
Executive Summary of the Thesis

Toward portable HPC applications with SYCL: a molecular docking
case study

Laurea Magistrale in Computer Engineering - Ingegneria Informatica

Author: Nicolò Scipione

Advisor: Prof. Gianluca Palermo

Co-advisor: Emanuele Vitali PhD

Academic year: 2021-2022

1. Introduction
The first four decades of computer architec-
tures innovation were ruled by the well-known
"Moore’s Law", but in the last twenty years, the
advancement promised started to decay. New
methods and architectures were designed to keep
pushing the evolution and increase the comput-
ing power. This evolution gave birth to heteroge-
neous systems, which are complex systems that
combine different types of architectures to get
better performance. The most common com-
bination that presents the best improvement in
several recent types of workloads is composed
of GPUs and CPUs. Very powerful and capa-
ble machines have been built around this type
of system and are now used in many different
fields, e.g., fluid dynamics, molecular docking,
and AI/ML. These days the main vendor of
GPUs is NVIDIA, and 7 out of 10 supercomputer
inside the top 10 of the top500 1 ranking are
equipped with this type of hardware. The pro-
gramming language used to better exploit this
hardware is the NVIDIA proprietary language
and toolkit CUDA. Soon, two other big players
of computer hardware will supply GPUs to su-

1https://www.top500.org/lists/top500/2021/11/

percomputers. In particular, AMD already has
three big contracts: LUMI, in Europe, Frontier
and El Capitain in the USA. Likewise, Intel has
already one contract to provide GPUs still in the
USA for Aurora, that is expected to be the first
exascale machine.
In this area, the emerging problem is that CUDA
is proprietary and runs only on NVIDIA’s plat-
form. It means that all the available applica-
tions need to be rewritten or ported to some
different framework or language. Nowadays, the
most promising framework is called SYCL, an
open standard C++ framework that promises to
write code for any type of accelerator from any
vendor, e.g., NVIDIA, AMD, and INTEL.
My work is to assess if SYCL can provide
portable, easy to program, and performant code
from CUDA. To evaluate my hypothesis, I con-
sidered a molecular docking application devel-
oped here at Politecnico di Milano and originally
written in CUDA. A critical characteristic of the
application is its high throughput thus any in-
efficiency is easy to spot and verify what causes
it. Moreover, it has a sufficient number of dif-
ferent kernels in size and specific operations that
let me provide insights into the conversion and
test the performance achieved on NVIDIA and

1



Executive summary Nicolò Scipione

AMD GPUs in a meaningful way.
This paper is divided into the following sections.
Section 2 provides a rapid overview of the cur-
rent state of the art of programming language in
this field and SYCL related performance. Sec-
tion 3 contains the steps that are necessary when
considering porting a pre-existed application or
writing a new one and the actual main point of
the porting. Section 4 illustrates the experiment
set up and results obtained. Section 5 shows my
conclusion on the work done and future devel-
opment.

2. State of The Art
Currently, there are multiple languages and
standards used in the HPC world. All of them
aim to obtain performance, but some also try
to bring portability across hardware of different
types and different vendors with various short-
comings. The most used language is CUDA be-
cause, even if it is not portable to other vendors’
hardware, it is the one that brings the best per-
formance on GPUs thanks to its special connec-
tion between hardware and software where the
latter mapped perfectly the architecture. Other
examples are OpenCL and OpenACC. For the
latter, the most important shortcomings are that
there are not many compilers available, and it
is not flexible. In essence, directive-based pro-
gramming languages do not allow a fine-grain
tuning of the code because they do not expose
low-level constructs to the programmer, and ev-
erything is in charge of the compiler. More-
over, the standard has been around for about
ten years is not well supported yet. Almost
every OpenACC compiler works on NVIDIA’s
hardware, while those for AMD GPU are still
in an early stage. So from this point of view,
it has the same problem as CUDA without all
the benefits. On the other hand, OpenCL is a
widespread open standard, but its syntax is very
verbose and complex. It suffers from fragmenta-
tions from its available versions. Moreover, its
implementation is based on old premises that do
not stand very well today, e.g., it derives its syn-
tax from C99. To conclude, it is a very portable
language even if not always performances are
equal to the CUDA ones [].
As the last open-standard born, SYCL has many
advantages. It follows the same standard of cod-
ing as the iso-C++, which is a great advantage

