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Sommario

Il presente lavoro di tesi si propone come lo sviluppo di un nuovo solutore in Open-
FOAM in grado di simulare sistemi in cui vigono le leggi della Magnetoidrodinamica
(MHD) comprimibile, con la possibilità di impiegare modelli di turbolenza se necessari.
La motivazione principale è da ricercare nell’assenza di tale strumento nella corrente
distribuzione di OpenFOAM, mentre l’importanza degli effetti comprimibilità sui
sistemi MHD è già stata studiata e confermata.
A tale scopo, si è deciso di modificare un solutore per la fluidodinamica comprimibile
aggiungendoci tutti gli elementi necessari per renderlo adatto allo studio di sistemi
MHD. A seguito dello sviluppo, il nuovo solutore è stato verificato con successo sul
caso test noto come flusso di Hartmann, ottenendo quindi la conferma della sua
capacità di trattare gli effetti magnetici.
Il secondo obiettivo è stato l’utilizzo di modelli di turbolenza in un sistema MHD,
così da verificare la bontà del nuovo solutore sotto questo aspetto. Per questa ragione,
si è scelto di studiare il flusso di un fluido conduttivo attraverso un canale con al-
largamento a gradino, mentre sotto l’effetto di un campo magnetico esterno. Una
preliminare analisi di mesh sensitivity ha dato conferma del fatto che un modello di
turbolenza fosse necessario per raggiungere un buon compromesso tra accuratezza
nella riproduzione del campo di moto turbolento e tempo necessario allo svolgimento
dei calcoli. I modelli noti come Reynolds Averaged Simulation (RAS) e Large Eddy
Simulation (LES) sono stati quindi testati, ma soltanto il secondo ha restituito risultati
interessanti.
Infine, è stato deciso di concludere con lo sviluppo di un modello di ordine ridotto
del sistema fisico in esame, così da rendere più veloce qualsiasi tipo di sviluppo
futuro del lavoro corrente. L’algoritmo noto come Dynamic Mode Decomposition è
stato quindi applicato ad alcune delle simulazioni, i cui risultati sono stati ricostruiti,
grazie all’algoritmo stesso, in tempi decisamente convenienti e con un buon grado di
accuratezza.
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Abstract

This thesis work is centered around the development of a new OpenFOAM solver which
treats compressible Magnetohydrodynamics (MHD), combined with the possibility to
employ turbulence models in case of need. The main motivation lies in the absence of
such tool in the current OpenFOAM distribution, while the effect of compressibility
on MHD systems has already been proven to be relevant.
For such purpose, it was chosen to modify a solver which treats compressible fluid
dynamics by adding all the physics pertaining to MHD. It was then successfully verified
on the Hartmann flow case, thus proving the accuracy of the solver in reproducing
magnetic effects.
The second objective was then the employment of turbulence models in an MHD
system in order to verify the reliability of the new solver under this aspect. For this
reason, the flow of a conductive fluid across a backward facing step under the effect
of an external magnetic field was chosen. A preliminary mesh sensitivity analysis
confirmed that a turbulence model was needed in order to gain a nice compromise
between accuracy in the simulation of the turbulence field and computational time.
Both Reynolds Averaged Simulation (RAS) and Large Eddy Simulation (LES) models
were tested, but only the latter gave interesting results.
At last, it was decided that a reduced-order model of the system could be of great help
for any kind of future development. So, the Dynamic Mode Decomposition algorithm
was applied to some of the most accurate simulations and, starting from that, the
results were reconstructed with a good grade of precision and in a very convenient
amount of time.
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Estratto

Il lavoro di tesi proposto ha come obiettivo principale lo sviluppo di uno strumento in
grado di simulare sistemi fisici rispondenti alle leggi della Magnetoidrodinamica (MHD)
comprimibile, con il supporto di modelli di turbolenza se necessario. Tale strumento
vuole essere in grado di trovare applicazione in ambiti generali, dove ad esempio la
geometria può essere qualsiasi. OpenFOAM si dimostra il punto di partenza adatto in
questo contesto, permettendo di sviluppare un solutore ad hoc e mantenendo quindi
le caratteristiche desiderate. Oltre a tale proposito, si rende necessario lo sviluppo
di un modello in grado di ridurre la dimensionalità del sistema fisico sotto esame,
così da ridurre i tempi di calcolo delle simulazioni più complesse (i quali possono
risultare parecchio lunghi). L’algoritmo noto come Dynamic Mode Decomposition è
stato scelto come strumento adatto a tale scopo, vista in particolare l’immediatezza
del suo utilizzo. In questo caso, Matlab risulta l’ambiente migliore in cui operare tale
riduzione di dimensionalità, in primo luogo a causa della sua capacità di comunicazione
con OpenFOAM.

Sviluppo e verifica di un nuovo solutore MHD per
OpenFOAM
Nel primo capitolo, il nuovo solutore OpenFOAM viene prima scritto e in seguito
verificato con un caso test. Il punto di partenza è la formulazione del problema
fisico come sistema di equazioni differenziali alle derivate parziali, il quale risulta una
combinazione delle equazioni della fluidodinamica comprimibile e delle equazioni di
Maxwell. A seguito dell’applicazione delle tradizionali ipotesi pertinenti all’MHD
(ad esempio la trascurabilità del campo elettrico), si ottiene un sistema composto
dalle equazioni della fluidodinamica in cui l’accoppiamento con la parte magnetica è
dato dalla forza di Lorentz nell’equazione del momento, dall’effetto Joule in quella
dell’energia e dalla cosiddetta equazione dell’induzione per l’MHD:

∂ ~B

∂t
= ∇× (~u× ~B) + η

µB
∆ ~B (1)

ix



Il sistema completo è il seguente:

∂ρ

∂t
+∇ · (ρ~u) = 0

ρ
∂~u

∂t
+ ρ(~u · ∇)~u = −∇p+∇ · τ + ρ~g +

(
1
µB
∇× ~B

)
× ~B

ρ
∂e

∂t
+ ρ(~u · ∇)e+ ρ

∂k

∂t
+ ρ(~u · ∇)k = −∇ · ~Q−∇p · ~u− p(∇ · ~u)+

+ (∇ · τ) · ~u+ τ : ∇~u+ ρ~g · ~u+ SH + η

µ2
B

(∇× ~B)2

ρ = ρ(p, e)

τ = µ
(
∇~u+ (∇~u)T

)
− 2

3µ(∇ · ~u I)

∂ ~B

∂t
= ∇× (~u× ~B) + η

µB
∆ ~B

(2)

in cui le incognite sono: la densità di massa ρ, la velocità ~u, la pressione p, l’energia
interna e ed il campo magnetico ~B.
A questo punto è necessario implementare (2) in OpenFOAM. Il procedimento più
semplice consiste nel partire da un solutore in grado di trattare i fluidi nella maniera
più generale possibile ed aggiungerci l’accoppiamento con il campo magnetico. A tale
scopo, è stato scelto rhoPimpleFoam, il quale tratta fluidi comprimibili utilizzando, se
necessario, modelli di turbolenza quali LES e RAS. Il primo passo prevede l’aggiunta
dell’equazione dell’induzione alla fine del file rhoPimpleFoam.C, così che venga svolto
l’aggiornamento di ~B a seguito di quello delle altre grandezze.

while (bpiso.correct())
{

fvVectorMatrix BEqn
(

fvm::ddt(B)
- fvm::laplacian(DB, B)
- fvc::curl(U ^ B)

);

BEqn.solve();

#include "magneticFieldErr.H"
}

dove DB rappresenta 1/(σµB), σ = 1/η. Il viene poi completato con l’aggiunta della
forza di Lorentz e dell’effetto Joule. Viene riportata la loro trasposizione in codice.(

1
µB
∇× ~B

)
× ~B −→ DBU*(fvc::curl(B) ^ B) (3)

η

µ2
B

(∇× ~B)2 −→ ETAMU*magSqr(fvc::curl(B)) (4)
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dove DBU = 1/µB ed ETAMU = η/µ2
B.

La bontà dell’implementazione della parte magnetica deve essere ora verificata. A tal
proposito, verrà utilizzato come caso test il cosiddetto flusso di Hartmann, il quale
consiste nel moto di un fluido conduttivo attraverso due pareti parallele, mentre sotto
l’azione di un campo magnetico esterno perpendicolare ad esse. Tale caso è stato
scelto poiché permette di compiere le verifiche necessarie senza bisogno di includere
effetti complessi da simulare, quali ad esempio la comprimibilità. La Figura 1 riporta
una schematizzazione del caso introdotto.

Figure 1. Rappresentazione del flusso di Hartmann. L’orientazione degli assi x e y è riportata.

La peculiarità del sistema fisico sotto esame è l’esistenza di un profilo analitico per
quanto riguarda la componente della velocità parallela al moto:

ux = ux,0
cosh(Ha)− cosh(Ha y

L
)

cosh(Ha)− 1 (5)

Ha ≡ B0L

√
σ

µ
(6)

dove ux,0 è il valore della componente della velocità parallela al moto ed al centro
del canale, L è la semi-distanza tra le pareti e B0 è il modulo del campo magnetico
esterno. Ha è il numero di Hartmann, un gruppo adimensionale importante per il
sistema fisico in esame, insieme al numero di Reynolds:

Re ≡ ρUL

µ
(7)

Tale numero risulta importante in quanto il numero di Hartmann minimo per assicurare
la validità di (5) aumenta all’aumentare del numero di Reynolds. Per questo motivo,
nella verifica del solutore, Re = 100, così da assicurare un flusso laminare anche per
valori bassi di Ha.
I risultati delle simulazioni OpenFOAM, portate a termine col nuovo solutore, sono
esportati in Matlab e confrontati con il profilo dato da (5). La Tabella 1 riporta
l’errore relativo integrato lungo y dei profili di ux ad una data sezione della geometria
per vari numeri di Hartmann, metre la Figura 2 mostra un confronto tra i profili
ottenuti dalle simulazioni OpenFOAM ed i profili analitici.
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numero di Hartmann errore (%)
1 0.0848
5 0.0720
20 0.0555
50 0.0740

Table 1. Errore relativo integrato lungo y dei profili di ux ad una data
sezione della geometria per vari numeri di Hartmann.
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Figure 2. Confronto tra profili analitici (linee continue) e profili OpenFOAM (punti).

Dal grafico emerge un perfetto accordo per un ampio range di valori di Ha, risultato
che conferma la bontà del nuovo solutore implementato.
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Flusso MHD attraverso un allargamento a gradino
A seguito della verifica della parte magnetica, è necessario testare la capacità del
solutore di applicare correttamente i modelli di turbolenza ad un caso di MHD. A
tale scopo, si è optato per lo studio del moto di un fluido conduttore attraverso ad un
canale formato da due pareti parallele, con una delle due che subisce un allargamento
a gradino, mentre sotto l’azione di un campo magnetico esterno perpendicolare sia al
moto del fluido che alle pareti stesse. Figura 3 mostra una semplice rappresentazione
del caso in esame.

Figure 3. Rappresentazione del flusso attraverso un allargamento a gradino. Le frecce
rappresentano schematicamente il moto del fluido.

Come studiato da [Trotta, 2019], l’effetto del campo magnetico esterno su tale sistema
fisico è stabilizzante, proprietà che si traduce nella soppressione del moto turbolento.
La Figura 4 mostra tale effetto.

(a) Ha = 0

(b) Ha = 40

(c) Ha = 100

Figure 4. Confronto tra tre casi con valori del numero di Hatmann differenti.

Nel caso in esame, Re = 10000, così da assicurare lo sviluppo di un regime di moto
turbolento per il caso senza campo magnetico.
Il primo passo è lo studio della soluzione del problema al variare del livello di rifinizione
della mesh, così da avere un punto di riferimento per la successiva applicazione dei
modelli di turbolenza. Ne vengono impiegate 4, denominate in base al numero di
elementi come: lasca, fine, molto fine ed estremamente fine. Come primo approccio, si
affronta il problema come bidimensionale, ipotesi utilizzata anche da [Tano-Retamales
et al., 2019], da cui sono ispirate anche le dimensioni della geometria. Tale sempli-
ficazione è accettabile e porta a risultati accurati grazie alla simmetria planare del
sistema. La Figura 5 riporta il confronto tra i profili di ux a 6 cm dal gradino ottenuti
dalle diverse mesh.
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Figure 5. Confronto tra i profili di ux a 6 cm dallo step ottenuti dalle diverse mesh.

Tutte le simulazioni sono state eseguite con Re = 10000 e Ha = 24. Il profilo di ux
ottenuto dalla mesh più rifinita mostra delle oscillazioni anche negli istanti finali, in cui
gli altri profili sono già stabilizzati. Il caso si presta quindi all’impiego di un modello
di turbolenza, così da poter simulare la presenza del campo di moto turbolento senza
bisogno di raffinare eccessivamente la mesh, operazione che costa molto a livello di
durata della simulazione.
L’approccio noto come Simulazione con equazioni mediate alla Reynolds (abbreviato
con RAS da Reynolds Averaged Simulation) viene testato, ma con risultati mediocri.
Il secondo tentativo, la Simulazione a Grandi Vortici (abbreviato con LES da Large
Eddy Simulation), porta invece ad ottimi risultati. Tale modello si bassa sul filtraggio
delle equazioni tramite il seguente operatore:

f̃(~x, t) =
∫
V
G(~x, ~x′,∆)f(~x′, t) d~x′ (8)

dove f è una generica funzione e G la funzione filtro. In questo modo, si può decidere
di eliminare parte dell’informazione dalla soluzione (tutti i fenomeni con scale di
lunghezza caratteristiche minori di ∆) mantenendo però l’influenza di tale parte
sull’informazione rimanente. Questo processo ci permette di ottenere un problema
per le sole grandezze filtrate, eccetto per la seguente, la quale compare nell’equazione
del momento:

τSGS ≡ ~̃u⊗ ~u− ~̃u⊗ ~̃u (9)
Tale grandezza prende il nome di tensore degli sforzi sottogriglia (SGS da sub-grid
scale tensor) ed è la responsabile della conservazione dell’influenza delle scale non
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risolte su quelle risolte. La modellizzazione di tale termine si può affrontare con
approcci diversi: il più comune è il cosiddetto modello di Smagorinsky, ma nel caso in
esame il WALE (Wall Adaptive Local Eddy-viscosity) risulta più consono.
Prima di procedere coi risultati, è importante sottolineare che le LES sono obbli-
gatoriamente tridimensionali poiché richiedono che il campo di moto turbolento si
sviluppi nel modo più realistico possibile. Tra i vari ottenuti, i risultati più interessanti
riguardano: lo studio degli effetti 3D (l’importanza della componente uz della velocità),
lo studio del tempo necessario alla laminarizzazione (calcolato grazie ad uno script
Matlab in grado di leggere i profili estratti da simulazioni OpenFOAM) e lo studio
della lunghezza di riattacco (la distanza tra il gradino e il punto in cui la vena fluida si
riattacca a parete, visibile in (b) e (c) in Figura 4). Figura 6 mostra il primo risultato,
mentre Figura 7 gli altri due.
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Figure 6. Profili di ux, uy e uz presi a 6 cm dal gradino.

I profili sono estratti da una simulazione in cui Re = 10000 e Ha = 27. Come è
possibile notare, posizionandosi sufficientemente vicini al gradino, durante il transitorio,
il valore di uz risulta paragonabile a quello delle altre componenti, per poi appiattirsi a
0 una volta raggiunto lo stato stazionario. Ciò implica che, per assicurarsi la massima
accuratezza, lo studio della dinamica del sistema in oggetto è da affrontare in una
geometria 3D. L’unico caso in cui il 2D può ritenersi sufficiente è nell’analisi del solo
stato stazionario finale.
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Figure 7. Grafici riportanti i valori ricavati dalle simulazioni OpenFOAM per il tempo di
laminarizzazione e la lunghezza di riattacco, insieme alla curva interpolante, al variare

del numero di Hartmann.

Anche in questo caso, Re = 10000 per ogni valore riportato. L’interpolante è una
legge di potenza in entrambi i casi:

tl(Ha) = 9.38 ∗ 1010Ha−7.197 + 0.05656 (10)

r(Ha) = 1124Ha−1.579 + 0.4442 (11)
Tra le due grandezze, il tempo di laminarizzazione risulta sicuramente il più delicato,
in quanto la sua determinazione dipende dal tempo tra due salvataggi dei campi di
moto da parte di OpenFOAM: più tale tempo diviene breve, più spazio su disco sarà
occupato dai risultati, fattore che può risultare limitante.

