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1. Introduction
Image deblurring consists in restoring an image
that is affected by motion blur or that is out
of focus. Removal of blur is key in many ap-
plications, such as astronomy, microscopy, and
digital photography. Neural Networks (NNs)
have proven effective in many image-to-image
translation problems, and since deblurring can
be framed as one of those, studies have applied
deep learning methods as a possible solution.
One of the most important elements in deep

learning is the dataset employed to train the
NN. In image deblurring, the generation of the
dataset is not as trivial as, for example, gener-
ating a noisy or low resolution dataset.
In this thesis address the current scarcity of
deblurring datasets, by proposing a novel im-
age degradation pipeline, and releasing it to
the public at github.com/lorenzoinnocenti/
csb-dataset-generator. Additionally, for the
first time, we introduce the application of diffu-
sion models, a novel NN model, to the domain

Figure 1: Examples of deblurring using our solution. Input images on the first row and restored
images on the second one. First two images taken from the GoPro dataset, then four generated by our
synthetic camera shake blur pipeline, the last two of which include the application of noise.
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Figure 2: Graphical representation of the
Markov chain model considered in [1].

of image deblurring. Figure 1 shows both the
images generated through our pipeline and the
corresponding restorations by our model.

2. Problem formulation
2.1. Blurring
We denote the blurring degradation process as
a function of the sharp image x

y = Φ(x), (1)

where y is the blurred image, and Φ is the blur-
ring process. Under the assumption of spatially
invariant blur, the degradation can be repre-
sented as a convolution with a Point Spread
Function (PSF) kernel k

y = k ∗ x. (2)

Multiple types of blur exist. Out-of-focus blur
happens when the camera fails to focus the scene
onto the sensor. It can be mimicked using a disk-
shaped kernel.
Camera shake blur occurs when the camera is
in motion while capturing an image. This blur
effect can be modeled using a kernel that repre-
sents the path of the camera movement during
the exposure. This kernel is not as trivial to
synthesize as a disk kernel, as it can take into
account complex motion patterns, depending on
the desired realism of the blur.
In this thesis we follow the degradation model
introduced in [2]. First, a trajectory is gener-
ated by simulating the motion of a particle in
a 2D domain. The particle has an initial ve-
locity and, at each iteration of the generation
algorithm, is affected by a random perturbation
and by a centripetal component. In addition,
with small probability, a random inversion of
direction can happen. This trajectory is then
sampled in a 2D grid, generating the PSF ker-
nel matrix, in a portion equal to a parameter T ,
to simulate the exposure time.

Additionally, we apply Poisson noise, to simu-
late the statistical nature of photon detection,
and Gaussian noise, for the amplification of the
electrical signal:

y = (u+ n)/T,

u ∼ P(λ(k ∗ x)), n ∼ N (0, σ2),

(3)

(4)

where σ quantifies the thermal and electrical
noise of the system, and λ the quantum effi-
ciency of the sensor.
The sum of pixel values in the PSF kernel is
equal to T . In [2], the authors utilize this value
to simulate the tradeoff between blur and noise,
same effect observed in cameras. A smaller value
of T reduces the magnitude of blur while am-
plifying the noise effect, by shrinking the signal
range. The multiplication by 1/T in equation
(3) acts as an amplification factor to restore the
full dynamic range of the image. The effect is
depicted in Figure 3.
Object motion blur happens when an object
moves during the exposure process. This is the
most complex type of blur, as it is spatially
variant, and cannot be modeled as a convolu-
tion. Real-life blurred pictures can have multi-
ple types of blur mixed together.

2.2. Deblurring
Deblurring consists of estimating the sharp im-
age x̃ by inverting the function Φ:

x̃ = Φ−1(y). (5)

The deblurring algorithm depends on the blur
type: if there is a model for the blur, and the
blurring parameters are known, it is possible

Figure 3: Illustration of the noise-blur tradeoff.
Images degraded with the degradation model
from [2], using the same trajectory, with T =
1/8, 1/4, 1/2, 1.
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to use a non-blind approach. Otherwise, if the
model is not known, or if it is known but the pa-
rameters are not, a blind approach is necessary.
In this thesis, we address the problem of blind
deblurring.

