
Characterizing Non Counting Op-
erator Precedence Languages in a
Locally Testable manner

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria In-
formatica

Author: Giorgio Corbetta

Student ID: 964531
Advisor: Prof. Matteo Pradella
Academic Year: 2022-23

i

Abstract

The aim of this thesis is to expand the knowledge about Operator Precedence Languages
(OPL) by finding one of its subclasses such that it is Non-Counting. In order to achieve
such a goal, there has been taken inspiration from the LTO family of languages, which
corresponds to the Non-Counting Regular Language family. The found class (LTOP)
is shown to coincide with the family of Non-Counting Operator Precedence Languages,
and its relation with other representations from the literature is studied. In the end, the
problem of deciding whether a language is LTOP or not is proven to be decidable.

Keywords: Languages, Operator Precedence, Locally Testable, Non-Counting, Struc-
tured Language, Decidability

Abstract in lingua italiana

Lo scopo della tesi è di trovare una sottoclasse dei linguaggi a precedenza ad operatori
che sia non counting. Per raggiungere tale obiettivo ci si è ispirati alla classe dei lin-
guaggi LTO, che corrisponde ai linguaggi Non Counting Regolari. La classe cosi trovata
(LTOP) si dimostra coincidere con la classe dei linguaggi Non Counting OP, e viene stu-
diata la sua relazione con le altre rappresentazioni presenti in letteratura. In conclusione,
viene dimostrato che il problema di decidere se un linguaggio è o meno LTOP è decidibile.

Parole chiave: Linguaggi, Precedenza ad Operatori, Loalmente Testabili, Non-Counting,
Linguaggi Strutturati, Decidibilità

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Background 5
1.1 Language Characterization . 5

1.1.1 From Alphabet to Languages . 5
1.1.2 Grammar . 10
1.1.3 Chomsky classification . 14
1.1.4 Logic characterization . 15

1.2 Regular Languages . 17
1.2.1 Regular Languages and Regular Expression 17
1.2.2 Decidability . 22
1.2.3 Non Counting . 23

2 Locally Testable Languages 27
2.1 Some Tools . 27
2.2 Locally Testable Language and its Closure 29
2.3 Results of Locally Testable Languages . 34

3 Context Free Languages 39
3.1 Context Free Languages . 39
3.2 Structured Context-Free Languages . 46
3.3 Non-Counting for Structured Context-Free Languages 52

4 Operator Precedence Languages 57

vi | Contents

4.1 Operator Precedence Languages Definition 57
4.2 Operator Precedence Languages Structure 63
4.3 Non-Countingness for Operator Precedence Languages 67
4.4 Other Operator Precedence Languages Representations 72

4.4.1 Operator Precedence Expressions 73
4.4.2 Monadic Second Order Logic . 74

5 Locally Testable Extended Languages 77
5.1 Substitution . 77

5.1.1 Finding used Blanks . 78
5.1.2 Single String Substitution . 79
5.1.3 Substitution for Languages . 81

5.2 Language Definition . 82
5.3 Main Results . 83

6 Locally Testable Languages over Operator Precedence 87
6.1 Fence Substitution . 87
6.2 Fence Substitution Restriction . 93
6.3 Language Definition . 98
6.4 Relations with the Literature . 99

7 Decidability 101
7.1 FSR Semplification . 102
7.2 Regularizing Locally Testable Extended Languages 105

7.2.1 Define Languages on Different Alphabets 106
7.2.2 Transform Languages to Once Reliant 108
7.2.3 Accept More Blanks . 109

7.3 Regularizing LTEO . 110
7.3.1 Concatenation . 111
7.3.2 Negation . 111
7.3.3 Intersection . 112
7.3.4 LTR . 113
7.3.5 LTEO . 116
7.3.6 Regularizing LTOP . 117

