
Executive Summary of the Thesis

Accelerating Convergence of Linear Iterative Solvers using Machine
Learning

Laurea Magistrale in Mathematical Engineering - Computational Science and Computa-
tional Learning

Author: Luca Saverio

Advisor: Prof. Nicola Parolini

Academic year: 2022-2023

Introduction
Iterative Numerical Methods (INMs) are widely
used to solve complex mathematical problems in
various scientific and engineering applications.
However, these methods can be computationally
expensive and time-consuming, especially when
dealing with large-scale systems. To overcome
this challenge, researchers have been exploring
the use of Machine Learning (ML) techniques to
accelerate the convergence of INMs [4].
ML algorithms can learn patterns from large
amounts of data and exploit them to make in-
formed predictions or decisions. In the context
of INMs, ML models can learn the relationships
between the input parameters and the conver-
gence behavior of the iterative solver.
The Generalized Minimal Residual (GMRES)
[3] method is a widely used INM for solving
non-symmetric, non-definite positive large lin-
ear systems of equations. It was introduced in
1986 by Saad and Schultz [8] as an extension
of the Minimal Residual (MINRES) Method to
non-symmetric matrices.
However, the GMRES method can be compu-
tationally expensive, especially for large-scale
problems.
This thesis studies the possibility of using ML

techniques to predict an optimal initial guess to
then be fed into a GMRES solver, aiming to ob-
tain an acceleration in the convergence.
The use of ML for accelerating INMs is an ac-
tive area of research, with promising results in
various fields such as fluid dynamics, structural
mechanics, and computational electromagnetics.
As the field of ML expands and continues to ad-
vance, it is plausible to expect further develop-
ments and improvements in this area, making it
possible to look forward to faster and more ac-
curate solutions to complex mathematical prob-
lems.

1. The Prediction Algorithm
In the field of computational mathematics, a sys-
tem of partial differential equations can be ap-
proximated to a linear system in the form:

Ax = b, (1)

where A represents the matrix of coefficients, of
dimension n×n, in this study only square linear
systems will be considered, b is the second mem-
ber vector, or right hand side (RHS), of size n
and x represents the vector of unknowns to be
determined, of size n.
The ML algorithm developed in this thesis was

1

Executive summary Luca Saverio

Time step: generate RHS

Evaluate Neural Network
using RHS input to

generate inital guess

Compute solution using
GMRES

Update and

Check if and
 are below

average

Add solution and RHS to
new batch of data

No
Have solution and RHS

to new batch of data

Check spread of data in
new batch, and add data

to training set

Train Neural Network for a
fixed number of epochs

No

Yes

Yes

Figure 1: Scheme of the ML workflow [4]. In red
the sections ran with CPU and in green the ones
ran with GPU.

inspired by the work described in: ‘Accelerat-
ing GMRES with Deep Learning in Real-Time’
written by Kevin Luna, Katherine Klymko and
Johannes P. Blaschke [4, 5]. In the paper the
implementation of a ML accelerated GMRES
solver in Python, and using Pytorch, is defined.
Figure 1 details the ML workflow. The idea be-
hind the algorithm is to train in real-time a Neu-
ral Network (NN), denoted as N(b) and taking
as input the RHS vector, as linear problems are
solved by GMRES and therefore using an Online
Learning strategy. This is accomplished by hav-
ing the NN provide an initial guess N(b) = x0

to the GMRES solver.
The loss function used to train the model is de-
fined as the Mean Squared Error (MSE) between
the predicted initial guess and the true solution:

L(x0,x) = ∥x0 − x∥2 = ∥N(b)− x∥2 , (2)

where ∥ · ∥ denotes the Euclidean norm, which
measures the squared distance between x0 and
x. Minimizing this loss function encourages the
network to provide initial guesses that are closer
to the numeric solutions.
The first training of the model is performed after
a certain initial set of problems is solved, that
is done in order to generate a first dataset to

train on. After the first training the model is
retrained after each fr (retrain frequency) addi-
tions to the dataset. The size of the initial set
and fr are both inputs of the user.
The dataset used to train the model consists
of RHS-solution pairs {(bi,xi)}. However, un-
like traditional deep learning approaches, the
goal here is to train the network in real-time
while data is being generated from the simu-
lation. This naturally leads to an online su-
pervised learning problem since at a given time
during the simulation, only a finite number of
(bi,xi) pairs are available. In order to ensure
a high-quality dataset some time steps are dis-
carded, while only ‘high-quality’ ones are kept.
This operation is performed by computing two
quality metrics once a system is resolved. The
first is the time to reach convergence, or to ob-
tain the solution, starting from xi

0, TOS(xi
0),

while the second metric is the residual at the end
of the first restart, Eκ(x

i
0). These two values are

then compared with the averages of the previ-
ous p iterations (Mp(TOS(x0)), Mp(Eκ(x0))).
Now, if the new values are worse than the aver-
ages, specifically if both are greater, the system
is saved into the dataset, as this indicates that
the model is not apt to provide good predictions
for this type of data.

