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Abstract 

The focus of this thesis is to model, simulate and control a nonlinear thermo-

hydraulic plant by different control strategies. The aim of the control is to achieve a 

zero steady-state error in the controlled variable, the water temperature, which is 

one of the two states of the thermo-hydraulic system. The work is carried out after 

studying the system’s different operating conditions, and various stability 

characteristics. Additionally, we obtain a linearized model with which the main 

characteristics of the system are examined. The simulator of the system is designed 

based on these analyses in the MATLAB/Simulink, after which numerous control 

techniques are used to reject external disturbances on the system. We start this by a 

classical PI controller, which later is followed by a pole-placement technique where 

one relocates the poles of the system to obtain a desired response. Moreover, LQ 

and LQG design techniques are also considered in this paper. These methods 

require converting the control design problems into an optimization problem with 

some performance criteria in time-domain. In the LQG control stochastic processes 

are used to model measurement noises and disturbances. However, in most 

applications it is challenging to model exact stochastic properties of noises and 

disturbances. Therefore, we have considered another technique in which the 

stochastic elements of the LQG control are removed. This control method is called 

the 𝐻2 control of which the LQG control can be seen as a specific case. In this thesis, 

another class of controllers harnessed is the 𝐻∞ control, which is followed by 

backstepping. The latter is a control method in which a control law developed 

guarantees asymptotic stability based on the Lyapunov theorem. Throughout the 

thesis, necessary figures, equations, tables are reported too. The simulation results 

show that the controllers synthesized provide a satisfactory setpoint tracking.  

Finally, a comparative analysis is given at the end to decide which controller works 

best for disturbance rejection and zero-error tracking of the thermo-hydraulic 

system response.  

Key words: thermo-hydraulic plant, PI control, pole placement, Linear Quadratic 

(LQ) control, Linear Quadratic Gaussian (LQG) control, Kalman filters, 𝐻2 control, 

𝐻∞ control, backstepping  

 



 

 

Abstract in italiano 

 

L'obiettivo di questa tesi è modellare, simulare e controllare un impianto 

termoidraulico non lineare mediante diverse strategie di controllo. Lo scopo del 

controllo è di ottenere un errore stazionario nullo nella variabile controllata, la 

temperatura dell'acqua, che è uno dei due stati del sistema termo-idraulico. Il lavoro 

viene eseguito dopo aver studiato le diverse condizioni operative del sistema e le 

diverse caratteristiche di stabilità. Inoltre, otteniamo un modello linearizzato con il 

quale vengono esaminate le principali caratteristiche del sistema. Il simulatore del 

sistema è progettato sulla base di queste analisi in MATLAB/Simulink, dopodiché 

vengono utilizzate numerose tecniche di controllo per reiettare i disturbi esterni al 

sistema. Iniziamo con un controller PI classico, che è seguito da una tecnica di 

posizionamento dei poli in cui si riposizionano i poli del sistema per ottenere la 

risposta desiderata. Inoltre, in questo documento vengono considerate anche le 

tecniche di progettazione LQ e LQG. Questi metodi richiedono la conversione del 

problema di progettazione del controllo in un problema di ottimizzazione con 

alcuni criteri di prestazione nel dominio del tempo. Nel controllo LQG vengono 

utilizzati i processi stocastici per modellare rumori e disturbi di misurazione. 

Tuttavia, nella maggior parte delle applicazioni è difficile modellare esatte proprietà 

stocastiche di rumori e disturbi. Pertanto, abbiamo considerato un'altra tecnica in 

cui vengono rimossi gli elementi stocastici del controllo LQG. Questo metodo di 

controllo è chiamato controllo 𝐻2 di cui il controllo LQG è un caso specifico. In 

questa tesi, un'altra classe di controllori considerati è il controllo 𝐻∞, seguito da 

backstepping. Quest'ultimo è un metodo di controllo in cui la legge di controllo 

sviluppata garantisce stabilità asintotica basata sul teorema di Lyapunov. In tutta la 

tesi sono riportate anche le figure necessarie, le equazioni, le tabelle. I risultati della 

simulazione mostrano che i controllori sintetizzati forniscono un tracking del 

setpoint soddisfacente. Infine, viene fornita un'analisi comparativa al fine di 

decidere quale controllore funziona meglio per la reiezione dei disturbi e il 

monitoraggio a zero errori della risposta del sistema termo-idraulico.
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Introduction 

Nowadays one of the most commonly used systems for heat exchange is a thermo-

hydraulic plant. In this thesis, analytical modelling, simulation and various control 

means of this system are investigated.  

In Chapter 1, the system description is given. The chapter covers the physical 

properties of a thermo-hydraulic plant. The thermo-hydraulic system is a two-state 

non-linear system with 3 inputs and 2 outputs. The most common fluid that is used 

in the thermo-hydraulic systems is water since it is the safest, less poisonous and 

cheaper material for heat transfer. In the thermo-hydraulic plants, water enters the 

system with a flow rate 𝑤 at a particular temperature 𝑇𝑖, resulting in a constant level 

𝑧. In the chamber of the plant the temperature of the water 𝑇 is manipulated by the 

gas flow rate 𝑤𝑐 through a control valve. Thus, the flame of the temperature 𝑇𝑓 

changes the temperature of the metal at the base of the chamber. The heated water 

exits the chamber at the same flowrate 𝑤 and the temperature 𝑇. After introducing 

the mathematical equation of the system in Chapter 1, it is linearized around 5 

different operating points. At the end of the chapter, some parameters, such as 

eigenvalues, static gains, open-loop step responses of the linearized system are 

studied.  

After linearization around the central operating point (�̅� = 1), the open-loop 

transfer function matrix is derived, from which the transfer function from 𝑤𝑐 

(control variable) to 𝑇 (system output) is chosen specifically for disturbance (caused 

by the load flow rate 𝑤) rejection in the thermo-hydraulic system with different 

control strategies in Chapter 2.  We start by using the classical control strategy, a PI 

controller, which is followed by a state-feedback law, i.e., a pole-placement control 

technique. Note that after introducing the theoretical development of the pole-

placement control, we implement this strategy to a SISO system to control the whole 

non-linear plant. However, later the system is augmented with an integrator 

through the control loop from 𝑤𝑐 to 𝑇, on which the pole-placement is implemented. 

Next, some optimal control techniques are used, such as the LQ control. This is a 

control technique in which we use mathematical equations to reduce a cost function 

with specified weighting factors. The LQ control is partly a solution to the next 

control method, LQG, we consider in Chapter 2. The LQG control, being another 

fundamental optimal control problem, is seen as a combination of the Kalman 
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filtering and the LQ control. Later in the chapter, two more controllers are designed 

for disturbance rejection, namely 𝐻2 and 𝐻∞ controllers, in which shaping functions 

are used to get the desired frequency-domain characteristics. At the end of the 

chapter, the backstepping control strategy is developed.  

In Chapter 3, we study the differences of the controllers synthesized based on their 

setpoint tracking and control actions. At last, conclusions are drawn, and some 

possible future developments are put forward in the final chapter. Note that 

Appendix A is reported at the end of the thesis to enrich its content.   
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1 The thermo-hydraulic system 

In this chapter, the physical properties of a thermo-hydraulic plant are given 

together with its non-linear mathematical equations. Later the system is linearized 

around 5 different operating points, and the characteristics of the linearized models 

are compared.  

1.1. System description 

The schematic diagram of a thermo-hydraulic plant is given below.   

Figure 1.1: Thermo-hydraulic system 

The variables shown in Figure 1.1: 

• 𝑤 - load flow rate 

𝑧 

𝑇 

𝑇𝑖 , 𝑤 𝑤 

𝑤𝑐 

𝑇𝑚 

𝑇𝑓 
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• 𝑇- temperature of water (controlled variable) 

• 𝑇𝑖 - inlet load temperature 

• 𝑤𝑐 - gas flowrate: control variable 

• 𝑧 - (constant) level 

• 𝑇𝑓- temperature of the flame  

• 𝑇𝑚- temperature of the metal  

The control goal is to design and test different control structures that aim to sustain 

the variable 𝑇 at the desired reference value rejecting the disturbances 𝑤. This 

system’s dynamics are non-linear and characterized by the following 2 state-space 

equations:  

{
 

 
𝑑𝑇

𝑑𝑡
=

1

𝜌𝐴𝑧
[𝑤(𝑇𝑖 − 𝑇) +

𝑘𝑙𝑚𝐴

𝑐
(𝑇𝑚 − 𝑇)]

𝑑𝑇𝑚
𝑑𝑡

=
1

𝑀𝑚𝑐𝑚
[−𝑘𝑙𝑚𝐴(𝑇𝑚 − 𝑇) + 𝜎𝑘𝑓𝑤𝑐(𝑇𝑓

4 − 𝑇𝑚
4)]

 

where:  

Variable Values Units Description 

𝑨 
𝜋

4
 𝑚2 Area of the section of the tank 

𝜌 
900 𝑘𝑔

𝑚3
 Water density 

𝒄 
4180 𝐽

𝑘𝑔𝐾
 Specific heat of the water 

𝑴𝒎 617.32  kg Mass of the metal 

𝒄𝒎 
418 𝐽

𝑘𝑔𝐾
 Specific heat of the metal 

𝒌𝒍𝒎 
3326.4 𝑘𝑔

𝑠3𝐾
 Heat exchange coefficient 

𝝈 
5.67 ∙ 10−8 𝑊

𝑚2𝐾4
 Radiation coefficient 

𝑻𝒇 1200  𝐾 Temperature of the flame 

𝒌𝒇 
8 𝑚2𝑠

𝑘𝑔
 Valve coefficient 

Table 1.1: Physical parameters of the system 

It is obvious from Figure 1.1 that the inputs of the system are load flow rate (𝑤), gas 

flowrate (𝑤𝑐), temperature of the flame (𝑇𝑓, assumed to be always constant) and inlet 

load temperature (𝑇𝑖), whereas the states are the temperature of the water (𝑇) and 

the temperature of the metal (𝑇𝑚). 
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The thermo-hydraulic plant’s dynamics and behavior are analyzed with a software 

package (Simulink), as shown in Figure 1.2. 

 

Figure 1.2: Thermo-hydraulic plant with its inputs and outputs  

For more detailed information on the Simulink blocks and script codes, you can 

refer to Appendix A.  

1.2. Linearization  

In this chapter, a few equilibrium points are defined, after which we are going to 

linearize the nonlinear thermo-hydraulic system around these points. The necessary 

procedure for one equilibrium point has been given explicitly to avoid 

repetitiveness in Section 1.3, where the linearization takes place for four other 

equilibrium conditions.  

The nonlinear system is linearized so that we can understand its properties and 

characteristics in a corresponding operating point. This is done for a few reasons to 

mention, such as we can check the local stability of the system and the system 

dynamics easily, how a non-linear system behaves (at least in the neighborhood of 

equilibrium points), we can speed up simulations of the original system having the 

linearized version of it. Moreover, we have many tools (e.g., Simulink) for non-

linear control design that can produce linearized models and their transfer 

functions, state-space, pole-zero-gain equations, which in turn can be used to plot 

Bode diagrams, to analyze system response in different operating points, to design 

a linear controller, etc. 

Below is given a table that demonstrates some equilibria (e1, e2, e3, e4, e5) 

corresponding to different loads (𝑤).  
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 e1 e2 e3 e4 e5 

�̅� 0.5 0.75 1 1.25 1.5 

�̅�𝒊 298 298 298 298 298 

�̅� 323 323 323 323 323 

�̅�𝒎 343 353 363 373 383 

�̅�𝒄 0.0559 0.084 0.112 0.1402 0.1684 

Table 1.2: Some equilibria corresponding to different loads  

For the given system �̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) assuming that 𝑓(𝑥, 𝑢) is continuously 

differentiable with respect to its arguments and setting  

𝑥(𝑡) = �̅� + 𝛿𝑥(𝑡) 

𝑢(𝑡) = �̅� + 𝛿𝑢(𝑡) 

the linearized system takes the following form:  

𝛿�̇�(𝑡) = 𝐴𝛿𝑥(𝑡) + 𝐵𝛿𝑢(𝑡) 

where 

𝐴 =
𝜕𝑓

𝜕𝑥
|
𝑥=�̅�,𝑢=𝑢

 

𝐵 =
𝜕𝑓

𝜕𝑢
|
𝑥=�̅�,𝑢=𝑢

 

In this thesis numerical linearization is computed by means of Simulink. Before 

going into linearization, let’s consider equilibrium point, as an example, for �̅� = 1. 

To find out equilibrium, we need to set the original differential system equation to 

zero.  

�̇�(𝑡) = 0; �̇�𝑚(𝑡) = 0 

We set, 𝑇 to �̅�, 𝑇𝑚 to �̅�𝑚, 𝑇 to �̅�𝑖, 𝑤 to �̅�, 𝑤𝑐 to �̅�𝑐 and suitably substitute in the above-

given equations.  

{
 

 0 =
1

𝜌𝐴𝑧
[�̅�(�̅�𝑖 − �̅�) +

𝑘𝑙𝑚𝐴

𝑐
(�̅�𝑚 − �̅�)]

0 =
1

𝑀𝑚𝑐𝑚
[−𝑘𝑙𝑚𝐴(�̅�𝑚 − �̅�) + 𝜎𝑘𝑓�̅�𝑐(�̅�𝑓

4 − �̅�𝑚
4)]
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After analytically solving these equations, we get the equilibrium point 

corresponding to 𝑤 = 1, given the target temperature of the water equal to 323. As 

mentioned earlier, there are three unknown inputs, and their equilibrium values are 

as follows.  

�̅� = 1.0000 

�̅�𝑐 =  0.1120 

�̅�𝑖 = 298 

Note that, from the first equation, if you fix �̅�, �̅�𝑖 and �̅�, then �̅�𝑚 is automatically 

fixed. This is the way to compute equilibria. In the same way, once �̅�, �̅�𝑚, �̅� are fixed, 

and being �̅�𝑓 fixed, from the second equation you immediately compute �̅�𝑐. 

