’s constant.

Consider an agent where actions are sampled from a generic policy π(·|s) =: π on
the action space A, independent from the current state, and where persistence is sam-
pled from a discrete distribution ω with support in {1, . . . , Kmax}, independent from
π. They constitute the policy ψ over persistence options. The k-step Transition Chain
induced by π over the state space S is defined as P π

k (s
′|s) =

∫
A Pk(s

′|s, a)π(da|s).
This is equivalent to the Markov chain induced by π in the k-step MDP, where the
control frequency is set to k times the base duration δ. We now consider the transition
probability induced by the joint probability distributions π and ω up to a maximum of
Kmax steps, which for simplicity will here be referred to as K. In order to define it,
it is necessary to consider a fixed horizon H: when the total number of steps in the
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trajectory reaches the horizon, then the (eventual) persistence is stopped. This means
that, if we start for example at the H − j step, the probability of persisting j times the
sampled action is equivalent to

∑
i≥j ωi. This assumption is necessary for the Markov

condition to hold. As a consequence, we define ω̃j =
{
ω̃i,j
}
i

as a reduced distribution
of ω to j steps:

ω̃i,j :=

{
ωi if i < j
∑K

i=j ωi otherwise
.

Finally we can recursively define the transition probability in H steps, induced by π
and ω as:

Pπ,ωH :=
K∑

k=1

ω̃k,H∧KP
π,ω̃H−k

H−k P π
k , (C.1)

where Pπ,ω0 = 1S×S and a ∧ b = min{a, b}. Equation (C.1) is not trivial and needs
some clarifications. Let’s consider an example, where K = 4 and H = 3. In this case
the persistence distribution is ω = {ω1, ω2, ω3, ω4}.

• With probability ω3 + ω4, the sampled persistence is equal to 3, and the related
transition is P π

3 (since H = 3, sampling persistence 4 leads to repeat the action
for 3 times);

• With probability ω2, the sampled persistence is equal to 2. The first two steps
evolve as P π

2 , and the last step follows Pπ,ω̃1

1 = P π;

• With probability ω1, the action is selected only once and, at the next step, it has to
be sampled again and eventually persisted for two steps w.p. ω2 + ω3 + ω4.

In other terms, denoting ω̃1 = ω1, ω̃2 = ω2, and ω̃3 = ω3 + ω4:

Pπ,ω3 =ω̃3P
π
3 + ω̃2P

πP π
2 + ω̃1[ω̃1P

πP π + (ω̃2 + ω̃3)P
π
2 ]P

π

=ω̃31P
π
3 + ω̃2 [(ω̃1 + ω̃2 + ω̃3)P

π]︸ ︷︷ ︸
=Pπ,ω̃1

1

P π
2 +

+ ω̃1 [ω̃1(ω̃1 + ω̃2 + ω̃3)P
πP π + (ω̃1 + ω̃2)P

π
2 ]︸ ︷︷ ︸

=Pπ,ω̃2
2

P π
1

=ω̃3Pπ,ω0 P π
3 + ω̃2Pπ,ω1 P π

2 + ω̃1Pπ,ω2 P π
1

The meaning of the modified distribution ω̃ is related to the fact that, once the trajectory
evolved for k steps, the remaining H − k are still sampled, but when the last step H is
reached, then the agent stops repeating in any case.

Kemeny’s constant computation The formula used to compute the Kemeny’s constant
from the transition Kernel Pπ,ωH can be obtained thanks to the following Proposition
(Kirkland, 2010).

Proposition C.1 (Kemeny’s constant of an irreducible Markov Chain). Consider a
Markov chain with an irreducible transition matrix P with eigenvalues λ1 = 1 and
λi, i ∈ {2, . . . , n}. The Kemeny constant of the Markov chain is given by

Kem =
n∑

i=2

1

1− λi
.
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C.1. Discussion on the Advantages of Dynamic Persistence
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Figure C.1: Normalized Kemeny’s constant and entropy in Tabular environments as a function of the
maximum persistence and horizon H .

The introduction of the parameterH is necessary to retrieve an irreducible transition
matrix Pπ,ωH maintaining the Markov property.

In order to compute the curves of Kemeny’s constant in Figure 7.2, we consider
a Kmax as a variable, and exploration is performed by a discrete uniform random
variable in O =

⋃
k∈KO(k), i.e., the distribution π is uniform over the action space

A = {left, down, right, up}, and ω uniform overK. In Figure C.1 we show the curves
of Kemeny’s constant and entropy with different values of Kmax and H , and Figure 7.2
presented in section 7.6 refers to the same Kemeny’s curves selected for H = 30.

As we can see in the figure, for each value of H there is a similar pattern: increasing
Kmax, the related values for Kemeny’s constant initially tend to decrease, indicating
that persistence helps for a faster exploration through the state space. Persisting ac-
tions for long times does not help exploration, since agents might be more frequently
standing in front of walls. Consequently, depending on the different designs of the en-
vironments, Kemeny’s values begin to increase. In the bottom plots of Figure C.1 we
can observe also the curves related to the entropy induced by Pπ,ωH : again, the maximum
value of entropy is attained by Kmax > 1. However, the curves soon start to decrease
dramatically, indicating that reaching distant states sooner is not strictly related to its
visitation frequency.
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Figure C.2: Visitation frequencies in Mountain Car environment of different random policies with fixed
K persistences. The value represents in a logarithmic scale the counter of visited states. The x and
y axes are respectively the position and the velocity of the car. The blue dotted line represents the
goal. 10.000 episodes

C.1.2 Further Exploration Advantages: MountainCar

In this section, we provide further evidence regarding the advantages of exploration.
We study the effects of a persisted random policy on the MDP, i.e., a policy ψ ∈ Ψ over
persistence options O in Mountain Car. We have collected all the states traversed by a
full random agent with different values of Kmax, both with a fixed persistence (figure
C.2) and a dynamic persistence (figure C.3). The figures represent the heatmaps of the
visitation frequency in the state space. As we can see, when Kmax is low the agent
has less chance to reach the goal (represented by the blue dotted line). Increasing the
persistence, the distribution over the states starts covering a wider region of the state
space and reaching the goal with a higher probability.

We can observe that, even if the goal for some values of K is almost equally visited,
with a fixed persistence we have a different distribution of visited states. Moreover, a
fixed, high persistence does not provide sufficient exploration to reach the goal, as we
can see in figure C.2 with K = 64, especially if compared to the dynamic version in
figure C.3.
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Figure C.3: Visitation frequencies in Mountain Car environment of different random persistence options.
The value represents in a logarithmic scale the counter of visited states. The x and y axes are
respectively the position and the velocity of the car. The blue dotted line represents the goal. 10.000
episodes
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C.1.3 Synchronous Update: Additional Results

In this appendix, we report some additional information related to the experiments with
synchronous PerQ-learning updates shown in Section 7.6.

