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Abstract

Arterial pressure is a physiologically significant parameter in monitoring human health.
It provides crucial insights into the functioning of the cardiovascular system and can re-
veal pathological conditions such as hypertension, hypotension, and other related diseases.
This is a key factor in preventing cardiovascular diseases. It is often referred to as a "silent
killer" since it does not cause visible symptoms but can lead to premature death. Sig-
nificant efforts are being directed towards studying new techniques that allow for simple
monitoring of these parameters due to the difficulties associated with traditional invasive
and non-invasive monitoring methods. Traditionally, arterial pressure measurement has
been performed using non-invasive devices, such as mercury manometers or sphygmo-
manometers. However, these methods have limitations in terms of practicality and the
ability to continuously monitor pressure. In recent years, the advent of artificial neu-
ral networks and machine learning has opened up new perspectives in the non-invasive
prediction and monitoring of arterial pressure. Deep Neural Networks (DNNs) are par-
ticularly suited to handle complex data and learn patterns from physiological signals. In
this study, deep learning-based neural networks are employed to create an end-to-end ap-
proach for arterial pressure monitoring using a set of signals recorded with the Soundi®
device. This allows for the acquisition of a dataset comprising physiological signals includ-
ing Photoplethysmography (PPG), Phonocardiogram (PCG), Electrocardiogram (ECG),
and Seismocardiogram (SCG) without the need for initial subject calibration. Conse-
quently, a dataset consisting of recordings from 25 subjects is created, which is utilized to
train three different DNN models: U-Net, GRU, and 3GRU-Net. Specifically, a subject-
dependent analysis is conducted using only the recordings subject00. Among the proposed
models, the 3GRU-Net model exhibits the best performance. It incorporates three dif-
ferent encoder branches, which account for the varying frequency content of the input
signals, resulting in superior arterial pressure waveform reconstruction. It achieves a
mean absolute error of 10.5 mmHg, while the U-Net and GRU-Net models achieve mean
absolute errors of 11.5 mmHg and 11.31 mmHg, respectively. Comparing these results to
a regression model based on specifically calculated Pulse Transit Time (PTT), the Deep

Neural Networks models demonstrate significantly better performance, as the mathemat-
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ical model yields considerably higher mean absolute errors. The great advantage of this
technique concerns its ability to avoid the initial calibration performed on the subject,
as is done with classical mathematical methods, thus opening the doors to a possible
subject-independent analysis. For this analysis, a model with three different branches,
3GRU-ResNet, is used, yielding mean absolute error values of 15.583 mmHg. The calcu-
lation of the BHS index reveals that the models perform reasonably well in reproducing
the waveform for subject-dependent studies but fail in subject-independent studies, show-
ing considerably lower percentages. Through the utilization of this technique, it becomes
possible to establish a novel approach to arterial pressure monitoring that does not re-
quire initial calibration during the recording phase and eliminates the preprocessing steps
necessary in the implementation of classical mathematical models based on Pulse Wave

Velocity.

Keywords: Deep Learning, End-to-end, PPG, Arterial Blood Pressure, soundi®, 3GRU-
Net, GRU-Net
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Abstract in lingua italiana

La pressione arteriosa & un parametro fisiologicamente significativo nel monitoraggio della
salute umana. Fornisce indicazioni cruciali sul funzionamento del sistema cardiovascolare
e puo rivelare condizioni patologiche come I'ipertensione, I'ipotensione e altre malattie cor-
relate. Questo & un fattore chiave nella prevenzione delle malattie cardiovascolari. Spesso
viene definita come un "killer silenzioso" poiché non causa sintomi visibili ma puo portare
a morte prematura. Sono stati compiuti sforzi significativi nello studio di nuove tecniche
che consentano il monitoraggio semplice di questi parametri a causa delle difficolta asso-
ciate ai metodi tradizionali di monitoraggio invasivo e non invasive. Tradizionalmente, la
misurazione della pressione arteriosa € stata effettuata utilizzando dispositivi non-invasivi
come i manometri a mercurio o gli sfigmomanometri. Tuttavia, questi metodi presentano
limitazioni in termini di praticita e possibilita di monitorare la pressione in maniera con-
tinua. Negli ultimi anni, ’avvento delle reti neurali artificiali e dell’apprendimento auto-
matico ha aperto nuove prospettive nella previsione e nel monitoraggio non invasivo della
pressione arteriosa. Le Reti neurali profonde (DNN) sono particolarmente adatte per ge-
stire dati complessi e apprendere modelli dai segnali fisiologici. L’uso del deep learning ha
acquisito una rilevanza sempre maggiore nella medicina moderna, specialmente nel campo
dell’imaging medico, dove ¢ diventato uno strumento chiave per il supporto diagnostico.
In questo studio, sono impiegate reti neurali basate su apprendimento profondo per creare
un approccio end-to-end per il monitoraggio della pressione arteriosa utilizzando un in-
sieme di segnali registrati con il dispositivo soundi®. Questo consente I’acquisizione di
un insieme di segnali fisiologici tra cui la Fotopletismografia (PPG), la Fonocardiografia
(PCG), I'Elettrocardiografia (ECG) e la Seismocardiografia (SCG), senza la necessita
di una calibrazione iniziale sul soggetto. In questo modo é stato realizzato un dataset
composto dalle registrazioni di 25 soggetti, utilizzato per trainare i tre differenti modelli
di DNN proposti: U-Net, GRU, 3GRU-Net. In particolare viene effettuata un analisi
Soggetto-dipendente, utilizzando unicamente le registrazioni del soggetto00. Dei modelli
proposti, le performance migliori sono raggiunte dal modello 3GRU-Net, che presenta tre
divversi rami di encoder che tengono conto del diverso contenuto in frequenza dei segnali

in input, ottenendo risultati migliori nella ricostruzione della waveform di pressione arte-



riosa. Infatti raggiunge valori di errore medio assoluto pari a 10.5 mmHg, mentre con gli
altri due modelli si raggiungono valori di 11.5 mmHg per la U-Net e 11.31 mmHg per la
GRU-Net. Confrontanto questi risultati anche un modello regressivo basato su PTT ap-
positamente calcolato, si vede come le prestazioni delle DNN siano notevolmente migliori,
infatti con il modello matematico si ottengono errori medi assoluti notevolmente piu alti.
Il grande vantaggio di questa tecnica riguarda la capacita di evitare la calibrazione iniziale
effettuata sul soggetto, come avviene con il classici metodi matematici, aprendo le porte
ad una possibile analisi soggetto-indipendente. Per questa analisi viene utilizzato il mod-
ello con tre differenti branch, 3GRU-ResNet, con cui si ottengono valori di mean absolute
error pari a 15.583 mmHg. Il calcolo dell'indice BHS mostra come i modelli riescano ab-
bastanza bene nella riproduzione della waveform per uno studio soggetto-dipendente ma
falliscono per uno studio soggetto-indipendente avendo percentuali decisamente inferiori.
Grazie all’utilizzo di questa tecnica é possibile realizzare un nuovo approccio di monitor-
aggio della pressione arteriosa, che non richieda una calibrazione iniziale durante la fase di
recording e che eviti la parte di preprocessing necessaria nell’implementazione dei classici

modelli matematici basati su la velocita di propagazione dell’onda di polso (PWYV).

Keywords: Deep Learning, End-to-end, PPG, Arterial Blood Pressure, soundi®, 3GRU-
Net, GRU-Net
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]_ ‘ Introduction

1.1. Arterial Blood Pressure

Continuous blood pressure monitoring is an important tool for assessing hypertension,
which is one of the major risk factors for cardiovascular disease (CVD). Blood pres-
sure variability is also an important indicator associated with risky cardiovascular events.
Studies have shown that hypertension often goes undetected because it is a "silent killer",
meaning that it has no visible symptoms but can lead to premature death. According
to the World Health Organization, hypertension represents a global public health crisis,
and more than 4 million people die of cardiovascular diseases every year only in Europe,
with more than 17 million worldwide [4, 14]. Therefore, early detection and continuous
monitoring of blood pressure can be essential in preventing cardiovascular diseases and

saving lives.

1.1.1. Traditional monitoring techniques
There are two clinical gold standards available to measure arterial blood pressure [31]:

e Invasive catheter system: The invasive catheter system, illustrated in Figure
1.1 involves the insertion of a catheter into an artery and is primarily used in in-
tensive care units to accurately monitor blood pressure and obtain arterial blood
gas samples. This procedure can be performed only by physicians and specialized
nurses and is often painful despite the use of anesthetics to alleviate discomfort and

prevent vasospasm.
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Figure 1.1: ABP monitoring with invasive technique

¢ Noninvasive sphygmomanometer-based cuff: Intermittent blood pressure mon-
itoring, illustrated in figure Figure 1.2, a sphygmomanometer, which is an arm cuff
that occludes artery, is used. Blood pressure can be obtained manually by auscul-
tation of Korotkoff sounds or palpation, or automatically through oscillometry. The
Holter blood pressure monitor (HBPM) allows for periodic readings at intervals of
15 or 30 minutes over a duration of up to 48 hours. Although cuff-based devices
are commonly recommended by physicians, due to their high accuracy in indirectly
measuring blood pressure, they have some drawbacks: one limitation is that the cuff
sizes are often too small, which can result in diagnostic errors [48, 49]. Additionally,
these devices require active mechanical stimulation, wired connections, and expen-
sive equipment, which can limit their usefulness for daily activities and overnight

monitoring [53].
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Figure 1.2: Noninvasive sphygmomanometer-based cuff

1.2. Non-invasive techniques

Recently, the introduction of wearable devices capable of unobtrusively measuring elec-
trocardiographic (ECG), photoplethysmography (PPG), Phonocardiogram (PCG), and
Seismocardiograph (SCG) signals have significantly improved non-invasive blood pressure
monitoring |7, 11, 12|: the calculation of ABP using these signals is a key focus of re-
search. Several studies have addressed this problem using a range of techniques, with the
majority utilizing PPG either alone or in combination with other biological signals like
ECG. Many techniques are related to the calculation of physiological parameters from
the pressure signal, such as systolic, diastolic, and mean pressure. Many of these do not
involve waveform processing. There are three main techniques for the reconstruction of

the arterial blood pressure waveform:
e Pressure-Based Method
e Ultrasound-Based Method

e Deep-Learning-Based Methods
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1.2.1. Pressure-Based Method

In the literature, two main pressure-based techniques can be found for the reconstruction

of the arterial blood pressure waveform:

e Volume clamp method: This technique, also known as the Vascular Unloading
Technique, is based on the method developed by Penaz (Penaz, 1992) that allows
for the calculation of the arterial pressure waveform by linearizing the internal pres-
sure using an external transducer, thereby maintaining a constant volume at the
measurement point. Instruments based on this measurement method utilize a cuff
and a plethysmographic sensor for monitoring blood volume through PPG (Pho-
toplethysmography). The cuff is applied to the finger and contains an internal
plethysmograph, connected to an external microcontroller that regulates the cuff
pressure. During the systolic phase, the blood volume in the finger increases, and
the microcontroller increases the cuff pressure. During the diastolic phase, the cuff
pressure decreases. This keeps the PPG signal constant and equalizes the internal
pressure. A manometer is used to continuously measure the pressure on the cuff,
enabling the tracking of the arterial pressure signal. An example is shown in Figure
1.3a. This technique allows for continuous non-invasive monitoring of pressure and
waveform reproduction, and it is employed by many commercial devices. However,
it has certain limitations associated with the measurement procedure and the cuff,
such as skin temperature, density, and finger size, which can affect the calculation

parameters of the pressure

e Arterial Tonometry: Arterial tonometry is a technique used to measure arterial
pressure in a non-invasive manner. In this technique, a pressure sensor is applied
to a superficial artery, usually the radial artery, and the pulsatile pressure signal is
recorded during the cardiac cycle. The pressure signal is then processed to obtain
various parameters, including systolic, diastolic, and mean pressure. The most
common technique is called Applanation Tonometry, where pressure is applied to
the radial artery using a tonometer, and the arterial pressure signal is reconstructed
using pressure sensors such as strain gauges or piezoelectric sensors. The pressure
due to the opening and closing of the cardiac valves is calculated from the reflected
waves. Once the pressure is applied and the tonometer is stabilized as shown in
Figure 1.3b, the pressure applied by the deformation of the arterial walls is converted
into an electrical signal by the strain gauges located at the tip of the device, thus
recording the arterial pressure signal. This technique does not require the use of a

cuff and is therefore less sensitive to geometric constraints compared to a volume
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clamp. However, it is difficult to apply in overweight individuals and requires the

subject to remain still during the measurement.
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Figure 1.3: a) Volume Clamp Procedure for ABP waveform extraction, b) Tonometry-

based Procedure

1.2.2. Deep Learning and Mathematical approach

Research also have investigated the relationship between the rate of blood flow and blood
pressure, with Pulse Wave Velocity (PWV) being a popular parameter for assessing blood
flow rate. PWV determines the time delay required for blood pulses to reach the periph-
ery of the body from the heart, which is referred to as Pulse Transit Time (PTT) Defined
as the temporal distance between the R peak of the ECG and the peak of the PPG. Pulse
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Arrival Time (PAT) and Pre-Ejection Period (PEP) are other PPG fiducial points, in
particular, PEP is the time between the electrical systole (ECG Q wave) and the initial
opening of the aortic valve. Mathematical models have been developed based on these
parameters to estimate blood pressure values. On the other hand, PAT is defined as the
sum of PTT and PEP. [2, 9, 10, 39, 50, 55]. Other non-invasive methods utilize physio-
logical quantities such as the R-wave peak detected in ECG or cardiac sounds detected
from PCG. The first cardiac sound (S1) has been proposed as a proximal timing for PTT
estimation to avoid the pre-ejection period (PEP). For the distal timing, fiducial points
such as the foot, the maximum slope, and the systolic peak detected in the PPG waveform
may be used. Several models have been studied to relate blood pressure to PTT, including
inverse models and analytical functions, particularly the Moens-Korteweg (M-K) model.
Accurate identification of events and fiducial points in signals is critical to ensuring re-
liable estimates of BP-related parameters [16, 33, 36]. For an estimation of BP-related
parameters, it is essential to accurately and automatically identify events and fiducial
points in signals. Nevertheless, traditional algorithmic methods have been widely docu-
mented to fail due to their sensitivity to noise, inter-subject and pathological variability
[11, 23|. To accurately compute these features, algorithms typically require the signals to
be in near-ideal condition at all times, which is not practical. In recent years, a few studies
have attempted to address these issues by utilizing various deep learning techniques, such
as 1D segmentation [29, 43|, variational autoencoders (VAEs) [37], and CycleGAN [45], to
estimate or reconstruct arterial blood pressure (ABP) waveforms from PPG and/or ECG
signals. Thus using raw physiological signals as inputs for deep networks it is possible to
directly generate continuous systolic and diastolic pressure outputs or try to reconstruct
the entire waveform of ABP [29, 43|. Leveraging the deep end-to-end network paradigm,
non-invasive blood pressure assessment has been reframed as a regression problem to
determine the complete waveform of arterial blood pressure from network outputs. To
achieve this, a sensor-fusion approach was pursued by utilizing various signals including
ECG, PPG, PCG, SCG, and bioimpedance along with body and ambient temperature
signals, which were all captured by a chest-worn device. The deep network was then
trained to produce brachial BP time series outputs using reference waveforms obtained
from the Finometer® device (Finapres Medical Systems BV, NL). The network’s perfor-
mance was tested on a cohort of 25 healthy adult subjects, who underwent an alternating

rest-cycling protocol that lasted 30 seconds.
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1.3. Background

In literature, three different cuff-less and non-invasive techniques have been found, which

aim to reconstruct Blood Pressure:

1. Techniques that use mathematical or regression models to reconstruct systolic and
diastolic values based on specific parameters including PTT and PAT, in combina-
tion with HR fiducial points.