Riduzione d’ordine tramite Dynamic Mode Decom-
position
Come ultimo obiettivo, si vuole applicare l’algoritmo denominato Dynamic Mode
Decomposition (DMD) ad alcune delle simulazioni portate a termine precedentemente.
Il metodo prevede, in primis, la raccolta delle cosiddette snapshot del sistema (insieme
di dati/misure del sistema ad un dato istante di tempo) come m vettori di stato di
lunghezza n, i quali vanno a formare una matrice n×m:

Xm
1 = {x1,x2, ...,xm} (12)

Ogni vettore x ∈ Rn, k = 1, 2, ...,m, corrisponde allo stato del sistema ad una distanza
temporale ∆t dal precedente. Si ritiene importante sottolineare che i vettori di stato
possono essere sia valori estratti da simulazioni che dati raccolti da esperimenti. Nel
caso in esame, gli xk conterranno il campo di velocità in ogni cella della mesh ad un
dato istante temporale.
A questo punto, si assume l’esistenza di una matrice A tale per cui

xk+1 = Axk (13)
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In sintesi, (13) è la versione linearizzata e discretizzata in tempo dell’equazione
evolutiva di un qualsivoglia sistema fisico. La DMD punta ad ottenere A, la quale
avanza lo stato del sistema di un ∆t. Tale matrice rende possibile lo studio della
dinamica del sistema a livello modale, oltre a permetterne previsioni future. In
particolare, in questo secondo caso, l’utilizzo della DMD porterebbe ad una drastica
riduzione dei tempi di calcolo poiché sarebbe possibile avanzare in tempo la soluzione
senza bisogno di proseguire con lunghe simulazioni.
Il punto di partenza è l’applicazione della Singular Value Decomposition alla matrice
Xm−1

1 :
Xm−1

1 ≈ USV∗ (14)
La matrice S è diagonale e contiene i cosiddetti valori singolari del sistema: più uno
di tali valori è grande, maggiore sarà l’importanza del suo modo associato. Poiché
spesso solo alcuni di essi risultano rilevanti, si tende a selezionale solo quelli con valore
maggiore ed a scartare buona parte degli altri. Deciso il numero r < m− 1 di modi
da tenere, è necessario riscalare le tre matrici U, V ed S di conseguenza. Questa
operazione ha il vantaggio di aumentare la velocità di calcolo dei passaggi successivi.
A questo punto, si può ottenere A:

A = Xm
2 VS−1U∗ (15)

Poiché tale matrice può essere molto grande, nella pratica si lavora con una sua
versione di ordine ridotto, data da:

Â = U∗AU = U∗Xm
2 VS−1 (16)

Tramite lo studio di autovalori e autovettori di Â, è possibile effettuare analisi modale e
ricostruzione del problema continuo, eventualmente con previsione della sua evoluzione
futura.
L’algoritmo è stato implementato in Matlab, con l’obiettivo iniziale di ricostruire il
campo di velocità di alcune simulazioni, così da verificare la bontà del metodo per il
caso in esame. A tal proposito, è stato utilizzato la seguente formulazione di errore
tra campo originale e campo ricostruito.

err(t) =

√√√√〈x(t)− xDMD(t),x(t)− xDMD(t)〉
〈x(t),x(t)〉 (17)

dove le parentesi 〈•〉 indicano il prodotto scalare. In questo modo, si avrà un valore
dell’errore per ogni istante di tempo.
L’algoritmo è stato applicato ad una simulazione caratterizzata da un transitorio di
circa 3 secondi con l’obiettivo di studiare una delle caratteristiche più importanti del
metodo: la necessità di trovare il ∆t ottimale per ottenere risultati il più accurati
possibile. In Figura 8 è presente il confronto tra il campo di velocità dato da una delle
simulazioni (sopra per ogni istante di tempo) e la corrispondente versione ricostruita
con la DMD (sotto).

xvii



(a) t = 0.1 s

(b) t = 1 s

(c) t = 3.9 s

Figure 8. Confronto tra tre snapshot prese a inizio simulazione, durante il transitorio ed alla fine.

I ∆t che sono stati studiati sono 0.1, 0.05 e 0.01 s. Per ognuno di essi, tre valori di r
sono stati testati. Il grafico di seguito riporta il miglior risultato per ogni ∆t.
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Figure 9. Minor errore per i tre time step testati. In ordine di time step decrescente, r vale 38, 77
e 150.

Il ∆t più accurato risulta quindi 0.05 s, con un errore che decresce al di sotto del
6% prima del secondo di simulazione. Il motivo per cui 0.01 s risulta peggiore può
essere dovuto al fatto che la dinamica del sistema si aggiri intorno a costanti di
tempo mediamente maggiori. Un ∆t troppo piccolo porta quindi ad una sovrastima
dei fenomeni più rapidi e contemporaneamente ad una sottostima di quelli più lenti.
Un altro motivo potrebbe risiedere nella numerica, quanto la scomposizione SVD
della matrice Xm−1

1 (di solito molto grande) potrebbe generare modi inesistenti nella
soluzione.
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Conclusioni
Nel lavoro proposto, il più importante elemento di novità introdotto è indubbiamente
il nuovo solutore OpenFOAM, grazie al quale si rende possibile studiare la MHD
comprimibile con il supporto di modelli di turbolenza, se necessari. Tale risultato apre
la strada a simulazioni di sistemi fisici via via più complessi, grazie alla generalità
introdotta dal solutore. Inoltre, il successo dell’applicazione della DMD alle simulazioni
svolte apre alla possibilità di utilizzare un modello ridotto per diminuire sensibilmente
i tempi di calcolo durante lo studio di un qualsivoglia sistema fisico inerente all’ambito
in esame.

xix





Contents

Ringraziamenti iii

Sommario v

Abstract vii

Estratto ix

Contents xxi

List of Symbols xxiii

List of Figures xxvii

List of Tables xxix

Introduction 1

1 Development and verification of a new MHD solver for OpenFOAM 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The governing equations . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Hydrodynamics equations . . . . . . . . . . . . . . . . . . . . 4
1.2.2 MHD equations . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The OpenFOAM code . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Induction Equation of MHD . . . . . . . . . . . . . . . . . . . 8
1.3.2 Momentum conservation equation . . . . . . . . . . . . . . . . 9
1.3.3 Total Energy balance equation . . . . . . . . . . . . . . . . . . 10
1.3.4 Declaration of ~B and new fluid properties . . . . . . . . . . . 11

1.4 Hartmann flow case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 Case presentation . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 OpenFOAM case setup . . . . . . . . . . . . . . . . . . . . . . 15
1.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 MHD flow across a backward facing step 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Mesh sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Mesh definition . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.2 Other case setup differences . . . . . . . . . . . . . . . . . . . 37

xxi



Contents

2.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Reynolds Averaged Simulations . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . 40
2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Large Eddy Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.1 The filtering process . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.2 Smagorinsky model . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.3 WALE model . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.4 OpenFOAM case setup . . . . . . . . . . . . . . . . . . . . . . 45
2.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Dynamic Mode Decomposition approach 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 The DMD algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.1 Steady state scenario . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.2 Turbulent scenario . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Conclusions 71

A Linear stability analysis of two-dimensional simulations 73

Bibliography 78

xxii



List of Symbols

Latin
B magnetic field T

cp specific heat capacity at constant pressure J kg−1 K−1

CS Smagorinsky constant

E electric field V m−1

e specific internal energy J kg−1

g gravitational acceleration constant m s−2

H magnetic field intensity A m−1

Ha Hartmann number

I identity matrix

J electric current density A m−2

k specific kinetic energy J kg−1

kc thermal conductivity W m−1 K−1

L characteristic length m

l characteristic sub-grid scale length m

p pressure Pa

Pr Prandtl number

Q heat flux W m−2

r reattachment length m

Re Reynolds number

Rem magnetic Reynolds number

S strain rate tensor s−1

xxiii



List of Symbols

SH heat source W m−3

T temperature K

tl laminarization time s

U characteristic velocity m s−1

u velocity m s−1

v characteristic sub-grid scale velocity m s−1

w complex time frequency s−1

Greek
αT turbulent thermal diffusivity m2 s−1

αeff effective thermal diffusivity m2 s−1

∆ filter length m

δ Hartmann layer m

δij Kronecker delta

ε absolute permittivity F m−1

η electrical resistivity Ω m

κ turbulent kinetic energy m2 s−2

κSGS sub-grid scale turbulent kinetic energy m2 s−2

Λ Kolmogorov macroscale m

λ Kolmogorov microscale m

µ dynamic viscosity Pa s

µB magnetic permeability H m−1

µT turbulent dynamic viscosity Pa

νT turbulent kinematic viscosity m2 s−1

ω vorticity s−1

ρ mass density kg m−3

ρq electric charge density C m−3

σ electrical conductivity S m−1

xxiv



List of Symbols

τ viscous stress tensor Pa

τR Reynolds stress tensor Pa

τSGS sub-grid scale stress tensor m2 s−2

ξ wave number m−1

Superscripts
′ fluctuating component in Reynolds decomposition

∗ conjugate transpose

† Moore-Penrose pseudoinverse

double tensor

constant component in Reynolds decomposition

→ vector

˜ filtered quantity

xxv





List of Figures

Figure 1 Rappresentazione del flusso di Hartmann. L’orientazione degli
assi x e y è riportata. . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Figure 2 Confronto tra profili analitici (linee continue) e profili Open-
FOAM (punti). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Figure 3 Rappresentazione del flusso attraverso un allargamento a gradino.
Le frecce rappresentano schematicamente il moto del fluido. . . . . . xiii

Figure 4 Confronto tra tre casi con valori del numero di Hatmann differenti. xiii
Figure 5 Confronto tra i profili di ux a 6 cm dallo step ottenuti dalle

diverse mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
Figure 6 Profili di ux, uy e uz presi a 6 cm dal gradino. . . . . . . . . . xv
Figure 7 Grafici riportanti i valori ricavati dalle simulazioni OpenFOAM

per il tempo di laminarizzazione e la lunghezza di riattacco, insieme
alla curva interpolante, al variare del numero di Hartmann. . . . . . . xvi

Figure 8 Confronto tra tre snapshot prese a inizio simulazione, durante il
transitorio ed alla fine. . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Figure 9 Minor errore per i tre time step testati. In ordine di time step
decrescente, r vale 38, 77 e 150. . . . . . . . . . . . . . . . . . . . . . xviii

Figure 1.1 PIMPLE algorithm reported as flux diagram . . . . . . . . . . 8
Figure 1.2 Hartmann flow showcase. Axes x and y orientation is shown. . 14
Figure 1.3 Geometry presentation. The names of every boundary are reported 16
Figure 1.4 Section of the mesh, showing the grading of elements close to

walls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 1.5 Comparison between analytical profiles (continuous lines) and

OpenFOAM results (dots). . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 2.1 Section of the backward facing step taken perpendicularly to
walls. Arrows show an idea of the fluid motion. . . . . . . . . . . . . 34

Figure 2.2 Streamlines plot showing recirculating region. Colors show the
magnitude of velocity field, increasing from blue to red. . . . . . . . . 34

Figure 2.3 Comparison between three cases with fixed Re and different Ha. 34
Figure 2.4 Geometry of our case, provided with dimensions and boundary

names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 2.5 Step section of the four meshes. . . . . . . . . . . . . . . . . . 37
Figure 2.6 Comparison between ux profiles taken 6 cm away from the step

for the different meshes. . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 2.7 Comparison between ux profile without model and with RAS

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 2.8 Effect of filtering on a generic one-dimensional function. . . . . 42

xxvii



List of Figures

Figure 2.9 Hartmann number vs laminarization time. . . . . . . . . . . . 49
Figure 2.10 Comparison between ux profile taken 6 cm away from the step

without model and with LES model. . . . . . . . . . . . . . . . . . . 50
Figure 2.11 Profiles of ux, uy and uz taken 6 cm away from the step. . . . 51
Figure 2.12 Profiles of ux, uy and uz taken 27 cm away from the step. . . . 52
Figure 2.13 Hartmann number vs reattachment length. . . . . . . . . . . . 53
Figure 2.14 Comparison between ux profiles taken 6 cm away from the step

without and with mesh refinement. . . . . . . . . . . . . . . . . . . . 54

Figure 3.1 Schematic overview of DMD, proposed by [Kutz et al., 2016],
which shows the application of the algorithm to a fluid-dynamics case:
the flow around a cylinder. The only difference here consists in the fact
that one doesn’t usually construct A, but rather its projection onto
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Introduction

Magnetohydrodynamics (MHD) is the study of the properties and behaviour of
electrically conducting fluids. Examples of such fluids include plasmas, liquid metals,
salt water, and electrolytes. The fundamental concept behind MHD is that magnetic
fields can induce currents in a moving conductive fluid, which in turn polarizes
the fluid and reciprocally changes the magnetic field itself. The set of equations
that describe MHD are a combination of the traditional fluid dynamics ones and
Maxwell’s equations. These differential equations must be solved simultaneously,
either analytically or numerically. Concerning engineering problems, MHD can be
found in different areas. The most famous are nuclear fusion reactors: indeed the
thermonuclear plasma confinement can be studied by employing MHD. It can also
find an application in the modeling of liquid-metal breeding blankets in Tokamaks,
which are the most studied kind of nuclear fusion reactors. Other areas of interest are
plasma propulsion in spacectraft engineering and electromagnetic casting in casting
engineering.
A discrete number of works is present in the literature. [Ferroni, 2012], in his section
’State of the Art’, shows a collection of all the relevant analytical results, as well as
some of the numerical ones. The former are often employed as test cases for the
latter: for example, among them we can find the Hartmann flow case, which will
be widely discussed later on. Concerning numerical simulations, studies of MHD
phenomena have been approached in many ways and with many codes, but, since
we will adopt OpenFOAM as our tool1, our interest is focused on its capabilities. In
most of the past years works, its applications revolved around cases of incompressible2

MHD ( [Ferroni, 2012], [Tassone, 2016], [Dousset, 2009], [Woelck and Brenner, 2017]).
More recently, some other fluid features have been combined with MHD: supersonic
flows ( [Ryakhovskiy and Schmidt, 2016], [Paudel et al., 2019]), thermal effects ( [Mas
de Les Valls et al., 2012]), two-fluid model ( [Bodi et al., 2018]). One aspect we
didn’t find addressed in detail by anyone is the application of turbulence models. In
synthesis, a turbulence model, when applied to fluid dynamics equations, allows to
treat turbulence phenomena avoiding an extreme mesh refinement ( [Woelck and
Brenner, 2017] approaches the problem, but with a solver lacking the option to treat
compressible fluid). This topic will be addressed in more detail later on.
The aim of the work is thus to develop a new solver in OpenFOAM able to treat

1The reason behind choosing OpenFOAM over other codes lies in its open-source nature, which
gives users the freedom to modify its structure.

2When speaking about fluid dynamics in general, incompressible stands for a fluid whose mass
density is considered uniform in time and space: this assumption greatly simplifies the problem by
eliminating some non-linearities and couplings between the governing equations,
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Introduction

compressible Magnetohydrodynamics and perform simulations in any given geometry,
by employing turbulence models in case of need. Two tests are then in need. The
first concerns its capability to correctly treat phenomena purely linked to MHD and
will be the confirmation of the correct implementation of the solver. The other will
be a check of its capability to employ turbulence models efficiently in presence of
MHD phenomena and will be also an opportunity to study a slightly more complex
MHD system. Lastly, a dimensionality reduction algorithm, the Dynamic Mode
Decomposition, will be applied to the simulation resulting from the previous points
in order to obtain a method to save computational time for any kind of future
development.

2



Chapter 1

Development and verification of a
new MHD solver for OpenFOAM

In this chapter, the development of an OpenFOAM solver able to reproduce Mag-
netohydrodynamics (MHD) phenomena is explained. First of all, MHD equations
are presented, underlining their differences with respect to traditional fluid dynamics.
Then, one of the solvers of the 7th OpenFOAM distribution that treats compressible
CFD is selected as starting point and all the required modifications applied. These
revolve around the addition of an evolution equation for the magnetic field, which
will be coupled with fluid dynamics through the Lorentz force and the Joule effect.
The final step consists in the verification of the new solver: the Hartmann flow is
thus presented as a potential benchmark and all the settings for the corresponding
OpenFOAM simulation are explained. At last, the results are imported on Matlab,
where the comparison with the analytical profile that characterizes the velocity field
under the chosen benchmark conditions takes place.

1.1 Introduction
In the first chapter, the development of a new OpenFOAM solver that simulates MHD
phenomena is presented. It must be said that the 7th distribution of OpenFOAM
(the one used in this work) was already supplied with such solver, mhdFoam1, but it
only treats incompressible flows without the possibility to use turbulence models such
as Large Eddy Simulation (LES) or Reynolds Averaged Simulation (RAS). Therefore,
our first aim was to develop a tool which allows the user to study MHD free from
any restriction on the fluid treatment and with the possibility to employ a turbulence
model, if the case requires so. Such innovation can result to be fundamental in
many situations: indeed, the work of [Trotta, 2019] clearly shows the impact of
compressibility on the stability of MHD systems, while the need for a modelization of
the turbulence field will be addressed later in this work.
Margins for innovations don’t reside only in the fluid-dynamics side. In fact, most
of the times in literature, the so-called Electric Potential Method is considered when
solving MHD problems in OpenFOAM2. The reason we won’t resort to that in the

1 [Tassone, 2016] explained in detail how the existing solver works.
2Both [Ferroni, 2012] and [Tassone, 2016] introduce this approach.
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Chapter 1. Development and verification of a new MHD solver for OpenFOAM

present work is that it takes advantage of the following hypothesis:

Rem ≡
ULµB
η
� 1 (1.1)

where U is a characteristic velocity (m s−1), L is a characteristic length (m), µB is
the magnetic permeability of the medium (H m−1) and η is the electrical resistivity
(Ω m). Rem is called Magnetic Reynolds Number and represents the ratio between
advection of the magnetic field lines due to the fluid and its diffusion. If it’s much
lesser than one, the advection plays no role and the term ∇ × (~u × ~B) in (1.14)
becomes negligible, thus neglecting the coupling between ~u and ~B3. The point is that
(1.1) isn’t so easily satisfied: indeed, by taking some of the numbers we will employ
later in our work, precisely U = 0.71(m s−1), L = 0.01(m), µB = 1.257 ∗ 10−6(H m−1)
and η = 9.891 ∗ 10−8(Ω m), Rem ≈ 0.1, which is not excessively lower than 1.
All the aforementioned reasons are necessary to choose the right path to follow in the
development of the new solver, whose name will be comprMhdFoam. The starting
point will be a solver for compressible fluid dynamics, thus ensuring no restrictions
on the fluid part will be present. It will then undergo all the modifications needed
to turn it into a compressible MHD solver. Thus, the right choice for the starting
point will be enough to ensure an accurate treatment of all compressibility effects.
What needs to be verified is only the correct implementation of the magnetic part. A
simple, yet very significant case perfectly fits our requirements: the Hartmann flow
case, which implies MHD effects with no need to consider compressibility.

