
A knowledge-driven approach for
supporting data preparation

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria In-
formatica

Author: Enrico Staiano

Student ID: 989729
Advisor: Prof. Cinzia Cappiello
Co-advisors: Camilla Sancricca
Academic Year: 2022-23

i

Abstract

Data-driven management is becoming more and more popular: organizations increasingly
rely on collecting and analyzing large volumes of data to support their business decisions.
However, the success of the decisions based on data depends greatly on the quality of the
data itself. Working with poor quality data introduces the risk of unreliable and erro-
neous outcomes. Consequently, a thorough data preparation phase aimed to improve data
quality is critical. It has been shown that data preparation can take a substantial portion
- up to 80 percent - of a data scientist’s workload. Data preparation is time-consuming,
involving a large and heterogeneous variety of techniques and issues. Moreover, depend-
ing on the available data and the desired analyses to perform, different data preparation
pipelines may be suitable. For these reasons, a user, especially a non-expert, may find it
difficult to navigate the complex journey of data preparation. This thesis addresses this
issue by proposing an approach that supports users, guiding them through the preparation
process and offering appropriate suggestions for their needs. The methodology presented
in this thesis allows users to upload their data and select a Machine Learning Application
as the target of their analysis. Subsequently, the methodology guides the users, consid-
ering the selected context. A Knowledge Base, designed and implemented during this
work, is central to this methodology, containing all the concepts needed for supporting
data preparation. The Knowledge Base is constantly queried throughout the process to
propose actions appropriate to the specific users’ context. To provide tailored suggestions,
the proposed methodology relies on classifiers: each classifier takes as input the data up-
loaded and the application selected by the users and predicts the best method to perform
a certain data preparation technique in that context. This thesis focuses specifically on
the Imputation technique: two classifiers were developed to predict the best imputation
method to fill in the missing values of a dataset or column, considering both the data
characteristics and the users’ objective analysis. By leveraging the Knowledge Base and
the implemented classifiers, the presented methodology is able to support users through
the data preparation process, tailoring the proposed preparation pipeline according to the
users’ needs and offering contextually appropriate suggestions.

ii | Abstract

Keywords: Data Preparation, Data Quality, Knowledge Base, Imputation

iii

Abstract in lingua italiana

Il data-driven management sta diventando sempre più popolare: le organizzazioni si af-
fidano sempre più alla raccolta e all’analisi di grandi volumi di dati per supportare le
loro decisioni. Tuttavia, il successo delle decisioni basate sui dati dipende in larga misura
dalla qualità dei dati stessi. Utilizzare dati di scarsa qualità può portare a risultati in-
affidabili o erronei. Di conseguenza, è essenziale un’accurata fase di preparazione dei
dati volta a migliorarne la qualità. È stato dimostrato che la preparazione dei dati può
occupare una considerevole porzione - fino all’80% - del lavoro di un data scientist. La
preparazione dei dati è un processo lungo, costituito da un’ampia ed eterogenea varietà
di attività e problematiche. Inoltre, a seconda dei dati che si hanno a disposizione e
delle analisi che si desidera eseguire, diverse procedure di preparazione possono essere
appropriate. Per questi motivi, un utente, soprattutto se non esperto, può trovare diffi-
cile orientarsi nel complesso procedimento di preparazione dei dati. Questa tesi affronta
questo problema proponendo un approccio che supporta gli utenti guidandoli attraverso il
processo di preparazione, offrendo suggerimenti opportuni per le loro esigenze specifiche.
La metodologia presentata in questa tesi consente agli utenti di caricare i propri dati e
di selezionare un’applicazione di machine learning come obiettivo della propria analisi.
Da questo punto in poi, la metodologia guida gli utenti tenendo in considerazione il con-
testo selezionato. Alla base di questa metodologia c’è una Knowledge Base, progettata e
implementata durante questo lavoro, contenente tutti i concetti necessari per supportare
la preparazione dei dati. Durante la preparazione, la Knowledge Base è costantemente
interrogata per proporre azioni appropriate al contesto specifico dell’utente. Per fornire
suggerimenti personalizzati, la metodologia proposta fa uso di classificatori: ogni classifi-
catore prende in input i dati caricati e l’applicazione selezionata dagli utenti e predice il
metodo migliore per eseguire una certa tecnica di preparazione in quel contesto. Questa
tesi si focalizza in particolare sulla tecnica di imputazione: due classificatori sono stati
sviluppati per predire il migliore metodo di imputazione per sostituire i valori mancanti
di un dataset o di una colonna, considerando sia le caratteristiche dei dati sia l’obiettivo
di analisi degli utenti. Sfruttando la Knowledge Base e i classificatori implementati, la
metodologia presentata riesce a supportare gli utenti durante il processo di preparazione

dei dati, variando la pipeline di preparazione proposta a seconda delle esigenze degli utenti
e facendo suggerimenti appropriati.

Parole chiave: Preparazione dei dati, Qualità dei dati, Base di Conoscenza, Imputazione

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 State of the art 3
1.1 Data Quality . 3
1.2 Data Quality Dimensions . 4

1.2.1 Accuracy . 6
1.2.2 Completeness . 6
1.2.3 Consistency . 7
1.2.4 Timeliness . 8
1.2.5 Other dimensions . 8

1.3 Data quality improvement . 9
1.4 Data Quality for Machine Learning . 11
1.5 Addressing Completeness: Considerations and Strategies 14
1.6 Approaches for automatic and semi-automatic design of data preparation

pipelines . 18
1.7 Graph Databases . 23

2 Methodology 25
2.1 Architecture . 25
2.2 Knowledge Base . 28
2.3 Classifier . 34

3 Knowledge Base Implementation 37

4 Classifiers Implementation and Results 49
4.1 Knowledge generation . 49

4.1.1 Knowledge generation: entire dataset case 50
4.1.2 Knowledge generation: single column case 54
4.1.3 Data leakage considerations in imputation 58

4.2 Building of the classifiers and results . 60

5 Tool Implementation 65

6 Conclusions 73
6.1 Future Work . 74

Bibliography 75

A Appendix A 81

List of Figures 85

List of Tables 87

1

Introduction

Nowadays, the influence of data has radically changed how organizations operate and
make decisions. The unstoppable growth of fields like Internet of Things has caused an
unprecedented availability of data. Organizations have recognized the power of data, and
the concept of data-driven management has rapidly grown in popularity: the decision-
making process is based on insights derived from the data collected.

However, the abundance of data sources often introduces challenges related to data quality.
Real-world sources often have quality problems and it is likely to encounter data that is
heterogeneous, non-standardized, and contains errors. The quality of the insights drawn
from such data, and consequently, the decisions made, is closely linked to the underlying
data quality. Analyzing data of poor quality can lead to flawed or unreliable results: data
quality problems have a strong impact on the outcomes of data-driven analyses. It is
therefore critical for a data-driven organization to continuously monitor the quality of the
data it uses.

Therefore, the significance of an effective data preparation phase becomes evident. Prop-
erly preparing data can improve data quality and lead to more accurate analysis results.
However, the data preparation process is complex and time-consuming, constituting a
large share of the workload required to perform any analysis. Many possible preparation
actions can be applied to the data, and depending on the specific case, different actions
may be appropriate. Dealing with this complex preparation process can be difficult,
especially for an inexperienced user.

This thesis aims to create an approach to support users throughout the entire data prepa-
ration process, directing them toward the preparation actions most suitable for the data
they are working on and for the analyses they want to perform.

The methodology proposed in this work relies on a Knowledge Base, implemented with a
graph database, containing all the concepts and knowledge needed to support users in the
data preparation process. Furthermore, the methodology employs classifiers to predict
which data preparation methods are best suited to the users’ needs. Specifically, during
the thesis, two classifiers were implemented to predict the optimal imputation method to

2 | Introduction

be used to fill in missing values in datasets and columns, considering the users’ specific
context.

Finally, to demonstrate a practical application of the knowledge base and classifiers imple-
mented, they were integrated into an existing data preparation tool, which was enriched
with new features leveraging the concepts developed in this thesis.

Structure of the document

Chapter 1 introduces the topics on which this thesis is based, and contains a comparison
of some well-known frameworks for data preparation.

Chapter 2 describes the proposed methodology, explaining all its aspects in detail. This
chapter contains the conceptual description of the designed Knowledge Base.

Chapter 3 focuses on how the Knowledge Base was implemented using a graph database.

Chapter 4 contains details regarding the implementation of the classifiers: the whole
implementation process is described, starting from how the knowledge needed for their
training and testing was generated to the results obtained.

Chapter 5 describes how the concepts developed in this thesis were integrated into a
data preparation tool.

Chapter 6 concludes by summarizing the work done and proposing possible future works.

3

1| State of the art

This chapter describes the fundamental concepts and issues explored in this thesis. In
particular, Section 1.1 introduces the general concept of data quality. Subsequently,
Section 1.2 presents a more in-depth description of the data quality dimensions. Section
1.3 focuses on strategies to improve the quality level of data.

Section 1.4 contains a description of the main data quality issues and data preparation
techniques within the context of machine learning.

Section 1.5 is dedicated specifically to the Completeness dimension, which is highly rele-
vant for the research conducted in this thesis.

Section 1.6 provides an in-depth comparison of frameworks for automatic and semi-
automatic data preparation.

Finally, Section 1.7 contains an introduction to the topic of graph databases, pertinent to
the implementation part of the thesis.

1.1. Data Quality

Nowadays, the role of data is becoming more and more significant. Companies rely on
collecting and analyzing large volumes of data to support their business decisions: data-
driven management has become central.

However, as the quantity and utilization of data increase, so do the issues about the
quality of the data collected. The success of the analyses and decisions based on data
depends greatly on the quality of the data itself. Indeed, data quality issues significantly
impact the outcomes of data-driven analyses [4].

The data quality concept can be defined in various ways. The traditional definition of
data quality is the ability of data to meet user requirements, also expressed as "fitness
for use" [37]. Another possible perspective, from an Information System point of view,
defines data quality as the absence of contradictions between the data and the real-world
[26].

4 1| State of the art

There are many possible causes for poor data quality. The main ones are the following:

• Data integration: merging different data sources in a single comprehensive collec-
tion might cause data quality problems that need to be carefully addressed. There-
fore, data integration is a common and often necessary operation, but it is sometimes
dangerous from a data quality point of view.

• Data usage: changes in the usage of data can introduce errors and inaccuracies. For
instance, data initially employed in an operational process may not prioritize certain
details (and inaccuracies) that instead become crucial when used in a decision-
making process.

• Historical changes: the importance of data for an organization might change over
time, leading to issues with some data being ignored or badly collected until when
data becomes necessary.

• Data enrichment: enriching data using external or untrusted sources can be dan-
gerous, as it may introduce errors or other issues, such as duplicates or heterogeneous
data formats.

Regardless of the causes, poor data quality can occur in different and heterogeneous
ways. In real-world data, some frequent issues include missing values, duplicates, non-
uniform data formats, typos, outdated data, and many more. Addressing this wide variety
of problems is time-consuming and expensive, and it has been demonstrated that data
preparation can take up to 80% of the work of a data scientist [31].

A common strategy for addressing data quality issues, or in general for maintaining a
high data quality level, involves the following four-phase approach: definition of suitable
data quality dimensions, assessment of data quality level using these dimensions, analysis
of data quality issues, execution of actions for quality improvement. This process not
only helps monitor and control data quality issues but also contributes to improving the
overall quality level. It is often referred to as Total Data Quality Management [36].

The following section provides the definition of data quality dimension and presents an
overview of the most commonly used dimensions.

1.2. Data Quality Dimensions

As previously mentioned, data quality takes into account various issues.A data quality
dimension captures a specific aspect of the general concept of data quality. By defining
suitable dimensions, it is possible to simplify the quality assessment and the analysis of

1| State of the art 5

the quality issues.

Over time, many data quality dimensions have been proposed in the literature.

A first distinction can be made between data dimensions and schema dimensions. The
former refers to the quality of data values. The latter refers to the quality of the schema
with which data was stored. This thesis only considers the data dimensions described in
detail in the present and the following sections.

One of the most used classifications is the one presented in [37] and illustrated in Figure
1.1. This classification divides the data quality dimensions in four categories:

• Intrinsic dimensions: these dimensions capture the quality that data has intrin-
sically on its own.

• Contextual dimensions: dimensions that take in consideration the context where
data is used. These dimensions are strictly related to the context of the process using
the data.

• Representational dimensions: these dimensions capture aspects related to the
quality of data representation.

• Accessibility dimensions: dimensions related to the accessibility of data.

Figure 1.1: Data quality dimensions classification [37]

Furthermore, dimensions can be divided in objective and subjective dimensions. The
subjective dimensions can be only evaluated by users, considering their specific needs and
goals. The objective dimensions, on the other hand, can be associated to numeric metrics
and objectively measured.

An objective dimension can be associated to one or more metrics, to quantitatively mea-
sure it. It may be appropriate to use different metrics for the same dimension, depending

6 1| State of the art

on the specific cases.

Once the objective dimensions have been defined and assigned to their metrics, there
is the assessment phase, during which the data quality level is precisely measured and
evaluated.

In the following sections, there is a description of the most used objective dimensions.

1.2.1. Accuracy

Accuracy is defined as the closeness between a data value v and another value v’, which
is regarded as the correct representation of the real-world concept that the value v is
representing. In other words, accuracy measures how much correct the data is [37].

Accuracy is often categorized into two types: syntactic accuracy and semantic accuracy
[27].

Syntactic accuracy focuses on whether a value v belongs or not to the domain D to
which it is assigned. For instance, if the value v appears as an address in a column of
phone numbers, it is not considered syntactically accurate, because it does not belong to
the domain of the column. If a value belongs to its designated domain, it is considered
syntactically accurate, regardless of whether it is actually the correct value.

On the other hand, semantic accuracy considers the intrinsic correctness of value v, i.e.,
how close v is to the corresponding correct value v’. To assess semantic accuracy, addi-
tional knowledge is typically required, while assessing syntactic accuracy does not usually
need additional information.

To measure the accuracy of a dataset, one of the most commonly used metrics is the ratio
between the number of accurate values and the total number of values:

Accuracy = 1− Number of incorrect data values
Total number of data

In this formula, the number of incorrect values can be calculated either considering the
domain of the values (syntactic accuracy) or with respect to their true value (semantic
accuracy).

1.2.2. Completeness

The completeness of a dataset indicates the extent to which that dataset represents the
corresponding real-world [5]. It is an indication of the degree with which the dataset

1| State of the art 7

is comprehensive, compared to the respective set of real-world objects. Typically, the
completeness is associated with the number of missing values within the dataset. Note that
it is often not enough to consider only the number of missing values, but it is necessary to
also understand the reasons for their absence. For instance, there is a significant difference
between a missing value indicating a non-existing concept (in which case, the value is not
truly missing) and a missing value indicating an unknown or unrecorded value.

The most common and simple metric used to assess completeness is the ratio between not
missing values and the total number of values:

Completeness = 1− Number of missing values
Number of total values

It is possible to evaluate completeness at various granularities: at the single data sample
level, at the column level, and at the dataset level.

This thesis gives particular attention to this dimension, and a more precise description of
completeness issues and how to address them can be found in Section 1.5.

1.2.3. Consistency

The consistency dimension observes the violation of semantic rules defined over a set of
data items [5]. Several kinds of semantic rules can be defined. The most common ones
are integrity constraints and business rules.

Business rules are usually defined by experts in the specific data domain, who use their
expertise and knowledge to define semantic rules.

