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1. Introduction
The growing demand of satellites and space
structures for terrestrial applications and both
commercial and scientific purposes is prompting
the way towards mission for on-orbit servicing,
on-orbit assembly and active debris removal to
maintain a cost-effective and sustainable space
exploitation. Space robots are considered one of
the most promising technologies to attend these
tasks. A space robot or a space manipulator sys-
tem consists of a six degrees of freedom (DoF)
spacecraft base equipped with a N degrees of
freedom (DoF) robotic manipulator with a grap-
pling device, called end-effector, which allow it
to capture a target orbiting object [5]. Despite
the potential of space robots, their use is still
very limited due to the complexity involved in
this kind of missions, which require advanced
algorithms to go through very different and de-
manding phases [2]. One of these phases con-
sists in defining low-level instructions of how to
move the system and successfully capture the
target, avoiding obstacles and satisfying mission
constraints: this problem is known as path plan-
ning. The aim of this work is proposing a flexible
strategy and a new algorithm based on incre-
mental exploration via sampling of the configu-
ration space to plan the trajectory of the system

for capturing a tumbling, uncooperative orbiting
target.

2. Problem Formulation
The goal of the path planning problem proposed
in this work is to find a feasible trajectory for
a free-flying space manipulator system system,
fully described by the chaser base homogeneous
transform matrix T LVLH

Cb (t) and the robotic arm
joint variables θ(t), driving the system from its
initial conditions T LVLH

Cb (t0), θ(t0) to a success-
ful capture of a tumbling target body. For a
successful capture in a specific time instant tf ,
the end-effector of the robotic arm must match
the position and the orientation of the grasping
point reference frame on the target with zero rel-
ative linear and angular velocities. In particular
following conditions have to be satisfied:

rEE(tf ) = rgr(tf )

qEE(tf ) = qgr(tf )

ṙEE(tf ) = ṙgr(tf )

ωEE(tf ) = ωTb(tf )

(1)
(2)
(3)
(4)

where r represents position vector, q denotes
the unit quaternion vector to represent refer-
ence frame orientation and ṙ, ω̇ are respectively
the linear and angular velocities. The subscript
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"EE", "gr", "Cb" and "Tb" refer respectively
to the reference frames of the end-effector, the
grasping point, the chaser base body and the
target body
To be feasible the trajectory have to satisfy
several hard constraints: the trajectory must
be such that the chaser approaches the target
spacecraft in a safe way, avoiding any collision
with the target or itself and it must ensure that
the target body is kept within the Field of View
(FoV) of sensors mounted on the chaser space-
craft at any time instant for navigation pur-
poses. The planning of the trajectory must also
take into account several operational constraints
due to mechanisms or actuators limits. In par-
ticular, the constraint imposed by thrusters lim-
its is:

|ux,y,z| ≤ uMAX with uMAX =
FMAX

mc
(5)

where ux,y,z represents the generic component of
the control acceleration to maneuver the base of
the space manipulator sytem,mc represents the
mass of the chaser spacecraft and uMAX is the
maximum available control acceleration, limited
by the maximum thrust FMAX available. The
joints of the robotic manipulator have bounded
displacements as well as bounded velocities and
accelerations:

θimin ≤ θi(t) ≤ θiMAX for i = 1, ..., N

∥θ̇i(t)∥ ≤ θ̇iMAX for i = 1, ..., N

∥θ̈i(t)∥ ≤ θ̈iMAX for i = 1, ..., N

(6)

(7)

(8)

where θimin and θiMAX denote respectively the
minimum and maximum angular displacement
of ith joint, θ̇iMAX represents the maximum ab-
solute value of ith joint speed and θ̈iMAX repre-
sents the maximum absolute value of ith joint
acceleration.
Additional aspects have been taken into account
to improve the quality of the trajectory, in par-
ticular:
• minimize fuel consumption;
• reduce the duration of the maneuver;
• avoid kinematic singularities that could af-

fect in negative way the motion of the
robotic manipulator [8].