For the equilibrium point, we can also analyze the phase-plane, i.e., the state 

trajectories reported in Figures 1.3 and 1.4. By doing that we can study system 

behavior for a given initial condition. We use the MATLAB script (pplane) to realize 

it:  

 

Figure 1.3: Phase plane GUI 

After proceeding, we get the following sketch: 
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Figure 1.4: State trajectories  

As can be seen from Figure 1.4, the phase plane shows that the equilibrium is a 

stable node. The eigenvalues of the linearized system are reported in the following 

table: 
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Figure 1.5: Phase plane results on Jacobian and eigenvalues  

Now let’s find out the linearized system around the first choice of equilibrium 

points shown above. For this to occur, we decided to use Time-Based Linearization 

block in Simulink.  This block calls basic linearization functions to generate a linear 

model for a given system. The linearization happens when the time determined 

(T=10000 in our case) is reached by the simulation clock and where the system is for 

sure at an equilibrium. The linearized model later is stored as a structure in 

Workspace in MATLAB. The structure contains some useful information, such as 

A, B, C, D matrices of the linear model, names of model’s states and outputs, and so 

forth.  

After specifying inputs and outputs of the perspective linear system’s transfer 

function (that Time-Based Linearization block will track), we add equilibrium 

points of the inputs. After running the simulation, it turns out that the linearized 

system’s state space matrices corresponding to the considered equilibrium are as 

follows: 

𝐴 = [
−0.0011 0.0004
0.0088 −0.0088

]                 𝐵 = [
−0.0167 0 0.0007

0 3.1422 0
] 

  

𝐶 = [
1 0
0 1

]                 𝐷 = [
0 0 0
0 0 0

] 

From matrix A, it can be computed that the eigenvalues, thus the poles of the 

linearized system are: -0.0007 and -0.0093, both being stable. It is worth mentioning 

that the phase plane in Figure 1.5 shows almost the same results for both 

eigenvalues and Jacobians.  
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To derive a transfer function of any linearized system from its state-space 

representation, we need to use a conversion method. Considering a MIMO system 

given below:  

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

with 𝑥𝜖𝑅𝑛, 𝑢𝜖𝑅𝑚, 𝑦𝜖𝑅𝑝, the corresponding matrix of transfer functions is computed 

as: 

𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 = [

𝐺11(𝑠) ⋯ 𝐺1𝑚(𝑠)
⋮ ⋱ ⋮

𝐺𝑝1(𝑠) ⋯ 𝐺𝑝𝑚(𝑠)
] 

where in the Laplace domain, the following relationship holds: 

𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠) 

The equation of 𝐺(𝑠) is used to transform a given state-space representation to a 

transfer function form. Therefore, the open-loop transfer function of our linearized 

system becomes 2x3 matrix 𝐺𝑜𝑙(𝑠), with 3 inputs and 2 outputs (MATLAB code in 

Appendix A):   

 

𝐺𝑜𝑙(𝑠) =

=

[
 
 
 

−0.01674𝑠 − 0.0001478

𝑠2 +  0.009978𝑠 +  6.258 ∙ 10−6
 0.001389

𝑠2 +  0.009978𝑠 +  6.258 ∙ 10−6
0.0007074 𝑠 +  6.245 ∙ 10−6

𝑠2 +  0.009978𝑠 +  6.258 ∙ 10−6

−2.219 ∙ 10−17 𝑠 −  0.0001472

𝑠2 +  0.009978𝑠 +  6.258 ∙ 10−6
3.142 𝑠 +  0.003612

𝑠2 +  0.009978𝑠 +  6.258 ∙ 10−6
9.38 ∙ 10−19𝑠 + 6.224 ∙ 10−6

𝑠2 +  0.009978𝑠 +  6.258 ∙ 10−6]
 
 
 

 

 

This matrix of transfer functions outlines the separate transfer functions from inputs 

of the thermo-hydraulic system to its outputs. Let’s take 𝐺𝑜𝑙1,1(𝑠) as an example. It 

is a transfer function from the first input (𝑤) to the first output (𝑇). Likewise, the 

following transfer functions correspond to their associated input-output pairs: 

𝐺𝑜𝑙1,2(𝑠) – an open-loop transfer function from 𝑤 to  𝑇𝑚 

𝐺𝑜𝑙2,1(𝑠) – an open-loop transfer function from 𝑤𝑐 to  𝑇 

𝐺𝑜𝑙2,2(𝑠) – an open-loop transfer function from 𝑤𝑐 to  𝑇𝑚 

𝐺𝑜𝑙3,1(𝑠) – an open-loop transfer function from 𝑇𝑖 to  𝑇 
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𝐺𝑜𝑙3,2(𝑠) – an open-loop transfer function from 𝑇𝑖 to  𝑇𝑚 

1.3. Comparative analysis of different equilibrium 

conditions 

In this section, we linearize the thermo-hydraulic system around four more 

equilibria, thus a table of the eigenvalues at the different operating points are 

provided. Furthermore, we are going to consider static gains from 𝑤𝑐 to  𝑇 and step 

responses of the 5 operating points along with their Bode diagrams.  

1.3.1. Eigenvalues of the linearized system 

To find poles of a MIMO system, one needs to know that in a minimal form, the 

poles of the system coincide with eigenvalues of the state matrix A, or in other 

words, with the roots of the characteristic equation: 

𝜙(𝑠) = det(𝑠𝐼 − 𝐴) = 0 

We compute the poles of a MIMO system directly from the transfer function, i.e.,  

𝜙(𝑠), which is the characteristic polynomial corresponding to a minimal realization 

of the system which is represented by a transfer function 𝐺(𝑠) and is the least 

common denominator of all the non-null minors of 𝐺(𝑠).  

After linearization of the system around five different operating points, we end up 

with the following eigenvalues in Table 1.3. 

 

Operating points Eigenvalues 

e1 -0.0003 -0.0093 

e2 -0.0005 -0.0093 

e3 -0.0007 -0.0093 

e4 -0.0008 -0.0093 

e5 -0.0010 -0.0093 

Table 1.3: Eigenvalues corresponding to 5 operating points  

It is interesting to note that the linearized system is faster and faster as the input �̅� 

becomes larger and larger.  
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1.3.2. Static gains  

In this paragraph, we consider the static gain from 𝑤𝑐 to  𝑇. Since for linear 

asymptotically stable systems, the term “gain” can be differently used, it is better to 

specify the following notations. Generally, for a given frequency of ω the gain is 

defined as:  

‖𝑌(𝑗ω)‖2
‖𝑈(𝑗ω)‖2

=
‖𝐺(𝑗ω)𝑈(𝑗ω)‖2
‖𝑈(𝑗ω)‖2

 

assuming that 𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠) and that the Fourier transfer of the input is 𝑈(𝑗ω). 

It turns out that the gain for a SISO system at a given frequency ω is  |𝐺(𝑗ω)|. 

However, consider the following relation for MIMO systems:  

𝜎(𝐺(𝑗ω)) ≤
‖𝐺(𝑗ω)𝑈(𝑗ω)‖2
‖𝑈(𝑗ω)‖2

≤ 𝜎(𝐺(𝑗ω)) 

In this relation, 𝜎(𝐺(𝑗ω))  and 𝜎(𝐺(𝑗ω)) are minimum and maximum singular 

values of 𝐺(𝑗ω) at frequency ω. These are also called principal gains which are in 

turn used to compute a condition number as a ratio of the two. If the condition 

number is close enough to 1, it becomes easier to control the corresponding system. 

Finally, the last definition of the term “gain” is a static gain that is the gain at ω = 0, 

hence, 𝐺(0). As the name suggests, it shows the ratio of the input and the output of 

a system under steady-state conditions.  

The following transfer functions describe the relationships between the gas flow 

rate and the water temperature (from 𝑤𝑐 to  𝑇) at 5 different operating conditions 

mentioned in Table 1.2: 

𝐺𝑜𝑙2,1𝑒1
(𝑠) =

0.001392

𝑠2 +  0.009606𝑠 +  3.121 ∙ 10−6
 

𝐺𝑜𝑙2,1𝑒2
(𝑠) =

0.00139

𝑠2 +  0.01033𝑠 +  9.378 ∙ 10−6
 

𝐺𝑜𝑙2,1𝑒3
(𝑠) =

 0.001389

𝑠2 +  0.009978𝑠 +  6.258 ∙ 10−6
 

𝐺𝑜𝑙2,1𝑒4
(𝑠) =

 0.001388

𝑠2 +  0.01017𝑠 + 7.835 ∙ 10−6
 

𝐺𝑜𝑙2,1𝑒5 
(𝑠) =

   0.001393

𝑠2 + 0.01031𝑠 +  9.351 ∙ 10−6
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In Table 1.4 you can find the static gains of the aforementioned open-loop transfer 

functions.  

 

 

 

 

 

Table 1.4: Static gains (from 𝑤𝑐 to  𝑇) at 5 operating points  

Note that the static gain decreases as the flow rate �̅� increases. 

1.3.3. Step response and Bode diagram 

As a MIMO system, through the system’s simulator we can demonstrate step 

responses from each of the 3 inputs to its 2 outputs as shown below: 

 

Figure 1.6: Step response of the thermo-hydraulic system at different operating 

points 

It is clear from Figure 1.6, Bode diagrams of the transfer functions between 𝑤𝑐 to 𝑇 

are different, mainly at low frequencies in different operating points, as already 

been stated in the analysis of the poles and gains.  

Operating points Static gains 

e1 446.0109 

e2 296.3753 

e3 221.9559 

e4 177.1538 

e5 148.9680 
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Figure 1.17: Bode plots of the three mentioned equilibrium points  

1.4. Summary  

We start by introducing a thermo-hydraulic system description in Section 1.1 and 

stated the system with the help of differential equations along with its parameters, 

its inputs and states. Later in Section 1.2, we determined an equilibrium point (later 

to be 5) that will later on be used to design controllers, after which in the following 

chapters will be tested on the non-linear system working at different operating 

conditions. The section covers state trajectories too, which was followed by 

linearization of it around the chosen operating point. Moreover, a state-space 

representation and transfer function of the linearized system are given, which 

helped us to determine some characteristics of the system, such as eigenvalues, 

static gains, step responses and Bode plots in Section 1.3.  
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2 Control Design 

In this chapter, the linearized thermo-hydraulic system at �̅� = 1 is firstly used to 

design a PI controller. This controller is then used to regulate the system at different 

operating points. Later the control is realized by an LQ controller for the same 

system condition. Notice that in LQ it is initially assumed that the two states (𝑇 and 

𝑇𝑚) are known. Later on, in another scenario the states will be estimated using 

Kalman Filter in the LQG control design. Additionally, 𝐻2 and 𝐻∞ controllers will 

be synthesized too. Finally, we propose a backtepping controller that is based on 

the Lyapunov stability theorem.  

2.1. PI controllers 

One of the most commonly used controllers in industry is a PI (proportional plus 

integral) controller, which lacks the derivative action of PID systems. As the name 

suggests, it is a type of controller that combines proportional and integral control 

actions making it a suitable tool for zero-error tracking. The PI controllers are 

mathematically illustrated by the following equation:  

𝑢(𝑡) = 𝐾𝑐 (𝑒(𝑡) +
1

𝑇𝑖
∫𝑒(𝑡)𝑑𝑡) 

where 𝑢(𝑡) is the controller output, 𝐾𝑐 is the controller gain, 𝑇𝑖 is the integral time, 

and 𝑒(𝑡) is the error signal. 

Here we control the linearized system around the equilibrium point we discussed 

in Section 1.2 (�̅� = 1) by a PI controller. The controller ensures zero-error tracking 

for constant reference signals and disturbances (𝑤).  

PI system + 
- 

𝑇0 = 323 

𝑤 

𝑇 𝑤𝑐 
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Figure 2.1: Block diagram of a closed-loop system 

The goal of the analysis is to study the rejection properties of the system in front of 

load variations, that is steps of the load flow rate 𝑤. The load flow rate 𝑤 in Figure 

2.1 is moved in all the operating range from 0.5 to 1.5 over 20000 time units and is 

given as follows:  

 

 

Figure 2.2: Load flow rate 𝑤 

Now recall that the eigenvalues, thus the poles, of the linearized plant are -0.0007 

and -0.0093 around the central operating condition (�̅� = 1) as shown in Table 1.3. 

Since we do not need any means, e.g., pole placement, to stabilize the system, let’s 

move on synthesizing the PI regulator.  

Consider the following open-loop transfer function from 𝑤𝑐 to 𝑇: 

𝐺𝑜𝑙1,2(𝑠) =
 0.001389

𝑠2 +  0.009978𝑠 +  6.258 ∙ 10−6
 

To regulate the system, we use MATLAB’s Control System Designer application. 

This application lets one design compensators for SISO systems. This is realized by 

graphical interactions with Bode plots or root locus of the open-loop system. The 

controller we want to design has a pole (integrator) at the origin and a real zero at 

−𝑎𝑃𝐼, and takes the following form: 
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𝑅𝑃𝐼(𝑠) = 𝐾𝑃𝐼
(𝑠 + 𝑎𝑃𝐼)

𝑠
 

Note that when we design a controller using Root Locus, we are allowed to move 

PI controller’s zero (−𝑎𝑃𝐼) or the overall gain (𝐾𝑃𝐼) around the s-plane. In the design 

process, we neglect specific requirements, such as percent overshoot, settling or rise 

time, phase and gain margin and bandwidth. Nevertheless, the controller structure 

ensures that there is zero steady state error and that the system is robust to external 

disturbances.  

The root locus method results in the following PI controller with real zero at -

0.001198 and an overall gain of 0.018134: 

 

𝑅𝑃𝐼(𝑠) = 0.018134
(𝑠 + 0.001198)

𝑠
 

We implement the controller in Simulink as follows:  

 

Figure 2.3: PI controller 

After simulating the closed-loop system with the PI controller in the presence of the 

load flow rate shown in Figure 2.2, the water temperature response of the non-linear 

thermo-hydraulic plant at different operating points becomes: 
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Figure 2.4: Water temperature response with PI control 

As can be seen from Figure 2.4, the response is not accompanied by an oscillatory 

behavior. Most importantly, the settling time is extremely large, roughly 5000 time 

units. However, the response varies from 321.7515 to 324.1434, from which one can 

conclude that the PI controller designed and implemented for the system help it be 

stable around its reference value at 𝑇0 = 323.  