The environment considered is depicted in Figure C.4: a 6x6 deterministic Grid-
world, with holes. The set of (primitive) actions isA = {left, down, right, up}. Tran-
sitions are deterministic. Going outside the borders and falling off a hole result in the
punishment with a negative reward, respectively equal to -100 and -10 (hence, outer
borders are not blocking the movement of the agent). The reward for reaching the goal
instead is equal to +100. In all these cases the episode terminates; all other states result
in a small negative reward (-1), to incentivize finding the shortest paths toward the goal.

In order to exploit only the convergence properties of PerQ-learning algorithm, with-
out considering the exploration factor, we consider a synchronous learning framework:
we assume to have access to the whole transition model, in such that, at each itera-
tion t, we can collect an independent sample s′ ∼ P (·|s, a) for every state-action pair
(s, a) ∈ S × A. Since the environment is deterministic, this means that we have ac-
cess to the whole transition matrix P . For each simulation, the value estimation for
each state-action pair (or state-option pair, in the case of PerQ-learning) is initialized
sampling from a standard gaussian random variable. In each iteration of Q-learning,
the algorithm performs a full update of the Q-function estimates. In each iteration of
PerQ-learning, before performing the full update, the primitive tuples are combined, in
order to collect a sample for each possible (s, a, k) pair in S ×A×K.

In the plots on Figure 7.3, we represented the overall convergence to Q⋆ and the
convergence of the QK-value function restricted on the k-persistent actions O(k), as
specified in Section 7.6.

The representations of the k−step value functions V ⋆
k are shown in Figure C.5,

where V ⋆
k (s) = maxa∈AQ⋆(s, a, k). It is useful to remark that this value function

does not coincide with the optimal value function in the k−persistent MDP Mk, as
V ⋆
k (s) represents the value function at the state s restricted to persist k times only the

first action, and the following the optimal policy π⋆.
Parameters used for experiments:

• Initial estimation: Q(s, a, k) ∼ N (0, 1) ∀(s, a, k) ∈ S ×A×K;

• Discount factor: γ = 0.99;

• Learning rate: α = 0.1;

• Maximum number of iterations: 400 (plots truncated at 200).

Figure C.4: Grid environment representation. Red cells denote holes and green cells the goal.
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V *
1 V *

2 V *
3

V *
4 V *

5 V *
6

0

20

40

60

80

100

Figure C.5: k-value function representation for different persistence values k in Gridworld environment
(Kmax = 6). Red cells denote holes and green cells the goal.

C.2 Details on Experimental Evaluation

In this appendix, we report more details about our experimental framework. In Ap-
pendix C.2.1 we provide more details about PerQ-learning and the tabular setting; in
Appendix C.2.2 and C.2.3 we focus on PerDQN and the deep RL experiments, respec-
tively on Mountain Car and Atari games.

C.2.1 Tabular Environments

The first environments tested are the deterministic 6x10 grids shown in Figure C.6 and
presented in Biedenkapp et al. 2021. These environments are deterministic, and the
outer borders block the agent from moving outside the grid (for example, an agent
being at the top left cell will not move with an Up action). Falling in the holes (black
cells in Figure C.6) results in a −1 reward, while the goal is worth a positive reward,
equal to +1. All other states have no reward. Reaching a Hole or the Goal terminates
an episode.

Along with these three environments, we tested also the results on FrozenLake,
available among OpenAi gym toolkit (Brockman et al., 2016). The transition process
and the rewards are the same as in the previous case; the only differences are the bigger
map (16x16) and the presence of random holes, such that each run is performed on a
new map. For each new random map generated, the probability for each tile to be a
hole (or frozen, according to the environment description) is equal to 0.85.

Parameters:

• Initial estimation: Q(s, a, k) ∼ N (0, 1) ∀(s, a, k) ∈ S ×A×K;

• Discount factor: γ = 0.99;

• Learning rate: α = 0.01;

• Maximum number of iterations: 6000 for FrozenLake, otherwise 600;

• Random policy probability: Exponentially decreasing: ϵt = 0.99t.

193



i
i

“output” — 2023/6/14 — 7:29 — page 194 — #216 i
i

i
i

i
i

(a) Cliff (b) Bridge (c) Zigzag

Figure C.6: Tabular Gridworld representation. Red cells denote the starting state and blue cells the
goal state.

C.2.2 MountainCar

For MountainCar experiments, the architecture chosen is an MLP: the first two hidden
layers, consisting of 128 rectifier units, are shared among all persistences. The third
hidden layer instead is diversified for each persistence value k, and each one is com-
posed of 64 rectifier neurons and connected to three outputs, one for each action with
its own persistence value.

The parameters adopted for the experiments are the following:

• Discount factor: γ = 1;

• Maximum number of iterations: 6× 105 (truncated to 5× 105 in the plots);

• Batch size: 32 for each persistent value;

• Replay buffer size: 50000 for each persistent value;

• Random policy probability: linearly decreasing, starting from ϵ0 = 1, to a final
value ϵf = 0.01, reached at 15% of the total number of iterations;

• Target update frequency: every 1000 steps;

• Train frequency: 1;

• Gradient clip: 10;

• Learning starts: 1000 (2000 only for Freeway);

• Loss function: Huber loss;

• Optimizer: Adam, with learning rate α = 10−4, β1 = 0.9, β2 = 0.999;

• Prioritized replay buffers, of size 5 × 104 for each persistence value, and default
prioritization coefficients αp = 0.6, βp = 0.4;

C.2.3 Atari Games

For Atari games, the architecture chosen is based on that presented in Mnih et al.
(2015), with three convolutional layers. the first hidden layer takes as input an 84×84×
4 image and convolves 32 filters of 8× 8 with stride 4, with the application of rectifier
nonlinearities. The second has 32 input channels, 64 output channels, a kernel size of 4
and a stride of 2, again with ReLu activations, as well as the third convolutional layer,
with a kernel size of 3 and a stride of 1, and 64 output channels. The convolutional
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C.3. Additional Results

structure is shared among all persistences, while the fully-connected hidden layer, con-
sisting of 128 rectifier units, is differentiated for each persistence value k. Each one of
these layers is fully connected to the output layer, with a single output for each possible
action.