3. Related work
3.1. Datasets
In image deblurring, the datasets commonly
used to train NNs are of two kinds. When a
degradation model is employed, the dataset is
used as a source of sharp images, which are then
synthetically blurred. The most commonly used
is ImageNet [3]. To train NNs without any as-
sumptions on the degradation model, datasets
like the GoPro set [4] are used. This dataset is
obtained by taking a sequence of pictures with
an high speed camera. Multiple pictures are av-
eraged to generate a blurred picture, and the
middle one is taken as sharp version. It is the
most used in this field, and it provides a way to
compare the performance with other studies in
literature. It contains both camera shake and
object motion blur, but lacks in image diversity,
as all the pictureas are taken in similar condi-
tions and by the same camera.

3.2. Deblurring with noise and blur
In Section 2.1 we presented the degradation
model for camera shake blur from [2]. The au-
thors test the performance of the reconstruction
of various image deconvolution algorithms for
deblurring, at varying T values. By doing so,
they show that, in case of linear blur, the recon-
struction presents a clear optimal performance
at a T value that depends on the PSF and the
noise levels. They also show that, in case of
camera shake blur, no clear optimal value can be
found, and that the reconstruction performance
levels off after a certain T value.

3.3. Diffusion models
Diffusion Models (DMs) [1] are a recently de-
veloped generative model. As for all generative
models, their goal is to learn the probability dis-
tribution of a training set so that we can use it
to generate new data with the desired features.
Compared to GANs, DMs offer a more stable
training result, and often a higher performance
[5], at the drowback of longer training and infer-

ence times.
In DMs, the generative process is modeled as
navigation on a Markov chain, as shown in Fig-
ure 2. The process known as forward diffusion
(q) begins with an image sampled from a real
image distribution and gradually introduces in-
cremental amounts of Gaussian noise, until the
image can be regarded as entirely composed of
noise. The aim of the DMs is to learn the inverse
process, referred to as reverse diffusion (pθ). To
do so, we train a NN to predict the noise at each
step, from the partially noisy image and the in-
dex of the step of the diffusion process. After the
training process, the DM takes as input a seed
in the form of Gaussian noise and navigates the
Markov chain to produce an image, as the result
of the iterative noise removal.
The architecture in [1] is a residual U-Net with
skip connections. The model incorporates global
attention blocks [6] to enhance expression power
and receptive field. The NN parameters are
shared among the indexes of the Markov chain,
so a positional encoding [6] block is used to inject
the index value into the noise estimation. DMs
can be conditioned on an input image, and used
as an image-to-image translation NN. To do so,
the input noise seed, and all the partially noisy
images, are concatenated with the input image.
This architecture is called conditional DM.

4. Contributions
4.1. Synthetic camera shake dataset
We present a novel dataset generation pipeline,
which adapts the camera shake blur model from
Section 3.2 for the training of NNs. The pipeline
can be used to generate datasets composed of
images degraded with:
• always the same kernel, to train NNs to de-

convolve an image from a particular kernel;
• randomly generated kernels, within prede-

fined motion parameters, to train deblur-
ring NNs;

• random kernels and noise levels, within pre-
defined values, to train deblurring and de-
noising NNs;

• same trajectory and noise levels, but with
varying values of T , to investigate the trade-
off between noise and blur.

We are among the first to propose a randomized
camera shake blur pipeline for NN training, and
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the first to consider noise in the formulation.