To assess the stability of a closed-loop system we use Nyquist criterion, root locus 

or Bode diagrams. All these three methods make use of the open-loop transfer 

function (or loop transfer function) 𝐿(𝑠). In this sense, the gain margin and the phase 

margin are useful to determine important properties of the feedback systems, and 

they are the measure of the control system’s stability.    

Let’s compute the loop transfer function and the associated gain and phase margins.  

𝐿(𝑠) = 𝑅𝑃𝐼(𝑠) ∙ 𝐺𝑜𝑙1,2(𝑠) =
 2.519 ∙ 10−5 𝑠 +  3.018 ∙ 10−8

  𝑠3  +  0.009978 𝑠2  +  6.258 ∙ 10−6 𝑠
 

The corresponding Bode plot is given as shown below:  
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Figure 2.5: Bode plot of the loop transfer function 

We notice that at 0.00275 𝑟𝑎𝑑/𝑠 the phase margin can be pointed and that is 63.7°. 

Additionally, the associated gain margin is infinite. The quite large value of the 

phase margin guarantees some robustness properties of the closed-loop system, that 

behaves well also for operating points far from the nominal operating condition 

where the PI has been tuned.   

The phase and gain margins measure the distance from the Nyquist plot of the loop 

transfer function 𝐿(𝑠) to the point -1 at specified frequencies. The inverse of the gain 

margin is the distance from the critical point -1 to the intersection of 𝐿(𝑗𝜔) with the 

real axis. As can be seen, the loop transfer function does not intersect the real axis, 

thus an infinite gain margin. On the other hand, the phase margin is the radian of 

the segment from (-1, 0) to the intersection point of 𝐿(𝑗𝜔)  with the unit circle.  See 

the figure below:  
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Figure 2.6: Nyquist plot of the loop transfer function 

As far as 𝐿(𝑠) is concerned, if there is one or more integrators in its transfer function, 

|𝐿(𝑠)| will be high at low frequencies, which in turn guarantees asymptotic zero-

error for constant reference signals and disturbances. Note that there is an integrator 

in 𝐿(𝑠) in our case as well.  

While designing a regulator, it is always advisable to consider the following: 

1. Phase margin should be large. 

2. Crossover frequency should be large, which guarantees satisfactory speed of 

response, attenuation of disturbance signals, and tracking the reference. On 

the other hand, to attenuate the measurement noise, the newly designed 

controller introduces a smaller crossover frequency.  

3. Gain margin should be high. The Bode diagrams of both 𝐺𝑜𝑙1,2(𝑠) and 𝐿(𝑠) 

show that the gain margins for both cases are infinite. However, an infinite 

gain margin does not always mean that the system is highly stable. To 

elaborate this discussion, let’s introduce the sensitivity function of the given 

system:  

𝑆(𝑠) =
1

𝑅𝑃𝐼(𝑠) ∙ 𝐺𝑜𝑙1,2(𝑠)
 

Now we can plot this transfer function across the entire spectrum using the Bode 

plot and determine where its maximum sensitivity is. It turns out that it is around 
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1.68 𝑑𝐵, which is 1.3302 in decimals. Notice that we usually want a maximum peak 

sensitivity of 1.3 to 2.  

You can also see the other output’s (the metal temperature 𝑇𝑚) response in Figure 

2.7 in the presence of the varying load flow rate 𝑤. It is obvious that the step 

response at different operating points results in large deviation from its reference 

value,  𝑇𝑚
0 = 363. It is, however, interesting to note that the form of the response is 

quite different at different operating points, which is obvious in view of the 

nonlinearity of the system.  

 

Figure 2.7: Metal temperature with PI control  

2.2. LQ control with integral action  

In this section of the chapter, we design an LQ controller guaranteeing asymptotic 

zero error regulation for constant references. To this end, we augment the linearized 

system to later implement an integrator to control the water temperature. Before 

computing the enlarged system, let us have a look at some theory.  

It is, as in the case of SISO systems, possible to guarantee zero steady-state error in 

MIMO systems by adding an integral action in each error signal as shown in Figure 

2.8. The system obtained this way is robust, in the sense that for given constant set-

points, the unique state-space condition is as follows:   

𝑒𝑖 = 0, 𝑖 = 1,… , 𝑝. 
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Figure 2.8: Integral action on the error signal in MIMO systems 

Although the error requirement is met, the regulator 𝑅’(𝑠) synthesis still needs to 

be designed. Consider the following system under control:  

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑀𝑑 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑁𝑑 

with 𝑥𝜖𝑅𝑛, 𝑢𝜖𝑅𝑚, 𝑦𝜖𝑅𝑝, and 𝑑𝜖𝑅𝑟. 𝑑 is a constant disturbance that acts on the states 

and the outputs. Recall the zero steady-state error requirement: 𝑦0 = 𝑦 for any 𝑦0 

and 𝑑. At the steady state it must hold that  

0 = 𝐴�̅� + 𝐵�̅� + 𝑀𝑑 

𝑦0 = 𝐶�̅� + 𝑁𝑑 

These expressions can be rewritten as: 

[
𝐴 𝐵
𝐶 0

 ] [
�̅�
�̅�
] = [

0 −𝑀
𝐼 −𝑁

 ] [
𝑦0

𝑑
] 

The first matrix in the left side of the equation is denoted as Σ and Σ𝜖𝑅𝑛+𝑝,𝑛+𝑚. 

From here we get the following conditions to guarantee that there is one pair (�̅�, �̅�) 

that satisfies the previously mentioned relation for any constant 𝑦0 and 𝑑:  

𝑅’(𝑠) 

1

𝑠
 

1

𝑠
 

𝐺(𝑠) 

𝑒1 

𝑒𝑝 

𝑦𝑝
0 

 

𝑦1
0 

 

𝑣1 

 

𝑣𝑝 

 

𝑢1 

𝑢𝑚 

𝑦1 

𝑦𝑝 

𝑑 

− + 

+ 
− 
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1. 𝑝 ≤  𝑚 .  
2. 𝑟𝑎𝑛𝑘(Σ) = 𝑛 + 𝑝 

The first condition requires that the number of control variables is greater or equal 

to that of the system outputs (at least as many inputs as outputs), whereas the 

second condition is to guarantee that there is no derivative action, or any invariant 

zeros in 𝑠 = 0.  

Let us have a look at Figure 2.8 and write the integrators in state variables: 

�̇�(𝑡) = 𝑒(𝑡) = 𝑦0 − 𝑦(𝑡) = 𝑦0 − 𝐶𝑥(𝑡) − 𝑁𝑑 

Thus, the enlarged system that consists of the original system and integrators can 

be described as follows:  

[
�̇�(𝑡)
�̇�(𝑡)

] = [
𝐴 0
−𝐶 0

 ] [
𝑥(𝑡)
𝑣(𝑡)

] + [
𝐵
0
] 𝑢(𝑡) + [

0 𝑀
𝐼 −𝑁

 ] [
𝑦0

𝑑
] 

𝑣(𝑡) = [0 𝐼 ] [
𝑥(𝑡)
𝑣(𝑡)

] 

From these equations of the enlarged system, we define: 

�̃� = [
𝐴 0
−𝐶 0

 ],    �̃� = [
𝐵
0
],        �̃� = [0 𝐼 ] 

To synthesize the regulator (𝑅′(𝑠)), the pair (�̃�, �̃�) must be observable or detectable 

and the pair (�̃�, �̃�) must be reachable or stabilizable. These two pairs meet this 

requirement if and only if the original pair (𝐴, 𝐶) is observable and  (𝐴, 𝐵) is 

reachable and the system does not contain any invariant zero in 𝑠 = 0 (no 

derivative action).   

Let us consider the thermo-hydraulic plant and augment it. To design and 

implement a LQ controller for our enlarged system with an integrator, we need to 

check two conditions first.   

1. 𝑝 ≤  𝑚 . This requirement is met since both the number of control variables 

(𝑤𝑐) and the number of controlled outputs (𝑇) are 1. Therefore, the water 

temperature can be controlled.   

2. 𝑟𝑎𝑛𝑘(Σ) = 𝑛 + 𝑝, This condition helps us decide if the system has invariant 

zeros. The system matrix Σ is:  

Σ = [

    0.0011 −0.0004 0.0167
−0.0088      0.0088 0
     1.0000     0 0

    
   0  

  −3.1422  
   0     

] 
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Since the 𝑟𝑎𝑛𝑘(Σ) = 2 + 1 = 3 (fully ranked), we conclude that there is no 

derivative action.  

Let us now enlarge the system by adding an integrator to the loop from 𝑤𝑐 to 𝑇, as 

shown in Figure 2.9: 

Figure 2.9: Integrators of the enlarged system 

We denote the matrix 𝐶 to correspond to 𝑦1:  

𝜂1̇ = 𝑒1 = 𝑦1
0 − 𝑦1 = 𝛿𝑦1

0 − 𝛿𝑦1 = 𝛿𝑦1
0 − 𝐶𝛿𝑥 

Thus, the enlarged system becomes:  

 

[
𝛿�̇�
𝜂1̇
] = [

𝐴 [
0
0
]

𝐶 0
] [
𝛿𝑥
𝜂1
] + [

𝐵
0
]  𝛿𝑢 + [

[
0
0
]

1
]  𝛿𝑦1

0 

�̇̃� = �̃��̃� + �̃�𝛿𝑢 + �̃��̃� 

Now let us design a state feedback control law for the enlarged system using LQ 

control after a brief introduction. Linear Quadratic (LQ) control approach is a 

popular method resulting from formulating the optimal control problem and 

solving it for linear systems and quadratic cost functions. Let us consider the 

following system with initial time at 𝑡0 = 0 along with the performance index:  

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢,            𝑥(0) = 𝑥0 

𝐽(𝑥0, 𝑢(∙), 0) = ∫ (𝑥𝑇(𝜏)𝑄𝑥(𝜏)  + 𝑢𝑇(𝜏)𝑅𝑢(𝜏))𝑑𝜏
∞

0
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where the design parameters are 𝑄 = 𝑄′ ≥ 0 and 𝑅 = 𝑅′ > 0. The infinite horizon 

Linear Quadratic control problem is obtained by minimizing the const function 𝐽 

with respect to 𝑢. If the pair (𝐴, 𝐵) is reachable, the solution of the ordinary 

differential Riccati equation tends to a constant matrix �̅� ≥ 0, that is in turn the 

solution to the algebraic Riccati equation as shown below:  

0 = 𝐴𝑇�̅� + �̅�𝐴 + 𝑄 − �̅�𝐵𝑅−1𝐵𝑇�̅� 

together with the control law:  

𝑢(𝑡) = −𝑅−1𝐵𝑇�̅�𝑥(𝑡) = −�̅�𝑥(𝑡),           �̅� = 𝑅−1𝐵𝑇�̅� 

The matrix 𝑄 can always be partitioned as 𝑄 = 𝐶𝑞
′𝐶𝑞, which is not necessarily 

unique. �̅� is positive definite if and only if the pair (𝐴, 𝐶𝑞) is observable.  

We can summarize the two conditions to be checked before implementing LQ 

control:  

1. The pair (𝐴, 𝐵) is reachable 

2. The pair (𝐴, 𝐶𝑞) is observable 

In the algebraic Riccati equation the matrices 𝐴 and 𝐵 are given, which are the 

enlarged system’s matrices as shown earlier (�̃�, �̃�). Let us assume that the 

asymptotic solution to this equation, �̅�, is a 3x3 matrix:  

�̅� = [

𝑝11 𝑝12 𝑝13
𝑝21 𝑝22 𝑝23
𝑝31 𝑝32 𝑝33

] = 𝑃′ 

As far as the tuning parameters 𝑄 and 𝑅 are concerned, the choice is non-trivial. 

These parameters are used to penalize the state variables and the control signal, 

i.e., the larger these values, the more you penalize the signals. Choosing a large 

value for 𝑅, we do not intend to use too much energy, which is called an expensive 

control strategy. However, smaller values of 𝑅 indicate that one does not want to 

penalize the control signal, which is a cheap control strategy. The same can be 

interpreted for values of 𝑄 and its effect on the changes of states. Since there is 

always a trade-off between these two, we are going to keep 𝑄 as an identity matrix 

while modifying 𝑅: 

𝑄 = [
1 0 0
0 1 0
0 0 1

]                        𝑅 = 0.1 

We solve the algebraic Riccati equation using MATLAB’s lqr command which 

computes the state-feedback control law 𝑢(𝑡) = −�̅�𝑥(𝑡) that minimizes the above-

mentioned cost function. The resulting solution, �̅�, is as follows:  
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�̅� = 105 ∙ [
    1.4681 0.0001 −0.0227
    0.0001 0.0000 −0.0000
−0.0227 −0.0000       0.0007

] 

  We can now get the gain matrix �̅�: 

𝐾 = [𝑘1 𝑘2 𝑘3] = 𝑅−1𝐵′�̅�

= 10 ∙ [
0

3.1422
0

]

𝑇

∙ 105 ∙ [
    1.4681 0.0001 −0.0227
    0.0001 0.0000 −0.0000
−0.0227 −0.0000       0.0007

] 

= [204.9502 3.1686 −3.1623] 

Recall that �̅� corresponds to the enlarged system’s gain, thus we need to partition 

it into two parts: 

𝐾𝑥 = [𝑘1 𝑘2] = [204.9502 3.1686] 

�̅�𝜂1 = [𝑘3] = [−3.1623] 

Figure 2.10: LQ control on the enlarged system 

𝑤𝑐  𝑇0 = 323 1

𝑠
 

𝑒1 𝜂1 
�̅�𝜂1  

�̅�𝑥  

- + - - 𝑇 

𝑇𝑚  

𝑤 

system 
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After implementing the block diagram shown in Figure 2.9 in Simulink with the 

same experiment of load flow rate (𝑤) as in the previous simulations, we end up 

with the following water temperature response:  

Figure 2.11: Water Temperature Response with LQ 

To better analyze the system response, let us reduce the interval between two step 

inputs of the disturbance 𝑤 and run the simulation again:  

 

Figure 2.12: Water Temperature Response with LQ 
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As can be seen from Figure 2.11, the water temperature response is not oscillatory. 