The mission framework and the proposed solu-
tion to the problem is based on the following
assumptions:

• the orbit of the target body is circular or
near circular;
• the chaser is initially in proximity of the tar-

get body, at a relative distance d ≤ 100m;
• both the chaser and target object are com-

posed of rigid bodies;
• disturbances such as gravity gradient, solar

radiation pressure and atmospheric drag are
neglected;
• the state, the geometry and the inertia

properties of the chaser and of the tumbling
target are known;
• the mass of the chaser remains constant

since the amount of propellant used is small
when compared with the chaser mass,
• the chaser operates in free-flying mode,

which means that the position and the ori-
entation of the chaser base are actively con-
trolled.

2.1. System Modeling
This section provides a brief overview of the
mathematical models used in the current work.
In particular are here reported the linear model
to describe the relative translational motion in
orbit, the model to describe the kinematics and
the dynamics of an uncontrolled tumbling satel-
lite and finally the kinematics model of the free-
flying space manipulator system.

Translational Relative Motion Model

The relative motion in Local Vertical Local Hori-
zon (LVLH) frame of a chaser spacecraft with
respect to the Center of Mass (CoM) of a target
body that is in a circular orbit around a central
body can be described by Clohessy-Wiltshire
(CW) equations (Eq. (9)):

ẍ− 3n2
Tx− 2nT ẏ = ux

ÿ + 2nT ẋ = uy

z̈ + n2
T z = uz

(9)

where x, y and z are the coordinates of the
CoM of the chaser base in LVLH frame, nT is
the mean orbital motion of the target body and
u = [ux, uy, uz]

T denotes control accelerations.
The set (9) of second-order differential equations
can be converted in state space form as follow:

ẋcw = f(xcw,u, t) = Acwxcw +Bcwu (10)

2



Executive summary Andrea Allevi

where xcw(t) = [x, y, z, ẋ, ẏ, ż]T represents the
state vector and state matrix Acw and state in-
put matrix Bcw are given by Eqs. (11) and (12)

Acw =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2
T 0 0 0 2nT 0
0 0 0 −2nT 0 0
0 0 −n2

T 0 0 0



Bcw =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1



(11)

(12)

Target Rotational Motion Model

The attitude of the target’s body frame BTb with
respect to LVLH frame is represented by us-
ing unit quaternions and the attitude kinematics
equation is given by [4]:

q̇Tb =
1

2
Ξ(qTb)ω

Tb
Tb (13)

where qTb represents the attitude of BTb with
respect to LVLH frame, ωTb

Tb represents the an-
gular speed of the target’s body frame with re-
spect LVLH frame, expressed in BTb and matrix
Ξ(q) is defined as follow [4]:

Ξ(q) =


q4 −q3 q2
q3 q4 −q1
−q2 q1 q4
−q1 −q2 −q3

 (14)

The rotational dynamics of the uncontrolled tar-
get spacecraft is governed by Euler’s equation
that can be represented as [4]:

Jω̇Tb
Tb = JωTb

Tb × ωTb
Tb (15)

where J denotes the inertia matrix of the tar-
get spacecraft expressed in BTb. The system
of equations composed by Euler’s equation (15)
and attitude kinematics equation (13) provide a
complete description of the rotational motion of
the target body.

Space Manipulator System Kinematics

A kinematics model of a free-flying space ma-
nipulator is needed to describe the motion of

the system, in particular of the end-effector, in
LVLH frame. The position and the orientation
of the end-effector reference frame can be rep-
resented by the homogeneous transform matrix
T LVLH

EE . It can be computed as [6, 7]:

T LVLH
EE = T LVLH

Cb T Cb
J1

(∏N+1
i=2 T

Ji−1

Ji

)
T

JN+1
EE

where T LVLH
Cb (t) is the chaser base homogeneous

transform matrix, T LVLH
Cb and T

JN+1
EE are homo-

geneous transform matrices related to the geom-
etry of ends of the arm and T

Ji−1

Ji
is the homo-

geneous transformation matrix from joint frame
Ji+1 to joint frame Ji can be expressed as a
function of Denavit-Hartenberg (DH) parame-
ters as follow:

T Ji
Ji+1

= A(θi, di, αi, ci) (16)

where the DH transformation matrix function
A(θi, di, αi, ci) and customized DH parameters
are defined in [7]. The relationship between the
velocities of the end-effector and the velocities
of the joint and of the chaser base is linear and
it can be expressed as [7]:[
ṙEE

ωEE

]
= J

[
ẊCb

θ̇

]
with J =

[
JCb Jm

]
where ṙEE ωEE are respectively the linear and
the angular velocities expressed in LVLH frame,
J ∈ R 6×(6+N) represents the Jacobian matrix
of the overall free-flying space manipulator sys-
tem, JCb ∈ R 6×6 Jacobian matrix of the chaser
spacecraft base, Jm ∈ R 6×N is the robotic ma-
nipulator Jacobian, ẊCb = [ṙLVLH

Cb ; ωLVLH
Cb ] and

θ̇ represent vectors containing the velocities of
the chaser spacecraft base and the velocities of
the joints respectively.

3. Path Planning Approach
To make the path planning problem described
in Sec. 2 more tractable, the design of the tra-
jectory has been divided in three parts, each one
addressed to deal with different tasks and con-
straints:
• Chaser Base CoM Path rCb(t)

The chaser base CoM trajectory is the first
to be designed. Its aim is to drive the space
manipulator system from an initial position
rCb(t0) away from the target body in which
the grasping point is outside the workspace
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of the robotic manipulator, to a final desired
safe position dr near the target in which
the grasping point is inside the workspace
of the robotic arm and the capture can be
performed. The trajectory must be such as
to avoid collisions with the appendages of
the target, minimize fuel consumption and
reduce duration of the maneuver. For these
reasons a modified version of the adaptive
LQR/APF proposed in [1] has been used
for the design of the chaser base CoM tra-
jectory.
◦ adaptive Linear Quadratic Regulator :

it derives from optimal control theory
of linear system, it design a trajectory
aware of fuel consumption, adaptive
control gain matrix allow to reduce the
duration of the maneuver.
◦ Artificial Potential Field : the space

manipulator system moves under the
action of a fictitious force that has
opposite direction of the gradient of
a potential function. If the potential
function has a maximum value in cor-
respondence of obstacles regions, the
fictitious force repels the space robot
from those regions.

• Chaser Base Attitude Path RCb(t)
The attitude of the chaser base is designed
from the knowledge of the trajectory of the
chaser base CoM position rCb imposing the
constraint that navigation sensors have to
point always toward the target. It is as-
sumed that chaser sensors boresight axis co-
incides with x-axis of chaser’s base body
frame x̂Cb and Line-Of-Sight frame pro-
posed in [3] has been implemented.
• Joint Variables Path θ(t)

The trajectory of joint variables is obtained
through an original path planning algo-
rithm based on an optimal-guided, incre-
mental exploration of configuration space
through sampling. The strength of the al-
gorithm is that it is able to compute the
trajectory of the end-effector passing from
joint angles regardless of how the trajectory
of the base is obtained. The issues on the
other hand are related to the need of an in-
verse kinematics algorithm to fully defined
the joint trajectory and attain a successful
capture.