4.2. DMs for image deblurring
In this study, we apply conditional DMs to
the problem of image deblurring. Modifications
has been proposed to the architecture, which
has been shown to improve the generative per-
formance of DMs. We explore some of them
to test if they also improve deblurring perfor-
mance. These modifications include the use of
multi head and multi resolution attention [5],
BigGAN-style residual blocks [7] and increases
of the dimension of the latent representation.
As a mean to overcome the limitation of fixed
resolution, imposed by some blocks in the ar-
chitecture, we implement a technique to deblur
arbitrary sized images. We do so by extracting
multiple overlapping patches, processing them
with our model, and combining them back in the
full deblurred picture, by weighting the contri-
bution of each patch with a Hann window. We
train and test using the GoPro dataset, to show
that DMs are a promising alternative to other
deep learning approaches to deblurring.
We employ the camera shake blur pipelines to
train DMs for camera shake blur removal, with
and without noise. We test on a set without
noise to show that our method is more effective
than the non-blind Wiener deconvolution at de-
blurring, and we also show that the model per-
forms similarly on noisy datasets. We also em-
ploy the pipeline to show that the performance
of our method follows the same behaviour pre-
sented in [2].

5. Experiments
5.1. DMs on spatially variant blur
We implement the proposed architecture, and
apply the modifications individually, to evalu-
ate their impact on performance. We call the
model in [1] base model, and the one with all the
proposed improvements improved model.
We conduct the architecture investigation on
the GoPro set. We train on patches randomly
cropped from the train dataset, at a resolution
of 64 × 64, to keep a low computational cost.
We halve the resolution of the images before
cropping, to avoid extracting patches with in-
sufficient details for proper restoration, which is
often the case at this resolution. We call this

PSNR ↑ SSIM ↑ LPIPS ↓
Base 27.10 0.814 0.158
Increased repr. 28.66 0.860 0.116
Multi head att. 27.61 0.829 0.146
Multi res att. 27.54 0.825 0.147
BigGAN block 27.81 0.838 0.146
Improved 29.58 0.880 0.102

Table 1: Results from the experiments in Section
5.1, on the halved GoPro test set.

dataset, from now on, halved GoPro dataset. We
test on the halved GoPro test set, by extracting
the central 64× 64 pixels patch.
Inference time is usually long with DMs, so early
stopping is not used in this setting. We train
each model for 4000 epochs of 1024 samples.
This number is obtained via an analysis on con-
vergeance done on a validation set, split from the
training set, and is a compromise between per-
formance and training time. Results are gath-
ered and shown in Table 1. Increasing the latent
representation improves results, particularly in
terms of LPIPS, but doubles the training and
inference time. BigGAN blocks, multi head and
multi resolution attention also improve results,
with little time increase. Combining all the
modifications gives the best performance.
We compare our improved model against some
NN-based blind deblurring methods. We train
a model at a resolution of 128 × 128, for 4000
epochs of 1024 patches, on the full resolution
GoPro train set. The results of the tests are in
Table 2. Patches refers to the performance on
the central patches of all the images in the test
set. Full res refers to the performance of the im-
proved model on full resolution images, obtained
with the arbitrary resolution algorithm. Due to
time constraints, we test on a subset of 110 im-
ages. As we use a subset of the test set, we
cannot directly compare the metrics, but they
nontheless provide the suggestion that DMs are
a valid alternative to GANs for image deblur-
ring. We expect this method to outperform the
alternatives if trained on larger patches, for more
time, and with proper image augmentation.

5.2. DMs on camera shake datasets
In this section, we employ our implementation
of the degradation model from [2] to train DMs.
In this section we use the improved model at a
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PSNR ↑ SSIM ↑ LPIPS ↓
Ours (patches) 28.30 - -
Ours (full res) 28.00 0.870 0.183
Sun et al. [8] 24.64 0.842 -
DeblurGAN [9] 27.20 0.954 -
DeepDeblur [4] 28.30 0.917 0.182
SRN [10] 30.10 0.932 0.788
DeblurGAN v2 29.55 0.934 0.253

Table 2: Comparison with other blind deblur-
ring, NN baseline approaches, tested on the Go-
Pro set. The missing values are due to the lim-
ited use of LPIPS in literature.

