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Abstract

A new approach to design ballistic capture orbits can be found within the field of fluid
dynamics. Lagrangian coherent structures are time-evolving structures in the phase space
of a generic dynamical system which separate regions with qualitatively different dynamic
behaviour. Lagrangian descriptors represent a novel approach to highlight the geometrical
template of phase space structures. They have already found a myriad of applications in
different areas such as ocean currents, marine oil spills, atmospheric sciences and chem-
istry.

This study presents a new technique based on Lagrangian descriptors applied to ballistic
capture design. The research purpose is to exhibit to what extent descriptors give infor-
mation about non-Keplerian dynamics in Mars proximity. Motivations rely on the fact
that Lagrangian descriptors have the potential to be an efficient and easy to be imple-
mented visual tool that could give a richer understanding of dynamics around the target
planet compared with stable sets manipulation techniques.

The methodology described in this thesis aims to show the correlation between the dy-
namics separatrices generated in the Lagrangian descriptor fields and the weak stability
boundary of stable sets. Separatrices are extracted from the descriptor fields with an edge
detection algorithm. Results demonstrated the ability of the descriptors to distinguish
phase space regions of initial conditions around Mars that generate orbits with different
qualitative behaviour. Lagrangian descriptors proved to be an useful and intuitive tool
to aid in the design of ballistic capture orbits.

Keywords: Planar elliptic restricted three-body problem; Lagrangian descriptors; Bal-
listic capture; Mars.
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Sommario

Un nuovo approccio alla progettazione di orbite di cattura gravitazionale può essere
trovato nel campo della fluidodinamica. Le strutture coerenti di Lagrange sono strut-
ture tempo-varianti nello spazio delle fasi di un sistema dinamico generico, che separano
regioni con comportamenti dinamici qualitativamente diversi. I descrittori di Lagrange
rappresentano un nuovo approccio atto ad evidenziare il profilo geometrico delle strutture
nello spazio delle fasi. Essi hanno già trovato una miriade di applicazioni in diverse aree
come le correnti oceaniche, le fuoriuscite di petrolio nel mare, le scienze atmosferiche e la
chimica.

Questo studio presenta una nuova tecnica basata sui descrittori di Lagrange applicata al
design della cattura gravitazionale. Lo scopo della ricerca è mostrare fino a che punto i
descrittori forniscano informazioni sulla dinamica non Kepleriana in prossimità di Marte.
Le motivazioni si basano sul fatto che i descrittori di Lagrange hanno il potenziale per
essere uno strumento visivo efficiente e facile da implementare, che potrebbe fornire una
comprensione più ricca della dinamica attorno al pianeta rispetto alle tecniche di manipo-
lazione dei set stabili.

La metodologia descritta in questa tesi mira a mostrare la correlazione tra le separatrici
della dinamica generate nei campi dei descrittori di Lagrange e i confini dei set stabili.
Le separatrici sono estratte attraverso un algoritmo di rilevazione delle discontinuità nel
campo del descrittore. I risultati hanno mostrato la capacità dei descrittori nel distinguere
regioni di condizioni iniziali nello spazio delle fasi attorno a Marte che generano orbite con
differenti comportamenti dinamici. I descrittori di Lagrange si sono rivelati uno strumento
utile e intuitivo che aiuta nella progettazione di orbite di cattura gravitazionale.

Parole chiave: Problema piano ellittico ristretto dei tre corpi; Descrittori di Lagrange;
Cattura gravitazionale; Marte.
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1| Introduction

1.1. Context

Ballistic capture transfers have been receiving increasing attention throughout the past
few decades. They forsake the classic Keplerian approach typical of an Hohmann transfer
and exploit in a natural way gravitational forces exerted simultaneously by solar system
bodies on the spacecraft. Ballistic capture orbits have the capability to reduce fuel re-
quirements and to provide more flexibility in terms of insertion opportunities and launch
windows [24]. A temporary capture orbit can provide multiple insertion opportunities into
stable orbits about the target body, mitigating single-point failure risks [23]. Ballistic cap-
ture orbits are only temporary and after a finite amount of time the spacecraft escapes
the target body or crashes on its surface. In order to have a controlled capture some sort
of energy dissipation must be introduced. This could be dealt with thrusting manoeuvres
or aerobraking [25]. Ballistic capture orbits are a family of low-energy transfer trajec-
tories. In the context of interplanetary transfers, compared with Hohmann trajectories,
they reduce the relative hyperbolic excess velocity upon arrival between the spacecraft
and the target planet typical of a patched-conics Keplerian approach. Lower energy is
needed to stabilize the spacecraft on its final orbit around the target [19]. Summing up,
the advantages as compared to a traditional patched-conics transfer are:

• reduction of propellant mass for the insertion manoeuvres at arrival primary;

• reduction of single-point failure risks;

• wider launch windows.

The qualitative difference in trajectory between an Hohmann transfer and a ballistic
capture orbit in the Earth–Moon system can be appreciated in Fig. 1.1. In the case of
ballistic transfer, the manoeuvre (∆V2) is performed far from the target. Starting from
the manoeuvre point, the spacecraft will naturally be captured by the Moon gravitational
influence. Propellant consumption for the ballistic capture orbit is less than that for the
Hohmann transfer [21].
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(a) Hohmann transfer. (b) Low-energy transfer in the
geocentric inertial frame.

(c) Same trajectory in the Sun–
Earth rotating frame.

Figure 1.1: Transfers to the Moon [21].

The first ballistic capture attempt has been done in 1991, when the Japanese Hiten mission
used a low energy transfer to reach the Moon exploiting the combined gravitational effects
of the Earth, the Moon, and the Sun [3]. A standard Hohmann transfer was not possible
since not sufficient fuel was available, so for the first time the feasibility of ballistic capture
has been demonstrated. The transfer required five months instead of the usual three days
of an impulsive strategy. Since Hiten, other space missions employed ballistic trajectories,
such as SMART-1 [34] and GRAIL [18]. Ballistic capture has also been implemented as
design solution in BepiColombo mission [20], Lunette [6], ESMO [40], to the Jupiter
moons [4], and in asteroid retrieval contexts [38].

1.2. Motivations

The design of a ballistic capture orbit can be performed by following two different philoso-
phies [19]. One of them is the exploitation of invariant manifolds of periodic orbits in the
circular restricted three-body problem (CR3BP). This strategy allows to design trajec-
tories with prescribed behaviour. As an advantage, this method gives insight into the
dynamics of the capture. However, there is no control on orbital elements of final arrival
orbit and the method is only applicable in the CR3BP.

The other design strategy is based on stable sets manipulation. Stable sets are sets of
initial conditions (ICs) in the phase space of a dynamical system whose generated trajec-
tories satisfy certain stability conditions. The method is attractive because it does not
require deep knowledge of the dynamics in proximity of target primary. Moreover, stabil-
ity definitions can be extended to arbitrary complex, non-autonomous models. The main
drawback is the brute-force nature of the method which is in general more computation-
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ally intensive than invariant manifolds computation. Stable sets manipulation technique
will be addressed in more details in Chapter 3.

A novel approach to aid in the design of ballistic capture orbits may be found in fluid
dynamics, from which the concept of Lagrangian coherent structures (LCSs) arises [14].
LCSs are structures in the phase space of a dynamical system separating regions in which
the flow has different behaviour. This new concept may allow for a more rich under-
standing of the dynamics about the arrival planet, and offer a fresh perspective on the
ballistic capture mechanism. Another important advantage is that LCS-based strategies
can be applied to non-autonomous dynamical systems. For instance, in astrodynamics,
they permit to take into account for third-body perturbations, solar radiation pressure,
or non-spherical gravity perturbations. In previous studies, LCS-based techniques were
already applied to get insight on the ballistic capture problem [28, 31, 33, 41]. It has been
shown that LCSs computed around a planet are linked to the weak stability boundary
(WSB) of stable sets.

Lagrangian descriptors (LDs) were recently introduced as a powerful tool capable of un-
veiling LCSs and therefore highlighting geometrical structures that act as dynamics sep-
aratrices [27]. LDs seem to have all the credentials to help in the design of ballistic
orbits and enrich the dynamics knowledge in proximity of the target planet compared
with previously mentioned design philosophies.

1.3. Research question and objectives

This thesis aims to validate LDs as an approach capable of providing a qualitative pic-
ture of the dynamical environment about Mars in relation to ballistic capture orbits. In
particular, the study wants to answer the following research question:

To what extent Lagrangian descriptors provide a characterization of the dynamics in Mars
proximity with regard to ballistic capture?

Following the research question, the main thesis objectives are:

• computation of the LDs fields associated to a phase space region around Mars;

• selection of the most suited LD;

• extraction of the phase space structures acting as dynamics separatrices from the
LD fields;

• verification of the correlation between highlighted regions and classification sets,
and extracted separatrices and WSBs.
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1.4. Structure of the thesis

The present thesis is organized as follows:

• Chapter 1 gives a general background of ballistic capture and design strategies. It
introduces LCSs approach as viable strategy for the design. It presents the research
question and objectives of the thesis.

• Chapter 2 describes dynamical models used in the developed methodology.

• Chapter 3 focuses on stable sets manipulation as design strategy for a ballistic
capture orbit.

• Chapter 4 defines LCSs together with the strategies to locate them in the phase
space of a generic dynamical system. Different approaches are tested on a toy
problem.

• Chapter 5 presents the methodology developed to extract and validate the separatri-
ces from the LD fields computed in the proximity of Mars when facing the ballistic
capture problem.

• Chapter 6 summarizes the results of this study.

• Chapter 7 elaborates on the final remarks. In particular, the research question is
answered, advantages and limitations of the LD-based strategy applied to the design
of ballistic capture orbits are discussed, and recommendations for future works are
provided.
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2| Dynamical models

The methodology developed in this study and presented in Chapter 5 assumes the planar
elliptic restricted three-body problem (ER3BP) as a reference dynamical model. In this
chapter a description of the CR3BP and ER3BP models is given. The latter can be
considered a natural generalization of the circular problem.

2.1. Planar circular restricted three-body problem

The CR3BP describes the motion of a particle P of negligible mass moving under the
gravitational influence of two primary masses m1 and m2, with m1 ≥ m2 [21]. Primaries
P1 and P2 move on circular orbits around their common center of mass with same angular
velocity. The particle does not influence their motion. The equations of motion are non-
dimensionalized by the following choice of units: the mass unit MU is the sum of the
two primaries masses; the length unit LU is the distance between primaries; the time
unit TU is chosen such that the non-dimensional period of primaries orbit around their
barycenter is equal to 2π. Normalization units are summarized in Tab. 2.1, where T is
the dimensional orbital period of P2 and P1, and R12 is the distance between primaries.

Table 2.1: Normalization units.

Symbol Unit Description
MU Mass unit m1 +m2

LU Length unit R12

TU Time unit T/(2π)

The only free parameter of the system is the mass parameter µ = m2/(m1 +m2). The
dynamics can be expressed in a specific reference frame eliminating explicit dependence
on time. This is the synodic or rotating frame, which is centered at barycenter and rotates
with the same angular velocity of primaries circular orbits. In this frame, P1 and P2 are
fixed on the x axis at (−µ, 0) and (1− µ, 0), respectively (see Fig. 2.1).
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Figure 2.1: Synodic coordinate frame [21].

