POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE

E DELLINFORMAZIONE

EXECUTIVE SUMMARY OF THE THESIS

Experimental Assessment of Deep Reinforcement Learning Assisted
Optical DC/HPC Network Reconfiguration Methods

LAUREA MAGISTRALE IN TELECOMMUNICATIONS ENGINEERING - INGEGNERIA DELLE TELECOMUNI-

CAZIONI

Author: M ASSIMILIANO SICA
Advisor: PRor. MAsSSIMO TORNATORE
Co-advisor: Pror. S.J. BEN Yoo

Academic year: 2021-2022

1. Introduction

Data center (DC) and high performance com-
puting (HPC) networks are at the roots of any
cloud computing system and are responsible for
interconnecting efficiently the different parts of
a system architecture. In the recent years cloud
computing has seen an impressive growth with
services like AWS, Azure and Google Cloud
Platform becoming the standard for almost any
tradition IT service. In particular, the wide dif-
fusion of machine learning has led to an increase
in workload for the current data center systems
which are now dealing with different types of
traffic, with different quality-of-service require-
ments and an increased number of demands.
Current data center networks rely on over pro-
visioned static links which are designed to han-
dle worst case scenarios. The current approach
not only is very expensive to maintain, but is
also inefficient since most of the current data
center traffic is highly unpredictable and prone
to oscillations. One of the most promising so-
lutions is optical switch reconfiguration, which
allows to provision paths depending on the cur-
rent network situation with very fast switching
times if compared to a classical electrical switch.

To drive optical switch reconfiguration several
integer linear programming and heuristic meth-
ods have been tried, however they tend to show
limited scalability and poor generalization capa-
bilities. To solve the above problem I am going
to present a deep reinforcement learning (DRL)
[4] based optical reconfiguration method using
the experimental test bed in Fig. 1. Deep rein-
forcement learning allows to learn patterns that
humans would not be able to find, and general-
ize to different scenarios without explicit train-
ing. The specific goal is to show that optical
reconfiguration can indeed improve the train-
ing performance of distributed machine learning
(DML) workloads in case of network congestion.
To give an idea of how relevant this goal is in [3]
the authors claim that "Since 2012, the amount
of compute in the largest Al training jobs has
been increasing exponentially with a 3.4-month
doubling time, 50x times faster than the pace of
Moore’s Law". By setting up the test bed with
the proper number of servers, a real time net-
work monitoring system and a routing algorithm
I was able to show a 5x training time decrease for
the deployed distributed computer vision algo-
rithm. In addition using a self-supervised mod-

ule I was able to improve the convergence of the
DRL agent and visit the failure state 29% less
times.

CONTROLLER

OFCTL-REST

&

O PyTorch DRL

sFlow @

SFLOW

_ &8 _
=8 &=
N E a_—

Ay
ElM
v.\\.m ;n,,,,,-l
A,
g =

Figure 1: System Architecture

2. Current State of the Art

The problem of optical reconfiguration has been
treated in literature in multiple occasions. The
initial approach taken by most researchers was
to write an integer linear programming (ILP)
for reconfiguration, however the complexity of
these methods does not scale efficiently with the
size of the current data center infrastructure, as
pointed out in [5]. Also heuristic algorithms
have been proven to be non adequate to solve
the task since they are often very far from opti-
mal [5]. In this context, people started exploring
machine learning based solutions that have the
potential to scale properly without considerable
human intervention. The two main papers that
inspired my work are [5] and [2]. Diving deeper
in [5], the authors were able to develop a convo-
lutional neural network architecture capable of
finding an optimal or near optimal reconfigura-
tion scheme given as input the current demand
matrix and the topology of the network. The
overall architecture ends up being quite complex
and based on three separate modules responsible
for:

e Scoring a traffic demands matrix and topol-
ogy couple
e Labeling the historical traffic traces with
topologies with high scores
e Mapping module to actually map a demand
matrix to a topology
In [2] the authors developed a DRL based frame-
work for avoiding Quality-of-Service (QoS) dete-
rioration of applications running within a data
center. Whenever a certain application’s QoS
deteriorates the DRL is triggered and the work-
loads on the overloaded links are reconfigured.
QoS is defined in terms of throughput, latency
and packet loss combined together in:

