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Abstract

A Markov decision process is a widespread mathematical framework to
formalize sequential decision-making problems. In this context, an artificial
learning agent interacts with a potentially unknown environment, aiming
to reach a previously defined long-term goal. Usually, the performance of
the agent is evaluated through a reward function: a numerical feedback
that indicates to the agent how well it is performing with respect to its task.
Solving a Markov decision process means finding an interaction strategy that
maximizes the cumulative sum of rewards, commonly called optimal policy.
To find such a policy, a suitable way is to explore the set of all the strategies,
looking for an optimal one. Unfortunately, because of the enormous size of
the policy space and its complex relation with the environment dynamics,
performing this search is an arduous challenge.

The goal of this thesis is to devise a method to substantially ease the
policy search problem, by performing a compression of the policy space into a
finite set of representative elements. These elements are representative in the
sense that, via off-policy estimation techniques, they allow to approximately
evaluate the performance of any policy. In this document we propose and
analyze a viable solution procedure to such problem, and we consequently
evaluate the compression quality with some practical examples. Moreover,
we provide theoretical guarantees on the obtained results and we suggest
interesting directions for future works.
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Estratto in lingua italiana

L’intelligenza artificiale è il settore dell’informatica che studia come
costruire sistemi informatici intelligenti, che sono cioè in grado di risolvere
problemi e compiti complessi che normalmente richiederebbero l’intervento
umano. In questa prospettiva, l’apprendimento automatico si concentra
su come costruire programmi che imparino attraverso l’esperienza. Più
specificatamente, l’apprendimento per rinforzo sviluppa agenti in grado di
risolvere problemi decisionali sequenziali. Questi agenti artificiali possono
raggiungere efficacemente un obiettivo a lungo termine definito dall’utente,
attraverso l’interazione con l’ambiente in cui si trovano. Grazie alla sua
grande flessibilità ed espandibilità, il processo decisionale di Markov è
una struttura matematica molto usata per formalizzare tale interazione.
In questo contesto, l’ambiente nel quale si trova l’agente può essere
descritto attraverso un insieme di stati, un insieme di azioni e un modello
di transizione che definisce come il comportamento dell’agente influenzi
l’ambiente. Per quanto riguarda l’agente, il suo obiettivo a lungo termine
è di solito codificato attraverso una funzione di ricompensa che, ad ogni
interazione, valuta numericamente come il decisore stia operando rispetto al
suo compito. L’obiettivo dell’agente è quello di trovare una politica ottimale,
cioè una strategia di azione che sia in grado di massimizzare la somma delle
ricompense ottenute.

Purtroppo, la ricerca di tale politica non è affatto facile. Prima di tutto
lo spazio di ricerca è enorme. Il numero di politiche deterministiche, cioè che
non possono rendere casuale la scelta dell’azione, è esponenziale rispetto al
numero di stati dell’ambiente, numero che può facilmente superare i milioni
in scenari reali. Inoltre, se non limitiamo la nostra attenzione a quelle deter-
ministiche, la dimensione dello spazio delle politiche è infinita. In aggiunta,
la relazione tra una politica e la sua capacità di raccogliere ricompense è
strettamente dipendente dal modello di transizione dell’ambiente e introdu-
ce cos̀ı un ulteriore livello di complessità. Nonostante queste difficoltà, se
il segnale di ricompensa è sufficientemente frequente e informativo, la let-
teratura fornisce molti algoritmi che sono in grado di trovare una politica
ottimale. Sfortunatamente le ricompense cos̀ı ben definite sono una rarità
e, quando esse non sono disponibili, gli algoritmi standard non riescono a
convergere in modo efficiente su nessuna soluzione significativa.
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In risposta a questo problema, la branca appena nata dell’apprendimento
per rinforzo senza ricompensa ha esplorato diverse possibilità per ottenere il
meglio dall’agente anche in una situazione cos̀ı difficile. L’idea è di preparare
l’agente alla ricerca efficace delle ricompense, qualsiasi sia il compito definito
dall’utente. A tal fine possiamo trovare in letteratura due tipi principali di
approccio. La prima categoria comprende i metodi che affidano all’agente
un compito esplorativo, con l’obiettivo di motivarlo a esplorare l’ambiente
prima che il compito definito dall’utente gli sia reso noto. Il secondo
approccio consiste invece nel raccogliere una quantità sufficiente di dati
dall’ambiente, in modo da rendere l’agente capace di affrontare qualsiasi
compito utilizzando soltanto i dati raccolti.

Obiettivo e Motivazione della Tesi

Lo scopo di questa tesi è la definizione di un nuovo approccio all’apprendi-
mento per rinforzo senza ricompensa nel quale, al fine di facilitare la suc-
cessiva ottimizzazione dell’agente, si effettua una compressione dello spazio
delle politiche. L’idea che motiva lo sviluppo di questa tesi è duplice. In
primo luogo, sfruttando la struttura del problema, è possibile stimare il va-
lore di una politica (cioè, quanta ricompensa essa è in grado di raccogliere)
utilizzando i dati provenienti da un’altra politica. In secondo luogo, è pos-
sibile quantificare quanto sarà accurata e affidabile questa stima sfruttando
una quantità propria della teoria dell’informazione, la divergenza di Rényi.
Con tali strumenti è possibile costruire un insieme di elementi rappresen-
tativi dello spazio delle politiche, dove per rappresentativo si intende che,
utilizzando tali elementi, è possibile stimare in modo affidabile il valore di
qualsiasi politica. Trovare una rappresentazione dello spazio delle politiche
cos̀ı compressa non è certamente un obiettivo facile, ma sicuramente vale la
pena di intraprendere una ricerca al riguardo.

Contributi Principali

Il primo contributo di questa tesi è la definizione del problema di
compressione dello spazio delle politiche. Per quanto ne sappiamo, una
prospettiva cos̀ı interessante non è mai stata considerata in letteratura e noi
intendiamo colmare la lacuna con questa tesi. Forniamo due formalizzazioni
equivalenti della questione: la prima come problema di copertura di un
insieme, la seconda come gioco non convesso a due giocatori. Inoltre
presentiamo una discussione della loro rispettiva complessità computazionale
e trattabilità.
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Il secondo contributo è una procedura basata sulla discesa del gradiente
per risolvere approssimativamente la formulazione del gioco a due giocatori.
L’algoritmo sfrutta la nozione di equilibrio differenziale di Stackelberg
e la procedura GDA per trovare soluzioni localmente ottimali al gioco,
corrispondenti a politiche di copertura localmente ottime.

Il terzo contributo è una garanzia teorica sui risultati ottenuti dall’algo-
ritmo, sotto forma di un limite superiore alla copertura effettiva, che non
richieda di trovare una soluzione globale del problema.

Il quarto e ultimo contributo è una validazione numerica della soluzione
proposta attraverso alcuni esempi pratici.
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Chapter 1

Introduction

Artificial intelligence is the field of computer science that studies how to
build intelligent computer systems, meaning that they are able to solve
complex problems and tasks that would normally require a human to
accomplish. In this perspective, machine learning focuses on how to build
software that learns through experience. More specifically, reinforcement
learning [1] addresses intelligent sequential decision-making agents. These
artificial agents can effectively reach a user-defined long-term goal by
interacting with the environment they find themselves in. Thanks to its
great flexibility and expandability, the Markov Decision Process [3] is a
convenient mathematical framework to formalize such interaction. In this
context, the environment can be described through a collection of states,
a set of actions, and a transition model that defines how the behavior of
the agent influences the environment. On the agent’s side, its long-term
goal is usually encoded through a reward function, that, at each interaction,
numerically assesses how well the decision-maker is performing with respect
to its task. The goal of the agent is to find an optimal policy, that is, an
action strategy that is able to maximize the cumulative sum of the rewards.

Unfortunately, searching for an optimal policy is not an easy task.
First of all the search space is enormous. The number of deterministic
policies, meaning that they are not allowed to randomize the action choice,
is exponential in the number of states of the environment, number that
can easily reach millions in real-case scenarios. Moreover, if we do not
restrict our attention to the deterministic ones, the size of the policy space
becomes infinite. Additionally, the relation between a policy and its ability
to collect rewards is strictly dependent on the transition model of the
environment and introduces a further layer of complexity. Nonetheless,
if the reward signal is sufficiently frequent and informative, the literature
provides many algorithms that can find an optimal policy. Regrettably,
well-defined rewards are a rarity in real-world scenarios and, when they



are not available, the standard algorithms fail to efficiently converge to any
meaningful solution [4].

In response to this problem, the newly born field of reward-free
reinforcement learning [5] has been exploring different possibilities to get the
best out of the agent even in such a difficult situation. The idea is to prepare
the agent for effective reward seeking, whatever the user-defined task. To
this end we can currently find in the literature two main approaches: pre-
training for online learning and reward-free sampling. The first category
comprises the methods that address an exploratory task to optimize the
agent’s policy [6, 7, 8, 9, 10, 11, 12], with the objective of motivating it to
explore the environment before the user-defined task is revealed. On the
other hand, the second approach is to collect a sufficient amount of data
from the environment, so that the agent is able to tackle any task using
only the collected data [13, 14, 15].

1.1 Thesis Goal and Motivation

The aim of this thesis is the definition of a novel approach for reward-
free reinforcement learning in which, in order to facilitate subsequent agent
optimization, a compression of the policy space is performed. The idea
motivating the development of this thesis is twofold. First, by exploiting the
structure of the problem, it is possible to estimate the value of a policy (i.e.,
how much reward it is able to collect) by using the data collected by another
policy [16, 17]. Secondly, it is possible to quantify how accurate and reliable
this estimation will be, by exploiting an information-theoretic quantity, the
Rényi divergence [18]. With such tools it is possible to construct a set of
representative elements of the policy space, where by representative we mean
that, by using the elements in the set, it is possible to reliably estimate the
value of any other policy. Coming up with such a condensed representation
is certainly not an easy goal, but surely worth undertaking.

1.2 Main Contributions

The first contribution of this thesis is the definition of the policy space
compression problem. To the best of our knowledge, such an interesting
perspective has never been considered before in the literature and we plan
to fill the gap with this thesis. Especially, we provide two equivalent
formalizations of the problem: the first as a set-covering, the second as
a non-convex two-player game. Moreover, we present a discussion of their
respective computational complexity and tractability.
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The second contribution is a gradient-based procedure (Algorithm 3)
to approximately solve the two-player game formulation. The algorithm
exploits the notion of differential Stackelberg Equilibrium [19] and the
∞-GDA procedure [20] to find locally optimal solutions to the game,
corresponding to locally optimal covering policies.

The third contribution is a theoretical guarantee on the results obtained
by the algorithm, in the form of an upper bound to the actual covering that
does not require a global solution to the problem.

The fourth, and last, contribution is a numerical validation of the
algorithm through some practical examples.

1.3 Thesis Structure

The thesis is structured as follows. We start in Chapter 2, where we
present all the fundamental concepts and algorithms that we will use in
the remaining of the writing. In Chapter 3, we formally present the policy
space compression as a set-covering problem, and analyze some of its peculiar
properties. In Chapter 4 we reformulate the problem into a more practical,
non-convex two-player game, and we propose a gradient-based method to
locally find a solution. In Chapters 5, 6 and 7 respectively, we analyze in-
depth each of the algorithm’s components: the optimization of the follower,
the optimization of the leader, and the coverage guarantees on the results.
In Chapter 8, we validate the solution proposed with some illustrative
experiments and, lastly, in Chapter 9 we summarize our findings and propose
different directions for future works.
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Chapter 2

Background and State of the
Art

In this chapter, we will present all the fundamental topics and concepts
that are needed for the assimilation of the following discussion, together
with some significant results of the current state-of-the-art. In Section
2.1, we will present the main mathematical framework used nowadays to
formalize sequential decision-making problems and outline some of its basic
properties. In Section 2.2, we will switch context and outline some statistical
methodologies to estimate the properties of a distribution, namely Monte
Carlo and importance sampling techniques. In Section 2.3, we will put
everything together and present the reinforcement learning field. Lastly, in
Section 2.4 we will present some basic concepts of game theory.

2.1 Markov Decision Processes

Many engineering and practical problems can be formulated as a sequential
decision-making problem. In this type of problem, a decision-maker
sequentially interacts with an environment with the objective of maximizing
its long-term performance with respect to a pre-specified goal. The agent-
environment interface provides a nice visualization for this interaction
process.



Figure 2.1: The agent-environment interface (from [1]).

At each time step, the agent executes an action on the environment with
the intention of reaching its specified goal. As a consequence, it receives
a reward that indicates how appropriate the action was, and observes to
which state the environment has transitioned to. This setting seems very
simplistic, but in practice it has proven very effective as a modeling tool for
problem-solving. Nowadays, the Markov Decision Process (MDP) [3] is the
most common framework used to formalize such types of problems.

2.1.1 Mathematical Formulation

Formally we can define the Markov Decision Process as a tuple of seven
elements (S,A,P,R, d0, γ):

• State space S, a non-empty and possibly infinite set of states.

• Action space A, a non-empty and possibly infinite set of actions.

• Transition model P : S × A → ∆(S), a function that, for each state-
action pair, specifies the probability distribution over the state space
at the next step. We denote as P (s′|s, a) the probability of reaching
state s′ after performing action a in state s.

• Reward function R : S ×A → R, a function that, for each state-action
pair, specifies the scalar reward obtained by performing that action in
that state. Without loss of generality, we can assume R(s, a) ∈ [0, 1].

• Initial state distribution d0 : ∆(S), is a probability distribution over
the initial state of the process.