7.4 Decidability . 118
7.4.1 Decidability for LTR . 119
7.4.2 FSR decidability . 121

Conclusions 123

Bibliography 125

List of Figures 127

List of Tables 129

Acknowledgements 131

1

Introduction

In the field of theoretical computer science, there is a field devoted to the study of lan-
guages, from their classification to their expression, through the algorithms recognizing
them. In particular, the main goal of studies in this field has been the research of classes
of languages satisfying a tradeoff between expressiveness and simplicity, thus the opti-
mum would have been finding a language that perfectly models a problem and is simple
enough to be approached with the tools available at the time. As there will be intro-
duced in section 1.1.3, in 1956 Noam Chomsky introduced a classification of languages,
their expressiveness, and representation. A great result of Chomsky’s classification is that
there is a direct mapping between the expressive power of a class of languages and the
automata recognizing it. The smallest family in Chomsky’s classification, thus the one
with lots of studies and results, is the so-called "Regular Language" class of languages.
It is in this class that can be found the family of Non-Counting/Aperiodic languages, a
family that has been studied a lot for the similarities that bind it to lots of real-world
applications. This class will be defined and discussed in section 1.2.3, however, as the
name suggests, it contains the languages containing strings not depending on the number
of times something is repeated. A simple example of a Counting language could be the
language recognizing books with an even number of words 1. Although there may seem
that Non-Countingness does not provide significant restrictions to Regular Languages, it
turned out to have lots of properties, and there exist lots of representations corresponding
to the NC family of languages.

Another family of languages from Chomsky’s classification, extending the Regular Lan-
guages one, is the so-called Context-Free class of Languages (CFL), discussed in chapter 3.
A notorious example of a language that is CFL but it’s not RL is the language of well-
parenthesized strings. Together with expanded expressiveness, with CFL the concept of
structure takes more importance, and with that also the concept of ambiguity starts to
present itself. Ambiguity can be found, for example, in associating a unique structure to
a string, or even also in recognizing if a string belongs or not to a given language, slowing

1This example, which is inaccurate, has been given only to hint what Counting and Non-Counting
means, and to justify later results, not to provide an actual or significant example of Non-Counting
languages.

2 | Introduction

the algorithms solving those problems. In order to solve the problem of ambiguity, there
have been presented different solutions, among which there can be found:

• Floyd’s idea of 1963 to use Operator Precedence (like done in arithmetic);

• The idea of McNaughton in 1967 was to embed explicitly the structure in the strings
via parenthesization.

The idea of removing ambiguity brought out some results that permit the definition of
some classes of languages closed under boolean operations. Although Floyd’s idea was
quite natural, being derived from arithmetic, and was exposed before the McNaughton
one, parenthesization brought out firstly some major results, obscuring the studies on OP
languages. However, already from 1978, in [8], the results of parenthesized languages have
been transposed into OPL class, demonstrating that they were valid for a more general
variety of languages, comprehending OPL and parenthesized ones: the so-called, Struc-
tured Context-Free Languages, disserted in section 3.2.
With those results, the growth of parallelized computational power, and the local parsabil-
ity property of OPLs, the study of OPL can assume an important role nowadays.

Expanding the knowledge about OPL family can offer the possibility to develop pro-
gramming languages that enable compilation to rely on distributed architectures and be
more scalable than what is now available, to better model some phenomena or to model
them in such a way that relies on the growth direction of the technology: parallelization.
For example, there should be the possibility to change some of the methodologies used
nowadays from working with some generic Context Free Language, to using an Operation
Precedence Language and leveraging some of the specific OPLs’ properties. However, in
order to make this transition more captivating, there can be found more properties for
OPL or for some of its subfamilies. It is with this goal that this work has been done: it
aims to find a subclass of OPL that is Non-Counting and characterize it.

Non-Countingness is a property that is shared among lots of practical cases, and its class,
in RL, has been shown to coincide with lots of other formalisms’ simplifications. The
definition of NC has already been transposed from the RL domain to the CFL one, and
also in OPL, but relying only on one definition is not a practical way to represent a class
of languages, as there may be many other equivalent representations, making it simpler
to identify or describe languages belonging to that class.