on portability and flexibility because developers
don’t have to learn a new language since CUDA
is based on C/C++. Moreover, SYCL wants to
allow researchers to obtain the best performance
possible by exploiting any type of hardware, and
it is already at the same level as CUDA in some
cases [1] [2].
Performance-wise, there are not many complete
studies that involve SYCL. To give some ideas
of the level achieved so far and how it com-
pares to the other frameworks, I refer to two
different papers. The first [2] shows how SYCL,
specifically hipSYCL, compares to CUDA and
OpenACC and in [1] authors measure SYCL
against OpenCL and native language (CUDA
and HIP). Both the measurements of the above
works are taken considering synthetic bench-
marks, rarely with bigger applications, and in
these tests, SYCL is in general equal to the other
languages.
In this scenario, SYCL represents a promising
framework, but its adoption is still limited for
different reasons. First, it has different imple-
mentations all based on the newest SYCL2020
but with diverse toolchains and workflows mak-
ing harder for the final user to choose. Sec-
ond, the hardware support is fragmented among
the implementations, with different level of ma-
turity. All of them are still work in progress.
The last reason is that tests about performances
achieved in big real-world applications are still
missing, so researchers cannot decide whether
using SYCL for their research is worthy or not.

3. Contribution
Evaluating the feasibility of porting legacy code
and doing it in the best possible way is not an
easy task. The structure of SYCL allows re-
searchers to make many decisions on how to
structure the work and how to exploit it to have
the best outcome, not only when starting from
scratch but also in porting code from CUDA.
This section elaborates the possible decisions
and how I selected the ones used, it also gives
some technical details on the most tricky part of
the porting on NVIDIA and AMD GPUs.

General Consideration on Conversion
The main considerations before doing the port
regard how to perform the conversion of the
code, how to handle memory, and portability on

2



Executive summary Nicolò Scipione

different architectures or highest performance.
All of them are tight to each others.
The first decision is due to the fact that dif-
ferent SYCL implementations offer diverse ap-
proaches to the framework. In particular In-
tel inside its OneAPI toolkit offers an automatic
tool that promises to convert the original CUDA
code into SYCL. This proprietary tool uses spe-
cific headers that wrap functions instead of the
standard one. It would make it more difficult to
test other compilers, and it isn’t very effective
in the most complex part of the code to convert.
Other implementations do not have a compara-
ble feature. Luckily, all the companies and the
university involved released complete documen-
tation and wikis to help during the porting by
hand. I decided to follow the last strategy be-
cause I want to test the code with all the compil-
ers available, and I want to consider every detail
and how to tune the code for SYCL.
The second general aspect to observe is how to
handle memories of host and accelerators: Uni-
fied shared memories(usm) or buffers and acces-
sors. The latter follows the general guidelines
of modern C++ and represents the first imple-
mentation idea of SYCL. It is built upon the
RAII(resource allocation is initialization) design
pattern and lets the compiler handles when allo-
cate/deallocate memory, and when transferring
data from CPUs to GPUs. Moreover, it en-
ables the compiler to create a task graph that
can be useful to increase parallelism. On the
other hand, usm is the standard way to handle
memory in C++ and in CUDA, where develop-
ers have control over where is the data, how to
move data and how much memory allocate. It is
more accurate, but it could lead to errors more
easily. Despite compilers allow to mix them I
did not do it for code consistency. In my partic-
ular case, there are some specific situations that
led to my choice. The code was already written
using pointers, so I could convert them without
having problems with memory allocation. More-
over, I have better handling of how and when
allocating memory and how to align memory.
E.g., in the application, the constructor allo-
cates the memory granting that the code does
not have to wait for allocation and initialization,
which provides better performance to all the ap-
plications. This last example is particularly hard
to code using buffers and accessors. So, even if

the standard considers buffers/accessors to be
safer I decided to use Unified Shared Memory.
The last decision is whether focus the effort
on portability on different types of accelerators,
e.g., FPGA and multicores on CPU, or focus
on maximum performance achievable on GPUs.
This decision is specific to SYCL because it al-
lows writing code once and then compile it for
the desired platform. The application consid-
ered is highly specific for GPUs, and my goal
is to verify if SYCL can provide performance as
good as CUDA. So I opted to use as many GPUs-
specific constructs to obtain maximum perfor-
mance.