• Discount factor γ ∈ [0, 1), the probability that the process will not
terminate at the next time-step. It is used to model the inherent risk
linked to the uncertainty of the future.

Additionally, we define the state-action space as the Cartesian product
between the state space and the action space.
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The Markov Property

We say that this process is Markovian [3] because both the transition
model and the reward function satisfy the Markov property, which can be
informally stated as the future is independent of the past given the present.
This means that all the information that the environment needs to determine
the immediate reward and the next state is all contained in the present state
of the process and the current action of the agent.

The Stationary Property

Analogously, we say that the process is stationary because the transition
model and reward function do not change over time.

2.1.2 Policies and Induced State-Action Distributions

A policy is a function that defines the behavior of the agent in the
environment

π : S → ∆(A).

For each state, the policy defines a conditional probability distribution
over the actions to perform in that state. Especially, we denote with
π(a|s) the probability of choosing action a in state s. If such probability
distribution collapses on only one action for each state, the policy is said to
be deterministic, otherwise it is referred to as stochastic.

We can combine the policy π and the transition model to understand
how the agent actually navigates the environment, by taking into account
both the individual decisions of the agent and the underlying structure of
the problem. This combination induces a probability distribution over the
state space S, referred in the literature as state distribution [3] and denoted
with the symbol dsπ. In the γ-discounted setting, the state distribution is
defined as

dsπ(s) = (1−γ)ds0(s)+γ

∫
SA

dsπ(s′)π(a′|s′)P (s|s′, a′) ds′ da′, ∀s ∈ S. (2.1)

Starting from the state distribution and the policy, it is possible to define
a probability distribution on all the possible state-action pairs, called state-
action distribution and denoted with the symbol dsaπ

dsaπ (s, a) = π(a|s) dsπ(s), ∀s ∈ S,∀a ∈ A.

If we are given a state-action distribution that is induced by some unknown
policy, it is possible to recover the originating policy in a simple way, namely

π(s, a) =
dsaπ (s, a)∑

a′∈A d
sa
π (s, a′)

. (2.2)

6



Note that this relation holds only for distributions that are induced by some
policy ! If one is given a distribution that does not have a policy counterpart
and (wrongly) applies this relation, they will nonetheless obtain a policy, but
that policy will not induce the same distribution they had at the beginning.
Fortunately, we can enforce a state-action distribution to be induced by
some policy with the following constraint∫

A
dsa(s, a) da = (1− γ)ds0(s)

+ γ

∫
SA

dsa(s′, a′)P (s|s′, a′) ds′ da′, ∀s ∈ S.
(2.3)

2.1.3 Reward and Performance

Having defined how the agent behaves in the environment, let us define
how to evaluate such behavior in mathematical terms. Intuitively, the
objective of the agent is to maximize the long-term cumulative reward, also
by keeping into consideration the uncertainty of the future with the discount
factor. Several performance metrics have been developed in the literature,
but the most common one is the expected γ-discounted cumulative reward [3]
criterion. According to the former, we can define the performance (denoted
as J(π)) in terms of expectation of the discounted summation of rewards
collected by following a policy π, i.e.,

J(π) =
1

1− γ E
π,d0

[ ∞∑
t=0

γtrt

]
.

Note that the expectation is needed because even with a deterministic
policy, the stochasticity of the transition model and/or the reward function
can make the rewards possibly different at each execution of the policy.
Alternatively, we can define the performance in terms of the state
distribution as

J(π) =
1

1− γ

∫
S
dsπ(s)

∫
A
π(a|s)R(s, a) da ds,

or in terms of the state-action distribution as

J(π) =
1

1− γ

∫
SA

dsaπ (s, a)R(s, a) da ds.

Solving an MDP means to find a particular policy, called optimal policy
and denoted as π∗, that is able to achieve a performance greater or equal
than any other policy in the policy space Π (i.e., the set of all the possible
policies). Put in mathematical terms, we want to find a policy π∗ such that

J(π∗) ≥ J(π), ∀π ∈ Π.
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2.1.4 MDP Exact Solution Methods

In this section, we will see some methods [1] that can be used to find such
an optimal policy. These methods have the advantage of always finding
the exact solution, but they require a lot of computational effort and, more
importantly, the knowledge of the transition model and the reward function,
which may not be available in practice. As we will see in the following
sections, it is possible to relax this assumption and find good solutions even
in a unknown environment.

Linear Programming

The first exact solution method we present exploits a linear programming
formulation [21] of the optimal policy problem, which immediately derives
from the above definition of the performance. Let d =

(
d(s, a)

)
s∈S,a∈A be

the vector that represents the γ-discounted state-action distribution induced
by a policy

maximize:
d

∫
SA

d(s, a)R(s, a)

subject to: d(s, a) ≥ 0, ∀s ∈ S, ∀a ∈ A (1)∫
SA

d(s, a) = 1 (2)∫
A
d(s, a) da = (1− γ)ds0(s)

+ γ

∫
SA

d(s′, a′)P (s|s′, a′) ds′ da′, ∀s ∈ S (3)

The solution d∗ of the above problem is the state-action distribution
that maximizes the discounted cumulative sum of the rewards (i.e., the
performance) on the MDP. Since we enforced such distribution to be
induced by some policy through the third constraint, we can directly extract
an optimal policy π∗ from it with Equation (2.2). The linear program
formulation presents |S| × |A| variables and |S|+ |S| × |A| constraints, and
therefore its complexity strongly depends on the dimension of the MDP.

Dynamic Programming

The second possibility we have for exactly computing the solution of an
MDP is to exploit a dynamic programming [1] formulation. To this end, we
first have to define two additional quantities, the state value function V and
the state-action value function Q.
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The state value function of the policy π in state s is the expected discounted
cumulative reward we get starting from state s and following policy π, i.e.,

Vπ(s) = E
π,d0

[ ∞∑
k=0

γkrt+k+1

∣∣∣ st = s

]
, ∀s ∈ S. (2.4)

The state-action value function of policy π in state s, action a, is the
expected discounted cumulative reward we get starting from state s,
performing action a and then following policy π, i.e.,

Qπ(s, a) = E
π,d0

[ ∞∑
k=0

γkrt+k+1

∣∣∣ st = s, at = a

]
, ∀s ∈ S, ∀a ∈ A.

The two quantities are linked by the relation

Vπ(s) =

∫
A
π(a|s)Qπ(s, a), ∀s ∈ S.

Note that we can now define the performance J with these quantities as

J(π) =

∫
S
ds0(s)Vπ(s) ds.

The optimal state value and state-action value functions (denoted respec-
tively V ∗(s) andQ∗(s, a)), are the value functions associated with an optimal
policy π∗, namely

V π∗(s) = V ∗(s) = max
π

Vπ(s), ∀s ∈ S

Qπ
∗
(s, a) = Q∗(s, a) = max

π
Qπ(s, a), ∀s ∈ S,∀a ∈ A.

Value Iteration

Expanding the definition in Equation (2.4), we can rewrite the state value
function in a recursive formulation, named Bellman expectation equation [1]

Vπ(s) = E
π,d0

[
rt+1 + γVπ(st+1)

∣∣∣ st = s
]

=

∫
A
π(a|s)

(
R(s, a) + γ

∫
S
P (s′|s, a)Vπ(s′) ds′

)
, ∀s ∈ S.

(2.5)

Note that the above formulation is linear in the variables Vπ(s), therefore it
can be easily solved in closed form with a matrix inversion. We can combine
the definition of optimal state value function and the Bellman equation to
derive the Bellman optimality equation, that recursively defines the optimal
state value function

V ∗(s) = max
a∈A

{
R(s, a) + γ

∫
S
P (s′|s, a)V ∗(s′) ds′

}
, ∀s ∈ S (2.6)
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Note that, by knowing the transition model and the optimal state value
function, it is possible to compute the optimal state-action value function,
and from it the optimal policy. Unfortunately, because of the maximization
over the actions, the system of equations in (2.6) is not linear and therefore
can’t be solved in closed form.

The idea of value iteration is to approximately solve the Bellman
optimality equation in (2.6), and then use it to extract the optimal policy.
Starting from an arbitrary state value function, it is possible to approach
V ∗ by iteratively applying Equation (2.6) turned into an operator, i.e., the
Bellman optimality operator. This procedure converges at the limit to the
true V ∗, and the magnitude of the update is proportional to the distance
from the unique fixed point V ∗ of such operator [3]. In practice, this
procedure is applied until the resulting variation of the state value function
is smaller than a threshold. From this approximate (but neighboring)
solution, we will extract a policy very close, or equal to, an optimal one.
Unfortunately, we have to be aware that since the optimization is performed
in the state value space, intermediate value functions may not correspond
to any policy.

Policy Iteration

The idea of policy iteration is to decompose the value iteration update in
two separate procedures: policy evaluation and policy improvement.

The policy evaluation step consists of computing the state value function
of a given policy. We can perform this calculation in closed form by solving
the system of |S| linear equations in (2.5).

The policy improvement step is a procedure that, given a policy π,
produces a policy π′ improving its state value function, i.e.,

Vπ′(s) ≥ Vπ(s), ∀s ∈ S.

From the policy improvement theorem [1], we know that such procedure can
be implemented simply by acting greedily on the policy π

π′(s) = arg max
a∈A

Qπ(s, a), ∀s ∈ S.
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Starting from a random policy π0, policy iteration iteratively applies the
evaluation and improvement steps, until the latter does not change the
policy anymore (i.e., π′ = π). From Equation (2.5), the only policy for
which the policy improvement step yields no changes is the optimal one. If
the state-action space is finite, policy iteration is guaranteed to converge to
the optimal policy in a finite number of steps [3].

Figure 2.2: Policy iteration structure (from [1]).

2.2 Sample-Based Estimation

The methods presented in the previous section are all capable of finding the
exact solution (i.e., the optimal policy) for any given MDP. Nonetheless,
they are rarely used in practice. Why is it so?

Setting aside for a moment the computational complexity, the main
limitation of linear/dynamic programming techniques is that they require
the knowledge of the MDP, meaning that the transition model and reward
function must be available to the agent during the optimization. In real-
world situations, these two quantities are usually unknown to the agent,
which therefore has to try to find a solution in a different way.

To this end, we now present a seemingly unrelated topic: how to estimate
the properties of a statistical distribution by repeated random sampling,
namely Monte Carlo techniques.

2.2.1 Monte Carlo Estimation

Monte Carlo techniques are a class of computational methods used to
estimate the parameters (usually mean and/or variance) of a distribution.
There are many problem settings in probability theory for which computing
an analytical solution is challenging, either because finding the exact solution
may be too computationally demanding, or because the underlying dynamics
of the process are not known. A possible, empirical solution to this problem
is to randomly draw samples from the target distribution and use them to
estimate the desired quantities.
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Suppose, for example, that we want to compute the expected value of a real-
valued function f(x) defined on the domain D, where p(x) is a probability
density function on D

µp = E
x∼ p

[
f(x)

]
=

∫
D
f(x)p(x) dx.

If finding the exact expected value by analytically computing the above
integral is not a viable option, we can resort to Monte Carlo techniques. By
using the probability function p(x), we sample points on the domain D. For
each sample, we compute the corresponding value of f(x) and then average
the results. What we obtain is a sample-based estimate of the expected value
µp denoted as µ̂p, i.e.,

µp =

∫
D
f(x)p(x) dx =⇒ µ̂p =

1

n

n∑
i=1

f(xi).

From the law of large numbers, as the number of samples n grows to infinity,
the empirical mean approaches the theoretical one.

2.2.2 Importance Sampling Estimator

What happens to the Monte Carlo estimation if f(x) is zero everywhere,
except in a region of D where the probability p(x) is very small? Clearly,
since the probability of drawing a sample with a non-zero value is minimal,
it is very likely that the empirical mean will be zero! A possible solution to
mitigate this problem is to intentionally take more samples from the critical
region of D, but, since we altered the sampling procedure, the new estimator
must be adjusted accordingly. Importance sampling [22] is a statistical
technique that does exactly so: it is used to estimate the parameters of a
distribution, called target, by using samples taken by a different distribution,
called behavioral.

Let q(x) be a positive probability density function defined on the same
domain D, satisfying the condition that q(x) > 0 whenever p(x)f(x) 6= 0,
we have that

µp = E
x∼ p

[
f(x)

]
=

∫
D
f(x)p(x) dx

=

∫
D

f(x)p(x)

q(x)
q(x) dx = E

x∼ q

[
f(x)p(x)

q(x)

]
= µq.

The term wp/q(x) = p(x)/q(x) is called likelihood ratio or importance weight
in the literature, and it is the adjustment term needed to compensate the
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fact that samples are drawn from q(x) instead of p(x). The sample-based,
importance sampling estimator of the expected value of f(x) is

µq = E
x∼ q

[
f(x)p(x)

q(x)

]
=⇒ µ̂q =

1

n

n∑
i=1

wp/q(xi)f(xi).

The importance sampling estimator has the desirable property of being
unbiased, meaning that the expected value of the estimator equals the
expected value of the estimated quantity, i.e.,

E
x∼ q

[
µ̂q(x)

]
= E

x∼ p

[
f(x)

]
.

Unfortunately, it may suffer from exceptionally high variance (potentially
infinite) of the importance weights, making the estimator of little use in
such cases. Intuitively, the more the two distributions p and q differ from
one another, the more the variance of the estimation gets bigger. In
the following, we will see how to define such a notion of difference (i.e.,
divergence) between two probability distributions.