The planar motion of P expressed in the synodic frame is described by the following
system of differential equations [2] ẍ− 2ẏ = Ωx,

ÿ + 2ẋ = Ωy,
(2.1)

where Ω is the potential function defined as

Ω(x, y) =
1

2
(x2 + y2) +

1− µ

r1
+

µ

r2
+

1

2
µ(1− µ). (2.2)

r1 =
√

(x+ µ)2 + y2 and r2 =
√

(x+ µ− 1)2 + y2 represent the distances of point P
from m1 and m2, respectively. Subscripts in Eq. (2.1) indicate the partial derivative of
Ω with respect to the variables x and y. The CR3BP written in the synodic frame is an
Hamiltonian and autonomous system, therefore it has an energy integral of motion called
Jacobi constant, which reads [2]

JC(x, y, ẋ, ẏ) = 2Ω(x, y)− (ẋ2 + ẏ2). (2.3)

The measurement of particle’s position and velocity determines its energy. Once ICs are
given, the Jacobi integral defines allowed and forbidden regions of motion for the third
particle, bounded by zero velocity or Hill’s curves. Each solution of Eq. (2.1) always lies
on an energy surface

J (C) = {(x, y, ẋ, ẏ) ∈ R4|JC(x, y, ẋ, ẏ) = C} (2.4)

for a given energy level C. The projection of the manifold J (C) onto the (x, y) subspace
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is called Hill’s region, which marks the area where P motion is always confined. The
boundary of a Hill’s region is referred as zero-velocity curve [2].

The CR3BP has five equilibrium points, also called Lagrangian or libration points, which
are critical points of the potential function Ω(x, y) [21]. They are stationary points and
are found through

∇Ω(x, y) = 0. (2.5)

Three of them (L1, L2 and L3) are collinear on the x-axis, while the remaining two (L4

and L5) are called equilateral points (see Fig. 2.2).

Figure 2.2: Equilibrium points of the CR3BP in the synodic frame for µ = 0.3 [21].

Depending on the motion of primaries around their barycenter, the CR3BP can be con-
sidered representative of the real dynamics only in first approximation. For instance,
the eccentricity of primaries orbit in the Sun–Mars system is small but not negligible
(ep ≃ 0.09, see Tab. 5.2). Thus, the ER3BP better describes the dynamics of a third
body when the eccentricity of the primaries is not negligible.

2.1.1. Invariant manifolds

Invariant manifolds about the collinear libration points in the CR3BP supply a frame-
work to understand the flow structure from a geometric viewpoint. Invariant manifold
tubes associated with periodic orbits around Lagrangian points provide conduits for the
transport from a region of the space to another one. These conduits together with the
Poincaré sections can be exploited to construct spacecraft trajectories with prescribed
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itineraries [21]. Collinear libration points Li are of center-saddle type. Thus, for some
range of energies C, there exist a family of periodic orbits γi(C), called Lyapunov orbits,
emanating from Li. For fixed C, each periodic orbit γi posseses its invariant manifolds
[2]. The set of phase space points from which the trajectory converges to the periodic
orbit in forward time is called stable manifold W s(γi). The unstable manifold W u(γi) is
the set of points from which the trajectory converges to γi in backward time. Trajectories
starting inside the stable manifold make a transfer from one lobe of the Hill’s region to
the other one or to the exterior region when the dynamics is propagated forward [2]. The
same happens for the unstable manifold but in backward time (see Fig. 2.3).

Figure 2.3: Invariant manifolds of a Lyapunov orbit about L1 for a given energy [2].

Computation of invariant manifolds

Computational methods for determining the CR3BP invariant manifolds are well devel-
oped [21]. They are based on the linear approximation of the dynamics about an equi-
librium point. In order to generate the stable or unstable manifold, one first needs to
compute the periodic orbit. Differential correction is one of the available techniques. It
is an iterative process which, starting from an initial state x0, makes slight adjustments
so that the adjusted trajectory will end up to a target final state. The objective is to
produce ICs belonging to a periodic orbit. Local approximations of stable and unstable
manifolds are obtained from eigenvectors of the monodromy matrix associated to the pe-
riodic orbit retrieved with differential correction. The monodromy matrix represents the
state transition matrix (STM) (see Section 4.2) over one period of the orbit. The method
to compute invariant manifolds is the following [5]:
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1. For each point x0 on the periodic orbit, the monodromy matrix and its eigenvectors
are computed. The normalized stable eigenvector is denoted by vs(x0) and the
unstable one by vu(x0).

2. Then, let xs±(x0) = x0 ± αvs(x0),

xu±(x0) = x0 ± αvu(x0),
(2.6)

be the initial guesses for the stable and unstable manifolds. α should be small
enough to guarantee validity of linear approximation, but not too small to keep a
reasonable time for convergence or escape. A value of α bounded between 10−4 and
10−6 is typically a good guess [37].

3. Finally, the unstable vector xu±(x0) is integrated forward in time, using both α

and −α to generate the two branches of unstable manifold W u±(x0). The same
procedure applies backward in time for the stable vector to get W s±(x0). This
process is called globalization of stable and unstable manifolds [21].

Invariant manifold tubes are generated by the iteration of this steps for a number of points
x0 on the periodic orbit.

Trajectories with prescribed itineraries

Invariant manifolds can be used to find trajectories with prescribed itineraries exploiting
the intersections of globalized manifolds with the Poincaré sections Ui as shown in Fig. 2.4
[21].

Figure 2.4: The four Poincaré sections Ui in the Sun–Jupiter system [21].

Ui are placed at strategic locations, allowing to intersect stable and unstable manifolds
associated to specific periodic orbits. For instance, U3 is chosen to intersect both the stable
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manifold of L1 periodic orbit and the unstable manifold of L2 one. A possible strategy to
construct a trajectory with a defined itinerary is to connect stable and unstable manifolds
of L1 and L2 periodic orbits. In Fig. 2.5, the invariant manifolds projection onto the
configuration space in the Sun–Jupiter (S-J) system is shown.

Figure 2.5: Position space projection of the L1 and L2 periodic orbit manifold tubes [21].

Consider the J realm and suppose to construct a trajectory with itinerary (X, [J ], S).
This means that particle will flow from the X realm to the Sun one, passing from the
Jupiter realm (see Fig. 2.4). ICs that generate this trajectory can be found on the U3

Poincaré section. Referring to Figs. 2.5 and 2.6, ICs in the (X, [J ], S) region stay within
the T[J ],S tube if integrated forward, while remain inside TX,[J ] if integrated backward.

Figure 2.6: An itinerary region (X, [J ], S) [21].
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This approach can also be exploited for the design of low-energy interplanetary trans-
fers. Invariant manifolds of two different Sun–Planet systems can be coupled to generate
ballistic capture interplanetary trajectories [37].

2.2. Planar elliptic restricted three-body problem

The ER3BP is a natural generalization of the CR3BP in which primaries move on elliptical
orbits around their barycenter [11, 19, 36]. Similarly to the CR3BP, the dynamics can
be expressed in a non-uniformly rotating, barycentric, non-dimensional frame where P1

and P2 have fixed positions (Fig. 2.1). The main difference with the CR3BP is that the
coordinate frame isotropically pulsates along P1–P2 direction. Non-dimensionalization
strategy follows that of the circular problem, but the distance between primaries R12 is
not constant. It is given by the solution of the two body problem relative to P1-P2 motion

R12(f) =
ap(1− e2p)

1 + ep cos (f)
, (2.7)

where ap and ep are respectively the semi-major axis and eccentricity of P1–P2 system.
f(t) denotes the true anomaly of the system (Fig. 2.7). True anomaly is designated to be
the independent variable of the system and covers the role of time. The dependence of
true anomaly on time reads [36]

df

dt
=

(1 + ep cos f)
2

(1− e2p)
3
2

. (2.8)

Figure 2.7: Elliptical orbits of primaries in the ER3BP with respect to an inertial barycen-
tric frame for ep = 0.5, µ = 0.2 [11].
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Assuming planar motion of the third particle, the ER3BP dynamics readsx′′ − 2y′ = ωx,

y′′ + 2x′ = ωy,
(2.9)

where (·)′′ and (·)′ indicate differentiation with respect to f , while ωx and ωy express the
partial derivatives along x and y, respectively, of the ER3BP potential function [19]

ω(x, y, f) =
Ω(x, y)

1 + ep cos (f)
, (2.10)

where Ω is the potential function of CR3BP. Note that when ep = 0, the true anomaly co-
incides with time. In this case, Eq. (2.9) reduces to the equations of motion of the circular
problem. Unlike the CR3BP, the dependence on f makes the system non-autonomous,
hence the dynamics has no more a constant integral of motion but it depends on f . The
anomaly-dependent integral of motion of the planar ER3BP reads

JE(x, y, x
′, y′, f) = 2ω − (x′2 + y′2)− 2ep

∫ f

f0

Ω sin (f̃)

(ep cos (f̃))2
df̃ . (2.11)

Setting ep = 0 the Jacobi integral of circular problem in Eq. (2.3) is retrieved. Since JE is
anomaly-dependent, allowed and forbidden regions of motion for a given energy level are
no more fixed like in the CR3BP. In particular, pulsating Hill’s curves appear and vary
according P1–P2 motion. Fig. 2.8 shows the Hill’s curves associated with the same inital
state, but with different initial anomaly f0. Like the CR3BP, also the elliptic problem
has five equilibrium points as shown in Fig. 2.2. However, their real distance from P1 and
P2 pulsates according to the primaries position.

(a) JE(x0, f0) = 3.93, f0 = 0. (b) JE(x0, f0) = 4.36, f0 = π.

Figure 2.8: Regions of motion associated to x0 = [1, 0, 0.25, 0.3] (µ = 0.3, ep = 0.05) [19].
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3| Ballistic capture

The design of ballistic capture orbits is not trivial, and there is not a systematic way to
derive arrival orbits matching exactly mission constraints. Design can be performed by
following two different strategies. The first one analyzes the phase space structure around
the collinear libration points in the CR3BP. As previously mentioned in Section 2.1.1,
invariant manifolds of periodic orbits around L1 or L2 separate regions where the flow
has different attitude, acting as dynamics separatrices [21]. Ballistic trajectories can be
designed from the globalization of invariant manifolds together with Poincaré sections.
An advantage of this method is that it gives insight into the dynamics of the capture.
Drawbacks are the inability to control orbital elements of the final capture orbit, and that
the method is only applicable in the CR3BP. Concepts of equilibrium points, periodic
orbits and their invariant manifolds disappear when the fourth-body perturbation or or-
bital eccentricities of the primaries are taken into account. In the latter case LCSs-like
approaches can be exploited, as will be discussed in Chapter 4. LCSs can be considered
a generalization of invariant manifolds for time-dependent dynamical systems.

The other design strategy exploits the concepts of stable sets and WSBs. Stability def-
initions can be extended to models including primaries eccentricities and perturbations.
The method relies on sampling the phase space around the target primary and integrating
a large number of orbits. The basic drawback is the brute-force nature of this approach,
which is in general computationally more intensive compared with invariant manifolds
computation. Moreover, stable sets can be used as black-box tools and do not require
intricate knowledge of the dynamics about the target. Stable sets contain less information
from a dynamic perspective compared with invariant manifolds.