2. Techniques that rely on the use of machine learning models to predict systolic and
diastolic pressure, extracting morphological features from the signal. These tech-

niques mainly use PPG.

3. Instead a new approach is based on deep learning and refers to the use of CNN and
RNN in order to predict Systolic and Diastolic Blood pressure, directly employing
raw signals. They are also able to reconstruct the entire waveform performing

continuous monitoring.

1.3.1. Model-based techniques

Model-based techniques are the most explored field of ABP reconstruction, and it is based
on the use of mathematical models to reconstruct the values of systolic and diastolic pres-
sure. Among the most commonly used techniques, there are adaptive filtering techniques
like Kalman filters, gradient-based analysis, and peak detection [5, 13, 47, 55|. For each
method, it is required to select some fiducial point, as in the research of Zhou et al. [55] in
which after the selection of the peak of PPG and ECG compute the parameters used in
the tested models reported in the study. The statement suggests that certain techniques
used in physiological signal processing, such as those based on the correlation between
the amplitude and frequency of signals and noise, may not always work effectively when
there are systematic perturbations. Zhou et al. [55] and colleagues mentioned that in
some studies this type of approach has been found to be unsuccessful. This highlights the
importance of developing more robust and adaptable techniques that can handle various

types of noise and perturbations, such as machine learning-based methods.

1.3.2. Feature-based techniques

The featured-based procedure is based on the study of the PPG waveform and enables

the extraction of various morphological features from the signal, such as [24]:
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Time domain features: systole and diastole pack, PPT, Dicrotic Notch, and
Inflection Point for the PPG;

e Frequency domain features: amplitude and phase of the PPG peak, Power

spectrum energy;

Statistical features: Mean, standard deviation, and entropy;

Physical features: height, weight, BMI, HR.

After an extensive pre-processing procedure to extract these features, machine learning
models such as Decision trees, Support Vector Machine (SVM), or regression algorithms
are trained to predict and reconstruct ABP values, specifically the three values of SBP,
DBP, and MAP. This techniques also achieve excellent results, but as reported by Hart-
mann et al. [23], there are some disadvantages in using the PPG signal, especially due to
intra-subject variability conditions such as skin color, physical state, and age of the sub-
jects involved. However, there are issues also with the repeatability of the measurements
due to the high correlation between noise introduced by motion and PPG quality, which
does not cause flattening of the end of the diastolic phase, but increases the variability of

the waveform parameters |21, 34].

1.3.3. End-to-end techniques

"End-to-end" techniques in deep learning refer to the approach of training a single deep
neural network model to solve an entire problem, from input data to the desired final
output, without the need for using different phases or intermediate models for data pre-
processing or post-processing. In other words, the neural network model is trained to
learn the input data representations autonomously, without the need for manually en-
gineered features. This approach can simplify the process of model development and
training, reduce computational complexity, and improve the overall performance of the
system. Research is heading towards this approach which involves a smarter procedure
compared to other sophisticated techniques, thus finding a solution to the problems re-
lated to the identification of fiducial points and the variability of parameters extracted
from morphological analysis. This approach aims to use raw signals, such as only PPG
[29, 38] or a bank of raw signals (e.g. PPG and ECG) [8], as input for a deep learning
model. In particular, there is the widespread use of networks based on Recurrent Neu-
ral Networks (RNN), 1D Convolutional Neural Networks (CNN), Generative Adversarial
Networks (GAN), and Autoencoders [6, 14].
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1.4. Work contribution

The focus of this study is to introduce a technique for reconstructing the waveform of a
pressure signal. To accomplish this, a deep-learning neural network is employed, utilizing
a bank of raw signals as its input. The proposed method following the proposed pipeline
Figure 1.4 consists of three models that employ both CNN and Gated Recurrent Unit tech-
niques, ultimately creating a GRU-Net. The following are the primary accomplishments

of this research:

e demonstration of the complete end-to-end approach to estimate the entire BP wave-

form

e implementation of a multi-task network predicting the arterial BP exploiting raw

physiological signals
e exploitation of sensor-fusion to take advantage of signal redundancy

e comparison with a simple regression model based on Pulse Transit Time (PTT)
which is the most popular model for the mathematical computation of arterial blood

pressure.

e .
¢

1‘3

Labelling procedure

‘_
S

Data Acquisition ) _
Protocoll H Signal Processing }_)

Waveform - = 1
. B —
reconstruction

Deep Leaming

Figure 1.4: Project pipeline
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2 ‘ Objectives of the Study

The project was developed in collaboration with Biocubica, the developer of the Soundi®
device used for data acquisition, and with Eng. Mattia Sarti for the development of DNN.
The device was designed for studying and identifying sleep disorders, enabling overnight
data collection. It allows the recording of various physiological and non-physiological sig-
nals, which are stored on a micro-USB and subsequently processed. The objective of the
study is to create a deep neural network model for the calculation of ABP (Arterial Blood
Pressure) waveforms, as well as the main parameters of interest such as SBP (Systolic
Blood Pressure), DBP (Diastolic Blood Pressure), and MAP (Mean Arterial Pressure).
This approach helps reduce the signal preprocessing phase and the identification of key
points of interest required for the development of classical mathematical models based on
parameters like PTT (Pulse Transit Time) and PWT (Pulse Wave Transit). Additionally,
the unique aspect of this project is that it doesn’t solely rely on PPG (Photoplethysmogra-
phy) and ECG (Electrocardiography) signals, as seen in most recent deep neural network
studies. Instead, a range of physiological and non-physiological signals recorded using the
Soundi® device is utilized. This technique can leave to the elimination of the calibra-
tion phase for ABP monitoring, indeed after the training of the model the network can
compute the principal ABP parameters from the reconstructed waveform in a continuous
manner without a calibration phase that is not necessary for the device. The proposal
involves constructing a new network architecture based on the widely used U-Net in the
medical field. Two new models are suggested and compared to the conventional U-Net to

evaluate the reconstructive capabilities of the developed model.
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3 ‘ Material and Methods

3.1. Soundi®

The device utilized for signal acquisition in this study is Soundi®, a chest-worn sensor
developed by Biocubica Srl (Milan, Italy) Figure 3.1. It is capable of simultaneously
recording multiple physiological signals, including electrocardiographic, photoplethysmo-
graphic, acoustic, accelerometer, bioimpedance, and temperature (both body surface and
ambient) for up to 24 hours. The device has a circular shape with a diameter of less
than 6 cm and a thickness of approximately 1 cm, weighing no more than 40 grams. It
is currently undergoing the CE marking procedure to become a certified medical device
of class II, and it has been patented at the European level (Patent No. EP3248541A1).
To ensure secure attachment to the chest during use, the device uses medically certified

double-sided tape.
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Service LED
Micro SD slot

-+ > - >
11 mm 60 mm
USB-C connection Pressure sensor
' Optic sensor - -

Figure 3.1: Soundi® device and its sensors.

Sensor Model Additional info Sampling fre-
quencies (Hz)

Three-axis ac- | BHI160B (Bosh®) 100
celerometer
Optic sensor MAXMS86161 Red (A =650 nm) 25

(Maxim Integrated | Infrared (A = 940 nm)

®) Green (A =525 nm)

with 1 photodetector

Pressure SDP32 400

(Sensirion®)

Table 3.1: Soundi’s sensors characteristics
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in Table 3.1 are displayed the main sensors used by the device to extract the signals.
The plethysmographic sensor, which has its characteristics illustrated in Table 3.1, uses
the principle of optical reflection to calculate the R parameter and extract the plethys-
mographic signals from the 3 channels. The PPG waveform exhibits an upward trend
in response to increased capillary blood volume resulting from cardiac contraction, and
a downward trend in response to decreased capillary blood volume caused by cardiac
dilation. This pattern is repeated with each cardiac cycle, where the ascending curve
represents the systolic phase of the PPG waveform, while the descending curve represents
the diastolic phase of the PPG waveform [42]. Air pressure signals are used to detect heart
sounds in order to eliminate ambient noise from the chest. The initial heart sound (S1) is
produced by the closure of the mitral and tricuspid (atrioventricular) valves and occurs at
the start of ventricular systole. The second sound (S2) is generated by the closure of the
aortic and pulmonary valves and takes place at the end of the systolic and diastolic phases
[22]. The ECG and Bioimpedance signals indeed are extracted using external electrodes
attached respectively to the ankle and on the upper chest part, connected through a jack

to the device.

3.2. Finapres Finometer® PRO

The Finapres Medical Systems BV (NL) provides a medically certified device called the
Finometer Finapres PRO figure 3.2 and 3.3, which estimates continuous signals in a
pulsatile manner of the blood pressure using a finger cuff. Finometer® to reconstruct
the waveform use the so-called Volume-Clamp tecnique developed originally by Pena
[44]. This equipment was used in the research study to collect reference blood pressure
waveforms for training the deep network and validating model predictions. Additionally,
the Finometer Finapres PRO device provides hemodynamic parameters such as stroke
volume, total peripheral resistance, cardiac output, pulse rate variability, and baroreflex
sensitivity analysis. To ensure accuracy, the reconstructed blood pressure was calibrated
at set intervals against brachial measurements using an upper arm cuff [3]. For other

information about the Finapress Finometer ® Pro refer to Tables 3.2 and 3.3
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Figure 3.3: Cuff sensor for ABP finger acquisition by plethysmographic sensor

Features

Description

Category

Digital beat-to-beat blood pressure measuring device

Measurement method

The arterial volume-clamp method by J. Penidz, Physical criteria by K.H. Wesseling,
Brachial waveform reconstruction by Bos, Gizdulich,

and Wesseling, and the Modelflow method by Wesseling.

Finger cuff pressure

Max 350 mmHg

Weight of the finger cuff

18-23 g

Arm cuff pressure

Max 300 mmHg

The dimensions and weight of the arm cuff

12 x 18 cm, 270 g (cuff Speidel and Keller)

Height sensor

interval: +£128 mmHg

Table 3.2: General characteristics.
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Accuracy
Digital Pressure 1%(max 3 mmHg), automatic zero
Brachial pressure 1% (max 3 mmHg), automatic zero
Height corrector 2% (max 3 mmHg), Manual zero
Frequency (frequency [bpm]| / 60)%, 1% at 60 bpm
Interbeat interval 10 ms (On the peak, non-cumulative)
The dimensions and weight of the arm cuff | 12 x 18 cm, 270 g (cuff Speidel and Keller)
Height sensor interval: £128 mmHg

Table 3.3: Accuracy characteristics.

3.3. Software

The presented study was fully implemented using Python 3.7 programming language.
The use of a single High-level language, allowed for a unified workflow for all the tools re-
quired by the project. Moreover, Python is an open-source language, widely supported by
a range of libraries and modules, including Keras, TensorFlow, Scikit-learn, NumPy, Pan-
das, SciPy, Plotly, and Matplotlib, which were utilized in this project for machine learning
and artificial intelligence procedures, high-performance data analysis and dataframe ma-
nipulation, advanced computing in signal processing and mathematics, as well as data
visualization and interactive figure creation. Since the work was conducted in collabora-

tion, GitHub was used for shared files and update management.

3.4. Acquisition protocol

This study recruited 25 healthy adult volunteers who had no prior clinical conditions
of the cardiovascular system. The participants had an average age of 28 years old, with
weights and heights ranging respectively from 53-96 kg and 160-201 cm, the Metadata and
subject information are illustrated in Figure 3.4. Here are reported the Subject ID, gender,
weight, height of each subject, and the achieved pedal speed during the pedaling phase.
The study was conducted following the experimental protocol (Opinion 3/2019, dated
February 19th, 2019), which received approval from the Politecnico di Milano Ethical
Committee. The protocol involved a single 30-minute signal acquisition phase where the
subjects wore a Finometer cuff on the finger of their dominant hand, and the Soundi®
system was attached to their chest surface. Three electrodes were placed on the thorax

surface of each subject, like in Figure 3.5, and connected to the Soundi® to record the
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[I-lead ECG and bioimpedance signals. The protocol consisted of 5 different periods,

including rest and pedaling periods to induce blood pressure variations due to physical

exercise:

Subject code (/GencAgeght (ight ( Date of Acquisition Physical training Average §peed
Subject_000 M 53 190 92 14/11/2022 Medium 23
Subject_000 M 53 190 92 23/12/2022 Medium 22
Subject_000 M 53 190 92 20/1/2023 Medium 20
Subject_000 M 53 190 92 21/1/2023 Medium 20
Subject_000 M 53 190 92 31/1/2023 Medium 20
Subject_000 M 53 190 92 10/3/2023 Medium 20
Subject_000 M 54 190 94 28/4/2023 Medium 20
Subject_001 F 28 169 50 14/11/2022 Low 21
Subject_002 M 27 179 68 14/11/2022 Low 22
Subject_002 M 27 179 68 20/1/2023 Low 22
Subject_002 M 27 179 68 10/3/2023 Low 22
Subject_003 F 31 154 55 15/11/2022 Low 17
Subject_004 F 25 163 63 16/11/2022 Low 22
Subject_005 M 24 172 72 14/11/2022 Medium 23
Subject_005 M 24 172 72 14/2/2023 Medium 18
Subject_006 M 24 201 96 16/11/2022 High 24
Subject_007 F 21 178 80 16/11/2022 Medium 23
Subject_008 F 26 163 50 16/11/2022 Low 20
Subject_009 M 24 183 75 16/11/2022 Medium 25
Subject_010 M 23 181 72 16/11/2022 Medium 20
Subject_011 M 24 185 75 17/11/2022 Low 23
Subject_012 M 25 185 75 18/11/2022 Medium 24
Subject_012 M 25 185 75 7/3/2023 Medium 20
Subject_013 M 23 162 70 18/11/2022 Medium 23
Subject_014 M 26 182 86 18/11/2022 Low 20
Subject_014 M 26 182 86 23/12/2022 Low 20
Subject_015 M 26 181 78 22/11/2022 High 20
Subject_015 M 26 181 78 14/2/2023 High 16
Subject_016 M 26 185 82 12/1/2023 High 20
Subject_017 M 25 180 63 12/1/2023 Medium 20
Subject_017 M 25 180 63 9/3/2023 Medium 20
Subject_018 F 26 160 56 13/1/2023 Low 20
Subject_019 F 39 170 59 26/1/2023 Medium 18
Subject_019 F 39 170 59 21/2/2023 Medium 20
Subject_019 F 39 170 59 30/3/2023 Medium 20
Subject_020 M 26 170 68 27/1/2023 Low 19
Subject_021 M 29 183 82 15/2/2023 Medium 20
Subject_022 M 25 170 55 20/2/2023 Low 20
Subject_023 M 25 175 54 1/3/2023 Low 20
Subject_024 M 25 174 87 7/3/2023 Low 18
Subject_025 F 34 167 78 14/4/2023 Medium 20

Figure 3.4: Metadata of enrolled subjects for experimental protocol

1. 5 minutes rest.