3.1. Adaptive LQR/APF
The adaptive LQR/APF algorithm combines
the the optimal control for linear system of the
Linear Quadratic Regulator and the collision
avoidance capabilities of the Artificial Potential
Function algorithm [1]. The space manipulator
system moves under the combined action of two
control inputs:

u = uLQR + uAPF (17)

where u is the total control acceleration, uLQR

is the LQR component of control acceleration
that drives the chaser towards the desired final
state xd and uAPF is the APF component of the
control acceleration that avoids that the chaser
collides with the target. The two components
are described in detail in the following sections.
The LQR controllers are based on finding the
gain matrix KLQR, generating the optimal con-
trol acceleration uLQR = −KLQRxe that min-
imizes the following quadratic cost function
JLQR(Q,R,xe,u) according to the choice of
weighting matrices Q and R [1]. The state
weighting matrix Q ∈ R 6×6 and the control
weighting matrix R ∈ R 3×3 are updated at con-
stant time intervals ∆tLQR along the trajectory
as a function of the distance d(t) between the
actual position of the chaser base CoM rCb(t)
and its desired final position drCb; the gain ma-
trix KLQR is updated accordingly. In this work,
the weighting matrices Q and R are assumed
diagonal matrices and their terms Qjj and Rjj

are respectively defined as:

Qjj = α j = 1, ..., 6

Rjj =
β

u2MAX

j = 1, ..., 3

(18)

(19)

where the coefficients α and β are:

α(d) =
1 + ln

(
d0
d

)
d0

β(d) =

[
1 + exp

(
− d

d0

)]
d

(20)

(21)

The weights Qjj increase as the chaser ap-
proaches the desired final position while the con-
trol weights Rjj have opposite behaviour since
they decrease as the chaser approaches final de-
sired position.
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The APF component of the LQR/APF control
is used to provide collision avoidance capabilities
to the chaser when approaching the target. The
control action uAPF has opposite direction of the
gradient of the potential function U(r), where
r = [x, y, z]T denotes a generic position of the
chaser CoM in LVLH frame. The function is
defined as:

U(r) = kp

(
∥r∥ − r · dr̂

)
exp

(
− 1

2 kh
|h(r)|

)
where r = [x, y, z]T denotes the generic position
of the chaser base CoM in LVLH frame, dr̂ is
the unit length vector pointing from target CoM
to the final desired position of the chaser base,
identifying the direction of the final approach-
ing corridor, h(r) is a scalar function such as
h(r) = 0 denotes the equation of the surface
of the keep-out zone around the target where
the exponential part is a Gaussian function that
creates a maximum value region in correspon-
dence of the surface of the keep-out zone around
the target defined by equation h(r) = 0, and
the first part minimizes the potential function U
along the desired approaching direction dr̂ mak-
ing it equal to zero, creating a minimum value
potential region to allow the chaser to get close
to the target.

3.2. NOISBPP Algorithm
The proposed algorithm divides the time inter-
val [tstart : tf ] into a number of sub-intervals
Nint, each one of duration ∆tint, such that the
vector t ∈ RNint+1 results:

t = [ t1 , ..., tk−1 , tk , ..., tNint+1 ]
T (22)

Then, at each time instant tk from t2 to tNint , the
algorithm computes the trajectories of the joints
by incrementally selecting joint angles waypoints
θ (k) and joint velocities waypoints θ̇ (k). The
selected waypoints θ (k) and θ̇ (k) at instant tk
are those which, among all the possible solu-
tions that are sampled, minimize a cost func-
tional that takes into account multiple objec-
tives. Each waypoint is then connected with the
next one by a polynomial trajectory.
The proposed algorithm is based on the repeti-
tion of four main steps at each time instant tk,
with k that goes from 2 to Nint:

1. define sampling limits: given the current
waypoint defined by θ

(k−1)
current and θ̇

(k−1)
current , de-

fine the portions of joint configuration and

Algorithm 1 NOISBPP algorithm
INPUT: tstart, tf , ∆tint, NS , TCb(t),
ẊCb(t), Tgr(t), Ẋgr(t), θ(t0), θ̇(t0)
define t = [t1, ..., tk−1, tk, tk+1, ..., tNint+1]
initialize θcurrent = θ(t0); θ̇current = θ̇(t0)
for each instant tk, with k = 2, ..., Nint do

define sample limits ← {θcurrent, θ̇current}
sample: θ

(k)
s ; θ̇ (k)

s , with s = 1, ..., NS

for each sample θ
(k)
s , s = 1, ..., NS do

for each cost function fjθ do
evaluate cost of θ (k)

s

end for
compute total cost ctot

s of sample θ
(k)
s

end for
select min. total cost configuration: θ (k)

for each sample θ̇
(k)
s , s = 1, ..., NS do

for each cost function fjθ̇ do

evaluate cost of θ̇ (k)
s

end for
evaluate cost of the trajectory between
[θcurrent, θ̇current] and [θ (k), θ̇