The OpenAi Gym environments used are in the deterministic-v0 version, which does
not make merging operations among the 4 input frames, but considers only the last one.

The parameters adopted are the following:

• Discount factor: γ = 0.99;

• Maximum number of iterations: 2.5× 106;

• Batch size: 32 for each persistent value;

• Replay buffer size: 50000 for each persistent value;

• Random policy probability: linearly decreasing, starting from ϵ0 = 1, to a final
value ϵf = 0.01, reached at 17% of the total number of iterations;

• Target update frequency: every 500 steps;

• Train frequency: 1;

• Gradient clip: 10;

• Learning starts: 1000 (2000 only for Freeway);

• Loss function: Huber loss;

• Optimizer: Adam, with learning rate α = 5× 10−4, β1 = 0.9, β2 = 0.999;

• Prioritized replay buffers, of size 5× 104 from each persistence value, and default
prioritization coefficients αp = 0.6, βp = 0.4.

C.3 Additional Results

In this appendix, we report more experimental results.

C.3.1 Tabular Environments

Here we consider the results related to the tabular environments. In Figure C.7 we
present the full comparison among PerQ-learning-learning and TempoRL. As said in
Section 7.8, we can observe a generally faster convergence of the former. However,
TempoRL is more robust with higher persistences, as in complex environments such as
ZigZag and FrozenLake the performance does not degrade as PerQ-learning learning.

Furthermore, we analyzed the impact of the Bootstrap operator: as an ablation study,
we performed the same PerQ-learning learning evaluation without this feature. As a
result, we can see that the returns are dramatically worse. Often, they perform even
worse than classic Q learning: the reason for this behavior is due to the fact that, if
a certain persistence value k is not feasible for a state action pair (s, a) (because of
the geometry of the environment), its related value estimation Q(s, a, k) will never be
updated, and the algorithm may keep choosing it as the best one among the others. In
TempoRL, albeit the absence of a Bootstrap, the update of the skip-value function is
instead updated by using the standard action-value function, improving the estimation.
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Figure C.7: Results of Q-learning, TempoRL, PerQ-learning and MSA-Q-learning in different tabular
environments and maximum persistences. On each row, a different maximum persistence is selected
for both algorithms. 50 runs (avg± 95% c.i.).

196



i
i

“output” — 2023/6/14 — 7:29 — page 197 — #219 i
i

i
i

i
i

C.3. Additional Results

0 1 2 3 4 5
·105

−200

−150

−100

Step

R
et

ur
n

Kmax = 8

0 1 2 3 4 5
·105

−200

−150

−100

Step

Kmax = 16

PerDQN MSA-DQN TempoRL

Figure C.8: PerDQN additional results on MountainCar. Return comparison of PerDQN with and
without bootstrap (MSA-DQN) and TempoRL. 20 runs (avg ± 95%c.i.)
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Figure C.9: PerDQN additional results on Freeway. Return comparison of PerDQN and TempoRL with
maximum persistence 4 and 8. Parentheses denote the maximum persistence chosen. 5 runs (avg ±
95%c.i.)

C.3.2 PerDQN Additional Results

PerDQN with increased Kmax in Atari games Here we investigate the effects of an in-
creased value of Kmax in Atari games: in Figure C.9 we show the results obtained on
Freeway, by increasing the maximum persistence to 8 for both TempoRL and PerDQN.
The same Kmax = 8 for PerDQN has been tested on the other Atari games, and shown
in Figure C.10 (we excluded Seaquest, as we have already shown that persistence in
this environment is detrimental for learning. As we can see, an increased maximum
persistence Kmax = 8 does not provide improvements w.r.t. Kmax = 4 for the majority
of the environments. A slight improvement can be seen for Freeway, while TempoRL,
albeit providing a better learning curve than the one obtained with a skip size equal to
4, is still unable to converge to the optimal policy.

MountainCar, PerDQN without Bootstrap Here we investigate the effects of the
Bootstrap operator on PerDQN. To do so, we experimentally evaluated the algorithm
without this feature on MountainCar and on the Atari games where persistence seemed
to have beneficial effects (hence, with the exclusion of the Seaquest environment). The
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Figure C.10: Atari games results for DQN and PerDQN, with Kmax = 4 and 8. 5 runs (avg± 95% c.i.).

results related to the Atari environments are shown in Figure 7.6, while Mountain-
Car performances are shown in Figure C.8: the version without bootstrap recalls the
same contribution brought in Schoknecht and Riedmiller (2003) with MSA-Q-learning,
hence it is here denoted as MSA-DQN. As we can see, bootstrap is an essential feature
for PerDQN to converge rapidly to the optimal policy and to be robust. Indeed, without
the bootstrap, the performances are worse, similar to TempoRL, and their variance is
dramatically higher.

C.3.3 PerQ-learning: computational times
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Figure C.11: Computational times required for a complete run of PerQ-learning on tabular environ-
ments with different Maximum Persistences. 20 runs. avg ± 95% c.i.

We ran PerQ-learning on the tabular environments for different values of Kmax

keeping track of the training time. We fixed the number of collected trajectories, but
the trajectories can be of different lengths since the environments are goal-based. In
Figure C.11, we observe that in all environments the minimum is attained by a value of
Kmax > 1. This means that the computational overhead due to using larger values of
Kmax is compensated by a faster learning speed, leading to shorter trajectories overall.
Note that Kmax = 1 corresponds to classic Q-learning.
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C.3.4 Experiments with the same Number of Updates and Comparison with ez-
greedy Exploration
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Figure C.12: Results of Q-learning, TempoRL, PerQ-learning and MSA-Q-learning in different tabular
environments and maximum persistences. On each row, a different maximum persistence is selected
for both algorithms. 50 runs (avg± 95% c.i.).

In Algorithm 10, we can see that the number of total updates related is O(K3
max).

One might wonder if standard Q-learning can attain the same learning advantages with
an increased number of updates: in Figure C.12, we compare the results obtained for
PerQ-learning with Q-learning, where the number of updates per each step has been
increased for Kmax times (the row denotes the value of Kmax). Hence, the two algo-
rithms have the same amount of updates. However, the increasing number of updates
is not directly related to a learning improvement. If we consider Q-learning, increasing
the number of updates (related to the same observed tuples) is equivalent to an increase
in the learning rate, which is not necessarily related to better learning performances. In-
deed, the performances of Q-learning in its multiple-update version are not statistically
better than the single-update version, only less robust.