Furthermore, the settling time in this case is relatively small, at 600 time units, which 

is 8 times smaller than that of the PI control. In addition to that, the response is 

associated with peaks at 322.9036 and 323.0967, which is negligible comparing to 

the reference value at 𝑇0 = 323. Note that the goal of zero-error tracking is met with 

LQ control with some more advantages.   

Speaking of LQ control, it is worth mentioning the control signal too. In Figure 2.13 

you can see that the control action is not volatile with the assigned value of 𝑅 matrix, 

which is 0.1 in this example.  

 

Figure 2.13: Control variable with LQ 

Finally, one can find the metal temperature response of the system, that is the other 

state of the thermo-hydraulic system, in Figure 2.14 below. Note that due the non-

linearity of the system, the response is different at different operating points as it 

was the case for PI control structure too.  
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Figure 2.14: Metal temperature response with LQ 

2.3. Pole Placement 

In this section we now design a state feedback control law with pole placement. 

Let us consider the continuous-time system given below:  

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

with 𝑥𝜖𝑅𝑛, 𝑢𝜖𝑅𝑚, 𝑦𝜖𝑅𝑝. Here we assume the state 𝑥 to be measurable and that the 

algebraic control law holds: 

𝑢(𝑡) = −𝐾𝑥(𝑡) + 𝑣(𝑡),      𝐾 𝜖 𝑅𝑚,𝑛, 𝑣 𝜖 𝑅𝑚 

Note that the matrix 𝐾 is the pole-placement gain and is responsible for 

stabilization, while 𝑣(𝑡) is an input signal possibly from an outer loop which can be 

used to design external loops. The resulting closed-loop system, by combining the 

state equation and the control law, becomes:  

�̇�(𝑡) = (𝐴 − 𝐵𝐾)𝑥(𝑡) + 𝐵𝑣(𝑡) 

We can conclude that the pole placement problem is to compute the matrix 𝐾 so 

that we can arbitrarily assign the eigenvalues of (𝐴 − 𝐵𝐾).  

From theory we know that the necessary and sufficient condition for a pole-

placement problem is that the system is reachable. In other words, we first need to 
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check if the pair (𝐴, 𝐵) of the loop from 𝑤𝑐 to 𝑇 is reachable before introducing the 

state-feedback control law by means of pole-placement.  

The reachability matrix 𝑀𝑟 for a n-state system is given as: 

𝑀𝑟 = [𝐵,   𝐴𝐵,… , 𝐴
𝑛−1𝐵] 

For the system to be fully reachable, the matrix 𝑀𝑟 should have a full rank. Given 

the original linearized thermo-hydraulic plant, we obtain the following reachability 

matrix:  

𝑀𝑟 = [
0     0.0014

3.1422 −0.0277
] 

As it can be seen, the rank of the aforementioned matrix is 2, thus fully ranked.  

Since the linearized system is fully reachable, we can implement a state-feedback 

law using pole-placement. We continue by defining the matrix K. In theory the 

solution to the pole-placement theory for single input systems is computed by the 

Ackermann’s formula. However, in practice a more convenient way is used to 

compute the matrix K, for example, in MATLAB there is a function called place, 

which can be used also for multi input systems and uses all the available inputs, 

and guarantees robustness for the system under consideration.   

In our case, we want to relocate poles from (-0.0007, -0.0093) to (-0.1, -0.1) using 

MATLAB’s built-in function place. The resulting matrix K is a 1x2 matrix and is as 

follows: 

𝐾 = [7.0375 0.0605 ] 

𝛿𝑥 

𝑤 

�̅� 

𝛿𝑢 𝑤𝑐 

�̅� 

𝑦 = 𝑥 

𝐾 

𝑠𝑦𝑠𝑡𝑒𝑚 

+ 
- 

- 
+ 

+ 
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Figure 2.15:  Pole-placement implementation 

After implementing the state-feedback control structure shown in Figure 2.15 on 

Simulink, the output response of the thermo-hydraulic system becomes:  

 

Figure 2.16: Water temperature response with pole placement  

Note that here we repeat the same experiment that has been carried out in the 

previous section concerning the flow rate disturbance, thus the load flow rate 𝑤 

corresponds to the signal in Figure 2.2. As can be seen from Figure 2.16, the output 

response does not meet the goal of zero steady-state error. It is also worth 

mentioning that water temperature varies from 322.8254 to 323.1770 over the 

simulation time. In general, the system behaves not so well for operating points far 

from the nominal operating condition where the original pole-placement was 

constructed. To tackle this problem, let us add an integrator to the loop associated 

with the control variable 𝑤𝑐 to enlarge the system. Afterwards, we can implement 

the pole-placement technique to the enlarged system.  
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Consider the enlarged system in Section 2.2. Indeed, the pole-placement method 

uses the same scheme of enlarged system, but to compute different gains from the 

infinite LQ control.   

Figure 2.17: Enlarged system with pole placement  

From Figure 2.17, it becomes clear that: 

𝜂1̇ = 𝑒1 = 𝑦
0 − 𝛿𝑥1 

Considering the original system and the previous expression, the enlarged system 

is defined as follows: 

[
𝛿𝑥1̇

𝛿𝑥2̇
𝜂1̇

] = [
𝐴 02x1

[−1  0] 0
] [
𝛿𝑥1
𝛿𝑥2
𝜂1

] + [
𝐵
0
] 𝑢 + [

02x1
1
] 𝑦0 

�̇̃� = �̃��̃� + �̃�𝛿𝑢 + �̃�𝑦0 

As before, we use MATLAB’s place function to calculate the pole placement gain 

matrix 𝐾𝑒𝑛𝑝𝑝, by relocating the poles to (-0.01, -0.01, -0.02). This matrix will later be 

partitioned into two matrices to be implemented in the simulation.  

𝐾𝑒𝑛𝑝𝑝 = [0.3308 0.0096 −0.0014] 

𝐾𝑒𝑛𝑝𝑝 = [𝐾𝑝𝜂   𝐾𝑝𝑥],        𝐾𝑝𝑥 = [0.3308 0.0096],       𝐾𝑝𝜂 = −0.0014 

The same shape of the load flow rate 𝑤 as an external disturbance shown in Figure 

2.2 has been used in this setup with smaller intervals between steps so that one 

can analyze the response better. The simulation results show that the output 

response, due to the choice of the poles, is faster than the control methods shown 

previously. At different operating points, it takes almost 500 time units for the 

𝛿𝑢 

�̅� 

𝛿𝑥 �̅� 

𝑠𝑦𝑠𝑡𝑒𝑚 

𝑤 

𝑢 
𝑦 𝑦0 𝑒1 𝜂1 1

𝑠
 𝐾𝑝𝜂 

𝐾𝑝𝑥 

+ 
− 

− + 

+ 
− 
− 𝑦 = 𝑥 

+ 
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water temperature to get to its desired state ensuring the zero-error state 

condition. See Figure 2.18 below.  

 

Figure 2.18: Enlarged system’s water temperature using Pole Placement 

Note that in pole placement, a good choice of relocations of the poles should be put 

forward, so that the input control variable (𝑤𝑐) does not take large values. Therefore, 

this assumption is met with the given choice of poles, see Figure 2.19: 

   

Figure 2.19: Enlarged system’s control variable 𝑤𝑐 using Pole Placement 
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2.4. LQG control 

This section presents an LQG controller design process to reflect the above-given 

control considerations. The LQG, which stands for the Linear Quadratic Gaussian, 

control is a combination of the LQ control and a Kalman filter. The latter is used to 

estimate the states of a process when it is affected by stochastic noises.  

In the LQG control, the system is assumed to have the following form: 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑣𝑥(𝑡) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑣𝑦(𝑡) 

Here 𝑣𝑥(𝑡) and 𝑣𝑦(𝑡) are the noises. Notice that these variables and the initial state 

𝑥(0) satisfy all the necessary assumptions to derive the Kalman filter. For the system 

above, the optimization goal is to minimize the following cost function when the 

state 𝑥 is non-measurable:  

𝐽 = lim
𝑇→∞ 

1

𝑇
𝐸 [∫ (𝑥𝑇(𝑡)𝑄𝑥(𝑡)  + 𝑢𝑇(𝑡)𝑅𝑢(𝑡))𝑑𝑡

𝑇

0

] 

In this formulation the expected value operator should be used due to the stochastic 

noises which in turn make 𝑥 and 𝑢 stochastic processes in the closed loop as well. 

Having considered suitable assumptions, asymptotic stability is guaranteed in the 

LQG control so that the processes 𝑥 and 𝑢 are stationary stochastic processes. Thus, 

the aforementioned cost function can be written as:  

𝐽 = 𝐸[𝑥𝑇(𝑡)𝑄𝑥(𝑡)  + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)] 

The solution to the LQG control problem is obtained after considering certain 

assumptions. We, first, assume that the hypotheses required for the infinite horizon 

Linear Quadratic control are satisfied. These are the observability of the pair (𝐴, 𝐶𝑞), 

where 𝑄 = 𝐶𝑞
𝑇𝐶𝑞, and the reachability of the pair (𝐴, 𝐵). Moreover, another 

assumption concerning the Kalman predictor should be made too, that is, the 

reachability of the pair (𝐴, 𝐵𝑞), where �̃� = 𝐵𝑞𝐵𝑞
𝑇, and the observability of the pair 

(𝐴, 𝐶). The separation theorem allows us to solve the LQG problem. For this to 

occur, we follow the steps below:  

1. Compute �̅� and �̂�, i.e., the observer gain and the corresponding optimal state 

estimate, by applying the asymptotic Kalman filter  

2. Compute �̅�, the control gain, by solving the LQ control problem with 

measurable state  

3. Apply the control law 
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𝑢(𝑡) = −�̅��̂�(𝑡) 

Consider the following scheme of LQG control:  

  

 

 

 

 

 

 

 

 

Figure 2.20: LQG control scheme 

The constructed regulator takes the following dynamics: 

�̇̂�(𝑡) = 𝐴�̂�(𝑡) + 𝐵𝑢(𝑡) + �̅�[𝑦(𝑡) − 𝐶�̂�(𝑡)] 

𝑢(𝑡) = −�̅��̂�(𝑡) 

Using Laplace transforms and assuming that �̂�(0) = 0: 

𝑠�̂�(𝑠) = (𝐴 − �̅�𝐶)�̂�(𝑠) − 𝐵�̅��̂�(𝑠) + �̅�𝑌(𝑠) 

�̂�(𝑠) = (𝑠𝐼 − (𝐴 − �̅�𝐶 − 𝐵�̅�))−1�̅�𝑌(𝑠) 

The corresponding control input takes the following form: 

𝑈(𝑠) = −�̅�(𝑠𝐼 − (𝐴 − �̅�𝐶 − 𝐵�̅�))
−1
�̅�𝑌(𝑠) = −𝑅(𝑠)𝑌(𝑠) 

where  

   

𝑅(𝑠) = �̅�(𝑠𝐼 − (𝐴 − �̅�𝐶 − 𝐵�̅�))
−1
�̅� 

By the way of conclusion, it can be shown that the eigenvalues of the resulting 

closed-loop system are those of (𝐴 − �̅�𝐶) and (𝐴 − 𝐵�̅�).  

𝑠𝑦𝑠𝑡𝑒𝑚 

𝐾𝑎𝑙𝑚𝑎𝑛 𝑓𝑖𝑙𝑡𝑒𝑟 

�̅� 

�̂� 

𝑢 𝑦 

𝑣𝑥 𝑣𝑦 

− 
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Figure 2.21: LQG control scheme of the thermo-hydraulic system 

Let us assume that we can measure both outputs (the temperatures of the water and 

the metal) of the thermo-hydraulic plant, as shown in Figure 2.21. To design and 

implement a Kalman Filter to estimate the two states of this system, consider the 

following system:  

𝛿�̇� = 𝐴 𝛿𝑥 + 𝐵 𝛿𝑢 + 𝑣𝑥 

𝛿𝑦 = 𝐶𝑦 𝛿𝑥 + 𝑣𝑦 

where 𝑣𝑥~𝑊𝐺𝑁(0, 𝑄𝑘𝑓) and 𝑣𝑦 = 𝑊𝐺𝑁(0, 𝑅𝑘𝑓). 𝑄𝑘𝑓 and 𝑅𝑘𝑓 are chosen as follows:  

𝑄𝑘𝑓 = [
1 0
0 1

]            𝑅𝑘𝑓 = 0.1 

In the choice of 𝑄𝑘𝑓, different values are taken over the diagonal of the matrix to 

penalize the models of the states to represent which of them are most reliable. 

However, in this example, these values are the same. On the other hand, 𝑅𝑘𝑓 = 0.1 

to give more trust to the measurements than the linearized model.  

As mentioned above, the LQG problem consists of two parts, the LQ control and a 

Kalman filter. The former in this case has been designed the way it was for the LQ 

control of the enlarged system reported in Section 2.2. As far as the Kalman Filter is 

concerned, there should be certain observability and reachability checks in LQG 

control problems. Therefore, one should make sure that the pair (𝐴, 𝐶𝑞𝑘𝑓
𝑇 ) is 

reachable, where  𝐶𝑞𝑘𝑓 = √𝑄𝑘𝑓. Moreover, the pair  (𝐴, 𝐶𝑦) must be observable as 

𝑠𝑦𝑠𝑡𝑒𝑚 

𝑤 �̅� 

 𝛿𝑢 

 

𝛿𝑦 

 

𝑦 

𝐾𝑙𝑞,𝑥 

1

𝑠
 

𝜂  

𝑤 

𝑒1 𝑦0 
𝐾𝑙𝑞,𝜂 

𝛿𝑥ෝ 

 

�̅� 

 

𝛿𝑢 

 

− 

− 
+ 

+ 
𝑦1 = 𝑥1 

𝑦2 = 𝑥2 

𝐾𝐹 

+ 

+ 
+ 

+ 
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well. After some computations it turns out that the pair mentioned are fully ranked, 

thus satisfying the necessary conditions to solve the LQG problem. The dynamics 

equation of the Kalman filter then takes the following form: 

𝛿�̇̂� = 𝐴𝛿�̂� + 𝐵𝛿𝑢 + �̅�𝑘𝑓[𝛿𝑦 − 𝐶𝑦𝛿�̂�] = (𝐴 − �̅�𝑘𝑓𝐶𝑦)𝛿�̂� + [𝐵    �̅�𝑘𝑓] [
𝛿𝑢
𝛿𝑦
] 

The gain �̅�𝑘𝑓 is obtained using the algebraic Riccati Equation and is as follows: 

�̅�𝑘𝑓 = [
3.1611 0.0046
0.0046 3.1535

] 

After implementing the block diagram shown in Figure 2.21 in Simulink with the 

same experiment of load flow rate (𝑤) as in the previous simulations, we end up 

with the following water temperature response:  

 

Figure 2.22: Water Temperature Response with LQG 

As can be seen from Figure 2.22, the thermo-hydraulic plant does not show an 

oscillatory response, and the settling time here is around 600 time units, which is 

more or less the same as that of the LQ control in Section 2.2. In addition to that, the 

response is associated with peaks at 322.9027 and 323.0976, which is again negligible 

comparing to the reference value at 𝑇0 = 323. Note that the goal of zero-error 

tracking is reached with LQG control too.    