2. 10 minutes pedaling.
3. 5 minutes rest.

4. 5 minutes pedaling.

5. 5 minutes rest.
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Before the tests, all participants were provided with detailed information about the ex-
perimental sessions, and they were asked to sign an informed consent form. During the
entire acquisition duration, both devices continuously and simultaneously acquired physi-
ological signals. Synchronization was ensured via a repeated digital pulse signal generated
during the first 30 and the last 30 seconds of the acquisition by the master computer and
recorded by both devices. The Finometer device is able to record finger and brachial

arterial pressures, but in this study, we use only the first one.

@ electrodes

o

Figure 3.5: Soundi® chest position: in red are reported the ECG electrodes connected

through jack

3.5. Signals Processing

To create the dataset, it is necessary first to perform a signal analysis. These signals can

be divided into two main blocks, those recorded with the Soundi sensor are:

e Acceleration signals

Plethysmographic signals
e ECG

Bioimpedance

Ambient temperature

Body temperature
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Those recorded by the Finapress are:

e Brachial ABP

e Finger ABP

In addition, a mask is created that will be used in training to exclude segments where
the Finapress calibration is present. In this case, only the ABP signal acquired with the
finger cuff is analyzed. Respiration signals are also added to these, derived respectively
from the acceleration magnitude signal, the plethysmographic signal, and the acoustic
signal. The first common operation for signals acquired through Soundi® sensors (IMU,
Acoustic sensor, ECG, PPG) is to extract and process the signals saved on the MicroSD.
These signals are sampled at different frequencies depending on the sensor with which
the signal is acquired, so they are interpolated around the central sampling frequency of
400 Hz. Since the Finapress has a sampling frequency of 1 kHz, it is also resampled at
400 Hz. Signals are processed and divided into 10-second windows without overlapping

to be able to eliminate artifacts caused by the device.

3.5.1. Acceleration signal

Acceleration signals, which consist of three main components (Ax, Ay, Az), are processed
by applying a Bessel-type bandpass filter. This allows the extraction of acceleration
content in the frequency band of 0.05 to 1 Hz, while maintaining a linear phase component
that preserves the signal waveform. As a result, very low and high frequencies that are
affected by respiration movement distortion are removed from the signal. The Magnitude
Acceleration Signal is obtained by utilizing all three components of the filtered acceleration

signals and applying the formula presented below:

Ay = A2+ A2+ A2 (3.1)

Then, Hilbert envelops and Savitzky-Golay filtering (151 samples and four coefficients)
were sequentially applied to Ay to compute the Seismocardiogram (SCG), which featured
two main patterns representing the aortic valve opening and closure respectively, was

computed from the acceleration signal Table 3.4.
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’ Signal ‘ FilterType ‘ Order ‘ Low cut-on frequency (Hz) ‘ High cut-off frequency (Hz) ‘

A, Bessel 2 0.05 1
A, Bessel 2 0.05 1
A, Bessel 2 0.05 1
Ay Bessel 2 0.05 1

Table 3.4: Filtering parameters adopted for Acceleration signals

3.5.2. Pletismographic (PPG) signal

PPG is an optical technique that is simple and low-cost, used for detecting blood volume
changes in the microvascular bed of tissue at the skin surface level. As blood absorbs light
more readily than tissue, changes in light intensity can be transduced as changes in blood
flow. The sensor’s high sensitivity allows for even minor changes in blood volume to be

detected. The PPG waveform comprises alternating (AC) and direct (DC) components.

e The AC component represents the blood volume cardiac variation in each heartbeat,
attributed to the pulsatile behavior of the heart.

e The DC component is highly correlated to central and peripheral venous pressure
[42]. The average blood volume experiences gradual changes over an extended pe-
riod; however, abrupt fluctuations can arise due to multiple factors such as breath-
ing, the presence of disease, vasomotor activity, sympathetic nervous system activity,

and thermoregulation.

The Pletismographic (PPG) signal is collected by the optic sensor located at the bottom
of the Soundi® device, utilizing three different light sources (Green, Red, and Infrared).
This results in the availability of three channels for the PPG. Subsequently, all signals are
filtered using a Bessel bandpass filter with a frequency band ranging from 0.05 to 10 Hz
Table 3.5.

Signal | FilterType | Order | Low cut-on frequency | High cut-off frequency

Green Bessel 2 0.05 10
Red Bessel 2 0.05 10
Infrared Bessel 2 0.05 10

Table 3.5: Filtering parameters adopted for PPG signals
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3.5.3. Electrocardiogram and Bioimpedance signals

Acquiring the ECG signal is a non-invasive procedure that provides a visual representation
of the electrical and chemical activity of cardiac muscle fibers during the cardiac cycle.
The QRS complex, which comprises three waves (Q, R, and S), is produced by ventricular
depolarization following atrial depolarization and plays a crucial role in this process. By
using external biomedical electrodes attached to three different regions of the chest and
connected to the Soundi® device through a jack hub, the Electrocardiogram signal with
[I-Lead and Bioimpedance signal is collected. In order to refine the signals, a Bessel
bandpass filter is applied between 5 and 25 Hz to extract the content of the ECG signal.
After that, a cascade of notch filters at 36 and 50 Hz is applied to eliminate noise from

the ECG signal Table 3.6.

Signal | FilterType | Order | Low cut-on frequency | High cut-off frequency
ECG Bessel 2 5 25
Notch 2 36 /
Biolmp Bessel 2 0.05 10
Table 3.6: Filtering parameters adopted for ECG and Bio signals
3.5.4. Arterial Blood Pressure (ABP)

The signal of arterial blood pressure shows the pressure wave traveling through arteries,
exhibiting various rates of diffusion and morphology based on the artery’s cross-sectional
area. Arterial blood pressure is the pressure that the blood exerts on the walls of arter-
ies and is a crucial vital sign in clinical practice. In the intensive care unit (ICU), it is
regularly measured to monitor the cardiovascular health of critically ill patients. Physio-
logically, a pressure wave moving through a viscoelastic tube weakens progressively with
an exponential reduction in speed. In this project, a cuff signal is utilized as a reference,
excluding the brachial one. To eliminate high-frequency noise and smoothen the signal,
a lowpass Bessel filter with a linear phase at central frequencies of 25 Hz is employed in
Table 3.7.

Signal

FilterType

Order

Low cut-on frequency

High cut-off frequency

ABP

Bessel

25

/

Table 3.7: Filtering parameters adopted for ABP signals
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3.5.5. Phonocardiogram (PCGQG)

The acoustic sound produced by the opening and closing of heart valves, especially the
Mitral and Aortic valves, is recorded by PCG signal. The PCG signal is reconstructed
using the acoustic sensor in the sound device, and a bandpass filter is applied to remove
breath and external noise. Specifically, a Butter filter with a range of 10 to 40 Hz is used
in Table 3.8.

Signal | FilterType | Order | Low cut-on frequency | High cut-off frequency

PCG Butter 2 10 40

Table 3.8: Filtering parameters adopted for PCG signals

3.5.6. Respiration signals

The respiration signal is obtained by applying various filters to the Acoustic, Plethysmo-
graphic, and Magnitude Acceleration signals. To obtain the first part, a Bessel bandpass
filter is applied to the Magnitude Acceleration signal in the frequency range of 0.05 to 1
Hz. The second part is obtained by filtering the Acoustic signal in the same way. Finally,
the Bioimpedance signal is filtered using a Bessel bandpass filter to obtain the last part
of the respiration signal Table 3.9.

Signal | FilterType | Order | Low cut-on frequency | High cut-off frequency
Respl Bessel 2 0.05 1
Resp2 Bessel 2 0.05 1
Resp3 Bessel 2 0.05 1

Table 3.9: Filtering parameters adopted for Respiration signals

3.6. Labelling process

After processing the signals, a labeling procedure is performed using a straightforward
interface developed in Python Figure 3.6. With this tool is possible to save or delete the
displayed chunks of signals: ECG, PPG, SCG, and PCG recorded with the Soundi®, the
Arterial Blood Pressure (ABP) target signal, recorded with the Finapress. The last is the
ABP 451 that identify the activation of the Calibration window; During the procedure,

all signals collected from the 25 volunteers are analyzed through 10-second windows,
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and only those that exhibit good patterns among those listed before are saved. The
ABP 4 signal allows the inclusion of the temporal instances in which calibration is
active. If saved, these chunks with High activation Mask will be used by the network
but will not affect the loss calculation. Priority is given to ECG, PPG, and target ABP
signals in the labeling procedure, as several studies have highlighted their importance
in reconstructing the arterial blood pressure signal. Among them, ECG and especially
PPG have a strong influence on the model’s performance compared to the other signals.
Indeed, the deep learning model can learn the complex relationship between these two
signals and the ABP signal by combining them. Since the PPG signal is influenced by
changes in blood pressure and blood flow, while the ECG signal reflects the heart’s activity
and cardiac output, these signals allow the model to estimate the ABP signal with higher
accuracy [35]. Other studies only use the PPG signal to reconstruct the ABP [6]. Once
the bank of six signals is saved, the remaining signals of Acceleration, Bioimpedance,
ambient temperature, and body temperature are also concatenated. This block of signals
is transformed into tf.records through a Tensorflow library, allowing an increase in the
model’s performance with a direct impact on the training speed. The annotated file is
split between training, validation, and test sets with a fixed probability of 0.1% for the
test set, 0.2% for the Validation set, and 0.7% for the Training set.
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Figure 3.6: Labelling interface

3.7. Data Augmentation

To enhance model performance and increase its generability, Data Augmentation is per-
formed. This technique enables the expansion of the dataset by generating new samples
from the original dataset. Various techniques are utilized for Time Series Data Augmen-

tation, including:
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e Jittering: This technique involves adding noise with a Gaussian distribution, where

the standard deviation determines the extent of change in the predicted sample.

e Scaling: This involves reducing the magnitude of the signal while maintaining its

duration.

e Time Warping: This technique enables the modification of the signal’s velocity along

its duration, distorting it from its initial form.

Among these techniques, it has been chosen to use Jittering first, introducing noise with
a scale of 0.01 to the signal. Next, the signal was scaled and time-warped, effectively
doubling the initial dataset by adding the newly processed signals. An example of the
procedure is shown in the diagram below. In Figure 3.7, an example of Data Augmentation
performed on the signal is depicted. In particular, the python library tsaug is used, which
allows for the application of the main algorithms previously described. In Figure 3.7, we
see the modified signal in blue and the original signal in orange. Noise is first added, and
the signal is then slightly drifted to avoid modifying the physiological conditions of the

signal. The parameters used are shown in Table 3.10[30].

ECG

—— modified_sg
—— initial_sg

6000

4000 1

2000

—2000 1

—4000 q

17200 17400 17600 17800 18000 18200 18400 18600 18800

—— modified_sg
300 / a —— initial_sg
j l

—300 4

17200 17400 17600 17800 18000 18200 18400 18600 18800

Figure 3.7: Example of Data Augmentation procedure applied on PPG and ECG signals
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type Algorithm Scale | max drift | drift point
Jittering | tsaug.AddNoise | 0.02 / /
Drift tsaug.Drift / 0.03 1
Table 3.10: tsaug parameters for Data augmentation
3.8. Dataset Description

Once the signal acquisition procedure is completed, the dataset used to train the network

is constructed. Table 3.11 presents the subject metadata:

Item Value
N° of subjects 25
Gender
Woman 7 subjects
Man 18 subjects
Age
Mean 26 years
STD 20 years

Table 3.11: Subject Information

In Table 3.12, the average values of systolic, diastolic, and mean pressures of the input
pressure signals for the entire dataset are reported. The values exhibit a high standard
deviation as they account for both resting measurements and measurements during the
pedaling phase. Obtaining a dataset of 664.0 minutes, which is then divided as previously

described into training, validation, and test sets.

Max(mmHg) | Min(mmHg) | Mean(mmHg) | STD(mmHg)
SBP 200.103 83.882 130.726 22.00
DBP 117.584 49.054 81.545 14.754
MBP 163.586 62.565 97.839 17.556

Table 3.12: Dataset description of all subjects enrolled
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In Table 3.13, the values for Subject00 are reported, for which six different recordings were
performed, totaling 134.5 minutes. The two distinct datasets are used for dual analysis:
subject-dependent analysis on Subject 00 and subject-independent analysis on all twenty-
five enrolled subjects. It is notable that while the diastolic and mean pressure values have
a low standard deviation, the standard deviation is significantly higher for the systolic
values. During the acquisition phase, there were moments when the instrument recorded
values that were well outside the acceptable physiological range, particularly for systolic
pressure values. This could potentially have a negative impact on the performance of the

proposed models.