Targetting NVIDIA GPUs
The conversion of kernels is straightforward in
the part that concerns GPUs hardware identifi-
cation as the running threads, block, and grid di-
mensions. It gets more complicated when deal-
ing with specific GPU coding constructs, such
as warp and reduction. In many of the ap-
plication’s kernels, e.g. align_kernel and opt-
mize_kernel, arises different problems that can
be sorted in four categories:
• Differences in structures of the framework.

E.g., shared memory is handled differently.
In SYCL, it is necessary to use special ac-
cessors, while in CUDA, it is a kernel pa-
rameter, and they compute differently also
the size.

• Missing libraries. CUDA offers libraries
such cooperative_groups that allow for finer
control on the executions threads. In some
kernels, this feature is used to compute one
last reduction, and in SYCL are necessary
some tricks to cope with this missing. Un-
fortunately, it slows down the computation.

• Features not yet implemented. SYCL is
still in an early stage of development, so
some features are included in the standard
but not yet implemented in every compiler.
E.g, the CUDA texture memory is foresee
by SYCL standard and it is called image.
Until now, compilers haven’t got it yet for
3D images.

• Features that do not belong to the stan-
dard. CUDA and SYCL have different
philosophies and there are many years of de-
velopment between the two. This situation
implies that CUDA has some features that

3



Executive summary Nicolò Scipione

SYCL does not want to implement or be
implemented, e.g., dynamic programming.
When one of these features is present in the
original code, there is the necessity to re-
design before translating. This is happened
in the last kernel of the molecular docking
application. The only way possible to ob-
tain the current results was to change it.

So far, the porting experience refers only to work
needed to have a SYCL application running on
NVIDIA’s hardware and getting the correct re-
sults. To get the best performance out of it, I
coded in SYCL trying to stay as close to the
hardware as possible.

Targetting AMD GPUs
The first part of the conversion was done only
with NVIDIA GPUs in mind because that was
the platform available, and the native code is
highly optimized for it. When the code was
tested on AMD GPUs it did not work for en-
dogenous and exogenous reasons. The former
arose since the same type of accelerator does
not imply the same architecture. AMD and
NVIDIA GPUs follow the same design logic but
are different in one key characteristic: the warp
size(wavefront size in AMD terminology). Ex-
ploiting it guarantees better performance and
less wasted resources that are particularly im-
portant in the HPC environment. At a prac-
tical level, this means that in some kernels I
had to cope with this difference using various
workarounds, e.g., introducing branches to ex-
ploit the correct size of the warp in reduce
functions or adding a loop while changing the
block size to compute the correct results. These
classes of hurdles can be spotted and resolved in
different ways but they highlight the importance
of knowing the platform very well when trying
to get maximum performance. Whereas the im-
maturity of compilers caused the other issue be-
cause available compilers have shortcomings us-
ing this platform. When the application was
tested for the first time, DPC++and hipSYCL
missed some low-level functions needed to get
maximum performance from the platform.
The early stage of development of SYCL com-
pilers and the nature of the porting cause these
issues and in part the solution. I decided not to
change too much the implementation of the ker-
nels affected by the warp size problem to stay as

close as possible to the original code, so I used
some tricks to cope with it. The missing func-
tions were added during my work on the AMD
machine showing that are still in rapid develop-
ment. On the brighter side, almost every kernel
worked perfectly fine by simply letting the ap-
plication tune itself and decide the size of block
and warp, in this case running the application
on different hardware is flawless.