Figure 4: Performance of the reconstruction on
constant trajectory, as exposure time changes.
Top diagram refers to (a), bottom refers to (b).

resolution of 64× 64, and train for 4000 epochs
of 1024 samples each. We test the image deblur-
ring performance on three different magnitudes
of blur, against the performance of the Wiener
deconvolution algorithm, as baseline. We train
three models on different dataset settings, with
three dimensions of PSF kernels. We use ran-
domly generated trajectories, with maximum
length of half of the PSF kernel size. We apply
the degradation to randomly extracted patches
from the ImageNet training dataset. We avoid
the application of noise for this test. We store
1024 test images for each training set, generated
by degrading images from the ImageNet test set
with the same settings, along with the kernels

PSNR ↑ SSIM ↑ LPIPS ↓

16p
Blurred 27.47 0.752 0.202
Wiener 29.52 0.870 0.144
Ours 32.83 0.917 0.058

32p
Blurred 27.47 0.752 0.202
Wiener 25.53 0.737 0.259
Ours 28.83 0.796 0.135

64p
Blurred 25.24 0.652 0.283
Wiener 22.64 0.586 0.406
Ours 25.76 0.702 0.176

Table 3: Results on deblurring on datasets with-
out noise, at different sizes of blurring kernels.
PSF dimensions are reported in the first column.

PSNR ↑ SSIM ↑ LPIPS ↓

no noise In 27.47 0.752 0.202
Out 28.83 0.796 0.135

σ = 1,
λ = 768000

In 24.66 0.643 0.281
Out 25.67 0.710 0.184

σ = 2,
λ = 192000

In 22.40 0.481 0.336
Out 23.43 0.613 0.248

σ = 4,
λ = 48000

In 19.32 0.312 0.438
Out 22.69 0.572 0.309

Table 4: Results at different levels of noise. PSF
dimension of 32p, noise levels in the first column.
In the In row the degraded metrics, and in the
Out row the ones restored by our solution.

used for degrading them, to be used to compare
the results with the Wiener method.
To test the Wiener performance, we tune the
regularization parameter on the training sets,
and we use the best performing regularization
value on the test sets. We train three improved
DMs on the three datasets, and we report the
performance metrics in Table 3. As we can see,
the DMs perform better than the baseline algo-
rithm on all the tested conditions, especially in
case of large kernels, where Wiener struggles due
to the ringing artifacts.
We repeat the same test setup on three other
datasets, this time generated by keeping the ker-
nel size fixed but varying the noise levels. We
train three models on datasets genetated with
increasing levels of noise, and test on test sets
of images degraded accordingly, as done previ-
ously. We use realistic noise levels, taken from
[2]. We report the results in Table 4, where it
is shown that our method has comparable per-
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formance at the different noise levels as well as
on the dataset without noise, suggesting that
our method is succesful in both deblurring and
noise suppression.
We replicate the experimental setup described in
[2]. The experiment consists in training models
using datasets containing images from the Im-
ageNet training set, degraded with a fixed tra-
jectory and noise levels, with T varying between
0 and 1. We use the same noise levels as [2]:
σ = 0 and λ = 765000. To evaluate the recon-
struction performance, we utilize six test sets
containing the same 100 images from the Ima-
geNet test set, degraded with the same trajec-
tory, noise levels, and T value. This process is
repeated for two distinct trajectories, and the
results are depicted in Figure 4. The findings
validate the observations made on the decon-
volution algorithms discussed in [2]: when the
trajectory is linear, there is a discernible opti-
mal T; whereas for more intricate trajectories,
performance tends to plateau after a certain T
value. Additionally, we conducted the experi-
ment using two different trajectories and higher
levels of noise, obtaining similar results.

6. Conclusions
This study presented an application of condi-
tional DMs in image deblurring, showing the
potential of this approach, and what architec-
ture is the best among the ones analyzed. Our
low-resolutions tests with the GoPro dataset
achieved promising results that matched other
baseline deblurring NNs. We expect that these
findings might generalize well to models with
an higher resolution, but further research is
needed. We presented a novel image degrada-
tion pipeline, which incorporates camera shake
blur and a realistic noise component. We em-
ployed it to show that our method is effective in
both deblurring and noise suppression.
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