1.2 The governing equations
We begin by introducing the traditional hydrodynamics equations, then proceed to
couple them with Maxwell equations, in order to arrive, thanks to some simplifying
hypotheses, to the MHD model4 to be implemented in OpenFOAM.

1.2.1 Hydrodynamics equations
First of all, the traditional compressible hydrodynamics equations are presented:

• Mass continuity equation:

∂ρ

∂t
+∇ · (ρ~u) = 0 (1.2)

• Momentum conservation equation:

ρ
∂~u

∂t
+ ρ(~u · ∇)~u = −∇p+∇ · τ + ρ~g (1.3)

3All parameters and equations will be addressed later in the development of this work, now we
are only trying to give a brief motivation to our purposes. For now, it is sufficient to know that, by
neglecting that term, numerical computation is simpler to accomplish.

4We are considering the non-relativistic case.
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1.2. The governing equations

• Total energy balance equation:

ρ
∂e

∂t
+ ρ(~u · ∇)e+ ρ

∂k

∂t
+ ρ(~u · ∇)k = −∇ · ~Q+

−∇p · ~u− p(∇ · ~u) + (∇ · τ) · ~u+ τ : ∇~u+ ρ~g · ~u+ SH

(1.4)

• Equation of state:
ρ = ρ(p, e) (1.5)

where ρ is the mass density (kg m−3), ~u is the velocity (m s−1), p is the pressure (Pa),
τ is the viscous stress tensor (Pa), ~g is the gravitational acceleration constant (m s−2),
e is the specific internal energy (J kg−1), k is the specific kinetic energy5 (J kg−1), ~Q
is the heat flux (W m−2) and SH is a generic heat source (W m−3).
As first hypothesis, we will consider a stokesian fluid, so the viscous stress tensor will
be:

τ = µ
(
∇~u+ (∇~u)T

)
− 2

3µ(∇ · ~u I) (1.6)

where µ is the dynamic viscosity (Pa s) and I is the identity matrix.

1.2.2 MHD equations
Maxwell’s equations6 are now introduced, before showing how they couple with
hydrodynamics:

• Gauss’s Law:
∇ · ~E = ρq

ε
(1.7)

• Gass’s law for magnetism:
∇ · ~B = 0 (1.8)

• Maxwell-Faraday equation:

∇× ~E = −∂
~B

∂t
(1.9)

• Ampère-Maxwell equation:

∇× ~B = µB ~J + µBε
∂ ~E

∂t
(1.10)

where ~E is the electric field (V m−1), ~B is the magnetic field (T), ρq is the electric
charge density (C m−3), ~J is the electric current density (A m−2) and ε is the absolute
permittivity of the medium7 (F m−1).

5k is defined as usual: 1
2~u · ~u.

6The SI units will be used.
7Both permeability and permittivity can be written respectively as µB = µB,0µB,r and ε =

ε0εr, where subscript 0 refers to the value in vacuum (vaccum permeability/permittivity), while
subscript r refers to the ratio between the value in the medium and the value in vacuum (relative
permeability/permittivity).
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The coupling occurs by adding the Lorentz Force to (1.3) and the Joule Effect to (1.4).
To help the reader, they will be red-colored. Our set of equation is then:

∂ρ

∂t
+∇ · (ρ~u) = 0

ρ
∂~u

∂t
+ ρ(~u · ∇)~u = −∇p+∇ · τ + ρ~g + ρq ~E + ~J × ~B

ρ
∂e

∂t
+ ρ(~u · ∇)e+ ρ

∂k

∂t
+ ρ(~u · ∇)k = −∇ · ~Q−∇p · ~u− p(∇ · ~u)+

+ (∇ · τ) · ~u+ τ : ∇~u+ ρ~g · ~u+ SH + ( ~E + ~u× ~B) · ~J
ρ = ρ(p, e)

τ = µ
(
∇~u+ (∇~u)T

)
− 2

3µ(∇ · ~u I)

∇ · ~E = ρq
ε

∇ · ~B = 0

∇× ~E = −∂
~B

∂t

∇× ~B = µB ~J + µBε
∂ ~E

∂t

(1.11)

Indeed we have a closed set of equations, but its resolution is way too costly, due to
the number of equations and the various couplings between them. Some hypotheses
are needed to simplify the system.
Firstly, we should consider the fact that, under MHD conditions, the fluid can be
considered quasi-neutral, thus ρq ≈ 0 [Freidberg, 2007]. Then, through a nontrivial
process of combinations and substitutions between equations of (1.11), the generalized
Ohm’s Law can be obtained:

~E + ~u× ~B = η ~J (1.12)

Its derivation can be found in [Chen and Chen, 2018]. Now, by taking the curl of
(1.12) and (1.10)8 and by combining them with (1.9) and (1.8), one can arrive to9:

∂ ~B

∂t
= ∇× (~u× ~B) + η

µB
∆ ~B (1.14)

that is the so called Induction equation for MHD. The quantity of variables in (1.11)
is significantly reduced, since ρq and ~E are no longer to be considered. The last step
consists in cutting also ~J out of our set by simply considering the ’MHD version’ of
(1.10):

~J = 1
µB
∇× ~B (1.15)

8In most MHD applications the displacement current ε∂
~E

∂t
in (1.10) can be neglected.

9The use of the following vectorial identity is required:

∇×∇× ~B = ∇(∇ · ~B)−∆ ~B (1.13)

6



1.3. The OpenFOAM code

Our final system will then be:

∂ρ

∂t
+∇ · (ρ~u) = 0

ρ
∂~u

∂t
+ ρ(~u · ∇)~u = −∇p+∇ · τ + ρ~g +

(
1
µB
∇× ~B

)
× ~B

ρ
∂e

∂t
+ ρ(~u · ∇)e+ ρ

∂k

∂t
+ ρ(~u · ∇)k = −∇ · ~Q−∇p · ~u− p(∇ · ~u)+

+ (∇ · τ) · ~u+ τ : ∇~u+ ρ~g · ~u+ SH + η

µ2
B

(∇× ~B)2

ρ = ρ(p, e)

τ = µ
(
∇~u+ (∇~u)T

)
− 2

3µ(∇ · ~u I)

∂ ~B

∂t
= ∇× (~u× ~B) + η

µB
∆ ~B

(1.16)

in the 5 variables: [ρ ~u p e ~B]10.
System (1.16) represents compressible MHD. It is important to notice the bidirectional
coupling between ~u and ~B, both from the physical and numerical point of view.
Physically, the fluid will feel the presence of an externally applied magnetic field due
to the Lorentz force, but then ~B itself will react to the change in ~u, so an induced
magnetic field will arise and superimpose itself to the external one11. Numerically,
the coupling is reflected in the proper arrangement of the time step, as discussed in
the next section.

1.3 The OpenFOAM code
Now that we introduced the physics of MHD, the implementation of the code can
be approached. Since the 7th distribution of OpenFOAM provides a large amount
of solvers, an accurate analysis of all the options was necessary. In conclusion, the
best starting point turned out to be rhoPimpleFoam. As already mentioned, it treats
compressible flows, with the help of turbulence models if needed. Moreover, it can
solve most fluid dynamics scenarios, like flows with buoyancy effects, heat transfer,
transonic behavior and so on. One other key characteristic of rhoPimpleFoam is its
capability to operate in transient mode, i. e., to solve time-dependent problems, thus
allowing to study the dynamics of the system. Its name derives from the algorithm it
employs to calculate fields, PIMPLE, which algorithm is reported in Figure 1.1.

10A model for ~Q is necessary to close the system. Later in this work, precisely in the code
development section, we will see how OpenFOAM treats it.

11 ~B can be defined as:
~B = ~B0 + µB

~H (1.17)

where ~B0 is the externally applied magnetic field (T) and ~H is the magnetic field intensity (A m−1).
This definition reflects what just discussed regarding the induction of ~B, but it is not necessary in
our dissertation since, as we will see, it would only introduce unnecessary complications in the code.
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Figure 1.1. PIMPLE algorithm reported as flux diagram

1.3.1 Induction Equation of MHD
The first step is the addition of (1.14) at the bottom of the file rhoPimpleFoam.C,
inside the while (runTime.run()) cycle:

while (bpiso.correct())
{

fvVectorMatrix BEqn
(

fvm::ddt(B)
- fvm::laplacian(DB, B)
- fvc::curl(U ^ B)

);

BEqn.solve();

#include "magneticFieldErr.H"
}

where DB is defined as 1/(σµB)12. The syntax of the differential operators is straight-
forward and the = 0 is implied. What is less obvious is the meaning of fvm and
fvc: they stand, respectively, for finite volume method and finite volume calculus
and define whether a term will be treated implicitly (fvm) or explicitly13(fvc) while

12σ = 1/η is called electrical conductivity (S m−1). It was employed in the code instead of η.
13An implicit term is treated as a variable while solving for a given time step, while an explicit

one considers the value of variables at the previous time step and is therefore known.

8



1.3. The OpenFOAM code

solving the equation. This is a particularly important aspect because it is strictly
related to how our system (1.16) will be solved: in order to speed up the calculations,
OpenFOAM is programmed in such a way to consider every equation by itself, in the
so-called segregated way. This implies that, when solving a time step, every equation
must contain only one variable, with all the other quantities considered explicitly. So
we just motivated why curl(U ^ B) is preceded by fvc: it contains U while having B
as variable.
Apart from the equation syntax, other aspects must be briefly discussed. One is the
row #include "magneticFieldErr.H", which allows to check if ∇· ~B is small enough
to be considered 0 after every iteration of our equation, which number is controlled
by the user and assured by the while (bpiso.correct()) cycle. This is the last
aspect to be clarified: thanks to it one can ask OpenFOAM to solve the equation
more than once in succession, while updating the explicit term every time with the
just calculated value of B.

1.3.2 Momentum conservation equation
The addition of the Lorentz Force to (1.3) is now performed. Its transposition into
code language is as follow:(

1
µB
∇× ~B

)
× ~B −→ DBU*(fvc::curl(B) ^ B) (1.18)

where DBU = 1/µB. The original equation can be found inside the file UEqn.H in the
aforementioned directory. We will report the modified version:

MRF.correctBoundaryVelocity(U);

tmp<fvVectorMatrix> tUEqn
(

fvm::ddt(rho, U)
+ fvm::div(phi, U)
- DBU*(fvc::curl(B) ^ B)
+ MRF.DDt(rho, U)
+ turbulence->divDevRhoReff(U)

==
fvOptions(rho, U)

);
fvVectorMatrix& UEqn = tUEqn.ref();

UEqn.relax();

fvOptions.constrain(UEqn);

if (pimple.momentumPredictor())
{

solve(UEqn == -fvc::grad(p));

9
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fvOptions.correct(U);
K = 0.5*magSqr(U);

}

The only addition here is the already mentioned term. We are not interested in
discussing in detail all the syntax, but only in underlining some aspects that we
consider more relevant. Firstly, we want to motivate at least the first two terms of
the equation, since there is some maths behind them. Indeed if one makes good use
of (1.2), the following equality holds:

∂~u

∂t
+ (~u · ∇)~u = ∂(ρ~u)

∂t
+∇ · (ρ~u⊗ ~u) (1.19)

OpenFOAM utilizes the right hand side formulation, with φ representing the product
ρ~u. Secondly, the entry fvOptions(rho, U) is present in the right hand side, allowing
us to insert forcing terms of various nature directly from the case setup14(the buoyancy
term can be inserted in this way, it is not present by default). It’s important to notice
that both our new term and grad(p) are treated explicitly, while U is the variable,
accordingly to what previously discussed regarding the solution of equations. Lastly,
it is important to introduce the entry UEqn.relax(), since it represents a very useful
feature of our starting solver: the application of relaxation factors to the current
variable between consecutive iterations15.

1.3.3 Total Energy balance equation
Finally, the last equation, (1.4), found inside EEqn.H. Here, the Joule Effect must be
added, after its trasposition:

η

µ2
B

(∇× ~B)2 −→ ETAMU*magSqr(fvc::curl(B)) (1.20)

where ETAMU = η/µ2
B. The file reads:

{
volScalarField& he = thermo.he();

fvScalarMatrix EEqn
(

14The case setup is the definition of all the conditions and parameters of a simulation. It will be
discussed later, but we can anticipate that fvOptions won’t be used in our case. since buoyancy
doesn’t play an important role in the Hartmann case scenario.

15Relaxation factors control under-relaxation, a technique used for improving stability of a com-
putation. An under-relaxation factor α, 0 < α ≤ 1, specifies the amount of under-relaxation, as
described below:

• α = 1 means no under-relaxation.

• α decreases, under-relaxation increases.

• α = 0 implies that solution doesn’t change between iterations.

An optimum choice of α is one that is small enough to ensure stable computation but large enough
to move the iterative process forward quickly.

10
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fvm::ddt(rho, he) + fvm::div(phi, he)
+ fvc::ddt(rho, K) + fvc::div(phi, K)
+ (

he.name() == "e"
? fvc::div

(
fvc::absolute(phi/fvc::interpolate(rho), U),
p,
"div(phiv,p)"

)
: -dpdt

)
- fvm::laplacian(turbulence->alphaEff(), he)
- ETAMU*magSqr(fvc::curl(B))

==
fvOptions(rho, he)

);

EEqn.relax();

fvOptions.constrain(EEqn);

EEqn.solve();

fvOptions.correct(he);

thermo.correct();
}

As for the previous one, we don’t need to deal with the explanation of all the code,
but just point out the most important aspects. At first, we should consider the
fact that, with respect to (1.4), the terms related to τ , the buoyancy and the heat
source are excluded by default, though it’s possible to add them thanks to the
fvOptions(rho, he) entry16. Secondly, the heat flux is described by the following:

~Q = −αeff∇e =⇒ ∇ · ~Q = −αeff∆e (1.21)

where αeff is the effective thermal diffusivity (m2 s−1), which is the sum of both
laminar and turbulent thermal diffusivities. This is fundamental to close the system
of equation as mentioned before in footnote 10.

1.3.4 Declaration of ~B and new fluid properties
Finally, the magnetic field must be declared as a new variable of our problem, together
with µB and σ. In order to do so, we need to add some lines of code to the file
createFields.H:

16As for τ terms, the rhoCentralFoam solver implements them into the total energy balance, so
their syntax could be copied directly from there into our equation.
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volVectorField B
(

IOobject
(

"B",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE

),
mesh

);

#include "createPhiB.H"

Here we declared B. Being it a vector field, its declaration is the same as U. We also
included the file createPhiB.H, which is required in order to calculate the error on
∇ · ~B. It can be found in the directory reported at the end of 1.3.2.

IOdictionary transportProperties
(

IOobject
(

"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE

)
);

The last piece of code allows us to add the transportProperties dictionary to a case
setup, through which we can specify values for µB and η. But first, we need to declare
them:

dimensionedScalar muB
(

"muB",
dimensionSet(1, 1, 0, 0, 0, -2, 0),
transportProperties

);

dimensionedScalar sigma
(

"sigma",
dimensionSet(-1, -3, 1, 0, 0, 2, 0),
transportProperties

);
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dimensionedScalar ETAMU = 1.0 /(muB*muB*sigma);
ETAMU.name() = "ETAMU";

dimensionedScalar DBU = 1.0/(muB);
DBU.name() = "DBU";

Here also ETAMU and DBU are declared. As already mentioned in footnote 12, we didn’t
use electrical resistivity in the code, but electrical conductivity instead.
In conclusion, we will report a simple flux diagram showing how all fields are calculated
in a time step.

Start of time step

Calculation of ~u, e, p,
ρ inside PIMPLE cycle

PIMPLE converged
or max number of
iteration reached

Calculation of B

Max number of
iterations reached

End of time step

no

yes

no

yes

13



Chapter 1. Development and verification of a new MHD solver for OpenFOAM

1.4 Hartmann flow case

1.4.1 Case presentation
In order to verify the goodness of the newly developed solver, we chose the Hartmann
flow, which is the flow of a conductive fluid between two infinitely extended, parallel
plates, while exposed to an external magnetic field perpendicular to the direction of
motion. Figure 1.2 shows geometry and fields directions.

Figure 1.2. Hartmann flow showcase. Axes x and y orientation is shown.