The idea driving this work is to find a way to relate the Locally Testable family of
languages (LTO) with the family of Operator Precedence Non-Counting Languages, or
NCOP , to see if there is a way to transfer some of LTO’s properties from RL to NCOP .

| Introduction 3

The LTO family, described in chapter 2, has been chosen not only for how it is defined
but also because of its features, in particular, the fact that it provides another equivalent
way to define the NC family in RL.

In the literature, as in [15], there have been presented different characterizations for the
NCOP family, and most of them are inspired by the characterizations of Non-Counting
Regular Languages. However, among those characterizations, there lacks one inspired
by the Locally Testable Languages. For those reason, to add a piece in the puzzle of
characterizations for NCOP , and to study the relation between Regular Non-Counting
Languages and Operator Precedence Non-Counting Languages, this thesis has the goal
to find a Locally Testable characterization of a family of languages that are Operator
Precedence Non-Counting.

5

1| Background

This chapter will provide an overview of the main known results of the theoretical language
field, which can be found in many books, like [21]. The goal is to introduce all the concepts
that are used in the following and describe the perimeter of this work. Here is provided
the first characterization of languages’ families with their properties and peculiarities.

In particular, this chapter covers the concepts needed to represent languages in section 1.1
with particular attention to grammar, and the definition and properties of Regular Lan-
guages in section 1.2.
In the first section, the goal is to present grammars and their properties, and introduce
with the use of grammars, Chomsky’s Classification of languages, which is done in sec-
tion 1.1.3.
In section 1.2 the focus is to present the class of Regular Languages, with its characteri-
zations, definition, and properties. Lastly, the concept of Non-Countingness is presented
in section 1.2.3.

1.1. Language Characterization

This section presents the main concepts that enable to define the language. The concepts
here presented start from the ground and arrive at the characterization of languages via
grammars or logical formulae, passing by the Chomskyŝ Classification. There is no need
for prior knowledge because all the needed definitions are provided step by step, followed
by the major results regarding them.

1.1.1. From Alphabet to Languages

Character and alphabet are the first concepts to be introduced in order to talk of languages

Definition 1.1 (Alphabet/character). An alphabet is a set of simple elements, called
characters or symbols.

In the literature, Σ is commonly used to refer to a generic alphabet.

6 1| Background

Example 1.1 (Alphabets). Here are some examples of common alphabets:

• The set of the English letters is the alphabet {a, b, c, . . . , z};

• The set of decimal digits is the alphabet {0, 1, 2, . . . , 9};

• The set of ASCII characters is an alphabet;

• Using words as symbols, programming languages’ instructions constitute an alphabet,
like {if, else, for, . . .};

• Using words as symbols, a dictionary is an alphabet, like {fox, hello
, world, . . .}1.

Definition 1.2 (string). A string s is a sequence of characters belonging to a certain
alphabet.
Given a string s = {c1, c2, . . . , cn}, its length, |s|, is defined as the number of characters
it contains, so |s| = n.
There is a special string ε that is the only string with |ε| = 0, and is called the empty
string.
Inside a string, the order (or equivalently the position) of the characters is essential to
define it. A string s = {c1, c2, . . . , cn} will be represented by the easier notation s =

c1c2 . . . cn

Given the definition of strings, the equality relation is a trivial concept that is worth to
be defined as all the future concepts will rely on it.

Definition 1.3 (equality). Given two strings s1 = a1 . . . an and s2 = b1 . . . bm, they are
said to be equal iff |s1| = |s2| and for each 0 < i ≤ n, ai is the same character ad bi.

It is trivial to see that this relation satisfies the symmetric, transitive, and reflexive prop-
erties, so it can be classified as an equality relation.

After the presentation of the definition of string, there can be introduced the operations
over strings.