4. Performance
The second part of my work is to verify if the
performances obtained by the ported code are
better, worst, or comparable with those achieved
by the original one. I conducted the test on
two different machines, one provided by Politec-
nico di Milano equipped with two NVIDIA A100
GPUs and the other one from CINECA that had
four AMD MI100 GPUs. The number of GPUs
does not have any repercussion since I set the
code to use only one GPU at a time. I decided
to test SYCL with both the compilers available
DPC++ and hipSYCL.
I conducted the tests by taking ten measure-
ments of the kernels’ performances with the tools
provided by the hardware manufacturers in both
cases. Here, I present only a selection of the
most meaningful numbers. The molecule given
as input to the application is always the same,
and it is a specific one that ensures to stress the
application and makes the measures meaning-
ful. The application was tested with both single-
precision and double-precision to understand if
there are differences in SYCL code generation.
For legacy reasons, the application needs to pro-
duce the results with double-precision computa-
tion. For this reason, and due to the limitation
of space of this work, here I refer only to that.
The performances results are divided into two
groups using the same logic on both machines.
The first group represents kernels in which the
performance results of SYCL are close to CUDA,
while the second group is composed of those ker-
nels that cause some problems.

Targetting NVIDIA GPUs
Figure 1 presents three different kernels. The
two on the right are very simple ones, they are
executed many times in the application which
is why are presented here and represent all
the other small kernels. The performances of

4



Executive summary Nicolò Scipione

SYCL are very good compared to CUDA with
all the compiler tested. For the kernel on the
left, the situation is a little bit different, ac-
tually, hipSYCL is very close to native perfor-
mance, while DPC++ is quite far. The explana-
tion for such difference is that compiling SYCL
with DPC++ using double-precision cause an
overspilling of registers from one kernel, which
crashes the application at runtime. To over-
come this issue, I have to limit the number of
registers available for each block to 64. This
imposed hard limitation blocks the performance
of ligand_is_bumping. In fact, there is not
much difference from CUDA performance us-
ing single-precision. Moreover, using NVIDIA
Nsight Compute is possible to see that it would
use 72 registers instead of 64, which causes the
loss in performance.

Kernel name

Ti
m

e[
us

]

0

25

50

75

100

125

ligand_is_bumping eval_opt_matr_kernel set_best_pose_opt_kernel

CUDA DPC++ hipSYCL

Figure 1: Performance comparison SYCL vs
CUDA on three different kernels

Figure 2 presents a different situation. These
kernels are the biggest and the most complex of
the application, porting them required changing
the code to cope with stronger limitations and
differences from CUDA and sometimes make
work-around to achieve the goal. The kernel in
the middle shows promising results both SYCL
versions are close to CUDA and DPC++ per-
forms even better. This is important due to the
structure of the code. It is a long piece of code
that makes functions call to other complex sort-
ing algorithms, so it shows how SYCL is capa-
ble of delivering great performance in this sce-
nario. The other two kernels tell a different story
in both cases hipSYCL is too far from CUDA
and also from DPC++, which means that for
hipSYCL there are large margins of improve-
ment. For DPC++the situation is slightly differ-
ent, it takes longer than CUDA, but the results

are encouraging. The real problem is the hard
limit on the number of registers because also the
"optimize kernel" would use more registers and
it would lead to better performance.

Kernel name

Ti
m

e[
us

]

0

100

200

300

align_kernel pacman_is_pocket optimize_kernel

CUDA DPC++ hipSYCL

Figure 2: Performance comparison SYCL vs
CUDA on three different big kernels

The overall SYCL slowdown using DPC++is
about 15% and with hipSYCL is 48%.