S
QS(t) =T, - > (kKiLas+k3PL) (1)
s=1

Where T), is the throughput, Las is the latency
and Pl is the packet loss of reconfigured work-
loads at time t with QoS s, while k; and ko
are weighted factors. The authors make use of
OpenFlow to periodically poll the SDN agents
and gather the statistics needed for computing
the QS function and for checking the QoS sta-
tus. The authors tested their application using
some real world workloads belonging to different
categories with very different needs (online serv-
ing, scientific computing, offline backup) and ob-
tained significant results up to 6.9% network la-
tency improvement with respect to heuristic re-
configuration methods.
However, DRL itself and in particular Deep
Q-Learning tends to follow a trial and error
approach which leads to many failures during
training and a very long, data-hungry training.
To be more specific a failure in our case could
mean a network collapse. So the authors of
[1] have developed a self-supervised reversibility-
aware algorithm that can help improve the train-
ing performance of the agent and lead to less vis-
its to the failure state and faster convergence.

3. Solution Development

The algorithm that I developed for this master
thesis is based on multiple components:
e Workloads: Iperf and distributed machine
learning
e Traffic monitoring
e Routing
e Deep Q-learning agent

The distributed machine learning algorithm is
the main workload for which we want to opti-
mize the training time, the Iperf traffic instead
is used to congest the network and trigger the
reconfiguration. For this experiment I am us-
ing a 9 Gbit/s UDP Iperf traffic because TCP
traffic is not suitable for congesting the network
because of congestion control. The DML is de-
ployed over VM1, VM2, VM3 and VM4 which
are shown in Fig. 1. VM7 and VMS are used
respectively as iperf server and client.

In order to route the traffic in the network and
understand the level of congestion of each link,
I had to make use of a network monitoring tech-
nology. Sflow ended up being the best tool for
the task since it can be easily configured inside
the top of the rack switches and in the controller
and offers a rest API which allows to query mul-
tiple traffic metrics in real time. By means of
these metrics I estimate the current IP to IP
traffic matrix in bits per second.

Now that the traffic matrix has been estimated
using Sflow, the top of the rack switches need to
know where to route the incoming packets. To
do so I developed a routing algorithm that for
every node pair combination finds the 5 short-
est paths and picks the one with more band-
width available. Once the path is chosen I make
use of the Ryu ofctl rest API running in the
controller to send OpenFlow messages to install
correct flow tables in the switches.

Last but not least the Deep Q-Learning-based
agent has been developed in order to generate a
new topology whenever the link congestion lev-
els go above 80% for any link where the dis-
tributed machine learning algorithm is running.
The new topology is generated by re-configuring
the optical circuit switch shown as a cylinder in
figure 1. The agent takes as input the current
state represented by the number of congested
links where the DML is running and outputs a
score for each available action. The state space
is made up by 4 states (see figure 4) which are
one-hot encoded before being fed to the agent’s
neural network. Once we have the scores for ev-
ery action we pick the one with the highest one
and send a reconfiguration command to the op-
tical switch via a TCP socket using SCPI. The
action space is made up by 4 actions a0,al,a2,a3
which allow for mobility between the different
states (see figure 4)

The agent structure is as follows:

1. input layer: 4x15 ReLU activated

2. normalization layer

3. hidden layer: 15x30 ReLU activated

4. normalization layer

5. output layer: 30x4 ReLU activated
The whole algorithm is represented by the
flowchart in Fig. 2

Episode Start (<}

v

Implement Initial
Configuration

v

Estimate Traffic
Matrix and Route

v
£> Forevery step
v
Vv

No
Congestion
threshold is met?

Are we in the best’
state or F state?