2.2.3 Rényi Divergence

The Rényi divergence is an information-theoretic measure of the difference
between two probability distributions. Let P and Q be two σ-finite
probability distributions on the measurable space (X ,F) with p and q their
respective probability density functions. If P is absolutely continuous with
respect to Q (denoted as P � Q and meaning that P (A) = 0 whenever
Q(A) = 0 for all events A ∈ F), we can define the Rényi divergence between
P and Q of order α (α > 0 ∧ α 6= 1) as

dα(P ‖ Q) =
1

α− 1
log

∫
X
q(x)

(
p(x)

q(x)

)α
dx.

Note that dα is a divergence, not a distance, as its definition is not symmetric
(i.e., in general dα(P ‖ Q) 6= dα(Q ‖ P )). The Rényi divergence is a
non-negative quantity for any α > 0 and it is zero if and only if the two
distributions are the same, i.e.,

dα(P ‖ Q) = 0 ⇐⇒ P = Q.

In the limit case of α = 1, the Rényi divergence converges to the Kullback-
Leibler (KL) divergence

d1(P ‖ Q) = dKL(P ‖ Q) =

∫
X
p(x) log

(
p(x)

q(x)

)
dx.

Finally, we can define the exponentiated α-Rényi divergence as

Dα(P ‖ Q) = edα(P‖Q) =

[ ∫
X
q(x)

(
p(x)

q(x)

)α
dx

] 1
α−1

.
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Of particular interest to us are the results presented in [23], where the
authors show a tight connection between the importance weights and the
Rényi divergence, especially

E
x∼ q

[
wP/Q(x)

]
= 1, Var

x∼ q

[
wP/Q(x)

]
= D2(P ‖ Q)− 1.

Thanks to this last result, by computing the second order Rényi divergence
between any two distributions, we can know in advance how much variance
the importance weights will have. More precisely, we can upper bound the
variance of the importance sampling estimator [18] as

Var
x∼ q

[
µ̂q
]
≤
‖f‖2∞D2(P ‖ Q)

N

where ‖·‖∞ is the infinity norm and N the number of samples taken from q.

2.3 Reinforcement Learning

We are finally ready to tackle the difficult problem of reinforcement
learning: finding the optimal policy through sample-based interactions with
an unknown MDP. We say that the MDP is unknown, meaning that the
transition model and the reward function are not explicitly available to the
agent, but can only be observed by interacting with the environment. It is
maybe surprising how, with enough samples, it is possible to find very good
solutions even in such a challenging scenario.

2.3.1 Approximate Dynamic Programming

The first techniques we can use to tackle the reinforcement learning problem
are a modified version of the dynamic programming algorithms previously
outlined. Since we will not use these formulations in the remainder of the
thesis, we will limit ourselves to provide references. We greatly encourage the
curious reader to consult [24] for a detailed explanation of the first sample-
based version of value iteration, Q-Learning [25], and for a discussion on the
many sample-based versions of policy iteration, like Monte Carlo Control or
SARSA [1]. Instead, we will now focus on the policy gradient approach.

2.3.2 Stochastic Policy Gradient

As the dimension of the state-action space grows, representing explicitly
the policies becomes increasingly demanding. A possible solution is to
choose a suitable parameterization (for example, neural networks [26]),
and represent the policy with a parameter vector instead. Many different
parameterizations are possible, and how to choose between them is a
problem-dependent task left to the user. Differently from the previous
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sample based algorithms, in policy search methods [27] we do not evaluate
a policy by first computing or estimating its value function, but we directly
search the solution by navigating the parametric policy space

ΠΘ =
{
πθ : θ ∈ Θ ⊂ Rk

}
,

where θ ∈ Θ is a vector of parameters that defines the parametric policy πθ,
and Θ is the set of all the possible parameters. We require each parametric
policy πθ to be stochastic and differentiable with respect to the parameters
vector θ. Note that the stochasticity requirement can be relaxed and a
deterministic policy gradient can be defined [28].

Policy Gradient [29] algorithms exploit the gradient (i.e., the local
direction of maximum growth) of the performance measure to update the
policy parameters closer to the optimal one. This type of approach turns
out to be especially useful in scenarios where the state-space and/or the
action-space are continuous, in which explicitly computing the state-value
function is impractical.

Let us see how to derive ∇θJ(θ), the gradient of the performance
measure J(θ) with respect to the policy parameters θ. This quantity,
difficult to tackle at first glance, turns out to have a simple and concise
expression, formalized in the policy gradient theorem [30]

∇θJ(θ) ∝
∫
S
dsπθ(s)

∫
A
πθ(a|s)∇θ log πθ(a|s)Qπθ(s, a) da ds.

Several approaches have been proposed for estimating such gradient in a
sample-based fashion, like [30, 31]. Having a way to compute or estimate
the policy gradient, the algorithm is very simple:

Algorithm 1 Stochastic Policy Gradient

Input: Initial policy parameters θ(0), learning rate η
for t = 0, 1, 2, . . . until convergence do

Estimate the policy gradient: ∇θJ(θ(t))
Update the policy parameters: θ(t+1) ← θ(t) + η∇θJ(θ(t))

end for
Output: Policy parameters θ

Note that, like all gradient-based approaches, unless the objective function
is convex or some strict conditions apply [32, 33] we are not guaranteed
to reach the global optimum of the performance. The learning rate η is a
hyper-parameter that determines how fast the policy moves in the policy
space. From a theoretical perspective, since the gradient is a local measure,
the learning rate should approach zero. However, for the sake of converging
in a smaller number of iterations, we may choose larger learning rates, while
still being careful not to exaggerate. The choice of the optimal learning rate
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is unfortunately problem-dependent and still an open question. Many works
have explored ways to develop a sound learning rate schedule [34], we do not
cover them here.

2.3.3 The Problem of Exploration

All the procedures presented so far work well as long as the agent is provided
an informative and frequent reward signal. Unfortunately, designing reward
functions is a challenging feat and it is not always possible to come up with
such well-defined functions. If the reward is sparse, meaning that it is zero
almost everywhere but in few state-action pairs, the agent will have a much
more difficult problem to solve. Sometimes, the difficulty increases so steeply
that naive algorithms fail to converge or produce very unsatisfying solutions
[4]. This happens because the reward signal is used by the agent as a guide to
steer towards regions of the MDP where more rewards could be collected. If
the reward received by the agent is always zero, and no additional guidance is
provided, it will end up randomly wandering the state space, probably never
encountering a positive reward, failing its task. Because of this, nowadays
exploration is widely regarded as one of the most challenging problems in
reinforcement learning [5].

If the extrinsic reward function (i.e., the natural one encoded in the
MDP) is not informative enough to perform a sufficient and meaningful
exploration, we must then devise some methodologies that work also in the
complete absence of any pre-determined task. In recent years, the field of
reward-free reinforcement learning [5] is blossoming with many interesting
works in this direction. We can divide the contributions of the field in two
main classes: pre-training for online learning and reward-free sampling. The
first category of approaches [6, 7, 8, 9, 10, 11, 12], is to optimize the agent
with an explicit exploration objective, usually based on some information-
theoretic quantity, like the entropy of the state distribution. The idea is
to soft-start the agent with a good exploratory policy, in order to ease the
reward-finding problem when the task will finally be revealed. The second
category, like [13, 14, 15], is to collect a set of samples (called batch) from the
environment, informative enough to be sufficient to compute the ε-optimal
policy of any task, without having to interact with the environment anymore.
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2.4 Game Theory

Game theory [2] is a field of mathematics concerned with describing the
dynamics of the interaction between a group of rational and selfish decision-
makers, that interact with each other for the sake of reaching some goal. In
this setting, we say what an agent is rational and selfish, meaning that,
based on its knowledge, it will always choose the most preferred option
according to its preferences. Note that this formulation does not exclude
the possibility for the players to exhibit altruistic behaviors, but only that
such attitude has to be made explicit in the player’s preferences. Many
possible formalizations of strategic games exist in the literature [2], here we
will only present the normal form, which will be useful in the remainder of
the thesis.

2.4.1 Normal Form Strategic Game

A normal form strategic game consists of a collection of three elements
(I, X, F ):

• A set of players I = {1, 2, . . . , n}

• For each player, the set of actions available to it X = {X1, X2, . . . , Xn}

• For each player, a function that encodes its preferences (called utility
function or payoff ) F = {f1, f2, . . . , fn}.

We can think of the functions in F either as utilities to be maximized or
costs to be minimized. In the remainder of the thesis, we use the former
convention. If the reader prefers the opposite, it is sufficient to change all
≥ with ≤ and max with min in the following definitions.

Normal form games between two players where both can only play a
finite number of actions are called bimatrix games. Such type of game can
easily be represented by two matrices, each representing the payoffs of the
two players. A very simple and familiar example of bimatrix game is the
Matching Pennies game.

Figure 2.3: Matching Pennies game (from [2]).
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2.4.2 Classification of games

Many classifications of strategic games exist in the literature, we will present
in the following a few relevant to our subsequent discussion.

• Cooperative vs Competitive games.
In cooperative games, players are allowed to forge alliances and
coalitions, while in the competitive setting every player is for itself.

• Simultaneous vs Sequential games.
In simultaneous games, all the players choose their actions (i.e., make
a move) at the same time. In sequential games instead, there is
a predetermined order of play between agents, which can therefore
observe the behavior of the preceding players before making their
move. In two-player settings, the first player is called leader and the
second one follower.

• Single-Shot vs Repeated games.
In single-shot games, the game is played only once, in repeated games
the game is repeated a number of times. In this second scenario,
the outcome of previous games can of course affect the choices of the
players.

• Constant-Sum vs Non-Constant-Sum games.
A game is said to be constant-sum if, in every possible outcome of the
game, the payoffs of all the players sum to the same constant. If this
constant is zero, the game is called a zero-sum game. If instead such
a constant does not exist, the game is called non-constant-sum.

2.4.3 Game Strategies

A strategy is a complete specification of how the player will act throughout
the game. We say that a strategy is a pure strategy if the action selection
process is deterministic, meaning that given the state of the game the player
will always play a particular action with certainty. Instead, if the player
chooses how to behave according to some probability distribution over the
actions available at the moment, we say that the strategy is a mixed strategy.
Finally, a strategy profile contains a strategy for each player, and therefore it
defines how the game will be played. In mathematical terms, we can denote
these quantities as:

• The strategy of a single player: xi

• The set of all possible strategies for player i: Xi

• The strategy profile (a strategy for each player): x = (x1, x2, . . . , xn)

• The strategy profile for all players except i: x−i = (xj)j∈I/{i}.
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2.4.4 Games Equilibria

In game theory, a solution to a game is an equilibrium between the players.
We present in the following two equilibrium criteria: Nash equilibrium and
Stackelberg equilibrium.

Nash Equilibrium

The Nash Equilibrium [35], proposed by the mathematician John Nash in
1951, is the most common way to define the solution of simultaneous, non-
cooperative games. The equilibrium condition can be informally stated as
no player can benefit from changing his/her strategy, given that the other
players do not change theirs. Formally, we say that a strategy profile
x∗ = (x∗1, x

∗
2, . . . , x

∗
n) is a Nash equilibrium if

∀i ∈ I, fi(x∗i , x∗−i) ≥ fi(x′i, x∗−i), ∀x′i ∈ Xi.

If the number of actions available to each player is finite and mixed strategies
are allowed, at least a Nash equilibrium exists [35]. Unfortunately, the
computational complexity of finding such equilibrium is PPAD-complete
even for a bimatrix game [36]. Therefore, it is impractical to look for such
a strategy profile, and many approximated notions of Nash equilibria are
used instead, like the differential Nash equilibrium [37].

Stackelberg Equilibrium

The Stackelberg Equilibrium [38] is a solution concept that applies to
sequential, non-cooperative games. Even if the Stackelberg equilibrium
concept applies to a generic number of players, we will restrain us here to the
simpler two-player setting. The inherent order of play between players (the
first one called leader and the second one follower) is not compatible with
the definition of Nash equilibrium given earlier, as in a Nash equilibrium the
order of play between players can be interchanged [39]. The leader aims to
solve the problem given by

max
x1∈X1

{f1(x1, x2) | x2 ∈ arg max
y∈X2

f2(x1, y)},

while the follower is left with the problem

max
x2∈X2

f2(x1, x2).

As the two-players actually deal with asymmetric problems, the order of play
is crucial in a Stackelberg game. A strategy x∗1 ∈ X1 is called a Stackelberg
equilibrium for the leader if

sup
x2∈r(x∗1)

f1(x∗1, x2) ≥ sup
x2∈r(x1)

f1(x1, x2), ∀x1 ∈ X1,
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where r(x1) = {y ∈ X2 | f2(x1, y) ≥ f2(x1, x2), ∀x2 ∈ X2} is the rational
reaction set (or best response set) of x2. Moreover, for any x∗2 ∈ r(x∗1), the
strategy set (x∗1, x

∗
2) is a Stackelberg equilibrium for the game.

Unfortunately, as for the Nash equilibrium, the computational com-
plexity of finding a (even approximate) Stackelberg equilibrium is PPAD-
complete [40]. As a result, there has been a significant interest in the study
of approximated equilibrium notions such as local or differential Stackelberg
equilibria [38].

Local Stackelberg Equilibrium

The definition of local Stackelberg equilibrium is quite similar to the
standard definition, with the only addition of restricting the equilibrium
condition to a subset of all the strategies.