Targetting AMD GPUs
To understand if code portability corresponds to
performance portability, the runtime on AMD
hardware is compared with the original times
obtained with CUDA because it doesn’t exist a
native version of the code for AMD, as in the
majority of HPC applications. The possibility
of having the same application run on different
hardware with few or no modifications is intrigu-
ing. Figure 3 provides encouraging results in
favor of SYCL over CUDA. The three examples
displayed on AMD require only to auto-tune the
block sizes, to exploit better the hardware, and
the results are close or even better than those of
the native code. It shows that SYCL is a very
good framework, capable of handling very well
simple and complex code in both its implemen-
tations, even if support for AMD hardware is
very early stage.
On the other hand, plot 4 presents a different
perspective. The first two kernels are those that
required a lot of effort and code changing to
make them work effectively on AMD. The out-
comes of these changes are not the expected
performance-wise, in fact, the loss is too large.
Looking only to DPC++ bars, the loss com-
pared to CUDA is huge and it makes the dif-
ference from results presented in Figures 1 and
2. Probably the numbers of branches added to
cope with the new hardware and the early stage

5



Executive summary Nicolò Scipione

Kernel name

Ti
m

e[
us

]

0

50

100

150

eval_opt_metr_kernel set_best_pose_opt_kernel pacman_is_pocket

CUDA DPC++ hipSYCL

Figure 3: CUDA on A100 vs SYCL on AMD
MI100 on three kernels with similar results using
auto-tuning

of the platform support are the cause of these
times. Looking at hipSYCL the situation is a
little bit better, in align_kernel there is a huge
difference from CUDA but in the other two, the
distance is less, particularly ligand_is_bumping
is very close to the native platform implemen-
tation. The difference detected in the optimize
kernel is curious since the kernel was tweaked to
make it work on AMD by adding a loop. This
change guarantees the correct result, and it has
a great effect on the performance if the compiler
used is hipSYCL, while the performance using
DPC++ is way worst.

Kernel name

Ti
m

e[
us

]

0

50

100

150

200

250

300

optimize_kernel align_kernel ligand_is_bumping

CUDA DPC++ hipSYCL

Figure 4: CUDA on A100 vs SYCL on AMD
MI100 on three kernels where it struggles the
most

The overall slowdown of SYCL on AMD
compared to legacy code is of 100% using
DPC++and 30% using hipSYCL.

5. Conclusion
The work reported in the thesis and the data
presented indicate that SYCL reached a great
level. All the following considerations must take

into account that it is still in an early stage of
development. Nonetheless, it is impressive. For
what concerns portability is important to dis-
tinguish between two cases. SYCL indeed al-
lows the same code to run on different types of
accelerators and architectures thanks to its dif-
ferent implementations. It is possible to write
code that runs on different architectures without
modification. On the other hand, to obtain the
best performance possible and to have compa-
rable results with native code, it is necessary to
tune the applications, so researchers still have to
understand the underlining platform and how to
code for it. Converting an existing application to
SYCL across different architectures of the same
accelerators is already possible. Limitations of
the framework can be overcome by rewriting al-
gorithms, or in many cases, its evolution will
provide the missing functions. Performance-wise
section 4 shows that SYCL is similar to CUDA
performance in almost any case, especially if
considering DPC++as compiler. Moreover, im-
plementations are improving continuously, so it
could close the gap very soon. On AMD’s plat-
form, the performances obtained are encourag-
ing even though the distance in those two kernels
is too much to be considered acceptable but the
evolution of the compilers and tweaking algo-
rithms to align them to the underline hardware
will make it as fast as on NVIDIA, as it is pos-
sible to observe on all the other kernels.
To conclude, SYCL reduces a lot the difficulty of
writing portable and performance-oriented code
if targeting a single category of accelerators. In
any case, performance doesn’t come for free and
it still requires that engineers know the underline
architecture to obtain the best from it.
All the results presented in this work will be pre-
sented at IWOCL&SYCLCon2022

References
[1] Tom Deakin and Simon McIntosh-Smith.

Evaluating the performance of hpc-style sycl
applications. IWOCL ’20, New York, NY,
USA, 2020. Association for Computing Ma-
chinery.

[2] István Z. Reguly. Performance portability
of multi-material kernels. In 2019 P3HPC,
pages 26–35, 2019.

6


	Introduction
	State of The Art
	Contribution
	Performance
	Conclusion