Max(mmHg) | Min(mmHg) | Mean(mmHg) | STD(mmHg)
SBP 170.80 81.973 135.36 18.90
DBP 113.18 59.86 87.39 12.07
MBP 131.15 67.23 103.38 13.71
Table 3.13: Dataset description of Subject00
3.9. Evaluation Metrics

In order to evaluate the performance of the proposed models, characteristic parameters of
the Arterial Blood Pressure (ABP) signal were chosen and computed for each prediction
chunk:

e Systolic Blood Pressure (SBP) :

SBP = mean(ABPpear) (3.2)
e Diastolic Blood Pressure (DBP) :
DBP = mean(ABPpeakpeqr) (3.3)
e Mean Blood Pressure (MBP) :
MBP = (2xDBP+ SBP)/3 (3.4)
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e Standard Deviation (STD):

N
1 -
STD = | % > (ABP, - ABP)? (3.5)

i=1

In particular, the standard deviation described in the equation 3.5 allows calculating
Blood Pressure Variability (BPV): the higher it is, the better the reconstruction quality.
[41]. Therefore, SBP, DBP, MBP, and STD are selected as target parameters to evaluate
the quality of the extracted ABP signal.

3.9.1. [Extracion of target value

Once the model is trained, the predictions made on the test set are exported to a JSON file
and subsequently processed. The ID, target signal, and predicted signal are reported, each
with a duration of 10 seconds. The fiducial points that will be used for model evaluation
are described in Equations 3.2, 3.3, and 3.4. These, along with the standard deviation in
Equation 3.5, will indicate the level of evaluation for the developed method. To identify
these fiducial points, in each chunk, the respective fiducial points are detected, as visible in
Figure 3.8 and 3.9, for the predicted signal and the target signal: the peaks corresponding
to the maximum systolic pressure are indicated in orange, and the peaks corresponding
to the diastolic pressure are indicated in blue. These peaks are selected at a minimum
distance of four hundred samples, which corresponds exactly to one second. The resulting
parameter that will be analyzed corresponds to the average value in each chunk, following
clinical practice, which calculates SBP and DBP parameters as the average of multiple

measurements.
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SBP_mean = 133.95096 and DBP_mean = 90.73543
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Figure 3.8: Automatic selection of SBP (orange) and DBP (green) peaks in prediction

chunk of 10 seconds
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Figure 3.9: Automatic selection of SBP (orange) and DBP (green) peaks in target chunk

of 10 seconds



3| Material and Methods 31

3.10. PTT Models

As described earlier in the introduction, techniques based on the application of models
such as those related to PWV are among the most widely used in recent scientific appli-
cations. These techniques allow for the prediction of diastolic and systolic pressure values
based on the Moens-Korteweg equations [52]. These equations establish a relationship
between the propagation velocity of the pressure wave in the arteries (PWV) and char-

acteristics related to the flow and vessels, such as wall elasticity. The Moens-Korteweg

L Exh
PWV:—:”— 3.6
PTT 2% % p (3.6)

The parameter L refers to the length of the vessels, representing the segment over which
the pressure is calculated. The PTT (Pulse Transit Time) is the time it takes for the

pressure pulse to travel along the length L. The radius of the vessels is denoted by r, and

equation is provided below:

their wall thickness is represented by h. The variables F and p correspond to the elastic
modulus of the vessels and the density of blood, respectively. This equation highlights
how PWYV is connected to physiological parameters, which also reflects a limitation of
this technique. The elastic modulus of the vessels (F), as reported in various scientific
studies, has been found to be correlated with factors such as age, arterial stiffness, and
vascular health. The density of blood (p) remains relatively constant and is not subject
to significant physiological variations. Therefore, the primary factors influencing PWV
are the vessel properties (such as elasticity and dimensions) and the length over which

the pulse wave propagates. [27]:

E = Ey % e (3.7)

In Formula 3.7, « represents a constant, E0 represents the initial modulus of the vessel
walls, and P denotes the pressure within the vessels. By combining equations (3.6) and
(3.7), it can be observed that pressure has a logarithmic dependence on the Pulse Transit
Time (PTT), as illustrated in Formula 3.8:

9 2*r*p*L2
BP = —Z xIn PTT + —xFo (3.8)
(6] (6]

which can be simplified to:
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ABP =axIn PTT +b (3.9)

If the variation of ABP with respect to r is small enough to be negligible, then the second

term in equation (3.9) can be ignored. We can therefore extract the linear relationship:

ABP = ax PTT +b (3.10)

Based on Equation (3.10), several variations of models have been developed. In particular
looking at the research presented at the 2019 5th Iranian Conference on Signal Processing

and Intelligent Systems in Int [1], three different models have been proposed [26]:

e Linear Model

BP = asx PTT + by
DBP = agx PTT + by

e Inverse Model

SBP = o * 517 + by
DBP = ag4 * ﬁ + by
¢ Quadratic Model

SBP:as*ﬁ—{—bs
DBP:Oéd*ﬁ—de

3.10.1. Regression Models

A simple algorithm is implemented in Matlab for estimating the parameters a and b using
the previously described linear, inverse, and quadratic models. Following the pipeline
illustrated in Figure 3.10, a prediction is made for Diastolic and Systolic pressure values,

and the mean absolute error is calculated to evaluate the accuracy.
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Figure 3.10: Description of Regression model pipeline

The procedure used for estimating the parameters o and b of the models consists of four

main steps:

e 1st Step: Manual selection of corresponding R-peaks for ECG and peak maxima
for PPG is performed. This peak labeling procedure is carried out on filtered and
aligned signals, considering only the recordings of Subject 00. Once the maxima and
minima of the ABP target signal recorded by Finapress are identified, a CSV file
is created that includes the occurrence in seconds of the R-peaks and PPG peaks,

along with their corresponding systolic and diastolic pressure values.

e 2nd Step: The time difference in seconds between the ECG and PPG peaks is
calculated, indicating the time delay it takes for the impulse to travel from the

heart to the index finger, where the PPG is acquired.

e 3rd Step: A simple algorithm is created using Matlab to implement the regres-
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sion using the different described models. Specifically, the Deep Learning Toolbox
is used, which includes the function "fitml” for implementing a linear model and

returning the respective parameters a and b.

e 4th Step: Predictions are made using the respective models on 1/3 of the dataset
created for parameter estimation. This allows for the calculation of prediction errors
and the estimation of Mean Absolute Error (MAE) for each model.

3.10.2. PTT Computation

The Pulse Transit Time (PTT) indicates the time it takes for the pressure impulse to
travel from the heart to a radial artery in the body. This parameter is closely correlated
with blood pressure, as previously described. The PTT can be calculated as the time
difference between the occurrence of the R-peak in the electrocardiogram (ECG) and the
peak maximum in the photoplethysmograph (PPG). The R-peak in the ECG indicates
ventricular depolarization and the onset of contraction, which produces the systolic stroke
volume. On the other hand, the peak maximum in the PPG, corresponding to the maxi-
mum transmitted light intensity, indicates a decrease in blood volume at the analysis site

and therefore corresponds to the minimum pressure, the diastolic pressure.

ECG filtered and normalized signal

984 985 . . 986 987 988 989 990
PPG green filtered and normalized signal

980 981 982 983 984 985 986 987 988 989 990

NS D DN NNNN NN N NANNN

980 981 982 983 984 985 986 987 988 989 990
['Time [s] - Start mins:", 16, 'secs: *, 20, " duration: *, 10]

Figure 3.11: Peak selection procedure

In this experiment for the calculation of PTT, the pre-processed and aligned ECG and
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green PPG signals from subject 00 were used, following the signal processing procedure
described in the signal processing section. For each recording, five specific characteristic

points were manually selected for each signal, as highlighted in Figure 3.11:
e R-peak in black
e PPG-peak in blue
e SBP-peak in yellow
e DBP-peak in purple

A total of 100 samples are selected, with 75 samples used for training the parameter
estimation model and 25 samples for the test set, from which the accuracy and mean
absolute error of the model are derived. Table 3.14 presents the average values of systolic,
diastolic, and mean pressure for subject 00 in four out of the six recordings, on which

manual feature selection was performed.

Max(mmHg) | Min(mmHg) | Mean(mmHg) | STD(mmHg)
SBP 167.60 85.363 132.56 14.60
DBP 114.68 60.45 85.19 9.07
MBP 129.55 66.84 105.68 12.17

Table 3.14: Target value of input signals
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4: Artificial Intelligence

After finishing the labeling process, a deep neural network approach was used for Arterial
Blood Pressure waveform reconstruction, as mentioned earlier. Defining the input and
output of the architecture is the first step. A well-structured procedure must be estab-
lished to meet computational power and training timing constraints. The network is fed
with processed signal chunks to enable it to learn the useful features of the time series and
make an accurate signal reconstruction. Sixteen-time series chunks are extracted from the

acquisitions and concatenated in the depth dimension:
o Acceleration signals (A, Ay, Ay, Ay);
e Plethysmographic signals (Red, Green, Infrared);
e ECG;
e Bioimpedance;
e SeismoCardiogram;
e PhonoCardiogram,;
e Respiration;
e Ambient temperature;
e Body temperature;
e ABP Mask;

By concatenating the Finapres-recorded Arterial Blood Pressure target signal to the data,
an input of the form N x 16 x M is obtained for the convolutional network. Here, N
represents the number of samples for the selected chunk length, which is 10 seconds
in this case. Sixteen signals are concatenated, and M corresponds to the number of
chunks that were saved during the labeling procedure. This input has 16 channels, each
representing a separate signal, along with its corresponding ABP target signal. Deep

Learning techniques were employed to recreate the ABP signal waveform using signals
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obtained with Soundi®. The study specifically examined the use of different architectures

that combine Convolutional Neural Networks and Gated Recurrent Unit techniques.

4.1. Gated Recurrent Unit (GRU)

Cho et al. [15] introduced the Gated Recurrent Unit (GRU) in 2014 to tackle the vanishing
gradient problem that plagues traditional recurrent neural networks. GRU and Long
Short-Term Memory (LSTM) share similarities and can be considered as variations of
each other since they both demonstrate similar performance in specific scenarios. GRU
overcomes the vanishing gradient issue of regular RNNs by leveraging update and reset
gates that decide which information should be conveyed to the output. The update and
reset gates can be trained to preserve relevant data from the past without decaying over
time and to filter out irrelevant information that does not contribute to the prediction
Figure 4.5.

Xt

Figure 4.1: Illustration of a single GRU unit.

In Figure 4.1 are reported the GRU’s parameters were:

e h(t — 1) is the activation function of the previous state;
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e X, is the input at the current time;
e o is the sigmoid function

e o is the Hadamard product;

The update gate z is a powerful mechanism that allows the model to decide how much
of the past information from previous time steps should be carried forward to the future.
This capability is particularly useful since the model can choose to retain all the relevant
information from the past. The mathematical computation of the Activation is reported
in the formula (2) [18]:

Zt = O-(szt + Uzht—l) (41)

The reset gate 1, on the other hand, determines the amount of past data to discard.
The analytical update of the reset gate reported below is similar to update one, but the
weight matrix is different (3) [18]:

s = U(er't + Urht—l) (42)

4.1.1. GRU layer

To better understand and comprehend the optimal placement of GRU units within convo-
lutional networks such as U-Net, an ablation study was conducted among three different
setups using only the recordings from subject 00. Specifically, the following setups were

examined:

¢ GRU Encoder layer: The GRU layer is inserted before the bottleneck, taking
the output of the last encoder layer as input and transferring the output to the
bottleneck. This layer has a number of units equal to the number of output filters

from the last encoder layer, which is 128 units.

e GRU Bottlneck: In this case, the GRU layer is positioned immediately after the

bottleneck and before the decoder. It has a number of units equal to 256.

e GRU Decoder: The GRU layer is placed at the output of the network after the
last encoder layer. It takes the output of the network as input and produces the
ABP wave

The main difficulty in using GRU lies in training, as they require high computational
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capacity that can lead to memory saturation. Additionally, like RNNs, GRUs are often
affected by the problem of Vanishing or Exploding gradients, which causes training de-
generation and makes network training impossible. The ablation study to identify the
optimal placement of the GRU layer was conducted on the U-Net with the parameters
listed in Table 4.1 .

Models | Loss function | Optimizer | Initial Filter | Epochs
U-Net MSE Adam 15 500

Table 4.1: U-Net parameters fo GRU test

epoch_mean_absolute_error IO :
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Figure 4.2: In this figure, the different trends of mean absolute metrics are reported for
the three different locations of GRU units: green for GRU-Bottleneck, black for GRU-
Encoder, and blue for GRU-Decoder.
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Figure 4.3: In this figure, the different trends of the loss function are reported for the three
different locations of GRU units: green for GRU-Bottleneck, black for GRU-Encoder, and
blue for GRU-Decoder.

Models N° units | Activation | Recurrent activation ‘ MAE (mmHg) ‘ Loss ‘
GRU-Encoder 128 linear sigmoid 14.88 458.6
GRU-Bottleneck 256 linear sigmoid 15.81 422.5
GRU-Decoder 1 linear sigmoid 14.79 407.3

Table 4.2: Errors of different GRU positions inside the network

Table 4.2 presents the validation metrics that show how accuracy changes based on the
placement of GRU units in a base U-Net. Figures 4.3 and 4.2 show the patterns of the
loss function and mean absolute error, respectively. As observed, the position and number
of units in the GRU layer greatly influence the network’s performance. Placing the GRU
layer at the output of the network with a single unit reduces memory usage and the total
number of network parameters. In Figures 6.4 and 4.2, the trend on the validation set
of the U-Net with GRU in the decoder is represented in blue, while the encoder and
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bottleneck trends are shown in black and green, respectively. The U-Net with the GRU
layer in the decoder outperforms the other two setups, as can also be observed from the
values of the mean absolute error reported in Table 4.2, where it achieves a value of
14.79 mmHg compared to 14.88 and 15.81 mmHg achieved with GRU in the encoder and

bottleneck, respectively.