Consider Ui ⊂ Xi for i = 1, 2, the strategy x∗1 ∈ U1 is a local Stackelberg
solution for the leader if

sup
x2∈rU2

(x∗1)
f1(x∗1, x2) ≥ sup

x2∈rU2
(x1)

f1(x1, x2), ∀x1 ∈ U1,

where rU2(x1) = {y ∈ U2 | f2(x1, y) ≥ f2(x1, x2),∀x2 ∈ U2} is the best
response set of x2 ∈ U2. Moreover, for any x∗2 ∈ rU2(x∗1), the strategy set
(x∗1, x

∗
2) is a local Stackelberg equilibrium for the game.

Differential Stackelberg Equilibrium

The notion of differential Stackelberg equilibrium stems from the first and
second-order conditions on the objective function that must hold for its
extreme points. Let us denote the total derivative as ∇, the second-order
total derivative as ∇T∇ and the second-order derivative with respect to x
as ∇Tx∇x. The joint strategy x = (x∗1, x

∗
2) ∈ X is a differential Stackelberg

equilibrium if

∇x1f(x∗1, x
∗
2) = 0, ∇x2f(x∗1, x

∗
2) = 0,

∇T∇f(x∗1, x
∗
2) > 0, ∇Tx2∇x2f(x∗1, x

∗
2) > 0.

Moreover, it is interesting to note that, in a generic zero-sum game,
the notion of differential and local Stackelberg equilibrium coincide for
sufficiently smooth functions f1 and f2 [38].
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2.4.5 Gradient Descent Ascent

Having defined the approximated equilibrium conditions, let us now see
how to find differential Stackelberg equilibria in practice. We will tackle
the simpler two-player, zero-sum setting, where f1 = −f and f2 = f .
The gradient descent ascent algorithm stems directly from the well-known
gradient descent algorithm, presented in Section 2.3.2. While the latter has
only one function and one parameter vector to optimize, the gradient descent
ascent algorithm applies the same idea to two functions and two parameters
vectors at the same time. If the updates of the two players are done
sequentially, the set of stable critical points of the GDA algorithm coincides
with the set of local Stackelberg equilibrium points [20]. Nonetheless, in
practice it is possible to relax the separation between the two players, by
setting accordingly their learning rates. The intuitive idea is that, if the
learning rate of the follower η2 is much bigger than the one of the leader η1,
the former will move much faster in the parameter space, allowing it to reach
a (local) best response before its adversary has moved significantly from its
last position. The proportionality factor between the two learning rates is
called timescale separation in the literature and usually denoted with τ . The
resulting algorithm is called τ -GDA.

Algorithm 2 Gradient Descend Ascend (τ -GDA)

Input: Initial parameters (x
(0)
1 , x

(0)
2 ), timescale separation τ = η2/η1

for t = 0, 1, 2, . . . , until convergence do

x
(t+1)
1 ← x

(t)
1 − η1∇x1f(x

(t)
1 , x

(t)
2 )

x
(t+1)
2 ← x

(t)
2 + τη1︸︷︷︸

η2

∇x2f(x
(t)
1 , x

(t)
2 )

end for
Output: Stable critical point x = (x1, x2)

If τ → ∞, we obtain the vanilla, completely separated update. If τ = 1,
it is known that the algorithm is not guaranteed to converge to a game-
theoretically meaningful point [41]. Interestingly, a recent work [19] filled
the gap between these two extremes, by proving that there exists a finite τ∗

such that ∀τ ∈ (τ∗,∞), x is a stable critical point of τ -GDA if and only if
it is a local Stackelberg equilibrium.
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Chapter 3

Policy Space Compression

In this chapter, we will present the main focus of this thesis, the policy space
compression problem. In Section 3.1, we will contextualize the problem
in the reinforcement learning setting. In Section 3.2, we will provide a
mathematical formulation and analyze its computational complexity.

3.1 The Policy Space in Reinforcement Learning

The policy space is a notoriously difficult-to-handle component in reinforce-
ment learning problems. First of all, it is huge: the number of deterministic
policies is exponential in the number of states (|A||S|), and the number of
stochastic policies is infinite. Moreover, as we have seen in Section 2.1.2, the
relation between a policy and its induced state-action distribution is strongly
problem-dependent, as it relies on the transition model of the MDP. Given
the size and the complexity of such space, it should not come as a surprise
that navigating it looking for an optimal policy is a demanding feat, es-
pecially if the state and/or action spaces are infinite. For example, policy
gradient algorithms try to manage this complexity by exploiting local in-
formation on the growth direction of the performance (i.e., its gradient) in
order to move the current policy closer to the optimal one. While policy
search methods may still operate well in practice, they nonetheless have to
handle the undiminished complexity of the policy space.

3.1.1 The OPTIMIST Approach

A different approach to the policy search problem comes from OPTIMIST
[16] and subsequently RANDOMIST [17], where the policy search problem
is formulated as a structured Multi Armed Bandit (MAB) [42, 43] problem.
In the MAB setting, the agent is given a set of actions (called arms), each
one associated with a stationary reward function, unknown to the agent.
The goal is to promptly find the most rewarding arm, doing as few actions



as possible. While in the classical setting, the rewards of the arms are all
mutually independent (i.e., pulling one arm does not give any information on
the other arms), in the structured MAB setting, the former is not true, and it
is possible to estimate the reward that would have been obtained by pulling a
different arm than the selected one. The idea of OPTIMIST is to treat the
whole parameter space of the parametric policy space (defined in Section
2.3.2) as the set of continuous actions available to the MAB algorithm,
where the reward for each arm is the performance of the corresponding
policy. To exploit the underlying structure of the problem, OPTIMIST
applies a fine-tuned version of the importance sampling estimator presented
in Section 2.2.2, as a means to use the samples collected with the selected
arm (i.e., the behavioral policy) to estimate the performance of a different
arm. Of course, as we have seen in Section 2.2.3, the variance of the
importance sampling estimator strictly depends on the Rényi divergence
between the induced state-action distributions of the two policies, which
means that they must be sufficiently similar in order to be used in such
way. In order to construct its arm set and perform such estimation, the
algorithm has to perform a discretization of the, otherwise infinite, policy
space. Clearly, for the sake of estimating a larger number of arms, one
would prefer to have a set of representative policies, instead of a collection
of unrelated elements. Unfortunately, the complex relation between a policy
and its induced state-action distribution makes this type of discretization
very difficult and problem-dependent.

3.1.2 An Interesting Question

Let us digest all the considerations made so far. The policy space is
a considerably complex, but fundamental, element in the reinforcement
learning context. Its cardinality is infinite (or exponential if restricted to
the deterministic subset), and it is related to the distribution space with
a complex, problem-dependent relation. Since it represents the set of all
the possible agent’s strategies within the environment, we must deal with it
in order to find the optimal policy of the given task. Different algorithms
perform this search in different ways, each with its pros and cons. For
example, it is possible to reduce the policy search problem to a structured
MAB problem, exploiting the relation that exists between the performance
of similar policies with the importance sampling estimator. For the sake of
performing such evaluation, not all the policies have the same capabilities,
and we can use the Rényi divergence between their induced state-action
distributions to quantify the variance of the estimation. In light of all these
considerations, one question arises naturally:
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Is it possible to perform a compression of the infinite policy
space into a finite, representative set, by keeping all and
only the components that are needed to reliably estimate the
performance of any other policy in the policy space?

In this work, we give a positive answer to the previous question and propose
an algorithm to find such reduced policy space in an efficient way.

3.2 Problem Statement

Let us now formally present the problem statement of this thesis.

Policy Space Compression

LetM be an MDP defined by the tuple (S,A, P, d0) and ε a coverage
requirement expressed in α-Rényi divergence. The goal of Policy
Space Compression is to reduce the policy space Π to a finite,
representative, minimal set of elements C. These elements are such
that for every policy µ ∈ Π, there exist at least one element π ∈ C
that is sufficiently close to µ, meaning that the α-Rényi divergence
between the state-action distributions induced by µ and π is bounded
by ε.

3.2.1 Problem Complexity

As the reader may have noticed, we are presenting a problem that is, in
its essence, a set-covering problem, which is well known to be NP-hard
[44]. Because of the problem complexity, finding the exact solution is
highly impractical. Nonetheless, in the following chapter, we will provide a
dual game-theoretic formulation that we plan to approximately solve with
sample-based methods.

3.2.2 Coverage of Deterministic Policies

Elaborating further on the goal of the compression, it is important to know
that for every reward function, there exists at least a stationary, Markovian
and deterministic optimal policy [3]. Since our motivation is to ease the
policy search problem (i.e., the search for the optimal policy of the given
task), we can focus our attention solely on the coverage of the deterministic
subset of the policy space. In this way, we restrict the goal of the coverage to
a smaller set, and we avoid requiring the solution to have more components
than needed.
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3.2.3 Formal Problem Statement

Wanting to outline more formally the (deterministic) policy space compres-
sion problem, we report in the following the conditions that the covering set
C must satisfy in order to be a viable solution.

Policy Space Compression

Let the policy space Π be the set of Markovian, stationary policies
and ΠD ⊂ Π be the set Markovian, stationary, deterministic policies.
Given an MDP M = (S,A, P, d0) and a coverage requirement
ε expressed in α-Rényi divergence, the solution C ⊂ Π to the
policy space compression problem is a finite, representative, minimal
covering set of policies, i.e.,

• | C | <∞

• ∀µ ∈ ΠD, ∃π ∈ C | Dα(dsaµ ‖ dsaπ ) ≤ ε

• @ C′ |
(
∀µ ∈ ΠD, ∃π ∈ C′ | Dα(dsaµ ‖ dsaπ ) ≤ ε

)
∧
(
|C′| < |C|

)
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Chapter 4

An Algorithm for Policy
Space Compression

In this chapter, we will provide a dual formulation of the policy space
compression problem as a non-convex two-player game. Even though finding
the global solution of such a game is still computationally impractical, it is
possible to efficiently find locally optimal solutions by employing gradient-
based techniques. By using these methods, we are able to develop an
algorithm to find approximated solutions to the policy space compression
problem. In Section 4.1, we will present the dual game-theoretic formulation
and analyze the fundamental properties of the game. In Section 4.2, we will
report the pseudocode of the approximated solution algorithm and explain
its general line of reasoning.

4.1 Min-Max Game Formulation

Let us consider a set of parameterized covering policies and a generic
parametric deterministic policy

C = {πθk : θ ∈ Θ ⊆ Rn}k∈[K], πµ : µ ∈M ⊆ Rn | πµ ∈ ΠD.

If we fix the number of covering policies to K, we can recast the policy space
compression problem into a non-convex min-max game[45] of the form

min
θ∈ΘK

max
µ∈M

f(θ,µ), (4.1)

where the objective function f is defined as

f(θ,µ) := min
k∈[K]

Dα

(
dsaµ ||dsaθk

)α−1
. (4.2)

The optimal solution of the game (θ∗,µ∗), represents the covering set C
with θ∗ and the most distant policy from the set with µ∗. Since the first



player can be either seen as a single leader with multiple components or a
fully coordinating coalition of K players, with some overloading of notation
in the following we will use the term leader to refer to both notations
interchangeably.

4.1.1 Game Properties

We can characterize the game defined in (4.1) by stating some of its core
properties, which are listed below.

• The game is zero-sum. From the definition in (4.1), the utility of the
first player is the opposite of the utility of the second player.

• The game is clearly competitive by construction.

• The game is sequential: the order of play greatly influences the
resulting solution. For example, consider what would happen if the
min player had its turn after the max player. By setting one of its
policies equal to the one put forward by the max player, it could
easily win the game and obtain f(θ,µ) = 0, with any configuration
of the remaining K − 1 policies. Clearly, this is not a way of finding
good covering policies, therefore the min player must play before the
max player. Since we know from the minimax theorem [39], that in
a Nash equilibrium the order of play can be interchanged, it is clear
that the equilibrium criterion that we must adopt is the one defined
by Stackelberg.

• The game is single shot, as it does not make sense to play more than
once. As the reader may have noticed, the role of the player µ is quite
ancillary here, as it serves only as motivation for the leader to find
good covering policies.

4.2 How to Solve the Min-Max Game

To solve the policy space compression problem, we can iteratively solve its
dual game-theoretic formulation presented above. Starting the procedure
with K = 1, we find the corresponding optimal solution of the two-player
game in (4.1). With the optimal solution, we check if the obtained coverage
f(θ∗,µ∗) is smaller than the coverage requirement ε. If such evaluation is
successful, it means that we have found the desired covering policies and
we can stop the procedure. Otherwise, it means that the current dimension
K is not enough to satisfy the requirements, and therefore we will need to
repeat the procedure with K + 1 policies. In order to find the solution
to the compression problem, we will continue to increment K until the
corresponding optimal solution of the game is able to satisfy the coverage
requirement.
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4.2.1 Finding the Solution in Practice

The procedure we just presented is a viable way to exactly solve the
policy space compression problem. Unfortunately, as we outlined in Section
2.4.4, finding the exact solution to a generic non-convex two-player game is
computationally very challenging. As a consequence, in order to be able to
find a set of covering policies also for big MDPs, we will have to employ an
approximated procedure for finding a local solution to the two-player game,
and therefore an approximated solution of the policy space compression
problem. As we will see in Chapter 7, even if we are not able to efficiently
find the global solution to the two-player game, it is possible to upper bound
its value, and therefore to conservatively assess the quality of the covering
policies found. Note that, by relaxing the optimality requirement on the
solution of the game, we are implicitly relaxing the minimality requirement
on the covering set.

4.2.2 Solution Algorithm

We are ready to present the algorithm employed in this thesis. The general
structure is the same as the exact procedure outlined in the previous section,
with the only difference that instead of the global optimal solution to the
two-player game, we employ a locally optimal one. In particular, in order to
find such a solution we will use the ∞-GDA algorithm presented in Section
2.4.5, or a slight modification that we will present in Section 6.3.2.