The integrity constraints specify dependencies that must be respected by the values of one
or more attributes of the data. Among integrity constraints, the main types of dependen-
cies are key dependencies, inclusion dependencies, and functional dependencies. These
types of dependencies can be briefly described in the following way: a key dependency
indicates that an attribute (or a group of attributes) must have distinct values for every
data element; an inclusion dependency indicates that every value assumed by an attribute
(or a group of attributes) A must also exist in another attribute (or group of attributes)
B; a functional dependency specifies that the value of an attribute (or group of attributes)
A uniquely determines the value of another attribute (or group of attributes) B.

The most common metric used to assess consistency is the ratio between the number of
consistency checks with positive results and the total number of checks performed:

8 1| State of the art

Consistency = 1− Number of violations
Total number of consistency checks performed

Therefore, a dataset has the highest level of consistency if all the semantic rules are
satisfied.

1.2.4. Timeliness

Timeliness is a time-related dimension that measures the extent to which data are suffi-
ciently up-to-date for a task [37]. It is important to monitor the temporal validity of data
because, in many contexts, data can quickly become old and out of date. To calculate
timeliness, two components are necessary [7]:

• Currency: the time interval passed between the last update of the considered data
and the moment in which the data is read.

• Volatility: the average validity time of the considered data. It is an indication of
how often data changes, i.e., it is the frequency of updates of that data.

It is possible to understand whether data is still valid using these two components. The
timeliness can be measured using the following formula:

Timeliness = max{0, 1− Currency
Volatility

}

The measure of timeliness can assume values between 0 and 1, with 0 indicating out-of-
date data and 1 indicating perfectly up-to-date data.

1.2.5. Other dimensions

In addition to those described in the previous sections, other important dimensions are
[4]:

• Uniqueness: this dimension refers to the absence of duplicates in the data, i.e.,
multiple data elements corresponding to the same real-world concept.

• Accessibility: this dimension measures the ability of the users to access the data
from their own culture and background, physical status, and technologies available.

• Readability: this dimension refers to the ease with which users can understand
and utilize the information contained in the data.

1| State of the art 9

1.3. Data quality improvement

Once the data quality dimensions have been defined and assessed, several possible ap-
proaches exist for improving the data quality level. The two main strategies are the
following:

• Data-based approach: this approach focuses on the data itself, aiming to identify
and correct the errors present in the values without considering the process and con-
text in which the data will be used. This direct and immediate approach works very
well in the short term, but it is necessary to repeat the data quality improvement
process on each new dataset and every time the data are updated.

• Process-based approach: this approach focuses on the process in which data
are created and used. The aim is to analyze the process, in order to discover and
eliminate the root cause of the data quality problems. This approach may be more
complex, but it ensures that the same kinds of errors are not repeated in the long
term.

This thesis is focused on the data-based approach.

In particular, the process considered in this work for data quality improvement is based
on data cleaning and consists of the following steps:

Data
collection

Data
Profiling Standardization Error localization

and correction
Duplicate
detection

DQ
assessment

Data Cleaning

Figure 1.2: Data Quality Improvement Process

After collecting the data, the first step of the process is data profiling.
Data profiling is the set of activities and processes designed to examine a given dataset
in order to collect statistics and, in general useful metadata of that dataset [1]. Data
profiling aims to provide a better understanding of the data, also helping the following
data preparation phases.

Some of the main tasks performed during the data profiling phase include:

• Calculation of cardinalities, e.g., number of rows and columns of the dataset, number

10 1| State of the art

of null values, number of distinct values.

• Analysis of value distributions, which involves assessing the distribution of data
in the columns, including calculating extremes in numeric columns, quartiles, and
constancy.

• Examination of data types, formats, and patterns: this task involves examining
the column data types and scanning the dataset to identify recurring patterns and
formats.

• Dependency discovery: during this task key, inclusion, and functional dependencies
are searched within the data. These dependencies are very useful for individuating
(and subsequently correcting) errors in the dataset.

After data profiling is finished, the data cleaning phase begins. During the data profiling
phase, the dataset is never modified or altered, while the data cleaning procedure modifies
the values, correcting the errors. More precisely, data cleaning is defined in [25] as de-
tecting and removing inconsistencies and errors in data to improve quality. Data cleaning
consists of three main steps: standardization, error correction, and duplicate detection.

The objective of the standardization step is to achieve uniformity in the formats of the
data. This phase may involve various operations such as data type conversions, merg-
ing or splitting of columns, and discretization of numerical values. Standardizing data
formats may necessitate actions like, for instance, altering formats of dates, addresses,
and telephone numbers or converting different currencies [3]. In some cases, domain-
specific transformations might be needed, such as expanding acronyms; however, these
transformations often require external knowledge [15].

At the end of the standardization step, the obtained data should be homogeneous and
have uniform formats. At this point, the error localization and correction starts. During
this central section of data cleaning, errors in the data are actually localized and corrected,
also exploiting the results of the data profiling phase. Some of the activities performed
during this step are the localization and correction of inconsistencies and of incomplete
data. Note that these two are only examples of the many activities that can be included
in the error localization and correction step.

To individuate inconsistencies, the semantic rules previously defined and the dependencies
found in the data profiling phase are checked. The records in which these constraints are
not verified are considered erroneous [4]. Once the inconsistent data elements are found,
there are several possible strategies: a possible option is to delete the erroneous elements,
while another option is to correct the errors, substituting the erroneous values with correct

1| State of the art 11

ones. Modifying or inserting values to correct erroneous fields is also called imputation.

Details on how to handle incomplete data can be found in Section 1.5.

After the error localization and correction, the last step of data cleaning is duplicate
detection. Duplicate detection can be defined as the discovery of multiple representations
of the same real-world object [22]. The main challenges of duplicate detection are the
research of suitable similarity measures and efficient algorithms to individuate duplicates.
Similarity measures are fundamental to find representations that are not identical but
that refer to the same real-world object. The utilization of efficient algorithms is needed
because the datasets have often a large volume, making it not possible to compare all the
data elements.

Some of the most common techniques used to individuate duplicates reducing the search
space are the following:

• Blocking: the data is partitioned in separate blocks and the comparisons are limited
to records within the same block. Blocking is implemented by choosing a blocking
key and grouping into a block all records with the same value of that key.

• Sorted neighborhood: data is first sorted using a key (a significant attribute, or even
multiple attributes). Then a window of fixed size is shifted over the sorted data,
and only the records within the window are compared.

• Pruning (or filtering): this method has the objective removing from the search space
all records that cannot match each other, without actually comparing them.

After duplicates referring to the same concept are detected in the data, they are typically
deleted.

At the end of the data cleaning phase, a new data quality assessment is conducted on
the dataset, to determine whether the performed actions positively impacted the quality
level.

1.4. Data Quality for Machine Learning

When using a dataset as input of a Machine Learning (ML) algorithm, it is of funda-
mental importance to consider the level of quality of the dataset and, in general, how
that dataset has been prepared. If the data on which the ML algorithm works has data
quality problems, the performance of the algorithm will be compromised [8]. Therefore,
data preparation is one of the most important tasks for the success of any ML algorithm.

12 1| State of the art

In this section, some of the most commonly performed operations to prepare data for
machine learning are described.

While some ML algorithms can deal with non-numeric data types directly, other algo-
rithms necessitate numerical attributes as input. In the last case, it is required to convert
all the non-numeric attributes of the dataset into a numerical format [8].

Regarding non-numeric ordinal attributes, the conversion must preserve the order of the
original values. Therefore, the assignation of the numerical values must reflect the original
ordering.

Regarding instead unordered nominal attributes, a commonly adopted solution is one-hot
encoding [9]. In this method, the original nominal attribute is transformed into a set
of binary columns. Each column refers to a distinct value of the original attribute. For
a given sample, the column associated with the original value present in the sample is
assigned a value of 1, while all the other columns are set to 0. The main advantage of
one-hot encoding is that it does not impose an implicit order or hierarchy on attributes.
However, when dealing with nominal attributes that can assume many distinct values,
this method could increase significantly the dimensionality of the dataset.

Another operation that, in some cases, can be useful in data preparation for machine
learning is discretization. This operation converts a continuous variable into a discrete
ordinal variable. Discretization divides the range of a continuous variable in a set of
intervals, called bins, that are used to obtain a discrete variable [12]. Discretization can
be used for several possible purposes. For instance, some ML algorithms work better with
discrete values, like Naive Bayes classifiers. Discretization can also be applied to reduce
the data volume.

For many machine learning algorithms, in particular, for distance-based methods, it is
fundamental, during the preprocessing, to normalize the data. Normalization is a data
preprocessing technique that rescales the attributes of the dataset. It is aimed to scale
all the attributes to a similar range. Without normalization, a possible issue is that
attributes with large ranges might out-weight attributes with small ranges. Two well-
known normalization methods are Min-Max scaling and z-score normalization [16].
Min-Max scaling scales the values of an attribute to a desired range (usually [0,1] or [-
1,1]), by subtracting from each value the minimum of the attribute and dividing by the
range of the attribute.
Z-score normalization subtracts from each value the mean of the attribute and divides it
by the standard deviation of the attribute. After this operation, the normalized attribute
will have a mean of 0 and a standard deviation of 1.

1| State of the art 13

Before utilizing a dataset as input for a ML algorithm, handling the missing values within
that dataset is recommended. Many ML algorithms do not function properly when faced
with missing data, while others may handle them in unpredictable ways. Therefore, it
is a good practice to address this problem during preprocessing, to avoid undesirable
behaviors. Various approaches can be used to handle missing values in a dataset. For
more information on the available strategies, see Section 1.5.

Sometimes, datasets may contain columns where every sample assumes the same value.
These columns, often called zero-variance predictors, are typically useless for modeling.
Therefore, in the majority of cases, these attributes are deleted from the dataset before
applying the ML algorithm [8].

A similar situation arises when a dataset contains columns with few unique values. These
columns are often referred to as near-zero variance predictors. Near-zero variance predic-
tors may or may not be helpful for modeling purposes. Hence, evaluating the specific case
before removing or keeping the column is advisable.

Another type of column often useless for ML algorithms is ID-like fields. In this kind
of attribute, each sample assumes a unique value. ID-like fields typically do not con-
tain meaningful information for machine learning models and are often removed before
applying the ML algorithm.

An important operation to perform during preprocessing, is the detection and deletion of
unwanted duplicates present within the dataset. Duplicates not only could be useless to
the modeling process, but, more importantly, they could also be misleading during the
model evaluation and testing phases.

A frequent issue in machine learning, particularly for classification algorithms, is repre-
sented by unbalanced datasets [20]. An unbalanced dataset contains an unequal class
frequency: some classes appear in the samples much more frequently than others. In
these cases, the ML algorithm receives many more examples from one class (or a small
number of classes), and this biases it towards that specific class. An approach to address
this problem is to collect more data from the minority classes. However, this approach is
often not feasible. Some commonly used strategies are undersampling and oversampling.
Considering a binary classification problem with an unbalanced dataset, undersampling
aims to balance the dataset by reducing the number of instances of the majority class.
Only some samples of the majority class are included in the dataset, to balance the class
distribution. A disadvantage of this method is the possible loss of valuable data.
On the other hand, oversampling aims to balance the dataset by increasing the number
of samples of the minority class. To reach this goal, this method replicates some samples

14 1| State of the art

of the minority class, or creates new synthetic data points.

The described operations are only some of the many possible data preparation actions
that can be used to preprocess a dataset for machine learning. When working on dataset
preparation, it is always important to consider the specific characteristics of the dataset
and the needs of the ML algorithm to be employed.

1.5. Addressing Completeness: Considerations and

Strategies

This thesis is particularly focused on completeness, therefore, this section discusses more
details about this dimension, along with a description of the most used methods for
handling missing values in data.

As described in Section 1.2.2, completeness indicates the degree to which a data collection
contains all the data describing the corresponding set of real-world objects. Completeness
is strictly related to the presence of missing values in the dataset, however only count-
ing the number of null values is sometimes not enough to properly assess the level of
completeness of the data.

When assessing the level of completeness of a dataset, one of two assumptions can be
made: the Closed World Assumption (CWA) or the Open World Assumption (OWA)
[4]. The CWA states that only the data elements present in the dataset are the ones of
interest. Note that these data elements can still have missing values. The OWA, on the
other hand, states that there could be elements of interest in the real-world that are not
represented in the dataset. Consequently, even if the dataset contains no missing values,
completeness may still not be optimal.

Another aspect to consider when assessing completeness is the potential presence of trun-
cated and censored data [14].

As briefly mentioned in Section 1.2.2, it is important to consider not only the number
of null values present within a dataset but also their meaning. A null value does not
necessarily indicate a missing value, but it may sometimes indicate a default value for a
particular attribute. Furthermore, a null value can also indicate a non-existent real-world
concept: for instance, in an attribute containing telephone numbers, a null value could
denote that a person does not own a telephone. In both cases, the null values do not
represent actual missing values, and the dataset can be considered complete. Therefore,
it is important to distinguish between null values representing values existing in the real-

1| State of the art 15

world but missing in the data, thereby causing the dataset to be incomplete, and those
representing other cases.

Once the missing values are individuated, several possible strategies can be used to handle
them. These strategies can be divided into two categories: deletion and imputation. Dele-
tion aims to eliminate the sections of data containing missing values. On the other hand,
imputation replaces the missing data with substitute values. In the following paragraphs,
there is a description of several methods for both deletion and imputation.

Considering a dataset, the two main deletion methods that can be applied are: deletion
by row and deletion by column [17].

Deletion by row identifies all the tuples of the dataset containing missing values and
deletes them. This method is very simple and fast, but has some disadvantages. Firstly, if
the number of missing values is large, this method could lead to the deletion of most of the
entire dataset, drastically decreasing the effectiveness of subsequent analyses performed on
the data. Secondly, the missing values may not be uniformly distributed among the tuples,
but may be concentrated in particular segments of the data, and deleting such tuples would
result in the loss of valuable information and in obtaining a biased representation of the
data.

Deletion by column deletes all the columns of the dataset containing missing values.
Similarly to deletion by row, this method is simple and computationally not expensive,
however, it also shares some of the problems of the previous method. In particular, the
main disadvantage is the loss of data, which can be quite significant. Consequently, the
application of this method is usually suitable only when the number of missing values is
very low, or when these missing values are highly concentrated within specific columns.

Regarding the imputation strategy, there is a large number of possible methods, ranging
from more straightforward approaches to more complex ones, some of which also exploit
machine learning algorithms.

Deterministic Imputation: this method imputes a missing value by using logical rela-
tions and dependencies between the attributes of the dataset. It derives the correct value
of the missing item using a deterministic approach. For instance, a possible determin-
istic approach is to exploit a functional dependency present in the dataset to uniquely
determine a missing value from other attributes’ values. In general, any dependency or
semantic rule that can determine the correct value of the missing item can be applied.
The clear advantage of this method is that it imputes the correct value of the missing
item. However, a useful rule to impute missing values is not always available; therefore

16 1| State of the art

is often not possible to apply deterministic imputation for all the missing values of a
dataset. In general, when dealing with missing values, it is always wise to check whether
deterministic imputation can be applied, before trying different methods.

Standard Value Imputation [32]: this method imputes every missing value using a
constant standard value. Any desired value may be used as an imputation value. Some
popular choices are the value 0 for numeric-type columns and the value "Missing" for
string-type columns. The main advantage of this method is its simplicity. However,
the main disadvantage is that since it imputes the same value for all the attributes, the
imputed values in an attribute are typically totally unrelated to the other values within
that attribute.