Speaking of LQG control, it is worth mentioning the estimated states too. In Figure 

2.23 you can see that the state estimations are fulfilled successfully by the Kalman 



46 | Control Design 

 

 

Filter designed above. Note that the root mean square error between the first state 

and its estimate is 0.0017 

  

 

Figure 2.23: First state estimate with LQG 

You can see the second state, which is at the same time the second output of the 

non-linear thermo-hydraulic plant, i.e., the metal temperature, along with its 

estimate by the Kalman filter below. The RMSE for this pair is 0.1098. Note that due 

the non-linearity of the system, metal temperature response is different at different 

operating points as was the case for the control methods described by now.   
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Figure 2.24: Second state estimate with LQG 

2.5. 𝐻2 and 𝐻∞ control 

In this chapter, we design a controller based on 𝐻2 and 𝐻∞ norms, and with shaping 

functions, for the thermo-hydraulic system. Before going into details, let us define 

some functions as shown below. Consider the SISO feedback system of Figure 2.25: 

 

 

 

 

 

 

Figure 2.25: Control scheme 

The loop contains exogenous and main signals, and the main relations between 

them are: 

1. Loop transfer function: 

𝐿(𝑠) = 𝑅(𝑠)𝐺(𝑠) 
 

2. Sensitivity: 

𝑆(𝑠) =
1

1 + 𝑅(𝑠)𝐺(𝑠)
 

3. Complementary sensitivity: 

𝑇(𝑠) =
𝑅(𝑠)𝐺(𝑠)

1 + 𝑅(𝑠)𝐺(𝑠)
= 1 − 𝑆(𝑠) 

4. Control sensitivity: 

𝐾(𝑠) =
𝑅(𝑠)

1 + 𝑅(𝑠)𝐺(𝑠)
= 𝑆(𝑠)𝑅(𝑠) 

It also follows that  

𝐺(𝑠) 

𝑑𝑦 

𝑛 

+ 𝑦0 
𝑅(𝑠) 

𝑑𝑢 

+ 

− 

+ 
+ + 

+ 

+ 
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𝑌(𝑠) = 𝑇(𝑠)(𝑌0(𝑠) − 𝑁(𝑠)) + 𝑆(𝑠)𝐷𝑦(𝑠) + 𝑆(𝑠)𝐺(𝑠)𝐷𝑢(𝑠) 

𝑈(𝑠) = 𝐾(𝑠)(𝑌0(𝑠) − 𝑁(𝑠) − 𝐷𝑦(𝑠)) + 𝑆(𝑠)𝐷𝑢(𝑠) 

To this end, it is usually advisable to design a controller based on the following 

criteria:  

a. |𝑆| is small, thus |𝐿| is big, at usually low frequencies where the system 

disturbance’s spectrum (𝑑𝑦) contains significant harmonic components 

b. |𝑇| is roughly equal to one, thus |𝐿| is big at usually low to medium 

frequencies where the system reference signal’s spectrum (𝑦0) contains 

significant harmonic components 

c. |𝑇| is small, thus |𝐿| is small at usually high frequencies where the 

measurement noise spectrum (𝑛) contains significant harmonic components 

Moreover, it is worth mentioning that when the loop transfer function 𝐿(𝑠) has one 

or more integrators, its modulus is high at low frequencies, which guarantees 

asymptotic zero error tracking given constant disturbances 𝑑𝑦 and a constant 

reference signal 𝑦0.  

Let us recall that the peaks of the sensitivity function and the complementary 

sensitivity function are defined as follows:  

𝑀𝑆 = sup
𝜔
𝑆(𝑗𝜔) = ‖𝑆‖∞ 

𝑀𝑇 = sup
𝜔
𝑇(𝑗𝜔) = ‖𝑇‖∞ 

The minimum distance from the -1 point of the Nyquist diagram of  𝐿(𝑗𝜔) is 𝑀𝑆
−1. 

Furthermore, considering that the sum of the two functions hold the following 

relation: 

𝑆(𝑠) + 𝑇(𝑠) = 1 

It is also true that  

||𝑆(𝑗𝜔)| + |𝑇(𝑗𝜔)|| ≤ |𝑆(𝑗𝜔) + 𝑇(𝑗𝜔)| = 1,      ∀𝜔 

In the controller design, it is advised to meet the following requirements based on 

the above-given considerations:  

𝑀𝑆 ≤ �̅�𝑆 

𝑀𝑇 ≤ �̅�𝑇 

where usually �̅�𝑆 = 2 (6𝑑𝐵) and �̅�𝑇 = 1.5 (2𝑑𝐵). 
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As already mentioned, the sensitivity and complementary sensitivity functions are 

widely used in design specifications. Let us assume that |𝑆(𝑗𝜔)| crosses -3dB at 𝜔𝐵 

from below, and |𝑇(𝑗𝜔)| crosses -3dB at 𝜔𝐵 from above at 𝜔𝐵𝑇. We then can 

conclude that 𝜔𝐵 < 𝜔𝑐 < 𝜔𝐵𝑇, for a phase margin less than 90° (𝜑𝑚 < 90°). Now 

one can have the following design specifications on the sensitivity function:  

• A minimum frequency  𝜔𝐵 

• A zero or small asymptotic error given a constant reference signal  

• A suitable shape of  |𝑆(𝑗𝜔)| 

• 𝑀𝑆 ≤ �̅�𝑆 

These four specifications can be formally rewritten in the form stated below:  

|𝑆(𝑗𝜔)| <
1

|𝑊𝑆(𝑗𝜔)|
,      ∀𝜔 

Here 𝑊𝑆(𝑗𝜔) is called the sensitivity shaping function that is supposed be defined 

by the designer. As can be observed, this shaping function is an inverse of an ideal 

sensitivity function. This requirement can be formulated using an 𝐻∞ norm as 

reported below:  

‖𝑊𝑆𝑆‖∞ < 1 

where the shaping function can be chosen as 

𝑊𝑆(𝑠) =

𝑠
𝑀
+ 𝜔𝐵

𝑠 + 𝐴𝜔𝐵
 

Note that 𝑀 is the desired bound of the 𝐻∞ norm of 𝑆(𝑠) and 𝐴 ≪ 1 is a desired 

attenuation in the required band of interest.  

Similarly, a possible choice of another shaping function 𝑊𝑇(𝑠) can be made based 

on 𝑇(𝑠). In addition, a proper selection of 𝐴 and 𝑀 can be done according to the 

previous considerations.   

|𝑇(𝑗𝜔)| <
1

|𝑊𝑇(𝑗𝜔)|
,      ∀𝜔 ↔ ‖𝑊𝑇𝑇‖∞ < 1  

𝑊𝑇(𝑠) =
𝑠 +

𝜔𝐵𝑇
𝑀

𝐴𝑠 + 𝜔𝐵𝑇
 

The control variable, as it has been reported above, is defined by  

𝑈(𝑠) = 𝐾(𝑠)𝑌0(𝑠) 
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In the design process of a controller based on shaping functions, one must set 

|𝐾(𝑗𝜔)| <
1

|𝑊𝐾(𝑗𝜔)|
,      ∀𝜔 ↔ ‖𝑊𝐾𝐾‖∞ < 1  

Note that the shaping function 𝑊𝑆(𝑠), 𝑊𝑇(𝑠), 𝑊𝐾(𝑠) are used in open loop, thus they 

should be asymptotically stable systems.    

 

 

Figure 2.26: Control system with the shaping functions  

Figure 2.27: Control scheme for 𝐻2 and 𝐻∞ control  

In accordance with Figure 2.26, define the following: 

+ 

− 

𝑤 

𝑊𝑆(𝑠) 𝑊𝐾(𝑠) 𝑊𝑇(𝑠) 

𝐺(𝑠) 𝑅(𝑠) 
𝑒 𝑢 𝑦 

𝑧𝑇 𝑧𝐾 𝑧𝑆 

𝑅(𝑠) 

𝑃(𝑠) 

𝑤 

𝑢 

𝑧 

𝑣 
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𝑧 = [

𝑧𝑆
𝑧𝐾
𝑧𝑇
] ,    𝑤 = 𝑦0 

Note that 𝑧 corresponds to the performance variables, while 𝑤 is the exogenous 

signal. Let us define 𝐺𝑧𝑤(𝑠) as follows, which is the transfer function from 𝑤 to 𝑧 

when the plant 𝐺(𝑠) is enlarged with the aforementioned shaping functions and the 

resulted enlarged system is fed back through the regulator 𝑅(𝑠):  

𝐺𝑧𝑤(𝑠) = [

𝑊𝑆(𝑠)𝑆(𝑠)
𝑊𝑇(𝑠)𝑇(𝑠)
𝑊𝐾(𝑠)𝐾(𝑠)

] 

Then the regulator can be synthesized by minimizing 𝐺𝑧𝑤(𝑗𝜔). This method of 

regulator synthesis is, thus, called the 𝐻∞ control: 

‖𝐺𝑧𝑤‖∞ = sup
𝜔
�̅�(𝐺𝑧𝑤(𝑗𝜔)) 

If the regulator follows the relation ‖𝐺𝑧𝑤‖∞ < 𝛾, we also have 

‖𝑊𝑆𝑆‖∞ < 𝛾,     ‖𝑊𝑇𝑇‖∞ < 𝛾,     ‖𝑊𝐾𝐾‖∞ < 𝛾,      

A slightly different synthesis approach is the 𝐻2 control and it requires the 

minimization of  

𝐽 =
1

2𝜋
∫ (|𝑊𝑆(𝑗𝜔)𝑆(𝑗𝜔)|

2 + |𝑊𝑇(𝑗𝜔)𝑇(𝑗𝜔)|
2 + |𝑊𝐾(𝑗𝜔)𝐾(𝑗𝜔)|

2)𝑑𝜔
+∞

−∞

=
1

2𝜋
∫ (|𝐺𝑧𝑤(𝑗𝜔)|

2)𝑑𝜔
+∞

−∞

 

The point of the 𝐻2 and 𝐻∞ control problems is to minimize the corresponding norm 

of the transfer function 𝐺𝑧𝑤 in the enlarged system 𝑃(𝑠) reported in Figure 2.27 with 

respect to the regulator 𝑅(𝑠). 𝑃(𝑠) can be represented by a general state-space form 

from which a matrix 𝑃 can be driven as shown below:  

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑤(𝑡) + 𝐵2𝑢(𝑡) 

𝑧(𝑡) = 𝐶1𝑥(𝑡) + 𝐷11𝑤(𝑡) + 𝐷12𝑢(𝑡) 

𝑣(𝑡) = 𝐶2𝑥(𝑡) + 𝐷21𝑤(𝑡) + 𝐷22𝑢(𝑡) 

𝑃 = [

𝐴 𝐵1 𝐵2
𝐶1 𝐷11 𝐷12
𝐶2 𝐷21 𝐷22

] 
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where the matrices 𝐵1, 𝐵2, 𝐶1, 𝐶2, 𝐷11, 𝐷12, 𝐷21, 𝐷22 are to be selected based on the 

design requirements.  

In order to design an 𝐻2 and 𝐻∞ controller with shaping functions, consider again 

the scheme reported in Figure 2.26. Consider the alternative block diagram of such 

system below:  

 

 

Figure 2.28: Equivalent scheme for shaping function at the process output 

Note that the following representation, based on Figure 2.28, holds:  

𝑍𝑆(𝑠) = 𝑊𝑆(𝑠)𝑆(𝑠)𝑊(𝑠),    𝑍𝑇(𝑠) = 𝑊𝑇(𝑠)𝑇(𝑠)𝑊(𝑠),     𝑍𝐾 = 𝑊𝐾(𝑠)𝑅(𝑠)𝑆(𝑠)𝑊(𝑠) 

Letting the shaping functions be described as follows:  

𝑊𝑆(𝑠): 

�̇�𝑆(𝑡) = 𝐴𝑆𝑥𝑆(𝑡) + 𝐵𝑆(𝑤(𝑡) − 𝑦(𝑡)) 

𝑧𝑆(𝑡) = 𝐶𝑆𝑥𝑆(𝑡) 

𝑊𝐾(𝑠): 

�̇�𝐾(𝑡) = 𝐴𝐾𝑥𝐾(𝑡) + 𝐵𝐾𝑢(𝑡) 

𝑧𝐾(𝑡) = 𝐶𝐾𝑥𝐾(𝑡) + 𝐷𝐾𝑢(𝑡) 

𝑃(𝑠) 

𝑅(𝑠) 

𝑤 

𝑢 

[

𝑒
𝑢
𝑦
] 

𝑣 

[
𝑊𝑆 0 0
0 𝑊𝐾 0
0 0 𝑊𝑇

] 

[

𝑧𝑆
𝑧𝐾
𝑧𝑇
] 
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𝑊𝑇(𝑠): 

�̇�𝑇(𝑡) = 𝐴𝑇𝑥𝑇(𝑡) + 𝐵𝑇𝑦(𝑡) 

𝑧𝑇(𝑡) = 𝐶𝑇𝑥𝑇(𝑡) + 𝐷𝑇𝑦(𝑡) 

Finally, the compact form for the enlarged system with shaping functions at the 

output becomes 

[

�̇� (𝑡)
�̇�𝑆(𝑡)
�̇�𝐾(𝑡)
�̇�𝑇(𝑡)

] = [

𝐴 0
−𝐵𝑆𝐶 𝐴𝑆

0 0
0 0

0 0
𝐵𝑇𝐶 0

𝐴𝐾 0
0 𝐴𝑇

] [

𝑥 (𝑡)
𝑥𝑆(𝑡)
𝑥𝐾(𝑡)
𝑥𝑇(𝑡)

] + [

𝐵
0
𝐵𝐾
0

]𝑢(𝑡) + [

0 
𝐵𝑆
0
0

]𝑤(𝑡) 

[

𝑧𝑆(𝑡)
𝑧𝐾(𝑡)
𝑧𝑇(𝑡)

] = [

0 𝐶𝑆 0   0
0 0 𝐶𝐾 0
𝐷𝑇𝐶 0 0 𝐶𝑇

] [

𝑥 (𝑡)
𝑥𝑆(𝑡)
𝑥𝐾(𝑡)
𝑥𝑇(𝑡)

] + [
0
𝐷𝐾
0
]𝑢(𝑡) + [

0
0
0
]𝑤(𝑡) 

𝑣(𝑡) = [−𝐶 0 0 0] [

𝑥 (𝑡)
𝑥𝑆(𝑡)
𝑥𝐾(𝑡)
𝑥𝑇(𝑡)

] + 𝑤(𝑡) 

Let us design an 𝐻2 controller based on this. We initially define sensitivity functions. 