2. Implemented Neural Net-
work Architectures

Since the Neural Networks implemented in [4]
were defined to work on a different class of data
and for problems of small dimension overall, it
was pivotal to develop new models.
Three different architectures were implemented
and tested:

1. Dense NN based Model;
2. Convolutional NN based Model;
3. Mixed model [9]: Combination of Convo-

lutional NNs to process the b vector and
Graph NNs to process the matrix A.

2.1. Dense Neural Network based
Model

As shown by Figure 2 the implemented DNN-
based architecture is generated as a sequance of
linear operations and activations functions, in
this case the ELU function was used. The iter-
ative application of these layers and activations
enables the network to learn and represent the

2

Executive summary Luca Saverio

Linear
ELU

Linear
ELU
...

Linear

feature
normalization

Loss function to minimize

Update
weights prediction

Update Dataset

ELU
Linear

Figure 2: Structure of the Dense Neural Network
used.

conv2d
ELU

conv2d
ELU
...

conv2d
ELU

conv2d

feature
normalization

Loss function to minimize

Update
weights prediction

Update Dataset

AvgPool1d
...

Upsample

Figure 3: Structure of the Convolutional Neural
Network used.

data in a progressively more expressive manner.
The final linear layer reshapes the output vector
to match the original size.

2.2. Convolutional Neural Network
based Model

As shown by Figure 3 the implemented CNN-
based architecture comprised a sequence of con-
volutional layers and ELU functions, with the in-
troduction of pooling. Specifically, average pool-
ing is applied, which reduces the spatial dimen-
sions of the feature maps while retaining their
depth. Then, following each average pooling op-
eration, a series of convolutional layers and acti-
vation functions are applied iteratively. Finally,
the smaller-sized feature maps are upsampled to
match the size of the original feature map. All
the obtained vector are concatenated together
and a final convolution is applied.

2.3. Mixed Model
As shown by Figure 4 the last implemented net-
work architecture is a hybrid model that com-
bines CNNs and GNNs. The CNN component
takes as input the b vector and it is as described

Loss function to minimize

Update
weights prediction

Update Dataset

SAGEConv

feature
normalization

Convolutional
Network

with Pooling

sum

ELU
AvgPool1d

ELU
Upsample

conv2d

conv2d

conv2d

SAGEConv
ELU
...

SAGEConv
ELU

Figure 4: Structure of the Graph Neural Net-
work used.

in Section 2.2, while the GNN component takes
A as input, transformed into a graph repre-
sentation, as each node has a certain number
of features and the edges capture the connec-
tivity of the matrix. The normalized features
undergo a series of graph convolutional layers
(SAGEConv) and activation functions, to intro-
duce non-linearity. The graph convolutional lay-
ers and activation functions are iterated. This
iterative process enables the GNN to extract and
refine features from the graph data. Finally, the
features from the last graph convolutional layer
are reshaped to a vector.
Once both branches have finished, a combina-
tion operation is performed. The resulting vec-
tor represents the combined features from both
branches of the network. Finally, the obtained
vector is fed into a two-layered CNN architec-
ture with pooling.
This final model, combining both the CNN and
GNN components, leverages the strengths of
both approaches.

3. Numerical Experiments on
Simple Problems

In order to verify the capabilities of the imple-
mented solver, it was applied to the same test
cases described in the original paper [4]. First,
the real-time deep-learning methodology is ap-
plied to the discretized 1D Poisson problem and
consequently it was used to accelerate the con-
vergence of the discretized 1D time-dependant
Advection-Diffusion problem.