Our interest in this configuration comes from the fact that, if the intensity of ~B is
high enough, the flow will become laminar and the component of the velocity field
parallel to the direction of motion will be described by the following analytical profile:

ux = ux,0
cosh(Ha)− cosh(Ha y

L
)

cosh(Ha)− 1 (1.22)

where ux,0 is the value of the component of velocity parallel to the motion at the
center of the channel, L is the half-distance between plates and Ha is the Hartmann
number, an adimensional group defined as:

Ha ≡ B0L

√
σ

µ
(1.23)

where B0 is the module of the external magnetic field. The Hartmann number is one
of the two relevant adimensional group of this problem, the other being the Reynolds
number :

Re ≡ ρUL

µ
(1.24)

where U is a characteristic velocity (for us, it will be its inlet value)17. Both numbers
must be considered because the minimum Ha that guarantees laminarization of the
motion is influenced by how much turbulent the flow originally is, so the higher the Re,
the higher the minimum Ha. Moreover, if Ha and Re are set so that laminarization
will surely occur, the problem can be solved as two-dimensional, as for a plane
Poiseuille flow. For this reason, Re will be very low, thus ensuring laminar motion for
every Ha value. Finally, if no thermal gradients are present, the case can be treated

17Usually, the characteristic length used in defining Re is the hydraulic diameter. Here we opted
for L instead in order to be coherent with Ha definition.
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as incompressible MHD, which is ideal for our purpose18.
One last important aspect to underline is that walls are made out of insulating material.
Indeed if we consider σwall > 0 we aren’t dealing with the Hartmann case scenario
anymore, since ux will not be described by (1.22)19.

1.4.2 OpenFOAM case setup
The case structure of our problem is now introduced: it consists of 3 directories, each
one containing dfferent files.

<case directory name>
|
|---0
| |---B
| |---p
| |---T
| |---U
|
|---constant
| |---thermophysicalProperties
| |---transportProperties
| |---turbulenceProperties
|
|---system

|---blockMeshDict
|---controlDict
|---decomposeParDict
|---fvSchemes
|---fvSolution
|---singleGraph-x

0/B

This directory contains one file for every variable, each one specifying initial and
boundary condition for that field, except for ρ. In fact, as we will see, it will be
calculated from the equation of state specified in the thermophysicalProperties file.
For the sake of clarity, the geometry we will adopt is firstly introduced: our domain
will be a simple rectangle, since we will approximate the case as two-dimensional. It
is also important to specify a name for every one of its boundaries because they will
appear into the files mentioned above. Figure 1.3 shows the name associated to each
side.

18Both the 2D and the incompressible nature of the case are characteristics which allows for faster
simulations. Since the purpose is to test the goodness of the magnetic field implementation, they are
surely welcome.

19 [Ferroni, 2012] in 3.1 lists some theoretical results for which σwall > 0. In those cases, the
analytica profile is different from the one in (1.22).
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Figure 1.3. Geometry presentation. The names of every boundary are reported

The reason why also front is named will be soon explained. It’s important to specify
that our domain won’t include walls, but only the space between them.
We will now introduce B. It will be also our starting point to explain some general
features of OpenFOAM case files.

dimensions [1 0 -1 0 0 -1 0];

internalField uniform (0 B_0 0);

boundaryField
{

inlet
{

type zeroGradient;
}

outlet
{

type zeroGradient;
}

lowerWall
{

type fixedValue;
value uniform (0 B_0 0);

}

upperWall
{

type fixedValue;
value uniform (0 B_0 0);

}

frontAndBack
{

type empty;
}

}

where B_0 is the same value B0 that appears in the definition of Ha. This means that
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its value is set basing on the desired value for the adimensional group. As previously
mentioned, all boundary names appear, together with the applied type of boundary
conditions. Here two of them are employed:

• fixedValue allows us to impose a field value on that boundary that won’t be
influenced by the physics of the problem. The entry uniform specifies that this
value will be constant in space20. Finally, a vector is needed to assign the desired
numerical value, since we are dealing with a vector field.

• zeroGradient means that the following condition is imposed:

∂ ~B

∂n
= 0 (1.25)

where n specifies the direction normal to the boundary. This means that the
field will remain costant in space along n direction.

We didn’t include the empty type because it isn’t a real boundary condition, but
rather the way to inform OpenFOAM that we want a two-dimensional simulation:
by imposing that on the front and the back face of our geometry, OpenFOAM will
automatically set the z components of our vector field to 0, without the need to
calculate them.
Regarding the initial condition, it is specified by the voice internalField, using the
same sytax of fixedValue.
One last comment goes to the first line, where the unit of measurement of our field
must be specified. In order to give dimensions to all quantities, OpenFOAM requires
the user to write a vector of seven numbers, each one corresponding to the exponent of
one of the SI base unit, arranged in the following order: mass (kg), length (m), time
(s), thermodynamic temperature (K), amount of substance (mol), electric current (A)
and luminous intensity (cd). So, since (T) = (kg s−1 A−1), the correct entry in the
case of the magnetic field will be [1 0 -1 0 0 -1 0].
Before proceeding to the next field, it is mandatory to expose the physical motivations
behind initial and boundary conditions of B. At time 0, when the fluid is still, its value
will be the same in all the domain, walls included(we can imagine the field generated
by two magnets outside the walls). When the fluid starts moving, the field will induce
a current in it, which, in response, will induce a magnetic field that superimposes itself
to the external one. This results in a variation of B inside the domain, but not on walls,
where the value is imposed. The physical translation of our choice is the imposition
of σwall = 0: indeed if walls had non-null conductivity, the current generated inside
the fluid would enter them, inducing a magnetic field. At that point, our boundary
condition wouldn’t be valid anymore. Since OpenFOAM is not yet provided with the
right tools to deal with such case21, the Hartmann flow is the optimal benchmark for
our solver, being it easily reproducible with our tools. Regarding the conditions on
inlet and outlet, zeroGradient is the right choice because there is no physical reason
for B to have a non-null gradient along these directions.

20OpenFOAM allows also to impose profiles along a boundary, like a parabolic inlet for the velocity.
21The implementation of a new boundary condition in OpenFOAM is a problem that goes beyond

the scope of this thesis work, since it requires a deep knowledge of the source code.
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0/U

U is now introduced:

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField
{

inlet
{

type fixedValue;
value uniform (0.0071 0 0);

}

outlet
{

type zeroGradient;
}

upperWall
{

type noSlip;
}

lowerWall
{

type noSlip;
}

frontAndBack
{

type empty;
}

}

Here the condition noSlip appears. Its purpose is straightforward: it simply imposes
all components of velocity to be uniformly 0 on that boundary. Regarding the other
conditions, we need to set a fixedVaue at the inlet in order to control Re, since the
reported value represents U inside (1.24). Considering its definition, we will have
Re ≈ 100, so that also low values of Ha will ensure the validity of (1.22) (ρ, L and µ
values will be addressed later). As for the outlet, zeroGradient is the optimal choice,
since there is no physical reason for U to have a gradient in this direction.
Finally, the initial condition is uniformly 0 for every component. It is usually the
standard choice in case of transient simulations and implies that a minimum amount
of time is required before the profile will correctly develop.
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0/p

p is next:

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 100000;

boundaryField
{

inlet
{

type zeroGradient;
}

outlet
{

type fixedValue;
value uniform 100000;

}

upperWall
{

type zeroGradient;
}

lowerWall
{

type zeroGradient;
}

frontAndBack
{

type empty;
}

}

Boundary conditions here are mostly dictated by numerics: when velocity is imposed
at the inlet, it is preferable to impose pressure at the outlet, with zeroGradient on
all other boundaries. By setting the outlet value also as initial condition, simulation
stability is assured. Since we are not dealing with fluids under pressure, p = 100000Pa
is optimal.
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0/T

Finally, T:

dimensions [0 0 0 1 0 0 0];

internalField uniform 380;

boundaryField
{

inlet
{

type fixedValue;
value uniform 380;

}

outlet
{

type zeroGradient;
}

lowerWall
{

type zeroGradient;
}

upperWall
{

type zeroGradient;
}

frontAndBack
{

type empty;
}

}

To guarantee numerical stability, it is better to impose a temperature on the same
boundary as velocity, i. e., inlet, plus an initial condition different from 0, which for
us should be set equal to the inlet one. The reason behind the chosen value is that we
will adopt liquid sodium as conductive fluid, so we need T ≥ Tmelt ≈ 371(K).
Since we won’t deal with thermal effects in our benchmark, zeroGradient is the
perfect choice for all other boundaries. Indeed a condition like (1.25) for T has the
physical meaning of adiabatic wall, thus ensuring that no heat transfer phenomena
will be present and the incompressibility of the case is maintained.
Finally, it is mandatory to show the relation used by OpenFOAM to switch from
temperature to specific internal energy:

e = cpT (1.26)
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where cp is the specific heat capacity at constant pressure (J kg−1 K−1).

constant/thermophysicalProperties

Firstly, We will briefly present constant, the directory in which the physical param-
eters are set, together with other settings for energy and state equations. Usually,
an OpenFOAM case folder doesn’t contain a transportProperties file if it treats
compressible fluids, but since we included the code presented in 1.3.4 into our solver,
it’s necessary to add it too.
We can now take a look at the content of thermophysicalProperties:

thermoType
}

type heRhoThermo;
mixture pureMixture;
transport const;
thermo hConst;
equationOfState rhoConst;
specie specie;
energy sensibleInternalEnergy;

}

mixture
{

specie
{

molWeight 23;
}

equationOfState
{

rho 923.7;
}

thermodynamics
{

Cp 1.3796e3;
Hf 1.131e5;

}

transport
{

mu 6.5442e-4;
Pr 0.0102; // k = 88.747 W/(m*K)

}
}

All keywords under the section thermoType specifies which physical models will be
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used to calculate our quantities, then all necessary numerical parameters will be set
in the corresponding section inside mixture. All choices will be rapidly explained:

• type heRhoThermo specifies that our thermophysical model is based on ρ.

• mixture pureMixture specifies that our fluid is composed of only one substance.

• transport const set µ and thermal conductivity kc (W m−1 K−1) as constants.
Below, in the corresponding mixture section, all values are declared. For some
reasons, OpenFOAM requires to assign a value to the Prandtl number Pr, defined
as:

Pr = cpµ

kc
(1.27)

It is important to notice that also cp must be declared as constant and reported
into the code before Pr. For the sake of completeness, we commented in the
code the value of kc.

• thermo hConst assumes constant cp, which value is specified below, together
with heat of fusion (J kg−1) Hf.

• equationOFState rhoConst declares that our equation of state will be:

ρ = const (1.28)

It’s value is then specified below.

• specie specie allows to specify number of moles and molar weight for every
component of the mixture. Since we will deal wth liquid sodium, its atomic
weight is reported.

• energy sensibleInternalEnergy specifies that e will be the variable of the
energy equation presented in 1.3.3. In fact, one can choose to use specific
hentalpy (J kg−1) instead.

It is now very important to explain why all quantities, ρ included, are taken as
constants: they all depends mainly on temperature in case of sodium. Since we are
considering no thermal effects, T = const and so all quantities depending on it will be
constant too. Moreover, ρ = const is the state equation characterising incompressible
fluids. In order to get the reported values we used the following empirical correlations:

• ρ = 1014− 0.235T

• cp = 1608− 0.7481T + 3.929 ∗ 10−4T 2

• µ = exp(556.835
T
− 0.3958 ln(T )− 6.4406)

• kc = 110− 0.0648T + 1.16 ∗ 10−5T 2

in which T = 380(K) has been assumed. They were all taken from [Sobolev, 2010].
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1.4. Hartmann flow case

constant/transportProperties

Here numerical values are assigned to the fluid properties related to the interaction
with magnetic fields, together with their unit of measure:

muB [1 1 0 0 0 -2 0] 1.257e-6;

sigma [-1 -3 1 0 0 2 0] 1.011e7;

While the value of µB can be considered independent from temperature with good
accuracy, σ is considered constant only because we are not dealing with thermal
effects. The value is taken from the following correlation, considering T = 380(K):

η = (3.126 + 6.218 ∗ 10−3T + 3.093 ∗ 10−5T 2) ∗ 10−8 (1.29)

and remembering that σ = 1/η.

constant/turbulenceProperties

Here it’s possible to set a turbulence model for the simulation. Since we are dealing
with laminar flows, no turbulence model is necessary, decision specified by this only
entry:

simulationType laminar;

system/blockMeshDict

The remaining directory, system, is dedicated to all simulation settings, like mesh
definition, time step management, numerical schemes and so on.
The first entry is blockMeshDict, where mesh is defined under every aspect, starting
from vertexes coordinates definition:

convertToMeters 0.01;

vertices
(

(0 -1 -0.005)
(20 -1 -0.005)
(20 1 -0.005)
(0 1 -0.005)
(0 -1 0.005)
(20 -1 0.005)
(20 1 0.005)
(0 1 0.005)

);

It is important to notice that, even though our simulation is 2D, OpenFOAM allows
only the creation of 3D meshes, so our rectangle is initially defined as a very thin
parallelepiped. The convertToMeters keyword allows us to define the physical
dimensions of our domain. We will explain how with an example: the second vertex
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is positioned 20 ∗ 0.01 = 0.2(m) from the origin along x, −1 ∗ 0.01 = −0.01(m) along
y and −0.005 ∗ 0.01 = −0.00005(m) along z. This implies that our mesh is 20(cm) in
length, 2(cm) in height and 0.01(cm) in thickness. Lastly, it is important to mention
the fact that OpenFOAM enumerates all vertexes with a label, starting from 0 (first
entry) to 7 in our case (last entry). As we wil see, these labels will be used later.
The second piece of code takes advantage of the aforementioned labels to define all
blocks composing the mesh:

blocks
(

hex (0 1 2 3 4 5 6 7) (400 60 1) simpleGrading (
1
(
(0.5 0.5 4)
(0.5 0.5 0.25)
)
1

)
);

Our mesh is thus composed of only one hexaedron (hex), divided in 400 elements
along x, 60 along y and only 1 along z, another important feature that characterizes
a 2D simulation22. The keyword simpleGrading finally allows us to define a grading
for the mesh elements size. Without entering too much into details, the reported code
reduces their dimension along y when moving closer to walls. Figure 1.4 shows a mesh
section.

Figure 1.4. Section of the mesh, showing the grading of elements close to walls.

The reason behind our mesh arrangement has to be searched inside the physics of the
Hartmann flow: when moving towards walls, the analytical solution (1.22) shows a
steep gradient till 0, defining the so-called Hartmann layer, whose thickness δ is given
by:

δ = 1
B0

√
µ

σ
= L

Ha
(1.30)

22To summarize, a 2D simulation requires the definition of only one element along one of the three
direction, plus the declaration of faces perpendicular to that same direction as empty.
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so the higher the Ha, the thinner the δ. Since we will use our mesh for a wide range
of Ha values, it is better to have a good grading from the start.
Lastly, The face declaration is next:

boundary
(

inlet
{

type patch;
faces
(

(0 4 7 3)
);

}
outlet
{

type patch;
faces
(

(2 6 5 1)
);

}
lowerWall
{

type patch;
faces
(

(1 5 4 0)
);

}
upperWall
{

type patch;
faces
(

(3 7 6 2)
);

}
frontAndBack
{

type empty;
faces
(

(0 3 2 1) (4 5 6 7)
);

}
);
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In each declaration, every face receives: a name, a type (patch for generic boundaries,
empty for empty faces) and at least one quadruplet of numbers, representing the four
delimiting vertexes23.

system/controlDict

This file is essentially a list of keywords, the majority of which specifies time settings.
The most important are reported and explained.

• application allows to specify which OpenFOAM solver will be used. Our entry
will be comprMhdFoam, the solver we presented in 1.3.

• endTime determines when the solver will stop advancing our equations in time24.
Here there is no fixed entry for us , since the minimum amount of time which
allows our flow to fully develop is inversely proportional to Ha. Indeed the
stronger ~B is, the lower the laminarization time will be.

• deltaT sets the time step. It should be chosen so that the following is satisfied:

Co = ux∆t
∆x + uy∆t

∆y + uz∆t
∆z ≤ 1 (1.31)

where ∆t is clearly the time step and ∆x,∆y,∆z are the minimum spatial
interval inside the mesh, respectively for the three directions. Co is called
Courant number, while (1.31) is the Courant–Friedrichs–Lewy condition, usually
abbreviated as CFL condition. The Courant number provides a comparison
between the space that information covers in ∆t under the influence of velocity
field and the spatial discretization, so if it was bigger than 1, some information
would be lost. Moreover, if CFL is not respected, numerical instabilities will
usually arise.

• writeControl allows us to choose which time controls the writing of results: it
can be real time, CPU time, simulated time or a certain number of time steps.
We opted for simulated time, which correspond to the runTime entry.

• writeInterval specifies the time interval between the writing of results. Since
we previously chose runTime as entry for writeControl, we will deal with
simulated time intervals. Also in this case there is no fixed value preferable to
others: if one has great storage capability, a small value can make data sampling
very accurate25. Here we opted for numbers which will result roughly in 20 to
50 data savings.

• maxCo allows us to set a maximum value for the Courant number. It’s a very
useful tool, since the entry in deltaT can be overwritten in order to satisfy

23Vertexes order is defined by watching the face from inside the block and by listing labels clockwise,
starting from any of them.

24It is also possible to set a starting time, but it will always be 0 in our case.
25If simulated time is chosen, the ratio between the total time and the aforementioned interval of

time represents the number of times results are saved, which gives an idea of how much memory will
be necessary.
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this restrain. To make sure our simulation will be stable, we imposed 0.5 as
maximum Co, so that also (1.31) is generously satisfied.