Figure 2: Algorithm Flow Chart

The first step is to set up the initial optical
switch configuration and flow tables needed to
start the DML. The initial configuration is state
3 in the Markov chain represented in Fig. 4 and
its topology is shown in Fig. 3. The reason
why there are three congested links is because
a 9Gbit /s Iperf is generated between VM8 and
VM7 and it is going to congest all the links in
the network where the DML is running. Given
that the DML follows a ring all-reduce commu-
nication pattern (0 - 3 — 2 — 1 — 0) all the
3 links are going to be at the same time used
by the DML and congested by the Iperf. The
second step is to estimate the traffic matrix us-
ing the metrics accessible through the Sflow rest
API and to install the flow tables on the differ-
ent top of the rack switches. Now that the ini-
tial setup is done I start monitoring the status
of the links and if more than 80% of the band-
width is used over a link occupied by DML traffic
I trigger reconfiguration. The new reconfigura-
tion schema is chosen by the DRL agent from the
ones available in the action space which allow to
move to either state 3, 2, F or 0 (the optimal

. m- _
=1 &=
gg R
=/ =

2 =g~
e, E‘-’m -’a
= g w
||

Figure 3: State 3

one). However, the action leading to the F state
leads to a network failure. If that specific action
is chosen I am going to ignore the action and
collect a reward of -0.125 without actually im-
plementing it. The reason is that I want to avoid
unnecessary network crashes which may create
problems at the application level (the DML does
not restart properly). Instead if the action is le-
git then I collect the reward using the formula
in Eq.3

In Fig 4, the Markov chain representing my de-
cision process is shown. Every state represents
the number of congested links where the ma-
chine learning algorithm is sending traffic. It is
important to consider only the links being used
by the DML since the overall performance of
the project depends only on its completion time.
The reward function A(t) where t is a specific
time step of the episode is defined as:

A(t) = non_conforming dml(t)
_ non_conforming_dmli(t +1) (2)
total links

From Fig. 5 we can see that convergence is
reached around epoch 250. It is worth remind-
ing that 0.125 is the best reward attainable by
the agent while -0.125 is the worst. In Fig. 6 we
can see the evolution of the agent’s training loss
changing along the x-axis which represents the
different training epochs. The agent is trained
every five episodes. An episode is terminated if

either the F state or the 0 state are visited or 10
reconfigurations have been implemented.

Figure 4: Markov Chain

Figure 5: Rewards per episode

0.040
0035
0030
0025
0.020
0015
0010

0.005

0.000 l-

Figure 6: DRL loss evolution

4. Conclusions

For this thesis I developed a deep reinforcement
learning based optical reconfiguration algorithm
to improve the training time of a distributed ma-
chine learning algorithm running over 4 nodes in
an experimental test bed in presence of network
congestion. [was able to demonstrate a 5x times
training time improvement by generating a new
topology via optical switch reconfiguration and

5000

4000

3000

2000

1000

Figure 7: DQN performance over 20 epochs

proper routing to separate completely the DML
from the congesting traffic flow.

Fig. 7 shows the comparison in terms of training
time between the DML running on the virtual
machines without any other kind of disturbance
(blue), the DML running with Iperf and opti-
cal reconfiguration enabled (red), and the DML
running with Iperf without optical reconfigura-
tion enabled (green). The actual values are:

1. Only DML : 9778 seconds (16 minutes)

2. DML and 9 Gbit/s UDP Iperf: 5676 sec-

onds (94 minutes)

3. Reconfiguration: 1026 seconds (17 minutes)
The result is very relevant since it provides a
proof of concept that distributed machine learn-
ing workloads can have their training time im-
proved thanks to optical reconfiguration. How-
ever, the training of our agent can be improved
using the theory in [1].