4.2. Convolutional Neural Network (CNN)

CNNs have been widely used in image recognition tasks, but they have also been successful
in various other fields, including natural language processing and speech recognition. In
recent years, the application of 1D CNNs has gained popularity in processing sequential
data such as time series signals. 1D CNN operates on one-dimensional input data and
learns a set of filters to capture different features at different scales. The use of 1D CNNs
can help capture local patterns in the data, which makes them useful in tasks such as wave
reconstruction how in this case, where the features of interest may occur at different time
scales. An important aspect of 1D CNNs is the ability to downsample the input data while
retaining the relevant information, which is done through the use of pooling layers. This
allows the network to learn features at different resolutions and speeds up the training
process by reducing the dimensionality of the data [54]. U-Net is widely recognized as one
of the most frequently used convolutional neural networks in medical image processing,
particularly in the areas of image classification and segmentation using deep learning based
on CNN. It is considered one of the most important semantic segmentation frameworks for
CNN, according to a report by Du et al. [20]. Numerous studies have also demonstrated
that deep learning can be used to achieve physiological signal segmentation and analysis.
For example,Oh et al. [40] utilized a modified version of U-Net to categorize ECG beats.
Chuang et al. [17] employed deep learning to segment and classify lung nodules in CT

images, providing another illustration of its potential in the medical field[17, 40].
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Output waveform. (1,4000)

Bank of signals
(16,4000)
J‘} Convolution + ReLu + Bateh Norm
== Max-Pooling
Transpose Convelution (upsampling)

== Skip Connection and concatenation layer

J"} == Linear convolution (Kernel = 1)
DECODER
m— ' GRU layer

Figure 4.4: In this Figure is reported the classical architecture of U-Net

Model | Output Shape | N° Parameters
U-Net | (None, 4000, 1) 71593

Table 4.3: U-Net parameters

Models | Loss function | Optimizer | Initial Filter | Epochs | Batch size
U-Net MSE Adam 15 500 64

Table 4.4: U-Net Hyperparameters

In Figure 4.4 is reported the U-Net architecture and in Table 4.3 its parameters. The
U-Net architecture is symmetric, having an Encoder part in orange that extracts spatial
features from the image, and a Decoder part in purple that constructs the segmentation
map from the encoded features. Indeed in red, there is a bottleneck part that constructs
the latent image, which is the main part of the deep network. The Encoder follows
the typical formation of a convolutional network. It involves a sequence of two 3 x 3
convolution operations, which is followed by a max pooling operation with a pooling size
of 2 x 2 and stride of 2. This sequence is repeated four times, and after each downsampling
the number of filters in the convolutional layers is doubled. Finally, a progression of two
3 x 3 convolution operations connects the Encoder to the Decoder. the Decoder first
up-samples the feature map using a 2x2 transposed convolution operation, reducing the
feature channels by half. Then again a sequence of two 3 x 3 convolution operations is

performed. Similar to the Encoder, this succession of up-sampling and two convolution
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operations is repeated four times, halving the number of filters in each stage. Finally,
a 1x1 convolution operation is performed to generate the final segmentation map. All
convolutional layers in this architecture except for the final one use the ReLU (Rectified
Linear Unit) activation function; the final convolutional layer uses a Sigmoid activation
function. The most ingenious aspect of the U-Net architecture is the introduction of skip
connections. In all four levels, the output of the convolutional layer, prior to the pooling
operation of the Encoder is transferred to the Decoder. These feature maps are then
concatenated with the output of the upsampling operation, and the concatenated feature
map is propagated to the successive layers. These skip connections allow the network to

retrieve the spatial information lost by pooling operations [19, 46|

4.3. Proposed Models

Within the literature, there are multiple studies that investigate the prediction of blood
pressure values or waveform by utilizing other physiological signals like ECG and PPG.
Ibtehaz et al. [29] conducted a study where they attempted to reconstruct the blood
pressure waveform solely from the plethysmographic signal. They accomplished this using
a deep neural network inspired by U-Net and a Res-Net to refine the signal, yielding
outstanding outcomes. Additionally, Baker et al. [8] present a hybrid approach in their
study where a neural network is created for the continuous and non-invasive estimation
of blood pressure by analyzing electrocardiogram and photoplethysmogram waveforms.
This hybrid neural network involves utilizing a Convolutional Neural Network for 1D
segmentation and a Long Short-Term Memory for signal dynamics analysis, resulting
in a Deep Neural Network that reconstructs the blood pressure signal from ECG and
PPG. Another study conducted by Cheng et al. [14] describes the development of a fully
convolutional neural network for monitoring arterial pressure. Based on these studies,
two different models utilizing Deep Neural Networks have been created. In particular, the

classic U-Net design was taken and modified by adding Gated Recurrent Networks.
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4.3.1. Basic Unit

—> —>

Convolutional layer
I:I BatchMormalization

Rectified Linear Unit

Figure 4.5: Basic Unit of Encoder-Decoder layer.

To create the networks model, the study starts with the definition of the basic unit used

in the network’s levels. As shown in the Figure 4.5 there are three layers respectively:
e Convolutional layer
e Batch Norm Layer

e Rectified Linear Unit

The convolutional layer enables image segmentation and the extraction of feature maps
that capture the salient characteristics of signals. The output from this layer is then
fed into the subsequent layer, which applies batch normalization [32]. The training of
Deep Neural Networks is complicated by the fact that the distribution of inputs for each
layer changes during training, as the parameters of the previous layers are updated. This
causes a slowdown in training by necessitating lower learning rates and careful parameter
initialization and makes it notoriously difficult to train models with saturating nonlinear-
ities. This phenomenon is referred to as internal covariate shift, and it is addressed by
normalizing the inputs to each layer. The approach of the presented study incorporates
normalization as part of the model architecture and performs it for each training mini-
batch. Batch Normalization allows for much higher learning rates and reduces the need
for meticulous initialization. The final basic element is the Rectified Linear Unit (ReLU),

a linear activation function that outputs the input directly if it is positive; otherwise, it
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outputs zero. This function has become the default activation function for many types of

neural networks due to its easiness of training and ability to achieve superior performance.

4.3.2. Single branch GRU-Net

Bankofsignals [ 3 :I |
— .
(16,4000)
Output waveform. (1,4000)
== Max-Pooling J}
Transpose Convolution (upsampling) E

== Skip Connection and concatenation layer

Convolution + ReLu + Batch Norm

== Linear convalution (Kernel = 1)

' GRU layer

Figure 4.6: developed diagram of GRU-Net

Model | Output Shape | N° Parameters
GRU-Net | (None, 4000, 1) 149970

Table 4.5: GRU-Net parameters

Models | Loss function | Optimizer | Initial Filter | Epochs | Batch size
GRU-Net MSE Adam 15 500 64

Table 4.6: GRU-Net Hyperparameters

A simple diagram of the network developed for the reconstruction of the ABP signal is
shown in Figure 4.6, and in Table 4.5, the parameters of the network and the output shape
are reported. As can be seen, it has the structure of a classic U-Net, with an Encoder
as the first part, followed by a Bottleneck, and finally the Decoder. The structure of the
encoder is almost identical to that of a normal U-Net, while there are significant differences
in the other two parts. In particular, there is Gated Recurrent Networks in the respective

levels of the decoder, which allow the signal dynamics to be taken into account by storing
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the main features using reset gate and update gate, as described earlier. The input sample
initially passes through the three levels of the encoder until it reaches the output of the
bottleneck part. The output is then concatenated in the concatenation layer with the
respective skip connection, thus entering the lower level of the Decoder. The output is
then concatenated in the concatenation layer with the respective skip connection, thus
entering the lower level of the Decoder, which is also enriched with an output GRU layer.
From the results, it can be seen that the use of GRU significantly speeds up the network

training procedure, improving its final accuracy.

4.3.3. Triple branch 3GRU-Net

An ad-hoc neural architecture was developed to tackle the multiscale multi-modal prob-
lem. The primary goal was to learn useful features from all input signals. This was
achieved using a multi-path strategy that involved convolutional neural network layers.
Thanks to this strategy, it became possible for each of the paths to learn unique features
at different scales from the input signals. For instance, while the SpO2 signal had a very

slow trend, the high-frequency signal contained finer details that were crucial for learning.

=00
[ o X 1 R CRTITIT

Figure 4.7: Developed diagram of 3GRU-Net

Model Output Shape | N° Parameters
3GRU-Net | (None, 4000, 1) 251050

Table 4.7: 3GRU-Net parameters
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Models Loss function | Optimizer | Initial Filter | Epochs | Batch size
3GRU-Net MSE Adam 15 500 64

Table 4.8: 3GRU-Net Hyperparameters

This model is still inspired by the U-Net, but it focuses on the frequency band of the
different input signals. So each branch has the same structure of a U-Net encoder, but
each of them receives input different signals. For this reason, the use of this model requires
an additional preprocessing step that involves dividing the signals based on their frequency

content, in particular, they are grouped as follows:
e high frequencies: electrocardiogram and phonocardiogram
e mead frequencies: plethysmographic, seismographic, acceleration, bioimpedance

e low frequencies: temperature and respiration

Therefore, an alternative encoder consisting of three different branches is developed, one
pattern for each signal bank, corresponding to the main frequency. In this way, each
branch of the encoder encodes specific aspects of the signal that depend on its main
frequency. Each part of the encoder follows a typical convolutional network structure,
consisting of a sequence of two 6 x 6 convolution operations, followed by a 2 x 2 max
pooling operation with a stride of 1. This sequence is repeated three times, with the
number of filters in the convolutional layers doubling after each downsampling, specifi-
cally using 64, 128, 256, and 512. This is repeated for all three branches. The outputs are
concatenated and connected to the decoder by a bottleneck layer composed of two con-
volutional layers with 512 filters. The decoder first upsamples the feature map, reducing
the number of feature channels. Then, a sequence of two 6 x 6 convolution operations
is performed, similar to the encoder. This sequence of upsampling and two convolution
operations is repeated three times, halving the number of filters in each stage. A final
1x1 convolution operation is performed to generate the segmentation map. The ReLU
activation function is used in all convolutional layers except for the final one, which uses

a Linear activation function.

4.3.4. Res-Net

Once the intermediate pressure signal is obtained using the network, a Res-Net is cascaded
that reflects the structure proposed by He et al. [25] and Ibtehaz and Rahman [28]. In
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particular, to realize the MultiResU-Net, basic units called MultiRes-Blocks are used, as

shown in Figure 4.8.
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Figure 4.8: Proposed MultiResBlock

As reported in the paper, this setup avoids memory problems compared to the classic
Res-block, which involves using an increasing kernel in the various convolutional layers.
To overcome this issue, a growing number of filters are inserted into each convolutional
layer, and a residual connection with a kernel of 1x1 is added to retrieve spatial infor-
mation. Then the tensor is passed to the Batchnorm layer and ReLu unit. In addition,
an alternative connection to the classic skip connection is developed, which connects the

output of the encoder with the input of the decoder, called Res-path 4.9.

3x3 3X3—> 3X3—> 3x3__.®L
Encoder +—
Decoder
1X1- 1X1- 1X1- 1X1-
-

\V"/
Max Pooling

Res Path Transposed Convolution

Figure 4.9: Proposed Res-Path

This approach involves the use of a chain of convolutional layers with residual connections
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before concatenating the feature maps from the encoder to the decoder, instead of directly
concatenating them. These layers use 3 x 3 filters, and 1 x 1 filters are incorporated with
the residual connections to make learning easier, especially in deep convolutional networks.
The number of convolutional blocks in the res path is gradually reduced, with the first layer
having 4 blocks, the second layer having 3, and the third layer having 2. The network’s
final diagram featuring MultiResBlock and Res path is depicted in Figure 4.10, which
facilitates fine-tuning the ultimate signal by decreasing noise during reconstruction and
realigning the prediction, thereby enhancing the predicted intermediate pressure signal
achieved through either the GRU-Net or the 3GRU-Net.

MultiRes Block 1 Res Path 1 | MultiRes Block9 | =

MultiRes Block 2

Res Path 2 > MultiRes Block 8

I

MultiRes Block 3

Res Path 3 MultiRes Block 7 |
I — 4

2
)
MultiRes Block 4 ‘ Res Path4 | MultiRes Block 6
) )
MultiRes Block 5 W

Figure 4.10: Proposed MultiResNet

Model | Output Shape | N° Parameters
Res-Net | (None, 4000, 1) 9244

Table 4.9: Res-Net parameters

Models | Loss function | Optimizer | Initial Filter | Epochs | Batch size
Res-Net MSE Adam 32 500 64

Table 4.10: Res-Net Hyperparameters

The effect of cascaded ResNet is immediately visible in Figures 4.11 and Table 4.11,
which show the trends of metrics on the training and validation sets for both U-Net

and U-Net with cascaded ResNet, calculated over 500 epochs, as well as the values of
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validation metrics. It can be observed that the overall mean absolute error significantly
decreases with the addition of cascaded ResNet, improving the model reconstruction.
Specifically, the mean absolute error decreases from 17.53 mmHg to 13.11 mmHg. In
Figure 4.11, it can be seen that the trend on the validation set reaches lower values with
500 epochs, improving the training speed. Additionally, it is noticeable that the model
without ResNet quickly tends to overfit. The blue line represents the training metric
trend, while the red line represents the validation metric trend for the simple U-Net.
Based on these observations, the subsequent analyses are performed using the respective

models with cascaded ResNet.
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Figure 4.11: Plot of the MAE trend metrics: U-Net over validation set (light blue); U-Net
over training set (Red); U-Net+ResNet over validation set (Green); U-Net+ResNet over
training set (Blue)

Models Loss Value | MAE (mmHg) | Epochs

U-Net 464.3 17.53 500
U-Net+ResNet 291.6 13.11 500

Table 4.11: metrics of the developed models: evaluation of target metrics over the vali-

dation set.
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4.3.5. Summary of proposed models

Three different deep neural network models based on U-Net are developed, introducing
the Gated Recurrent Unit (GRU). Tables 4.12 and 4.14 display the parameters of the
networks with cascaded ResNet. As observed, in terms of computational complexity, the
3GRU-Net is much more demanding than the simple GRU-Net, as the three branches of
the 3GRU increase the complexity of the network. However, this ensures better robustness
of the network, as it seems to fit the task better and allows for a more accurate prediction

of the waveform.

Model Output Shape | N° Parameters

U-Net (None, 4000, 1) 140714

Res-Net (None, 4000, 1) 9244
Complete model | (None, 4000, 1) 149958

Table 4.12: U-Net + ResNet parameters

Model Output Shape | N° Parameters

GRU-Net (None, 4000, 1) 140726

Res-Net (None, 4000, 1) 9244
Complete model | (None, 4000, 1) 149934

Table 4.13: 3GRU-Net 4 ResNet parameters

Model Output Shape | N° Parameters
3GRU-Net (None, 4000, 1) 241806
Res-Net (None, 4000, 1) 9244
Complete model | (None, 4000, 1) 251014

Table 4.14: GRU-Net + ResNet parameters
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Models | Loss function | Optimizer | Initial Filter | Epochs
U-Net MSE Adam 15 500
GRU-Net MSE Adam 15 500
3GRU-Net MSE Adam 15 500
Res-Net MSE Adam 15 500

Table 4.15: Summary of model’s Hyperparameters

23
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5 ‘ Experimental session

In this section, an analysis of the different components of the experimental setup is re-
ported, as well as the outcomes of the ablation studies that help in identifying the optimal
parameters for the deep learning architectures used in the estimation of ABP waveforms
from a Bank of signals. The experiment was carried out through the application of the
Python programming language for both algorithm development and implementation, and
the construction of the neural network models was executed utilizing TensorFlow with a
KERAS frontend, then thanks to TensorFlow tools the result are printed with a Tensor-
board.