3

Executive summary Luca Saverio

3.1. Laplace Equation
The algorithm was tested on a set of 1000 sys-
tems each of size 20× 20, fixing the residual tol-
erance to 10−10 and the Krylov space, m = 4,
also in order to compare the results with the
ones obtained by [4]. The simulation is run using
the DNN model defined in Section 2.1, with 800
trainable parameters and with the initial set size
fixed to 32 (i.e., the training of the network, will
wait until at least 32 systems are in the database
to begin the online training procedure). At the
end of the simulation the size of the dataset is
equal to 234 (i.e., 202 sets of b and x, where
added to the database since the system they rep-
resented was above the average with respect to
the time to solution or the error, i.e., see Sec-
tion 1). It is possible to plot the residual at the
end of the first restart (Eκ(x

k
0)) with respect to

the number of iterations. Figure 5 shows the
comparison between the values obtained by the
classic GMRES method with the zeros vector as
initial guess and the ML enhanced version.

Figure 5: Residual at the end of the first restart
(Eκ(x

k
0)) w.r.t. the number of systems (accord-

ing to the x-axis label).

From Figure 5 one can see that the initial guesses
predicted by the model are already closer to the
numerical solution at the first restart than for
the classic algorithm. Moreover, it becomes ev-
ident that as the number of systems increases,
there is a discernible learning process occurring,
as evidenced by the decreasing residual, depicted
by the black line in the figure.
Furthermore, one can take the last system
of the simulation and see how the standard
and ML-powered GMRES behave with re-
spect to the norm of the normalized residual

∥r∥/∥b∥ = ∥b − Ax∥/∥b∥, as shown in
Figure 6. From the figure it is possible to
observe that already the norm initial residual
∥r10000 ∥ = ∥b − Ax1000

0 ∥ is much smaller than
the initial residual with the classic choice of tak-
ing x0 = [0, ..., 0]T .

Figure 6: Behaviour of the norm of the normal-
ized residual for the last system of the sequence
w.r.t. the number of matrix-vector products.

When all the NS are completed, it is also possi-
ble to observe the number of matrix-vector prod-
ucts needed to reach convergence for each single
system solved by the GMRES method. Figure 7
displays the behaviour of the ML enhanced ver-
sion of the GMRES code, confirming that indeed
a learning is taking place, indeed the number of
matrix-vector products decreases as the simula-
tion goes on, after the first training is performed.

Figure 7: Number of matrix-vector products to
reach convergence w.r.t. the number of systems.

Finally, one can observe the plot of the iter-
ations’ speed-up, as shown by Figure 8. The
speed-up is computed as the ratio between the

4

Executive summary Luca Saverio

time taken to resolve the system by the classic
GMRES solver (T_GMRES) and the one taken
by the MLGMRES solver (T_MLGMRES).

Figure 8: Iteration speed-up.

Figure 8 shows that the implemented algorithm
recovered approximately the same speed-up ob-
served by [4], considering that for the demo for
the Laplace equation, found at [5], showed a
speed-up of approximately 2.

3.2. The Time-Dependent Advection-
Diffusion Equation

In order to test the implemented algorithm on
a larger dimension n is set to 100. In this
case, NS = 1000 is the number of time it-
erations, hence, the resulting procedure corre-
sponds to solving a set of 1000 systems each of
size 100× 100, fixing the tolerance to 10−10 and
m = 4. This choice of parameters allows to com-
pare the results with the ones obtained by [4],
despite that the authors in [4] used a maximum
dimension of n = 40. Moreover, ∆t = 0.05 and
T = 50. The simulation is run using the DNN
model defined in Section 2.1, with 60000 param-
eters and with the initial set size fixed to 32. At
the end of the simulation the size of the dataset
is equal to 186. It is possible to plot the residual
at the end of the first restart (Eκ(x

k
0)) with re-

spect to the number of iteration. Figure 9 shows
the comparison between the values obtained by
the classic GMRES method with the zeros vector
as initial guess and the ML enhanced version.

Figure 9: Residual at the end of the first restart
(Eκ(x

k
0)) w.r.t. the number of systems.

From Figure 9 it is possible to acknowledge that
also with a larger dimension and with a time-
dependent problem the ML decorator is able to
predict a better x0 in order to minimize the
residual at the end of the first restart of the GM-
RES code.
In Figure 10 it is possible to see that the speed-
up in this case is not as good as in the previous
test, however it is still comparable to [4].

Figure 10: Iteration speed-up.

4. Recycling of the Previous So-
lution

In order to make a comparison between the
ML enhanced algorithm and other more classi-
cal heuristics with regards to the initial guess
used with GMRES, the recycling of the previ-
ous time step’s solution is applied to strengthen
the classic GMRES algorithm.