• adjustTimeStep must be set to on in order to allow time step modification.

system/decomposeParDict

Here one can specify setting for parallel computing, which consists in splitting the
domain in a given number of parts, then assign a processor core to each one of them
to make calculation. All cores then communicate with each other in order to correctly
advance the solution. Its content is the following:

numberOfSubdomains 4;

method scotch;

The first keyword specifies the number of subdomains (we will use a quad core
processor), while the second sets the criterion to follow in the decomposition. Our
entry scotch requires no geometric inputs from the user and attempts instead to
minimize the number of core boundaries, i. e., the need of cores to communicate with
each other. Parallel computing is a great tool to speed up a simulation, so it is usually
recommended26.

system/fvSchemes

Here are specified discretization schemes for all differential operators. We didn’t
go deeply into this topic and let almost everything at their default settings. Only
two entries were addressed: time derivatives and the advection term (~u · ∇)~u, which
appears in the momentum equation (1.16). Firstly, time derivatives:

ddtSchemes
{

default backward; //Euler;
}

With respect to the previous one (left commented), our entry is a second order scheme,
ensuring more accuracy while advancing in time. Obviously it is more demanding in
terms of computational cost.
Regarding the advection term, our new entry is the following:

divSchemes
{

div(phi,U) Gauss linearUpwind grad(U); //upwind;
}

What we discussed regarding time derivatives holds also in this case: better scheme
at a higher cost.

26In case of meshes with a large amount of elements, a high number of cores is obviously very
useful. On the contrary, splitting a low elements mesh in too many parts can result in the opposite
effect, due to the high time needed for communications between cores.
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system/fvSolution

Here the numerical schemes adopted to solve all equation are reported, together with
settings related to PIMPLE and BPISO cycles (the second is the one controlling how
many times (1.14) is solved). Firstly, it is important to report the schemes of p and
~B equations, since they differ from default entries:

solvers
{

p
{

solver GAMG;
smoother GaussSeidel;
maxIter 100;
nCellsCoarsestLevel 155;
tolerance 1e-06;
relTol 0;

}

B
{

solver GAMG;
smoother GaussSeidel;
maxIter 100;
nCellsCoarsestLevel 155;
tolerance 1e-07;
relTol 0;

}
}

For both, the GAMG (generalised geometric-algebraic multi-grid) solver, coupled with
the GaussSeidel smoother, is the optimal choice, since it provides convergence to the
specified tolerance in lesser iteration with respect to other options. To make good use
of it, it’s better to set nCellsCoarsestLevel to a value similar to the square root of
the number of mesh elements27. Moreover, it’s usually a good idea to set maxIter to
a relatively small value, otherwise it could greatly reduce calculation speed, especially
in the early stage of the simulation.
All PIMPLE options are now shown:

PIMPLE
{

momentumPredictor yes;
transonic no;
nOuterCorrectors 10;
nCorrectors 2;

27GAMG uses the principle of: generating a quick solution on a mesh with a small number of cells,
mapping this solution onto a finer mesh, using it as an initial guess to obtain an accurate solution
on the fine mesh.
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nNonOrthogonalCorrectors 0;
consistent yes;
simpleRho yes;

pMaxFactor 1.5;
pMinFactor 0.9;

outerCorrectorResidualControl
{

p
{

relTol 0;
tolerance 0.01;

}

e
{

relTol 0;
tolerance 0.005;

}

"(U|k|epsilon)"
{

relTol 0;
tolerance 0.005;

}
}

turbOnFinalIterOnly no;
}

The most noticeable entries for our case are the following:

• nOuterCorrectors sets the maximum number of PIMPLE iterations. It should
be high enough to ensure convergence after a little amount of simulated time,
but not excessively big, otherwise it would slow calculation down28.

• nCorrectors decides how many times pressure equation is solved inside one
PIMPLE iteration. It should be set at least to 2, since pressure tends to be the
bottle neck for general cycle convergence.

• outerCorrectorResidualControl allows to decide tolerances for PIMPLE con-
vergence, which happens only when a cycle starts with all fields residuals lower
than the corresponding tolerance value. For precise results, 0.005 is small
enough. The reason why we used 0.01 for p is that we are not interested in

28In the very early stages of a simulations, until boundary layers are not properly developed,
convergence is naturally really hard and it’s not wise to force it.
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pressure-related phenomena and our choice speeds calculation up considerably.
k and ε are specified too, in case one wants to use RAS turbulence models.

The last entries are relaxation factors, briefly expained in footnote 15 inside 1.3.2:

relaxationFactors
{

fields
{

p 0.3;
rho 1;

}
equations
{

U 0.9;
e 0.5;
"(k|epsilon|omega)" 0.9;

}
}

All entries are pretty standard, except for p, which value is lower than usual to help
convergence, and ρ, which factor isn’t even used by the solver since its value is set
to constant inside thermophysicalProperties. As for k and ε, also ω is a quantity
introduced by using RAS models.

system/singleGraph-x

This last file allows us to sample data in a plot-friendly format, basically gathering
fields values along a line placed inside the mesh for every instant of time in which
data are saved. Its content is the following:

start (x -0.01 0);
end (x 0.01 0);
fields (U);

#includeEtc "caseDicts/postProcessing/graphs/sampleDict.cfg"

setConfig
{

type lineUniform;
axis y;
nPoints 100;

}

#includeEtc "caseDicts/postProcessing/graphs/graph.cfg"

start and end sets the limits of the line. x entry refers to a generic position along
the corresponding axis, while y and z are fixed so that our line will be parallel to the
y direction. fields specifies which fields values will be saved. Under setConfig one
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can instead define how many sampling points will be present and which distribution
criterion they will follow along our line, while remarking also its parallel axis.
It is important to mention that one can decide to place multiple copies of this file
inside the system folder. Since we wanted to monitor data in various sections of our
geometry, we decided to place sampling lines every 3(cm), thus obtaining 6 files in
total, each one with a different entry for x: 0.03, 0.06, 0.09, 0.12, 0.15, 0.18. Finally,
in order to properly save all results, it is essential to insert the following portion of
code at the end of controlDict:

functions
{

#includeFunc singleGraph-0.03
#includeFunc singleGraph-0.06
#includeFunc singleGraph-0.09
#includeFunc singleGraph-0.12
#includeFunc singleGraph-0.15
#includeFunc singleGraph-0.18

}

1.4.3 Results
Simulations were run for various Ha values: 1, 5, 20, and 50. Results were then
imported on Matlab, thanks to a custom-made function, which is able to read data
gathered by using the singleGraph sampling method. Basically, the function, called
readFields, requires the user to specify which section he’s intersted in (in our case
one of the six specified above), then browse all folders containing the text files where
data are printed, read them and saves them in matrices, one for each quantity of
interest (in case of ~u, one for each of its components). These are organized so that
every column represents the field of interest at a given instant of time, therefore, by
plotting column values in sequence, one can see the evolution of that field along a
given section of the geometry.
In order to check the goodness of our solutions with respect to the analytical profile
for every one of the aforementioned Ha values, we placed ourselves at the minimum
distance from the outlet that allowed us to see the best-fitting result. Firstly, the
relative error integrated along the section is reported for every Ha value in Table 1.1,
followed by Figure 1.5, where a direct comparison between analytical and OpenFOAM
profiles is shown.

Hartmann number error (%)
1 0.0848
5 0.0720
20 0.0555
50 0.0740

Table 1.1. Relative error integrated along the chosen section for every
tested Hartmann value.
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Figure 1.5. Comparison between analytical profiles (continuous lines) and OpenFOAM results
(dots).

Both numbers and plots confirm that the verification has been successfull. In particular,
the error never goes beyond 0.1%, which is a proof of very good accuracy.

1.5 Conclusions
In this first chapter, the implementation of the new solver comprMhdFoam has been
presented, providing physical motivations to every choice, and successfully verified on
the Hartmann flow case. It is important to stress the fact that the employed case was
chosen in order to test only the goodness of the solver in reproducing MHD effects.
Indeed, as already mentioned, its capability of treating compressibility phenomena is
assured, given the good reputation of rhoPimpleFoam.
The next step will be the application of turbulence models in the presence of magnetic
effects, so that to test their reliability in such conditions. It will be also a good
occasion to study a more complex MHD system with respect to the Hartmann flow
case.
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Chapter 2

MHD flow across a backward
facing step

In the second chapter, the capability of the new solver to efficiently employ turbulence
models in the study of MHD systems will be verified. For such purpose, we will take
into consideration the flow of a conductive fluid across a backward facing step under
the effect of an external magnetic field perpendicular to the direction of motion. At
first, a mesh sensitivity analysis without any turbulence model will be operated in
order to show why they are extremely useful in such scenarios. After that, Reynolds
Averaged Simulation (RAS) and Large Eddy Simulation (LES) will be introduced. For
both, we will report a theoretical background before proceeding with the associated
results.

2.1 Introduction
After the verification of the new solver comprMhdFoam, the next step is to test its
goodness in employing turbulence models for the study of MHD systems which requires
them. Briefly, turbulence modeling is the construction and use of a mathematical
model to predict the effects of turbulence on a given system. In spite of decades of
research, there is no analytical theory to predict the evolution of turbulent flows, so
they are developed in order to provide simplified constitutive equations which try to
predict the statistical evolution of turbulent flows. We decided to give priority to
such topic over compressibility effects because we are confident in the fact that the
latter are not a problem for the new solver, even in presence of a magnetic field, while
there is more uncertainty regarding the application of turbulence models. Another
motivation is the scarcity of works in the literature pertaining to the employment
of turbulence models in MHD cases, particularly when speaking about engineering
applications.
The physical system we chose to study the proposed topic is the flow across a backward
facing step. It consists in a channel created by two infinitely extended parallel plates,
with one of the two undergoing a sudden step-like enlargement. Figure 2.1 shows a
section perpendicular to walls and anticipates an idea of the fluid motion.
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Figure 2.1. Section of the backward facing step taken perpendicularly
to walls. Arrows show an idea of the fluid motion.

The backward facing step scenario has been chosen due to its simple-to-reproduce
geometry and to the large quantity of studies related to it ( [Tano-Retamales et al.,
2019] is an example). Indeed, it is well known that, for a range of Reynolds number
values, the step will induce the fluid to create a recirculating region, followed by a
point in which the motion reattaches to the wall. The streamline plot in Figure 2.2 is
useful to visualize the phenomenon.

Figure 2.2. Streamlines plot showing recirculating region. Colors show
the magnitude of velocity field, increasing from blue to red.

The length indicated as r is called reattachment length (m). When the fluid motion
stabilize in such configuration, studies show that a two-dimensional simulations is
accurate enough to provide a sufficiently precise solution, given the plane symmetry
of the geometry ( [Tano-Retamales et al., 2019] uses this approach).
Over a certain Re value, the motion becomes more chaotic and the recirculating region
cannot be clearly defined. This situation is ideal to show the effect of an external
magnetic field: as explained by [Trotta, 2019], if the fluid is conductive, a magnetic
field perpendicular to the direction of motion (and also perpendicular to walls in
this case) has stabilizing properties on the flow, in the sense that it obstructs the
development of turbulence, as illustrated in Figure 2.3).

(a) Ha = 0

(b) Ha = 40

(c) Ha = 100

Figure 2.3. Comparison between three cases with fixed Re and different Ha.
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In the three cases reported in Figure 2.3, Re = 10000 and Ha varies between 0, 40
and 100. While it’s impossible to define r in (a), given the turbulent motion, it’s
evident in (b) and (c).
In order to test the goodness of the new solver in employing turbulence models to study
MHD scenarios, the aforementioned effect will be addressed. We will start with a mesh
sensitivity analysis, without adopting any model. The results will show the utility of
such tools. Reynolds Averaged Simulation (RAS) and Large Eddy Simulation (LES)
turbulence models will then be introduced and employed to study the phenomenon.
Their goodness will be verified through a comparison with the results of the mesh
sensitivity analysis.

2.2 Mesh sensitivity analysis
The mesh sensitivity analysis will be carried out approximating the problem as two-
dimensional, given the fact that it’s a good approach. Moreover, simulations will be
significantly faster1. They will all be performed using comprMhdFoam, while the post
process will be executed on Matlab. For the OpenFOAM case setup, we can refer to
Section 1.4.2, since the folder tree and most of the files are exactly the same. Every
difference will be pointed out and analyzed afterwards.

2.2.1 Mesh definition
The geometry will now be presented by taking advantage of Figure 2.4.

Figure 2.4. Geometry of our case, provided with dimensions and boundary names.

Dimensions are taken from [Tano-Retamales et al., 2019], since they obtained precise
results by employing turbulence models in OpenFOAM, LES in particular, adopting
the same geometry2. In order to be clearer, we will keep the names employed in
Section 1.4.2. This implies that the blockMeshDict file will be very similar to the
already presented one in structure, besides for the number of vertexes and their order
and for blocks declaration and their grading. Regarding this last feature, we cannot
resort to mesh refinement only near walls, but rather across the entirety of the step
region, since turbulence will develop for all the height of our channel. For this reason
the grading will only be oriented in the x direction, so that elements far from the step,
where turbulent phenomena are less important, will be a bit longer, thus reducing the
total number of cells.

convertToMeters 0.001;

1Indeed, a 2D mesh contains way less cells than a 3D one with the same level of refinement.
2Because of their good results, it’s safe to assume that these dimensions are sufficient to ensure

proper turbulence development, while limiting the amount of elements composing the mesh.
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vertices
(

(-120 0 -0.1)
(0 0 -0.1)
(0 -10 -0.1)
(290 -10 -0.1)
(290 0 -0.1)
(290 10 -0.1)
(0 10 -0.1)
(-120 10 -0.1)
(-120 0 0.1)
(0 0 0.1)
(0 -10 0.1)
(290 -10 0.1)
(290 0 0.1)
(290 10 0.1)
(0 10 0.1)
(-120 10 0.1)

);

blocks
(

hex (0 1 6 7 8 9 14 15) (175 20 1) simpleGrading (0.5 1 1)
hex (2 3 4 1 10 11 12 9) (423 20 1) simpleGrading (2 1 1)
hex (1 4 5 6 9 12 13 14) (423 20 1) simpleGrading (2 1 1)

);

As we can see, the declaration of three different hexaedra is necessary to compose
the geometry reported in Figure 2.4. The first one represents the inlet block, while
the other two the outlet one. When creating meshes made of more than one block,
it’s important that matching faces contains the same number of elements because it
ensures a more precise calculation.
Gradings are set so that the cells will shorten starting from the inlet and moving
along x direction, then will start to enlarge once the step is surpassed.
The reported code refers to the coarsest of our meshes. A comparison between the four
levels of refinement we will adopt is reported in Table 2.1, in terms of: number of cells,
minimum and maximum cells ∆x, cells ∆y (grading is only along x) and maximum
aspect ratio (maximum ∆x/∆y). A visual comparison is reported afterward in Figure
2.5.

Mesh cells ∆xmax (m) ∆xmin (m) ∆y (m) max aspect ratio
Coarse 20420 9.50385 ∗ 10−4 4.75163 ∗ 10−4 5 ∗ 10−4 1.90077
Fine 81680 4.75247 ∗ 10−4 2.37592 ∗ 10−4 2.5 ∗ 10−4 1.90099
Finer 326720 2.37637 ∗ 10−4 1.18799 ∗ 10−4 1.25 ∗ 10−4 1.9011
Finest 1306880 1.18822 ∗ 10−4 0.594002 ∗ 10−4 0.625 ∗ 10−4 1.90115

Table 2.1. Comparison between parameters pertaining to the four meshes.
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(a) coarse mesh (b) fine mesh

(c) finer mesh (d) finest mesh

Figure 2.5. Step section of the four meshes.

2.2.2 Other case setup differences
All the other worth-noting differences with respect to 1.4.2 will be now adressed. The
first one is in the velocity inlet:

inlet
{

type fixedValue;
value uniform (0.71 0 0);

}

Since the current value is a hundred times bigger that the one adopted in 1.4.2, we
can expect Re = 10000, a value that ensures a turbulent motion3, if not obstructed
by ~B. Regarding the just mentioned field, its value on the boundaries will still be set
in order to guarantee the desired Ha value.
The second difference consists in setting now the maximum value of the Courant
number to a higher one: after some testings, we decided that 0.9 is low enough to
ensure convergence.
One last mention goes to the number of subdomains we will use: in order to speed up
the calculation, we employed a 15-core processor to carry out simulations on all of
our meshes, except for the coarsest one, where such high number of cores would cause
a slowdown instead.

2.2.3 Results
In the mesh sensitivity analysis, the aim is to determine how much time the magnetic
field will employ to fully laminarize the flow, i. e., the laminarization time (s). What
we expect is that, by augmenting the mesh refinement, such time interval will increase.

3All other quantities inside (1.24) are the same, since we will still consider liquid sodium at
T = 380(K) as our fluid and the half-length of the channel after the step as L.
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Ha = 244 will be adopted, since it ensures turbulence suppression at the point where
we can detect differences between our four meshes. Indeed, in case of a too high value,
we wouldn’t notice many differences, since laminarization would occur in a very short
time. Regarding time features, we will set 8 seconds as limit, estimating simulations
on the finest mesh to be considerably long5.
A simple Matlab script will be employed to estimate the precise laminarization time.
After reading the velocity profiles at a given section, it goes through all time instants
ti and performs the following check on them:

max{u(y, ti)− u(y, ti−1)}
uavg(ti−1) ≤ 10−3 ∧ max{u(y, ti+1)− u(y, ti)}

uavg(ti−1) ≤ 10−3 (2.1)

where u is the magnitude of ~u, which depends spatially only on y (we are considering
a given section, so x is fixed) and uavg represents its average value across the same
section. We check on two consecutive time instants because it can happen that ti
passed the test, while ti+1 wouldn’t. A visual check on profiles plot was sufficient to
confirm the accuracy of (2.1)6.
Figure 2.6 shows the aforementioned profiles at different time steps. They are taken 6
cm away from the step7.
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Figure 2.6. Comparison between ux profiles taken 6 cm away from the step for the different
meshes.