Note that 𝑊𝑆(𝑠) is an inverse of a desired sensitivity function. For this, recall the 

form of the sensitivity shaping function as already mentioned earlier: 

𝑊𝑆(𝑠) =

𝑠
𝑀
+ 𝜔𝐵

𝑠 + 𝐴𝜔𝐵
 

Based on this consideration, we have 

1. 𝜔𝐵 = 10, the desired bandwidth. We treat this variable carefully since by 

changing it we might completely change the system design requirements. 

For example, when we increase the bandwidth from 10 to 100, the system 

becomes 10 times faster.   

2. 𝐴 = 10−8, the desired disturbance attenuation inside the bandwidth. Notice 

that we want the sensitivity function to be around −160 𝑑𝐵 at lower 

frequencies up to the bandwidth 𝜔𝐵. By assigning 𝐴 to this value, the reverse 

will be true, i.e., 𝑊𝑠(𝑠) will be 160 𝑑𝐵 at low frequencies.  

3. 𝑀 = 2, the desired bound on ‖𝑆‖∞ and ‖𝑇‖∞. This value corresponds to the 

peak value for the ideal sensitivity function, that is 𝑊𝑠(𝑠) will remain at the 

lowest value of 2 𝑑𝐵 at high frequencies. 
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The same applies for 𝑊𝑇(𝑠) assuming that it is an inverse of the ideal 

complementary sensitivity function. Note also that the choices should be coherent, 

so that the sum of the sensitivity and complementary sensitivity functions should 

be identity. Therefore, 𝜔𝐵 = 𝜔𝐵𝑇 = 10. Here are the sensitivity, complementary 

sensitivity and control sensitivity functions along with their Bode diagrams: 

𝑊𝑆(𝑠) =
𝑠 + 2

2𝑠 + 0.0002
,      𝑊𝐾(𝑠) =

0.001𝑠 + 1

0.01𝑠 + 1
,      𝑊𝑇(𝑠) =

𝑠 + 0.5

0.0001𝑠 + 1
 

 

Figure 2.29: Bode plots of the shaping functions  

After augmenting the system with augw command of MATLAB, we synthesize the 

𝐻2 and 𝐻∞ controllers: 

𝑅𝐻2𝑠ℎ𝑎𝑝𝑒(𝑠) =
  198.3𝑠4 + 1.983 ∙ 1011𝑠3 + 1.983 ∙ 1014𝑠2 + 3 ∙ 1012𝑠 + 1.16 ∙ 1010

  𝑠5 + 109𝑠4 + 1013𝑠3 + 6.025 ∙ 1012𝑠2 + 1.814 ∙ 1012𝑠 + 6.652 ∙ 107    
 

  

𝑅𝐻∞𝑠ℎ𝑎𝑝𝑒(𝑠) =
 102.9𝑠4 + 1.03 ∙ 1011𝑠3 + 1.03 ∙ 1014𝑠2 + 1.314 ∙ 1012𝑠 + 3.641 ∙ 109  

  𝑠5 + 109𝑠4 + 1013𝑠3 + 4.821 ∙ 1012𝑠2 + 1.168 ∙ 1012𝑠 + 3.719 ∙ 105
 

In the diagrams below, the loop transfer functions corresponding to the 𝐻2 and 𝐻∞ 

controllers are given for comparison reasons. Compared to the standard LQG 

control problem whose performance was not satisfactory enough, both controllers 

allow the loop transfer function to be 0 dB at low frequencies and to have a proper 

attenuation at higher frequencies, which is desired.   
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Figure 2.30: Comparison on loop transfer functions of LQG versus 𝐻∞ and 𝐻2     

Implementing the controller 𝑅𝐻2𝑠ℎ𝑎𝑝𝑒(𝑠) and 𝑅𝐻∞𝑠ℎ𝑎𝑝𝑒(𝑠) in the thermo-hydraulic 

plant, we get the following water temperature responses: 

 

Figure 2.31: Water temperature response with 𝐻2 using shaping functions     
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Figure 2.32: Water temperature response with 𝐻∞ using shaping functions     

As can be seen from the water temperature responses, both of the controllers are 

able to provide zero error tracking with the 𝐻∞ controller being slightly better. 

Moreover, the deviation from the reference value of the water temperature 𝑇0 =

323 is negligibly small, varying in the range [322.9693, 323.0308] and [322.9618, 

323.0381] for 𝐻2 and 𝐻∞ controllers, respectively. The settling time for these 

responses is equal to more or less 100 times units. In general, it can be concluded 

that the control structure designed using the shaping functions specified above does 

provide stability around the reference value. Furthermore, the system behaves well 

at operating points far from the nominal operating condition where the original 

controllers were constructed.  
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Figure 2.33: Metal temperature response with shaping functions     

Figure 2.33 shows the metal temperature response of the thermo-hydraulic system. 

It is obvious in the presence of the varying load flow rate 𝑤, the step response is 

quite different at different operating points, which is obvious in view of the 

nonlinearity of the system. 

2.6. Backstepping control 

In the control literature, there can be found a huge diversity of techniques applied 

to non-linear systems, one of which is backstepping. In this paragraph, aiming to 

achieve disturbance rejection, we implement this recursive method also known as 

an integrator backstepping. Consider the following system: 

�̇�1(𝑡) = 𝑓(𝑥1(𝑡)) + 𝑔(𝑥1(𝑡))𝑥2(𝑡)   ,    𝑥1 ∈ 𝑅
𝑛, 𝑥2 ∈ 𝑅

1 

�̇�2(𝑡) = 𝑢(𝑡) 

Here 𝑓 and 𝑔 are differentiable and continuous functions in a set 𝐷 ⊂ 𝑅𝑛 and 𝑓(0) =

0. Assuming that 𝑥2 is a virtual design variable, so that to stabilize the first equation 

of the aforementioned set using a control law. We omit the time dependence for 

convenient notation.  

𝑥2 = 𝜙1(𝑥1), 𝜙1(0) = 0 

Therefore, the closed loop system takes the form  
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�̇�1 = 𝑓(𝑥1) + 𝑔(𝑥1)𝜙1(𝑥1) 

Choose a Lyapunov function such that  

�̇�1(𝑥1) =
𝑑𝑉1
𝑑𝑥1

(𝑓(𝑥1) + 𝑔(𝑥1)𝜙1(𝑥1)) = −𝑊(𝑥1),     𝑊(𝑥1) ≥ 0, 𝑥1 ∈ 𝐷 

Recalling that the state variable cannot be arbitrarily chosen, we define the error 

term  

𝜂 = 𝑥2 − 𝜙1(𝑥1) 

The derivative of the error term thus takes the following form: 

�̇� = �̇�2 − �̇�1(𝑥1) = 𝑢 −
𝜙1(𝑥1)

𝑑𝑥1
�̇�1

= 𝑢 −
𝑑𝜙1(𝑥1)

𝑑𝑥1
[𝑓(𝑥1) + 𝑔(𝑥1)(𝜂 + 𝜙1(𝑥1))] 

 As a result, the original system can be rewritten as:  

�̇�1 = 𝑓(𝑥1) + 𝑔(𝑥1)(𝜂 + 𝜙1(𝑥1)) 

�̇� = 𝑢 −
𝜙1(𝑥1)

𝑑𝑥1
[𝑓(𝑥1) + 𝑔(𝑥1)(𝜂 + 𝜙1(𝑥1))] 

Define a new input 𝑣 

𝑣 = 𝑢 − �̇�1(𝑥1) 

Also recall �̇� = 𝑣. Therefore, the system can be represented as  

�̇�1 = 𝑓(𝑥1) + 𝑔(𝑥1)𝜙1(𝑥1) + 𝑔(𝑥1)𝜂 

�̇� = 𝑣 

In this equations, one can conclude that the equilibrium of the first subsystem at the 

origin is asymptotically stable. For this, we can choose a Lyapunov function for the 

overall system:  

𝑉2(𝑥1, 𝜂) = 𝑉1(𝑥1) +
1

2
𝜂2 = 𝑉1(𝑥1) +

1

2
(𝑥2 − 𝜙1(𝑥1))

2
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�̇�2(𝑥1, 𝜂) =
𝑑𝑉1(𝑥1)

𝑑𝑥1
�̇�1 + 𝜂�̇� 

=
𝑑𝑉1(𝑥1)

𝑑𝑥1
(𝑓(𝑥1) + 𝑔(𝑥1)𝜙1(𝑥1) + 𝑔(𝑥1)𝜂) + 𝜂𝑣

≤ −𝑊(𝑥1) +
𝑑𝑉1(𝑥1)

𝑑𝑥1
𝑔(𝑥1)𝜂 + 𝜂𝑣 

By setting the following relation 

𝑣 = −
𝑑𝑉1(𝑥1)

𝑑𝑥1
𝑔(𝑥1) − 𝑘𝜂,      𝑘 > 0 

we obtain    

�̇�2(𝑥1, 𝜂) = −𝑊(𝑥1) − 𝑘𝜂
2 < 0 

Thus, the equilibrium (𝑥1 = 0, 𝜂 = 0) is asymptotically stable. Based on the 

considerations, it turns out that the original equilibrium (𝑥1 = 0, 𝑥2 = 0) is 

asymptotically stable too, since 𝜂 = 𝑥2 − 𝜙1(𝑥1) and 𝜙1(0) = 0. 

The final control for the overall system becomes  

𝑢 = 𝑣 + �̇�1(𝑥1) = −
𝑑𝑉1(𝑥1)

𝑑𝑥1
𝑔(𝑥1) − 𝑘𝜂 + �̇�1(𝑥1) =

= −
𝑑𝑉1(𝑥1)

𝑑𝑥1
𝑔(𝑥1) − 𝑘(𝑥2 − 𝜙1(𝑥1)) +

𝑑𝜙1(𝑥1)

𝑑𝑥1
(𝑓(𝑥1)

+ 𝑔(𝑥1)𝑥2) 

Also note that with the following Lyapunov function we can show that the 

asymptotic stability is guaranteed at the origin: 

𝑉2(𝑥1, 𝑥2) = 𝑉1(𝑥1) +
1

2
𝜂2 = 𝑉1(𝑥1) +

1

2
(𝑥2 − 𝜙1(𝑥1))

2
 

To generalize this notion, let us consider the following system  

�̇�1(𝑡) = 𝑓1(𝑥1(𝑡)) + 𝑔1(𝑥1(𝑡))𝑥2(𝑡)   ,    𝑥1 ∈ 𝑅
𝑛, 𝑥2 ∈ 𝑅

1 

�̇�2(𝑡) = 𝑓2(𝑥1(𝑡), 𝑥2(𝑡)) + 𝑔2(𝑥1(𝑡), 𝑥2(𝑡))𝑢(𝑡)   

We again assume the functions 𝑓2 and 𝑔2 to be differentiable and continuous and 

𝑔2(𝑥1, 𝑥2) ≠ 0. Then we can set the following by considering a fictitious input: 

𝑢 =
1

𝑔2(𝑥1, 𝑥2)
(𝑢𝑎 − 𝑓2(𝑥1, 𝑥2)) 
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 Therefore, the system equation can be rewritten as 

�̇�1 = 𝑓1(𝑥1) + 𝑔1(𝑥1)𝑥2 

�̇�2 = 𝑢𝑎  

Based on the previously given considerations, we can conclude that the control law 

is  

𝑢 =
1

𝑔2(𝑥1, 𝑥2)
{
𝑑𝜙1(𝑥1)

𝑑𝑥1
 (𝑓1(𝑥1) + 𝑔1(𝑥1)𝑥2) − 𝑘(𝑥2 − 𝜙1(𝑥1))

−
𝑑𝑉1(𝑥1)

𝑑𝑥1
𝑔1(𝑥1) − 𝑓2(𝑥1, 𝑥2)} 

given that 𝑥2 = 𝜙(𝑥1) stabilizes the first subsystem’s equilibrium at the origin with 

the corresponding Lyapunov function 𝑉1(𝑥1).    