5.1. Hyperparameter tuning

Through an ablation study the optimal hyperparameters for the network are selected, and

since each model has a unique structure, it also has a distinct initial setup:

e GRU-Net: The kernel size for each convolutional layer has been chosen to be 6 to
account for the presence of various signal trends. Both the Encoder and the Decoder
consist of three levels, each with two basic units as previously described, and the
number of filters is increased as the depth of the network increases. In the first
levels, there is an initial number of 15 filters, which doubles at each level until there
are 128 filters in the Bottleneck layer
Due to the high computational cost of GRU units, only one unit is chosen for the De-
coder layers. The network’s performance is strongly linked to the units in this layer,
as an excessive number of units could decrease the network’s capabilities, while a
number that is too low may have no effect on performance, thus not justifying its

presemnce.

e 3GRU-Net: Due to its unique structure, this model requires a higher number of
hyperparameters. The three encoder branches have the same structure as those

present in the GRU-Net. However, in the Bottleneck layer, the number of input
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features is tripled because all the maps present at the output of the three branches
are concatenated. The number of filters remains unchanged, therefore they are
respectively 15, 32, 64, and 128. Due to the high number of parameters and thus
the high computational cost in this set-up, only one GRU layer with a single unit

is selected in the Decoder.

e Res-Net: To set the hyperparameters of Res-Net, the study relied on information
from the study by He et al. [25]. The network consists of three levels of encoders, a
bottleneck, and three levels of decoders. In each MultiRes-block (Figure4.8), there
are three convolutional layers with an increasing number of filters, respectively 1/6,
1/3, and 1/2 of the total number of filters of the corresponding level. For example,
in the first level of the encoder, there will be 64/6, 64/3, and 64/2 for the three
convolutional layers. In addition, the number of filters is weighted by a factor of
a = 1.67. After several attempts, a kernel size of 6 is selected. The Res-Path
(Figure4.9), on the other hand, consists of four convolutional layers for the first
level of the encoder, three layers for the second level, and two layers for the third

level.

5.2. Loss Function

The loss functions used to train deep learning neural networks are mainly based on the
use of Mean Absolute Error (MAE) and Mean Squared Error (MSE), reported in the

formula below:

e Mean Absolute Error (MAE):

1 — X
MAE = EZlyi_?M (5.1)
=1

The MAE calculates the average of the absolute distance between the target signal
and the predicted signal. It is mainly used as an alternative to MSE when there are
many outliers. However, when the error decreases, the optimization stops working

as there is no defined minimum point.
e Mean Squared Error (MSE):

MSE =3 (i~ ) 52

=1
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As stated in the formula, MSE calculates the average of the squared error between
the predicted signal and the target. The quadratic dependence penalizes large er-
rors and, due to its parabolic trend, it has a minimum point that allows for better
optimization of the gradient at the minimum point. However, outlier values can
compromise its performance, as values that are much larger or much smaller can

cause a significant increase in loss.

In the present project, both loss functions were tested for all three models. From the
analysis of the results, it was found that using MSE as the loss function improves the
speed and quality of training, as the quadratic dependence on the error speeds up weight
updates. However, since the MSE loss is insufficient in constraining local waveform infor-
mation, an auxiliary function called Lmax is introduced to penalize abnormal points in
the predicted waveform. In this way, the total loss depends on the mean squared error
calculated between the target ABP and the predicted one, plus a term that depends on
the absolute value of the error. The Lmaz function is multiplied by a weighting factor of
A = 0.005 [14]. The final formula is presented below:

Ltotal == Lmse + A (Lmaz) (53)
1 n
Linse = — ABPre — ABP, re 2 4
- ZZI(| f pred|) (5.4)
Linas = max(|ABPye; — ABPyreq|) (5.5)

the Equation n° 5.5 is the final selected Loss function that improves the regression task

and speeds up the training [51].

5.3. Training procedure

The saved chunks are then transformed into tf.records format, which as mentioned before,
increases model performance. They are then allocated and split into test, validation, and
training sets based on a pre-set probability described in the previous section. Each batch
sample corresponds to a 10-second window that includes the 16 input channels for the
network, including the target signal and mask. Parameter updates for the network occur

every 64 batch samples, which is the chosen batch size, and Adam Optimizer s taken as the
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optimization method. The selected Loss was Lmse + Lmax, as presented in the reference
section, with an initial value of 0.001. Following the pipeline shown in the diagram in
Figureb.1, training is first performed on the training set with the indicated signal bank
and the target and mask signals as input. The trained model is then tested on the test

set to evaluate its final performance.
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( NET I|
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Figure 5.1: Training pipeline

5.3.1. Ablation Study for input signal selection

In the literature, numerous studies attempt to replicate the arterial pressure waveform

using deep neural networks, solely relying on the photoplethysmography (PPG) signal, its
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derivatives, and the electrocardiogram (ECG). This study leverages various physiological
and non-physiological signals recorded through Soundi®. To comprehend the network’s
behavior based on input signals, an ablation study was conducted using different signal
banks as tests. The study focused on the GRU-Net, employing various combinations of

input signals. The specific sets experimented with are presented in Table 5.1

channels Used signals MAE (mmHg) | Loss value | color
1 PPG green 18.01 542 celeste
1 ECG 18.73 598 fucsia
3 PPG(green, red, infrared) 17.78 499 orange
4 PPG(green, red, infrared)ECG 17.03 469.8 purple
6 PPG(green, red, infrared) ECGPCGSCG 15.02 410 black
16 SignalBank 12.77 293.2 verde

Table 5.1: Ablation study for input signals: the channels refer to the number of the input;
MAE is the mean absolute error computed on test set; Loss value refers to the value of the
loss function and the indicated color The corresponding trend graph is shown in Figure
5.2
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Figure 5.2: The trends of the U-Net with different smoothed input patterns are depicted.
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From the results of the different tests shown in Table 5.1, it can be observed that the
network performs better in reconstructing the input when all signals are given as input,
achieving a mean absolute error of approximately 12.77 mmHg compared to other input
combinations. For this reason, all sixteen signals are utilized, resulting in an improved

reconstruction of the arterial pressure waveform.
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6 ‘ Results

6.1. Subject-dependent analysis

In this section, the results of the network performance and PTT regression models with
a discussion of the evaluation metric are presented. The proposed models are compared
with the principal model utilized in literature for the computation of the blood pressure
waveform, and their performance is evaluated through the analysis of metrics and char-
acteristic parameters. Then a BHS computation explains the evaluation of the developed
method. In particular, a subject-dependent analysis is performed through an ablation

study and compared with the developed classical mathematical model.

6.1.1. Models performance

For this analysis, the 6 recordings of SubjectO0 are used, on which data augmentation is
performed as described above. The average values of systolic pressure, diastolic pressure,
and mean arterial pressure (MAP) of the target input signals are presented in Table 3.13.
In total, there are 135.40 minutes of recordings, divided into 10-second windows. Based on
this dataset, the various architectures were tested, and a comparison was made between
them. In Tabella 6.1 is reported the dataset characteristic for a subject-dependent anal-
ysis. The characteristic parameters of the ABP signal, the Loss function, and the trend
of the evaluation metric are evaluated to assess the reconstructed waveform, using the
metrics described above. Subsequently, the values of systolic pressure, diastolic pressure,

and mean arterial pressure (MAP) were calculated for the 10-second chunks.

N° of acquisition | Sex | Age [years| | Height [cm] | Weight | Duration [min]
6 Male 53 190 92 135.40

Table 6.1: Description of Input Dataset for Subject-dependent analysis

To understand the behavior of the three different models discussed earlier, a subject-

dependent analysis is performed to analyze their performance on the input dataset. The



62 6| Results

first model under analysis is the U-Net with the cascaded ResNet. The hyperparameters

used for initializing the network are listed in Table 6.2

Models Loss function | Optimizer | Initial Filter | GRU Units | Epochs
U-Net+ResNet MSE Adam 15/5 1 1200

Table 6.2: U-Net+ResNet initialization parameters for the complete model

The Mean Squared Error, as described previously, is used as the loss function. After
several tests, Adam was selected as the primary optimizer for the models because, although
slower than Stochastic Gradient Descent, it proved to be better as it allows for automatic
adaptation of the learning rate during training. The initial number of filters for the U-Net
is set to 15, while for the ResNet it is set to 5. Additionally, considering a large amount

of data, an initial minibatch size of 64 is chosen.

In Figure 6.1, 6.2, and 6.3, the trends of the loss function, Mean Absolute Error and Mean
Signed Error are depicted for the U-Net with the cascaded ResNet. The TensorBoard tool
of TensorFlow is utilized to visualize the parameter trends across epochs. The validation
set trend is highlighted in blue, while the training set trend is shown in black. It can be
observed that the network tends to exhibit slight overfitting after 100 epochs. In Figure
6.3, the Mean Signed Error of the validation set approaches zero, following the trend of
the training set. Table 6.3 reports the values of Mean Absolute Error (MAE) for both

the training set and the validation set, as well as the value of the loss function.

UNet+ResNet
Training set Validation set
Loss value | MAE [mmHg] | Loss value | MAE [mmHg]|
193.34 9.80 257.90 11.55

Table 6.3: U-Net+ResNet initialization parameters for the complete model
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Figure 6.1: Trend fro U-Net loss function vs epochs: Blue for the validation set and black

for the training set
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Figure 6.2: Trend fro U-Net MAE metric function vs epochs: Blue for the validation set

and black for the training set
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Figure 6.3: Trend fro U-Net MAE mean signed error function vs epochs: Blue for the

validation set and black for the training set

Next, the GRU-Net with the cascaded ResNet was tested using the same dataset. The

initialization parameters for the network are listed in Table 6.4. It can be observed that

the optimizer and loss function remain the same, but there is a new parameter indicating

the number of units for the GRU layer, which is set to 1 in this case. In Figure 6.4, 4.2,
and 6.6, the trends of the loss function, Mean Absolute Error (MAE), and Mean Signed

Error, respectively, are shown.

Models Loss function | Optimizer

Initial Filter

GRU Units

Epochs

GRU-Net+ResNet

MSE Adam

15/5

1

1200

Table 6.4: GRU-Net+ResNet initialization parameters for the complete model

GRU-+ResNet
Training set Validation set
Loss value | MAE [mmHg] | Loss value | MAE [mmHg]|
157.42 9.78 218.21 11.31

Table 6.5: GRU-Net+ResNet value complete model



6| Results 65
As shown in Table 6.5, the values of the loss function and MAE are lower compared to

the model without the GRU layer. This is also supported by the trends depicted in the

figures, which reach slightly lower values.
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Figure 6.4: Trend fro GRU-Net loss function vs epochs: green for the validation set and

purple for the training set
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Figure 6.5: Trend fro GRU-Net metric function vs epochs: green for the validation set

and purple for the training set
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Figure 6.6: Trend fro GRU-Net mean signed error function vs epochs: green for the

validation set and purple for the training set
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The last model tested is the 3GRU-Net, which consists of three different branches based

on the type of input signal, as described earlier.

Table 6.6 presents the initialization

parameters for the 3GRU-Net and ResNet. In this case, the initial number of filters is set
to the same for all three branches. Table 6.7 reports the values of the loss function and
MAE. Compared to the previous models, the 3GRU-Net achieves lower Mean Absolute
Error values, indicating improved predictive capability. In Figures 6.7, 6.8, and 6.9, the

trends of the evaluation parameters on the training and test sets are shown.

Models

Loss function

Optimizer

Initial Filter

GRU Units

Epochs

3GRU-Net+ResNet

MSE

Adam

15/5

1

1200

Table 6.6: 3GRU-Net+ResNet initialization parameters for the complete model

3GRU-ResNet

Training set

Validation set

Loss value

MAE [mmHg]

Loss value

MAE [mmHg]

96.56

7.07

194.81

10.53

Table 6.7: 3GRU-Net+ResNet value complete model
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Figure 6.7: Trend fro 3GRU-Net loss function vs epochs: orange for the validation set

and magenta for the training set
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Figure 6.8: Trend fro 3GRU-Net MAE metric function vs epochs: orange for the validation

set and magenta for the training set
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Figure 6.9: Trend fro 3GRU-Net MAE mean signed error function vs epochs: orange for

the validation set and magenta for the training set
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Among the three models, as seen in Figures 6.10, 6.11, and 6.12, which illustrate the
trends of the loss function, mean absolute error, and mean signed error, it appears that
the model with three branches (3GRU-Net) exhibits a better trend compared to the other
two models. In Table 6.7, the values for the 3GRU-Net model are reported, showing lower
values compared to the other models, with an MAE of 10.53 mmHg on the validation set.
A recap of the MAE and loss values for each model is presented in Figure 6.11 and 6.10,
where the U-Net is represented in blue, the GRU-Net in green, and the 3GRU-Net in
orange. It can be observed that the 3GRU-Net achieves lower loss values and a lower
MAE value. This is further confirmed by Table 6.8, which provides a summary of the loss

and MAE values for all the models in both the training and validation sets.