Furthermore, the presence of multiple replay buffers allows reducing the total num-
ber of updates linear in Kmax in PerDQN, which is the most suited for real-world
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Figure C.13: Freeway results: PerDQN comparison with DQN with the same global amount of tuples
sampled per update as PerDQN (DQN(x4) denotes DQN where the batch size is 4 times the one
adopted for classic DQN, hence with the same global batch size as PerDQN with Kmax = 4).

scenarios with large state spaces. In Figure C.14, we compare PerDQN with other
baselines on the MountainCar environment: In the top plot, we show a comparison be-
tween our proposed approach and DQN with the same number of updates as PerDQN
(denoted as DQN(xK)). In PerDQN, the batch size for each replay buffer is 32: in the
new DQN runs, the total batch size for an update has been increased to 32*Kmax.

In the middle plot, we compare PerDQN with a vanilla DQN employing ϵz-greedy
exploration (Dabney et al., 2020). In the implementation of ϵz-greedy DQN, the ex-
ploration is performed similarly as in PerDQN, as the persistence is sampled from a
discrete uniform distribution in 1, . . . , Kmax, where Kmax has been set to 8 and 16.

In the bottom plot, ϵz-greedy DQN is run with the same global batch size per update
as in PerDQN.

In Figure C.13, we compare PerDQN (Kmax=4) with DQN on Freeway, with an
increased batch size of factor 4, in such a way that the total number of samples per
update is the same.

In a similar fashion as with standard Q-learning, in Figure C.14 the DQN curve
related to 8x the sample size is worse (on average) than the standard version, while
the 16x experiments see a slight improvement (with no statistical evidence). In any
case, PerDQN outperforms all the compared methods. The same holds for Freeway
(Figure C.13), where augmenting the DQN batch size by a factor of 4 does not provide
improvements in the performances.

In the middle and bottom plots of Figure C.14, we can see that the exploration
with persistence alone (through ϵz-greedy exploration) is not enough to provide the
same improvement in the learning capabilities, differently from PerDQN. Furthermore,
increasing the number of updates can slightly help to learn, but the resulting learning
curves are still largely dominated by PerDQN.
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Figure C.14: MountainCar results for DQN, PerDQN and ϵz-greedy DQN (10 runs, avg± 95% c.i.).
Top Figure: PerDQN comparison with DQN with the same global amount of tuples sampled per
update as PerDQN (e.g. DQN(x8) denotes DQN where the batch size is 8 times the one adopted for
classic DQN, hence with the same global batch size as PerDQN with Kmax = 8).
Middle figure: PerDQN comparison with ϵz-greedy DQN, where parenthesis denotes the maximum
persistence in the random sampling.
Bottom figure: PerDQN comparison with ϵz-greedy DQN, with the same global amount of tuples
sampled per update as PerDQN (e.g. ϵz-greedy(8x8) denotes ϵz-greedy DQN with maximum persis-
tence for exploration equal to 8, and the batch size is 8 times the one adopted for classic DQN, hence
with the same global batch size as PerDQN with Kmax = 8)
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APPENDIXD
Persistor Policy Gradient

In this appendix, we report some preliminary results regarding persistence selection
via a policy-based approach. In this way, it is possible to extend the selection of the
duration of the actions through a secondary policy, conditioned on the current state-
action pair. In the following, we will show that also the selection of the persistence can
be learned following the gradient of the return.

In our framework, a (Markovian, stationary) policy π : S → ∆A defines the proba-
bility distribution over A given the current state in S. Once the action a is selected, the
amount of steps it is kept is decided by a persistor ξ : S × A → ∆K, which is defined
over a persistence space K. In simulated environments, the only feasible persistence
space is discrete, with K ⊆ N+. Hence, the persistence is related to a natural amount
of discrete steps, each one performed with a fixed frequency1. As a consequence, we
can exploit the relation between the Q and the V functions is completed thanks to the
k−step Bellman Expectation operator defined in 6.4. The only difference is the depen-
dency on the policy-persistor pair (π, ξ):

Qπ,ξ(s, a, k) = rk(s, a) + γk
∫

S
Pk(s

′|s, a)V π,ξ(s′) ds′ (D.1)

Furthermore, the advantage function Aπ,ξ is defined as:

Aπ,ξ(s, a, k) = Qπ,ξ(s, a, k)− V π,ξ(s)

1The formulation holds even considering a general setting with a Continuous-Time MDP, where K = R+; in this case, the
persistence of an action is equivalent to its true duration in time.
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D.1 Occupancy Measures

In this section, we extend the concepts of transitions Kernels and trajectory probability
introduced in Section 2.2.4 to the persistent case. This process is straightforward, with
a single exception: the multi-step transitions have a variable length (being the decision
process a Semi-MDP), and the related discounts depend on the persistence selected.
Hence, we can ease the following computations by including the discounts in the tran-
sitions: a discounted transition Kernel induced by a pair (π, ξ) can be therefore defined
as

p̃π,ξ(·|s) =
∫

A
π( da|s)

∫

K
ξ( dk|s, a)γkPk(·|s, a) (D.2)

Remark D.1. p̃π,ξ is a measure, but not a distribution, as it is not normalized due to
the presence of the mentioned discount factor. Furthermore, this distribution ignores
the states visited during the persistence, but only considers the final state, regardless
of the number of steps needed to reach it. The related normalized distribution trivially
consists of the same definition without the discount factor:

pπ,ξ(·|s) =
∫

A
π( da|s)

∫

K
ξ( dk|s, a)Pk(·|s, a) (D.3)

In the following sections, we will make an abuse of notation and denote as Ex∼p[f(x)] =∫
X
p( dx)f(x), even if p is a positive non-normalized Radon measure.

The consequent t−step transition kernels can be then defined as in the standard way
∀s ∈ S and ∀t ≥ 1:

p̃1π,ξ(·|s) = p̃π,ξ(·|s) (D.4)

p̃t+1
π,ξ (·|s) =

∫

S
p̃tπ,ξ(s

′|s)p̃π,ξ(·|s′)ds′. (D.5)

These sub-distributions can be used to define the discounted state-occupancy measure
δsπ,ξ:

δ̃sπ,ξ(·) =
1− γ
γ

∞∑

t=1

p̃tπ,ξ(·|s) (D.6)

The state-occupancy measure δµπ,ξ is defined ∀s ∈ S as:

δ̃µπ,ξ(s) = (1− γ)µ(s) + γ

∫

S
µ(s0)δ̃

s0
π,ξ(s) ds0 (D.7)

Through the composition of δµπ,ξ, a policy π and persistor ξ, we can also define the
occupancy on S ×A or S ×A×K:

ν̃µπ,ξ(s, a) :=δ̃
µ
π,ξ(s)π(a|s)

ζ̃µπ,ξ(s, a, k) :=δ̃
µ
π,ξ(s)π(a|s)ξ(k|s, a)

We can also consider the distribution ρπ,ξ over the trajectories up to a horizon T . In
this context, we need to consider the invocation times ti, i = 0, . . . , I(T ), that consist
in the time steps in which the action and the persistence are sampled. I(T ) is the total
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number of invocations in the trajectory such that the total steps in the trajectories reach
T , and the set of invocation times is denoted as T = {ti}I(T )−1

i=0 . As a consequence, the
distribution over finite trajectories induced by policy π and persistor ξ is defined as:

ρπ,ξ(τ) = µ(s0)
( I(T )−2∏

i=0

π(ati |sti)ξ(kti |sti , ati)Pkti (sti+1
|sti , ati)

)

π(atI(T )−1
|stI(T )−1

)ξ(ktI(T )−1
|stI(T )−1

, atI(T )−1
)

(D.8)

The related discounted sub-distribution is the discounted version of Equation D.8;
namely:

ρ̃π,ξ(τ) = µ(s0)
( I(T )−2∏

i=0

π(ati |sti)ξ(kti |sti , ati)γktiPkti (sti+1
|sti , ati)

)

π(atI(T )−1
|stI(T )−1

)ξ(ktI(T )−1
|stI(T )−1

, atI(T )−1
)γ

ktI(T )−1

Trivially, it holds that:
ρ̃π,ξ(τ)

ρπ,ξ(τ)
= γT (D.9)

Finally, when expectations are taken into account, we will use the notation τt to denote
the expectation among the space of trajectories T from time 0 up to time t, and with
τi:t 0 < i ≤ t the expectation on (partial) trajectories (si, ai, ki, si+ki , . . . , st, at, kt),
conditioned on si−1, ai−1.

Thanks to all these definitions, it is possible to write the expected return in a compact
form:

Proposition D.1.

J(π, ξ) =
1

1− γ E
s,a,k∼ζ̃µπ,ξ

[rk(s, a)] = E
τ∼ρπ,ξ

[R(τ)] (D.10)

Proof. Starting with the first equality: we start by applying Lemma D.6 using f(s) =
V π,ξ(s) and g(s) = E a∼π(·|s)

k∼ξ(·|s,a)
[rk(s, a)]; consequently:

V π,ξ(s) = g(s) +
γ

1− γ

∫

S
δ̃sπ,ξ(s

′)g(s′) ds′

Hence, the following holds:

J(π, ξ) =

∫

S
µ(s)V π,ξ(s) ds

=

∫

S
µ(s)g(s) ds+

γ

1− γ

∫

S
µ(s0)

∫

S
δ̃s0π,ξ(s)g(s) ds ds0

=

∫

S

[
µ(s) +

γ

1− γ

∫

S
µs0d

s0
π,ξ(s) ds0

]
g(s) ds

=
1

1− γ

∫

S
δ̃µπ,ξ(s)g(s) ds (D.11)

=
1

1− γ

∫

S
δ̃µπ,ξ(s)

∫

A
π( da|s)

∫

K
ξ( dk|s, a)rk(s, a) ds,

205



i
i

“output” — 2023/6/14 — 7:29 — page 206 — #228 i
i

i
i

i
i

where in D.11 we used Equation D.7.
For the second equality, we consider Corollary D.8:

J(π, ξ) =
1

1− γ E
s,a,k∼ζµπ,ξ

[rk(s, a)] =
∞∑

i=0

E
τti∼ρ̃π,ξ

[rkti (sti , ati)]

=
∞∑

i=0

E
τti∼ρπ,ξ

[γtirkti (sti , ati)] (D.12)

= E
τ∼ρπ,ξ

[
∞∑

i=0

γtirkti (sti , ati)],

where in Equation D.12, Lemma D.9 was applied.

D.2 Persistor Gradient Theorem

In this section, we consider parametric policies and parametric persistors: Let Θ ⊆ Rm

and Ω ⊆ Rn be parameter spaces for some m,n ∈ N. The set of policies that can be
included is in the class ΠΘ = {πθ : S → ∆A|θ ∈ Θ}. In the same way, ΞΩ = {ξω :
S ×A → ∆K|ω ∈ Ω} is the persistor class parametrized by Ω. A very important result
in standard policy-based RL is Policy Gradient Theorem (Theorem 3.8). In the same
fashion, we can extend the gradient computation to the persistor.

Notation in the following, we will often abbreviate the dependence to πθ and ξω re-
spectively in θ and ω. For example, J(πθ, ξω) will be denoted as J(θ,ω) and δ̃πθ ,ξω is
abbreviated into δ̃θ,ω.

Theorem D.2 (Persistor-Policy Gradient Theorem). LetM be an MDP. Let πθ : S →
∆A be differentiable w.r.t. θ, and ξω : S ×A → ∆K be differentiable w.r.t. ω. Then:

∇θJ(θ,ω) =
1

1− γ

∫

S
δ̃µθ,ω( ds)

∫

A
πθ( da|s)

∫

K
ξω( dk|s, a)∇θ log πθ(a|s) (D.13)

∇ωJ(θ,ω) =
1

1− γ

∫

S
δ̃µθ,ω( ds)

∫

A
πθ( da|s)

∫

K
ξω( dk|s, a)∇ω log ξω(k|s, a)

(D.14)

Proof. Trivially, taking into account the Bellman Expectation Equation in D.1, we ob-
tain, for all s ∈ S, a ∈ A, k ∈ K:

∇θQ
ω(s, a, k) = ∇θ

[
Rk(s, a) + γk

∫

S
Pk( ds

′|s, a)V ω(s′)
]

= γk
∫

S
Pk( ds

′|s, a)∇θV
θ,ω(s′)

206



i
i

“output” — 2023/6/14 — 7:29 — page 207 — #229 i
i

i
i

i
i

D.2. Persistor Gradient Theorem

and the same holds for the gradient w.r.t. ω. Moreover, for all s ∈ S:

∇θV
θ,ω(s) = ∇θ

∫

A
πθ( da|s)

∫

K
ξω( dk|s, a)Q(s, a, k)

︸ ︷︷ ︸
:=Uθ,ω(s,a)

=

∫

A
∇θπθ( da|s)Uθ,ω(s, a)

︸ ︷︷ ︸
:=H(s)

+

∫

A
πθ( da|s)

∫

K
ξω( dk|s, a)∇θQ

θ,ω(s, a, k)