The Lyapunov function corresponding to the feedback system can be selected as 

follows: 

𝑉2(𝑥1, 𝑥2) = 𝑉1(𝑥1) +
1

2
(𝑥2 − 𝜙1(𝑥1))

2
 

Recall that in the thermo-hydraulic system, the control variable is the gas flow rate 

𝑤𝑐, whereas its manipulated variable is the water temperature 𝑇. Consider the state 

equations below: 

{
 

 
𝑑𝑇

𝑑𝑡
=

1

𝜌𝐴𝑧
[𝑤(𝑇𝑖 − 𝑇) +

𝑘𝑙𝑚𝐴

𝑐
(𝑇𝑚 − 𝑇)]

𝑑𝑇𝑚
𝑑𝑡

=
1

𝑀𝑚𝑐𝑚
[−𝑘𝑙𝑚𝐴(𝑇𝑚 − 𝑇) + 𝜎𝑘𝑓𝑤𝑐(𝑇𝑓

4 − 𝑇𝑚
4)]

 

Note that both of the states of the system are available and [𝑥1 𝑥2]
𝑇 = [𝑇  𝑇𝑚]

𝑇. For 

convenience, with minor changes, the system is transformed into the following 

equivalent form given below:   

�̇�1 = 𝜑1 − 𝜑2𝑥1 + 𝜑3(𝑥2 − 𝑥1)  

�̇�2 = 𝜑4(𝑥2 − 𝑥1) + 𝜑6(𝜑5 − 𝑥2
4)𝑤𝑐 

where  

𝜑1 =
𝑤𝑇𝑖
𝜌𝐴𝑧

,   𝜑2 =
𝑤

𝜌𝐴𝑧
,   𝜑3 =

𝑘𝑙𝑚𝐴

𝑐𝜌𝐴𝑧
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𝜑4 = −
𝑘𝑙𝑚𝐴

𝑀𝑚𝑐𝑚
,   𝜑5 = 𝑇𝑓

4   𝜑6 =
𝜎𝑘𝑓
𝑀𝑚𝑐𝑚

  

Note that the equilibrium points for the states of the system are not the origin, i.e., 

[�̅�   �̅�𝑚]
𝑇 = [�̅�1   �̅�2] = [323   363]

𝑇. Moreover, the equilibrium point of the control 

variable is at  0.112. Therefore, the backstepping algorithm requires a modified 

definition of state variables, as shown below: 

{
𝑧1 ≜ 𝑥1 − �̅�1 = 𝑥1 − 323
𝑧2 ≜ 𝑥2 − �̅�2 = 𝑥2 − 363
𝑤𝑐 ≜ 𝑢 − �̅�  = 𝑢 − 0.112

    ⟺  {
𝑥1 = 𝑧1 + 323
𝑥2 = 𝑧2 + 363
𝑤𝑐 = 𝑢 + 0.112

  

Thus, we should substitute the expressions reported above in the original state 

equations: 

𝑑

𝑑𝑡
(𝑧1 + 323) = 𝜑1 −𝜑2(𝑧1 + 323) + 𝜑3((𝑧2 + 363)) − (𝑧1 + 323))  

𝑑

𝑑𝑡
(𝑧2 + 363) = 𝜑4((𝑧2 + 363) − (𝑧1 + 323)) + 𝜑6(𝜑5 − (𝑧2 + 363)

4)(𝑢 + 0.112) 

By doing so, we have found and applied a change of state and control variables that 

translate the equilibrium of the thermo-hydraulic system to the origin. The 

equivalent system thus becomes: 

  
�̇�1 = 𝜑1 − 323𝜑2 + 40𝜑3 − 𝑧1(𝜑2 + 𝜑3) + 𝜑3𝑧2  

�̇�2 = 𝜑4(𝑧2 − 𝑧1 + 40) + 0.112𝜑6(𝜑5 − (𝑧2 + 363)
4) + 𝜑6(𝜑5 − (𝑧2 + 363)

4)𝑢 

We now design a backstepping controller for this system. Note that the following 

relations hold for the system under control:  

�̇�1 = 𝑓1(𝑧1) + 𝑔1(𝑧1)𝑧2 

�̇�2 = 𝑓2(𝑧1, 𝑧2) + 𝑔2(𝑧1, 𝑧2)𝑢 

where 

𝑓1(𝑧1) = 𝜑1 − 323𝜑2 + 40𝜑3 − 𝑧1(𝜑2 + 𝜑3) 

𝑔1(𝑧1) = 𝜑3 

𝑓2(𝑧1, 𝑧2) = 𝜑4(𝑧2 − 𝑧1 + 40) + 0.112𝜑6(𝜑5 − (𝑧2 + 363)
4) 

𝑔2(𝑧1, 𝑧2) = 𝜑6(𝜑5 − (𝑧2 + 363)
4) 

 



62 | Control Design 

 

 

We can switch to the basic backstepping canonical form for convenience by 

introducing an arbitrary control input  𝑢𝑎. The relation between the overall control 

law and 𝑢𝑎 is as follows:  

𝑢 =
1

𝑔2(𝑧1, 𝑧2)
[𝑢𝑎 − 𝑓2(𝑧1, 𝑧2)] 

Then it follows  

�̇�1 = 𝑓1(𝑧1) + 𝑔1(𝑧1)𝑧2 

�̇�2 = 𝑢𝑎 

Now assume 𝑧2 = 𝜙1(𝑧1), which will later be used to find 𝑢𝑎. Let us define  

𝜙1(𝑧1) =
−𝜑1 + 323𝜑2 − 40𝜑3 − 𝑧1

𝜑3
 

Thus  

�̇�1 = 𝑓1(𝑧1) + 𝑔1(𝑧1) (
−𝜑1 + 323𝜑2 − 40𝜑3 − 𝑧1

𝜑3
)

= 𝜑1 − 323𝜑2 + 40𝜑3 − 𝑧1(𝜑2 + 𝜑3) − 𝜑1 + 323𝜑2 − 40𝜑3
− 𝑧1 = −𝑧1(𝜑2 + 𝜑3 + 1) 

Now we need to choose a Lyapunov function that is radially unbounded, 

continuous with its derivatives and positive definite depending on only 𝑧1: 

𝑉1(𝑧1) =
1

2
𝑥1
2 

Therefore,  

�̇�1(𝑧1) = 𝑧1�̇�1 = 𝑧1(−𝑧1(𝜑2 + 𝜑3 + 1)) = −(𝜑2 + 𝜑3 + 1)𝑧1
2 

Since (𝜑2 + 𝜑3 + 1) > 0 for every value of the load disturbance, the derivative of 

the Lyapunov function is negative definite, that is �̇�1(𝑧1) < 0. Therefore, we can 

proceed to determine 𝑢𝑎, which will in turn lead to the final control law 𝑢, or we 

can directly use the extended formula as shown below:  

𝑢 =
1

𝑔2(𝑧1, 𝑧2)
{
𝑑𝜙1(𝑧1)

𝑑𝑧1
 (𝑓1(𝑧1) + 𝑔1(𝑧1)𝑧2) − 𝑘(𝑧2 − 𝜙1(𝑧1))

−
𝑑𝑉1(𝑧1)

𝑑𝑧1
𝑔1(𝑧1) − 𝑓2(𝑧1, 𝑧2)} 
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𝑢 =
1

𝑔2(𝑧1, 𝑧2)
{−(𝑓1(𝑧1) + 𝑔1(𝑧1)𝑧2) − 𝑘 (𝑧2 −

−𝜑1 + 323𝜑2 − 40𝜑3
𝜑3

)

− 𝜑3𝑧1 − 𝑓2(𝑧1, 𝑧2)} 

where 𝑓1(𝑧1), 𝑔1(𝑧1), 𝑓2(𝑧1, 𝑧2) and 𝑔2(𝑧1, 𝑧2) are given as already shown earlier: 

𝑓1(𝑧1) = 𝜑1 − 323𝜑2 + 40𝜑3 − 𝑧1(𝜑2 + 𝜑3) 

𝑔1(𝑧1) = 𝜑3 

𝑓2(𝑧1, 𝑧2) = 𝜑4(𝑧2 − 𝑧1 + 40) + 0.112𝜑6(𝜑5 − (𝑧2 + 363)
4) 

𝑔2(𝑧1, 𝑧2) = 𝜑6(𝜑5 − (𝑧2 + 363)
4) 

Here 𝑘 is a tuning parameter to be suitably selected. Initially, 𝑘 = 0.009, so that there 

is no need for a saturation block in Simulink. To this end, the control input will take 

reasonable values during simulations, typically not exceeding the range that we 

have achieved with other controllers above.  

To check the global asymptotic stability, we can use the Lyapunov function 

𝑉2(𝑧1, 𝑧2) below: 

𝑉2(𝑧1, 𝑧2) = 𝑉1(𝑧1) +
1

2
(𝑧2 − 𝜙1(𝑧1))

2
 

Since �̇�2(𝑧1, 𝑧2) < 0, we deduce that the origin is globally asymptotically stable.  

Let us have a look at how the thermo-hydraulic system’s output 𝑇 responds using 

this backstepping controller that we have just designed.  
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Figure 2.34: Water temperature response using backstepping 

As can be seen from Figure 2.34, the water temperature converges to the equilibrium 

at 𝑇 = 323°, in other words, the water temperature response reported shows that 

the backstepping controller is able to provide zero error tracking when disturbances 

are present in the system. Additionally, the settling time seems to be satisfactory at 

almost 200 time units. We clearly see that the backstepping control ensures global 

asymptotic stability. However, there are a few drawbacks that should be mentioned. 

Tuning the parameter 𝑘 can sometimes be time-consuming. Theory holds if there is 

no saturation on the input variable 𝑢. Furthermore, the backstepping control 

technique requires an exact model of the plant along with its state measurements. 

As it was seen in the previous controllers in this chapter, in the presence of the 

varying load flow rate 𝑤, the step response of the metal temperature is quite 

different at different operating points, which is obvious in view of the nonlinearity 

of the system, see Figure 2.35. 

 

Figure 2.35: Metal temperature response using backstepping 
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3 Comparative study of controllers 

In this chapter, the step response of the reference value of the water temperature of 

the nonlinear thermo-hydraulic plant by different control strategies mentioned in 

Section 2 will be compared to find out which works best for a given setpoint change. 

Additionally, their corresponding control actions will be considered too. Note that 

for a reference signal we use a step input that changes from 323° to 315° at the time 

instant of 1000. Special attention will be drawn to the control actions at that time 

instant, since at the steady-state the value of the control variable (the gas flow rate) 

is the same for all the controllers.  

3.1. PI controller  

The step output of the water temperature of the plant by the PI controller and the 

associated control signal are shown in Figure 3.1 and Figure 3.2, respectively.  

 

Figure 3.1: Step output for the PI controller 

When one observes the actual water temperature response by the PI controller, it is 

clear that after some settling time of 3200 time instants the response is able to reach 

the desired water temperature at 315°. The risetime for the response is 476 time 

units, whereas the overshoot value is at 314.205.  
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As far as the control action is concerned, it has the fall to -0.04 at the time instant of 

1000 where the step change happens.   

 

Figure 3.2: Control signal for the PI controller 

3.2. Pole-placement controller 

The step response of the water temperature of the plant by the pole-placement 

controller and the associated control signal are reported in figures below: 

 

Figure 3.3: Step output for the pole-placement controller 
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Having a look at the actual water temperature response by the pole-placement 

controller, it becomes obvious that after some settling time of 1200 time instants the 

response is able to reach the desired water temperature at 315°. The risetime in this 

particular control strategy corresponds to 112 time instants, while the response does 

not show any overshoots.  

However, the control action shows the fall to -0.18 at the time instant of 1000 where 

the step change happens.   

 

Figure 3.4: Control signal for the pole-placement controller 

3.3. LQ controller 

The step response of the water temperature of the plant by the Linear Quadratic 

(LQ) controller and the corresponding control action are given in Figure 3.5 and 

Figure 3.6, respectively. 
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Figure 3.5: Step output for the LQ controller 

As can be seen, the actual water temperature response by the LQ controller, after 

some settling time of 560 time instants, can reach the desired water temperature at 

315°. The risetime in this particular control strategy corresponds to 106 time units, 

where its overshoot is 314.656.  

However, the control signal shows a peak overshoot of -2.4 at the time instant of 

1000 where a step change happens. 

 

Figure 3.6: Control signal for the LQ controller 
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3.4. LQG controller 

The step output of the water temperature in the thermo-hydraulic plant by the 

Linear Quadratic Gaussian (LQG) controller and its associated control action are 

given in the following figures: 

 

Figure 3.7: Step output for the LQG controller 

As we see from Figure 3.7, the actual water temperature response by the LQG 

controller is able to reach the desired water temperature at 315° after some settling 

time of 550 time instants. The risetime in this particular control strategy corresponds 

to 106 time instants, where its overshoot is 314.656.  

It is obvious that the main characteristics of the LQ and the LQG controllers are the 

same. This similarity is reflected on the control signal too, i.e., the control signal 

shows a peak overshoot of -2.4 at the time instant of 1000 where a step change 

happens. 
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Figure 3.8: Control signal for the LQG controller 

3.5. 𝐻2 and 𝐻∞ controllers 

The step output of the water temperature in the thermo-hydraulic plant by the 𝐻2 

and 𝐻∞ controllers and their associated control actions can be found in Figure 3.9 

and Figure 3.10. 

 

Figure 3.9: Step output for the 𝐻2 and 𝐻∞ controllers 
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As we see from Figure 3.9, the actual water temperature response by the two 

controllers is able to reach the desired water temperature at 315° after some settling 

time of 1200 (the 𝐻2 controller) and 1800 (the 𝐻∞ controller) time instants. The risetime 

values by the 𝐻2 and 𝐻∞ controllers are 7 and 13 time instants, respectively. Moreover, 

these controllers result in overshoot is 314.754 (the 𝐻2 controller). and 314.762 (the 𝐻∞ 

controller).   

At the time instant of 1000 where a setpoint change takes place, these controllers 

cause very high values for control signals, as can be seen in Figure 3.10.  

 

Figure 3.10: Control signal for the 𝐻2 and 𝐻∞ controllers 

3.6. Backstepping controller 

The step output of the water temperature in the thermo-hydraulic plant by the 

backstepping controller and its associated control action are reported in the 

following figures: 
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Figure 3.11: Step output for the backstepping controller 

As we can see from Figure 3.11, the actual water temperature response by the 

backstepping controller can reach the desired water temperature at 315° after some 

settling time of 600 time instants. The risetime in this particular control strategy 

corresponds to 249 time instants, whereas there is no overshoot here.  