3.1. Orbits classification

The key point of ballistic capture orbits design through stable sets manipulation is to
find sets of ICs in a phase space region around the target whose orbits satisfy specific
conditions [19, 24]. The objective is to find trajectories with a peculiar behaviour when
the dynamics is integrated forward or backward in time. This is achieved applying spatial
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stability definitions while integrating a set of ICs. In this section, a generalized notion of
stability in three-dimensions is presented, opening up to the possibility to implement the
strategy in high-fidelity astrodynamic models [24], but also in less complicate ones such
as the CR3BP and ER3BP [19]. Spatial stability conditions are formulated in a target-
centered inertial frame that tracks the true number of revolutions of a third particle
around the target. This prevents discrepancies in the number of revolutions between the
inertial and rotating frame. The method is able to categorize ICs in a certain region in
proximity of the target into different subsets according to the orbits they generate.

In three-dimensions, an IC is specified by six orbital elements, or equivalently by its
position (r0) and velocity (v0) in a target-centered inertial frame. Once the position is
fixed, velocity is computed assuming that the particle starts its motion at periapsis of
a Keplerian orbit around the target with fixed osculating eccentricity e. It has been
shown that values of e ∈ [0.9, 1) are appropriate to support ballistic capture [19]. Particle
stability can be inferred by studying intersections of its trajectory with an intersection
plane spanned by r0 and h0 = r0 × v0. Geometric and energetic conditions that rule
revolution, escape, or impact of the particle are presented in three following remark points
[24]. The following conditions in the remarks can be applied for different orientations of
the target-centered inertial frame.

Remark 1 (Revolution). The particle performs a complete revolution around the target
at time tr if the following conditions are simultaneously satisfied,

r(k)(tr) · (h0 × r0) = 0,

r(k)(tr) · r0 > 0,

(v(k)(tr) · v0)(v
(k−1) · v0) > 0,

(3.1)

where k counts the number of intersections.

First condition in Eq. (3.1) assures that the particle returns to the intersection plane; the
second one avoids counting semi-revolutions, restricting the analysis to the semi-plane of
interest; the third one discards multiple intersections associated to incomplete revolutions,
as shown in Fig. 3.1.

Remark 2 (Escape). The particle escapes from the target at time te if the following
conditions are satisfied, H(te) > 0,

r(te) > Rs,
(3.2)
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(a) Intersection plane. (b) Multiple intersections.

(c) Orbit categories.

Figure 3.1: Intersection plane and orbit categories [24].

where H(te) is the Kepler energy of the particle with respect to the target and Rs is the
radius of the target sphere of influence.

The Kepler energy H of the particle is not constant due to third-body perturbations. Its
sign suggests which body dominates over the particle trajectory [23].

Remark 3 (Impact). The particle impacts with the target at time ti if

r(ti) < Req, (3.3)

where Req is the target mean equatorial radius.

Consider a phase space region around the target primary sampled with ICs. Starting from
the periapsis condition, each initial state is propagated. According to the global behav-
ior of generated orbits, it is possible to divide ICs into four non-intersecting subsets for
different values of n. The stability number n defines the number of complete revolutions
of the particle around the target. ICs are integrated for a given amount of time, suffi-
ciently long to properly classify the orbits, and then split into subsets (Wn, Xn, Kn, Dn).
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Classification sets are defined as follows [23]:

Weakly stable set Wn contains ICs whose orbits perform n complete revolutions around
the target.

Unstable set Xn contains ICs whose orbits escape from the target after performing n-1
complete revolutions.

Crash set Kn contains ICs whose orbits impact with the target after performing n-1
complete revolutions.

Acrobatic set Dn contains ICs whose orbits perform n− 1 complete revolutions around
the target and then do not satisfy none of the previous conditions within the given
time span.

Fig. 3.2 displays different classes of orbits with n = 1 about Mercury.

Figure 3.2: Sample orbits around Mercury, n = 1 [24].
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3.2. Design of ballistic capture orbits

The value of n can be any non-zero integer number. When a negative n is considered,
the stability conditions introduced before are applied in backward time. In this case, for
n = −1, the sets W−1, X−1, K−1 and D−1 are generated. If I is the set of all ICs, the
following relations hold

I = W1 ∪ X1 ∪ K1 ∪ D1 = W−1 ∪ X−1 ∪ K−1 ∪ D−1, (3.4)

Wn−1 = Wn ∪ Xn ∪ Kn ∪ Dn. (3.5)

Practical ballistic capture orbits are generated by ICs which are in the capture set obtained
through

Cn
−1 = X−1 ∩Wn. (3.6)

Conditions in Cn
−1 generate orbits that approach the target coming from outside its sphere

of influence and perform n revolutions around it without escaping or crashing (Fig. 3.3).

Figure 3.3: Sample orbit about Mercury of C6
−1 capture set [23].

An Earth–Mars transfer strategy with ballistic capture is studied in [36]. Stability def-
initions and classification of orbits are slightly different from the ones presented in this
chapter, and are described in [19]. The reference dynamical model is the planar ER3BP.
The purpose is to construct a transfer from Earth to Mars at the point xc, from which to
begin a ballistic capture orbit that will go naturally at a periapsis distance rp from Mars.
xc is obtained by integrating an IC in Cn

−1 in backward time. A sample solution is given
in Fig. 3.4.
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(a) Sun-centered frame (the black orbit is the
orbit that targets xc departing from the Earth;
the red orbit is the capture orbit; the blue orbit
is the post-capture orbit).

(b) The capture orbit (red) and the post-
capture orbit (blue) in the rotating Mars-
centered frame.

Figure 3.4: Sample solution of an Earth–Mars transfer in C6
−1 [36].
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4| Lagrangian coherent structures

4.1. Definition and properties

In autonomous dynamical systems, like the CR3BP, invariant manifolds theory applied
to fixed points and periodic orbits is very useful in determining the qualitative properties
of groups of trajectories, as seen in Section 2.1.1. This approach allows to predict the
evolution of sets of ICs avoiding their explicit integration. However, concepts of fixed
points, stable and unstable manifolds are lost for non-autonomous dynamical systems
with arbitrary time dependence (e.g. ER3BP, n-body problem) or for flows only defined
over a finite time interval. While Poincaré maps and invariant manifolds concepts are less
effective in this context, families of hyperbolic material lines continue to organize flow
transport mechanisms. LCSs can be considered as a generalization of invariant manifolds
in the time-dependent case, underlying the key aspects of material transport for a generic
flow [14]. They are time-evolving structures in the phase space of a generic dynamical
system which form the skeleton of observed flow patterns.

The LCS acronym was coined by G. Haller and G. Yuan in 2000 [13]. The aim of the
researchers was to uncover special structures, a robust skeleton of material surfaces, that
give an idea of the evolution of the flow after a certain time interval. The word Lagrangian
reflects the fact that these structures evolve with the fluid particles, as a material surface
does. LCSs are expected to have two key properties [16]:

• An LCS should be a material surface M(t), which is a codimension-one invariant
surface in the extended phase space of a dynamical system (Fig. 4.1). An invariant
surface is any set of points which are mapped into other points of the same set when
advected by the flow map. An LCS should be a material surface for two reasons.
Firstly because its dimension should be high enough to have visible impact and act
as transport barrier. Secondly because an LCS must move with the flow.

• An LCS should exhibit locally the strongest repulsion, attraction, or shearing in
the flow over a finite time interval. The strongest repelling or attracting material
surfaces are called hyperbolic LCSs (see Fig. 4.2).
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Figure 4.1: Material surface evolution in the extended phase space [14].

Figure 4.2: Hyperbolic LCSs [16].

For years LCSs have not had a mathematical definition. Initially they have been defined as
ridges of the finite-time Lyapunov exponent (FTLE) field [15], but simple counterexamples
revealed some problems with that identification. Despite that, FTLE remains a useful
and fast visual tool to identify patterns in the flow also in complex dynamical systems.
A more mathematical and rigorous formulation takes the name of variational theory [16].
This theory covers the inconsistencies of FTLE approach, giving sufficient and necessary
conditions for the existence of hyperbolic LCSs. More recently, new techniques to detect
phase space structures for a generic system have been developed. One of them is the LDs
approach [27]. This tool provides a characterization of dynamical systems, underlying
geometrical structures in the phase space that organize particles by regions corresponding
to different types of trajectories. Being heuristic, FTLE and LD methods could underline
false positives or false negatives, nevertheless they are a useful and fast tool for qualitative
dynamics description. LCSs computation from variational theory requires additional effort
to be implemented, but eliminates inconsistencies.
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4.2. Variational equations

The equations of motion of a generic dynamical system can be expressed as [33]

ẋ(t) = f(x(t), t),

x(t0) = x0,

x(t) ∈ Ω ⊆ Rn,

t ∈ I = [α, β],

(4.1)

where t is the independent variable representing time, while x(t) is the state vector.
The vector field f is also called velocity map. The solution of Eq. (4.1) can be viewed,
alternatively, as a flow map ϕt

t0
applied to the initial condition x0,

ϕt
t0
(x0) = x(x0, t0; t). (4.2)

A perturbed initial condition x0+ δx0 will generate a perturbed trajectory x+ δx, whose
perturbation δx can be estimated from a linearization of the flow map in x0. Assuming
flow map differentiability,

δx =
∂ϕt

t0

∂x0

(x0, t0; t) δx0 = Φ(x0, t0; t) δx0, (4.3)

where Φ is denoted as STM and Φ(x0, t0; t) = In. In is the n-dimensional identity matrix.
The Jacobian of the flow is be defined as A(x, t) = ∂f(x,t)

∂x
. At this point one can write

the following system [33] Φ̇ = A(x, t)Φ,

Φ(x0, t0; t) = I.
(4.4)

Eqs. (4.1) and (4.4) together make up the variational equations of the dynamical system,
which is (n + n2)-dimensional. The variational equations can propagated to compute
the STM of the flow at a given time instant. This is essential for the LCSs extraction
strategies presented in the following sections.
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4.3. Finite-time Lyapunov exponent

The FTLE approach represents one of the first developed strategies to locate LCSs in the
phase space of a dynamical system with arbitrary time dependence [15, 17, 35]. A repelling
LCS should appear as a local maximizing curve (ridge) of the FTLE field computed over
a grid of initial states. Equivalently, an attracting LCS should be a ridge of the FTLE
field obtained propagating ICs in backward time. For autonomous systems, FTLE fields
contour levels can approximate stable and unstable manifolds of fixed points and periodic
orbits.