4We considered L as the half-length of the channel after the step.
5Such simulation lasted for about 8 days on a 15-core processor.
6The visual check was also necessary to establish 10−3 as tolerance.
7The steady state shape is motivated by the presence of the recirculating region.
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All laminarization times are calculated at 27 cm from the step. They are gathered in
Table 2.2:

Mesh Laminarization time (s)
Coarse 4.8
Fine 6.6
Finer 6.4
Finest Not in time limit

Table 2.2. Comparison between laminarization time for the four meshes.

As expected, the coarse mesh shows the most stable behavior, the two in the middle
have a bit longer laminarization time, while remaining similar, and the finest one
doesn’t fully laminarize in the time limit. This can be explained considering the
effect of numerical approximation on turbulence: in order to discretize the geometry,
OpenFOAM employs the Finite Volume Method, which divides the domain in cells
(following the instructions inside blockMeshDict) and solves a discretized version of
every equations in each one of them, saving only one value for every field inside every
cell center. This greatly affects how turbulence is simulated: from theory and facts
we know that eddies are born with a characteristic dimension which characterizes the
geometry, called macroscale, where energy is supplied. Then they start to decay in
smaller eddies, starting the so-called energy cascade, until they reach a point in which
viscous effects dissipate all energy. The dimension they have at that point is called
microscale. Kolmogorov in his famous theory of 1941 stated the following:

λ

Λ ∼ Re−
3
4 (2.2)

where λ is the microscale and Λ is the macroscale, which corresponds in our case to
the half length of our channel after the step. If we consider Re to be around 10000,
for us λ ∼ 10−5(m). Now, if we consider that cells close to the step in the coarse
mesh have a dimension in the order of 0.02/40 = 5 ∗ 10−4(m), we can understand why
it’s the more stable situation: a lot of turbulence scales get lost inside cells. This
phenomenon is called numerical viscosity, since it has the same effect of fluid viscosity,
but at the scale of mesh elements. This explains the results reported in table 2.2: the
more the mesh is refined, the more accurate the result.
At this point it seems that, if one wants to properly simulate turbulence, the only way
is to refine the mesh to the point in which elements are smaller (or at least similar)
to the microscale8, which would result in drastically long simulations. Fortunately,
there is a way around: the employment of turbulence models, which allows to simulate
the presence of turbulent phenomena without the need to refine the mesh to extreme
levels.

2.3 Reynolds Averaged Simulations
The first model employed will be the Reynolds Averaged Simulation, which consists in
solving a time-averaged version of hydrodynamics equations presented in 1.2.1.

8This approach goes by the name Direct Numerical Simulation (DNS).
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Chapter 2. MHD flow across a backward facing step

2.3.1 Theoretical background
The idea behind RAS is the so-called Reynolds decomposition, which implies that
every field will be written as sum of a part constant in time (indicated with •) and a
fluctuating one (indicated with •′):

f(~x, t) = f(~x) + f ′(~x, t) (2.3)
Fluctuating terms benefit from the following property:

f ′ = 0 (2.4)
By means of (2.3) and (2.4)9 one can get to a set of equations only for averaged
quantities, except for one very important term:

τR ≡ −ρ~u′ ⊗ ~u′ (2.5)
τR is called Reynolds stress tensor (Pa). Together with αeff in (1.21), it contains
information about the turbulent behavior of the flow, since it depends on velocity
fluctuations10. In order to close our system, it should be properly modeled. A common
way is to consider the following:

τR = −2
3ρκI + µT

[
(∇~u+∇~uT )− 2

3(∇ · ~u)I
]

(2.6)

where κ = 1
2~u
′ · ~u′ is called turbulent kinetic energy (m2 s−2) and µT is the turbulent

dynamic viscosity (Pa s). The modeling of this last quantity determines how the
system will be closed: one common way are the two equations models, which consider
µT as function of two quantities, described by their own equations. We will adopt
this last approach, in particular considering the so-called κ− ω model, where:

νT ≡
µT
ρ

= κ

ω
(2.7)

νT is called turbulent kinematic viscosity (m2 s−1). Authors interpreted ω (s−1) in
many ways: for someone it was the root mean square of vorticity fluctuations11, for
others the ratio between the dissipation rate of turbulent kinetic energy and the
turbulent kinetic energy itself. The equation for κ can be obtained by subtracting the
momentum equation for averaged quantities to the complete one and then multiplying
all for ~u′. At this point, the equation for ω can be totally invented: usually it can
be identical to the one for κ, except for some coefficients, which are set by means of
benchmark simulations.
Before proceeding with our results, it is important to mention a tool usually adopted
in RAS to further reduce computational cost, which are wall functions. They are
empirical laws which explains how the flow will behave when approaching a wall and
for this reason they are implemented as boundary conditions in OpenFOAM. Their
advantage lies in the fact that, by employing them, one doesn’t need to refine the
mesh close to boundaries in order to obtain acceptable results12.

9After having rewritten all fields, one must average equations in time in order to take advantage
of (2.4). Indeed all terms like fg′ will be equal to 0.

10Since the averaging of (1.4) is a long process, it’s beyond our purpose to report all terms
containing fluctuations. We will limit ourselves to report the way OpenFOAM models turbulence
inside the averaged (1.4), which is the assignment of a proper value to αeff .

11Vorticity is defined as ω ≡ ∇× ~u.
12A good refinement brings always more correct results, but is usually very expensive.
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2.3. Reynolds Averaged Simulations

2.3.2 Results
A comparison between RAS and no-model profiles will be reported in Figure 2.7 and
laminarization times in Table 2.3, employing only the coarse mesh as first verification.
Ha = 24 is adopted to give continuity with respect to results of Subsection 2.2.3.
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Figure 2.7. Comparison between ux profile without model and with RAS model.

Model Laminarization time (s)
No model 4.8

RAS 1.4

Table 2.3. Comparison of laminarization time without model and with
RAS model.

Considering the results reported, the conclusion is that the RAS model is clearly
inappropriate for this study, since it tends to over-estimate the stability properties of
our flow. It is understandable considering the fact that a time average motion will cut
out all small scales turbulence, which can be considered as a fluctuating phenomena.
We aren’t trying to prove that RAS is generally a bad approach: indeed it has some
great advantages, like the short execution time of simulations, but, if one is interested
in a detailed study of a given turbulent phenomenon, this is not the approach to
follow.
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Chapter 2. MHD flow across a backward facing step

2.4 Large Eddy Simulations
Like RAS, Large Eddy Simulations try to save time in solving turbulent flows by
limiting the number of elements in the mesh and modeling turbulence in another way.
One drawback with respect to RAS is their high computational cost, balanced out by
their better accuracy, as we will verify later in our work.

2.4.1 The filtering process
In case of LES, all information pertaining to the smallest scales is cut out from the
solution by low-pass filtering all the equations13. In general, a low-pass filter is an
integral operator which acts on fields and deletes all of its components with frequency
higher than a certain cutoff frequency (imagine to write it as a Fourier series...). It
has the following form:

f̃(~x, t) =
∫
V
G(~x, ~x′,∆)f(~x′, t) d~x′ (2.8)

~x is the point where f̃ is evaluated, while ~x′ goes through all the domain in order to
gather values of f in points relevant to the filtering process14. This selection is carried
out thanks to the filter function G, which must satisfy the following property:∫

V
G(~x, ~x′,∆) d~x′ = 1 (2.9)

This suggests us that suitable filter functions are those which

• are limited in maximum and minimum value,

• tend to 0 when moving towards boundaries or have compact support.

The level of filtering is then set by the parameter ∆. In terms of integration, ∆ decides
how far from ~x the relevant points will be: the higher its value, the bigger the region
of interest and the lower the cutoff frequency, which is 1/∆. The filter effect on a
generic function is reported in Figure 2.8:

0 0.5 1 1.5 2 2.5 3
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1

1.5

2 Starting function

Filtered function

Figure 2.8. Effect of filtering on a generic one-dimensional function.

13In our case, we won’t apply the filter to (1.14), since it would require a deep modification of the
source code of OpenFOAM. Nonetheless, as we will see, our solutions are satisfactorily accurate.

14In our case, the filtering operation is only in space.
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2.4. Large Eddy Simulations

Another important feature which may characterize a filter function is homogeneity: G
is homogeneous if

G = G(~x′,∆) (2.10)
This property practically translates in the filtering operation not depending on the
point ~x where filtering occur. It is crucial if one wants to commute filter operator
with spatial differential operators. It is thus essential for our purpose.
By applying the filter to the system, we will get a set of equations where the filtered
quantities are the new variables. However, The system is not close yet due to a new
term, which arises from the filtered (1.3):

τSGS ≡ ~̃u⊗ ~u− ~̃u⊗ ~̃u (2.11)

τSGS is called sub-grid scale stress tensor (m2 s−2)15. As its name suggests, it is the
term which holds information pertaining to the filtered scales (together with αeff
in (1.21)16). We believe it’s interesting to explain in which sense the memory of
lower scales is kept inside τSGS. Firstly, we need to define large scales the ones with
dimension bigger than ∆ and small scales the one with dimension lower than ∆. The
information inside product ~u⊗ ~u can be divided into four contributions:

1. how large scales influence large scales,

2. how large scales influence small scales,

3. how small scales influence large scales,

4. how small scales influence small scales.

Via filtering process one gets rid of all information contained in small scales, thus
leaving only points 1 and 3. Finally, by subtracting ~̃u⊗ ~̃u, one is left with only point
3, which is the most important contribution17: since all scales above ∆ are directly
solved, we will preserve the influence of all filtered scales inside our solution.

2.4.2 Smagorinsky model
Now, in order to close the system, it is fundamental to introduce a way to model
(2.11). One of the most famous approaches comes from Smagorinsky (1963), whom
firstly considered the decomposition of τSGS into its anisotropic and isotropic part.
For the sake of clarity, we will adopt Einstein notation in the following dissertation.

τSGSij = τanij + 1
3τ

SGS
kk δij (2.12)

15Even though it doesn’t have the dimensions of a stress, it is usually called in this way in literature.
16What has been explained in footnote 10 holds also here. Clearly the method to assign a value to

αeff is different between RAS and LES, but it is beyond our scope to address this specific topic.
Generally it is more interesting to study the terms reported in (2.5) and (2.11), since they bring
some physical meaning with them.

17Information on how large scales influence large scales is already contained inside the advection
term.
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where δij is the Kronecker delta. He then added the isotropic part to the pressure
variable. Regarding the anisotropic part, he proposed the following:

τanij = −2νT S̃ij (2.13)

S̃ij ≡
1
2

[(
∂ũi
∂xj

+ ∂ũj
∂xi

)
− 2

3
∂ũk
∂xk

δij

]
(2.14)

where S̃ij is the strain rate tensor (s−1). Thanks to this approach, the anisotropic
part can be treated together with the viscous stress tensor, modifying the viscosity of
the fluid18. The problem is now shifted towards finding a model for νT .
Via dimensional analysis, one can get to:

νT ∝ lv (2.15)

where l and v are, respectively, characteristic length and velocity of sub-grid scales.
Since resolved scales are mostly influenced by the largest unresolved ones, one can
assume:

l = CS∆ (2.16)
CS is an empirical parameter called Smagorinsky constant. It can be found by means of
benchmark simulations. Concerning v, Prandtl’s mixing length theory (1925) suggests
the following:

v = l|S̃| = CS∆|S̃| (2.17)

|S̃| ≡
√

2S̃ijS̃ij (2.18)
Kinetic turbulent viscosity can thus be expressed as:

νT = C2
S∆2|S̃| (2.19)

This model is relatively simple to implement, but it has some deficits. One for sure
consists in overestimating turbulence close to walls: indeed in that region velocity
has strong gradients, so |S̃| will increase and, as a consequence, νT will increase too.
This is in contrast with the physics of our problem, where turbulence dies out close to
walls due to viscous dissipation. Van Driest, as part of the mixing length RAS model
(1956), introduced an approach which has been applied also in the present case:

l = CS∆
(

1− e
y+

A+

)
(2.20)

where y+ is the normalized distance from the wall and A+ is an empirical parameter
(usually set to 25). Nevertheless, it has been proven that results were not always as
expected. Moreover the Smagorinsky model tends to become inaccurate in cases where
laminar/turbulent transitions and viceversa occur, as in our simulations, where we
want to predict laminarization of the flow. Another issue is linked to the determination
of CS: it usually ranges from 0.065 to 0.165, depending on the case, so we should
spend quite a long time figuring out the right value.

18The term appears in the equation multiplied by ρ̃, so it has the same dimension of the viscous
stress tensor.
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2.4.3 WALE model
The Wall Adaptive Local Eddy-viscosity (WALE) model is a more recent approach to
our problem, which has been proven to perform well in many cases. It implies the
following formulation for νT :

νT = Ck∆
√
κSGS (2.21)

κSGS ≡
1
2τ

SGS
kk = 1

2(ũkkukk − ũkkũkk) (2.22)

κSGS is the sub-grid scale turbulent kinetic energy (m2 s−2), which has been formulated
as follows19

κSGS =
(
C2
w∆
Ck

)2 (S̃dijS̃dij)3(
(S̃ijS̃ij)

5
2 + (S̃dijS̃dij)

5
4
)2 (2.23)

where S̃dij is the traceless symmetric part of S̃ij. Combining (2.21) and (2.23), the
final formulation of νT will be:

νT = (Cw∆)2 (S̃dijS̃dij)
3
2

(S̃ijS̃ij)
5
2 + (S̃dijS̃dij)

5
4

(2.24)

As we can see, the WALE model is able to maintain the simplicity of Smagorinsky,
since it doesn’t require the addition of new equations to the problem20. Moreover, it
has been shown by different authors that it can solve more precisely both turbulence
damping at walls and laminarization of the flow with respect to Smagorinsky. For
such reasons, we will adopt the WALE model in our simulations.

2.4.4 OpenFOAM case setup
Regarding case setup, we can safely refer to Section 2.2, since a significant comparison
between LES and no-model can be achieved only by adopting the same settings. We
will limit ourselves to show only those specific to LES.
One fundamental feature of such kind of simulation is its three-dimensional nature.
Even though large eddies are strongly influenced by the geometry (see Figure 2.2)
small scale turbulence tends to behave independently from that. For this reason a 3D
setup is necessary, so that filtered scales can correctly influence resolved scales.

0/nut

When setting up LES simulation in OpenFOAM, it’s necessary to declare boundary
and initial conditions for νT , as if it was an actual field.

dimensions [0 2 -1 0 0 0 0];

internalField uniform 0;
19We are not interested in showing how to obtain such formulation, since it would be a very long

process.
20Other LES models require such addition, similarly to the κ− ω model introduced in 2.3.1.
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boundaryField
{

inlet
{

type fixedValue;
value uniform 0;

}

outlet
{

type zeroGradient;
}

upperWall
{

type fixedValue;
value uniform 0;

}

lowerWall
{

type fixedValue;
value uniform 0;

}

front
{

type symmetryPlane;
}

back
{

type symmetryPlane;
}

}

Firstly, it’s important to introduce the symmetryPlane type boundary condition.
Essentially, it simulates the continuation of the geometry by acting like a symmetry
plane between the real geometry and the simulated one. In this way our fluid will
act as if upper and lower walls elongate over the boundaries. A proper definition of
front and back in blockMeshDict (under boundary keyword) is required in order to
use this boundary condition:

front
{

type symmetryPlane;
faces
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(
(0 7 6 1)
(1 6 5 4)
(2 1 4 3)

);
}

back
{

type symmetryPlane;
faces
(

(8 9 14 15)
(9 12 13 14)
(10 11 12 9)

);
}

The reason behind such choice is the three-dimensional nature of LES simulations.
Regarding the initial condition, it is coherent with the fact that our fluid is motionless
at time 0, so no turbulence can be present. The same holds for upper and lower
wall boundary conditions: the fluid remains still near walls due to the no-slip, so no
turbulence develops there. Regarding the inlet, since the fluid enters with a uniform
velocity, it is reasonable to assume that what just stated about walls holds also here.
Finally, at the outlet we figured out that zeroGradient is the most suited condition,
since there is no physical reason for turbulent phenomena to change behavior while
exiting the geometry. Moreover, it is coherent with the velocity field.

0/alphat

Together with νT , OpenFOAM requires the user to specify conditions also for the
turbulent contribution to αeff , which goes under the name αT . Since its value depends
on the presence of turbulence, it is advisable to set all its conditions equal to those of
νT .

turbulenceProperties

As already mentioned, here is where we declare the nature of our simulation.

simulationType LES;

LES
{

LESModel WALE;

turbulence on;

printCoeffs on;
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delta cubeRootVol;

cubeRootVolCoeffs
{

deltaCoeff 1;
}

}

The code is straightforward. Indeed, the only entry which needs clarification is
cubeRootVol: it implies that our ∆ will be the cubic root of the cell volume. This is a
very convenient option, since it allows the user to reduce filtering level, thus increasing
accuracy of the solution, by directly refining the mesh in the regions of most interest.
Another important keyword is deltaCoeff. As its name suggests, it’s a coefficient
that multiplies ∆, so, if one wants to refine at different scales with respect to cell
dimension, it is sufficient to set it to a value lower o higher than 1, respectively if
more or less accuracy are desired.