= H(s) +

∫

A
πθ( da|s)

∫

K
ξω( dk|s, a)γk

∫

S
Pk( ds

′|s, a)∇θV
θ,ω(s′)

= H(s) +

∫

S
p̃θ,ω( ds

′|s)∇θV
θ,ω(s′)

= H(s) +
γ

1− γ

∫

S
δ̃sθ,ω( ds

′)

∫

A
∇θπθ( da|s′)Uθ,ω(s′, a) (D.15)

= H(s) +
γ

1− γ

∫

S
δ̃sθ,ω( ds

′)H(s′),

where in D.15 we used Lemma D.6. Analogously:

∇ωV
θ,ω(s) = ∇ω

∫

A
πθ( da|s)

∫

K
ξω( dk|s, a)Q(s, a, k)

=

∫

A
πθ( da|s)

∫

K
∇ωξω( dk|s, a)Qθ,ω(s, a, k)

︸ ︷︷ ︸
:=M(s)

+

∫

S
p̃θ,ω( ds

′|s)∇ωV
θ,ω(s′)

=M(s) +
γ

1− γ

∫

S
δ̃sθ,ω( ds

′)M(s′). (D.16)

Hence:

∇θJ(θ,ω) = ∇θ

∫

S
µ( ds0)V

θ,ω(s0)

=

∫

S
µ( ds0)∇θV

θ,ω(s0)

=

∫

S
µ( ds0)

[
H(s0) +

γ

1− γ

∫

S
δ̃s0θ,ω( ds)H(s)

]

=
1

1− γ

[
(1− γ)

∫

S
µ( ds)H(s) + γ

∫

S
µ( ds0)

∫

S
δ̃s0θ,ω( ds)H(s)

]

=
1

1− γ

∫

S
δ̃µθ,ω( ds)H(s) (D.17)

=
1

1− γ

∫

S
δ̃µθ,ω( ds)

∫

A
∇θπθ( da|s)Uθ,ω(s, a)

=
1

1− γ

∫

S
δ̃µθ,ω( ds)

∫

A
∇θπθ( da|s)

∫

K
ξω( dk|s, a)Q(s, a, k) (D.18)

where in D.17 we used the definition in Equation D.7, the conclusion is obtained via
log-trick, and the same computations can be done to compute∇ωJ(θ,ω).
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D.3 Persistor Classes

Among the discrete distribution classes, one might select finite support ones; however,
the choice of a maximum persistence can be non trivial, and has to be fine-tuned by
hand. Consequently, we can choose discrete distribution with infinite support. One of
the straightforward choices is the Poisson distribution, with is differentiable and allows
to have a mode greater than 1

D.3.1 Poisson Distribution

In the case of a Poisson distribution, the persistor has a parameter λ, called intensity,
which in our context is parametrized by ω:

ξω(k|s, a) =
λkωe

−λω

k!
, k ∈ N+

This function is easily differentiable and plugged into Persistor Gradient Estimator:

log ξω(k|s, a) = k log(λω)− λω − log(k!)

∇ω log ξω(k|s, a) = (
k

λω
− 1)∇ωλω

Proposition D.3. The KL divergence between two Poisson distributions with parame-
ters λ1 and λ2 is equivalent to λ1 log λ1

λ2
− (λ1 − λ2).

Proof. Let’s call p1 ∼ Poisson(λ1), p2 ∼ Poisson(λ2). then:

DKL(p1||p2) =
∞∑

k=0

p1(k)log
p1(k)

p2(k)

=
∞∑

k=0

λk1e
−λ1

k!
log

λk1e
−λ1

λk2e
−λ2

=
∞∑

k=0

kλk1e
−λ1

k!
log

λ1
λ2
−

∞∑

k=0

p1(k)(λ1 − λ2)

= −(λ1 − λ2) +
∞∑

k=1

kλk1e
−λ1

k!
log

λ1
λ2

= −(λ1 − λ2) + log
λ1
λ2

∞∑

k′=0

λk
′

1 e
−λ1

k′!

= −(λ1 − λ2) + λ1 log
λ1
λ2
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D.4. Performance Difference

D.4 Performance Difference

As a final preliminary result, we can extend the Performance Difference Lemma (The-
orem 3.9) from (Kakade and Langford, 2002) to the persistor case:

Proposition D.4 (Performance difference lemma). LetM be an MDP. Given two policy-
persistor pairs (π′, ξ′) and (π, ξ), the related performance difference can be expressed
as an expected advantage:

J(π′, ξ′)− J(π, ξ) = 1

1− γ E
s,a,k∼ζ̃µ

π′,ξ′

[Aπ,ξ(s, a, k)]

Proof.

J(π′, ξ′) = E
τ∼ρ̃π′,ξ′

[ I(T )−1∑

i=0

γtirkti (sti , ati)± V
π,ξ(so)

]

= E
τ∼ρ̃π′,ξ′

[ I(T )−1∑

i=0

γti
(
rkti (sti , ati) + γktiV π,ξ(sti+1

)− V π,ξ(sti)
)]

+ J(π, ξ)

= E
τ∼ρ̃π′,ξ′

[ I(T )−1∑

i=0

γtiAπ,ξ(sti , ati , kti)
]
+ J(π, ξ)

= E
τ∼ρ̃π′,ξ′

[ I(T )−1∑

i=0

γtiAπ,ξ(sti , ati , kti)
]
+ J(π, ξ)

=
1

1− γ E
s,a,k∼ζ̃µ

π′,ξ′

[
Aπ,ξ(s, a, k)

]
+ J(π, ξ), (D.19)

where the last equality derives from Lemma D.9 and Corollary D.8.

While this Lemma is the direct consequence of the classic performance difference
lemma (Kakade and Langford, 2002), there is an important variation: the advantage of
π, ξ is evaluated on the trajectories sampled by (π′, ξ′), and the consequent invocation
times can be drastically changed.

D.5 Useful Lemmas

Lemma D.5 (from Lemma B.2 in Papini (2021)). ∀s0 ∈ S:

δ̃s0π,ξ(·) =
1− γ
γ

p̃π,ξ(·|s0) +
∫

S
δ̃s0π,ξ( ds)p̃π,ξ(·|s)

δ̃µπ,ξ(·) = (1− γ)µ(·) + γ

∫

S
δ̃µπ,ξ( ds)p̃π,ξ(·|s)

(D.20)
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Proof.