5

Executive summary Luca Saverio

4.1. Advection Diffusion Problem
with Increasing time step

The solution recycling method is applied to
the time-dependent Advection-Diffusion equa-
tion with an increasing time step. This is done
in order to make the system stiffer as the sim-
ulation progresses. The number of systems for
this case is fixed as NS = 2000. The time step
assumes values in the interval [2.5, 150].
By, investigating the number of matrix-vector
products required in order to reach the stop-
ping criterion, one can notice, as depicted in Fig-
ure 11, that until half of the simulation the av-
erage number of iterations by the implemented
solver is higher than the number required by us-
ing as initial guess the solution of the previous
time iteration. However, the figure also presents
a decreasing trend with the black line, and an in-
creasing one with the green line, the two moving
averages. In fact, after a certain number of sys-
tems the ML algorithm requires less iterations
to reach convergence, in average.

Figure 11: Number of matrix-vector products
w.r.t. the number of systems.

The behaviour shown in Figure 11 is also sus-
tained by Figure 12. In fact it is possible to see
that the residual at the end of the first restart
of recycling solver keeps approximately constant
at around 10−2, while the one of the ML solver
shows indeed that the learning produces better
results with each new training.

Figure 12: Residual at the end of the first restart
(Eκ(x

k
0)) w.r.t. the number of systems.

Finally, the speed-ups show that indeed, before
the training, feeding a vector of zeros in much
worse than recycling the last computed solution,
as the first values in Figure 13 are below 1. How-
ever, as the simulation continues the same time
as the recycling version is reached and even re-
duced by the ML counterpart, as showed.

Figure 13: Iteration speed-up w.r.t. recycling
the previous solution.

5. Numerical Experiments on
Representative Test Cases

Due to the substantially larger dimensions of the
upcoming test cases compared to the previously
examined ones, employing the previously tested
DNN-based model is impractical. The reason
is that the DNN model demands a considerable
number of parameters. Consequently, using the
DNN-based approach for testing the forthcom-
ing systems is not feasible within the current
computational constraints.

6

Executive summary Luca Saverio

To address this issue and facilitate the evalua-
tion of the larger-scale systems, an alternative
approach will be adopted. Specifically, the test-
ing will be conducted using the CNN-based ar-
chitecture, as introduced and described in Sec-
tion 2.2. Unlike the DNN model, the CNN ar-
chitecture is known for its ability to efficiently
process and extract relevant features from high-
dimensional data, making it more suitable for
handling the increased complexity of the upcom-
ing test cases.

5.1. Laminar Flow around a Cylinder
at Low Reynolds Number

Understanding the flow characteristics around a
cylinder is of great importance in various engi-
neering applications. This work focuses on a 2D
laminar flow over a cylinder using a Discontin-
uous Galerkin (DG) approach. The fluid dy-
namics are modeled using the RANS equations
[6], with the one-equation turbulence model of
Spalart-Allmaras [7]. The flow operates at a
Mach number (M∞) of 0.15 and a Reynolds
number (Re) of 80.
The mesh discretization comprises 1028 trian-
gular elements. The flow operates at a laminar
state, and the specified Mach and low Re ensure
a subsonic flow. These values do not produce
an unsteady wake, therefore, a steady solution
is searched.
The spatial discretization is performed using the
DG method, with a modal basis and order of the
discretization equal to 3 and 4.
The convective flux is approximated using the
Roe numerical flux, which handles shock waves
and discontinuities accurately. The viscous flux
is treated using the BR2 method [1, 2], ensur-
ing accurate representation of the viscous effects
near the cylinder surface.
The implicit Backward Euler scheme is em-
ployed for time integration, using a local time
step.

(a) Unstructured mesh used. (b) Steady-state density field.

Figure 14: Cylinder test case.

The implemented algorithm is tested on a set
of 98 systems each of size 30840 × 30840, with
3621600 non-zeros, fixing the GMRES residual
tolerance to 10−3, m = 50 and imposing a max-
imum of 2 restarts. The simulation is run using
the CNN model, with 1500929 parameters and
with the initial set size fixed to 32. At the end
of the simulation the size of the dataset is equal
to 42.
In this specific test case, convergence is not
reached within the researched tolerance without
the use of a preconditioner, therefore it would
not make sense to analyse the speed-up results.
Still it is of interest to observe the behaviour of
the residuals.
Studying the last system, it is interesting to see
the values of the norm of the normalized resid-
ual at the end of the two restarts. Indeed, the
ML algorithm presents better values than the
non enhanced version. This is quite interesting
since it was possible to reach better convergence
values without the use of a preconditioner for
complex and large linear systems.