The FTLE is essentially a finite time average of the maximum separation rate for two
infinitesimally close ICs advected by the flow map. It measures how much particles
separate after a given interval of time. Therefore, from a mathematical standpoint, FTLE
can be derived from the evolution of a perturbed point after a finite time interval T .
Recalling Eq. (4.3), the magnitude squared of the linearized evolution of the infinitesimal
perturbation after a time T can be written as

||δx(t0 + T )||2 = δxT
0 ΦT Φ δx0 = δxT

0 ∆ δx0, (4.5)

where ∆ is the finite-time Cauchy-Green (CG) deformation tensor, which is function of
t0, T , and x0. It is symmetric and positive definite. Maximum stretching occurs when
δx0 is aligned with the eigenvector associated with the maximum eigenvalue of ∆, λmax.
Thus, the FTLE definition reads

σT
t0
(x0) =

1

|T |
ln
√

λmax (4.6)

and represents the finite-time Lyapunov exponent with an integration time T associated to
the initial state x0 inside the domain of interest. Integration time T can be either positive
or negative. In particular, forward-time integration (T > 0) locates repelling LCSs (e.g.
stable manifolds in autonomous systems) and backward-time integration (T < 0) locates
attracting LCSs (e.g. unstable manifolds in autonomous systems). In Fig. 4.3 ridges
of the FTLE field computed in both time directions for a vortex behind a cylinder are
displayed.

Consider a hyperbolic fixed point and its stable and unstable manifolds as those shown in
Fig. 4.4. The two points on either side of the stable manifold will diverge after a sufficient
amount of time. Therefore, high FTLE values can be expected along the stable manifold
and, roughly speaking, as T increases more of the LCSs becomes resolved.
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Figure 4.3: Repelling and attracting LCS candidates as ridges of forward and backward
FTLE field for a vortex behind a cylinder [14].

Figure 4.4: Two points on opposite sides of a stable manifold will diverge after a sufficient
amount of time [35].

The issue related with FTLE is that, being and heuristic approach, it does not provide
sufficient and necessary conditions for LCS existence that are supported by mathematical
theorems. FTLE ridges can produce false positives in LCSs detection and not every LCS
is related to an FTLE ridge, even in simple two-dimensional steady flows [16]. FTLE
theory may give wrong results because, as opposed to variational theory (see Section 4.4),
the procedure ignores the direction of the eigenvector associated to λmax. Nevertheless
it remains a valid fast preliminary tool to locate coherent structures in non-autonomous
systems.
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A generic dynamical system expressed in its variational form is written as

ẋ(t) = f(x(t), t),

x(t0) = x0,

Φ̇ = A(x, t)Φ,

Φ(t0; t0,x0) = I,

x(t) ∈ Ω ⊆ Rn,

t ∈ I = [α, β],

(4.7)

with x0 ∈ Ω ⊆ Rn being an arbitrary point in the domain Ω and [t0, t0 + T ] ⊂ [α, β] the
finite-time integration interval. Once Φ(t0 + T ; t0,x0) is obtained, the CG strain tensor
is computed together with its greatest eigenvalue λn, from which FTLE can be easily
computed through Eq. (4.6). Algorithm 1 generates the FTLE field for a grid of ICs in
the subspace of interest of a dynamical system.

Algorithm 1 FTLE visualization algorithm
1: G ⊂ Ω is the grid of initial conditions in the phase space
2: [t0, t0 + T ] is the integration time interval
3: for eachx0 ∈ G do
4: Obtain Φ integrating system Eq. (4.7)
5: ∆ = ΦT ·Φ
6: Solve the eigenvalue problem associated to ∆

7: σT
t0
(x0) =

1
|T | ln

√
λn

8: end for
9: Plot σT

t0
(x0), ∀x0 ∈ G, in the two-dimensional subspace of interest

An example of FTLE algorithm application is given. The selected problem is the double
gyre, a two-dimensional non-linear dynamical system having equations of motionẋ = −Aπ sin(πf(x, t)) cos(πy),

ẏ = Aπ cos(πf(x, t)) sin(πy)
∂f

∂x
(x, t),

(4.8)

where
f(x, t) = a(t)x2 + b(t)x, a(t) = ϵ sin (ωt), b(t) = 1− 2a(t), (4.9)

with A, ϵ, ω arbitrary parameters. The chosen phase space domain is G = [0, 2] × [0, 1]

with [600 × 300] grid points. The parameters used in the computation are A = 0.1,
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ϵ = 0.1, ω = 2π/10, t0 = 0 and T = 20. In order to validate the algorithm, a comparison
with repelling LCSs computed with variational theory by the author of [33] is shown in
Fig. 4.5.
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(a) FTLE field computed with Algorithm 1. (b) Repelling LCSs computed with variational
theory [33].

Figure 4.5: Double gyre phase space structures.

The FTLE field computed with Algorithm 1 provides good results. Lighter curves corre-
spond to the ridges of the field, therefore to repelling LCS candidates. Ridges resemble
with good approximation repelling LCSs computed with variational theory. However, as
already discussed, inconsistencies of FTLE theory do not allow to classify, for a generic
problem, the ridges as coherent structures.

4.4. Variational theory

A rigorous definition of LCSs has been recently provided by Haller within his variational
theory [7, 16, 17]. Consider a material surface M(t0) of initial conditions which is advected
by the flow map into a time evolving surface M(t) = ϕt

t0
M(t0) (see Fig. 4.6a). For each

point x0 ∈ M(t0), the evolution of the unit normal n0 to M(t0) advected by linearized flow
map is monitored. The normal repulsion rate ρtt0(x0,n0) is the length of the surface-normal
component of the advected vector ∇ϕt

t0
(x0)n0, and quantifies the normal attraction or

repulsion of M(t), as shown in Fig. 4.6b.
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(a) Material surface M(t) generated in the extended
phase space by the flow map from M(t0).

(b) Geometry of the linearized flow map along an evolving material sur-
face M(t). In the picture the flow map is defined as Ft

t0 .

Figure 4.6: Evolving material surface M(t) [16].

The normal repulsion rate can be computed in terms of the CG strain tensor as [16]

ρtt0(x0,n0) =
1√

n0 · (∆−1(t; t0,x0)n0)
. (4.10)

The repulsion ratio νt
t0
(x0,n0) is another parameter which is defined in order to assess

which effect, between repulsion and shearing, is the dominant one [16],

νt
t0
(x0,n0) = min

|e0|=1
e0∈Tx0M(t0)

ρtt0(x0,n0)√
e0 · (∆(t; t0,x0) e0)

. (4.11)

If ρtt0(x0,n0) > 1, then the material surface exerts net normal repulsion on nearby fluid
particles. Similarly, if ρtt0(x0,n0) < 1, M(t) attracts nearby elements along its normal
direction. If the condition νt

t0
(x0,n0) > 1 is verified, then the normal growth is higher
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with respect to the tangential one. Under this condition, a repelling (attracting) LCS is
a material surface M(t) whose net repulsion ρtt0(x0,n0) is pointwise maximal (minimal)
with respect to perturbations of n0. Instead, a shear LCS is a material surface which
maximizes net shear σt

t0
(x0,n0) = ∇ϕt

t0
(x0) e0 [14]. From a physical standpoint repelling

LCSs are the core structures generating stretching and attracting LCSs act as centerpieces
of folding (see Fig. 4.7). Shear LCSs delineate swirling and jet-type patterns.

Figure 4.7: The role of coherent structures in stretching (a) and folding (b) [13].

Variational theory provides sufficient and necessary conditions for a material surface to
be an hyperbolic LCS in terms of the invariants of the CG strain tensor. Conditions are
summarized in Theorem 4.1 [16]. Being symmetric and positive definite, it admits n real
positive eigenvalues and orthogonal real eigenvectors. The associated eigenvalue problem
reads

∆(t0 + T ; t0,x0) ξi(x0) = λi(x0) ξi(x0), |ξi(x0)| = 1, i = 1, ..., n, x0 ∈ Rn. (4.12)

Dependence of λi and ξi on t0 and T is suppressed for notational simplicity.

Theorem 4.1 (Repelling LCS). Considering a compact material surface M(t) ⊂ U ⊂ Rn

over a time interval [t0, t0 + T ], it is a repelling LCS over the given time interval if and
only if the following conditions are satisfied for all x0 ∈ M(t0):

1. λn−1(t0 + T ; t0,x0) ̸= λn(t0 + T ; t0,x0) > 1,

2. ξn(t0 + T ; t0,x0) ⊥ Tx0M(t0),

3. ∇λn(t0 + T ; t0,x0) · ξn(t0 + T ; t0,x0) = 0,

4. L(t0 + T ; t0,x0) positive definite for all x0 ∈ M(t0).
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L =


∇2∆−1[ξn, ξn, ξn, ξn] 2λn−λ1

λ1λn
(ξ1 ·∇ξnξn) · · · 2λn−λn−1

λn−1λn
(ξn−1 ·∇ξnξn)

2λn−λ1

λ1λn
(ξ1 ·∇ξnξn)

2λn−λ1

λ1λn
· · · 0

...
... . . . ...

2λn−λn−1

λn−1λn
(ξn−1 ·∇ξnξn) 0 · · · 2λn−λn−1

λn−1λn


with

∇2∆−1[ξn, ξn, ξn, ξn] = − 1

λ2
n

(ξn ·∇2λnξn) + 2
n−1∑
q=1

λn − λq

λnλq

(ξq ·∇ξnξn)
2.

This is a general formulation valid for a n-dimensional problem. The conditions can be
reformulated for a 2D problem taking into account numerical sensitivity and implemen-
tation robustness [7]:

A. λ1(t0 + T ; t0,x0) ̸= λ2(t0 + T ; t0,x0) > 1,

B. ξ1(t0 + T ; t0,x0) ||M(t0),

C. λ2(γ), the average of λ2 over a curve γ, is maximal on M(t0) among all nearby
curves γ satisfying γ || ξ1(t0 + T ; t0,x0),

D. ξ2(t0 + T ; t0,x0) ·∇2λ2(t0 + T ; t0,x0)ξ2(t0 + T ; t0,x0) < 0.

According to condition B, repelling LCSs are material curves tangent to ξ1, the eigenvector
field associated with the smaller eigenvalue of CG strain tensor. Lines tagent to ξ1 are
called strainlines. Numerical algorithms that implement Haller variational theory are
based on the computation of strainlines which constitute a LCSs candidates set. Then a
filtering process is applied to extract LCSs. Keep note that this formulation is valid for a
repelling LCS. In order to compute attracting LCSs a similar procedure can be adopted.
As counterparts of strainlines, stretchlines are the curves of the phase space that present
compressing forces and are linked to attracting LCSs [7].

4.5. Lagrangian descriptors

LDs were recently introduced as a powerful tool capable of revealing LCSs and underlining
the geometrical template of phase space structures for a generic dynamical system [27].
The simple idea behind LDs is to seed a given phase space region with ICs and integrate
a bounded, positive property of the trajectory for a finite time interval. LDs have the
capability to provide a qualitative description of the system’s dynamics and reveal the
skeleton governing phase space transport.
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The first mathematical definition of LD relied on the computation of the arclength of
particle trajectories as they evolve forward and backward in time [26], until after the
method has been extended to others positive quantities. At its origins, LD approach
was implemented as a tool to provide a definition of distinguished hyperbolic trajectories.
They are the generalization of the concept of saddle fixed point of autonomous systems
into time-dependent ones [26]. Distinguished hyperbolic trajectories were highlighted by
minima of the descriptor function. Applicability of LD approach has been extended to the
detection of invariant manifolds of hyperbolic trajectories [27]. Invariant manifolds were
highlighted by "singular features", or "abrupt changes", of the LD field. The methodology
has found a myriad of applications in different scientific areas. LDs were implemented to
analyze oil spill transport in a region of the Gulf of Mexico [29]. In a similar way, authors
of [10] used these tools for the real-time management of oil spills in Spain, close to Canary
Islands. In addition, descriptors has been exploited to study transport mechanisms in the
stratospheric polar vortex [9]. These instruments found their application also in chemistry,
to study the phase space objects that control transport in exothermic reactions [12].