γ

∫

S
δ̃s0π,ξ( ds)p̃π,ξ(·|s) = (1− γ)

∫

S

∞∑

t=1

p̃tπ,ξ( ds|s0)p̃π,ξ(·|s)

= (1− γ)
∞∑

t=1

∫

S
p̃tπ,ξ( ds|s0)p̃π,ξ(·|s)

= (1− γ)
∞∑

t=1

p̃t+1
π,ξ (·|s0)

= (1− γ)
∞∑

t=1

p̃tπ,ξ(·|s0)− (1− γ)p̃π,ξ(·|s0)

= γδ̃s0π,ξ(·)− (1− γ)p̃π,ξ(·|s0)

Lemma D.6 (From Lemma 2.1 in Papini (2021)). Let f be any integrable function on
S satisfying the following recursive equation:

f(s) = g(s) +

∫

S
p̃π,ξ( ds

′|s)f(s′)

Then,

f(s) = g(s) +
γ

1− γ

∫

S
δ̃sπ,ξ( ds

′)g(s′) (D.21)

Proof.
∫

S
δ̃sπ,ξ( ds

′)g(s′) =

∫

S
δ̃sπ,ξ( ds

′)f(s′)−
∫

S
δ̃sπ,ξ( ds

′)

∫

S
p̃π,ξ( ds

′′|s′)f(s′′)

=

∫

S
δ̃sπ,ξ( ds

′)f(s′)−
∫

S

[ ∫

S
δ̃sπ,ξ( ds

′)p̃π,ξ( ds
′′|s′)

]
f(s′′)

=

∫

S
δ̃sπ,ξ( ds

′)f(s′)−
∫

S

[
δ̃sπ,ξ(s

′)− 1− γ
γ

p̃π,ξ( ds
′′|s′)

]
f(s′′)

(D.22)

=
1− γ
γ

∫

S
p̃π,ξ( ds

′′|s′)f(s′′) = 1− γ
γ

(
f(s)− g(s)

)

where D.22 comes from Lemma D.5

Lemma D.7. Let f be any integrable function on S
∞∑

i=0

E
τt∼ρ̃π,ξ

[f(sti)] =
1

1− γ E
s∼δ̃µπ,ξ

[
f(s)

]
(D.23)
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Proof.
∞∑

i=0

E
τt∼ρ̃π,ξ

[f(sti)] =

∫

S

[
µ(s) +

∫

S
µ(s0)

∞∑

t=1

p̃tπ,ξ(s|s0) ds0
]
f(s) ds

=

∫

S

[
µ(s) +

∫

S
µ(s0)

γ

1− γ δ̃
s0
π,ξ(s) ds0

]
f(s) ds

=
1

1− γ

∫

S

[
(1− γ)µ(s) + γ

∫

S
µ(s0)δ̃

s0
π,ξ(s) ds0

]
f(s) ds

=
1

1− γ

∫

S
δ̃µπ,ξ( ds)f(s); (D.24)

where D.24 comes from Equation D.7.

Corollary D.8. Let f be any integrable function on S×A and g any integrable function
on S ×A×K.

∞∑

i=0

E
τti∼ρ̃π,ξ

[f(sti , ati)] =
1

1− γ E
s,a∼ν̃µπ,ξ

[
f(s, a)

]

∞∑

i=0

E
τti∼ρ̃π,ξ

[g(sti , ati , kti)] =
1

1− γ E
s,a,k∼ζ̃µπ,ξ

[
g(s, a, k)

]

Proof.
∞∑

i=0

E
τti∼ρ̃π,ξ

[f(sti , ati)] =
∞∑

i=0

E
τti∼ρ̃π,ξ

[ E
a∼π(·|sti )

[f(sti , a)]]

=
1

1− γ E
s∼δ̃µπ,ξ

[
E

a∼π(·|s)
[f(s, a)]

]

=
1

1− γ

∫

S
δ̃µπ,ξ( ds)

∫

A
π( da|s)f(s, a) = 1

1− γ E
(s,a)∼ν̃µπ,ξ

[f(s, a)]

∞∑

i=0

E
τti∼ρ̃π,ξ

[g(sti , ati , kti)] =
∞∑

i=0

E
τti∼ρ̃π,ξ

[
E

a∼π(·|sti )

[
E

k∼ξ(·|sti ,a)
[g(sti , a, k)]

]]

=
1

1− γ E
s∼δ̃µπ,ξ

[
E

a∼π(·|s)
[ E
k∼ξ(·|s,a)

[g(s, a, k)]

]

=
1

1− γ

∫

S
δ̃µπ,ξ( ds)

∫

A
π( da|s)

∫

K
ξ( dk|s, a)g(s, a, k)

=
1

1− γ E
(s,a,k)∼ζ̃µπ,ξ

[g(s, a, k)]

Lemma D.9. Let f be any integrable function on S ×A×K:

E
τ∼ρ̃π,ξ

[ I(T )−1∑

i=0

f(sti , ati , kti)] = E
τ∼ρ̃π,ξ

[ I(T )−1∑

i=0

γtif(sti , ati , kti)]
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Proof.

E
τ∼ρ̃π,ξ

[ I(T )−1∑

i=0

f(sti , ati , kti)] =
T−1∑

t=0

E
τt∼ρ̃π,ξ

[
1t∈Tf(st, at, kt)

]

=
T−1∑

t=0

E
τt∼ρπ,ξ

[
ρ̃π,ξ(τt)

ρπ,ξ(τt)
1t∈Tf(st, at, kt)

]

=
T−1∑

t=0

E
τt∼ρπ,ξ

[
γt1t∈Tf(st, at, kt)

]
(D.25)

= E
τ∼ρπ,ξ

[ I(T )−1∑

i=0

γtif(sti , ati , kti)],

where D.25 derives from D.9.
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Hayes, F. Heintz, P. Mannion, P. J. Libin, et al. Scalar reward is not enough: A
response to silver, singh, precup and sutton (2021). Autonomous Agents and Multi-
Agent Systems, 36(2):1–19, 2022.

H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-
learning. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1), 2016.
doi: 10.1609/aaai.v30i1.10295.

228



i
i

“output” — 2023/6/14 — 7:29 — page 229 — #251 i
i

i
i

i
i

BIBLIOGRAPHY

H. Van Seijen, A. R. Mahmood, P. M. Pilarski, M. C. Machado, and R. S. Sutton. True
online temporal-difference learning. The Journal of Machine Learning Research, 17
(1):5057–5096, 2016.

J. Vanschoren. Meta-learning: A survey. arXiv preprint arXiv:1810.03548, 2018.

T. Wang, M. Bowling, and D. Schuurmans. Dual representations for dynamic program-
ming and reinforcement learning. In 2007 IEEE International Symposium on Ap-
proximate Dynamic Programming and Reinforcement Learning, pages 44–51. IEEE,
2007.

Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas. Dueling network
architectures for deep reinforcement learning. In M. F. Balcan and K. Q. Weinberger,
editors, Proceedings of The 33rd International Conference on Machine Learning,
volume 48 of Proceedings of Machine Learning Research, pages 1995–2003, New
York, New York, USA, 20–22 Jun 2016. PMLR.

C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis, King’s College,
University of Cambridge, 1989.

H. J. Weerts, A. C. Mueller, and J. Vanschoren. Importance of tuning hyperparameters
of machine learning algorithms. arXiv preprint arXiv:2007.07588, 2020.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3-4):229–256, 1992. Publisher: Springer.

C. Xu, T. Qin, G. Wang, and T.-Y. Liu. Reinforcement learning for learning rate control.
arXiv preprint arXiv:1705.11159, 2017.

R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transactions on neural
networks, 16(3):645–678, 2005.

Z. Xu, H. P. van Hasselt, and D. Silver. Meta-gradient reinforcement learning. Advances
in neural information processing systems, 31, 2018.

Y. Ye. The simplex and policy-iteration methods are strongly polynomial for the
markov decision problem with a fixed discount rate. Mathematics of Operations
Research, 36(4):593–603, 2011.

C. Yildiz, M. Heinonen, and H. Lähdesmäki. Continuous-time model-based reinforce-
ment learning. In International Conference on Machine Learning, pages 12009–
12018. PMLR, 2021.

H. Yu, W. Xu, and H. Zhang. Taac: Temporally abstract actor-critic for continuous
control. Advances in Neural Information Processing Systems (NeurIPS), 34, 2021.

J. Yu, D. Aberdeen, and N. N. Schraudolph. Fast online policy gradient learning with
smd gain vector adaptation. In Advances in neural information processing systems,
pages 1185–1192, 2006.

229



i
i

“output” — 2023/6/14 — 7:29 — page 230 — #252 i
i

i
i

i
i

Y. Zhu, T. Hayashi, and Y. Ohsawa. Gradient descent optimization by reinforcement
learning. In The 33rd Annual Conference of the Japanese Society for Artificial Intel-
ligence, 2019.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

230


	List of Tables
	List of Figures
	List of Algorithms
	Glossary
	List of Symbols
	Introduction
	Reinforcement Learning: Learning to Act
	Motivations and Research Problems
	Original Contribution
	Structure and Content Outline

	Foundations of Reinforcement Learning
	Introduction
	Markov Decision Processes
	Interaction
	MDP Extensions
	Trajectories and Return
	Policies

	Expected Return and Value Functions
	Bellman Equations
	Optimality Criteria

	Dynamic Programming
	Value Iteration
	Policy Iteration
	Linear Programming Method


	Reinforcement Learning
	Introduction
	A Taxonomy for Reinforcement Learning Algorithms
	Policy Evaluation
	Monte Carlo Prediction
	Temporal Difference Learning

	Value-Based Control
	SARSA
	Q-learning
	Approximate Value Iteration

	Policy Search
	Trust-Region Update

	Lipschitz MDP

	I Hyperparameter Optimization through Meta Reinforcement Learning
	Hyperparameter Optimization as a Sequential Decision Problem: Meta Learning the Step Size
	Introduction
	Motivations
	Related Work
	Meta-MDP
	Context Lipschitz Continuity
	Fitted Q-Iteration on Meta-MDP
	Experimental Evaluation
	Conclusions

	Trust Region Meta Learning for Policy Optimization
	Introduction
	Motivations
	Trust Region Policy Optimization.
	Information Theory

	Methodology
	Optimizing the KL Constraint through Meta-MDPs

	Meta-Features Estimation
	Density and Volumes Estimation
	KNN-Estimator

	Experiments
	Conclusions


	II Dynamic Step and Control Frequency
	Control Frequency Adaptation via Action Persistence
	Introduction
	Motivations
	Related Work
	Persisting Actions in MDPs
	Duality of Action Persistence
	Persistent Bellman Operators

	Bounding the Performance Loss
	Persistent Fitted Q-Iteration
	Theoretical Analysis

	Persistence Selection
	Experimental Evaluation
	Application to Foreign Exchange Trading
	MDP Model for FX Trading

	Conclusions

	All-persistence Bellman Update
	Introduction
	Motivations
	Related Work
	All-Persistence Bellman Update
	Persistence Options
	All-Persistence Bellman Operator

	Persistent Q-learning
	Empirical Advantages of Persistence
	Persistent Deep Networks
	Experimental Evaluation
	Conclusions

	Discussion and Conclusions 
	Hyperparameter Optimization through Meta RL
	Limitations and Future Works

	Dynamic Step and Control Frequency
	Limitations and Future Works

	Final Remarks


	Appendices
	Additional Results of Chapter 4
	Proofs
	Lipschitz Continuity of the Action-Value Function
	Lipschitz Continuity of the Gradient

	Experiment Details
	Navigation2D Description
	Minigolf Description
	CartPole Description
	Half Cheetah Description
	Metagrad Implementation

	Other Results
	Meta Cartpole SwingUp
	Comparison among MetaFQI Iterations.
	Comparison with Learning Rate schedules: Details 
	Extension of Trajectory Length
	Experiments with Fixed Contexts
	Selection of a Single Learning Rate


	Additional Results of Chapter 6
	Proofs
	Proofs of Section 6.5
	Proofs of Section 6.6
	Proofs of Section 6.7

	Details on Bounding the Performance Loss (section 6.5)
	On Using Divergences Other than the Kantorovich
	Time–Lipschitz Continuity for Dynamical Systems

	Details on Experimental Evaluation
	Experimental Setting
	Additional Plots

	Preliminary Results on Open Questions
	Improving Exploration with Persistence


	Additional Results of Chapter 7
	Discussion on the Advantages of Dynamic Persistence
	Details on Persistent Markov Chains and Kemeny Constant
	Further Exploration Advantages: MountainCar
	Synchronous Update: Additional Results

	Details on Experimental Evaluation
	Tabular Environments
	MountainCar
	Atari Games

	Additional Results
	Tabular Environments
	PerDQN Additional Results
	PerQ-learning: computational times
	Experiments with the same Number of Updates and Comparison with ez-greedy Exploration


	Persistor Policy Gradient
	Occupancy Measures
	Persistor Gradient Theorem
	Persistor Classes
	Poisson Distribution

	Performance Difference
	Useful Lemmas