Algorithm 3 Policy Space Compression

Input: Coverage requirement ε, MDP M
θ(0) ← Initialize-Leader-Coalition(K = 1)
repeat

for t = 0, 1, 2, . . . , until convergence do
µbr ← Best-Response(θ(t))
θ(t+1) ← Update-Coalition(µbr)

end for
if Check-Coverage(θ) > ε then

K ← K + 1
θ(0) ← Update-Leader-Coalition(K)

end if
until Check-Coverage(θ) ≤ ε

Output: Covering policies C

In the next chapters, we will take a closer look at each of the three main
components of the algorithm. We will start from the follower’s perspective,
then present the leader’s optimization, and conclude with the coverage
guarantees. Bon appétit!
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Chapter 5

Finding the Best Response

In this chapter, we will tackle the game-theoretic formulation from the
follower’s perspective, and we will see different alternative methods to find
a solution. In Section 5.1, we will provide a formalization of the problem
amenable to global optimization with off-the-shelf solvers. In Section 5.2,
we will outline an alternative gradient-based approach and analyze some of
its peculiar properties. In Section 5.3, we will report an efficient way to find
a surrogate solution to the problem, close enough to the true solution to be
a worthy challenge for the leader.

5.1 Problem Formulation

In a minimax game, given the leader’s strategy x1, the follower’s problem
reduces to finding the best response x∗2 in the set of all possible follower’s
strategies X2, i.e.,

x∗2 ∈ arg max
x2∈X2

f2(x1, x2).

Let us take this generic problem definition in the context of the policy space
compression problem.

5.1.1 Policy Space Formulation

The problem of finding the deterministic best response (denoted as µbr) to
the leader’s strategy can be formalized as follows

µbr ∈ arg max
µ∈M

(
min
k∈[K]

Dα

(
dsaµ ||dsaθk

)α−1)
. (5.1)

Unfortunately, this problem formulation is difficult to solve in practice, as
the policy parameter µ and its induced state-action distribution dsaµ are
linked by the recursive relation in Equation (2.1), that is challenging to be
expressed exactly in a non-recursive form.



5.1.2 From Primal to Dual Variables

Fortunately, it is possible to avoid this limitation by performing a proper
change of variable, from policies to distributions, and look for the solution of
the problem directly in the distribution space. Once we found the solution,
we can revert the variable change and extract the corresponding policy with
Equation (2.2). Notably, not all the distributions in the distributions space
are induced by some policy. Therefore, in order to leave unaltered the
nature of the problem, we will have to enforce the distribution found by
the optimization to be a valid distribution (i.e., that it is induced by some
policy on the MDP) with Equation (2.3).

5.1.3 Distribution Space Formulation

We present in the following the problem formalization in the distribution
space, that is now amenable to be solved by standard optimization
techniques

maximize
d∈Rsa

min
k∈[K]

Dα

(
dsaµ ||dsaθk

)α−1

subject to: d(s, a) ≥ 0, ∀s ∈ S, ∀a ∈ A (1)∫
SA

d(s, a) = 1 (2)∫
A
d(s, a) da = (1− γ)d0(s)

+ γ

∫
SA

d(s′, a′)P (s|s′, a′) ds′ da′, ∀s ∈ S (3)

‖d(s, ·)‖1 = ‖d(s, ·)‖2, ∀s ∈ S (4)

where d =
(
d(s, a)

)
s∈S,a∈A is the vector that represents the state-action

distribution of the follower and ‖.‖p is the standard Lp-norm. Let us now
analyze each constraint more in depth to showcase its purpose.

1–2. The first two constraints ensure that the continuous variables d(s, a)
are indeed specifying a probability distribution over the state-action
space of the MDP.

3. The third constraint makes sure that the distribution specified in d is
a valid distribution, permitting the change of variable.

4. The fourth constraint specifies that the state-action distribution d is
induced by a deterministic policy.

To understand how the last constraint works, notice that by applying
Equation (2.2), we can infer that a policy π is deterministic if and only
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if its induced state-action distribution satisfies the following

∀s ∈ S, ∃! a ∈ A | dsaπ (s, a)∑
a′∈A d

sa
π (s, a′)

= 1,

which means that, for each state, the state-action distribution has only one
non-zero entry. We can express this last condition by enforcing that, for
each state, the summation of the elements in d(s, ·) must be equal to square
root of the summation of the squares of the same elements.

5.1.4 Deterministic vs Stochastic Best Response

Before analyzing the complexity of the proposed problem in the next section,
it is useful to first make a small detour on the effect of the fourth constraint
on the problem. One could ask:

Does the solution to the follower’s problem change if we require
the best response to be a deterministic policy?

As it turns out, if the leader’s coalition is composed of more than one
element, the answer is positive. As we will see in Chapter 8, if the follower
is allowed to pick non-deterministic policies, it can choose a policy that
randomizes over strategies that are collectively averse to the leader, even
if the single element is not. Such randomized policies are usually hard to
cover and they might cause the algorithm to underestimate the coverage
of the deterministic ones, forcing it to add more leaders to the coalition.
On the bright side, the coverage obtained on the non-deterministic policies
is a conservative measure of the coverage obtained by considering only
deterministic best responses. It is easy to see why this is true, by noting
that the deterministic best response problem is equivalent to the stochastic
one with an additional constraint (i.e., the fourth). Clearly, any solution
found by a more restrictive version of the same problem cannot exceed the
solution found by the restricted version.

5.1.5 Problem Complexity

The problem outlined in Section 5.1.3, even in its dual formulation, still
includes a number of significant challenges. While the first three constraints
are linear in the decision variables d(s, a), the fourth one is an equality
quadratic constraint, which is non-convex. Moreover, the presence of the
min in the objective function makes it non-convex as well.

Non-convex optimization is a much more challenging problem than its
convex counterpart, as we are bound with the existence of local minima (or
maxima), which makes global optimization harder. Indeed, it is well-known
that the computational complexity for solving a generic non-convex problem
is exponential in the size of the problem. The inherent hardness means that
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we are unfortunately unable to find the exact solution for big MDPs, making
evident the need for an approximated approach.

5.2 Gradient-Based Approach

In this section, we present a scalable, gradient-based approach to optimize
for a relaxed solution concept, i.e., local optimality. Since the purpose of the
follower is to challenge the leader with difficult-to-cover policies to motivate
it to present better covering policies, it is not strictly necessary to provide
to the leader the global best response at each optimization step, but any
challenging enough policy will make it.

5.2.1 Handling the Minimum

Before we can dive into the discussion, we must first solve one last issue with
the objective function. Let us report here once again the definition of f :

f(θ,µ) := min
k∈[K]

Dα

(
dsaµ ||dsaθk

)α−1
.

While it’s possible to extract the gradient of the inner term, it is not
trivial how to handle the min in the above equation, since it makes the
whole equation non-differentiable. A possible solution is to consider only
the closest component of the leader’s coalition at each step and move the
follower’s policy away from it. Clearly, since the closest leader can change
after some iterations, the direction will be always adjusted to consider the
currently closest component.

5.2.2 Policy Gradient Derivation

Let us now derive the gradient of the inner term of the objective function
with respect to the follower’s parameters. We can apply the well-known
chain rule formula to ease our computations

∇µDα(dsaµ ||dsaθk)α−1 =
∂Dα(dsaµ ||dsaθk)α−1

∂µ
=
∂Dα(dsaµ ||dsaθk)α−1

∂dsaµ

∂dsaµ
∂µ

.

The derivative of the Rényi divergence with respect to its first argument is
easy to obtain

∂Dα(dsaµ ||dsaθk)α−1

∂dsaµ
= α

∫
SA

(
dsaµ (s, a)

dsaθk(s, a)

)α−1

ds da.
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The second term, i.e., the derivative of the γ-discounted state-action
distribution with respect to the policy parameters µ, requires instead a
bit more computations

∂dsaµ (s, a)

∂µ
= dsaµ (s, a)∇µ log dsaµ (s, a)

= dsaµ (s, a)
(
∇µ log πµ(a|s) +∇µ log dsµ(s)

)
.

Chaining the two terms we obtain

∇µDα(dsaµ ||dsaθk)α−1 =

= α

∫
SA

dsaθk(s, a)

(
dsaµ (s, a)

dsaθk(s, a)

)α(
∇µ log πµ(a|s) +∇µ log dsµ(s)

)
ds da.

The term ∇µ log dsµ(s) is particularly tricky to compute in a form that is
suitable for model-free estimation in continuous environments, due to the
recursive relation that links the policy parameter µ and the corresponding
state-distribution. Fortunately, many works in the imitation learning
[46, 47, 48] area tackle this problem from various angles.
Taking inspiration from [46, 47], we can write

∇µdsµ(s) = ∇µ
(

(1− γ)d0(s) + γ

∫
SA

dsµ(s)πµ(a|s)P (s|s, a) ds da

)
dsµ(s)∇µ log dsµ(s) = γ

∫
SA

dsµ(s)πµ(a|s)P (s|s, a)

(
∇µ log dsµ(s)

+∇µ log πµ(a|s)
)

dsda

∇µ log dsµ(s) =

∫
SA

γ
dsµ(s)

dsµ(s)
πµ(a|s)P (s|s, a)

(
∇µ log dsµ(s)

+∇µ log πµ(a|s)
)

dsda

∇µ log dsµ(s) =

∫
SA

γQ0
µ(s, a|s)

(
∇µ log dsµ(s) +∇µ log πµ(a|s)

)
ds da,

where in the last equation we have substituted the inverse dynamics model
Q0
π(s, a|s), which represents for each state s the probability of having reached

that state by performing action a in state s in the previous step

Q0
π(s, a|s) =

dsπ(s)

dsπ(s)
π(a|s)P (s|s, a).
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5.2.3 First-Order Algorithm

We have all the ingredients to construct a gradient-based algorithm for
finding an approximated best response, of which we report the pseudocode
in the following.

Algorithm 4 Best Response Gradient

Input: Leader strategy θ = (θk)k∈[K], divergence order α, learning rate η

µ(0) ← Initialize-Follower-Policy(θ)
for t = 0, 1, 2, . . . until convergence do

k ← Closest-Leader-Index(θ,µ(t))
µ(t+1) ← µ(t) + η∇µDα(dsaµ ||dsaθk)α−1

end for
Output: Follower’s policy parameters µ

5.2.4 Second-Order Algorithm

Algorithm 4 that we presented in the previous section uses a first-order
approximation of the objective function (i.e., the gradient) to update the
parameter µ in order to maximize the objective function. However, it is
possible to define a second-order algorithm that is able to exploit not only the
first-order approximation of the objective function, but also its curvature,
which can provide a significant benefit in minimax optimization [49]. After
computing the second-order derivative (i.e., the Hessian) of Dα(dsaµ ||dsaθk)α−1,

denoted as H = ∇>µ∇µDα(dsaµ ||dsaθk)α−1, we can modify the update rule of
Algorithm 4 and compute the curvature-aided policy update as follows

µ(t+1) ← µ(t) +
(
H
)−1∇µDα(dsaµ ||dsaθk)α−1.

Moreover, in order to generally improve the stability of the second-order
optimization, we can substitute the inverse of the Hessian H with its
positive truncated inverse [50]. As we will see in Section 8.1, the addition
of the information on the curvature can greatly help the optimization,
enabling the follower to find the global best-response even in very challenging
leader configurations. Unfortunately, calculating the Hessian matrix is a
computationally demanding operation that will obviously slow down the
whole algorithm. One interesting direction for future works could be to
devise some heuristics to dynamically decide whether to switch to the
second-order method as the leader provides more and more challenging
covering policies during the optimization.
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5.2.5 Second-Order Policy Gradient Derivation

Let us start by computing the Hessian of the Rényi divergence with respect
to the parameter µ

∇>µ∇µDα(dsaµ ||dsaθk)α−1 =

= ∇>µ∇µ
∫
SA

(
dsaµ (s, a)

)α(
dsaθk(s, a)

)1−α
dsda

= ∇µ
∫
SA

α
(
dsaµ (s, a)

)α−1(
dsaθk(s, a)

)1−α∇µdsaµ (s, a) ds da

= α

∫
SA

(
dsaµ (s, a)

dsaθk(s, a)

)α−1(
∇>µ∇µdsaµ (s, a)

+ (α− 1)
∇µdsaµ (s, a) ∇>µdsaµ (s, a)

dsaµ (s, a)

)
ds da.

Notably the second factor contains the Hessian of the state-action
distribution dsaµ and the square of its first order derivative. We can easily
obtain the latter following similar steps as in the previous section

∇µdsaµ (s, a) ∇>µdsaµ (s, a)

dsaµ (s, a)
= dsaµ (s, a)

(
∇µ log dsaµ (s, a) ∇>µ log dsaµ (s, a)

)
=

= dsaµ (s, a)

[(
∇µ log πµ(a|s) +∇µ log dsµ(s)

)(
∇>µ log πµ(a|s) +∇>µ log dsµ(s)

)]
.