Training set Validation set
Model | Loss value | MAE [mmHg]| | Loss value | MAE [mmHg]|
U-Net 193.34 9.80 257.90 11.55
GRU-Net 157.42 9.78 218.21 11.31
3GRU-Net 96.56 7.07 194.81 10.53

Table 6.8: metrics of the developed models
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Figure 6.10: Trend of loss function for the three models: orange for 3GRU, green for
GRU-Net, and blue for U-Net
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Figure 6.11: Trend of Metrics function for the three models: orange for 3GRU, green for
GRU-Net, and blue for U-Net
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Figure 6.12: Trend of mean signed error function for the three models: orange for 3GRU,
green for GRU-Net, and blue for U-Net

Finally, to complete the study, the target parameters, which serve as indicators of the
signal reconstruction quality, are computed for each model. For each 10-second chunk,
the systolic and diastolic pressure peaks are extracted, one per second, resulting in 10
samples of systolic and diastolic pressure for each chunk, as described previously. The
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error
(RMSE) are then calculated for each of the evaluated reference parameters. The SBP,
DBP, MBP, and STD values, computed over the test set for each analyzed model, are
reported in Tables 6.9 and 6.10 for the U-Net and GRU-Net models, and in Table 6.11
for the 3GRU-Net. It can be observed that the models with the presence of the GRU
layer exhibit lower error values compared to the regular model using the classic U-Net.
Specifically, for the values of systolic, diastolic, and mean pressure, better results are

achieved using the GRU layer.
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MAE + STD [mmHg| | MSE + STD [mmHg| | RMSE + STD [mmHg]
SBP 11.78 £5.35 167.22 £5.31 12.93 £5.22
DBP 6.35 £ 5.06 66.04 + 5.83 8.12£5.10
MAP 5.49 £ 3.56 42.89 £ 6.54 6.54 £+ 3.67
STD 6.61 £ 3.51 54.26 + 3.23 7.36 £ 3.22

Table 6.9: Parameters computation for U-Net over the Test set

MAE + STD [mmHg| | MSE + STD [mmHg| | RMSE + STD [mmHg]
SBP 11.194+6.29 165.02 £ 6.36 12.84 £6.19
DBP 5.30 = 4.15 45.41 4+ 5.55 6.73 £4.20
MAP 5.52 £4.83 53.90 + 7.23 7.34£4.77
STD 6.01 &+ 2.58 42.90 £ 2.58 6.55 £+ 2.80

Table 6.10: Parameters computation for GRU-Net over the Test set

MAE + STD [mmHg] | MSE + STD [mmHg| | RMSE + STD [mmHg]
SBP 11.35 £8.71 204.88 + 9.13 14.31 + 8.60
DBP 4.68 + 4.22 39.78 + 5.36 6.30 + 4.19
MAP 6.27 +5.33 67.78 + 7.82 8.23 + 5.40
STD 5.78 £ 3.15 43.37 + 3.14 6.58 + 3.24

Table 6.11: Parameters computation for 3GRU-Net over the Test set

The comparison among these metrics highlights that 3GRU-Net and GRU-Net perform
well with respect to the normal U-Net model. Analyzing the reconstructed waveform
with the different methods, as shown in Figure 6.13, it can be seen that the normal U-
Net, compared to the other two models, presents more noise and a more pronounced
shift, failing to fully reproduce the waveform. With the GRU-Net and the addition of
MultiResU-Net in cascade, the shift is reduced and the shape improves. Finally, with the
3GRU-Net, there is a significant reduction in noise and the prediction improves slightly
compared to the previous one. In the next paragraph are discussed the error analysis to

better understand the behavior of the models.
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Figure 6.13: Waveform reconstruction with the relative method

6.1.2. Error analysis

In this section, an analysis and comparison of the errors in the calculation of the clinical
parameters of interest are presented. Specifically, as in clinical practice, the calculation
of average parameters over the ten-second prediction period is reported. In Figures 6.14,
6.15, and 6.16 are depicted plots of the analyzed parameters, including SBP, DBP, and
MAP for the employed models. These figures provide visual representations of the pre-

dicted values compared to the ground truth values for each model.
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Figure 6.14: Prediction of characteristic parameters for U-Net model: SBP, DBP, MBP,
STD
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Figure 6.15: Prediction of characteristic parameters for GRU-Net model: SBP, DBP,
MBP, STD
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Figure 6.16: Prediction of characteristic parameters for 3GRU-Net model: SBP, DBP,
MBP, STD

In the first quadrant of each figure, the predicted values of systolic pressure are displayed,
while the second quadrant shows the diastolic pressure, and the third quadrant represents
the mean arterial pressure (MAP). The predicted values are shown in orange, while the
target values are shown in blue. As observed in the figures, all three models have greater
difficulty in predicting systolic pressure values, which are consistently underestimated
compared to the target values. However, both the diastolic pressure and mean pressure
predictions yield excellent results. Despite the challenges in predicting systolic pressure,

the prediction of mean pressure is strong and comparable to the main methods discussed
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in the literature. The standard deviation of the predicted signal is also comparable to
that of the target signal. This can be observed in Figure 6.16, where it is evident that
the reconstructed signal struggles to reach the minimum peak of the target (DBP), but
maintains a stable baseline. In Figure 6.17 and 6.18, the error distributions for the U-
Net and GRU-Net models are displayed, while Figure 6.19 shows the distribution for the
3GRU-Net model. As observed, all distributions exhibit a Gaussian trend centered around

the mean prediction value, indicating good consistency in the predictions.
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Figure 6.17: Distribution of U-Net errors: SBP, DBP, MBP
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Figure 6.18: Distribution of U-Net errors: SBP, DBP, MBP
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Figure 6.19: Distribution error for 3GRU-Net model: SBP, DBP, MBP

From here, it is possible to clearly highlight which of the three models is the most consis-
tent. Analyzing the most critical parameter, which as seen previously is systolic pressure,
it can be observed that the U-Net and GRU-Net models exhibit a concentration of pre-
diction values around 24 mmHg for the U-Net and 15 mmHg for the GRU-Net. On the
other hand, the model with three different branches shows a distribution centered around
5 mmHg, as seen in Figure 6.19. Moreover, when examining the error distribution for
systolic and mean pressure values, it can be noted that the 3GRU and GRU models are
comparable. In Figure 6.20 and 6.21, the mean difference plots are displayed for the

U-Net and GRU-Net models, showing the respective values of systolic blood pressure in
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the first quadrant, diastolic blood pressure in the second quadrant, and MAP in the third

quadrant. Similarly, Figure 6.22 presents the corresponding plots for the 3GRU model.

The Bland-Altman plots help to assess the consistency of the measurement method. On

the vertical axis, the mean difference between the two measurement methods is depicted,

while the horizontal axis represents the values of the analyzed pairs of points. The dashed

median line represents the average of the measurement methods being compared.
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Figure 6.20: Distribution of U-Net errors
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Figure 6.22: Blant Altman error plots for 3GRU-Net model: SBP, DBP, MBP

When examining the critical parameter of systolic blood pressure, it is evident that all
three models struggle with its prediction. The mean difference between the two meth-
ods is -11.78 for U-Net, -11.16 for GRU-Net, and -11.02 for 3GRU-Net. This reflects
the models’ tendency to underestimate systolic blood pressure values. Among the three
models, 3GRU-Net stands out with a lower value. The majority of values fall within the
confidence interval for their respective methods. Analyzing the values of diastolic and
mean blood pressure, all three models demonstrate similar performance, with small mean
differences between the methods, as shown in Figures 6.20, 6.21 6.22. From this analysis,

it is evident that the models offer good performance for the prediction of the DBP and
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MAP. However, the difficulty in predicting systolic blood pressure values, as observed in
this analysis, may stem from the high standard deviation of the input systolic pressure
values, which hover around 18.90 mmHg compared to the diastolic and mean pressure
values of 12.07 and 13.71 mmHg, respectively. The model attempts to predict the mean
pressure, which is proportional to the standard deviation of the input signal. In this case,
the high oscillation of values poses challenges for prediction. However, the models perform
better in predicting diastolic and mean blood pressure values. Analyzing the morphology
of the predicted signals with the three models and studying the standard deviation of the
predicted signal can provide an evaluation of the network’s reconstruction quality. Figure
6.23 illustrates the prediction of a chunk from the test set, with the U-Net’s predicted
waveform in orange and the target signal in blue. As observed, the signal predicts dias-
tolic pressure well, but the model struggles to predict systolic peaks accurately, resulting
in an altered shape compared to the target. Additionally, some noise is introduced in the

reconstruction.
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Figure 6.24: STD of U-Net model: In the first quadrant, the prediction of the standard
deviation is represented, with the target signal shown in blue. The second quadrant
displays the Bland-Altman plot for the standard deviation, and the distribution of the

standard deviation is shown in the final quadrant.
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Figure 6.26: STD of GRU-Net model: In the first quadrant, the prediction of the standard
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Figure 6.28: STD of 3GRU-Net model: In the first quadrant, the prediction of the stan-
dard deviation and the target signal are represented, with the target signal shown in blue.

In the second quadrant, the Blant Altman plot for the standard deviation is displayed,

and finally, its distribution is shown in the last quadrant.
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In Figure 6.24, the analysis of the error on the standard deviation is presented. Specifically,
it can be observed that the standard deviation of this model has lower average values
compared to the target signal, with a difference highlighted by the Bland-Altman plot of
-6.62. The distribution of the error on the standard deviation is not Gaussian and exhibits
average values around 4 mmHg. Looking at the image in Figure 6.25, which shows the
prediction of the arterial blood pressure (ABP) signal made with the GRU-Net, it can
be observed that the noise has decreased and the shift is slightly reduced. In fact, the
standard deviation represented in Figure 6.26 has a lower average value compared to the
previous model, and the mean difference between the measurement methods is reduced,
amounting to -6.02. Analyzing the last model, the 3GRU-Net, which stands out as the
best among the three, Figure 6.27 shows that the predicted waveform, represented in
orange, is almost overlapping with the target waveform in blue. In particular, the noise
is significantly reduced, and the shift is improved. Moreover, it appears to have a better
prediction capability for systolic pressure peaks. Figure 6.28 presents an analysis of the
standard deviation (STD), which is a key parameter for evaluating the morphology of
the predicted signal. The distribution of the error exhibits a Gaussian pattern with a
mean value centered around 4 mmHg. Looking at the Blant Altman plot in the second
quadrant, we observe a reduced difference between the implemented measurement method
and the target, with values of -5.79.

6.1.3. PTT regression models results

Three different regression models based on PTT were implemented for the estimation of
arterial blood pressure in the subject-dependent study. Specifically, drawing from various

studies found in the literature, three models were developed using Matlab tools:

e Linear model

ABP = a*x PTT +b (6.1)
e Inverse model
= 2
ABP a*PTT+b (6.2)
e Quadratic model
1
ABP=a* ———+b (6.3)

PTT?



88

6

| Results

The main idea of this method is to estimate the parameters o and b for their respective

models using linear regression. To accomplish this, a simple algorithm was developed

in MATLAB to perform the regression for the three models. Once the parameters are

obtained, the corresponding models are tested on the dedicated Test set, from which the

values of the main evaluation metrics are derived. Figure 6.29 displays the regression

plots for the implemented models. The parameters are computed for both systolic and

diastolic pressure. Table 6.13 presents the calculated parameters for the different models

along with their respective mean errors computed on the test set.
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Figure 6.29: Regression plot for the SBP, DBP and MBP values of three different models:

linear, inverse, and quadratic

Model | MAE systolic [mmHg| | MAE diastolic [mmHg]|

Linear 16.103 12.607

Inverce 15.592 12.173
Quadratic 17.047 13.271

Table 6.12: Mean Absolute Error for the three different models

As can be seen in Table 6.12, the best results are obtained by the inverse model described

by equation 6.2. In Figure 6.29, in the third and fourth quadrants respectively, it can



6| Results 89

be observed how the regression line better approximates the systolic and diastolic points
compared to the other models. Particularly, most of the samples fall within the confidence

interval.

Model | value | o(1/mmHg) | b(mmHg) | MAE(mmHg)
Linear SBP -940.316 120.155 16.103
DBP -8.082 80.388 12.607
Inverce SBP -0.009 118.972 15.592
DBP -0.008 82.671 12.173
Quadratic | SBP | -0.0000194 118.258 17.047
DBP -0.000013 81.666 13.271

Table 6.13: Models parameters

The average error obtained with the inverse model, as well as with all three mathematical
models, is higher compared to the deep neural network, both for systolic pressure param-
eters and especially for the calculation of mean diastolic pressure. Specifically, with the
3GRU-Net + ResNet model, the error is 11.356 for systolic pressure and 5.302 for dias-
tolic pressure. Furthermore, the neural network allows for waveform shape estimation and
calculation of mean pressure, and it also utilizes moving chunks for prediction. The initial
labeling procedure for dataset construction and PTT calculation can be time-consuming

and prone to systematic errors.

6.2. Subject-Indipendent analysis

From the previous analysis, it is evident that the 3GRU-Net is the model that provides the
best performance in predicting the arterial pressure waveform, as seen from the earlier
analysis of the error in calculating the final parameters. This is further supported by
the calculation of the BHS for the three models. By using the 3GRU-Net cascaded with
the Res-Net, a subject-independent analysis is conducted, utilizing the entire dataset
described in the preceding section. Specifically, the values of the input systolic, diastolic,
and mean pressure parameters are shown in Table 3.12. It can be observed that the
standard deviation calculated on the input parameters is significantly higher compared to
the subject00 input dataset in Table 3.13. This indicates a greater difficulty in predicting
the target parameters. Figure 6.30 illustrates the trend of the loss function, with values
of 303.419 for the training set and 366.035 for the validation set. Meanwhile, Figures
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6.31 and 6.32 display the mean absolute error and mean signed error. As observed, the
network saturates around values of 15.583 mmHg for the validation set, while it continues
to learn up to values of 14.593 mmHg during training. Table 6.15 reports the MAE and
loss values of the network. Table 6.14 provides the hyperparameters used for the network.
As seen here, the Adam optimizer is utilized, and there are 15 initial filters in the encoder

layer.

Models Loss function | Optimizer | Initial Filter | GRU Units | Epochs
3GRU-Net+ResNet MSE Adam 15/5 1 1200

Table 6.14: 3GRU-Net+ResNet initialization parameters for the complete model
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Figure 6.30: Trend of loss function for 3GRU-Net with all subjects: orange for 3GRU
training, black for 3GRU-Net validation
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Figure 6.31: Trend of MAE function for 3GRU-Net with all subjects: orange for 3GRU
training, black for 3GRU-Net validation
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Figure 6.32: Trend of mean signed error function for 3GRU-Net with all subjects: orange
for 3GRU training, black for 3GRU-Net validation

3GRU-Net+ResNet
Training set Validation set
Loss value | MAE [mmHg] | Loss value | MAE [mmHg]|
303.419 14.593 366.035 15.583

Table 6.15: 3GRU-Net+ResNet parameters errors for the complete model
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Figure 6.33: Prediction of characteristic parameters for the 3GRU-Net model with all
subjects: SBP, DBP, MBP, STD

By analyzing the predicted systolic, diastolic, and mean pressure using the same pro-
cedure described earlier, a more detailed picture of the network’s performance can be
obtained. In particular, Figure 6.33 displays the predicted values of systolic pressure in
the first quadrant, diastolic pressure in the second quadrant, and mean pressure in the
third quadrant. As observed, similar results are obtained compared to the earlier subject-
dependent analysis. Specifically, systolic pressure is consistently underestimated, while
diastolic and mean pressure exhibits a higher error compared to the previous results of

the subject-dependent analysis.