Consider a general time-dependent vector field

dx

dt
= v(x, t), x ∈ Rn, t ∈ R. (4.13)

Assuming that the velocity field is Cr (r ≥ 1) in x and continuous in t, unique solutions
that also allow for linearization exist. Original LD formulation was linked to the trajectory
length of the particle [26]. Specifically, let’s define M as the Euclidean arc length of
the curve in the phase space defined by the propagation of an initial state x0 through
Eq. (4.13). Setting an integration time interval [t0 − τ, t0 + τ ] [27],

M(x0, t0, τ) =

∫ t0+τ

t0−τ

√√√√ n∑
i=1

(dxi(t)
dt

)2

dt =

∫ t0+τ

t0−τ

||v(x, t)||dt, (4.14)

M(x0, t0, τ) = M (b)(x0, t0, τ) +M (f)(x0, t0, τ) =∫ t0

t0−τ

||v(x, t)||dt +
∫ t0+τ

t0

||v(x, t)||dt.
(4.15)

Notice that the definition of function M can be broken in a natural way into forward (M (f))
and backward (M (b)) contributions. Forward integration would highlight the stable man-
ifolds of an autonomous dynamical system, while backward evolution would recover the
unstable ones [8]. Moreover, their combination detects all the invariant manifolds simul-
taneously. Trajectories with close initial conditions that remain close as they evolve on



30 4| Lagrangian coherent structures

the time interval are expected to have similar value of M . Subsequently, the boundaries
between regions comprising trajectories with qualitatively different behaviour should de-
note an abrupt change of the derivative of M transverse to these boundaries [22]. Sharp
changes in the scalar field of LD are labeled as "singular structures". It is important
to remark the crucial role of integration time τ . The more τ value increases, the more
structures will appear and the more information will be contained in the field. However,
for small τ values, the pattern revealed by the descriptor field may not match the actual
phase space structures of the system [27].

There are other positive intrinsic physical or geometric properties of trajectories that
can be integrated bringing to successful results. The generalized LD formulation can be
written as [27]

M(x0, t0, τ) =

∫ t0+τ

t0−τ

|F(x(t))|γdt. (4.16)

Integrand |F(x(t))|γ denotes a bounded, positive property of the state vector, with γ

the exponent that defines its norm. A key property of all the descriptors is that they
are quantities that accumulate along a trajectory, i.e. they are integrals of a positive
quantity. Being a heuristic approach, like FTLE field, there is no certainty that this tool
identifies LCSs correctly, since there are no precise mathematical conditions embedded
in LD theory like in the variational theory. However, efforts to provide a theoretical
framework for LDs have been done. In [22], the authors formulated rigorous proofs to
show the ability of the descriptors to reveal stable and unstable manifolds of hyperbolic
points in simple two-dimensional systems. LD is an intuitive, easy to implement and
computationally efficient visual tool, which can give lot of information on the dynamics
of the problem. A straightforward strategy to numerically compute the descriptor is to
augment the state vector x in Eq. (4.13) such that ẋ(n+1) = |F(x(t))|γ and propagate x0

in the [t0 − τ, t0 + τ ] interval. It follows that x(n+1)(t0 + τ) = M(x0, t0, τ). Algorithm 2
describes the procedure to compute the LD field for a given phase space domain G ⊂ Rn

and visualize it in the two-dimensional subspace of interest.

Algorithm 2 LD visualization algorithm
1: G is the grid of initial conditions in the phase space
2: [t0 − τ, t0 + τ ] is the integration time interval
3: for eachx0 ∈ G do
4: Propagate augmented dynamics
5: Extract M(x0, t0, τ)
6: end for
7: Plot M(x0, t0, τ), ∀x0 ∈ G, in the two-dimensional subspace of interest
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4.6. The Duffing oscillator example

The ability of FTLE and LD approaches in highlighting manifolds is examined on a toy
problem. The selected problem is the Duffing oscillator [27], whose equations of motion
read ẋ = y,

ẏ = x− x3 + ϵf(t).
(4.17)

Two cases are considered:

Autonomous case (ϵ = 0). The system has three equilibrium points, one unstable
at the origin and two marginally stable at (±1, 0). The origin is an hyperbolic
saddle point connected by its stable and unstable manifolds. Manifolds form two
homoclinic orbits, as shown in Fig. 4.8a.

Periodically forced case (ϵ = 0.1 and f(t) = sin (t)). The system has a hyperbolic
periodic trajectory near the origin referred as distinguished hyperbolic trajectory
with its stable and unstable manifolds segments (Fig. 4.8b) [26].

(a) Equilibria (black), global stable (blue) and unsta-
ble (red) manifold of the origin in the autonomous
case, taken from [30].

(b) Stable (blue) and unstable (red) manifold
in the periodically forced case, taken from [27].

Figure 4.8: Stable and unstable manifolds of Duffing oscillator.

The chosen phase space domain is G = [−1.5, 1.5]×[−1.5, 1.5] with [300×300] grid points.
The same grid is used for both FTLE and LD fields computation. Final integration time
is set to τ = 10, while t0 = 0. Exploitation of the FTLE technique allows to capture the
presence of stable and unstable manifolds in both cases. The FTLE field computed in
forward time over a grid of initial conditions presents ridges in correspondence of stable
manifolds, which can be appreciated in Fig. 4.9. In the same way a backward integration
would highlight unstable manifolds.



32 4| Lagrangian coherent structures

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Autonomous case.
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(b) Periodically forced case.

Figure 4.9: FTLE fields of Duffing oscillator.

The LD field is able to catch stable and unstable manifolds in the phase space, as long
as choosing a sufficiently long integration time. A contour plot of the field is shown
in Fig. 4.10a. Manifolds are located at points where M scalar values chance abruptly
(Fig. 4.10b).
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(a) Contour plot of M field.
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(b) M values along the line y = 0.5.

Figure 4.10: LD field of forced Duffing oscillator.

Compared to FTLE field, LDs provide in general superior performance, in the sense that
they more accurately reveal geometrical structures and require less computational effort
to converge to them [27]. Calculation of FTLE requires the integration of variational
equations of motions, which is more computational intensive than computing the LD.
Another advantage is that the LD technique is able to reveal at the same time stable and
unstable manifolds of the system.
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4.7. Applications to ballistic capture

Different studies investigated LCSs applied to the restricted three-body problem in the
frame of ballistic capture. In the CR3BP context, FTLE fields are able to reveal the
intersections of invariant manifolds of periodic orbits with Poincaré cuts [11], whose clas-
sical computation procedure has been presented in Section 2.1.1. Fig. 4.11 compares the
outputs of the two procedures.

(a) Intersections of stable (green) and unstable
(red) manifolds with the plane y = 0, within
a surface of constant energy.

(b) FTLE field contour plot with integration
time T = 5.

Figure 4.11: Invariant manifolds intersections in the CR3BP [11].

Fig. 4.11a shows the intersections of invariant manifold tubes of a Lyapunov orbit around
L1 for a fixed energy level. As expected, FTLE ridges can be observed in correspondence
of intersections of the stable manifold (Γs,S

i ). Increasing the integration time, higher order
intersections are revealed. FTLE approach becomes helpful when the ER3BP model is
taken into account. In [11], authors demonstrated the existence of periodically pulsating
LCSs in the phase space of the ER3BP exploiting FTLE method. These pulsating struc-
tures proved to be the time-dependent analogues of invariant manifolds of periodic orbits
in the circular problem.

FTLE fields can also be used as visual detection tool to locate the WSB of stable sets
[31]. WSBs play the role of dynamics separatrices, distinguishing phase space regions of
ICs generating orbits with different global behaviour. Fig. 4.12 displays an FTLE field
computed in a phase space region around Mars and within the planar ER3BP assumption.
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(a) Stable set W1(0, 0.9) (taken from [19]). (b) FTLE field computed with ff = 6.

Figure 4.12: FTLE field for the Sun–Mars ER3BP and W1(0, 0.9) comparison [31].

The field clearly resembles the stable set. The latter has been computed outside this
research, obtained according to the methodology described in [19]. FTLE field proves to be
an efficient tool to get an idea of the shape of the WSB. LCSs extraction from variational
theory has also been applied to the computation and understanding of ballistic capture
trajectories in the area of stable sets manipulation [28, 31, 33]. As shown in Fig. 4.13,
repelling LCSs obtained with variational theory match with the boundaries at the right
and the left wings of the sets. However, correspondence between the strainlines and the

Figure 4.13: Repelling LCS overlapped to stable sets W1(0, 0.9) and W2(0, 0.9) (courtesy
of N. Hyeraci, and F. Topputo [19]) of Sun–Mars system [33].

WSB is not perfect. This could be caused by the high sensitivity of LCSs to different
particle dynamics and by the fact that structures are computed using a fixed integration
time [31]. Indeed, the final integration time of each particle in the stable sets computed
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in [19] is not constant. In conclusion, LCSs extracted with variational theory give an idea
of the WSB shape but matching is not completely satisfactory.

4.8. LCSs extraction strategies trade-off

This section shows a comparison of the various LCSs extraction techniques discussed so
far. The aim is to find the best approach suited to the case study addressed in this thesis.
FTLE, variational theory, and LD approaches are compared according to some selection
criteria. Chosen criteria are: reliability in LCSs detection, implementation simplicity, and
computational speed.

Variational theory is the most reliable approach since it assures that the extracted LCSs
satisfy precise mathematical definitions. However, the extraction procedure is compli-
cated and requires a big computational effort. It requires not only the integration of the
variational equations, but also the computation and filtering of strainlines and stretchlines
[7]. FTLE approach presents some inconsistencies in the LCSs detection. It is simple to
implement but requires the integration of variational equations. FTLE is connected to the
LCS definition by the computation of the maximum eigenvalue of CG strain tensor. The
LD method lacks of explicit mathematical connection with LCSs, but different studies
proved the ability of LDs to detect invariant manifolds in simple dynamical systems [22,
27]. LDs implementation is simple and intuitive and does not require the propagation of
the variational set of equations.

These considerations are translated into numerical values associated with each criterion
for each LCSs extraction technique. The value 1 represents a bad performance, while 3
is associated with a good one. Comparison is reported in Tab. 4.1. The sum of each
score associated to each criterion represents the global performance of the technique. The
result justifies the implementation of the LD strategy compared to the other ones in the
case study under examination.

Table 4.1: Performance comparison between LCSs extraction techniques.

Variational theory FTLE LD
Reliability in LCS detection 3 2 2
Implementation simplicity 1 2 3
Computational speed 1 2 3
Global performace 5 6 8
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Lagrangian descriptors

The LD approach is now applied in the Sun–Mars ER3BP in order to verify to what
extent this technique provides a characterization of the dynamics in Mars proximity with
regard to ballistic capture. Motivations rely on the fact that LDs have the potential to be
an efficient tool to infer the dynamics of phase space regions about the target. It could
help in the design of ballistic orbits offering new perspectives. The final research objective
is to exhibit the correlation between the geometrical template extracted from LD fields
in the phase space region around Mars and the WSBs of classification sets.