It is less straightforward to obtain the Hessian of dsaµ , as it is

∇>µ∇µdsaµ (s, a) = ∇µ
(
dsaµ (s, a)∇µ log dsaµ (s, a)

)
=

= dsaµ (s, a)

(
∇µ log dsaµ (s, a) ∇>µ log dsaµ (s, a) +∇>µ∇µ log dsaµ (s, a)

)
= dsaµ (s, a)

(
∇µ log dsaµ (s, a) ∇>µ log dsaµ (s, a)

+∇>µ∇µ log πµ(a|s) +∇>µ∇µ log dsµ(s)

)
.
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Going further expanding the last term, we get

∇>µ∇µ log dsµ(s) =

=

∫
SA

γQ0
µ(s, a|s)

(
∇>µ∇µ log dsµ(s) +∇>µ∇µ log πµ(a|s)

)
+ γ∇>µQ0

µ(s, a|s)
(
∇µ log dsµ(s) +∇µ log πµ(a|s)

)
ds da

=

∫
SA

γQ0
µ(s, a|s)

[
∇>µ∇µ log dsµ(s) +∇>µ∇µ log πµ(a|s)

+

(
∇>µ log πµ(a|s) +∇>µ log dsµ(s)−∇>µ log dsµ(s)

)
×
(
∇µ log dsµ(s) +∇µ log πµ(a|s)

)]
ds da,

by noting that

∇µQ0
µ(s, a|s) = Q0

µ(s, a|s)
(
∇µ log πµ(a|s) +∇µ log dsµ(s)−∇µ log dsµ(s)

)
.

Finally, bringing it all together we have

∇>µ∇µDα(dsaµ ||dsaθk)α−1 =

= α

∫
SA

dsaθk(s, a)

(
dsaµ (s, a)

dsaθk(s, a)

)α
×
(
α
(
∇µ log πµ(a|s) +∇µ log dsµ(s)

)(
∇µ log πµ(a|s) +∇µ log dsµ(s)

)>
+∇>µ∇µ log πµ(a|s) +∇>µ∇µ log dsµ(s)

)
dsda.

5.2.6 Initialization of the Follower’s Policy

After having defined the core of the gradient-based algorithm, we must
tackle a minor but important aspect: the initialization of the follower’s
policy. Since the gradient-based algorithms rely on local information of
the objective function’s curvature to perform the optimization, the starting
point can greatly influence the final result, whenever the objective function
is non-convex like in our case. One possible solution to mitigate this problem
is to repeat the process for multiple random initializations to keep the best
result. Additionally, it is possible to devise some initialization heuristics that
may help guide the algorithm to more favorable regions. In particular, we
report in the following two of these initialization tactics that proved effective
in practice.
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Uniform Initialization

The first heuristic we devised is to initialize the follower to a uniform policy.
The idea behind such initialization is to position the follower in a neutral
starting point, enabling it to choose how to move without relying too much
on its own action distribution.

Opposite Initialization

The second heuristic is orthogonal to the previous one, as the follower is
initialized to a policy that chooses with high probability actions that are
not chosen by the leaders. The idea is trying to push the follower away from
the coalition in the policy space, in an attempt to reach a distant region also
in the distribution space.

5.2.7 Entropy Regularization

As we have seen in Section 5.1.4, the value of the objective function
f(θ,µ) might be higher when considering stochastic policies instead of just
deterministic policies. However, since we are not interested in covering
stochastic policies, we aim to incentivize the gradient-based algorithm
to output deterministic policies, by adding to the objective function a
penalization term for stochastic policies. A common way to measure how
much a policy is stochastic is the entropy function [51]. While it is common
to include an entropy incentive in RL [52, 53], in our case we want to
penalize the policy entropy. Since the more stochastic a policy the greater
its entropy, we will subtract the gradient of the policy entropy from the
objective function.

5.3 Relaxed Linear Program Formulation

By employing a relaxed linear program formulation of the best response
problem, it is possible to efficiently compute a surrogate solution. Since we
will present such formalization as a means to evaluate the coverage obtained
by the leader, we will delay the discussion of this alternative to Section 7.1.
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Chapter 6

Leader Optimization

In this chapter, we will devote our attention to the leader’s optimization
scheme. In Section 6.1, we will define formally the problem and provide a
visualization tool that will be used throughout the discussion. In Section
6.2, we will explain how to coordinate the leader’s coalition. In Section 6.3,
we will present a gradient-based algorithm to move the components closer
to the best response in the policy space. In Section 6.4, we will illustrate
how to detect that a new component should be added to the coalition, and
how to properly initialize it.

6.1 Problem Formulation

Let us report here, for the reader’s convenience, the problem formulation
outlined in Section 4.1, in which we denote explicitly the best response that
we have properly defined in the previous chapter. The leader aims to solve
the problem

min
θ∈ΘK

f(θ,µ = best response(θ)),

where f is our usual objective function defined as

f(θ,µ) := min
k∈[K]

Dα

(
dsaµ ||dsaθk

)α−1
.

In order to be able to perform the optimization on the leader’s side, we
have to face three main tasks. First, we need to define how to coordinate
the components of the leader coalition. Arguably, they have to operate as
a single entity, rather than a disconnected group of individuals. As we will
see, the problem of the coordination of the components can be reduced to
the problem of choosing, at each iteration, which component to move in
the direction of the best response. Secondly, having selected a component
to move, we need to define how to move it. We will see a gradient-based
algorithm to do so and some critical aspects of the optimization. Lastly, we
need to define how to detect that the current members of the coalition are



not sufficient to reach the desired coverage threshold, and how to initialize
the newly added component to the coalition.

6.1.1 Visualizing the Problem

In order to ease the subsequent discussion, we would like to present some
visual examples based on real problem configurations. Unfortunately,
since the policies lie in a high-dimensional space, providing illustrative
visualizations is quite challenging. Thus, for the sake of clarity, we will
present our considerations in a much simpler, two-dimensional, Euclidean
version of the problem at hand. In the following, we will represent the
distribution space with a two-dimensional triangle, the leader components
with red circles, the best response with a yellow star, and the Rényi
divergence between them (i.e., the objective function) with a green line.

Figure 6.1: Four leaders and the corresponding best response.

Note that with the blue triangle we are representing the distribution space
and not the policy space, as the objective function is computed between the
state-action distributions of the policies, not the policies themselves. Recall
that because of the complex, problem-dependent relation between the two,
the distance between policies is not necessarily representative of the distance
between distributions. For example, changing the policy in its less-visited
states has little to no influence on the induced distribution. To give the
reader a visual intuition, we represent here the policy space with a green
triangle and we draw a black line to connect a policy to its corresponding
induced distribution. As it is easy to see, we both have very distant policies
that elicit the same behaviour and vice versa.

39



Figure 6.2: Distribution space (blue) vs policy space (green).

Since all the following considerations and criteria are based on the Rényi
distance computed between induced state-action distributions, with a little
abuse of notation we will use the term leader and best response to denote
their respective state-action distribution (i.e., “the distance between the
leader and the best response” translates to “the distance between the state-
action distributions induced by the leader and the best response”). With all
the needed definitions in place, we are ready to start tackling the first issue
of the leader’s optimization.

6.2 Coalition Coordination

The first problem we need to solve is deciding how to coordinate the leader’s
coalition. It is not trivial to define the behavior of a group of individual
elements in such a way that they behave consistently with respect to a social
objective. In this work, we solved the coordination problem by moving the
components of the leader one at a time. As we will see in the following, by
doing so we avoid making unnecessary (or even detrimental) modifications
and we keep the leader’s optimization as stable as possible.

6.2.1 Moving the Closest Component

The most immediate way for the leader to reduce the objective function
f is to reduce the distance between the closest of its components and the
best response. This fact follows directly from the definition of f , as every
component that is not the minimizer with respect to k does not affect the
objective function. While the selected component moves, it is wise to keep
the other components of the leader still. Moving all the components at once
towards the current best response would indeed leave unguarded previously
covered regions of the distribution space, likely favoring the follower at the
next iteration.
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It is easy to convince oneself of the former by observing Figure 6.3: notice
how myopically moving all components simultaneously significantly worsens
the leader’s covering capabilities.

(a) Initial situation.

(b) Moving only the closest component. (c) Moving all components.

Figure 6.3: Moving one vs all components comparison.

6.2.2 Moving the Least Effective Component

Another strategy to minimize the objective function is to move the least
effective component of the leader’s coalition. Intuitively, since the goal of the
leader is to cover the policy space with the minimum number of components,
the distributions covered by each element of the coalition should not overlap.
Therefore, we can identify the least effective element in the coalition as
the element that is closest with respect to all the other components, as
such element does not contribute much to the coverage objective. Recall
that, differently from the Euclidean distance, the Rényi divergence is not
symmetric. Therefore, the closest component with respect to the others in
the coalition will almost always be only one element, not a pair. In Picture
6.4 we denote the least effective leader with a violet circle.
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(a) Initial situation. (b) Final situation.

Figure 6.4: Moving the least effective component.

6.2.3 Comparison

What are the differences between the two strategies we outlined and what
are the advantages and the disadvantages of using one with respect to the
other?

Starting from the first strategy, moving the closest component is
arguably the fastest and more direct way to reduce the value of the objective
function. However, evolving the coalition according to this criterion may be
inefficient with respect to the utilization of the components. As a matter
of fact, we are not guaranteed to have a small overlapping between the
components: the risk is to incur in a sub-optimal coverage of the distribution
space.

On the other hand, moving the least effective component directly
incentivizes the leader to make the best out of its coalition, by indeed
avoiding unnecessary overlaps. Unfortunately, as the least effective
component might be very distant from the current best response, it could
take a long series of steps to cover it, therefore increasing the overall
computational load. Moreover, individuating such component requires the
computation of all the pair-wise divergences. It may be an interesting
stimulus for future work to design even better coordination procedures for
the solution of this problem, by ideating new strategies and/or combining
the current ones.
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6.3 Moving the Leader’s Components

Having established a criterion to select which leader’s components to move,
we have to define how to perform such movement in the policy space. In
the following, we will present the gradient-based algorithm that we use to
do so and we will confront two possible ways of implementing it.

6.3.1 Policy Gradient Derivations

Similarly as in Section 5.2.3, we can compute the gradient of the Rényi
divergence with respect to the parameters of one of the leader components
θk

∇θkDα(dsaµ ||dsaθk)α−1 =
∂Dα(dsaµ ||dsaθk)α−1

∂θk
=
∂Dα(dsaµ ||dsaθk)α−1

∂dsaθk

∂dsaθk
∂θk

.

The derivative of the Rényi divergence with respect to its second argument
is easy to obtain

∂Dα(dsaµ ||dsaθk)α−1

∂dsaθk
= (1− α)

∫
SA

(
dsaµ (s, a)

dsaθk(s, a)

)α
ds da,

and for the second term we can apply the same derivations we did before

∂dsaθk(s, a)

∂θk
= dsaθk(s, a)∇θk log dsaθk(s, a)

= dsaθk(s, a)
(
∇θk log πθk(a|s) +∇θk log dsθk(s)

)
.

Chaining the two terms we obtain the full expression of the gradient

∇θkDα(dsaµ ||dsaθk)α−1 =

= (1− α)

∫
SA

dsaθk(s, a)

(
dsaµ (s, a)

dsaθk(s, a)

)α(
∇θk log πθk(a|s) +∇θk log dsθk(s)

)
ds da,

where the last term ∇θk log dsθk(s) is derived from [46, 47] as

∇θk log dsθk(s) =

∫
SA

γQ0
θk

(s, a|s)
(
∇θk log dsθk(s) +∇θk log πθk(a|s)

)
ds da.

6.3.2 Update Methodology

Now that we have the expression of the gradient, we can move any
component of the leader in the direction of the best response. We will discuss
in the following how to perform such an update. In particular, we will see
that we can both apply the vanilla ∞-GDA procedure (Section 2.4.5), and
a modified version of the same process based on the specific properties of
the objective function we are facing.
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Computing the Best Response at each Iteration

The most natural way of finding a Stackelberg equilibrium is to apply
the ∞-GDA algorithm. At each optimization step, we compute the best
response for the current leader configuration and use the local information
of the gradient to update the coalition accordingly. By doing so, we are
guaranteed to converge to a differential Stackelberg equilibrium [20], which
represents a locally optimal solution to the game. While this procedure
is theoretically sound and it can be applied to any two-player game, it is
not taking into consideration any special property of our specific game-
theoretic formulation. As it turns out, computing the best response at each
optimization step is quite expensive and, more importantly, not strictly
necessary in the perspective of the covering problem. In the following, we
will present a slight modification of the standard ∞-GDA procedure aimed
at reducing the computational complexity of the overall algorithm, which
proved very effective in practice.

Computing the Best Response when Covered

Consider the situation presented in Figure 6.5 where, along with the already
defined visual conventions, we added a circle of radius ε to all the leader
components.

Figure 6.5: Distributions and corresponding ε-circles.

For each component, the intersection of its circle with the triangle represents
the set of distributions that are covered by it. The reader may now find
him/herself very puzzled by the dimensions of the circles reported in the
figure, as they appear to shrink the closer they get to the border of the
triangle. This counter-intuitive fact derives from the peculiar nature of the
Rényi divergence. Since the distribution of the covering policy is at the
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denominator of the integrand function, it is easy to see that the more a
distribution is peaked (i.e., closer to the border of the distribution space),
the smaller the set of numerators that will keep the integral lower than
epsilon. At the limit, a deterministic distribution is infinitely distant from
all other distributions except itself. Thus, the closer is the distribution to
a deterministic one, the smaller is its ε-circle in the distribution space. In
fact, the ε-circle centered on the best response collapses in only one point
and is not visible in the picture.

Let us continue our reasoning by visualizing what happens at each
optimization step of our ∞-GDA procedure. As the reader could realize
from Figure 6.6, moving one leader component towards the best response
does not guarantee that the best response will change at the next iteration,
as the leader update is usually small. In this case, it would have not been
necessary to perform again the follower’s optimization.

Figure 6.6: The best response did not change after one optimization step.