94 6| Results
MAE + STD [mmHg| | MSE + STD [mmHg| | RMSE + STD [mmHg]
SBP 22.59 £ 12.83 675.57 = 15.50 25.99 £12.90
DBP 12.53 £8.73 233.31 £10.33 15.27 £ 8.58
MAP 9.34 £ 8.70 165.01 +12.83 12.84 £ 8.81
STD 10.98 £4.85 144.61 +4.90 12.02 £ 4.89

Table 6.16: Parameters computation for 3GRU-Net over the Test set for all subjects

In Table 6.16, the results of the errors for the respective parameters calculated on the
predicted target signal using the model are presented. In Figure 6.34, the distribution
of errors is shown, indicating a Gaussian distribution with the mean centered around 20
mmHg for systolic pressure, 11 mmHg for diastolic pressure, and 1.5 mmHg for mean

pressure.
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Figure 6.34: Distribution of characteristic parameters for the 3GRU-Net model with all
subjects: SBP, DBP, MBP, STD
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Figure 6.35: Prediction of characteristic parameters for the 3GRU-Net model with all
subjects: SBP, DBP, MBP, STD

In Figure 6.35, the Bland-Altman plots are presented, which provide an estimation of
the mean difference between the two measurement methods used. Specifically, it can
be observed that for all parameters, the majority of points fall within the confidence
interval highlighted by the two dashed lines in their respective plots. Analyzing the
mean difference across the three parameters, it is evident that systolic pressure exhibits a
significantly higher mean difference, indicating a large disparity between the two methods

in calculating this parameter, further confirming its critical nature.
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Figure 6.36: Standard deviation analysis between the predicted and target signals

By evaluating the standard deviation of the signal, it is possible to assess how closely the
predicted waveform aligns with the target signal. Figure 6.36 presents an analysis of the
standard deviation calculated on both signals. In the first quadrant, we find the predic-
tion of the standard deviation, which, as observed, has a considerable mean difference,
indicating that the reproduced waveform often exhibits greater variability compared to
the target. In the second quadrant, the Bland-Altman plot is displayed, while the error

distribution is shown in the third quadrant.
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Figure 6.37: prediction waveform example: in orange the predicted signal and in blue the

target one

In Figure 6.37, an example of prediction on a chunk of the test set is shown. As observed,
there is high variability in the signal and slight noise present. However, the prediction
for some chunks appears to be very accurate, likely due to the high quality of the input

signal.

6.3. BHS Computation

To conclude the analysis of the methods, an evaluation index is calculated following the
standards of The British Hypertension Society (BHS). This allows for an objective as-
sessment based on the BHS standards, enabling the classification of the device/method
used for blood pressure monitoring. In particular, this index has become a widely-used
evaluation metric, calculated based on the absolute error obtained. Specifically, the per-
centages of cumulative error are calculated, considering three different ranges: less than
5 mmHg, less than 10 mmHg, less than 15 mmHg, and greater than 15 mmHg. Based
on the total errors calculated on the test set, the percentage of errors falling within the
aforementioned limits is determined. Table 6.17 presents the various classifications based

on the achieved cumulative error percentages.
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Cumulative Error Percentage

BHS < 5 mmHg | < 10 mmHg | < 15 mmHg
Grade A 60% 85% 95%
Grade B 50% 75% 90%
Grade C 40% 65% 85%

U-Net < 5 mmHg | < 10 mmHg | < 15 mmHg

SBP 20% 41.66% 68.33%

DBP 20.01% 80% 86%

MAP 20.02% 83.33% 98%
GRU-Net | < 5 mmHg | < 10 mmHg | < 15 mmHg

SBP 21.66% 41.66% 88.33%

DBP 21.67% 81.66% 91.66%

MAP 21.69% 75% 86.66%

3GRU-Net | < 5 mmHg | < 10 mmHg | < 15 mmHg

SBP 33.33% 55.00% 88.50%

DBP 33.34% 83.33% 98.33%

MAP 33.36% 80% 91.70%

Table 6.17: Classification of the device based on BHS standard

99

As observed in the table, based on the results of the BHS index calculation, it can be

noted that among the three models, the closest one to meet the standards is the third

model, which utilizes three distinct branches based on the frequency band of the input

signals. However, despite this, all three models fail to meet the standards set by the

British Hypertension Society.

Cumulative Error Percentage

3GRU-Net | < 5 mmHg | < 10 mmHg | < 15 mmHg
SBP 8.57% 15.43% 29.72%
DBP 8.59% 42.86% 63.43%
MAP 8.61% 64.57% 82.86%

Table 6.18: Classification of the device based on BHS standard for all subject model

The British Hypertension Society (BHs) index is also calculated for the 3GRU-Net model

The results of the calculation for systolic,

used in the subject-independent analysis.

diastolic, and mean arterial pressures are presented in Table 6.18. It can be observed that
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the obtained results for this analysis are significantly lower compared to those obtained
in the subject-dependent study, as shown in Table 6.17. In fact, the model fails to
accurately calculate all three parameters, especially with a decrease in the percentage
of error accumulation below 5%. This can be attributed to the relatively high mean error

committed by the model.
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7 ‘ Discussion

7.1. Main Findings

Limitations associated with traditional methods of arterial pressure measurement, such
as the reliance on invasive monitoring techniques like catheter-based measurements or
the inability to obtain continuous measurements like with a sphygmomanometer, have
prompted studies to explore alternative techniques for monitoring this fundamental phys-
iological parameter for early identification of what is known as a silent killer. As described
in the introduction, the most commonly used alternative techniques in medicine rely on
mathematical models and the recording of signals such as PPG and ECG, from which
systolic, diastolic, and mean arterial pressure parameters can be derived through PTT
calculation and specific regression models. However, these techniques are computationally
expensive and require extensive preprocessing due to the identification of specific fiducial
points for PTT calculation. In this research, as previously mentioned, a regression model
is developed that incorporates linear, inverse, and logarithmic regressions. This model
serves as a reference and comparison to the described artificial intelligence techniques.
Specifically, it is calculated only for subject-dependent analysis as this type of analysis
is sensitive to the subject’s physiological parameters. There are also measurement meth-
ods that allow for continuous analysis of pressure and its waveform, such as the method
developed by Penaz [44], which estimates continuous blood pressure signals using a fin-
ger cuff based on the previously described volume clamp technique. However, the main
limitations of this technique lie in the instrumentation used, which is not easily applica-
ble for measurements during movement due to its poor portability. As a result, various
research branches have focused on the use of artificial intelligence algorithms based on
neural networks that primarily utilize PPG and its derivatives or ECG signals, or a com-
bination of both. These algorithms are based on deep neural network models that enable
an end-to-end approach, eliminating the need for fiducial point detection. The main lim-
itation of these techniques is that they are primarily tested on specific datasets such as
MIMIC and are not validated under real-world conditions. In this work, the developed

deep learning models are tested under real-world conditions using a dataset constructed
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through an approved data acquisition phase at Politecnico di Milano, simulating a real
clinical protocol. The employed device allows for simple and continuous signal collection
during both rest and movement phases. One notable aspect of this approach is the ability
to analyze and monitor arterial pressure during both rest and movement, enabling moni-
toring during stress tests or physical activities. This is particularly significant considering
that ambulatory blood pressure monitoring requires the patient to remain stationary dur-
ing the acquisition procedure. With the Soundi® device, it is possible to record a set
of signals that includes physiological signals such as ECG, PCG, and SCG, as well as
non-physiological signals like acceleration, PPG, and external temperature. From the
analysis of the results previously conducted, it can be observed that the three developed
models, particularly the one with three different branches corresponding to the frequency
content of the input signals, perform quite well for subject-dependent analysis. However,
equally satisfactory results are not achieved for the analysis of the entire dataset, which
encompasses all patients for subject-independent analysis. Since the protocol involved
both a movement phase and a rest phase, the decision was made to analyze the data
by combining both phases, thereby considering the signals during pedaling as well. This
leads to an overall increase in the standard deviation of the pressure, which is also evident
with the Finapress device often producing pressure values that are physiologically outside
the clinical range. During the pedaling phase, it is noted that certain signals recorded

with the PPG exhibit better quality, resulting in excellent prediction performance.

Analyzing the prediction results with the corresponding input signal bank, it is observed
that the prediction is better when there is higher quality in the PPG and ECG signals,
like in Figure 7.1 in which there is a simple interface developed in python in order to
evaluate the predicted model with corresponding input PPG and ECG signal. In Figure
7.2 is possible to look at the different chunks in which the PPG has bedder quality with
respect to the others. How we can see the prediction computed by the model is different
from the target one, only the systolic pressure is right approximates due to the fact that

the position of the plethysmographic sensor is a critical point for the Soundi® device.
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Figure 7.1: Python interface to visualize the predicted signal with target one and corre-

sponding PPG and ECG signals.
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Figure 7.2: Python interface to visualize the predicted signal with target one and corre-
sponding PPG and ECG signals.

The positioning of the device to ensure proper placement of the PPG sensor proves to
be particularly challenging as it can vary from person to person, depending on factors
such as gender and skin color, which can influence the reflected optical power. For the
deep learning models U-Net, GRU, and 3GRU, the BHS index is also calculated, which
allows for the classification of the method/device for arterial pressure monitoring based
on the accumulation error for different parameters. The 3GRU model achieves higher
BHS values but still does not fall within the classifications identified by the British Hy-
pertension Society. Furthermore, for subject-dependent analysis, a comparison can be

made with the methods presented in the literature, but it should be considered that the
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developed method here utilizes a dataset collected under real-world conditions, including
the associated systematic errors and protocol considerations, which are not present in the
MIMIC dataset.

In the literature, several studies have attempted to reproduce the blood pressure signal

using deep learning techniques, with the main ones being reported in Table 7.1.

Studies Used signals SBP(mmHg) | DBP (mmHg) | MBP (mmHg) | STD (mmHg)
Lin et al. PPG, VPG, APG 4.59 2.47 / 1.78
Wang et al. PPG 3.95 2.14 / 4.28
Madhuri et al. PPG 3.97 2.30 / 0.06
Our study Signal-bank 8.816 3.17 3.15 10.510

Table 7.1: Comparison of studies

However, these studies use only PPG and/or ECG for prediction, while in this study a
method using a bank of signals was proposed. As seen, the values are comparable for
the calculation of diastolic pressure and mean pressure, while the error is greater for the

prediction of systolic pressure.

7.2. Limits

The main limitations primarily concern the dataset acquisition phase. The reference
instrumentation used for arterial pressure monitoring generated high variability in the
acquired pressure signals. In fact, the temperature of the hands during the placement of
the cuff with the plethysmograph on the index finger could influence the signal quality due
to temperature-induced vasoconstriction or vasodilation. This resulted in physiologically
altered pressure ranges even after calibration, introducing high variability in the input
dataset that is reflected in the predictions. Even the connections of the headset during the
movement phase create sensor displacements that result in inaccurate pressure acquisition.
Additionally, the positioning of the Soundi® device sometimes posed challenges as the
correct position could vary depending on the individual’s gender, sweating and other
features affecting the quality of signal monitoring, especially the PPG. For this reason,

multiple recordings were performed for different subjects.

There are structural issues related to the acquisition of signals used for training the net-
work. In particular, the performance was evaluated under real-world conditions where
signal quality is not ideal and there is a large variability in measurements due to device-
related issues. In various measurements, it was observed that the quality of signals varies

depending on the subject, particularly the PPG signal, which is of fundamental impor-
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tance as demonstrated in the previous ablation study. Specifically, it was found that
the quality of this signal is correlated with the patient’s gender due to different physical
characteristics, skin color that can influence transmitted optical power, and the presence
of fat layers at the Soundi® placement site and level of sweating. Furthermore, after
the preprocessing procedure, the size of the dataset is significantly reduced due to the
aforementioned issues, resulting in the elimination of many signal windows. The inclusion
of segments during the movement phase in the analysis can introduce errors, particularly

in signals such as PPG, which are noticeably attenuated.

7.3. Further Improvments

e Dataset expansion: One of the first steps to consider is the enlargement of the
dataset and the development of an accurate and proper procedure for the placement
of the sensor (e.g., Finapres). Additionally, exploring alternative protocols that

improve the utilization of Finapres could be beneficial.

e Validation with a different dataset: Performing validation with an independent
dataset can help assess the performance and robustness of the networks. This would

provide additional evidence on the generalization capabilities of the models.

e Integration of additional signals: Exploring the inclusion of other physiological
or non-physiological signals in the analysis could potentially enhance the accuracy
and reliability of the predictions. This could involve investigating the relevance and

impact of different signals on arterial blood pressure waveform reconstruction.

e Focus on specific dataset segments: Instead of analyzing the entire dataset,
focusing solely on resting periods could provide insights into the network’s perfor-
mance during specific physiological states. This targeted analysis may help identify

areas for improvement and optimize the network for particular scenarios.

With these improvements, it is possible to enhance the neural network’s performance,

reliability, and applicability for continuous arterial blood pressure calculation.
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8 Conclusion

In this master’s thesis, developed in collaboration with engineer Mattia Sarti and Biocu-
bica s.r.l, who provided the device used for signal monitoring, an "End-To-End" approach
is proposed for the continuous calculation of arterial blood pressure waveform. This ap-
proach utilizes three deep learning models. Additionally, a regression model based on
pulse transit time (PTT) on SubjectO0 records is developed using mathematical models.
The aim of the project is to reconstruct the arterial blood pressure waveform continuously
by utilizing a bank of physiological signals and not, relying on a loss function that maxi-
mizes point-to-point prediction by the network. In particular, a subject-dependent study
is conducted, and the results obtained with the best-proposed model are compared with
those obtained using PTT regression models and with literature that computes the BHS
index. The results demonstrate the good performance of the model for subject-dependent
analysis, approaching clinical standards defined by the British Hypertension Society. Then
thanks to the fact that the Soundi® doesn’t need the initial calibration phase, a subject-
independent analysis was performed. In this case, the performance is lower compared
to subject-dependent analysis, as the complete dataset exhibits high variability in input
blood pressure, making it challenging for the model to make accurate predictions. Further
ablation studies could be conducted to enhance the architecture’s complexity and refine
the selected hyperparameters. Enhanced performance could lead to the development of a
monitoring model that utilizes key physiological and non-physiological signals for arterial
blood pressure reconstruction. Given the ease of recording these signals, this could be
a revolutionary aspect of non-invasive arterial pressure monitoring. Therefore, the de-
velopment of a technique capable of calculating arterial pressure parameters through the
creation of a regression model using a deep neural network, without the need for initial
calibration like most techniques, is a major advantage as it enables rapid measurement
once the network is trained. This is one of the key strengths of this end-to-end approach
compared to conventional techniques for acquiring pressure through PPG, such as the
Finapress, which requires initial calibration on the subject under analysis to calibrate the
pressure. By refining and integrating the model with Soundi®, it is possible to monitor

blood pressure without the need for device calibration, allowing measurements to be taken
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even during movement.
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