Mean Imputation [2]: this method replaces the missing values of an attribute with the
mean of the observed values of that attribute. For its nature, this method can only be
applied to numerical attributes. An advantage of Mean Imputation is that it preserves
the mean of the observed data.

Median Imputation [2]: this method uses the same approach of Mean Imputation, but,
instead of the mean, it uses the median of the attribute as imputation value. Similarly
to the previous method, it can only be applied for numeric-type attributes. In datasets
containing outliers, Median Imputation is a more robust method than Mean Imputation,
because it mitigates the effect the outliers have on the imputation value.

Mode Imputation [17]: this method replaces the missing values of an attribute with
the mode of the observed values of that attribute. Differently from Mean and Median
Imputation, this method can be applied for every kind of attribute. However, this method
is particularly appropriate for categorical data, while it may not be the best choice for
continuous attributes.

Forward-Fill Imputation and Backward-Fill Imputation [28]: these two methods
replace the missing values with previous and subsequent non-missing values present within
the dataset. These methods may be valid when the order of the tuples in the dataset is
relevant, for instance, in the case of time-ordered datasets.

Random Imputation [32]: this method replaces the missing values of an attribute with
random values drawn from the observed values of that attribute.

While the previously described methods are simple, the following imputation methods
rely on more complex techniques.

Linear Regression Imputation [29]: this method imputes the missing values of an
attribute A of a dataset by building a linear regression model. The model is trained using

1| State of the art 17

the observed values of A as the target variable and the other attributes of the dataset as
features. Once the model has been trained, it is used to predict and fill in the missing
values present in attribute A. Differently from Mean Imputation and similar methods,
Linear Regression Imputation does not exploit only the information within the attribute
containing the missing values. This approach leverages all the information available in
the entire dataset, taking into account also the relationships between the attributes. A
disadvantage of this method (and similar methods) is that it is more computationally
expensive in comparison to simpler approaches. This imputation method can be applied
only to impute missing values of numerical columns.

Logistic Regression Imputation [29]: this method is similar to Linear Regression
Imputation. The main difference is that, instead of using a linear regression model, it
builds a logistic regression model to predict the missing values of an attribute. Using this
method to only impute missing values of categorical attributes is appropriate.

K-Nearest Neighbors Imputation [2]: this method imputes the missing values of a
sample S by looking at similar samples within the dataset. This method uses a similarity
metric to identify and retrieve the K most similar samples to S, called neighbors. The
imputed values for categorical variables are determined by the most common category
among its neighbors to impute the missing values of S. For numerical variables, the im-
puted values are calculated as the mean of the corresponding values of the neighbors.
KNN Imputation is a particularly valid method when the similarity between samples is
relevant in the dataset. One of the disadvantages of this method is its computational
cost, which can be high in the case of large datasets. Moreover, it may require a careful
parameter selection for the choice of K and similarity metric.

Multiple Imputation by Chained Equations (MICE) [40]: this well-known impu-
tation method employs an iterative approach to impute all the missing values of an entire
dataset. A series of predictive models are built in order to predict and then impute the
missing values in the dataset’s columns. In particular, the method works as follows. Ini-
tially, the missing values are temporarily filled in randomly. Then, a sequence of iterations
is performed. In each iteration, a column is considered as target variable, and a model
is built to predict that column using the other columns of the dataset. This process is
repeated for each column of the dataset. MICE is a powerful method that imputes all the
missing values of a dataset, considering the relationships between the attributes.

SoftImpute [34]: this method takes a different approach with respect to the previous
methods. It relies on the concept of matrix completion. In summary, this method decom-
poses the dataset (considered as a matrix) using Singular Value Decomposition (SVD)

18 1| State of the art

and then reconstructs it, filling in the missing values in the process. SoftImpute also
works well for large datasets with high dimensionality.

The described methods are only some of the available choices for imputing the missing
values of a dataset.

Furthermore, it is possible to combine these methods. For example, in a dataset containing
both categorical and numerical attributes, a possible choice is to impute the categorical
columns using Mode Imputation and the numerical columns with Mean Imputation.

1.6. Approaches for automatic and semi-automatic

design of data preparation pipelines

With the increase in awareness regarding the importance of data preparation and quality,
numerous approaches and frameworks have emerged to support users in preparing their
data. Some of these approaches assist users through the preparation process step by step,
suggesting individual actions, while others automatically propose complete preparation
pipelines. These methods differ significantly for the kind of actions suggested and the
strategies utilized. This section describes some common aspects and strategies employed
in these frameworks.

To determine the optimal data preparation pipeline to apply, a possible strategy is to con-
sider the application to be executed on the data and to search for the optimal sequence
of tasks such that the quality of the application results is maximized. This strategy is
adopted in works such as [6] and [19]. In these frameworks, a machine learning applica-
tion is selected, and then, using various approaches, a pipeline is constructed containing
preparation actions aimed to optimize the performance of that application. In particular,
[6] utilizes a Q-Learning-based approach, while [19] relies on ensemble methods.
This strategy is highly effective when users prepare data for a specific objective, as the
suggestions are tailored to that particular situation.

Other works suggest optimal data preparation actions by examining past preparation
pipelines. This strategy involves studying cleaning tasks used previously and learning
from them to propose promising actions for new datasets. This strategy is evident in
[39] and [21]. In particular, in [39], information present in past data science notebooks is
gathered. The information is then leveraged to suggest data preparation actions for new
problems. The approach used in [21], on the other hand, learns from how past datasets
were cleaned. When a new dataset has to be prepared, its profile is extracted, containing
metadata summarizing its characteristics. Subsequently, the new dataset is compared to

1| State of the art 19

already cleaned datasets, and considering the similarity between their profiles, appropriate
error detection strategies are proposed.
This strategy facilitates the reuse of past work, and is particularly effective when the profile
of the dataset to be prepared is similar to profiles of previously considered datasets.

Many frameworks designed for data preparation do not operate as fully automated sys-
tems but involve users. This approach is called Human-In-The-Loop (HIL). The degree
of user involvement may vary depending on the approach considered. For instance, in
[31], the presented framework suggests multiple potential operations, leaving the user to
choose which one to execute. In [21], probable errors in the dataset are identified auto-
matically, but users are asked to confirm or reject these identifications. Not all the works
involve the users along the entire process: some approaches initially gather users’ prefer-
ences and then proceed automatically. In [18], for instance, users are required to provide
a data quality metric to optimize, after which the framework automatically generates a
data cleaning pipeline considering the metric provided. Certain methods, like [13], opt
for crowdsourcing instead of seeking feedback from individual users.
The Human-In-The-Loop approach offers several advantages. Certain data preparation
tasks are challenging to execute in a fully automated way, and HIL addresses these com-
plexities. User involvement allows users to tailor preparation to their preferences, resulting
in more suitable results. Furthermore, HIL ensures that users are always monitoring their
data, keeping track of all the modifications applied.

To semi-automate dataset preparation, a viable strategy is to conduct a series of checks
on the dataset and advise users on which data preparation actions to execute based on
the results of these checks. This strategy is adopted in [31]. This work employs an acyclic
graph to control the flow of the operations. Following this graph, the system performs
data quality checks on the considered dataset, presenting the result to the users, along
with the suggested actions.
One of the main advantages of this strategy is that the suggested actions are selected
specifically for the data quality problems of the dataset.

Some recent approaches are starting to employ innovative technologies for data prepara-
tion. For instance, the approach presented in [33] makes use of transformers. In particu-
lar, this work employs a pre-trained autoencoder to correct missing values and/or errors
within tuples. Furthermore, the autoencoder can be fine-tuned to perform more specific
data preparation tasks, like normalization and data format transformation.

The previous paragraphs show that the approaches found in the literature for supporting
users in data preparation are highly heterogeneous. Not only the adopted strategies are

20 1| State of the art

entirely different from each other, but also the actions proposed are often of different
kinds.

In this thesis, nine approaches were analyzed and confronted. Table 1.1 summarizes the
main aspects of these approaches. In particular, the aspects considered are the following:

• Human-In-The-Loop indicates whether the user is involved in the approach and
at what level.

• Recommendation Granularity specifies the kind of recommendations the ap-
proach considers: whether it makes high-level suggestions or recommends specific
actions and methods.

• Recommended Actions specifies which actions can be suggested by the approach.

• Recommendation Criteria indicates what criteria the approach considers to
make its suggestions.

• DQ dimensions are the data quality dimensions considered in the approach.

• Strategy Used indicates on what particular strategy or idea the approach is based.

1| State of the art 21

Paper Human-In-The-
Loop

Recommendation
Granularity

Recommended
Actions

Recommendation
Criteria

DQ dimensions Strategy Used

Learn2Clean
(2019) [6]

No. Data prepara-
tion pipeline,
specifying the
methods to use.

Normalization,
feature selec-
tion, imputa-
tion, outlier
detection,
deduplication,
consistency
checking.

ML model per-
formance (accu-
racy, MSE, sil-
houette).

Not explicitly
considered.

Reinforcement
learning (Q-
learning).

BoostClean
(2017) [19]

No. However,
the user can
provide custom
error detec-
tion and repair
libraries.

Automatic error
detection and
repair.

Operators in
user-specified
libraries, and
simple methods
of imputa-
tion/discard
record.

ML model per-
formance.

Focus on do-
main value
violations,
hence mainly
completeness
and accuracy.

Ensemble
method (boost-
ing).

RPT (2021) [33] No. Actions au-
tomatically
executed.

Reconstruction
of tuples with
missing val-
ues. With
fine-tuning also
standardiza-
tion and data
transformation.

RPT is trained
to perform tu-
ple reconstruc-
tion tasks.

In the basic
version, mainly
completeness.

Encoder-
decoder trans-
former.

Auto-Suggest
(2020) [39]

No. User can select
an action and
the tool suggests
how to perform
it, or the tool
can suggest the
next best ac-
tion.

Join, group-by,
pivot, unpivot.

Based on past
data science
notebooks.

Not explicitly
considered.

Learning from
data prepara-
tion pipelines
present in past
notebooks.

DQA (2019) [31] Yes. To select
the next op-
eration among
some options;
to verify the
output of the
validator; to
add custom
checker func-
tions.

The tool sug-
gests to the user
a specific action
to solve a prob-
lem (the execu-
tion of the ac-
tion is not auto-
matic).

The operations
mentioned are:
No operation,
Data Imputa-
tion, Column
Filter, Row
Filter, Perform
deeper check.

Output of data
quality checks.

The tool doesn’t
consider explic-
itly DQ dimen-
sions, some of
the DQ checks
mentioned
are: missing
values, dupli-
cates, anomaly
detection, dis-
tribution of
values.

The tool uses
a DAG that
performs DQ
checks and
considering the
output of these
checks sug-
gests actions to
perform (with
the help of the
user).

Table 1.1: Approaches Confrontation Table - Part 1

22 1| State of the art

Paper Human-In-The-
Loop

Recommendation
Granularity

Recommended
Actions

Recommendation
Criteria

DQ dimensions Strategy Used

Simultaneous
Improvement
of ML Model
Fairness and
Performance
(2021) [11]

No. Automatic de-
tection and
elimination of
bias inducing
samples.

Elimination of
bias-inducing
samples.

Analysis of sam-
ples and model
output.

Bias is ex-
pressed con-
sidering the
definitions of
independence,
separation e
sufficiency.

Search of simi-
lar tuples with
different values
of protected
attributes and
different out-
comes. The
found tuples
are flagged as
bias-inducing.

AlphaClean
(2019) [18]

Yes. The user
has to provide
data cleaning li-
braries and has
to define the DQ
metric to opti-
mize.

AlphaClean
suggests the
optimal detailed
data cleaning
pipeline.

Operations in
the libreries
provided by the
user.

Optimization
of DQ metric
provided by the
user.

DQ metric pro-
vided by the
user.

Data cleaning
as an hyperpa-
rameter tuning
problem.

Towards Au-
tomated Data
Cleaning Work-
flows (2019)
[21]

Yes, the user
has to annotate
samples of the
detected errors.

The tool
suggests a
data cleaning
pipeline, but
in the paper
the level of
granularity is
not specified.

Not specified. Similarity
of the new
dataset with
already cleaned
datasets, output
of error detec-
tion strategies,
user annota-
tions.

Not specified. Similarity of
new dataset
with past, al-
ready cleaned,
datasets.

KATARA
(2015) [13]

Crowdsourcing.
Furthermore,
the user can
pick a repair
(among k possi-
ble repairs) for
each incorrect
tuple.

The tool anno-
tates each tuple
as correct/in-
correct, and it
suggests k pos-
sible repairs for
each incorrect
tuple.

Substitutions of
some values in
each incorrect
tuple.

Knowledge base
and crowd-
sourcing to
detect incorrect
tuples, least
possible number
of changes to
suggest repairs.

Not explicitly
considered.

Knowledge
bases and
crowdsourcing.

Table 1.1: Approaches Confrontation Table - Part 2

1| State of the art 23

1.7. Graph Databases

Since a graph database was implemented during this thesis, this section briefly introduces
graph databases.

As explained in [24], a graph database is a database that uses graph structures to store
data. In particular, data is represented using nodes and edges (called relationships).
Nodes, serving as entities, can be tagged with labels that can be considered as the types
of the nodes and can have properties, the "attributes" of the nodes. Relationships are
connections between two nodes. Each relationship has a direction, a start node, an end
node, and a type, and can have properties (like nodes). In a graph database, the edges
usually hold the most important information: the connections between the concepts.

An important property of graph databases is to provide index-free adjacency: each node
is a pointer to its adjacent elements. Therefore, without global indexes, each node directly
references its adjacent nodes.

When the primary goal is to analyze the relationships within the data, graph databases
are an excellent storage solution due to the nature of their data structure. Therefore,
graph databases are well suited for processing highly connected data. For these reasons,
this kind of databases is also very fast when dealing with associative datasets, like in the
case of social networks.

Another important advantage of graph databases is their more direct mapping, compared
to other types of databases, to object-oriented applications.

To query a graph database, the most common approach is graph matching. Each query
specifies a subgraph the users want to look for within the database. The database is
explored, searching for subgraphs that match the query. The matching subgraphs are
then retrieved and presented to the users as results.

The most popular graph database, as well as the one employed in this thesis, is Neo4j [23]
[35] [38].

Neo4j is an open-source graph database, implemented in Java. Neo4j is schema-free:
data is not required to respect predefined conventions. This property offers flexibility
by allowing nodes and relationships to be created and modified freely, without having to
consider the structure of already stored data. Neo4j is fully ACID-compliant.

Neo4j stores data in edges and nodes, as described before. Both nodes and relationships
are identified by unique IDs. The primary purpose of Neo4j is to be an operational
database, it was not designed specifically for analytics.

24 1| State of the art

Cypher is the query language of Neo4j. It is used both for querying a Neo4j graph and for
updating it. Cypher is a declarative language loosely inspired by SQL, but optimized for
graph databases. It prioritizes the clarity of expressing what to retrieve from the graph
and the readability of the queries, rather than focusing on the specific details of how the
information is to be retrieved.

25

2| Methodology

Data preparation is a complex process, involving a large variety of techniques and issues,
and it may be hard for a user, especially for a non-expert, to navigate through this
heterogeneous and usually long path. Furthermore, many alternative data preparation
actions can be selected, often also executable in various ways, and an inexperienced user
may have difficulty choosing what to do. The methodology presented in this thesis aims
to guide the users through the data preparation process and help them select the best
actions to satisfy their specific needs.