Moreover, even if the best response changed, since the goal of the leader
is to ultimately cover the policy space, one could argue that until the
distance from the old best response is less than ε, we could decide to
temporarily ignore the fact that the follower’s solution changed, and continue
the optimization until the previous one is covered. Once it is done, we will
compute again the best response and the optimization will go on with the
new follower’s challenge, as shown in Figure 6.7.
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Figure 6.7: The old best response is covered.

By performing the optimization in this way, we avoid redundant computa-
tions of the best response and greatly reduce the complexity of the algo-
rithm. Even though we lose the theoretical guarantees of converging to a
local Stackelberg, it is not for us a matter of utmost importance, since we are
interested in finding a good set of covering policies, not a game-theoretical
equilibrium.

6.4 Adding a Component to the Coalition

The third and last task that remains for us to untangle in order to complete
the discussion on the leader’s optimization is defining how to detect that the
current number of leaders is not sufficient to reach the desired coverage and
we, therefore, need to add a new component to the coalition. Especially, the
condition changes according to how we have chosen to perform the update
(either the vanilla GDA or our modified version).

6.4.1 Computing the Best Response at each Iteration

Although more computationally demanding, computing the best response at
each optimization step has the effect of stabilizing the leader’s optimization.
By renewing the follower’s challenge at each step, we are guaranteed to
converge to a local Stackelberg equilibrium, and therefore we avoid the risk
of endlessly wandering around in the policy space with no hope of converging.
Because of this, deciding when it is time to add another component to the
coalition is a trivial decision: wait for the leader to converge and check if
it has reached the desired coverage. We will see how to do so in the next
chapter.
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6.4.2 Computing the Best Response when Covered

If we want to apply the second optimization schema to speed up the leader’s
optimization, we are not guaranteed to converge to a stationary point during
the optimization. In order to avoid aimlessly update the coalition when it has
no chance of converging, we will have to come up with a criterion to detect
such situations to promptly stop the optimization and to add a member to
the coalition.

One option is to make a decision on the basis of the distance between the
leader and the previous best response. If, after moving the components of the
leader to cover the best response, the previous policy played by the follower
is now very distant from the coalition, probably the coalition is under-sized.
This happens because if the leader now moved again to cover the previous
best response, most likely it would lose the coverage on the current one.
Clearly, deciding how to select the threshold distance for which the criterion
triggers is a hyper-parameter to tune. The general idea is that the bigger
the threshold, the more the current coalition will try to do its best with
the current number of components, potentially at the cost of computational
efficiency.

6.4.3 New Component Initialization

Finally, let us complete the discussion on the leader’s optimization with how
to initialize a new component added to the coalition. The new members
should strive to fit well in the current group of policies, compensating for
the current shortcomings of the coalition.

Epsilon-Greedy Initialization

One possible way to do so is to initialize the newcomer to an epsilon-greedy
version of the last best response. Since the best response is by definition the
most distant policy from the coalition, adding a component close to it is an
effective way to cover a new region of the distribution space.

Uniform Initialization

Another option is to initialize the leader with a uniform policy so that the
algorithm will freely deploy it where it is most useful. Note that this second
criterion is better suited if the leader moves its components according to the
least effective criterion, since a uniformly distributed policy is very unlikely
to be the closest to the best response.

47





Chapter 7

Coverage Guarantees

In the previous chapters, we defined all the main components of the proposed
solution for the policy space compression problem. Although it would be
possible to implement the algorithm from start to end with the elements
outlined so far, one crucial element is still missing from the picture: the
theoretical guarantees on the obtained results. Recall from Chapter 5
that the problem of computing the follower’s best response has exponential
computational complexity. As a consequence, we are unable to find the exact
solution for big MDPs, and therefore to effectively evaluate the output of
the algorithm at the end of the optimization. For this reason, it is crucial
to have an estimate of the coverage obtained by the leader without having
to find the best response. Such estimation must be conservative, so that
to never overestimate the quality of the solution. Moreover, we would like
the estimation to be consistent with the Rényi divergence, which means
that the value of the estimator should approach the minimum of the Rényi
divergence as we increase the number of policies in the leader’s coalition
towards infinity. In this chapter, we are going to fill this last void by
providing three alternatives for computing such estimation efficiently.

In Section 7.1, we will present a surrogate best response problem that
we can use to build the coverage guarantee we need. In Section 7.2, we
will present an alternative upper bound based on the relaxed solution of a
quadratic formulation of the best response problem. In Section 7.3, we will
present a consistent, but difficult to optimize, coverage guarantee based on
the Kullback-Leibler divergence.

7.1 Linear Program Formulation

We will start by tackling the best response problem from a different angle.
As we will see, it is possible to devise a collection of reward functions, one
for each leader’s component, that we can use to compute a surrogate best
response and a conservative estimate of the coverage obtained by the leader.



Let us start the discussion by reporting once again the best response problem

µbr ∈ arg max
µ∈Θ

(
min
k∈[K]

Dα

(
dsaµ ||dsaθk

)α−1)
.

We can rewrite the former as

µbr ∈ arg max
µ∈Θ

(
JBR(µ)

)
,

where the performance metric J is defined as

JBR(µ) := min
k∈[K]

Dα

(
dsaµ ||dsaθk

)α−1
.

7.1.1 Single Leader Case

Let us begin by considering a leader’s coalition with a single component.
We can rearrange the performance metric J as

JBR(µ) = min
k∈[K]

Dα

(
dsaµ ||dsaθk

)α−1

ww� K = 1

JRL(µ) = Dα

(
dsaµ ||dsaθ

)α−1

=

∫
SA

dsaµ (s, a)

(
dsaµ (s, a)

dsaθ (s, a)

)α−1

ds da.

=

∫
SA

dsaµ (s, a)R(s, a) ds da.

It is clear from the previous equation that, in order to find the best response,
the follower aims to find a policy µ that maximizes the discounted sum of
the rewards

R(s, a) =

(
dsaµ (s, a)

dsaθ (s, a)

)α−1

.

Unfortunately, such a reward function cannot be optimized by standard
reinforcement learning techniques, as it depends on the policy parameters
µ. Therefore, in order to find an approximated solution to the follower’s
problem, we could look for a surrogate reward function R independent of
µ (i.e., that we can optimize), such that J(R,µ) is a lower bound of the
performance J(R,µ). In this way, by maximizing the performance with
respect to the surrogate reward, we are implicitly lifting the performance
with respect to the original reward. Moreover, if we can derive an
upper bound of J(R,µ) with respect to J(R,µ), we can use the latter to
conservatively and efficiently estimate the distance between the leader and
the true best response (i.e., the coverage).
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7.1.2 Surrogate Reward

From now on, we will restrict our analysis to the second order Rényi diver-
gence. Especially, starting from the rewardR(s, a) = (dsaµ (s, a)/dsaθ (s, a))α−1

and assuming α = 2, we can define the surrogate reward function R(s, a) as

R(s, a) =
dsaµ (s, a)

dsaθ (s, a)
⇒ R(s, a) :=

1√
dsaθ (s, a)

.

We will show in the following the derivations of both an upper and a lower
bound of J(R,µ) with respect to J(R,µ). Note that, since the state-action
distributions of the leader dsaθ is enforced to be positive in all the state-action
pairs, R(s, a) is always finite.

Derivation of the Bounds

By exploiting common bounds on the Lp-norms (see [54]), we can derive the
following lower bound∫

SA

(
dsaµ (s, a)

)2
dsaθ (s, a)

ds da ≥ 1

|SA|

(∫
SA

dsaµ (s, a)√
dsaθ (s, a)

dsda

)2

,

J(R,µ) ≥
(
J(R,µ)

)2
|SA|

,

(7.1)

and the following upper bound(∫
SA

dsaµ (s, a)√
dsaθ (s, a)

ds da

)2

≥
∫
SA

(
dsaµ (s, a)

)2
dsaθ (s, a)

ds da,(
J(R,µ)

)2 ≥ J(R,µ).

(7.2)

Putting everything together, we have

(
J(R,µ)

)2 ≥ J(R,µ) ≥
(
J(R,µ)

)2
|SA|

. (7.3)

With the last inequality, we can say that for the single leader case,
maximizing the discounted cumulative sum of the reward R(s, a) is a viable
way to upper bound the coverage obtained by the leader and, additionally,
to compute a surrogate best response.

7.1.3 Multiple Leader Case

Generalizing the single leader case to the multiple leader scenario is not a
trivial feat. We have a collection of surrogate rewards R = {Rk}k∈[K] to
optimize instead of a single one and, at first glance, there is no direct way
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of performing the maximization by considering all the rewards at once. Our
aim is to find a policy µ that maximizes the minimum performance over all
the rewards in R. Notably, some works in the robust MDPs [55] framework
can help us solve the problem. In particular, taking inspiration from [56],
we can rewrite the minimax performance problem with the following linear
program

maximize
z∈R,µ∈Rsa

z

subject to: z ≤
∫
SA

d(s, a)Rk(s, a) ds da, ∀k ∈ [K]∫
A
d(s, a) da = (1− γ)d0(s)

+ γ

∫
SA

d(s′, a′)P (s|s′, a′) ds′ da′, ∀s ∈ S

d(s, a) ≥ 0, ∀s ∈ S, ∀a ∈ A.

Moreover, by applying the upper and lower bounds in Equation (7.3), we
can state that

z∗ = max
µ∈Θ

min
k∈[K]

(
J(Rk,µ)

)2 ≥ max
µ∈Θ

min
k∈[K]

J(R,µ) ≥ max
µ∈Θ

min
k∈[K]

(
J(R,µ)

)2
|SA|

.

The computational complexity of finding the solution of any linear program
is polynomial in the number of decision variables [57]. Therefore, we can
efficiently solve the previous problem and use the optimal value z∗ as an
upper bound to the leader’s coverage, and the resulting policy µ∗ as a
surrogate best response. Let us now analyze the estimation’s consistency.
The optimal objective of the LP is

z∗ = max
µ∈Θ

min
k∈[K]

(
J(Rk,µ)

)2
= max
µ∈Θ

min
k∈[K]

(∫
SA

dsaµ (s, a)√
dsaθk(s, a)

ds da

)2

.

With infinite leaders, for each possible policy µ there exists at least a leader
θk that is equal to it. Therefore, we can simplify the previous as

z∗ = max
µ∈Θ

(∫
SA

√
dsaµ (s, a) ds da

)2

, (7.4)

which it is bounded by
|SA| ≥ z∗ ≥ 1.

Unfortunately, the previous upper bound is consistent with the Rényi
divergence only when the MDP allows for a deterministic dsaµ , which is
almost never the case. Therefore, if the coverage requirement is stricter
than |SA|, we are not in general able to assess the coverage obtained by the
algorithm through this upper bound.
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7.2 Quadratic Program Formulation

Notably, we can also frame the best response problem as a Quadratically
Constrained Quadratic Program (QCQP), namely

maximize
z∈R,d∈Rsa

z

subject to: z ≤
∫
SA

d(s, a)2

dsaθk(s, a)
ds da, ∀k ∈ [K]∫

A
d(s, a) da = (1− γ)d0(s)

+ γ

∫
SA

d(s′, a′)P (s|s′, a′) ds′ da′, ∀s ∈ S

d(s, a) ≥ 0, ∀s ∈ S, ∀a ∈ A.

Unfortunately, due to the quadratic constraints, this problem is known to be
NP-hard in general. However, it can be relaxed to a linear program through
the reformulation-linearization technique, or into a semidefinite program
through the semidefinite relaxation, for which the optimal values are an
upper bound to the value of the original problem [58, 59, 60]. Unfortunately,
such relaxation worsens as the number of leaders K increases. Indeed,
the more quadratic constraints we remove from the problem, the more the
solution will be distant from the original one. Thus, the estimation based
on the previous relaxation is not consistent.

7.3 Kullback-Leibler Formulation

Luckily, it is possible to overcome the limitations of the two previous bounds
and to devise a conservative and consistent estimator. Especially, given two
probability measures p and q on the space X , and being dKL(p||q) their
Kullback-Leibler divergence, the following holds

dKL(p ‖ q)
infx∈X q(x)

+ 1 ≥ D2(p ‖ q) ≥ exp
(
dKL(p ‖ q)

)
. (7.5)

The right-hand side of the equation originates from the definition of Rényi
divergence, which is non-decreasing in the order α [61]. The left-hand side
can be obtained through the following derivations∫
X

p(x)2

q(x)
dx− 1 =

∫
X

(p(x)− q(x))2

q(x)
dx ≤ 1

infx∈X q(x)

∫
X

(p(x)− q(x))2 dx

≤
∫
X |p(x)− q(x)| dx

infx∈X q(x)
sup
x∈X
|p(x)− q(x)| ≤

‖p− q‖21
2 infx∈X q(x)

≤ dKL(p||q)
infx∈X q(x)

,
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where we employed ‖p− q‖1 ≥ 2 supx∈X |p(x) − q(x)| and the Pinsker’s
inequality, as previously done in [62, 63]. As a consequence of the result in
(7.5), we have that

max
µ∈Θ

min
k∈[K]

(
dKL(dsaµ ||dsaθk)

inf(s,a)∈SA d
sa
θk

(s, a)
+ 1

)
≥

max
µ∈Θ

min
k∈[K]

D2(dsaµ ||dsaθk)

≥
max
µ∈Θ

min
k∈[K]

exp
(
dKL(dsaµ ||dsaθk)

)
.