Figure 15: Behaviour of the normalized residual
w.r.t. the number restarts for the last problem
of the sequence.

7

Executive summary Luca Saverio

Figure 16 shows the behaviour of the residual
at the end of the first restart for each system of
the simulation. It can be easily extracted that
after the training the values of Eκ(x

k
0) are better

using a ML predicted initial guess.

Figure 16: Residual at the end of the first restart
(Eκ(x

k
0)) w.r.t. the number of systems.

5.2. Taylor-Green Vortex
The Taylor-Green Vortex (TGV), a well-known
benchmark problem in fluid dynamics, serves as
an ideal test case for studying turbulent flows.
This work focuses on a 3D turbulent flow within
a box with periodic boundary conditions. The
periodicity allows the simulation to evolve with-
out any external influences, maintaining a con-
stant total energy level throughout the decay
process.
The simulation employs Direct Numerical Sim-
ulation (DNS) of a flow with M∞ set at 0.1
and models the fluid dynamics using the Navier-
Stokes (NS) equations. The computational do-
main consists of a Cartesian mesh of 64 hex-
ahedral elements. The simulation employs the
fourth-order Rosenbrock-like scheme (ROS44)
for time discretization. This choice guarantees
high temporal accuracy and stability, enabling a
precise representation of the flow’s transient be-
havior during the decay process. This case, be-
ing outside of the considered framework, is used
as a last validation of the ML approach.

Figure 17: Visualisation of the solution of the
Taylor-Green Vortex.

As final test case, the implemented algorithm
is tested on a set of 4000 systems each of size
2560 × 2560, with 716800 non-zeros, fixing the
GMRES residual tolerance to 10−3, m = 50 and
imposing a maximum of 2 restarts. The simula-
tion is run using the CNN model, with 265729
parameters and with the initial set size fixed to
32. At the end of the simulation the size of the
dataset is equal to 695.
This final test case does reach tolerance without
the use of a preconditioner. Therefore, all the
previous metrics can be used to analyze the re-
sults.
First, Figure 18 shows the number of matrix-
vector products needed to reach the desired tol-
erance. It is possible to see that, since after the
first training, and except from a very small num-
ber of systems, the number of products to reach
convergence with the optimized x0 is smaller
than with the classic x0.

Figure 18: Number of matrix-vector products
w.r.t. the number of systems.

8

Executive summary Luca Saverio

Figure 19 shows instead the speed-ups, since this
time it is an interesting result to investigate. It
can be seen that the value of the speed-ups is
mostly above 1, showing that indeed the time
to reach convergence with the ML implementa-
tion is smaller than using x0 = 0. Despite our
expectations for speed-up improvements, there
are instances where we observe speed-up values
below 1, indicating sub-optimal performance.
However, the retraining mechanism of the model
comes to the rescue in such situations. This re-
training process works diligently to address the
issues, ultimately resulting in better speed-up
values.

Figure 19: Iteration speed-up.

5.2.1 Results on the TGV using GNNs

Until now the initial guess was predicted only
from the RHS b vector, therefore it is interest-
ing to investigate what happens when the hy-
brid model defined in Section 2.3 is deployed,
in other words, to see the effect of using matrix
features to extrapolate the matrix importance
in the choice of the initial guess. The features
used are very simple to extract, the values on the
principal diagonal of the matrix and the value of
diagonal dominance, defined as:

ddi =
|aii|∑
i ̸=j |aij |

, (3)

where aij is the element of A in position (i, j).
As detailed in Section 2.3, the implemented
GNN-based architectures uses a combination of
GNN and CNN layers.
The size of the Krylov subspace is changed to
m = 30, in order to better study the value of
the residual at the end of the first restart. The

model is composed of 1320899 trainable param-
eters and with the initial set size fixed to 32. At
the end of the simulation the size of the dataset
is equal to 102.
By studying the behaviour of Eκ(x0), it is pos-
sible to see that the values of the ML prediction
solver are below the values of the normal imple-
mentation. Moreover, it is possible to observe
that, even having decreased m, some values start
to be quite close to the imposed tolerance.

Figure 20: Residual at the end of the first restart
(Eκ(x

k
0)) w.r.t. the number of systems.

Finally, observing the plot of the speed-ups in
Figure 21, it is possible to see that better values
are obtained with respect to the case where only
CNNs where being used. This confirms the as-
sumption that capturing matrix features in the
model is essential to obtain better results.

Figure 21: Iteration speed-up using the hybrid
model.