First of all we need to update the reward func-
tion to:

A(t) =non__conforming dml(t)
_ non_conforming_dmi(t +1)

total links -5

(3)

Where SS is a variable estimated by the re-
versibility network which is defined as:
e one fully connected layer 4x10 ReLu acti-
vated
e one fully connected output layer 20x1 Sig-
moid activated
SS is representing the degree of reversibility of
each action, and its goal is to penalize actions
which are irreversible (for example going to the

F state has to be strongly penalized). One may
argue that terminating the episode both when
state F or 0 is reached is going to teach the
agent to avoid the optimal action leading to
state 0 (optimal state). To avoid this issue the
SS penalty is not applied to the action leading
to the optimal state.

The comparison between the regular DQN agent
and the self-supervised aided one is shown in
Fig. 8, and the comparison in terms of visits
to the failure state is reported in Fig. 10. In
Fig. 9 the loss of the self-supervised network is
shown using the same x-axis as Fig. 6, since the
DRL and the self supervised network are trained
together. It is worth pointing out that the self-
supervised loss is not showing the ideal behav-
ior (smooth convergence to a value), despite de-
creasing and converging around the value of 0.2,
the convergence is not very stable. This could
be a starting point for a future investigation.

Figure 8: Reward evolution DQN vs reward evo-
lution DQN with self-supervised module

Figure 9: Self-supervised loss

The main limitations of my works are related to
scalability both in terms of number of nodes and
applications running in the test bed. A future

Figure 10: Failure state visits per algorithm

improvement could be to deploy other applica-
tions on the test bed (Hadoop, media streaming
etc...) to check the performance variations, and
to increase the state space by simulating my al-
gorithm over an actual data center network to
deal with the possible scalability issues that may
arise from using DQN.

5. Acknowledgements

I would like to thank Prof. Massimo Tornatore
who helped me out during my Master’s and gave
me the possibility to go to pursue my thesis at
UC Davis. A special thanks goes to Dr. Sandeep
Kumar Singh who followed me closely during my
work in Davis and taught me how to make it
through my first research experience. 1 would
also like to thank Prof. Roberto Proietti and
Prof. S.J. Ben Yoo for hosting me in their lab
and providing me with funding for my time in
California.

On a personal level I would like to thank my
family for supporting me throughout my entire
journey in both the bachelor’s and the master’s.
I could not have reached this goal without your
support.

A special thanks goes to U.U.

To conclude I would like to thank my univer-
sity colleagues with whom I have shared ups and
downs and long days and nights working on a
multitude of projects. Thanks to your friendship
and positive attitude I was able to keep myself
strong and focused throughout my studies.

References

[1] Nathan Grinsztajn, Johan Ferret, Olivier
Pietquin, Matthieu Geist, et al. There is
no turning back: A self-supervised approach
for reversibility-aware reinforcement learn-

2l

13l

4]

[5]

ing. Advances in Neural Information Pro-
cessing Systems, 34:1898-1911, 2021.

Xiaotao Guo, Fulong Yan, Xuwei Xue, Bitao
Pan, George Exarchakos, and Nicola Cal-
abretta. Qos-aware data center network re-
configuration method based on deep rein-
forcement learning. Journal of Optical Com-
munications and Networking, 13(5):94-107,
2021.

Mehrdad Khani, Manya Ghobadi, Moham-
mad Alizadeh, Ziyi Zhu, Madeleine Glick,
Keren Bergman, Amin Vahdat, Benjamin
Klenk, and Eiman Ebrahimi. Sip-ml: high-
bandwidth optical network interconnects for
machine learning training. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference,
pages 657675, 2021.

Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Mar-
tin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al.
through deep reinforcement learning. nature,
518(7540):529-533, 2015.

Human-level control

Mowei Wang, Yong Cui, Shihan Xiao, Xin
Wang, Dan Yang, Kai Chen, and Jun
Zhu. Neural network meets den: Traffic-
driven topology adaptation with deep learn-
ing. Proceedings of the ACM on Measure-
ment and Analysis of Computing Systems,
2(2):1-25, 2018.

	Introduction
	Current State of the Art
	Solution Development
	Conclusions
	Acknowledgements