2.4.5 Results
Before proceeding with our results, the mesh which will be mostly used in the following
will be introduced. Its dimensions are the same of figure 2.4, plus 1 (cm) in thickness,
so that the inlet patch will be a square. Regarding number of elements and grading,
we refer to the following code:

blocks
(

hex (0 1 6 7 8 9 14 15) (120 36 36) simpleGrading (0.2 1 1)
hex (2 3 4 1 10 11 12 9) (290 36 36) simpleGrading (5 1 1
hex (1 4 5 6 9 12 13 14) (290 36 36) simpleGrading (5 1 1)

);

which brings to a total of 907200 elements. As our first approach to the problem, we
preferred to limit the number of elements, so that simulations won’t last too much,
allowing us to check if all settings were appropriate.
Unfortunately, we cannot resort to the stability analysis we previously introduced in
this chapter, since it was only developed for 2D simulations.

Laminarization time vs Ha

Firstly, we analyzed the laminarization time with respect to Ha value, with the aim
of finding at which value it becomes laminar in the limit of 8 seconds.
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Ha Laminarization time (s)
24 Not in time limit
25 Not in time limit
26 Not in time limit
27 3.6
28 3.6
30 2.4
35 0.6
40 0.4
60 0.04
80 0.08
100 0.09

Table 2.4. Comparison between laminarization time for various Ha values.

We can notice that for Ha = 24 stabilization is not yet reached, which is the same
result we obtained for the finest mesh (table 2.2). This fact is very positive, since it
implies that unresolved scales are correctly influencing solved ones.
For the sake of a clear comparison, we will now plot the data, showing also a fitting
curve of our results.
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Figure 2.9. Hartmann number vs laminarization time.

The law which best fits our number is the following:

tl(Ha) = 9.38 ∗ 1010Ha−7.197 + 0.05656 (2.25)

where tl stands for laminarization time. In order to get a clean interpolation, we
excluded Ha = 27 from the data. Indeed, for Ha between 26 and 28, more simulation
could reveal a different trend with respect to the interpolating curve, which would
still remain correct in case of Ha ≥ 28. The problem is that such analysis would be
very time-consuming since it would require a large number of simulations21.
Before proceeding, we must mention the fact that a different mesh was necessary in

21It could be addressed in a future development of our work.
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order to simulate Ha = 60, 70, 80. Indeed in such cases the Hartmann layer is really
thin. This results in a very steep velocity gradient close to walls, which requires an
adequate mesh refinement22. Placing five cells inside the layer is enough to ensure
that the fluid behavior is correctly reproduced.

LES vs no-model finest mesh

Aware of the aforementioned results, we are now interested in a direct comparison
between no-model finest mesh and LES. We will consider Ha = 27, since it’s the
lowest value which assures stabilization. A comparison between no-model profiles and
LES profiles taken 6 cm away from the step will be reported in Figure 2.10.
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Figure 2.10. Comparison between ux profile taken 6 cm away from the step without model and
with LES model.

From the profiles, it emerges that LES predicts turbulence slightly differently from
the no-model case, while the final steady state profiles show good agreement. The
difference in the turbulent behavior can be motivated sureby by the employment of
LES model, but also considering the 3D nature for such simulation, even though its
impact on the velocity field should be investigated.
Three different aspects are then evaluated: laminarization time, number of elements
per square centimeter of mesh surface23 and simulation execution time. They are

22We noticed an unphysical increase of ~u close to walls before adopting a sufficiently refined mesh.
23This is the clearest way to compare mesh refinement between 2D and 3D simulations. Moreover,

our case can be approximated as two-dimensional, so our method is even more adequate.
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gathered in Table 2.5.

Simulation type Laminarization time (s) elements/cm2 Execution time (s)
no model 3.8 18670 281524

LES 3.6 360 84225

Table 2.5. Comparison between finest mesh and LES on laminarization time, number of elements
per square centimeter of mesh surface and simulation execution time.

The most relevant result is surely the fact that both predicted similar laminarization
times, but with a huge difference in elements/cm2, confirming the capability of LES
to correctly reproduce filtered scales influence on resolved scales. Moreover, our LES
simulation was roughly 3.3 times faster than the other. The reason behind such gap
is to be searched inside the Courant number (1.31): in order to satisfy the restrain
Co ≤ 0.9, time step must adapt itself to the mesh size, which is noticeably smaller for
the finest mesh.

Three-dimensional effects

The impact of uz on the development of the flow will be now addressed. The profile
of the three components of ~u will be compared along two sections: one 6 cm and one
27 cm far from it. We will employ Ha = 27 also for this case.
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Figure 2.11. Profiles of ux, uy and uz taken 6 cm away from the step.
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Figure 2.12. Profiles of ux, uy and uz taken 27 cm away from the step.

The most interesting results are surely the ones pertaining to the section closer to the
step, where the recirculating region develops. As we can see, in that region uz assumes
values which are comparable to those of ux and uy. Advancing in time or moving away
from the step lowers its importance. Indeed, by advancing in time the effect of ~B
becomes more relevant, thus bringing the flow to its two-dimensional nature24, while
keeping the distance from the recirculating region results in a less chaotic behavior
from the start.
In conclusion, a three-dimensional simulation is sensibly more accurate than a two-
dimensional one if the interest lies in transient analysis. It is recommended to resort
to 2D only if there is certainty that ~B will laminarize the flow and if the interest is
only in the steady state profiles.

Reattachment length

The reattachment length will be analysed next. We will consider the same Ha values
reported in Table 2.4 and report all data in Table 2.6

24Indeed, the action of ~B is to shape ux as the Hartmann analytical profile (1.22).
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Ha Reattachment length (cm)
24 5.5 ÷ 7
25 5.5 ÷ 7
26 6 ÷ 7
27 6.6
28 6.3
30 5.7
35 4.6
40 3.7
60 2.2
80 1.6
100 1.2

Table 2.6. Comparison between laminarization time for various Ha values.

As we could expect, for Ha value corresponding to absence of stabilization it’s
impossible to obtain a fixed value for r. In those cases, we will limit ourselves to
report the range of values in which r oscillates.
In the wake of what we did for the laminarization time, we will now gather all data in
a plot and fit them.
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Figure 2.13. Hartmann number vs reattachment length.

The law followed by r(Ha) is similar to (2.25):

r(Ha) = 1124Ha−1.579 + 0.4442 (2.26)

As we can see, both (2.25) and (2.26) are power laws, even though coefficients are
quite different. By looking at figures 2.9 and 2.13, it’s noticeable how the latter results
more accurate than the former. Indeed the study of r is simpler to carry out, since
the only requirement is the achievement of a steady state, while the accuracy of tl
could be influenced by the amount of time between two consecutive data sampling,
for which the storage capability is a limiting factor.
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Chapter 2. MHD flow across a backward facing step

Mesh sensitivity analysis on LES

In conclusion of the second chapter, we will undergo a brief mesh sensitivity analysis
on LES, considering just one refinement. It’s important to notice that in this case the
refinement process translates into reducing ∆. Since we already performed various
simulations on the mesh presented at the beginning of 2.4.5, we will select a value
for Ha and perform a new simulation on a refined version of that same mesh. We
will consider once again Ha = 27, since it’s the most significant example in terms of
laminarization time. Figure 2.14 shows ux profiles taken 6 cm away from the step,
while Table 2.7 gathers some interesting data: number of cells in the mesh, execution
time of the simulation, laminarization time and reattachment length.
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Figure 2.14. Comparison between ux profiles taken 6 cm away from the step without and with
mesh refinement.

mesh total number of cells execution time (s) tl (s) r (cm)
standard 907200 84225 3.6 6.6
finer 1782000 506536 Not in time limit 6 ÷ 7

Table 2.7. Comparison between LES on two different meshes.

As we can see, approximately doubling the number of elements results in a sensibly
more chaotic motion and in the absence of laminarization in the time limit of 8 seconds.
Considering Figure 2.9, we can assume that the effect of mesh refinement is to shift
the curve to the right by a certain amount, till the point in which further refining
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brings to the same result25.
It has to be said that such accurate analysis turned out to be very expensive in terms
of execution time. For this reason, one should always consider if it’s worth investing
this large amount of time in one single simulation.

2.5 Conclusions
In the present chapter, we were interested in testing out the capability of comprMhd-
Foam to employ turbulence models in MHD problems. The first step was the mesh
sensitivity analysis, which was necessary in order to have a reference point later on.
Secondly, RAS and LES models were introduced and tested. The latter brought to
interesting results, which encouraged us to investigate some features of the physical
system.
What has been learned is that the best way to approach such problem is to consider a
three-dimensional geometry and LES turbulence model. In this way, the characteristic
of the system in terms of dynamical behavior can be addressed. Once those aspects
are understood, one can decide to switch to a faster approach (for example RAS),
especially if his interest lies in the steady state after the transient.
Another aspect which emerged is the sensitivity of LES to mesh refinement: indeed,
the more the mesh is refined, the more the solution tends to the one of a DNS,
since the filter length ∆ cuts less scales out of the turbulence field. So, one should
always decide which grade of precision is enough for his purpose, maybe by meas of
a comparison with experimental results. Given the amount of time which just one
simulation can take, one could also be interested in a way to speed up calculations.
Such objective can be achieved by employing a dimensionality reduction algorithm.
For this reason, Dynamic Mode Decomposition (DMD) will be introduced and applied
to some of the simulations we carried out during this chapter, aiming at determining
if it could be a viable approach to save computational time.

25The more one refines, the closer he gets to a Direct Numerical Simulation.
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Chapter 3

Dynamic Mode Decomposition
approach

In the last section of this thesis work, we will apply the Dynamic Mode Decomposition
approach to some of our simulations in order to obtain a reduced-order model of our
system. Firstly, we will theoretically introduce the algorithm, then we will proceed to
explain how we implemented it in Matlab, where in a single script we gather data
from the snapshots of our simulations and employ them as starting point for all the
necessary computations. Finally, we will analyze the results and declare whether this
approach could be viable or not to speed up future simulations.

3.1 Introduction
Given the fact that several simulations are usually necessary to fully understand any
addressed phenomenon and given the large amount of time which just one of them
can take, it is reasonable to think of a way to save such time. Indeed, as addressed in
Subsection 2.4.5, if one wants to obtain highly precise results, simulations will tend to
last for days at best. In these kind of situations, a technique called Dynamic Mode
Decomposition (DMD) can find an interesting application.
As explained by [Di Ronco et al., 2020], DMD algorithm aims at reconstructing the
dynamics of a given dynamical system through a linear combination of empirical state
vectors called modes. It is a spatial dimensionality reduction technique in the sense
that, depending on the problem at hand, the number of basis vectors required to
capture the dominant dynamics of the system can be several orders of magnitudes
smaller than the original problem size. One very important feature which makes
this approach interesting is the fact that it is equation-free: indeed what is needed
by the algorithm to work are only snapshots containing fields data (velocity for
example) taken every fixed amount of time. These snapshots can be either taken
from a simulation or from an actual experiment through measurements. This directly
implies that the dynamics pertaining to our system can also be non-linear.
As mentioned by [Kutz et al., 2016], DMD is mostly employed in three different
situations:

• Diagnostic: DMD allows for the data-driven discovery of fundamental, low-rank
structures in complex systems, such as hydrodynamics ones.
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• State estimation and future-state prediction: unlike the diagnostic objec-
tive, here the goal is to anticipate the state of the system in a regime where no
measurements were made. This is a much more difficult task, especially as DMD
is limited to constructing the best-fit (least-square) linear dynamical system of
the non-linear dynamical system generating the data.

• Control: enabling viable and robust control strategies directly from data
sampling is the ultimate, and most challenging, goal of the DMD algorithm.
Given the fact that we are approximating a non-linear behavior with a linear
one, it is reasonable to assume that the prediction of the future of our system
would be accurate only for a limited amount of time. The hope is that such
period is long enough to allow for good decision-making about the state of the
system.

Concerning our purpose, we will start from snapshots of a LES simulation and aim at
reconstructing them by employing DMD, which is the first and most simple task when
approaching such problem. A key factor will be the time step between subsequent
snapshots: its optimal value must be found through trial and error if the charac-
teristic times of the dynamic are not clearly known. Indeed, if it’s too long, short
time dynamical events can’t be caught, while, if it’s too short, the long time ones
get lost. We will thus study the difference emerging by considering different time steps.

3.2 The DMD algorithm
The algorithm starts with the gathering of all the snapshot of our dynamical system,
which has dimension n, as a matrix composed of m column vectors of length n, each
one corresponding to the system state at a given time.

Xm
1 = {x1,x2, ...,xm} (3.1)

where each xk ∈ Rn, k = 1, 2, ...,m, is taken at a fixed ∆t with respect to the previous
one. For the success of the algorithm it is important that these ∆t are identical
between each other or at least very similar1. In our case, each vector x contains the
values assumed by one of our fields across the entire mesh at a given time, which
brings to one number for each cell in case of a scalar fields. In case of vector fields, in
order to maintain the structure of Xm

1 , it is reasonable to organize x as follows: the
first third will be the x component, the second third the y component and the last one
the z. Since we are using the same mesh presented at the beginning of 2.4.5 and are
interested in reconstructing the velocity field, in our case n = 907200 ∗ 3 = 2721600.
Since we are dealing with a discrete problem, we can now assume the existence of a
linear map A2 which can advance x in time:

xk+1 = Axk (3.5)
1As we will see, in our case this condition isn’t fully accomplished since we use an adaptive time

step, but the difference between them is negligible.
2A generic dynamical system can be represented by the following:

dx
dt

= f(x, t;µ) (3.2)
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3.2. The DMD algorithm

The DMD algorithm produces a low-rank eigendecomposition of the matrix A that
optimally fits the data xk for k = 1, 2, ...,m in a least-square sense so that

||xk+1 −Axk||2 (3.6)

is minimized across all points for k = 1, 2, ...,m− 1. The optimality of the approxi-
mation holds only over the sampling time window in which snapshots are gathered
and A is constructed. Another way to see (3.5) is the following:

Xm
2 = AXm−1

1 (3.7)

from which A can be derived as follows:

A = Xm
2

(
Xm−1

1

)†
(3.8)

where the † superscript denotes the Moore-Penrose pseudoinverse3.
The problem is that our n is really large4, so a direct analysis of A could take a very
long amount of time. What DMD does is to circumvent the eigendecomposition of A
by considering a rank-reduced representation in terms of a POD5-projected matrix Â.
Now, the algorithm itself will be introduced step-by-step.

1. Firstly, a Singular Value Decomposition6 (SVD) of Xm−1
1 is performed:

Xm−1
1 ≈ USV∗ (3.9)

where ∗ superscript denotes the conjugate transpose, U ∈ Cn×(m−1), S ∈
C(m−1)×(m−1) and V ∈ C(m−1)×(m−1). The columns of U and the columns
of V are called the left-singular vectors and right-singular vectors of Xm−1

1 ,

where x is the state vector of our system at time t, while µ is the set of parameters involved.
Since in general a dynamical system is described by a coupled system of ordinary, often non-linear
differential equations, it is usually not possible to construct a solution to the governing non-linear
evolution. What DMD wants to accomplish is the construction of the proxy, approximate locally
linear dynamical system

dx
dt

= Ax (3.3)

starting from the snapshots of the non-linear problem, which dynamics can remain unknown. Given
the continuous problem 3.3, it is always possible to describe an analogous discrete-time system
sampled every ∆t in time. The bond between (3.5) and (3.3) is the following:

A = exp(A∆t) (3.4)

We will thus aim at reconstructing A, from which the continuous, approximate linear dynamics can
be retrieved.

3The Moore-Penrose pseudoinverse is a generalization of the inverse matrix. It is equivalent to
finding the best-fit solution (in the least-squares sense) of a system of linear equations lacking a
unique solution.

4Left apart our case, n is usually very large.
5The Proper Orthogonal Decomposition (POD) method essentially provides an orthogonal basis

for representing a given set of data in a least-squares optimal sense, i. e., it offers ways to find
optimal lower-dimensional approximations for the given data set.

6The Singular Value Decomposition is a factorization of a real or complex matrix that generalizes
the eigendecomposition of a square normal matrix to any n×m matrix via an extension of the polar
decomposition.
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respectively. Moreover, the columns of U are POD modes and are orthonormal,
so U∗U = 1; similarly, V∗V = 1.
Among the three matrices, the most important entry is S: it is diagonal and its
elements are called the singular values of Xm−1

1 . Basically, the higher a singular
value is, the more relevant its associated mode will be, so, by looking at S,
one can determine which and how many of them will be necessary to properly
reconstruct our field. Since the SVD is not unique, it is always possible to choose
the decomposition so that the singular values Sii are in descending order. In
this way the truncation of undesired modes is achieved just by reducing the
dimensions of our three matrices accordingly to the number of desired modes
r < m− 1: U ∈ Cn×r, S ∈ Cr×r and V ∈ Cm×r.

2. Now we can reconstruct A by considering the pseudoinverse of Xm−1
1 obtained

via SVD:
A = Xm

2 VS−1U∗ (3.10)
In practice the storage of A can be problematic (in our case it would be a
2721600× 2721600 matrix), so it is much more convenient to compute Â, which
is its projection onto POD modes:

Â = U∗AU = U∗Xm
2 VS−1 (3.11)

The matrix Â defines a low-dimensional linear model of the dynamical system
on POD coordinates:

x̂k+1 = Âx̂k (3.12)
while the full-dimensional state can be recovered by mean of U:

xk = Ux̂k (3.13)

3. The reconstruction of Â is followed by its eigendecomposition:

ÂW = WL (3.14)

where the columns of W are eigenvectors and L is a diagonal matrix containing
the corresponding eigenvalues λi. We can now compute the eigenvalues of the
continuous problem:

ωi = ln(λi)
∆t (3.15)

4. From W and L we can reconstruct the eigenvectors of A, which will be the
columns of P:

P = Xm
2 VS−1W (3.16)

It has been proven that the eigenvectors defined by (3.16) are the exact eigen-
vectors of A.