(k)
s ]

compute total cost ctot
s of sample θ̇

(k)
s

end for
take min.total cost velocities vector θ̇ (k)

update θcurrent = θ (k); θ̇current = θ̇ (k)

end for

joint velocity spaces where searching for a
solution θ (k) and θ̇ (k) at time tk. To find
sampling limits, an accelerated and deceler-
ated motion of the joints is assumed start-
ing from current conditions throughout the
interval ∆tint. The current condition de-
notes the last waypoint before the algorithm
selects the new one;

2. sample: the defined portions of joint con-
figuration and joint velocities space are ex-
plored through random sampling, generat-
ing NS multiple possible solutions;

3. evaluate the cost of each sample and select
the cost minimizing one: each sample is
evaluated by multiple cost functions and a
total cost is then assigned to it. The sam-
ple with the lowest total cost is selected as
a waypoint at instant tk. The minimization
of the cost functions guides the end-effector
to the grasping point in LVLH frame, im-
poses constraints on joint angles, velocities
and accelerations and avoid that kinematic
singularities occur during motion.

5



Executive summary Andrea Allevi

4. update: the selected waypoint becomes the
new current waypoint and steps from 1 to
4 are repeated moving forward in time.

The last part of the trajectory, between instant
tNint and capture instant tNint+1 is computed by
solving the inverse kinematics problem.

4. Simulation Results
In figure 1 is shown the trajectory of the end-
effector planned by the proposed algorithm.

Figure 1: End-effector trajectory in LVLH frame

The proposed NOISBPP algorithm does not
produce always a feasible solutions. Two kinds
of errors are encountered: one classified as seri-
ous errors the other classified as minor errors.
The algorithm has been simulated with differ-
ent parameters in terms of interval between two
sampling stations ∆tint and in terms of number
of samples NS . For a low number of samples
NS , an intermediate interval returns feasible re-
sults with higher probability: by its derivation,
the sampling interval can be considered propor-
tional to the time interval ∆tint. Then, a low
number of samples can be enough to efficiently
explore a not too wide sampling interval. How-
ever, there seem to be no advantages in a smaller
sampling interval (correspondent to the shorter
∆tint considered) that can be better explored
with the same number of samples. A smaller
sampling interval does not allow to explore the
entire configuration space and the arm remains
stuck in a non-optimal configuration to perform
the capture. This behaviour is in contrast with
a solution obtained with a longer time inter-
val ∆tint that allows a better exploration of the
whole configuration space and wider movements
to reach an optimal configuration for the cap-
ture.

5. Conclusions
This thesis work proposes a flexible strategy to
plan the motion of a free-flying space manipula-
tor system and capture a target body.The pro-
posed strategy consists in a reworking of meth-
ods already proposed in literature such as the
adaptive LQR/APF algorithm and the Line-Of-
Sight reference frames and in a new incremental
sampling-based algorithm for planning the tra-
jectory of a robotic manipulator on a free-flying
base in the configuration space. This work has
shown, through numerical simulations, the va-
lidity of the strategy and of the new algorithm,
that, under some hypothesis on the motion of
the target body and on the operative modes
of the space robot, are able to deal with com-
mon constraints and aspects of an on-orbit ser-
vicing mission with a robotic manipulator, such
as collision avoidance, limited thrust, bounded
joint displacements and kinematic-singularities
avoidance.The performances of the algorithm
has been discussed as well as its failures. Fu-
ture developments would aim to solve failures
and reduce the number of hypothesis on which
the work is based.
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