5.1. Definition of classification sets

The general procedure to categorize each IC in the domain of interest derives from [24],
which is the one described in Chapter 3. In this thesis, an alternative definition of stable
sets is proposed. Basically, the number of revolutions of the particle around the target
planet is no more considered. As a result, stability numbers n disappear and only three
subsets are present. While propagating ICs in the non-dimensional synodic reference frame
(see Section 2.2) in the integration interval [f0, ff ], a classification algorithm computes
the non-dimensional distance and Kepler energy of the particle with respect to Mars.
Classification is based on the fulfillment of some conditions that take distance and energy
as input and verify if the particle escapes from the planet or impacts on its surface. With
this procedure every initial state is collocated in one of three complementary subsets (X ,
K, and W) depending on its dynamics. Classification sets are defined in the following list:

Escape set X (ff ) contains ICs whose orbits escape for f ≤ ff . The particle escapes
if it possesses positive Kepler energy with respect to Mars and, at the same time,
is located outside the planet sphere of influence (SOI). In the elliptic problem the



38 5| Ballistic capture at Mars via Lagrangian descriptors

Kepler energy reads [19]

H(f) =
1

2
v2(f)− µ

r(1 + ep cos f)
, (5.1)

where v can be re-arranged using polar coordinates as

v2(f) =

(
r ep sin f

1 + ep cos f
+ r′

)2

+ r2(1 + θ′)2. (5.2)

Notice that H depends on the current value of f . So, even if the state is constant,
its Kepler energy relative to the target varies according to the mutual motion of
primaries. In conclusion, the two conditions that must be satisfied at the same time
are {

H(f) > 0,

r(f) > Rs,
(5.3)

where Rs is the non-dimensional SOI radius of the target.

Crash set K(ff ) contains ICs whose orbits crash for f ≤ ff . The particle impacts if its
distance from Mars surface is negative, or equivalently

r(f) < Req. (5.4)

Req represents the non-dimensional mean equatorial radius of the planet.

Weakly stable set W(ff ) contains ICs whose orbits do not escape or crash for f ≤ ff .

Keep note that the ER3BP equations of motion in Eq. (2.9) are integrated in Cartesian co-
ordinates, but stability conditions are based on polar ones. Therefore, at each integration
step, a coordinates transformation S2P from Cartesian, or synodic, to polar coordinates
must be performed

S2P (x, y, x′, y′) =



r =
√
(x− 1 + µ)2 + y2

θ = arctan

(
y

x− 1 + µ

)
r′ = x′ cos θ + y′ sin θ

θ′ =
−x′ sin θ + y′ cos θ

r

(5.5)

r and θ are the polar coordinates of the particle with respect to Mars (P2 in Fig. 5.1).
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Figure 5.1: Synodic reference frame and polar coordinates [19].

In analogy with the capture set definition given in Chapter 3, an alternative formulation
of C is derived. A capture set is extracted from the intersection between an escape set X
obtained propagating dynamics backwards and a weakly stable set W obtained integrating
forwards.

C(fB, fF ) = X (fB) ∩W(fF ). (5.6)

An IC belonging to C(fB, fF ) generates an orbit that escapes from the target planet before
reaching fB if integrated backward, while remains bounded into the region of influence of
Mars without crashing at least until fF if integrated forward.

5.2. Lagrangian descriptors computation

LD definition given in Eq. (4.16) is now adapted to the ER3BP in the study case. The
mathematical formulation of the descriptor implemented in this research reads

M(x0, f0, fF , fB) =

∫ f0+fF

f0

|F(x(f))|γdf +

∫ f0

f0−fB

|F(x(f))|γdf. (5.7)

ER3BP equations of motion can be rearranged as a four-dimensional ordinary differential
equations system 

x′ = vx,

y′ = vy,

x′′ = 2vy + ωx,

y′′ = −2vx + ωy.

(5.8)

The initial state vector reads x0 = [x0, y0, x
′
0, y

′
0]. The particle is initially set at the peri-

apsis of an osculating prograde ellipse around Mars, with a given eccentricity e. Values of
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e ∈ [0.9, 1) are optimal to retrieve ballistic capture trajectories as suggested by numerical
experiments in [19]. From this assumption the full initial state x0 of each IC in the domain
of interest can be retrieved.

The integrand |F(x(f))|γ denotes a bounded, positive property of the state vector, with
γ the exponent that defines its norm. Different integrands have been implemented and
tested in this research, they are listed in Tab. 5.1. In the integrands definition, v = [x′, y′]

and a = [x′′, y′′] represent first and second derivatives of the position vector with respect
to f ; κ is the curvature of the trajectory that combines v and a. The value ranges from
zero (curvature of a straight line) to infinity (curvature of a point) [27]. Keep note that
v and a do not express velocity and acceleration of the particle in strict sense since the
differentiation is done with respect to f and not t.

Table 5.1: Implemented Lagrangian descriptors.

Descriptor Integrand Norm

M1 F1 = v γ = 1

M2 F2 = a γ = 1

M3 F3 = v γ = 1/2

M4 F4 = a γ = 1/2

M5 F5 =
1

κ+1
, whereκ =

√
(v·v)(a·a)−(v·a)2

(v·v)3/2 γ = 1

The LD field is generated evaluating the integral per each x0 of a computational grid in a
specific domain, so every grid point in the phase space is linked to a positive scalar value.
The computational grid of ICs is denoted as G. Thus, M(G, f0, fF , fB) represents the LD
field computed for all the grid points. A contour plot in the position subspace (x, y) is
then performed to underline some boundaries, denoted by "abrupt changes" of the field.
An abrupt change means that the derivative of M field transverse to these boundaries is
discontinuous on them. These singular features coincide with phase space structures that
separate orbits with different dynamics.

Notice that the LD definition M(x0, f0, fF , fB) in Eq. (5.7) has two contributions. The
forward time contribution M(x0, f0, fF , 0) isolates dynamics separatrices generated in
forward time which are linked to repelling LCSs of the dynamical system. Similarly,
M(x0, f0, 0, fB) highlights the attracting LCSs of the system, isolating separatrices in
backward time. LDs fields are computed for different values of fF and fB. Similar
results have been obtained for all descriptors with the same final integration limits and
will be presented in Chapter 6. In the problem at hand, M3 field manifested a clearer



5| Ballistic capture at Mars via Lagrangian descriptors 41

visual separation of phase space regions than the other descriptors. A visual proof of this
statement is reported in Chapter 6. For this reason M3 is taken as reference LD in the
dynamics separatrices extraction phase.

5.2.1. Consideration on the integration limits

An investigation has been performed in order to find the proper final integration time
per each grid point in the LD computation to achieve a good match between highlighted
regions in the LD field and stable sets computed by the authors of [19]. Fig. 5.2 displays
W1(f0, e) and W3(f0, e) stable sets for the planar Sun-Mars ER3BP. They have been
obtained setting an initial anomaly of f0 = 0 and eccentricity of the initial osculating
orbit e = 0.9 (see [19] for further details).

(a) W1(0, 0.9). (b) W3(0, 0.9).

Figure 5.2: Stable sets of Sun–Mars ER3BP (courtesy of N. Hyeraci, and F. Topputo
[19]).

The provided strategy consists in adopting a variable final integration anomaly which
depends on the distance of the IC from Mars. In the stable sets manipulation technique
implemented in [19], the integration limit is not constant for all the domain. An IC
is integrated until it reaches a given number of revolutions around the target primary.
Specifically, the stable set Wn contains ICs whose trajectory perform n revolutions around
the target in the synodic frame with a negative Kepler energy at each revolution. As rule
of thumb, stable ICs which are more distant from Mars need more time to complete
a revolution compared with closer conditions. This concept is now applied to LD field
computation with the purpose of revealing WSBs of stable sets Wn.
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As first trial, a final anomaly fF proportional to the period of a Keplerian orbit around the
target is investigated. As an assumption, a particle temporarily captured by the planet
is expected to fly on a trajectory resembling a Keplerian orbit. The dimensional period
of the initial osculating orbit around Mars with eccentricity e reads

T = 2π

√
a3

µM

= 2π
r
3/2
p√

µM(1− e)3
= 2π

R12(f0)r
3/2
0√

µM(1− e)3
, (5.9)

where µM is Mars gravitational constant, while R12(f0) the primaries distance at f0,
needed to obtain the initial non-dimensional distance r0 of the particle from Mars (the non-
dimensionalization strategy was introduced in Chapter 2). The non-dimensional period
can be written as

T̃ = 2π
R12(f0)r

3/2
0√

µM(1− e)3

√
µS

a3p
= K · r3/20 , (5.10)

where µS is Sun gravitational constant. The non-dimensional period is assumed to be the
final anomaly fF . This is true in the case of the circular problem, but the correction would
not considerably affect proportionality of fF with respect r0. Correction can be performed
integrating Eq. (2.8) to obtain the anomaly corresponding to T̃ . As result, this strategy
implies a fF that increases with the non-dimensional distance from the target. Different
simulations have been performed setting multiples of K in the integration limit. Overall,
the approach does not appear successful in providing phase space regions resembling the
stable sets in Fig. 5.2. Conditions far from Mars show their dynamical behaviour before
than nearer points. This causes an inhomogeneity of the structures inside the domain of
interest. The reason is that behaviour of stable points further from Mars is far to be close
to a Keplerian one.

A trial and error strategy led to a change of the r0 exponent, and a dependence of fF =

A
√
r0 proved to be a good solution for the purpose of this investigation. Evolution of phase

space structures in the descriptor fields for increasing values of A is uniform all over the
domain. The mentioned two functions relating fF and r0 are shown in Fig. 5.3. Contour
plots of M1 field computed with both functions are presented in Fig. 5.4. Boundaries
revealed in Fig. 5.4a qualitatively correspond to W1 borders. A good match with W3

is obtained from the regions highlighted by M4 field computed with fF = 200
√
r0, as

displayed in Fig. 5.5.

Nevertheless, results obtained with constant fF are acceptable and do not differ so much
from those obtained with a variable final anomaly. In the following steps of the method-
ology, in order to reveal stable sets boundaries, the same integration limit will be adopted
per each initial state in the domain.
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Figure 5.3: Final anomaly functions.
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Figure 5.4: M1 contour plots for different ff functions.
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5.3. Separatrices extraction

Singular structures revealed by LD fields are extracted with an edge detection algorithm.
Edge detection is an image processing technique usually exploited for finding boundaries
of objects within images [1]. An edge is defined as the locus of points in which there is a
rapid change in intensity of the image. Edge detection methods highlight discontinuities
exploiting one of the two criteria reported below:

• methods finding edges at those points where the first derivative of the intensity is
larger than a threshold value σ;

• methods finding edges at those points where the second derivative of the intensity
has a zero crossing. Depending on the selected threshold, a large jump across zero
is an edge, while a small jump is not.

There are several edge detection algorithms available which differ according to the criterion
with whom they detect discontinuities. Some of them are Sobel, Prewitt, Roberts, Canny
and zero-cross methods [1].