It is important to consider the particular user’s needs because, depending on them, differ-
ent data preparation actions might be appropriate. Therefore, the methodology considers
the users’ context (i.e., the data they have and the kind of analysis they want to perform)
and suggests a data preparation pipeline appropriate for that scenario.

In Section 2.1, the architecture on which this methodology is based is described in detail.

2.1. Architecture

The architecture’s main "use case scenario" is simple: the users have a dataset and want
to use it for analysis purposes, and the architecture guides them on a data preparation
pipeline optimal for that dataset and for the kind of analysis they want to perform.

A high-level representation of the overall architecture is shown in Figure 2.1. Note that
this thesis focuses on the Data Preprocessing section of the schema.

26 2| Methodology

LOADED
DATASET

DATA PROFILING

DQ ASSESSMENT

USER PREFERENCES

KNOWLEDGE
BASE

DATA
PREPARATION

MODEL SELECTION

TRAINING

ANALYSIS

RESULT
EVALUATION

DATA PREPROCESSING DATA ANALYSIS

USER

PIPELINE
SUGGESTIONS

HUMAN-IN-THE-LOOP

Figure 2.1: Architecture

The architecture relies on a Knowledge Base (KB), that contains the information needed
to support the data preparation process. A detailed description of the KB can be found
in Section 2.2.

At the beginning of the process, the users load the Dataset they want to prepare and
select a Machine Learning Application they want to execute as a goal of their analysis
of the dataset. As mentioned, the objective of the architecture from this moment on is
to suggest actions to the users to prepare that dataset to optimize the performance of
the selected application. Once the dataset is loaded, its Data Profile is computed. Data
Profile contains a set of characteristics of the dataset (e.g., number of tuples, number
of attributes, percentage of missing values, etc.) called Data Profile Features, which are
relevant during the preparation phase. To compute the Data Profile, a series of analyses,
called Data Profiling Techniques, are performed on the dataset, each of them calculating
one or more Data Profile Features. For example, a certain Data Profiling Technique will
calculate the percentage of missing values in the dataset. The set of all the Data Profile
Features of a dataset, constitutes the Data Profile of that dataset.

During the profiling process, a first assessment of the Data Quality Dimensions is con-
ducted. One quality dimension at a time is considered individually and its level of quality
is measured. Taking into account the results of the quality assessment (i.e., the level of
quality of each dimension), the selected ML application, and the characteristics of the
loaded dataset, a ranking of the data quality dimensions is produced. This ranking indi-

2| Methodology 27

cates the optimal order in which it is best to improve the quality dimensions in the users’
context. Improving the quality dimensions following the obtained ranking, rather than
a different order, leads to the achievement of better results, i.e., higher performance of
the ML application. Note that the process in which this ranking is generated is not the
primary focus of this thesis, but it is instead the result of a previous study [30].

At this point, the actual data preparation phase begins. The data preparation process can
be divided into several segments, each of them focusing on a different set of actions. In
particular, for each Data Quality Dimension considered, there is one segment that focuses
on the improvement of that dimension, and then there is an additional segment (called
"ML Application-oriented" segment) that contains actions specifically aimed to improve
the execution of the ML Application.
Note that the order in which the segments are presented to users follows a specific se-
quence: initially, the segments focused on the improvement of the quality dimensions are
presented, in an order respecting the previously established dimensions’ ranking; subse-
quently, the ML Application-oriented segment is presented as the concluding one.

In each segment, a list of possible actions is proposed: these actions are called Data
Preparation Techniques and represent possible operations that can be applied to the
data. Often there is not a unique way to execute in practice a technique, but they can be
implemented in several ways, called Data Preparation Methods. Therefore, it has to be
decided what techniques to perform and with which methods.

The execution of a technique and/or of a specific method may be subject to one or more
conditions on Data Profile Features: this happens when that technique (or method) can
be applied only if some conditions on the dataset are verified. Before proposing techniques
(and methods) to the users, these conditions are checked, and only the techniques/meth-
ods that pass these checks are actually suggested. Therefore, it is evident that, also during
the data preparation phase, the data profile is constantly consulted.

Considering the ML Application-oriented segment, the techniques proposed in this seg-
ment are specifically selected for the particular ML Application chosen at the beginning
by the users.

Furthermore, every time a technique is selected, the architecture can give the user an
indication about the best method to implement that technique with, considering the
user’s specific context (dataset + ML application selected). The details of how this works
will be explained afterward (see Section 2.3).

Because of these architecture functionalities, the suggestions made to the users are cus-

28 2| Methodology

tomized to their needs and goals.

This architecture uses a Human-In-The-Loop approach. During the course of the entire
process of data preparation, the users are constantly involved, at various levels. First of
all, the users can, of course, accept the suggestions they receive, but they can also reject
them. None of the recommended techniques and methods are mandatory: the users, if not
satisfied with them, can choose independently the data preparation pipeline to perform.
Complete freedom is always guaranteed.
Moreover, the users are involved also at execution time: during the execution of some
techniques, the architecture can ask the users feedback and input, if needed.

The users’ choices, which, as mentioned, may be different from the actions suggested,
are stored in the Knowledge Base. In this way, it is possible to create a history of
users’ preferences to understand the most common choices and their differences from the
suggested actions. This data can also be leveraged to adjust the suggestions to align
them with past choices made by users in similar contexts: in particular, if a user rejects a
suggestion several times, that suggestion will be adjusted and aligned to the actions the
user is choosing instead. This basic learning mechanism will be refined in future work.

Note that the Knowledge Base plays a fundamental role in the entire process, from data
profiling until the end of data preparation. All the concepts discussed and the relationships
between them are stored in the KB and retrieved when needed. Therefore, all the data
preparation techniques and methods, their dependencies with the data profile features,
etc., are all part of the stored knowledge. During the data preparation phase, the KB is
continuously queried to propose the appropriate techniques and methods for the specific
context of the users.

2.2. Knowledge Base

The Knowledge Base (KB) contains knowledge about the various aspects of data prepa-
ration; in this way, it is possible to guide the users during the data preparation process.
Furthermore, the KB contains information about the loaded datasets and their features,
and it also stores the data preparation actions actually chosen by the users in the past to
maintain a history of the users’ choices.

Figure 2.2 shows the knowledge base schema at the conceptual level.

2| Methodology 29

DATA QUALITY
METRIC

DATA QUALITY
DIMENSION

HAS

(1,N)

(1,1)

DATA PROFILE
FEATURE

DATA PROFILING
TECHNIQUE GENERATES

(1,N) (1,1)

DATA PREPARATION
TECHNIQUEAFFECTS

(1,N)

(0,N)

Influence type

MACHINE
LEARNING

APPLICATION

BENEFITS
FROM

(0,N)

(0,N)

DEPENDS
ON

(0,N)

DATA PREPARATION
METHOD

IS
IMPLEMENTED

WITH

(1,N)

(1,1)

(0,N)

Granularity of
application

DEPENDS
ON

(0,N)

(0,N)

DATASET

(1,N)

IS
CHARACTERIZED

BY

(0,N)

(1,N)

CONTAINS
(1,1) (1,N)

Value

Description

Metric name

Dimension
name

ML application
category

Technique
name

Method
name

Technique
name

ML application
method

Technique
description

Method
description

Technique
description

Feature
name

Feature
description

BEST
METHOD

(1,N)

(0,N)
Relevance

(1,N)
(1,N)

(1,N)
Description

IMPACTS

DATASET
COLUMN

DATA OBJECT

(T,E)

Object ID
Object
name

USER
CHOICE(1,N)

(0,N)

(1,N)

Figure 2.2: Knowledge Base Conceptual Schema

30 2| Methodology

In the following paragraphs, the contents of the KB are listed and explained, along with
their corresponding formal description.

Definition 1. A Data Object do ∈ DO represents a set of data loaded by the users.
Each do is characterized by a name and an id. The id is needed to give the possibility of
storing different data objects with the same name. A data object can represent a Dataset
(DS) or a Dataset Column (DSC), and this is expressed in the conceptual schema with
an ISA hierarchy, exclusive and total (because a data object can only be a column or a
dataset, not anything else and not both).
A dataset ds ∈ DS contains one or more dataset columns dsc ∈ DSC, while each column
belongs to one and only one dataset.

Datasets and Dataset Columns mapping:
∀ds ∈ DS ∃DSC ′ ⊆ DSC | DSC ′ ̸= ∅ ∧ ds→ DSC ′

∀dsc ∈ DSC ∃!ds ∈ DS | dsc→ ds

Definition 2. A Data Profile Feature dpf ∈ DPF indicates a feature that a data
object can have. A data object is characterized by one or more Data Profile Features.
Each data profile feature has a name and a description. Possible examples of Data Profile
Features are the number of tuples of a dataset, or the number of distinct values in a
column. As evident in the conceptual schema in Figure 2.2, the value that feature dpf

takes in the specific case of data object do is not a property of the feature alone, but it
is a property of the relationship between the two concepts do and dpf . Each data profile
feature characterizes zero, one or more data objects.

The set of data profile features that characterize a data object constitutes the data profile
of that object.

Data Objects and Data Profile Features mapping:
∀do ∈ DO ∃DPF ′ ⊆ DPF | DPF ′ ̸= ∅ ∧ do→ DPF ′

∀dpf ∈ DPF ∃DO′ ⊆ DO | dpf → DO′

Definition 3. A Data Profiling Technique dpft ∈ DPFT is a technique that
performs the profiling of data objects and returns as output the values of some data
profile features. Every data profile feature is generated by one and only one data profiling
technique. Each dpft is characterized by a name and a description, and generates one or
more data profile features.

Data Profiling Techniques and Data Profile Features mapping:
∀dpft ∈ DPFT ∃DPF ′ ⊆ DPF | DPF ′ ̸= ∅ ∧ dpft→ DPF ′

∀dpf ∈ DPF ∃!dpft ∈ DPFT | dpf → dpft

2| Methodology 31

Definition 4. A Data Preparation Technique dpt ∈ DPT is a possible technique that
the users can apply to their data during data preparation. Each dpt is characterized by a
name, a description, and a granularity of application, indicating whether this technique
must be applied on a whole dataset, a single column, or can be applied in both cases.

Definition 5. A Data Quality Dimension dqd ∈ DQD is a concept that captures a
specific data quality aspect. A data preparation technique can affect one or more Data
Quality Dimensions. The influence of a dpt towards a dqd can be of various types: a dpt

can, of course, bring an improvement to a dqd; however, in some cases, it can also bring a
worsening (usually as a side effect). Note that in the presented architecture it is assumed
that, although a data preparation technique can affect multiple data quality dimensions,
the main improvement provided is toward a single dimension.
A data preparation technique may also not affect any data quality dimension, while each
data quality dimension is affected by one or more techniques.

Data Preparation Techniques and Data Quality Dimensions mapping:
∀dpt ∈ DPT ∃DQD′ ⊆ DQD | dpt→ DQD′

∀dqd ∈ DQD ∃DPT ′ ⊆ DPT | DPT ′ ̸= ∅ ∧ dqd→ DPT ′

(Note that in the first formula, since DQD’ is a subset of DQD and there is no specific
condition, DQD’ can also be empty. This also applies for the following similar formulas.)

Definition 6. A Data Quality Metric dqm ∈ DQM expresses how a data quality
dimension dqd can be assessed. Every dqd has one or more data quality metrics. Each
data quality metric dqm is obviously related to one dqd.

Data Quality Dimensions and Data Quality Metrics mapping:
∀dqd ∈ DQD ∃DQM ′ ⊆ DQM | DQM ′ ̸= ∅ ∧ dqd→ DQM ′

∀dqm ∈ DQM ∃!dqd ∈ DQD | dqm→ dqd

Definition 7. A Machine Learning Application mla ∈MLA is an application that
the users can choose as their goal analysis. A data preparation technique can benefit
zero, one or more ML Applications. Every mla is characterized by a macrocategory,
which indicates the kind of ML application considered (e.g., clustering, classification or
regression), and by a ML application method, the method that actually implements that
application.
A mla can benefit from zero, one or more dpt.

Data Preparation Techniques and ML Applications mapping:
∀dqt ∈ DQT ∃MLA′ ⊆MLA | dqt→MLA′

∀mla ∈MLA ∃DQT ′ ⊆ DQT | mla→ DQT ′

32 2| Methodology

Definition 8. A Data Preparation Method dpm ∈ DPM indicates a possible way
by which a data preparation technique can be performed in practice. Every data prepa-
ration technique is implemented with one or more data preparation methods. Each data
preparation method is characterized by a name and a description, and implements one
and only one data preparation technique.

Data Preparation Techniques and Data Preparation Methods mapping:
∀dpt ∈ DPT ∃DPM ′ ⊆ DPM | DPM ′ ̸= ∅ ∧ dpt→ DPM ′

∀dpm ∈ DPM ∃!dpt ∈ DPT | dpm→ dpt

A data preparation technique dpt, or a data preparation method dpm, can depend on one
or more data profile features. This means that the execution of that technique, or method,
can only take place if the considered dpf meets a certain condition. The description of
this condition is stored in the KB as a property of the relationship between the technique,
or method, and the data profile feature.
A dpt, or dpm, may also not depend on any feature. A dpf can be related to zero, one or
more techniques, and/or methods.

Data Preparation Techniques / Methods and Data Profile Features mapping:
∀dpt ∈ DPT ∃DPF ′ ⊆ DPF | dpt→ DPF ′

∀dpf ∈ DPF ∃DPT ′ ⊆ DPT | dpf → DPT ′

∀dpm ∈ DPM ∃DPF ′ ⊆ DPF | dpm→ DPF ′

∀dpf ∈ DPF ∃DPM ′ ⊆ DPM | dpf → DPM ′

Dynamic Data

Among the concepts listed in the previous section, those needed for the basic functioning
of the architecture can be called Static Data. For instance, all the data preparation
techniques, methods, data quality dimensions and machine learning applications are static
data. This data is the core of the whole architecture, and without it, it is not possible
to make any suggestions to the users. Static data can be updated from time to time to
add, for example, the latest preparation methods or a new machine learning application.
However, it is not meant to be changed often.

There is also another kind of data stored in the knowledge base that can be called Dynamic
Data. Unlike static data, this data is created through experiments and through the usage
of the architecture. Because of the nature of this kind of data, dynamic data is much
more frequently added and updated in comparison with static data. The dynamic data
stored in the KB consists of the loaded data objects, along with the values of their profile
features, and the data relative to the three ternary relationships present in the KB’s

2| Methodology 33

conceptual schema: Impacts, Best Method and User Choice.

The data objects and the values of their features are dynamic data because they are
created through the usage of the architecture: in particular, the data objects are loaded
by the users, while the value of the features is calculated by the data profiling techniques
once the object is loaded.

The three ternary relationships Impacts, Best Method and User Choice enable the storage
of additional knowledge in the KB and are described in detail in the following paragraphs.

The first ternary relationship, Impacts, is needed to store knowledge about the impact that
each data quality dimension has in a certain context, i.e., with a certain ML application
and data object. In this way, it is possible to store how relevant each data quality
dimension is in a given situation. The Relevance property of the relationship is a measure
of the importance of that data quality dimension in that context.
Note that since a data object can either be a whole dataset or a single column, it is
possible to store the impact of a data quality dimension both at the dataset level and
column level.
This knowledge regarding the impact that quality dimensions have on different contexts
represents dynamic data, because has been extracted through experiments conducted in
a previous work [30].