However, when considering the total times, the
one of the ML simulation is much larger than the

9

Executive summary Luca Saverio

time spent by the classic GMRES method. This
is a result of the fact that the trainings of the
GNN-based model require large computational
times, resulting in a longer simulation. Further-
more, CNNs seem to be more optimized within
the Pytorch environment.

6. Conclusion
This thesis has presented an approach, based on
Machine Learning techniques, that aims to de-
liver an adequate initial guess for the iterative
Krylov methods in the contest of a series of lin-
ear systems, where A and b can change signifi-
cantly. Furthermore, one of the main concerns
of this work is to explore its application to rep-
resentative cases arising from compressible flows
in compressible computational fluid dynamics.
The prediction algorithm was presented and ap-
plied to simple problems, including the Lapla-
cian equation and the Advection-Diffusion equa-
tion. Furthermore, the proposed ML-based al-
gorithm is compared to a classic heuristic used
to obtain an initial guess, which consists in re-
cycling the previous solution during an time-
iteration scheme. The results obtained are quite
promising. The ML predicted initial guesses ac-
celerate the convergence for most of the con-
sidered cases. Moreover, the algorithm demon-
strated to have a better behaviour with respect
to the recycling algorithm for the advection-
diffusion equation with an increasing time step.
The algorithm’s application was extended to
representative test cases governed by the Navier-
Stokes and RANS equations, precisely the flow
around a cylinder with low Reynolds number
and the Taylor-Green vortex test case. The re-
sults obtained demonstrate that the developed
algorithm leads to shorter times to reach the
stopping conditions of the GMRES solver, unfor-
tunately, the training of the network causes the
computational time and memory constraints for
large systems to be still prohibitive with the cur-
rent implementation. Hopefully, advancements
of algorithms and GPU hardware could lead to
address these issues in the future.
While we have achieved interesting results, this
work also opens avenues for future research.
Further exploration of hybrid approaches, com-
bining iterative methods and machine learning,
could lead to even more robust and efficient
solvers for fluid dynamics simulations.

References
[1] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti,

and M. Savini. A high order accurate dis-
continuous finite element method for inviscid
and viscous turbomachinery flows. In Turbo-
machinery - Fluid Dynamics and Thermody-
namics, European Conference, 2, pages 99–
108, 1997.

[2] Lorenzo Botti and Luca Verzeroli. BR2 dis-
continuous Galerkin methods for finite hy-
perelastic deformations. Journal of Compu-
tational Physics, 463:111303, 2022.

[3] M. Jadoui, C. Blondeau, E. Martin,
F. Renac, and F. Roux. Comparative study
of inner–outer Krylov solvers for linear sys-
tems in structured and high-order unstruc-
tured CFD problems. Computers & Fluids,
244, 2022.

[4] K. Luna, K. Klymko, and J. P. Blaschke.
Accelerating GMRES with Deep Learning
in Real-Time. https://doi.org/10.48550/
arXiv.2103.10975, 2021.

[5] K. Luna, K. Klymko, and J. P. Blaschke.
GMRES-Learning, 2021.

[6] Stephen B. Pope. Turbulent Flows. Cam-
bridge University Press, 2000.

[7] NASA Christopher Rumsey. The Spalart-
Allmaras Turbulence Model. https://
turbmodels.larc.nasa.gov/spalart.html,
2020. Accessed: 2023-07-03.

[8] Youcef Saad and Martin H. Schultz. GM-
RES: A Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Sys-
tems. SIAM Journal on Scientific and Sta-
tistical Computing, 7(3):856–869, 1986.

[9] Z. Tang, H. Zhang, and J. Chen. Graph Neu-
ral Networks for Selection of Preconditioners
and Krylov Solvers, 2022.

10

https://doi.org/10.48550/arXiv.2103.10975
https://doi.org/10.48550/arXiv.2103.10975
https://turbmodels.larc.nasa.gov/spalart.html
https://turbmodels.larc.nasa.gov/spalart.html

	The Prediction Algorithm
	Implemented Neural Network Architectures
	Dense Neural Network based Model
	Convolutional Neural Network based Model
	Mixed Model

	Numerical Experiments on Simple Problems
	Laplace Equation
	The Time-Dependent Advection-Diffusion Equation

	Recycling of the Previous Solution
	Advection Diffusion Problem with Increasing time step

	Numerical Experiments on Representative Test Cases
	Laminar Flow around a Cylinder at Low Reynolds Number
	Taylor-Green Vortex
	Results on the TGV using GNNs

	Conclusion