Different methods have been tested for this study case. Roberts proved to be the most
effective one by revealing the edges more clearly than the others. A comparison between
the methods is reported in Chapter 6. The algorithm takes as input the two-dimensional
contour plot of the descriptor field in the (x, y) subspace of the domain. Then it finds
edges at those points where the gradient magnitude of the image is higher than a threshold
value using the Robert approximation to the derivative. Specifically, gradient of the image
is approximated by computing the sum of the squares of the differences between diagonal
neighbors pixels [32].

As anticipated, an additional input of edge detection algorithms is the sensitivity threshold
σ. For gradient magnitudes larger than the threshold, the algorithm ignores those edges.
The edge detection gives as output a binary image of the same size of LD scalar field,
with 1s where the algorithm finds edges and 0s elsewhere. Fer each computed descriptor
field the value of threshold is tuned. It is adjusted in order to show the highest number
of structures revealed by abrupt changes in the field. However, too low values of the
threshold itself could generate false positives in the output binary image when compared
to the LD contour plot.
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5.4. Validation of extracted separatrices

Ideally, extracted dynamics separatrices from LD field are expected to match exactly with
the boundaries between the classification sets X ,K,W for a given integration interval. The
reason is that the LD should be able to catch the dynamical divergence in trajectories
between different classification sets. Borders of classification sets are also referred as the
WSBs, in accordance with the nomenclature used in literature. Note that the definition of
WSB used in this research refers to the borders of sets characterized by the same dynamic
behaviour. It does not need necessarily to be linked to a stable set. The flowchart in
Fig. 5.6 summarizes the workflow designed to validate extracted patterns.

Figure 5.6: Validation workflow.

The first step is to build a computational grid of ICs around Mars. Two basic elements
characterize it: boundaries of the domain of interest and the number of grid points. The
grid is built in the synodic frame centered at the target at f0. In the presented study
this reference frame is also referred as the inertial frame. Boundaries of the domain of
interest are selected according to the knowledge of stable sets of the Sun–Mars system
computed by the authors in [19]. The selected portion of the (x, y) domain allow to
appreciate the differences between stable sets with distinct stability numbers. Moreover,
the same boundaries have been chosen by the authors of [31, 33] to study LCSs applied
to ballistic capture at Mars (Figs. 4.12 and 4.13). The number of grid points is selected
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as a compromise between computational effort and the visual quality of LD fields and
classification sets.

Grid points positions in the inertial frame are expressed as [x̃0, ỹ0] coordinates. Since the
ER3BP dynamics is propagated in the synodic reference frame, a coordinates transforma-
tion is needed. In addition, the full initial state of four components is retrieved in polar
coordinates [r0, θ0, r

′
0, θ

′
0] with respect to the target [19]. The procedure is schematized

as a block scheme in Fig. 5.7, where I2P (inertial to polar) and P2S (polar to synodic)
are two functions that perform the coordinates transformation.

Figure 5.7: Coordinates transformation.

I2P is the function that maps each grid point position from the inertial frame to polar
one. Furthermore, it computes the other two components of the state vector assuming an
eccentricity of the initial osculating orbit e and initial true anomaly f0 [19].

I2P (x̃0, ỹ0) =



r0 =
√

x̃2
0 + ỹ20

θ0 = arctan

(
ỹ0
x̃0

)
r′0 = − r0ep sin (f0)

1 + ep cos (f0)

θ′0 =

√
µ(1 + e)

r30(1 + ep cos (f0))
− 1

(5.11)

P2S is the function that converts each grid point from polar coordinates in Cartesian
ones for the synodic frame.

P2S(r0, θ0, r
′
0, θ

′
0) =



x0 = 1 + µ+ r0 cos (θ0)

y0 = r0 sin (θ0)

x′
0 = r′0 cos (θ0)− rθ′0 sin (θ0)

y′0 = r′0 sin (θ0) + rθ′0 cos (θ0)

(5.12)
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Each IC is then integrated in a given anomalies interval with a 7th/8th order Runge-
Kutta scheme [39]. The integration tolerance is set to 10−9. Selected parameters for
the computation of the initial states and Sun–Mars physical parameters are reported in
Tab. 5.2.

Table 5.2: Parameters for the computation of the initial states and physical parameters.

Grid parameter Value Unit Description
U [−6 · 10−4, 6 · 10−4]× Computational domain boundaries

[−6 · 10−4, 6 · 10−4] [−] [xleft, xright]× [ydown, yup]

N 25 · 104 [−] Number of grid points
Initial condition Value Unit Description

e 0.9 [−] Eccentricity of osculating orbit
f0 0 [rad] Initial true anomaly

Physical parameter Value Unit Description
µ 3.2262008 · 10−7 [−] Mass parameter [19]
ap 1.523688 [AU] Sun–Mars semi-major axis [19]
ep 0.093418 [−] Sun–Mars eccentricity [19]
Req 3397 [km] Mars mean equatorial radius [19]
Rs 170 ·Req [km] Mars SOI radius [24]

Initial states are propagated in the [f0, ff ] interval. LD scalar values are computed
exploiting the state vector augmentation procedure described in Section 4.5. At the
same time the classification algorithm categorize each IC into the subset W(ff ), X (ff ),
or K(ff ). Separatrices are extracted from the contour plot of the descriptor field with
the edge detection algorithm. Patterns are then overlapped to the computational grid
classification, in which each subset is marked with a different colour. This allows to
perform a visual check of the matching between WSBs and separatrices extracted from
LD fields.
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Results of the methodology described in the previous chapter are presented. Compu-
tational domain classifications and LD fields are visualized for the chosen phase space
region around Mars. Different edge extraction methods are compared. Finally, the ex-
tracted separatrices are validated by overlapping them to different classification sets and
verifying the correspondence with WSBs.

6.1. Classification sets

Each grid point inside the computational domain is classified into a specific subset (X ,K
or W) depending on the nature of its trajectory and according to the integration interval.
The initial true anomaly is kept fixed (f0 = 0) and each IC is propagated up to ff .
Therefore, subsets are highly dependent on the final true anomaly and it assumes an
important role in the classification step. Fig. 6.1 displays a visual representation of the
classification for the whole computational grid for different values of ff . Positive values
of final anomaly indicate that the computational grid is propagated in forward time. An
ff < 0 reveals trajectories behaviour when ICs are integrated backward. The three
complementary subsets X (ff ), K(ff ) and W(ff ) are marked with a different colour.
Fig. 6.2 shows two different capture sets C(−π/2, 3π/2) and C(−π, 3π). Each IC belonging
to the capture sets generates a ballistic capture orbit.

Weakly stable sets W(ff ) resemble stable sets Wn presented in Fig. 5.2 and computed
with the methodology described in [19]. However, keep note that the two stable sets def-
initions are considerably different. Stable sets in [19] are computed counting the number
of revolutions around Mars in the synodic frame. A stable set Wn contains ICs that
perform n complete revolutions around the target while maintaining a negative Kepler
energy at each revolution. Differently, the classification algorithm implemented in this
research analyzes particle dynamics at fixed ff and does not take into account stability
number n. Besides that, a similarity between the two stable set definitions can be noticed
for some values of ff .
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(a) ff = −π. (b) ff = −π/2.

(c) ff = π/2. (d) ff = π.

(e) ff = 2π. (f) ff = 3π.

Figure 6.1: Computational grid classification for different values of ff .
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(a) C(−π/2, 3π/2).
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(b) C(−π, 3π).

Figure 6.2: Two capture sets.

6.2. Lagrangian descriptor fields

Descriptor fields are computed according to the methodology described in Section 5.2.
Contour plots of the five implemented descriptors (see Tab. 5.1) are presented in Fig. 6.3.
The comparison between the different LDs is done for the same integration interval. All
the descriptors reveal similar singular structures in the phase space, with the exception
of M5, in which separation between regions is not so clear. Although not very visible in
M2 and M4 fields, the structures are present and can be highlighted by scaling the fields
with deamplification coefficients. Specifically, for M2, a scaling of (M2)

0.1 is adopted (see
Fig. 6.4a). Similarly, for M4, a (M4)

0.3 deamplification is chosen. The scalar field is shown
in Fig. 6.4b.

The M3 descriptor underlines phase space regions separation in a clearer way if compared
with the other indicators and is taken as reference in the separatrices extraction step.
Fig. 6.5 displays M3 fields for different integration intervals both in forward and backward
time. As expected, the higher the value of fF , the more structures are revealed. An high
value of fF gives to trajectories enough time to manifest their qualitative behaviour.
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(a) M1(G, 0, 2π, 0).
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(b) M2(G, 0, 2π, 0).
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(c) M3(G, 0, 2π, 0).
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(d) M4(G, 0, 2π, 0).
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(e) M5(G, 0, 2π, 0).

Figure 6.3: Comparison between LD fields computed for the same integration interval.
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(a) (M2(G, 0, 2π, 0))0.1.
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Figure 6.4: Scaled M2 and M4 fields.
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(a) M3(G, 0, 0,−π).
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(b) M3(G, 0, 0,−π/2).
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(c) M3(G, 0, π/2, 0).
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(d) M3(G, 0, π, 0).
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(e) M3(G, 0, 3π/2, 0).
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(f) M3(G, 0, 5π/2, 0).

Figure 6.5: M3(G, f0, fF , fB) fields.
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Notice that M3(G, 0, 0, fB) and M3(G, 0, fF , 0) are symmetric with respect to the x-axis
if |fF | = |fB|. The explanation is implicit in the symmetry of ER3BP equations of
motion. It is possible to check that the mapping (x, y, x′, y′, f) 7→ (x, −y, −x′, y′, −f)

is a symmetry of Eq. (2.9) [11]. Two ICs symmetric with respect the x-axis satisfy the
mapping if one condition is integrated forward (f > 0) and the other one backward
(f < 0). It follows that the LD value associated to both conditions will be the same.
The reasoning is valid only if f0 = kπ, with k any integer number. This also ensures the
symmetry of the primaries. A more detailed explanation is reported in appendix A.

6.3. Extracted separatrices

As already introduced in Section 5.3, singular structures of LD contour plots are extracted
with an edge detection algorithm. Sobel, Roberts, Canny and zero-cross methods are
tested on the same descriptor field as shown in Fig. 6.6. Threshold value σ has not been
specified for this comparison, letting the algorithms to choose σ autonomously. Note that
in Fig. 6.6d two threshold values are specified. This is because the Canny method uses two
thresholds to detect strong and weak edges. Specifically, the method starts with the higher
threshold and then decreases it to include also the lower threshold result. This helps to
fill in the gaps in the edges detected by the higher threshold [1]. As anticipated, Roberts
method outputs the separatrices in a clearer way compared with the other methods,
limiting the presence of false positives in the binary image. Once the method has been
selected, threshold is then tuned as described in Section 5.3. Tab. 6.1 reports chosen
thresholds associated to computed LD fields. Extracted dynamics separatrices obtained
with the tuned thresholds for some LD fields are shown in Fig. 6.7

Table 6.1: Computed descriptor fields and associated thresholds.