The second ternary relationship, Best Method, is used to store knowledge about which
data preparation method is better to use with a given data object and ML application.
Since, as previously mentioned, a data preparation technique can be implemented with
various methods, with this ternary relationship, it is possible to save which method is the
best for that technique in a specific context.
Note that the cardinality of the relationship is (0,N) near data preparation method be-
cause there could be a method that is never the best in all the contexts stored in the KB.
Furthermore, because of this cardinality, it is also possible to indicate that a method is
the best for a given data object regardless of the ML application selected.
As in Impacts, also in this relationship a data object can represent a dataset or a single
column, therefore a method can be appointed as best method either for a column or a
dataset.
Also this knowledge represents dynamic data, and was extracted through experiments.
In particular, the knowledge regarding the best Outlier Detection method to use with
different data objects was extracted in [10]. Instead, the knowledge regarding the best
Imputation method to use in different contexts (data object + ML application) was gen-
erated in this thesis, details in Section 4.1.

34 2| Methodology

The third ternary relationship, User Choice, is similar to the previous relationship, but
while Best Method is used to store the best method for a given context, User Choice
allows to store what methods were actually selected by the users in that context. Given a
selected ML application and data object, the users will perform a series of operations on
the data, and with this ternary relationship it is possible to store all the data preparation
methods they used. Since a data preparation method implements one and only one
data preparation technique, from this knowledge, it is of course easy to identify the used
techniques too. This relationship allows to build the history of the methods and techniques
selected by past users in various contexts, and it gives the possibility of extracting useful
information, like the most common users’ choices.
Note that also in this relationship there is cardinality (0,N) near data preparation method,
because there could be a method that users have never chosen before.
This knowledge represents dynamic data because it is created through the use of the
architecture by the users.

2.3. Classifier

As previously mentioned, in the Knowledge Base there is information about the best
method to use in a particular context, i.e., with a certain data object and ML application.
In particular this knowledge is represented using the ternary relationship Best Method.
One of the goals of this thesis was to find a way to exploit this knowledge to suggest
to the users the best methods to use in their specific analysis context, in order to have
more reliable results. Considering a single data preparation technique, the problem can
be more precisely specified in the following way: the user selects a data object, that can
either be a whole dataset or a single column, and a ML application, and the objective is
to return the best data preparation method with which to implement that technique in
the selected context.

To reach this goal, in this thesis the approach followed is to use supervised learning, a
branch of Machine Learning. More specifically, the problem has been moved to multi-
class classification. The target variable, i.e., the class to be predicted, is the best data
preparation method to use in a given context. Therefore, in this thesis, a classifier has been
created, and trained on the data stored in the KB. In particular, it is possible to obtain
a training set for the classifier from the KB using the ternary relationship Best Method,
considering the data profile features of the data object and the ML application as features
of the training set and the best data preparation methods as labels. Once trained, the
classifier can predict the best data preparation method to use in a new context, taking

2| Methodology 35

in input the data profile features of a new data object and a chosen ML application.
Thereby, the process of suggesting what method to use to the user (still considering a
single data preparation technique) can be summarized in this way: the user loads a new
data object and selects a ML application, then from the data object are extracted its data
profile features, and at this point the data profile of the object and the ML application
are given in input to the trained classifier, that returns in output the best method to
implement the technique in that specific situation.
This process is illustrated in Figure 2.3.

Figure 2.3: Classifier Schema

Since a data object can be either a whole dataset or just a single column, in this work
it was opted to build two different classifiers, one for each case, to try to achieve more
fitting suggestions. In the whole dataset case, the classifier takes in input the data profile
of that dataset, while in the single column case, it takes in input not only the data profile
of that column, but also part of the profile of the dataset to which the column belongs.
This last design choice was made because, to suggest a method in the case of a single
column, it might also be important to consider how the dataset from which the column
comes is made.

Regarding the practical implementation part of this concepts, this work is focused on one
data preparation technique: Imputation. Two classifiers have been actually implemented,
one for the single-column case and one for the whole dataset case. These classifiers work
as previously described: they take the data profile of a data object (column or dataset)
and an ML application, and return in output the best imputation method to use to impute
the missing values in that context.
For more details on the implementation of these classifiers, see Chapter 4.

37

3| Knowledge Base

Implementation

This chapter describes the implementation of the Knowledge Base presented in Section
2.2. This implementation aims to be as close as possible to the conceptual schema shown
in Figure 2.2. To implement the KB it was decided to use a graph database, in particular,
Neo4j.

The following paragraphs give some examples of how the knowledge is stored in the
database. The data showed in the examples has been retrieved from the database using
the Neo4j query language, Cypher.

Some of the fundamental concepts of the KB are data preparation techniques and methods.
In Figure 3.1, it is possible to see how these concepts and the relationships among them
are stored in the database.

38 3| Knowledge Base Implementation

Figure 3.1: Imputation technique and methods

In Neo4j, a different color for the node means a different label (i.e., the type of the node),
in this example light blue is used for the techniques and red for the methods. The type
of a relationship is clearly written on the edge that represents that relationship.
In this example, it is possible to see a data preparation technique (here Imputation has
been selected) and the data preparation methods that implement that technique. Both the
technique and the method nodes have properties. The text displayed on the nodes is the
name of the method/technique that each node represents. To show the other properties
of a node, one has to click on the desired node. Clicking on the node "Imputation" gives
the result visible in Figure 3.2: the node label, the node ID, the technique name, and its
granularity of application are displayed.

3| Knowledge Base Implementation 39

Figure 3.2: Imputation technique properties

As it is shown in the conceptual schema, a technique can affect a data quality dimension.
This is illustrated in the example in Figure 3.3.

Figure 3.3: Imputation technique, dimensions and profile features

In this example, it is evident what dimensions (in purple) are affected by the Imputation
technique. As previously mentioned, a technique can affect a dimension in various ways:
it can bring an improvement or a worsening to the dimension. This information is stored
in the "influence type" property of the relationship "AFFECTS". As with nodes, to show
the properties of a relationship, it is necessary to click on that relationship. For instance,
selecting the relationship between Imputation and Completeness gives the result of Figure
3.4.

40 3| Knowledge Base Implementation

Figure 3.4: AFFECTS relationship properties

So, this is how in the KB it is stored that the technique Imputation improves the dimension
Completeness.

In Figure 3.3 also other important concepts of the KB are displayed. It is possible to see
how a dimension is related to (at least) one metric (in orange). Furthermore, as explained
during the conceptual description of the KB, both techniques and methods can depend
on some data profile features (in yellow in the picture). It is shown how "Imputation"
depends, obviously, on the number of missing values of the data object considered, while
one of the imputation methods, "Imputation using functional dependencies", depends on
whether or not functional dependencies are present. The description of these dependencies
is stored in the property "description" of the "DEPENDS ON" relationship. For instance,
selecting the relationship between the method "Imputation using functional dependencies"
and feature "Functional dependencies" gives the result in Figure 3.5.

Figure 3.5: DEPENDS ON relationship properties

The example in Figure 3.6 focuses on another data preparation technique: Normalization.

3| Knowledge Base Implementation 41

Figure 3.6: Normalization technique and ML applications

Here, it is possible to see how a technique can benefit one or more machine learning
applications. An application benefits from a data preparation technique if the execution of
that technique can improve the overall performance of the application. A ML application
(in green) is characterized by a ML category and a method, both displayed on top of the
nodes, separated by a dash. This example shows how the applications Logistic Regression
and KNN benefit from the Normalization technique. Moreover, it shows some possible
methods that implement this technique, as well as a dependency with the feature "Column
Type". This dependency is present because the normalization technique is only applicable
to numerical columns (this is specified in the "description" property of the relationship,
as in the previous examples).

The following example, in Figure 3.7, moves the attention to the concept of Data Object
and the relationships it has with other parts of the KB. Note that in the implemented
database there are no nodes with the label "Data Object", because the data objects are
already divided with labels "Dataset" and "Dataset Column" (respectively in brown and
in dark pink).

42 3| Knowledge Base Implementation

Figure 3.7: Data objects and profile features - Example 1

In Figure 3.7 there is a toy dataset, called "Dataset 1", related to a column with name
"COLUMN A" through the relationship CONTAINS. Both the dataset and the column
are characterized by some profile features. The type of the relationship between the data
objects and the features is "IS CHARACTERIZED BY", like in the conceptual schema,
but for visualization purposes on the edge representing that relationship is written the
"Value" property: this indicates the value taken by that feature in the case of that data
object. For instance, the selected dataset is characterized by a certain number of tuples,
which is 100. Furthermore, in this example, it is shown how each data profile feature
is generated by a data profiling technique (in grey), while a profiling technique can also
generate more than one feature (see, for instance "Cardinalities’ calculation").

A more realistic example, with a real dataset and more profile features, can be found in
Figure 3.8:

3| Knowledge Base Implementation 43

Figure 3.8: Data objects and profile features - Example 2

The KB part that stores the impact of data quality dimensions in different contexts is
represented in the conceptual schema with a ternary relationship between dimensions,
machine learning applications and data objects. However, in Neo4j ternary relationships
are not natively supported. Therefore, intermediate nodes were used to implement this
KB section. An example of this implementation is shown in Figure 3.9.

44 3| Knowledge Base Implementation

Figure 3.9: Data quality dimension’s impact - Example 1

In this example, both a quality dimension and a context (ML Application + Data Object)
have been selected and it is possible to see the impact that dimension has on that context.
There is an intermediate node (in blue), with label "IMPACT" and property "relevance"
displayed on top. An intermediate node is connected with a dimension through a re-
lationship of type "HAS IMPACT" and with a data object and an application through
relationships of type "WITH". So, in this example, it is evident that dimension "Com-
pleteness" has an impact of relevance 3 with context formed by dataset "adult" and ML
application "Classification - KNN". The relevance property is an indicator of how strong
the impact of the dimension is: the lower the value, the stronger is the impact. For
instance, if within a certain context Completeness has an impact of relevance 1 and Ac-
curacy has an impact of relevance 2, it implies that the Completeness dimension is more
relevant and impactful in that particular context.

Writing different queries makes it possible to interrogate the database in various ways.
For instance, it is possible to retrieve what impact a certain dimension has with a specific
dataset for all the possible ML applications. This is illustrated in Figure 3.10.

3| Knowledge Base Implementation 45

Figure 3.10: Data quality dimension’s impact - Example 2

Note that here, it is clear that a dimension can have different impacts even with the same
dataset, depending on the application selected.

A similar implementation has been used to store the knowledge about the best methods
to use in different contexts. A first example can be found in Figure 3.11.

Figure 3.11: Best data preparation method - Example 1

46 3| Knowledge Base Implementation

Intermediate nodes were also used to implement this part of the KB. This kind of interme-
diate node (in pink) has label "BEST METHOD" and is connected to a data preparation
method through the relationship "IS" and to a data object and a ML application through
relationships "WITH". Recalling that each preparation method implements a single tech-
nique, this structure indicates that the connected method is the best way to implement the
respective technique in the connected context (data object + ML application). Therefore,
regarding the previous example, "Mean Imputation" is the best method to implement the
technique "Imputation", in the context of dataset "cancer" and application "Classification
- Logistic Regression".

In Figure 3.12, there is a similar example that highlights how one method may be the best
not necessarily with respect to an entire dataset, but also just for a specific column. In
fact, the KB contains information on both the best imputation methods to use for entire
datasets as well as for individual columns. Furthermore, this example shows that even
with the same data object, the best method may change depending on the ML application
selected.

Figure 3.12: Best data preparation method - Example 2

3| Knowledge Base Implementation 47

In particular, Figure 3.12 shows the best methods for imputing missing values in the "age"
column.

This knowledge regarding the best imputation method to use in different contexts was
generated during this thesis, through a series of experiments. In these experiments, several
ML applications and datasets with various characteristics were considered. The obtained
knowledge was subsequently stored within the KB. The detailed process used to generate
this knowledge is described in Section 4.1.

The previous examples are all focused on the Imputation technique, but, as mentioned
in Section 2.2, in the KB there is also knowledge regarding the best Outlier Detection
methods to use. An example of this knowledge is displayed in Figure 3.13.

Figure 3.13: Best data preparation method - Outlier Detection

Note that, unlike the Imputation case, the best outlier detection method does not depend
on the ML application selected but only on the data object.

The knowledge regarding the best outlier detection method to use with different data
objects was generated in [10]. The process used for generating this knowledge can be
summarized as follows: starting from clean data objects, artificial outliers with different
levels of detection difficulty were injected into the data, obtaining "dirty" data objects con-
taining anomalies; subsequently, several outlier detection methods were applied on these
data object, recording how many of the injected outliers were detected by each method;
based on the resulting performance, the best outlier detection method was determined for
each data object.

Since the architecture has not been used by actual users, the history of users’ choices is
not yet present in the KB. When the architecture will be used, these choices will be stored
in a manner similar to how best methods are stored.
An example of how users’ choices will be stored can be found in Figure 3.14:

48 3| Knowledge Base Implementation

Figure 3.14: User choice

49

4| Classifiers Implementation and

Results

As described in Section 2.3, one of the goals of this thesis is to build a classifier capable
of exploiting the knowledge present in the Knowledge Base to suggest the best data
preparation method to use in the context of a certain data object and ML application.
The classifiers implemented in this thesis are focused on the data quality dimension of
Completeness, specifically on the missing values Imputation technique.

The classifiers receive as input the data profile features of the data object and the selected
ML application, and return the best imputation method to fill in the missing values of
that data object. It is a multiclass classification problem because the target variable
to predict is clearly the best imputation method and several (more than two) possible
methods exist.

Since a data object can either be an entire dataset or a single column, two separate
classifiers have been developed in this thesis, one for each of the two cases. In the entire
dataset case, the classifier predicts the best imputation method to impute all the missing
values in the dataset, while in the single column case, it predicts the best method to
impute the missing values of just that column specifically.

The following sections describe in detail how these classifiers were implemented and the
results obtained.

4.1. Knowledge generation

The first important part of the work focused on the generation of the knowledge needed for
the training and testing of the classifiers. Since the needed knowledge differs for the two
classifiers, the two knowledge generation processes are similar but have several relevant
differences.

Note that the knowledge generated by these processes is first stored in the Knowledge

50 4| Classifiers Implementation and Results

Base, and then exploited through the classifiers. In fact, the idea is to populate the
KB, and then the classifiers are fed and trained using the knowledge present in it. In
particular, this knowledge is stored in the "Best Method" part of the KB.

4.1.1. Knowledge generation: entire dataset case

The knowledge to be obtained in the entire dataset case is of this form:
dataset profile, ML application → best imputation method to use for that dataset.

The overall process to obtain this knowledge is described in pseudo-code in Algorithm
4.1. A more detailed description of the process follows.

Algorithm 4.1 Knowledge Generation Process: Entire dataset case
1: for each clean_dataset in clean_datasets do
2: data_profile_features← Extract data profile features of clean_dataset
3: for each missing_values_percentage in [50%, 40%, 30%, 20%, 10%] do
4: incomplete_dataset ← Missing values injection into clean_dataset with miss-

ing_values_percentage
5: imputed_datasets← []
6: for each imputation_method in imputation_methods do
7: imputed_dataset ← Impute missing values in incomplete_dataset using im-

putation_method
8: imputed_datasets.append(imputed_dataset)
9: end for

10: for each ml_algorithm in ml_algorithms do
11: ml_performances← []
12: for each imputed_dataset in imputed_datasets do
13: ml_performance ← Apply cross-validation on imputed_dataset with

ml_algorithm
14: ml_performances.append(ml_performance)
15: end for
16: best_imputation_method← Determine the best imputation method based on

ml_performances
17: Store knowledge unit:

(data_profile_features,
missing_values_percentage,
ml_algorithm,
best_imputation_method)

18: end for
19: end for
20: end for

First of all, a clean, complete dataset is considered, and its data profile features are
extracted and saved.