5. Finally, we can write the reconstruction of our field for any given time in the
future:

x(t) ≈
r∑
i=1

pi exp(ωit)bi = P exp(Ot)b (3.17)
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where pi are the columns of P, bi are the initial amplitudes of each mode, O is
a diagonal matrix containing the ωi and b is the vector containing all the bi,
which can be calculated as follows:

x(t = 0) = x1 = Pb =⇒ b = P†x1 (3.18)

It is important to notice that pi have the same dimension of xk, so the recon-
structed field will have the same dimension as well.

Figure 3.1 illustrates the fundamental passages in the application of the algorithm to
a simple fluid dynamics case.

Figure 3.1. Schematic overview of DMD, proposed by [Kutz et al., 2016], which shows the
application of the algorithm to a fluid-dynamics case: the flow around a cylinder. The
only difference here consists in the fact that one doesn’t usually construct A, but rather

its projection onto POD modes Â in order to make the regression.

Now that the algorithm has been clearly explained, we can proceed to show the Matlab
implementation step by step, but beforehand we need to import OpenFOAM fields
and save them into the Matlab Workspace. Inside the OpenFOAM case directory, a
folder containing the desired field is present for each time instant in which data are
saved, thus we need to enter in each one of them, read and store the field information,
exit the folder and repeat. In order to accomplish our goal, the first step is the
creation of a vector containing the names of every time folder, which, in case of a 0.01
time step, will be like 0.099975, 0.0200044, 0.0299986 and so on, due to the adaptive
time step option. After that, we can navigate all folders and gather the velocity field,
which is commonly named U in OpenFOAM.

1 A = dir; % struct array with files and directories names
2 T = 3.9; % simulated time
3 dt = 0.01; % time step
4

5 for i=1:round(T/dt)
6 timeDir(i) = str2double(A(i+2).name);
7 end
8
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9 timeDir = sort(timeDir); % time directory
10

11 X = []; % velocity field initialization
12

13 for i=1:length(timeDir)
14 cd(sprintf('%.6f',timeDir(i)))
15 fid = fopen('U');
16 u = textscan(fid,'(%f %f %f)', 907200, 'HeaderLines', 22);
17 X_up = [u{1};u{2};u{3}];
18 X = [X X_up];
19 fclose(fid);
20 cd ..
21 end

Now we can apply the DMD algorithm step by step:

1. Firstly, the SVD decomposition and the reduction of matrices dimensions:

1 [U,S,V] = svd(X(:,1:end-1), 0);
2

3 r = 20; % must be less than length of timeDir
4

5 U = U(:,1:r);
6 S = S(1:r,1:r);
7 V = V(:,1:r);

The second argument inside svd function deserves an explanation: it is needed
to set the ’economy’ version of SVD, which is the same as previously exposed.
Without it, U would be n× n instead of n×m, making it extremely hard to
store. Also S would change from m×m to n×m, but this would result in a
minor issue.

2. Secondly, we will compute Â:

1 Ahat = U' * X(:,2:end) * V / S;

3. Now we proceed with its eigendecomposition and the calculation of the continu-
ous time eigenvalues

1 [W,L] = eig(Ahat);
2 lambda = diag(L);
3 omega = log(lambda) ./ dt;

4. We can now construct the eigenvectors of A:

1 P = X(:,2:end) * V / S * W

5. Finally, the reconstruction of the velocity field, preceded by the calculation of b:
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1 b = P \ V(:,1);
2

3 for i=1:length(b)
4 Pb(:,i) = P(:,i) .* b(i);
5 end
6

7 t = linspace(0,T-2*dt,length(timeDir)-1);
8

9 for i=1:length(t)
10 Xdmd(:,i) = Pb * exp(omega .* t(i));
11 end

The vector t contains the time instants in which Xdmd will be calculated. We
must clarify that Xdmd is the reconstructed version of X(:,2:end), so the first
snapshot will be excluded from the reconstruction. Another important aspect is
that Xdmd will be a complex matrix, but clearly only the real part is relevant7.

Now we need a way to compare our original field with the reconstructed one. The
easiest method is to employ Paraview, the software used to visualize OpenFOAM
simulations results. In order to do so, we must write down Xdmd as if it was an
OpenFOAM field text file. We will thus have to enter every folder and create a text
file containing the information of Xdmd at the corresponding time, then repeat till
the end. Fortunately, Matlab allows us to easily write text files. It is important
that the generated text files contain the minimum amount of code required to make
OpenFOAM treat Xdmd as a volVectorField class object, the same as U.
Lastly, we want a way to measure the goodness of the DMD approximation. After
the testing of different error formulations, the most significant one appears to be the
following:

err(t) =

√√√√〈x(t)− xDMD(t),x(t)− xDMD(t)〉
〈x(t),x(t)〉 (3.19)

where x(t) and xDMD(t) are the original and the reconstructed state vectors at a
given time, while the brakets 〈•〉 indicate the scalar product. We will thus have an
error value for every time instant, so that it can be easily plotted directly in Matlab.
Here is the corresponding code in the case of X and Xdmd:

1 Xdiff = X(:,2:end) - real(Xdmd);
2

3 for i=1:length(timeDir)-1
4 err(i) = sqrt((Xdiff(i)' * Xdiff(i)) ./ (X(:,i+1)' * X(:,i+1)));
5 end

7It can be verified that the imaginary part is different orders of magnitude smaller than the real
one.
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3.3 Results
The presented algorithm was applied to two cases: both are LES simulations of a
MHD flow across the backward facing step, one ending in a steady state and one
keeping a turbulent regime. For both cases we will compare some of the original
snapshots with the reconstructed ones and then plot err(t) as reported in (3.19).

3.3.1 Steady state scenario
In this case, the steady state is reached in about 0.5÷ 0.6 s and the simulated time is
1 s. The time step is of 0.02 s, thus bringing to a total of 50 snapshots. Since it is a
small number, r will be 49, which is the largest possible8. Firstly, a visual comparison
between the original field and the reconstructed one is reported in Figure 3.2.

(a) t = 0.04 s

(b) t = 0.22 s

(c) t = 1 s

Figure 3.2. Comparison between the original and reconstructed field at the first reconstructed time
step, in the middle of the transient and at the end of the simulation. For every time
reported, the field above is the original one, while the other is the reconstruction.

As we can see, the accuracy is higher in the middle and at the end. At the beginning,
the method tends to overestimate the amplitude of some modes, which leads to the
presence of nonexistent structures. The err(t) plot can confirm what just asserted.

8This choice of r seems in contradiction to what we explained in 3.2, since now r = m− 1. The
reason behind our choice is that calculations with such a small value of r are fast enough to allow
the use of all snapshots, which naturally brings to more precise results.
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Figure 3.3. Error plot vs time. As we expected, it is higher at the beginning, while it decreases to
reach a constant value at the steady state.

In conclusion, results are quite satisfying, considering that the maximum error is
around 9%, but tends to decrease rapidly. Moreover, the recover of the steady state
with only a 2.2% error is a confirmation of the correct implementation of the algorithm.

3.3.2 Turbulent scenario
In this second case, turbulence is stronger and the transient is longer (the simulated
time is 3.9 s). Indeed, the previous, steady state example was more like a verification
of the algorithm, while now we will analyze the impact of the time-sampling choice
on the field reconstruction by testing three different time steps. Firstly, one of the
most accurate results is reported and compared the original field (Figure 3.4).

(a) t = 0.1 s

(b) t = 1 s

(c) t = 3.9 s

Figure 3.4. Comparison between original and reconstructed field at the first reconstructed time step,
in the middle of the transient and at the end of the simulation. For every time
reported, the field above is the original one, while the other is the reconstruction.
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As for the previous case, one can notice some small discrepancies at 0.1 s , which tends
to vanish as time passes. The error will be now studied considering three different
time steps: 0.1 s, 0.05 s and 0.01 s. For every one of them, we will try different values
of r.

0.1 s

In this first case, the number of snapshots is 39, thus rmax = 38.

0 0.5 1 1.5 2 2.5 3 3.5

time (s)

0

2

4

6

8

10

12

14

16

18

20

22

e
rr

o
r 

(%
)

r = 5

r = 20

r = 38

Figure 3.5. Comparison between three different values of r, considering 0.1 s as time step.

As we can see, the error is pretty high at the beginning, but decreases quickly in 1
second of simulated time. It is interesting to notice that the only sensible difference
between the three cases is at the end of the simulation, where the largest r appears to
be the most accurate.

0.05 s

In this second case, the number of snapshots is 78, thus rmax = 77.
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Figure 3.6. Comparison between three different values of r, considering 0.05 s as time step.
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The difference between the three now is relevant across all the simulated time interval,
with r = rmax being the best choice by far.

0.01 s

In the last case the number of snapshots is 390, thus rmax = 389, which is pretty large.
Indeed, calculations with such large r are extremely slow, so the rule r < m should
be applied, but, for the sake of completeness, we will test it out anyway.
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Figure 3.7. Comparison between three different values of r, considering 0.01 s as time step.

This last one is surely the most peculiar result: by using a too large value of r, the
overestimation of modes in the beginning becomes more important, thus leading to
imprecise results. On the other hand, the trend changes at the end, where r = rmax
becomes the most accurate option, making it look like the best choice for future
predictions of the system. The problem resides in the fact that the computational
time required for the reconstruction will be extremely high, making it less interesting.
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Chapter 3. Dynamic Mode Decomposition approach

3.4 Conclusions
in order to establish which is the best approach to follow in our case, we should make
a comparison between the tested time steps. For each one of them, the value of r
which brought to the most accurate result is considered. Figure 3.8 reports thus the
errors obtained from the following combinations: 0.1 s with r = 38, 0.05 s with r = 77
and 0.01 s with r = 150.
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Figure 3.8. Comparison between the lowest errors found for every time step.

Figure 3.8 clearly shows that we obtained the most accurate reconstruction by em-
ploying a 0.05 s time step and the largest r possible, which in that case is 77, but it
is worth mentioning that, close to the end, all of them tends to a similar value. For
the sake of clarity, we tested both 0.05 s and 0.01 s with r = 77. The result is shown
below.
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Figure 3.9. Comparison between 0.05 s and 0.01 s employing r = 77.

We can thus confirm that the best option is 0.05 s with r = 77. The fact that, by
shortening the time step, the reconstruction diverges from the original result is quite
peculiar. Concerning the physics of the system, one reason might be that a short time
step led to an overestimation of the short time dynamics and underestimation of the
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long time one. Another reason could reside in the numerical aspect of the algorithm:
indeed, by employing a too short time step, the SVD decomposition of the matrix
Xm−1

1 could become more problematic9, letting some numerical instabilities arise.
In conclusion, we are satisfied with our result: considering the strong non-linearity
present in our physical system, the linear approximation provided by the DMD
algorithm shows a good agreement with the original simulation. What makes it
even more satisfying is the fact that the reconstruction takes less than 1 hour on
a quad core laptop to be performed, while the full simulation takes several hours
on a 15-core processor, thus making the DMD option viable for the reconstruction
of the future state of an MHD system. Moreover, it opens to the possibility to
realize both parametric and sensitivity analysis on LES simulations in an extremely
reduced amount of time with respect to the traditional way, in which full simulations
are repeated for every change in parameters. For sure these aspects could result in
interesting future developments of the current work.

9Indeed, shorter time step means more columns in Xm−1
1 .
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In this thesis work, a compressible MHD OpenFOAM solver has been developed and
successfully verified on the Hartmann Flow case. In order to test its goodness in
the application of turbulence models to MHD scenarios, it was then employed in the
simulation of a conductive fluid passing through a backward facing step while under
the effect of external magnetic field. Here, RAS and LES models were tested and the
application of the latter brought to interesting results. Lastly, we applied the DMD
algorithm to some of the LES simulations with good results, thus allowing for faster
computational time.
After this brief resume, all the achievement reached throughout the three chapters of
this work will be discussed and compared with the predetermined objectives. Some
possible future developments are also addressed.

1. Development and verification of a new MHD solver for OpenFOAM.
The solver comprMhdFoam was born as a tool to deal with compressible MHD,
allowing also for the use of turbulence models if needed. The success of the
verification on the Hartmann flow case was the proof that the physics we
introduced was correctly implemented on the starting point solver, which only
treats compressible fluid dynamics. It is important to remember that we wanted
to exclude compressibility effects from the verification because the chosen starting
point is well-known for its capability to simulate such scenarios.
Starting from our accomplishments, one possible future developments of this
chapter will be for sure the possibility to treat walls with arbitrary conductivity.
As it is by now, the solver can only treat insulating walls, so a generalization in
that sense would be extremely helpful. Moreover, the test or even a validation
on a compressible MHD cases could be a better confirmation of its reliability.

2. MHD flow across a backward facing step. The objective in the second
chapter was to verify the goodness of comprMhdFoam in employing turbulence
models in an MHD case. They represent a way to obtain a nice compromise
between accurate results and low computational time when studying turbulent
phenomena and as such they are extremely helpful in engineering applications.
The mesh sensitivity analysis was necessary to provide a reference point to
evaluate the application of such models to the chosen problem. Results were
surely satisfying when employing LES and for this reason we were encouraged to
explore some of the features of our physical system, such as three-dimensional
effects and reattachment length.
Many complex cases can be investigated to test the capability of the new solver.
One example is the turbulent motion which can arise in presence of heat transfer:
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the effect of an external magnetic field on such situation is for sure interesting to
observe ( [Belyaev et al., 2019] studied the phenomenon through an experiment).
Another interesting aspects are the pressure drops due to the Lorentz force,
maybe coupled with a complicated geometry.

3. Dynamic Mode Decomposition approach. The DMD algorithm was ap-
plied to some LES simulation in order to test the capability of the method to
provide an efficient way to save computational time. Results were reported under
various conditions, related to different time-sampling and number of modes kept
for the reconstruction, and proved to be satisfyingly accurate. For this reason, in
future works related to the presented topics, the DMD algorithm could become
the key to save a large amount of computational time.

A flux diagram which summarizes all the passages of the presented work is reported
in the following.
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Appendix A

Linear stability analysis of
two-dimensional simulations

In this appendix, a tool for the linear stability analysis is presented and tested on
some two-dimensional OpenFOAM simulations carried out during Chapter 2. It is
based on the linearization of the underlying equations of the physical system and the
description of the perturbations1 with a Fourier-like analysis. Such tool was developed
by [Trotta, 2019] in Matlab, thus allowing its application also to OpenFOAM profiles2.
The algorithm is reported step-by-step:

1. The profiles of ux, uy, T and ρ, taken at a given time instant along a section
parallel to y of the geometry, are interpolated on Chebyshev nodes. After some
testing, it appears that 300 nodes are enough for an accurate interpolation.

2. The problem is linearized, considering the following formula for perturbations:

δf(y)ei(ξx−wt) (A.2)

where δf(y) represents the perturbation amplitude of a generic quantity, ξ is
the wave number (m−1) and w is the complex time frequency (s−1). Then, the
eigenvalues of the resulting algebraic system, i. e., the aforementioned w, are
studied for every value of ξ specified by the user.

3. Since the stability of our system is associated to the condition Im(w) < 03, for
every specified ξ the eigenvalue with the maximum imaginary part is selected
and compared to such value.

4. The process is repeated for every time instant in which data fields are saved and
the aforementioned imaginary part plotted against time.

1When performing a linear stability analysis, each variable of the differential problem is written
as:

g(~x, t) = g0(~x) + δg(~x, t) (A.1)
where g0 represent the steady state value of the generic variable g and δg represent a small perturba-
tion.

2The custom-made readFields function, employed in Chapters 1 and 2, will be used also in
the present case.

3Indeed, if such condition is not respected, a perturbation of the form (A.2) would increase in
value indefinitely, thus bringing to an unstable situation.
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Firstly, we will apply the algorithm to the profiles obtained from the simulations
carried out during the mesh sensitivity analysis (Subsection 2.2.3). The graphs
reported in Figure A.1 shows the plots of the maximum imaginary parts for a given
set of ξ values versus time. These values were chosen as the most significant ones
because they brought to the most unstable behavior. In all simulations, Re = 10000,
Ha = 24 and the profiles are taken 27 cm away from the step.
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(c) finer mesh
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(d) finest mesh

Figure A.1. Comparison between the stability analysis of simulations performed on the four
meshes.

The flatness of the plots corresponds to a steady state in the stability analysis, which
corresponds to the steady state found during the simulations. Its absence in the case
of the finest mesh is also confirmed.
The tool was also applied to the RAS simulation reported in Subsection 2.3.2 and
compared to the image (a) in Figure A.1, since both were performed on the same
mesh. Figure A.2 shows the comparison. Re = 10000, Ha = 24 and the profiles are
taken 27 cm away from the step also in this case
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Figure A.2. Stability analysis comparison: coarse mesh without model and with RAS model.

The result is coherent with the nature of the RAS approach: since all the fluctuations
are cut out from the solution, the system behaves in a more stable way and the
stability plot is flat almost from the start.
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