Moreover, we can further upper bound the first term as

maxµ∈Θ mink∈[K] dKL(dsaµ ||dsaθk)

mink∈[K] inf(s,a)∈SA d
sa
θk

(s, a)
+ 1 ≥ max

µ∈Θ
min
k∈[K]

(
dKL(dsaµ ||dsaθk)

inf(s,a)∈SA d
sa
θk

(s, a)
+ 1

)
.

The term at the denominator of the left-hand side of the previous equation
is constant given a leader coalition, and always greater than zero in discrete
MDPs with stochastic leader policies. Since the upper bound and the lower
bound on the performance of the best response depend on the same quantity,
it follows that by solving the problem

z∗ = max
µ∈Θ

min
k∈[K]

(
dKL(dsaµ ||dsaθk)

)
, (7.6)

we are able to compute a conservative upper bound of the leader’s coverage
and a surrogate best response. Moreover, the estimator is consistent with the
Rényi divergence, as the value of z∗ approaches zero as the number of leaders
grows. Unfortunately, the difficulty of the previous formalization now lies
in the optimization. In fact, in order to have the coverage guarantee, we
should find the global optimum of Problem (7.6), and such a global solution
is not trivial to obtain, as there is not a straightforward linear program
formalization of the problem. Nonetheless, it is undeniably an interesting
direction for future works.
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Chapter 8

Experimental Results

In this chapter, we will report a numerical validation of the proposed
algorithm and the claims we made in the previous chapters. In Section 8.1,
we will illustrate the workings of the basic building blocks of the solution
algorithm we presented, namely the follower’s and leader’s optimization. In
Section 8.2, we will showcase the algorithm on the complete problem and
report the results obtained.

8.1 An Illustrative Domain

In this section, we present an illustrative domain for the policy space
compression problem, in order to help the reader visualize the overall
process. We conduct our experiments in a grid world environment. It
represents a discrete, square room having nine discrete positions (i.e.,
|S| = 9). The agent starts at the center of the room and it can move
in the four cardinal directions (i.e., |A| = 4). All the transitions of the
environment are deterministic, which means that the agent’s actions are
always successful and they move the agent in the intended direction. For
each leader’s component and best response we provide a visualization of its
policy and the induced state distribution. We render the former with green
arrows (the bigger the arrow, the bigger the probability of choosing that
action in that state) and the latter by overlaying a heatmap of the state
distribution to the grid, along with a text annotation of the state visitation
probability.

8.1.1 Leader with a Single Component

Let us start with a simple example. In this first case, the coalition of
leaders is composed of just one element, as depicted in Figure 8.1a. The
follower’s solution for this specific single leader configuration (Figure 8.1b)
can be guessed just by looking at the state distribution induced by its policy.



Clearly, in this case the leader’s coverage is not very effective, as the reader
can see from the heatmap of the state distribution it induces. For this
first configuration, the follower manages to maximize its objective function
f(θ,µ) = D2(dsaµ ||dsaθk) up to the value of 2300.

(a) Leader. (b) Follower.

Figure 8.1: First leader coalition and its best response.

For the gradient counterpart, this first configuration is rather easy. Most
random initializations and the simple first-order algorithm are sufficient to
reach the global best response.

8.1.2 Leader with Two Components

Let us now add another leader to the coalition to make the follower’s problem
a bit more challenging. In Figure 8.2, we can see the updated leader
coalition and the corresponding best responses in Figure 8.3. As expected,
the deterministic follower is able to maximize its objective only up to 53,
a lower value than the previous scenario. Since we now have more than
one leader in the coalition, we can show the reader also the stochastic best
response, which manages to obtain an even higher value for f , in this case
576, which is an order of magnitude larger than the optimal deterministic
value.

55



(a) First leader component. (b) Second leader component.

Figure 8.2: Leader coalition of two elements.

(a) Deterministic best response. (b) Stochastic best response.

Figure 8.3: Best responses to the second leader coalition.

For what concerns the gradient algorithm, as we have previously mentioned,
in the presence of more than one leader’s component the follower is
unsurprisingly attracted by stochastic policies. The reader can see in
Figure 8.4b that the first-order algorithm tends to find policies similar to
the stochastic best response in Figure 8.3b. Interestingly, by adding to
the gradient the entropy-based incentive (Section 5.2.7) and repeating few
random initializations, we are able to find the optimal deterministic policy.
Of course, because of the random initialization, the algorithm converges
also to policies that are neither the stochastic nor the deterministic best
response but are in some middle ground between them, which we omit here
for brevity. Although, we stress that it is not crucial for the follower to
always converge to the global optimum, as any challenging enough policy
will improve the leader’s coverage.
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(a) Deterministic solution. (b) Stochastic solution.

Figure 8.4: Gradient-based best responses.

8.1.3 Very Challenging Leader

Let us conclude the set of examples for the best response with a very
challenging configuration: four completely symmetric covering policies, each
one effectively covering one corner of the environment (Figure 8.5). The
deterministic follower is now able to maximize its objective only up to 23,
while the stochastic policy is able to reach an objective of 160.
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(a) First leader component. (b) Second leader component.

(c) Third leader component. (d) Fourth leader component.

Figure 8.5: Leader coalition of four elements.

(a) Deterministic best response. (b) Stochastic best response.

Figure 8.6: Best responses for the third leader configuration.
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In this difficult setting the first-order algorithm, even though it finds many
challenging stochastic policies (Figure 8.7b), is unable to converge to the
deterministic “Ring Around the Rosie” policy depicted in Figure 8.6a.
Interestingly, if we employ the second-order algorithm, coupled with a strong
PT inverse normalization and the uniform initialization heuristic, we are
able to converge to the policy in Figure 8.7a, which is very similar to
the deterministic optimal one, although still being stochastic in the initial
state. This example in particular sheds some light on the difference between
first and second-order optimization, highlighting the fact that exploiting the
knowledge on the curvature of the objective function enables the algorithm
to reach otherwise out-of-reach solutions.

(a) Second-order best response. (b) First-order best response.

Figure 8.7: Gradient-based best responses for the third leader configuration.

8.1.4 Optimal Single Leader Configuration

In the previous section, we showcased how the optimization of the follower is
carried out, by providing three fixed leader coalitions and computing the best
response. As we have seen, adding more and more leaders to the coalition,
and placing them strategically in the MDP, incrementally lowers the value
of the follower’s best response, thus improving the leader’s coverage. Let
us now see what happens if we perform the optimization on the leader’s
side, starting from a uniformly distributed policy. The result is shown in
Figure 8.8. Maybe surprisingly, the coverage obtained by this optimized
leader’s configuration outperforms even the four symmetric leader scenario,
as the value obtained by the follower is even lower (i.e., 20). This example
makes evident that hand-picking the covering policies is not easily done, and
that the solution found by performing the automated optimization is more
effective.
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Figure 8.8: Optimal single leader configuration.

8.2 Approaching the Complete Problem

We will now empirically validate our proposed solution (Algorithm 3) of
the policy space compression problem from start to end. In the following
experiments, we will use an expanded version of the grid world we used
in the previous chapter. In particular, we have two rooms composed of
nine squares, which are connected by a single doorway. Clearly, to move
from one room to the other, the player is forced to avoid the walls and go
through the door. The number of states characterizing the environment is
|S| = 9 + 9 + 1 = 19, while the action space available to the agent remains
the same as before (|A| = 4). The agent starts at the center of the left room.
Our goal is to reach the coverage threshold ε, which in this case we set at the
value of 80. Since ε ≥ |SA|, we are guaranteed to reach the desired coverage
by using the upper bound presented in Section 7.1. Indeed, as we will see
in the following, we can reach our goal with a coalition of four leaders.

8.2.1 Evaluating the Results

Let us start by reporting the progress of the leader coalition. In Figure
8.9, we denoted the value of the upper bound with a blue line, the value
of the true distance from the best response (i.e., the coverage) with a red
line, and the coverage objective with a green dashed line. As the reader
can notice, the upper bound provides a reliable under-estimation of the
coverage. Indeed, such estimation might be deemed even too conservative,
as the coverage objective is actually achieved by the coalition with only
two leaders. In Figure 8.10, we take a closer look at the progression of the
optimization when K = 2. We can see that, approximately halfway through
the 200 iterations allocated, the coalition reaches the coverage objective. As
expected, due to the conservative nature of the upper bound, the algorithm
is not able to immediately detect such attainment and therefore continues
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the optimization. However, since our main concern is to reach the coverage
objective, the number of policies in the leader’s coalition is of secondary
importance. Moreover, by changing the hyper-parameters, it is possible to
fine-tune the algorithm to obtain superior results. For example, by doubling
the number of iterations for each round, we can reach the same objective
with only three leader components, as shown in Figure 8.11.

Figure 8.9: Trend of the coverage obtained by the leader’s coalition as a function
of the number of components.

Figure 8.10: Trend of the coverage when the coalition is formed of two components.
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Figure 8.11: Trend of the coalition’s coverage by allocating double iterations per
round.

8.2.2 Confronting the Limitations of the Upper Bound

Unfortunately, as we anticipated in Section 7.1, the upper bound based
on the linear program formalization is not consistent. As a result, if the
coverage requirement ε is stricter than |SA|, we are not able to evaluate
it, even if the algorithm’s optimization is able to reach such objective. To
visualize this adversity, we report in Figure 8.12, with a purple dashed line,
the limit of the upper bound for this specific environment, and we show
that the true coverage obtained by the leader convincingly outperforms
such limitation. For this reason, we strongly feel that going deeper into
the consistent, Kullback-Leibler formulation presented in Section 7.3 is
an interesting direction for future works, as it would allow reaching an
arbitrarily ambitious coverage requirement.
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Figure 8.12: The limits of the non-consistent upper bound.

8.2.3 The Resulting Covering Policies

We report in Figure 8.13 the obtained configuration of the leader’s coalition.
As the reader can see, the covering policies are effectively partitioning the
environment at hand. Interestingly, we can spot different behaviors in the
individual components. The leader in Figure 8.13a is uniformly visiting
the environment, slightly focusing on the left room. The second and third
leaders (Figure 8.13b and 8.13c), are exhibiting a specialized behavior,
visiting more often the upper part of the right room. Finally, the fourth
leader in Figure 8.13d focuses on the leftmost side of the environment
and to the opposite upper-right corner. We argue that these policies are
satisfyingly partitioning the underlying MDP by visiting different regions of
the environment, as shown in the images. Moreover, since the number of
covering policies is small, the components are forced to be fairly stochastic,
as each one of them has many distributions to cover. We argue that, by
incrementing the number of leaders, each element of the coalition specializes
to cover a smaller region of the MDP, while still collectively covering the
full distribution space. To empirically support this claim, we report the
component in Figure 8.14, which was taken from a coalition of ten elements.
As the reader can notice, its policy is much more specialized, in particular,
to explore the lower part of the left room.
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(a) First leader component.

(b) Second leader component.

(c) Third leader component.
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(d) Fourth leader component.

Figure 8.13: Resulting leader coalition.

Figure 8.14: Specialized leader component.
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Chapter 9

Discussion and Conclusions

In the following chapter, we will propose some interesting directions for
future works (Section 9.1) and we will summarize the main results presented
in this document (Section 9.2).

9.1 Discussion

Thanks to the unconventional nature of the presented topic, it is easy to see
many potential directions for future works. In the following, we will present
the three tracks we believe to be the most compelling ones.

9.1.1 Extension to Model-Free Setting

Many of the components of the solution procedure we presented in this thesis
make explicit use of the transition model of the environment. Unfortunately,
in real-case scenarios we cannot always rely on the complete knowledge
of the environment and, therefore, it would be interesting to extend the
proposed techniques to the case where the environment is unknown. The
most straightforward solution is to estimate the transition model from
samples and to keep everything else as it is in the proposed algorithm. An
interesting alternative would be to directly estimate the gradients of the two
players without relying on the transition model. Nonetheless, integrating
these techniques in the complete algorithm could prove an interesting, and
worthwhile, challenge.

9.1.2 Exploring Better Upper Bounds

The main limitation of the solution proposed in this thesis is the non-
consistency of the upper bound in Equation (7.4). Unfortunately, with
such an upper bound, the coverage guarantee we can provide is capped
by a problem-dependent threshold. Even though we proposed a consistent
alternative in Section 7.3, it requires finding the global optimum of a



surrogate problem, which does not directly translate to a formalization
amenable to efficient global optimization. It would be certainly compelling
to investigate how to perform such optimization and to devise tighter upper
bounds, in order to improve the coverage guarantee we can provide with the
algorithm.

9.1.3 Development of Custom Algorithms

Reducing the policy search problem to a finite MAB problem is only
one of the possible applications that make use of a compressed policy
space. We indicated OPTIMIST [16] as one of the algorithms that would
straightforwardly exploit such compression, but we argue that many other
algorithms in the reinforcement learning scenario could benefit from having
at their disposal a reduced representation of the policy space. In our opinion,
this thesis could pave the way for novel policy search algorithms that are
specifically designed to exploit a compressed policy space.

9.2 Conclusions

The main contribution of this thesis is a novel approach to the reward-
free optimization setting, addressing the compression of the policy space
available to the agent. This unconventional objective aims to reduce the
complexity of policy search algorithms, by providing the agent a reduced
set of representative elements, that can be used to estimate the value of any
element in the policy space. In this thesis, we formalized the policy space
compression problem as a non-convex two-player game, and we devised a
sound procedure to find locally optimal solutions to such a game. More-
over, we presented theoretical guarantees on the algorithm’s result, which
we empirically verified with some practical examples.

We positively believe the policy space compression to be an interesting
problem for the reinforcement learning community, and we hope to see more
research avenues building on the ideas presented in this writing.
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