4| Classifiers Implementation and Results 51

Then, there is an error injection phase, during which the dataset is injected with missing
values in random positions. This injection is repeated many times, each time with a
different percentage of missing values injected. In this way, several incomplete datasets
are produced from a single clean dataset. Specifically, five datasets are produced, with
50, 40, 30, 20 and 10 percent of missing values.

At this point, the missing values of these incomplete datasets are imputed several times,
each time with a different imputation method.

After applying an imputation method, the imputed dataset obtained is given in input to
an ML algorithm, which is trained and tested (using cross-validation) on that dataset.
The performance of the ML algorithm is used as an indicator of the effectiveness of
the imputation method used to impute that dataset. A better performance of the ML
algorithm indicates a better imputation method. In this way, it is possible to establish
what is the best imputation method to use with a certain dataset and ML algorithm.

This last phase is repeated several times with a different ML algorithm to determine which
is the best imputation method with that dataset and each of those ML algorithms.

The original dataset profile features stored at the beginning, the percentage of missing
values of the incomplete dataset considered, the ML algorithm considered and the best
method in that context are stored as a unit of knowledge. Therefore, from a clean dataset
5 ∗#ML algorithms units of knowledge are obtained.

This whole procedure is repeated for each clean dataset to be considered.

This was a high-level description of the process by which the knowledge is generated.
More precise and technical details can be found in the following.

The data profile features extracted at the beginning from the clean dataset summarize
the characteristics of that dataset and are listed below:

• Number of tuples.

• Number of attributes.

• Percentage of numerical variables.

• Percentage of categorical variables.

• Percentage of duplicate tuples.

• Total size occupied in memory.

• Average percentage of distinct values in columns.

52 4| Classifiers Implementation and Results

• Maximum percentage of distinct values in a column.

• Minimum percentage of distinct values in a column.

• Average density of values in columns.

• Maximum density of values in a column.

• Minimum density of values in a column.

• Average entropy of the columns.

• Maximum entropy of a column.

• Minimum entropy of a column.

• Percentage of columns considered to be correlated.

• Maximum Pearson correlation coefficient between two columns.

• Minimum Pearson correlation coefficient between two columns.

The imputation methods used to impute the missing values of the incomplete datasets are
of various types; some are more "traditional" while others use machine learning techniques.
The list of the employed methods is presented below (see Section 1.5 for the detailed
descriptions of all the methods):

• Standard Value Imputation.

• Mean Imputation.

• Median Imputation.

• Mode Imputation.

• No Imputation

• KNN Imputation.

• Mice Imputation.

• softImpute Imputation.

• Random Imputation.

• Linear and Logistic Regression Imputation.

Regarding the ML algorithms considered, this thesis focuses only on classification; in par-
ticular, the algorithms used are Decision Tree, Logistic Regression, K-Nearest Neighbors,
and Naive Bayes.

4| Classifiers Implementation and Results 53

To check the performance of an ML algorithm on an imputed dataset, k-fold cross-
validation is used, with a weighted f1 score as a performance indicator.

The clean datasets used for this knowledge generation process were selected so that they
would have various characteristics: some of these datasets have only numerical attributes,
some have only categorical attributes, and others are mixed with numerical and categorical
attributes. In this way, the knowledge generated is not focused only on a specific kind
of dataset. Furthermore, since as mentioned the ML algorithms considered focus on
classification, all the datasets have a discrete class attribute to predict.

To make this process more robust, and thus the obtained results more reliable, paral-
lelization was used: each experiment was repeated in parallel eight times, each time with
the missing values injected in different positions of the clean dataset. Then, the scores
obtained from each repetition were averaged, and the imputation method with the higher
average score was selected as the best method.

An example of a unit of knowledge generated can be found in Figure 4.1 (for visualization
purposes, the row is broken into several parts):

Figure 4.1: Example of the generated knowledge - Entire dataset case

This example shows the clean dataset considered (iris) with its data profile features,
the percentage of missing values injected (displayed in the field "%missing"), the ML
algorithm considered (decision tree) and the best imputation method found (standard

54 4| Classifiers Implementation and Results

value imputation).

4.1.2. Knowledge generation: single column case

In the single column case, the knowledge to be generated concerns the best imputation
method to apply to impute the missing values of a specific column of a dataset. In
particular, the knowledge to obtain is of form:
dataset profile, column profile, ML application → best imputation method to use for that
column.
Note that not only the column profile is considered, but also the profile of the entire
dataset from which the column is from.

This knowledge generation process is similar to the one regarding the entire dataset case
described in Section 4.1.1, but with some differences. The process is described in pseudo-
code in Algorithm 4.2. A detailed description of the process follows.

As in the entire dataset case, a clean complete dataset is considered, but in this case, a
feature selection technique is applied to it. This technique (more details below) selects
the four most relevant features of the dataset and deletes the others (keeping obviously
the class variable). The data profile features of this new dataset (composed of the four
selected columns and the class) are extracted and saved.

At this point, one at a time, each of the four columns is considered independently: the data
profile features of the column considered in that iteration are extracted, and then there
is an error injection phase during which missing values are injected in random positions
in that column. At the end of this phase, the dataset obtained is complete except for the
missing values injected in the considered column. Note that, as in the entire dataset case,
the error injection is repeated several (five) times with different percentages of missing
values, thus from one complete dataset, several incomplete datasets are created. But
differently from before, the missing values are not injected into the whole dataset but
only in the considered column.

From this point on, the process continues in a manner similar to the entire dataset case:
the missing values of the incomplete datasets (this time concentrated in only one column)
are imputed with several imputation methods, and the best imputation method is deter-
mined by the performance of an ML algorithm executed on the imputed datasets. This
last phase is repeated with several ML algorithms, as explained before.

This procedure is executed for each of the four columns of the dataset for each of the clean
datasets to be considered. In this way, at the end of the process, the best methods for

4| Classifiers Implementation and Results 55

Algorithm 4.2 Knowledge Generation Process: Single column case
1: for each clean_dataset in clean_datasets do
2: reduced_dataset ← Apply feature selection on clean_dataset and keep the four

most relevant columns and the class
3: dataset_profile_features← Extract dataset profile features of reduced_dataset
4: dataset_columns← List of columns in reduced_dataset (excluding class variable)
5: for each column in dataset_columns do
6: column_profile_features← Extract column profile features of column
7: for each missing_values_percentage in [50%, 40%, 30%, 20%, 10%] do
8: incomplete_dataset ← Missing values injection into column with miss-

ing_values_percentage
9: imputed_datasets← []

10: for each imputation_method in imputation_methods do
11: imputed_dataset← Impute missing values in incomplete_dataset using im-

putation_method
12: imputed_datasets.append(imputed_dataset)
13: end for
14: for each ml_algorithm in ml_algorithms do
15: ml_performances← []
16: for each imputed_dataset in imputed_datasets do
17: ml_performance ← Apply cross-validation on imputed_dataset with

ml_algorithm
18: ml_performances.append(ml_performance)
19: end for
20: best_imputation_method← Determine the best imputation method based

on ml_performances
21: Store knowledge unit:

(dataset_profile_features,
column_profile_features,
missing_values_percentage,
ml_algorithm,
best_imputation_method)

22: end for
23: end for
24: end for
25: end for

56 4| Classifiers Implementation and Results

imputing missing values of particular columns drawn from different datasets are obtained.

The entire dataset profile features, the column profile features, the percentage of missing
values injected in the column, the ML algorithm considered, and the best method in
that context are stored as a unit of knowledge. Therefore, from a clean dataset 5 ∗ 4 ∗
#ML algorithms units of knowledge are obtained.

Regarding the technical details, a random forest approach was used to implement the
feature selection phase: a random forest model was trained on the considered dataset and,
according to the importance scores returned by the model, only the four most important
columns of the dataset were selected.

The data profile features regarding the whole dataset to which the considered column
belongs are the following:

• Number of tuples.

• Number of attributes.

• Percentage of numerical variables.

• Percentage of categorical variables.

• Percentage of duplicate tuples.

• Total size occupied in memory.

• Percentage of columns considered to be correlated.

• Maximum Pearson correlation coefficient between two columns.

• Minimum Pearson correlation coefficient between two columns.

The data profile features regarding the considered single column are the following:

• Uniqueness of the column.

• Density of the column.

• Entropy of the column.

• Column type (categorical or numerical).

• Column mean.

• Column standard deviation.

The imputation methods used to impute the missing values of the incomplete column are
the following (see Section 1.5 for the detailed descriptions of the methods):

4| Classifiers Implementation and Results 57

• Standard Value Imputation.

• Mean Imputation.

• Median Imputation.

• Mode Imputation.

• No Imputation.

• KNN Imputation.

• Random Imputation.

• Linear Regression Imputation.

• Logistic Regression Imputation.

The considerations about the ML algorithms used, the parallelization and the selection of
the clean datasets are the same as those described in Section 4.1.1 for the entire dataset
case.

An example of a unit of knowledge generated by this process can be found in Figure 4.2
(for visualization purposes the row is broken in several parts):

Figure 4.2: Example of the generated knowledge - Single column case

This example shows the clean dataset considered (iris), the dataset’s single column con-
sidered (sepal_length), the data profile features of the whole dataset and of the specific

58 4| Classifiers Implementation and Results

column, the percentage of missing values injected, the ML algorithm considered (decision
tree) and the best imputation method found (KNN imputation).

4.1.3. Data leakage considerations in imputation

As described before, many imputation methods, such as Linear or Logistic Regression
Imputation or KNN Imputation, use machine learning techniques to impute missing data.
These methods aim to fill in the missing values of a column using models that leverage
information contained in other columns of the dataset.

However, during the implementation of the knowledge generation process, a strong suspi-
cion emerged: using also the class of a dataset to impute the missing values of its other
columns might lead to a data leakage problem. This suspicion arose because exploiting
the information contained in the class variable to fill in the missing values of the features
potentially introduce data leakage. Then, during the evaluation phase of the imputation
method, a ML algorithm is trained and tested on the imputed dataset, trying to predict
the class based on the information present in the features. Therefore, there is a circular
relationship where information from the class variable leaks into the features, and then
this leaked information is exploited to predict the class. This problem raised concerns
about a potential distortion of the performance evaluation of the imputation methods.

To confirm the suspicion, a series of experiments were conducted. First of all, a clean
dataset was considered and a ML algorithm was trained and tested on it, keeping track of
the performance obtained by the algorithm. Then, missing values were injected into the
dataset, and imputed with various imputation methods (as described in Section 4.1.1 and
4.1.2). However, the imputation phase (i.e., the application of every imputation method)
was repeated twice, one time also considering the class variable of the dataset as a feature
to impute the missing values, and one time not considering it. The ML algorithm was
then trained and tested on the resulting imputed datasets, recording the performance
obtained.

The results obtained not considering the class variable to impute the missing values are
illustrated in Figure 4.3:

4| Classifiers Implementation and Results 59

Figure 4.3: Results obtained not considering the class

The x-axis indicates the imputation method used to impute the missing values of the
dataset, while the y-axis indicates the performance obtained on that dataset by the ML
algorithm. As expected, the performance obtained on the clean dataset is much better
than the others.

Instead, the results obtained considering also the class variable to impute the missing
values are illustrated in Figure 4.4:

Figure 4.4: Results obtained considering the class

60 4| Classifiers Implementation and Results

This results show that, in this case, the performances obtained by the ML algorithm on
the dataset imputed using machine learning techniques are better than the performance
recorded on the clean original dataset. Therefore, it is clear that using also the class
variable to impute the missing values of a dataset would introduce data leakage, biasing
the performance evaluation of the imputation methods. In particular, the imputation
methods that utilize machine learning techniques would have an unfair advantage. Note
that the performances obtained on the dataset imputed using Mean Imputation are the
same in both cases: this happens because Mean Imputation imputes the missing values
of each column separately, using the mean of the column.

These experiments were conducted with various datasets and ML algorithms with similar
results. The results shown were obtained with the iris dataset and logistic regression as
ML algorithm.

4.2. Building of the classifiers and results

Once the knowledge regarding the best imputation methods was generated, it was stored
in the Knowledge Base and at this point was ready to be utilized for the building of
the classifiers. The generated knowledge can be gathered in two datasets: one focused
on the best methods to impute missing values of entire datasets and one focused on the
best methods for single columns. These two datasets can be used for the training and
testing of the two classifiers to be built. Recall that the goal is to build two classifiers that
predict the best imputation method to use for a given dataset or column and a selected
ML algorithm.

At this point, both for the entire dataset case and the single column case, many kinds of
classification algorithms have been trained and tested, to try to achieve the most accurate
predictions possible.
A procedure similar to k-fold cross-validation has been applied to check the performance
of these classifiers. In the two datasets containing the knowledge, there are more rows
regarding the same data object because, as described in Sections 4.1.1 and 4.1.2, from
a clean dataset more units of knowledge are generated, with a different percentage of
missing values or a different ML algorithm. For this reason, the traditional k-fold cross-
validation is not a good choice here: if the k folds are picked randomly from the data,
more samples generated from the same data object could end up in different folds, so
both in training and testing the classifier would see samples derived from that same data
object, and this does not reflect the real use case of the classifier, where it must predict
the best imputation method for a data object never seen before. Therefore, to check the

4| Classifiers Implementation and Results 61

performance of the classifiers, it was used a k-fold cross-validation procedure, but in which
each fold contains only the samples related to one data object.

For both for the entire dataset case and the single column case, the results obtained were
not satisfactory, the accuracy of the predictions was quite low with any kind of classifier
tried, even after hyperparameter tuning.
After analyzing the situation, it was observed that in the vast majority of cases the scores
of the three best imputation methods to apply in a certain context (data object + ML
algorithm) are very close to each other. In other words, the difference in performance
among the top three best imputation methods is often minimal. Furthermore, many
times the trained classifiers even if they do not predict exactly the best method, predict
one of the three top performing methods, thus their prediction is still a very good choice
for imputation.

For these reasons, it was decided to extend the generated knowledge in order for it to
contain all three best imputation methods. The structure of the knowledge is identical to
the one shown in Sections 4.1.1 and 4.1.2, but instead of indicating only the best method,
it indicates the three best methods. This operation was performed for both the entire
dataset case and for the single column case. An example of the entire dataset case can
be found in Figure 4.5 (for visualization purposes the row is broken in several parts):

Figure 4.5: Example of the extended knowledge

62 4| Classifiers Implementation and Results

Further experiments with the classifiers were conducted after enriching the knowledge in
this manner. In particular, the classifiers were trained using the same previously described
procedure, but to assess the classifiers performance a new accuracy metric was used: this
metric considers a prediction correct if the imputation method predicted belongs to the
top three methods.

With these new experiments, as expected, there was a relevant boost in performance, for
both the entire dataset case and the single column case. Specifically, for the entire dataset
case an accuracy of 0.5944 was reached, while for the single column case it reached 0.5484.

At this point, a different experimental approach was tried: the goal was to aggregate the
knowledge by merging the rows referred to the same data object and ML algorithm but
with different percentage of missing values. This approach was taken due to concerns that
presenting nearly identical rows to the classifier might confuse it. Therefore, each group
of rows that were identical (of course not considering the best method field) but had a
different percentage of missing values was merged in a single row. As a consequence, the
"%missing" field was removed from the knowledge.