LD field σ

M3(G, 0, π/2, 0) 4 · 10−3

M3(G, 0, π, 0) 6 · 10−3

M3(G, 0, 3π/2, 0) 9 · 10−3

M3(G, 0, 2π, 0) 20 · 10−3

M3(G, 0, 5π/2, 0) 25 · 10−3

M3(G, 0, 3π, 0) 30 · 10−3

M3(G, 0, 0,−π/2) 4 · 10−3

M3(G, 0, 0,−π) 6 · 10−3
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(a) M3(G, 0, 3π, 0).
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(b) Sobel (σ = 0.1599).
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(c) Roberts (σ = 0.1599).
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(d) Canny (σ = 0.0125, 0.0312).
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(e) Zero-cross (σ = 0.0041).

Figure 6.6: Edge detection methods comparison.
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(a) M3(G, 0, π/2, 0).
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(b) M3(G, 0, π/2, 0) edges.
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(c) M3(G, 0, 3π/2, 0).
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(d) M3(G, 0, 3π/2, 0) edges.
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(e) M3(G, 0, 5π/2, 0).
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(f) M3(G, 0, 5π/2, 0) edges.

Figure 6.7: M3(G, f0, fF , fB) fields with extracted separatrices.
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6.4. Validation

Correspondence between extracted patterns and WSB is tested for different integration
intervals. Fig. 6.8 shows the extracted patterns from edge algorithm overlapped to X , K,
and W subsets. A good match of separatrices with boundaries of classified regions can be
noticed. Two key points deserve mention. First of all, the correspondence is not always
perfect, especially for small values of ff . The cause is implied in the descriptor definition.
LD reveals patterns if ICs are integrated long enough for dynamic divergences between
the orbits to be appreciated. It may happen that the classification algorithm divides a
particular region of the phase space into two different subsets, but the orbits are not
so divergent to generate singular structures in the LD field. In this case we expect an
high gradient in the field in correspondence of the WSB, but not sufficiently high to be
detected by the edge detection algorithm. Secondly, the LD may detect divergence in
dynamic behaviour even in areas that are classified in the same way. For instance, two
grid points can both generate escape orbits, but trajectories could be very different from
each other. This usually happens at higher values of ff .

Combining LD structures obtained propagating dynamics forwards with the ones obtained
propagating backwards, it is possible to reveal patterns that rule particles transport in
both time directions. The correlation of two different capture sets C(fB, fF ) with extracted
patterns from M3(G, 0, fF , fB) can be recognized in Fig. 6.9. Some regions in the phase
space which are enclosed by LD separatrices correspond to the capture set. The presented
methodology shows the ability of LDs in underlining phase space regions associated to a
set C(fB, fF ). ICs belonging to this set generate orbits that approach Mars and remain
temporary captured at least for fF . For instance, if fF = 3π, particle will remain bounded
into Mars influence at least for three semi-revolutions of the planet around the Sun.
However, the identification of ballistic capture regions is not trivial. For a practical use of
the LD methodology in the design of ballistic capture orbits, it is necessary to have a tool
for classifying the trajectories generated from a region enclosed by dynamics separatrices.

Some ICs are sampled from Figs. 6.8 and 6.9 and collected in Tab. 6.2. Orbits generated
from these samples are shown in Figs. 6.10 and 6.11 in the Mars-centered inertial frame.
It is clear how the behaviour of each orbit corresponds to the set the IC belongs to.
Moreover, the importance of ff in the classification procedure is highlighted. Samples
"c" and "d" (see Fig. 6.8d) are classified into two differents sets, but their dynamics is
similar, as seen from generated orbits. For a slightly larger ff , both orbits escape from
Mars.



6| Results 59

(a) M3(G, 0, 0,−π). (b) M3(G, 0, 0,−π/2).

(c) M3(G, 0, π/2, 0). (d) M3(G, 0, π, 0).

(e) M3(G, 0, 3π/2, 0). (f) M3(G, 0, 5π/2, 0).

Figure 6.8: Extracted separatrices overlapped to subsets for different final anomalies.
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(a) M3(G, 0, 3π/2,−π) separatrices and C(−π, 3π/2).
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(b) M3(G, 0, 3π,−π) separatrices and C(−π, 3π).

Figure 6.9: Extracted separatrices overlapped to capture sets. Gray lines are associated
with the forward branch of the integral and blue lines with the backward one.



6| Results 61

-3 -2 -1 0 1 2 3

10
-3

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

10
-3

SOI

(a) a.

-3 -2 -1 0 1 2 3

10
-3

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

10
-3

SOI

(b) b.

-2 0 2 4 6 8

10
-3

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

10
-3

SOI

(c) c.

-4 -2 0 2 4 6

10
-3

-6

-5

-4

-3

-2

-1

0

1

2

10
-3

SOI

(d) d.

-4 -3 -2 -1 0 1 2 3 4

10
-3

-2

-1

0

1

2

3

4

10
-3

SOI

(e) e.

-4 -3 -2 -1 0 1 2 3 4

10
-3

-2

-1

0

1

2

3

4

5

10
-3

SOI

(f) f.

Figure 6.10: Orbits generated from samples "a" to "f" in Tab. 6.2 (red path: backwards
propagation; blue path: forwards propagation).
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Figure 6.11: Orbits generated from samples "g" to "l" in Tab. 6.2 (red path: backwards
propagation; blue path: forwards propagation).
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Table 6.2: Initial conditions sampled from Figs. 6.8 and 6.9.

Label x̃0 ỹ0 Set
a −7.575 · 10−5 1.695 · 10−4 K(−π/2)

b −5.170 · 10−5 1.743 · 10−4 K(π)

c −4.533 · 10−4 3.475 · 10−4 X (π)

d −4.509 · 10−4 3.691 · 10−4 W(π)

e 3.246 · 10−5 −2.537 · 10−4 W(3π/2)

f 1.094 · 10−4 −3.258 · 10−4 K(3π/2)

g −5.278 · 10−4 4.268 · 10−4 W(5π/2)

h −1.094 · 10−4 1.960 · 10−4 K(5π/2)

i −4.990 · 10−4 4.317 · 10−4 C(−π, 3π/2)

j −6.373 · 10−5 2.585 · 10−4 C(−π, 3π/2)

k −4.990 · 10−4 4.317 · 10−4 C(−π, 3π)

l −1.719 · 10−4 7.575 · 10−5 C(−π, 3π)
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This study work wants to answer the following research question:

To what extent Lagrangian descriptors provide a characterization of the dynamics in Mars
proximity with regard to ballistic capture?

As shown in the results, structures in the phase space detected by LDs are able to distin-
guish regions characterized by different dynamical behaviour. In particular, at different
integration intervals, the patterns extracted with the edge detection algorithm delimit
with good approximation the ICs that generate differently classified orbits. Extracted dy-
namics separatrices adequately match with the WSBs. Similarly, the LD approach detects
areas corresponding to capture regions with reasonable approximation. The explanation
of this correspondence is intuitive. The descriptor value associated with an IC identifies
a characteristic property of the generated orbit, such as the trajectory length [26]. Or-
bits with qualitatively different behaviour are then associated to a different value of the
descriptor. As result, the WSB of a classification set is linked with an abrupt change in
the scalar value of the field.

LD capability in the detection of the WSB has proved better than other LCS-based ap-
proaches applied to ballistic capture [31, 33]. Approaches to extract dynamics separatrices
like FTLE and variational theory require the integration of the variational equations as-
sociated to the dynamic model. In general, this is computationally more intensive than
propagating the augmented dynamics to compute the descriptor. Moreover, as shown
in Section 4.7, the identification WSB with FTLE or the variational theory is tougher.
Differently, the WSB appears well resolved when exploiting LDs-based techniques.

The main drawback of the LD approach is that it does not give information about which,
among the different regions bounded by the separatrices, are actually capture or stable
sets. This is a limitation in the application of the presented LD methodology to the
design of ballistic capture orbits. The procedure of computing the LD fields, together
with extraction and validation of the dynamics separatrices have had a positive response.
Thus, based on the obtained results, a viable strategy to design ballistic capture orbits
is proposed. A possible solution could be to categorize the various regions delimited by
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the extracted separatrices by sampling a few ICs and classifying their orbits. In this way,
each region in the phase space can be classified on the basis of its qualitative behaviour
(weakly stable, escape, capture, or impact). The assumption under this procedure is that
each IC of a phase space region bounded by separatrices belongs to the same classification
set.

In conclusion, LD proved to be an intuitive, easy to implement and computationally
efficient visual tool. Without any a priory knowledge, LD patterns yield a strong match
with the WSB of classification sets. The LD approach supports the design of ballistic
capture trajectories, enriching the dynamics knowledge in proximity of the target planet.

Recommendations for future work

In this work different LDs have been implemented and tested in the context of Sun–
Mars planar ER3BP. However, further studies may be done on other integrands in the
descriptor definition. The goal may be to find a LD that separates regions in the phase
space more clearly than the proposed descriptors.

As discussed, the final true anomaly ff set as integration limit for each IC has an important
role. The proposed methodology is based on the utilization of a constant ff within
the domain of the initial states. The thesis shows also that a variable ff inside the
domain could lead to better results in the extraction of the WSB of some stable sets (see
Section 5.2.1). This aspect deserves to be analyzed more in details.

In this research, the initial true anomaly f0 and eccentricity e of initial osculating orbits
about Mars are kept fixed. It would be interesting to study how the LD fields vary
with these parameters. Moreover, an additional research on edge detection methods and
sensitivity thresholds selection would improve the proposed methodology.

Finally, the presented research work could be used as basis for further applications of
the method in more complex astrodynamic models. An important advantage is that the
LD method can be applied to arbitrary complex dynamical systems without restrictions.
Thus, the presented approach could be generalized for the application in real solar systems
models such as the n-body problem including different orbital perturbations.
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A| LD fields symmetry

This appendix gives a mathematical proof of the fact that M(G, f0, 0, fB) and
M(G, f0, fF , 0) are symmetric with respect to the x-axis if |fF | = |fB| and f0 = kπ, with
k any integer number.

ER3BP equations of motion can be manipulated as follows{
x′′ − 2y′ = ωx,

y′′ + 2x′ = ωy,
(A.1)


x′′ − 2y′ =

(
x− (1− µ)(x+ µ)

r31
− µ(x− 1 + µ)

r32

)
1

1 + ep cos (f)
,

y′′ + 2x′ =

(
y − (1− µ)y

r31
− µy

r32

)
1

1 + ep cos (f)
.

(A.2)

By substituting the variables (x, −y, −x′, y′, −f) in the system, the same equations are
retrieved. In other words, the dynamics is not changed. Thus, the mapping
(x, y, x′, y′, f) 7→ (x, −y, −x′, y′, −f) is a symmetry of the ER3BP.

Each particle in the computational domain is initially set at the periapsis of a Keplerian or-
bit around Mars with same eccentricity e. It follows that two conditions x1 and x2 initially
placed symmetrically with respect to the x-axis have initial states of x1 = [x0, y0, x

′
0, y

′
0]

and x2 = [x0, −y0, −x′
0, y

′
0]. Assume that x1 is integrated forward in [0, f̄ ] interval and

x2 is propagated backward in [0,−f̄ ] interval. Recalling the mapping reported before,
the two conditions will be subjected to the same dynamics and their trajectories will be
symmetric about the x-axis.

Since LDs are based on the integration of the norm of a quantity related to the state,
e.g. [x′, y′], the descriptor value associated to both conditions will be the same. This is
valid only if f0 = kπ, with k any integer number. This guarantees the symmetry of the
primaries.
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