On the other hand, control signal has an overshoot of 5.1 at the step change of the 

reference signal. 

 

Figure 3.12: Control signal for the backstepping controller 
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3.7. Summary 

The following table depicts the differences among the controllers designed in 

Chapter 2. They are compared by three parameters, namely, peak overshoot, 

settling time and rise time of the water temperature responses.  

 

Controllers  Response Step 

PI 

Peak overshoot 314.205 

Settling time 3200 

Rise time 476 

Pole placement 

Peak overshoot - 

Settling time 450 

Rise time 112 

LQ 

Peak overshoot 314.656 

Settling time 560 

Rise time 106 

LQG 

Peak overshoot 314.656 

Settling time 550 

Rise time 106 

𝐻2   

Peak overshoot 314.754 

Settling time 1200 

Rise time 7 

𝐻∞ 

Peak overshoot 314.762 

Settling time 1800 

Rise time 13 

Backstepping 

Peak overshoot - 

Settling time 600 

Rise time 249 

Table 3.1. Comparison in water temperature response  

The table concludes that the smallest risetime of all the water temperature response 

by different controllers corresponds to the 𝐻2 control, while the largest one is 

achieved by the PI controller. Moreover, the settling time of the PI controller shows 

that it is not the most preferable controller option compared to the other ones, while 

the LQG controller leads in the settling time category with 550 time instants.  
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4 Conclusion and future development  

This thesis proposed the simulation and modelling of a thermo-hydraulic plant, as 

well as disturbance rejection caused by its load flow rate. Since the plant under 

study had non-linear dynamics, we implemented linearization in Chapter 1 after 

analyzing its mathematical model, phase plane trajectories, states, input and output 

variables and equilibrium points. In Chapter 2, we studied classical and optimal 

control problems, after which a PI controller, a pole placement controller, an LQ 

controller, an LQG controller, 𝐻2 and 𝐻∞ controllers, and a backstepping controller 

were designed. Finally, in Chapter 3, the performances by those controllers were 

compared to find out which one works best at a given condition. It turns out that 

the performance of the various controllers very much depends on the tuning 

adopted.  

In general, we have synthesized those various controllers based on 7 different 

control strategies. For further developments, other control strategies can be 

developed for the thermo-hydraulic control system. Moreover, the control methods 

considered in this thesis can be applied on a real thermo-hydraulic plant. By doing 

so, we can check the performance of the plant at different operating conditions. 

Nonetheless, some more additional work will be needed to realize it. 
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Appendix A  

Here we introduce the main MATLAB script codes used in the thesis development 

to enrich the content of the work.  

 

dati_sistema_termico_idraulico.m 

 

close all %#ok<*NOPTS> 
 
% PARAMETERS of the thermo-hydraulic plant 
% around the central equilibrium condition (wbar=1)  
zbar=2; 
wbar=1; 
rho=900; 
A=pi/4; 
c=4180; 
Tbar=323; 
Tibar=298; 
Tmbar=363; 
rhom=7860; 
cm=481; 
delta=0.1; 
Mm=617.32; 
sigma=5.67*10^(-8); 
klm=3326.4; 
Tf=1200; 
wcbar=0.112; 
kf=8; 
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PI control 

 

dati_sistema_termico_idraulico 
sim('openloop_response') 
 
A3=openloop_response_Timed_Based_Linearization.a; 
B3=openloop_response_Timed_Based_Linearization.b; 
C3=openloop_response_Timed_Based_Linearization.c; 
D3=openloop_response_Timed_Based_Linearization.d; 
 
s = tf([1, 0],[0,1]) 
Gs1 = C3*((s*eye(2) - A3)^(-1))*B3+D3 
 
%% Partition for loop wc to T 
A_pi = A3 
B_pi = B3(:,2) 
C_pi = C3(1,:) 
D_pi = 0 
G = C_pi*((s*eye(2) - A_pi)^(-1))*B_pi+D_pi 
 
%% Regulator coefficients 
num = [0.018134  0.018134*0.001198]; 
den=[1 0]; 
Reg_pi =  tf(num, den) 
Kp = 0.018134; 
Ki = 0.018134*0.001198; 
 
%% Loop tf 
L = G * Reg_pi 
 
%% Sensitivity  
S = 1/(1+L) 
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Pole-placement for an enlarged system  

dati_sistema_termico_idraulico 
sim('openloop_response') 
 
A3=openloop_response_Timed_Based_Linearization.a; 
B3=openloop_response_Timed_Based_Linearization.b; 
C3=openloop_response_Timed_Based_Linearization.c; 
D3=openloop_response_Timed_Based_Linearization.d; 
 
s = tf([1, 0],[0,1]) 
Gs1 = C3*((s*eye(2) - A3)^(-1))*B3+D3 
 
A_en = A3 
B_en = B3(:,2) 
C_en = C3(1,:) 
D_en = 0 
G = C_en*((s*eye(2) - A_en)^(-1))*B_en+D_en 
SysMatrix = [ -A_en, -B_en; C_en, D_en] 
rank(SysMatrix) 
 
s = tf([1, 0],[0,1]); 
G_en = C_en*((s*eye(2) - A_en)^(-1)) * B_en + D_en 
 
A_tilde = [ A_en, zeros(2, 1); 
 -C_en(1, :), 0] 
 
B_tilde = [ B_en; 
 0] 
 
M_tilde = [ 0;0;1] 
 
Ken = place(A_tilde, B_tilde, [-0.01, -0.01001, -0.02]) 
Ken_x = Ken(:, 1:2) 
Ken_eta = Ken(:, 3) 
 
cl_enlarged_sys = ss(A_tilde - B_tilde * Ken, M_tilde, eye(3, 3), 0) 
tf(cl_enlarged_sys) 
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LQ control for an enlarged system  

dati_sistema_termico_idraulico 
sim('openloop_response') 
 
A3=openloop_response_Timed_Based_Linearization.a; 
B3=openloop_response_Timed_Based_Linearization.b; 
C3=openloop_response_Timed_Based_Linearization.c; 
D3=openloop_response_Timed_Based_Linearization.d; 
 
s = tf([1, 0],[0,1]) 
Gs1 = C3*((s*eye(2) - A3)^(-1))*B3+D3 
 
A_en = A3 
B_en = B3(:,2) 
C_en = C3(1,:) 
D_en = 0 
G = C_en*((s*eye(2) - A_en)^(-1))*B_en+D_en 
SysMatrix = [ -A_en, -B_en; C_en, D_en] 
rank(SysMatrix) 
 
s = tf([1, 0],[0,1]); 
G_en = C_en*((s*eye(2) - A_en)^(-1)) * B_en + D_en 
 
A_tilde = [ A_en, zeros(2, 1); 
 -C_en(1, :), 0] 
 
B_tilde = [ B_en; 
 0] 
 
M_tilde = [ 0;0;1] 
 
% Ken = place(A_tilde, B_tilde, [-1, -1.0001, -2]) 
% Ken_x = Ken(:, 1:2) 
% Ken_eta = Ken(:, 3) 
 
% cl_enlarged_sys = ss(A_tilde - B_tilde * Ken, M_tilde, eye(3, 3), 0) 
% tf(cl_enlarged_sys) 
 
Q_lq = diag([1, 1, 1]); 
R_lq = 0.1; 
 
rank(ctrb(A_tilde, B_tilde)) 
Cq = sqrt(Q_lq) 
assert(all(Cq .' * Cq - Q_lq < 1e-6, 'all')) 
rank(obsv(A_tilde, Cq)) 
 
[ K_lq, P_bar, PREC] = lqr(A_tilde, B_tilde, Q_lq, R_lq) 
K_lqx   = K_lq(:, 1:2); 
K_lqeta = K_lq(:, 3); 
 
L = K_lq*(s*eye(3)-A_tilde)^(-1)*B_tilde 
 
[p,n]=size(C_en); 
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LQG control  

dati_sistema_termico_idraulico 
sim('openloop_response') 
 
A3=openloop_response_Timed_Based_Linearization.a; 
B3=openloop_response_Timed_Based_Linearization.b; 
C3=openloop_response_Timed_Based_Linearization.c; 
D3=openloop_response_Timed_Based_Linearization.d; 
 
s = tf([1, 0],[0,1]) 
Gs1 = C3*((s*eye(2) - A3)^(-1))*B3+D3 
 
A_en = A3 
B_en = B3(:,2) 
C_en = C3(1,:) 
D_en = 0 
G = C_en*((s*eye(2) - A_en)^(-1))*B_en+D_en 
SysMatrix = [ -A_en, -B_en; C_en, D_en] 
rank(SysMatrix) 
 
s = tf([1, 0],[0,1]); 
G_en = C_en*((s*eye(2) - A_en)^(-1)) * B_en + D_en 
A_tilde = [ A_en, zeros(2, 1); 
 -C_en(1, :), 0] 
B_tilde = [ B_en; 
 0] 
M_tilde = [ 0;0;1] 
 
Q_lq = diag([1, 1, 1]); 
R_lq = 0.1; 
 
rank(ctrb(A_tilde, B_tilde)) 
Cq = sqrt(Q_lq) 
assert(all(Cq .' * Cq - Q_lq < 1e-6, 'all')) 
rank(obsv(A_tilde, Cq)) 
 
[ K_lq, P_bar, PREC] = lqr(A_tilde, B_tilde, Q_lq, R_lq) 
K_lqx   = K_lq(:, 1:2); 
K_lqeta = K_lq(:, 3); 
 
%% Kalman Filter 
C_y = [1,  0; 0,  1]; 
D_y = zeros(2, 1); 
Q_kf = diag([1, 1]); 
R_kf = 0.1;  
C_qkf = sqrt(Q_kf); % We can do this because Q_kf is diagonal!! 
assert(all(C_qkf.' * C_qkf -Q_kf < 1e-6, 'all'));   % Verify that C_qkf' * 
C_qkf == Q_kf with 1e-6 accuracy 
 
reach_check = rank(ctrb(A_en, C_qkf.')) 
obs_check = rank(obsv(A_en, C_y)) 
L_kf = lqr(A_en.', C_y.', Q_kf, R_kf).' 
delta_x0_hat = zeros(2, 1); 
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𝐻2 and 𝐻∞ control  
 
dati_sistema_termico_idraulico 
sim('openloop_response') 
 
A3=openloop_response_Timed_Based_Linearization.a; 
B3=openloop_response_Timed_Based_Linearization.b; 
C3=openloop_response_Timed_Based_Linearization.c; 
D3=openloop_response_Timed_Based_Linearization.d; 
 
s = tf([1, 0],[0,1]) 
Gs1 = C3*((s*eye(2) - A3)^(-1))*B3+D3 
 
A_siso = A3 
B_siso = B3(:,2) 
C_siso = C3(1,:) 
D_siso = 0 
G = C_siso*((s*eye(2) - A_siso)^(-1))*B_siso+D_siso 
G = ss(G); 
[n,m]=size(B_siso); 
[p,n]=size(C_siso); 
 
% definition of the shaping functions 
% and Bode diagrams 
wB = 10;     % desired closed-loop bandwidth 
AA = 1.0000e-08;  % desired disturbance attenuation inside bandwidth 
M = 2;      % desired bound on hinfnorm(S) & hinfnorm(T) 
s=tf('s'); % Laplace transform variable 's' 
WS=(s/M+wB)/(s+wB*AA); % Sensitivity weight 
WK=(0.0001*s+1)/(0.001*s+1);  % Control weight can't be empty (d12).ne.0) 
WT=(s+wB/M)/(AA*s+wB); % Complementary sensitivity weight 
figure(1) 
bode(WS) 
hold on 
bode(WK) 
bode(WT) 
grid 
legend('WS','WK','WT') 
      
% shaping functions written in block form 
 
WWS=blkdiag(WS,WS,WS); 
WWT=blkdiag(WT,WT,WT); 
WWK=blkdiag(WK,WK,WK); 
 
% enlarged system withshaping functions 
 
SW = augw(G,WS,WK,WT); 
[KW,CLW,GAMW,INFOW]=hinfsyn(SW); 
 
LKW=G*KW; 
SKW=inv(eye(p)+LKW);  % Sensitivity 
TKW=eye(p)-SKW;       % complementary sensitivity 
clear sigma 
figure(2) 
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subplot(1, 2, 1) 
sigma(T) 
hold on 
sigma(TKW) 
title('comparison of complementary sensitivities of LGQ and H_o_o shaping 
functions') 
legend('T of LQG','T of Hoo') 
 
[KW2,CLW2,GAMW2,INFOW2]=h2syn(SW); 
 
LKW2=G*KW2; 
SKW2=inv(eye(p)+LKW2);  % Sensitivity 
subplot(1, 2, 2) 
 
TKW2=eye(p)-SKW2;       % complementary sensitivity 
clear sigma 
sigma(T) 
hold on 
sigma(TKW2) 
title('comparison complementary sensitivities of LGQ and H_2 shaping 
functions') 
legend('T of LQG','T of H_2') 
sigma=5.67*10^(-8); 
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Backstepping control law  

function y = fcn(u, w, Tref) 
 
zbar=2; 
rho=900; 
A=pi/4; 
c=4180; 
Tbar=Tref; 
Tibar=298; 
Tmbar=363; 
cm=481; 
Mm=617.32; 
sigma=5.67*10^(-8); 
klm=3326.4; 
Tf=1200; 
kf=8; 
f1 = w*Tibar/(rho*A*zbar); 
f2 = w/(rho*A*zbar); 
f3 = klm*A/(c*rho*A*zbar); 
func1 = f1 -Tbar*f2 + f3*(Tmbar-Tbar) - u(1)*(f2+f3); 
g1 = f3; 
func2 = f4*(u(2)-u(1)+Tmbar-Tbar)+0.112*g2;  
g2 = f6*(Tf^4-(u(2)+Tmbar)^4); 
fi = (-f1+Tbar*f2-f3*(Tmbar-Tbar)-u(1))/f3; 
 
y = 1/g2 * ((-1/f3)*(func1+f3*u(2))-0.0009*(u(2)-fi)-u(1)*g1-func2); 
 

 

 

 

 

 

 

 

 

 

 