To perform this aggregation, in the case of the original knowledge (containing only the
best method, not the top three), mode was utilized. The rows referred to the same data
object and ML algorithm were grouped together and aggregated into a single row having
as best imputation method the mode of the best methods of the initial rows.

On the other hand, for the knowledge containing the top three methods the aggregation
process was more complex. Given a group of rows referred to the same data object and
ML algorithm, each row with its ranking of the top three methods, the objective was to
aggregate those rows in a single row with a unique ranking. Therefore, it was necessary
to solve a rank aggregation problem.

The approach used in this thesis to solve this rank aggregation problem is loosely inspired
to Borda’s method. For every candidate imputation method, in each of the rankings to
aggregate, the candidate method earns points based on its ranking position. Specifically,
the method accumulates 3 points for the first position, 2 points for the second position and
1 point for the third. The points obtained in each ranking are then summed. This process
is repeated for each candidate method. At the end a total unique ranking is generated,
ordering the methods according to the total number of points they have acquired (more
points indicates a better method).

The aggregation process was applied to both the knowledge regarding the entire dataset
case and the one regarding the single column case.

4| Classifiers Implementation and Results 63

The aggregation led to an improvement of the classifiers performance. After the testing
of several different classifiers, coupled with the corresponding hyperparameter tuning, the
highest performance achieved were an accuracy of 77.78 for the entire dataset case, and
67.96 for the single column case. These performance were obtained, in both cases, using
the knowledge containing the top three methods and in which rows referring to the same
data object and ML algorithm were aggregated.

Regarding the technical details, for the entire dataset case the classifier reporting the
highest performance is a k-Nearest Neighbors model, with a number of neighbors k = 4.
While for the single column case the best classifier is a Logistic Regression model, with
Lasso regularization with hyperparameter C = 0.01.
The datasets containing the knowledge on which the classifiers were trained and tested
were preprocessed in this manner: the categorical variables, i.e., ML algorithm and column
type, were encoded using one-hot-encoding, while the numerical variables were normalized
using MinMaxScaler, which scaled the data in range (0,1). Also, the variables containing
dataset and column names were obviously eliminated before the training.

65

5| Tool Implementation

To demonstrate a practical application of the concepts discussed in the previous chapters,
an already existing tool was extended and enriched with new functionalities.

This chapter provides a brief general description of the tool and a more in-depth explo-
ration of the new functionalities developed during the course of this work.

The tool is implemented with Flask, a framework for web application development utiliz-
ing Python programming language.

The objective of the tool is to guide users through the data preparation process. Firstly,
the users can load a dataset on which they want to perform data preparation, as illustrated
in Figure 5.1.

Figure 5.1: Dataset Uploading Phase

Then, it is asked to the users which machine learning application is their objective analysis
for the loaded dataset. At the moment, the tool is focused only on classification, and the
possible methods that can be chosen are Decision Tree, K-Nearest Neighbors, and Naive
Bayes. This phase is shown in Figure 5.2.

66 5| Tool Implementation

Figure 5.2: Machine Learning Algorithm Selection

At this point, the loaded dataset undergoes a data profiling phase, during which it is
explored and its data profile is extracted. Through a data profiling panel, the tool shows
the users the characteristics of the dataset, to make them more aware of their data and
the data quality problems it may have.

After the data profiling panel comes the actual data preparation phase. The users can
build their data preparation pipeline by choosing the actions to perform from a list of pos-
sible data preparation techniques and methods. The users can then confirm the selected
pipeline and the chosen actions will be actually performed on the dataset.

Figure 5.3 shows the entire data preparation panel. In the upper left part of the panel, it
is possible to see the data preparation pipeline built by the users. In the lower left part
is the list of all available data preparation actions that users can select. The right part,
instead, displays the loaded dataset, so that users can always monitor it while building
the data preparation pipeline. The specific elements of this figure will be described in
detail in the following paragraphs.

5| Tool Implementation 67

Figure 5.3: Data Preparation Panel

The contributions to this tool added during this thesis are focused on the data preparation
phase just described. Specifically, the objective of this work was to integrate into the tool
the knowledge base (described in Chapter 3) and the classifier (described in Chapter 4).
This integration aims to improve the data preparation pipeline process and provide the
users with recommendations for the best data preparation methods to apply based on
their specific dataset and ML application selected.

To integrate the Knowledge Base into the tool, the first step was to connect the tool’s
Flask environment with the Neo4j database in which the KB is stored. This was possible
through the use of the Neo4j Python driver, the library provided by Neo4j to interact
with a database instance through a Python application. After establishing a connection
with the database, it became possible to query the database directly by writing queries
within the Python code.

The list of available data preparation actions is divided into several segments: each seg-
ment is dedicated to the improvement of a particular data quality dimension, and then
there is a final segment containing actions explicitly aimed to improve the execution of the
selected ML application. Currently, the data quality dimensions considered in the tool are
Completeness, Accuracy and Uniqueness. The list of the four segments currently present
in the tool (1. Completeness, 2. Accuracy, 3. Uniqueness, 4. ML Oriented Actions) is
visible in Figure 5.3.

68 5| Tool Implementation

Within each segment, several possible data preparation actions are available for users
to select. Each action is characterized by a data preparation technique and by a data
preparation method that implements that technique. The actions are presented to the
users within draggable elements, for instance, as shown in Figure 5.4.

Figure 5.4: Data Preparation Actions Example

The values preceding the dash indicate what data preparation technique will be applied,
while those following the dash specify what particular method will be used to execute the
technique.

To select a certain action, users can drag and drop it from the list of all the available
actions into the container representing the data preparation pipeline to be executed. The
order of the actions within the pipeline is important: their execution will happen following
the precise sequence in which they are arranged.

All the data preparation actions available in the various segments are loaded from the
knowledge base. Regarding the segments dedicated to improving a data quality dimen-
sion, the actions are obtained through the following querying process: for the considered
dimension, all the techniques that affect that dimension positively (i.e., the influence
type is "Improvement") are extracted from the knowledge base, then all the methods
implementing each technique are also retrieved.

The code of the queries executed to interrogate the knowledge base can be found in
Appendix A.

Therefore, each segment dedicated to a data quality dimension will contain all the actions
retrieved from the knowledge base, that improve that dimension. The users can then
choose what actions to select and include in their pipeline.

Regarding instead the segment dedicated at improving the execution of the ML appli-
cation, the procedure is slightly different. As for the previous segments, all the actions
available are queried from the knowledge base. However, the actions within this segment
are customized for the specific ML application selected by the users; in this way, the

5| Tool Implementation 69

recommendations are personalized for their particular scenario. The querying process is
the following: for the selected ML application, all the techniques that benefit that specific
application are retrieved from the knowledge base, along with the methods implementing
the techniques. Note that users may have different proposed actions in this segment if
they select different ML applications.

Retrieving the data preparation actions from the knowledge base provides several advan-
tages.

Firstly, it offers flexibility and scalability: the knowledge base operates as a dynamic
repository of actions, in which it is easily possible to add new data preparation tech-
niques or methods, or to update their relationships with data quality dimensions and ML
applications. Therefore, there is not a fixed set of actions hard-coded into the system,
but the techniques and methods proposed to users are drawn from a repository that can
be constantly expanded and updated.

Secondly, taking actions from the knowledge base allows the provision of personalized
recommendations for specific scenarios: for instance, as described before, in the segment
dedicated to improving the execution of the ML application, actions are proposed based
on the user’s chosen application.

Another contribution made in this thesis, again aimed to exploit the potential of the
knowledge base, is a functionality that retrieves and presents to the user information
about selected data preparation actions. This functionality empowers the users to choose
a certain data preparation action (composed as previously mentioned by a technique and
a method) and to request detailed information about that action. When a user’s request
is received, the tool executes a series of queries to the knowledge base, retrieving all the
information about the chosen data preparation technique and method. The results of these
queries are then assembled together and presented in a user-friendly textual response.

More precisely, the information extracted from the knowledge base includes: which quality
dimensions are affected by the chosen technique, specifying the type of its influence; which
ML applications (if any) benefit from the technique; the data profile features on which
the technique and method depend on, along with the corresponding description of the
dependencies.

The primary objective of this functionality is to make users more aware of the data
preparation actions they can choose and to clarify when and why it is appropriate to use
them.

To request information about a data preparation action, users are required to drag and

70 5| Tool Implementation

drop the desired action into the pipeline container, then they can use the "Get informa-
tion" button (shown in Figure 5.5) to send their request.

Figure 5.5: Get Information Button

Following the request, a textual response is presented to the user in a paragraph below the
button. For instance, in the case of requesting information about the action "Imputation
- Imputation using functional dependencies", the obtained response is displayed in Figure
5.6:

Figure 5.6: Get Information Response

The users can exploit the received information to make more appropriate and aware
choices about which actions to insert in their pipeline.
After reading the information, users can request details about other actions if they wish.

Besides the knowledge base, the classifier described in Chapter 4 was also integrated into
the tool.
In particular, of the two classifiers implemented, the one integrated into the tool was the

5| Tool Implementation 71

classifier focusing on the best imputation methods for imputing missing values of entire
datasets.

To realize this integration, the classifier was trained on all the available knowledge, saved
(already trained) as a file, and then imported into the tool. In the following paragraphs,
there is a detailed description of how the classifier is applied inside the tool.

After a new dataset is loaded by the users, during the data profiling phase the data profile
features of the dataset are extracted and saved. Specifically, the data profile features
extracted are those on which the classifier was trained, listed in Section 4.1.1. At this
point, the ML Application chosen by the users is appended to the extracted features,
because it was another attribute taken in input by the classifier to make predictions. The
obtained data, consisting in the data profile features of the dataset + the ML Application
chosen, is stored temporarily into a file.

The obtained data is subjected to the same preprocessing steps applied on the dataset used
to train the classifier. Following the preprocessing, the data is then provided as input to
the trained classifier. The classifier utilizes this information to predict the best imputation
method to be applied to the dataset, considering both the dataset’s characteristics and
the chosen ML application.

Once the best imputation method is predicted, it is displayed to the users during the data
preparation phase. In particular, it is communicated textually using the sentence shown
in Figure 5.7a, and the data preparation action corresponding to that imputation method
is highlighted in a different color, as illustrated in Figure 5.7b.

(a)

(b)

Figure 5.7: Best Imputation Method

Furthermore, the tool automatically includes the data preparation action corresponding
to the predicted imputation method in the pipeline container for the users’ convenience.
However, users have the freedom of removing or changing that action from the pipeline,
if they believe another imputation method is more suited for their needs.

72 5| Tool Implementation

Therefore, the integration of the classifier provides users with a recommendation tailored
for their specific data and chosen application while preserving their complete freedom in
selecting the actions they prefer.

73

6| Conclusions

This thesis presented a methodology aimed to guide users through the data preparation
process, suggesting actions appropriate for their specific data and analysis objectives. The
foundation of this methodology is a Knowledge Base, in which all the concepts required
for supporting data preparation are stored and retrieved when needed. During the thesis,
the Knowledge Base was conceptually designed, implemented using a graph database, and
populated.

Through a series of experiments, valuable knowledge regarding the best imputation meth-
ods to use in various contexts was generated and stored in the Knowledge Base. These
experiments explored the performance of several imputation methods in combination with
different datasets and Machine Learning applications. From the experiments, it emerged
that both the dataset characteristics and the employed Machine Learning application
significantly impact which imputation method is more appropriate to use.

The presented methodology makes use of classifiers to provide tailored recommendations
for users’ specific needs. For a certain data preparation technique, a classifier is given as
input the data profile of a data object and a selected Machine Learning application, and
predicts the best method to implement the technique with that specific context.

In particular, the generated knowledge was leveraged for implementing classifiers predict-
ing the best imputation methods to fill in missing values of a data object. Two separate
classifiers were developed, one for entire datasets, predicting the best method to impute
all the missing values in a dataset, and one for single columns, predicting the best method
to impute the missing values of a specific column.

Embracing a Human-In-The-Loop approach, in this methodology, users are actively in-
volved during the entire course of data preparation and can freely accept or reject any
suggestion they receive. Users’ choices are then stored in the Knowledge Base and are
utilized as valuable feedback to adjust and refine future suggested actions.

In conclusion, the developed Knowledge Base and classifiers are useful resources within
the proposed methodology. They support users through the data preparation process,

74 6| Conclusions

pointing them toward optimal choices and providing tailored suggestions, but always
ensuring complete freedom.

6.1. Future Work

One of the possible improvement that can be introduced in the methodology in future
work is the refinement of the learning mechanism that leverages past users’ choices to
adjust and improve the suggestions. For instance, it would be interesting to suggest to a
user some actions that other users have in the past chosen in similar contexts.

Furthermore, while at the moment the only developed classifiers are focused on the im-
putation technique, the conceptual framework is extensible. Future work may focus on
the creation of additional classifiers, predicting optimal methods for implementing other
data preparation techniques. This expansion would enlarge the scope of the methodol-
ogy, offering a more comprehensive and precise set of recommendations regarding all the
preparation techniques.

75

Bibliography

[1] Z. Abedjan, L. Golab, F. Naumann, and T. Papenbrock. Data Profiling. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2018. ISBN 978-
3-031-00737-8. doi: 10.2200/S00878ED1V01Y201810DTM052. URL https://doi.

org/10.2200/S00878ED1V01Y201810DTM052.

[2] E. Acuna and C. Rodriguez. The treatment of missing values and its effect on classifier
accuracy. In Classification, Clustering, and Data Mining Applications: Proceedings of
the Meeting of the International Federation of Classification Societies (IFCS), Illinois
Institute of Technology, Chicago, 15–18 July 2004, pages 639–647. Springer, 2004.

[3] J. Barateiro and H. Galhardas. A survey of data quality tools. Datenbank-Spektrum,
14:15–21, 01 2005.

[4] C. Batini and M. Scannapieco. Data and Information Quality - Dimensions, Princi-
ples and Techniques. Data-Centric Systems and Applications. Springer, 2016. ISBN
978-3-319-24104-3. doi: 10.1007/978-3-319-24106-7. URL https://doi.org/10.

1007/978-3-319-24106-7.

[5] C. Batini, C. Cappiello, C. Francalanci, and A. Maurino. Methodologies for data qual-
ity assessment and improvement. ACM Comput. Surv., 41(3):16:1–16:52, 2009. doi:
10.1145/1541880.1541883. URL https://doi.org/10.1145/1541880.1541883.

[6] L. Berti-Équille. Learn2clean: Optimizing the sequence of tasks for web data
preparation. In L. Liu, R. W. White, A. Mantrach, F. Silvestri, J. J. McAuley,
R. Baeza-Yates, and L. Zia, editors, The World Wide Web Conference, WWW 2019,
San Francisco, CA, USA, May 13-17, 2019, pages 2580–2586. ACM, 2019. doi:
10.1145/3308558.3313602. URL https://doi.org/10.1145/3308558.3313602.

[7] M. Bovee, R. P. Srivastava, and B. Mak. A conceptual framework and belief function
approach to assessing overall information quality. In E. M. Pierce and R. Katz-Haas,
editors, Sixth Conference on Information Quality (IQ 2001), pages 311–328. MIT,
2001.

https://doi.org/10.2200/S00878ED1V01Y201810DTM052
https://doi.org/10.2200/S00878ED1V01Y201810DTM052
https://doi.org/10.1007/978-3-319-24106-7
https://doi.org/10.1007/978-3-319-24106-7
https://doi.org/10.1145/1541880.1541883
https://doi.org/10.1145/3308558.3313602

76 | Bibliography

[8] J. Brownlee. Data preparation for machine learning: data cleaning, feature selection,
and data transforms in Python. Machine Learning Mastery, 2020.

[9] J. Brownlee. Why one-hot encode data in machine learn-
ing?, 2020. URL https://machinelearningmastery.com/

why-one-hot-encode-data-in-machine-learning/.

[10] M. Caffagnini. Sliding autonomy in data preparation: Balancing human expertise
and automated processes. Master Thesis, 2023.

[11] B. Chaudhari, A. Agarwal, and T. Bhowmik. Simultaneous improvement of ML
model fairness and performance by identifying bias in data. CoRR, abs/2210.13182,
2022. doi: 10.48550/arXiv.2210.13182. URL https://doi.org/10.48550/arXiv.

2210.13182.

[12] M. R. Chmielewski and J. W. Grzymala-Busse. Global discretization of continuous
attributes as preprocessing for machine learning. International Journal of Approx-
imate Reasoning, 15(4):319–331, 1996. ISSN 0888-613X. doi: https://doi.org/10.
1016/S0888-613X(96)00074-6. URL https://www.sciencedirect.com/science/

article/pii/S0888613X96000746. Rough Sets.

[13] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye. KATARA:
A data cleaning system powered by knowledge bases and crowdsourcing. In T. K.
Sellis, S. B. Davidson, and Z. G. Ives, editors, Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, pages 1247–1261. ACM, 2015. doi: 10.1145/2723372.2749431.
URL https://doi.org/10.1145/2723372.2749431.

[14] A. C. Cohen. Truncated and censored samples: theory and applications. CRC press,
1991.

[15] I. F. Ilyas and X. Chu. Data Cleaning. Association for Computing Machinery, New
York, NY, USA, 2019. ISBN 9781450371520.

[16] J.-M. Jo. Effectiveness of normalization pre-processing of big data to the machine
learning performance. The Journal of the Korea institute of electronic communication
sciences, 14(3):547–552, 2019.

[17] J. Kaiser. Dealing with missing values in data. Journal of Systems Integration, 5:
42–51, 01 2014. doi: 10.20470/jsi.v5i1.178.

[18] S. Krishnan and E. Wu. Alphaclean: Automatic generation of data cleaning pipelines.
CoRR, abs/1904.11827, 2019. URL http://arxiv.org/abs/1904.11827.

https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://doi.org/10.48550/arXiv.2210.13182
https://doi.org/10.48550/arXiv.2210.13182
https://www.sciencedirect.com/science/article/pii/S0888613X96000746
https://www.sciencedirect.com/science/article/pii/S0888613X96000746
https://doi.org/10.1145/2723372.2749431
http://arxiv.org/abs/1904.11827

| Bibliography 77

[19] S. Krishnan, M. J. Franklin, K. Goldberg, and E. Wu. Boostclean: Automated
error detection and repair for machine learning. CoRR, abs/1711.01299, 2017. URL
http://arxiv.org/abs/1711.01299.

[20] G. Lahera. Unbalanced datasets and what to do about
them, 2019. URL https://medium.com/strands-tech-corner/

unbalanced-datasets-what-to-do-144e0552d9cd.

[21] M. Mahdavi, F. Neutatz, L. Visengeriyeva, and Z. Abedjan. Towards automated
data cleaning workflows. In R. Jäschke and M. Weidlich, editors, Proceedings of the
Conference on "Lernen, Wissen, Daten, Analysen", Berlin, Germany, September
30 - October 2, 2019, volume 2454 of CEUR Workshop Proceedings, pages 10–19.
CEUR-WS.org, 2019. URL https://ceur-ws.org/Vol-2454/paper_8.pdf.

[22] F. Naumann and M. Herschel. An Introduction to Duplicate Detection. Morgan and
Claypool Publishers, 2010. ISBN 1608452204.

[23] Neo4j. Neo4j official documentation, 2023. URL https://neo4j.com/.

[24] J. Pokorný. Graph databases: Their power and limitations. In K. Saeed and
W. Homenda, editors, Computer Information Systems and Industrial Management,
pages 58–69, Cham, 2015. Springer International Publishing.

[25] E. Rahm and H. H. Do. Data cleaning: Problems and current approaches. IEEE
Data Eng. Bull., 23(4):3–13, 2000. URL http://sites.computer.org/debull/

A00DEC-CD.pdf.

[26] T. C. Redman. Data quality for the information age. Artech House, 1996. ISBN
978-0-89006-883-0.

[27] T. C. Redman and A. B. Godfrey. Data Quality for the Information Age. Artech
House, Inc., USA, 1st edition, 1997. ISBN 0890068836.

[28] N. N. K. S. Pandas — bfill and ffill, 2020. URL https://navinniish001.medium.

com/pandas-bfill-and-ffill-b79e46ab87ae.

[29] M. Saar-Tsechansky and F. Provost. Handling missing values when applying classifi-
cation models. Journal of Machine Learning Research, 8(57):1623–1657, 2007. URL
http://jmlr.org/papers/v8/saar-tsechansky07a.html.

[30] C. Sancricca, C. Cappiello, et al. Supporting the design of data preparation pipelines.
In CEUR WORKSHOP PROCEEDINGS, volume 3194, pages 149–158. CEUR-WS,
2022.

http://arxiv.org/abs/1711.01299
https://medium.com/strands-tech-corner/unbalanced-datasets-what-to-do-144e0552d9cd
https://medium.com/strands-tech-corner/unbalanced-datasets-what-to-do-144e0552d9cd
https://ceur-ws.org/Vol-2454/paper_8.pdf
https://neo4j.com/
http://sites.computer.org/debull/A00DEC-CD.pdf
http://sites.computer.org/debull/A00DEC-CD.pdf
https://navinniish001.medium.com/pandas-bfill-and-ffill-b79e46ab87ae
https://navinniish001.medium.com/pandas-bfill-and-ffill-b79e46ab87ae
http://jmlr.org/papers/v8/saar-tsechansky07a.html

78 | Bibliography

[31] S. Shrivastava, D. Patel, A. Bhamidipaty, W. M. Gifford, S. A. Siegel, V. S. Gana-
pavarapu, and J. R. Kalagnanam. DQA: scalable, automated and interactive data
quality advisor. In C. K. Baru, J. Huan, L. Khan, X. Hu, R. Ak, Y. Tian, R. S.
Barga, C. Zaniolo, K. Lee, and Y. F. Ye, editors, 2019 IEEE International Confer-
ence on Big Data (IEEE BigData), Los Angeles, CA, USA, December 9-12, 2019,
pages 2913–2922. IEEE, 2019. doi: 10.1109/BigData47090.2019.9006187. URL
https://doi.org/10.1109/BigData47090.2019.9006187.

[32] R. Somasundaram and R. Nedunchezhian. Evaluation of three simple imputation
methods for enhancing preprocessing of data with missing values. International Jour-
nal of Computer Applications, 21(10):14–19, 2011.

[33] N. Tang, J. Fan, F. Li, J. Tu, X. Du, G. Li, S. Madden, and M. Ouzzani. Relational
pretrained transformers towards democratizing data preparation [vision]. CoRR,
abs/2012.02469, 2020. URL https://arxiv.org/abs/2012.02469.

[34] R. M. Trevor Hastie. softimpute: Matrix completion via iterative soft-thresholded
svd, 2021. URL https://cran.r-project.org/web/packages/softImpute/

index.html.

[35] A. Vukotic, N. Watt, T. Abedrabbo, D. Fox, and J. Partner. Neo4j in action, vol-
ume 22. Manning Shelter Island, 2015.

[36] R. Y. Wang. A product perspective on total data quality management. Commun.
ACM, 41(2):58–65, feb 1998. ISSN 0001-0782. doi: 10.1145/269012.269022. URL
https://doi.org/10.1145/269012.269022.

[37] R. Y. Wang and D. M. Strong. Beyond accuracy: What data quality means to
data consumers. Journal of Management Information Systems, 12(4):5–33, 1996.
doi: 10.1080/07421222.1996.11518099. URL https://doi.org/10.1080/07421222.

1996.11518099.

[38] J. Webber. A programmatic introduction to neo4j. In Proceedings of the 3rd Annual
Conference on Systems, Programming, and Applications: Software for Humanity,
SPLASH ’12, page 217–218, New York, NY, USA, 2012. Association for Computing
Machinery. ISBN 9781450315630. doi: 10.1145/2384716.2384777. URL https:

//doi.org/10.1145/2384716.2384777.

[39] C. Yan and Y. He. Auto-suggest: Learning-to-recommend data preparation steps us-
ing data science notebooks. In D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini,
and H. Q. Ngo, editors, Proceedings of the 2020 International Conference on Manage-
ment of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA],

https://doi.org/10.1109/BigData47090.2019.9006187
https://arxiv.org/abs/2012.02469
https://cran.r-project.org/web/packages/softImpute/index.html
https://cran.r-project.org/web/packages/softImpute/index.html
https://doi.org/10.1145/269012.269022
https://doi.org/10.1080/07421222.1996.11518099
https://doi.org/10.1080/07421222.1996.11518099
https://doi.org/10.1145/2384716.2384777
https://doi.org/10.1145/2384716.2384777

6| BIBLIOGRAPHY 79

June 14-19, 2020, pages 1539–1554. ACM, 2020. doi: 10.1145/3318464.3389738.
URL https://doi.org/10.1145/3318464.3389738.

[40] Z. Zhang. Multiple imputation with multivariate imputation by chained equation
(mice) package. Annals of translational medicine, 4:30, 02 2016. doi: 10.3978/j.issn.
2305-5839.2015.12.63.

https://doi.org/10.1145/3318464.3389738

81

A| Appendix A

1 # retrieving techniques improving a certain dimension
2
3 "MATCH (n:DATA_PREPARATION_TECHNIQUE) -[a:AFFECTS]->(d:DQ_DIMENSION)
4 WHERE a.influence_type = $influence_type and d.name = $dimension_name
5 RETURN n.name AS name",
6 influence_type =" Improvement",
7 dimension_name=dimension ,
8 database_ ="neo4j"

Listing A.1: Extraction of data preparation actions improving a dimension - Part 1

1 # retrieving methods
2
3 "MATCH (n:DATA_PREPARATION_TECHNIQUE) -[: IMPLEMENTED_WITH]->
4 (m:DATA_PREPARATION_METHOD)
5 WHERE n.name = $technique_name
6 RETURN m.name AS name",
7 technique_name=tech["name"],
8 database_ ="neo4j"

Listing A.2: Extraction of data preparation actions improving a dimension - Part 2

1 # retrieving techniques that benefit a certain ML application
2
3 "MATCH (n:DATA_PREPARATION_TECHNIQUE) -[: BENEFITS_FROM]
4 -(ml:ML_APPLICATION)
5 WHERE ml.application_method = $ml_algorithm
6 RETURN DISTINCT n.name AS name",
7 ml_algorithm=ml_algorithm ,
8 database_ ="neo4j"

Listing A.3: Extraction of data preparation actions that benefit a ML application - Part
1

82 A| Appendix A

1 # retrieving methods
2
3 "MATCH (n:DATA_PREPARATION_TECHNIQUE) -[: IMPLEMENTED_WITH]->
4 (m:DATA_PREPARATION_METHOD)
5 WHERE n.name = $technique_name
6 RETURN m.name AS name",
7 technique_name=tech["name"],
8 database_ =" neo4j"

Listing A.4: Extraction of data preparation actions that benefit a ML application - Part
2

1 # dimensions affected by the requested technique
2
3 "MATCH (t:DATA_PREPARATION_TECHNIQUE{name: $technique }) -[a:AFFECTS]->
4 (d:DQ_DIMENSION)
5 RETURN d.name AS dimension , a.influence_type AS influence_type",
6 technique=technique ,
7 database_ =" neo4j"

Listing A.5: Executed queries for the "Get Information" functionality - Part 1

1 # ML applications benefiting from the technique
2
3 "MATCH (t:DATA_PREPARATION_TECHNIQUE{name: $technique })
4 <-[:BENEFITS_FROM]-(ml:ML_APPLICATION)
5 RETURN ml.application_method AS ml_algorithm",
6 technique=technique ,
7 database_ =" neo4j"

Listing A.6: Executed queries for the "Get Information" functionality - Part 2

1 # dependencies between technique and features
2
3 "MATCH (t:DATA_PREPARATION_TECHNIQUE{name: $technique })
4 -[d:DEPENDS_ON]->(p:DATA_PROFILE_FEATURE)
5 RETURN p.name AS feature , d.description AS description",
6 technique=technique ,
7 database_ =" neo4j"

Listing A.7: Executed queries for the "Get Information" functionality - Part 3

A| Appendix A 83

1 # dependencies between method and features
2
3 "MATCH (t:DATA_PREPARATION_METHOD{name: $method }) -[d:DEPENDS_ON]
4 ->(p:DATA_PROFILE_FEATURE)
5 RETURN p.name AS feature , d.description AS description",
6 method=method ,
7 database_ ="neo4j"

Listing A.8: Executed queries for the "Get Information" functionality - Part 4

85

List of Figures

1.1 Data quality dimensions classification [37] 5
1.2 Data Quality Improvement Process . 9

2.1 Architecture . 26
2.2 Knowledge Base Conceptual Schema . 29
2.3 Classifier Schema . 35

3.1 Imputation technique and methods . 38
3.2 Imputation technique properties . 39
3.3 Imputation technique, dimensions and profile features 39
3.4 AFFECTS relationship properties . 40
3.5 DEPENDS ON relationship properties . 40
3.6 Normalization technique and ML applications 41
3.7 Data objects and profile features - Example 1 42
3.8 Data objects and profile features - Example 2 43
3.9 Data quality dimension’s impact - Example 1 44
3.10 Data quality dimension’s impact - Example 2 45
3.11 Best data preparation method - Example 1 45
3.12 Best data preparation method - Example 2 46
3.13 Best data preparation method - Outlier Detection 47
3.14 User choice . 48

4.1 Example of the generated knowledge - Entire dataset case 53
4.2 Example of the generated knowledge - Single column case 57
4.3 Results obtained not considering the class 59
4.4 Results obtained considering the class . 59
4.5 Example of the extended knowledge . 61

5.1 Dataset Uploading Phase . 65
5.2 Machine Learning Algorithm Selection . 66
5.3 Data Preparation Panel . 67

86 | List of Figures

5.4 Data Preparation Actions Example . 68
5.5 Get Information Button . 70
5.6 Get Information Response . 70
5.7 Shorter caption . 71

87

List of Tables

1.1 Approaches Confrontation Table - Part 1 21
1.1 Approaches Confrontation Table - Part 2 22

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	State of the art
	Data Quality
	Data Quality Dimensions
	Accuracy
	Completeness
	Consistency
	Timeliness
	Other dimensions

	Data quality improvement
	Data Quality for Machine Learning
	Addressing Completeness: Considerations and Strategies
	Approaches for automatic and semi-automatic design of data preparation pipelines
	Graph Databases

	Methodology
	Architecture
	Knowledge Base
	Classifier

	Knowledge Base Implementation
	Classifiers Implementation and Results
	Knowledge generation
	Knowledge generation: entire dataset case
	Knowledge generation: single column case
	Data leakage considerations in imputation

	Building of the classifiers and results

	Tool Implementation
	Conclusions
	Future Work

	Bibliography
	Appendix A
	List of Figures
	List of Tables