Definition 1.4 (Character Concatenation). Given a string s = c1c2 . . . cn and a character
a, the concatenation operation s ·a defines the string s ·a = c1c2 . . . cna, the concatenation
operation a · s defines the string a · s = ac1c2 . . . cn.

1This idea is the one on which the stemming algorithms for Natural Language relies.

1| Background 7

Definition 1.5 (String Concatenation). Given two strings s1 = a1 . . . an and s2 = b1 . . . bm,
the concatenation operation s1 · s2 defines the string s1 · s2 = s1s2 = a1 . . . anb1 . . . bm.

It is trivial to see that any string can be described as the concatenation of characters.
Please note that the concatenation operation satisfies the associative property. For ex-
ample, given the strings s1 = co, s2 = mpu, s3 = ter, we have that s1 · s2 · s3 = computer.

co ·mpu · ter

(co ·mpu) · ter

compu · ter

computer

co · (mpu · ter)

co ·mputer

computer

As it happens with the multiplication operation in algebra, also the concatenation has
the identity element, which is ε, because, as it can be trivially seen, for any string x,
ε · x = x · ε = x.
Moreover, also with concatenation, there could be considered the case of a string con-
catenating with itself. This operation is called power, as it happens with numbers and
multiplication.

Definition 1.6 (concatenation power). Given a string s and an integer i, the string si is
defined as:

• s0 = ε;

• si = si−1 · s

So, given any string s, s0 = ””, s1 = s, s2 = s · s, . . .

Example 1.2. Gven the string s = ab, there is:
s0 = = ε

s1 = ab

s2 = abab

s3 = ababab

s5 = ababababab

Example 1.3. The (meaningful) English sentence "buffalo buffalo buffalo buffalo buffalo
buffalo buffalo buffalo buffalo buffalo " could be written as "buffalo "10.

8 1| Background

Now that the concept of alphabet and string have been introduced, there can be stated
also the definition of language.

Definition 1.7 (language). A language L is defined as a set of strings over a certain
alphabet. A string s is said to belong to a language L, or, equivalently, to be recognized
by a language L, iff s ∈ L.

Thus the concatenation operation can be extended also to languages:

Definition 1.8 (language concatenation). Given any two languages
L1 = {x1, x2, . . . , xn}, L2 = {y1, y2, . . . , ym}
the concatenation of those languages L1 · L2 is defined as the set of the concatenation of
all the possible couples of strings in L1 and L2, so
L1 · L2 = {x1 · y1, x1, ·y2, . . . , x1 · ym, x2 · y1,
x2 · y2, . . . , x2 · ym, . . . , xn · y1, xn · y2, . . . xn · ym}

Definition 1.9 (language and characters concatenation). Given any language
L = {x1, x2, . . . , xn} and a set of charactersa = {c1, c2, . . . , cm}, the concatenation of the
language and the set of character L ·L is defined as the set of the concatenation of all the
possible couples of a string in L and a character in a, so L · a = {x1 · c1, x1, ·c2, . . . , x1 ·
cm, x2 · c1,
x2 · c2, . . . , x2 · cm, . . . , xn · c1, xn · c2, . . . xn · cm}

Example 1.4. Given L1 = {a, b} and L2 = {c, d}, there is: L1 · L2 = {ac, ad, bc, bd}.

Also in this case there can be defined the operation of concatenating a language with
itself.

Definition 1.10 (language concatenation power). Given a language L and an integer i,
the language Li is defined as:

• L0 = ∅;

• Li = Li−1 · L.

Example 1.5. Given a language L = {ab, cd}, there is: L0 = {};
L1 = {ab, cd};
L2 = {abab, abcd, cdab, cdcd};
L3 = {ababab, ababcd, abcdab, abcdcd, cdabab, cdabcd, cdcdab, cdcdcd}.

Definition 1.11 (character concatenation power). Given a character a and an integer i,

1| Background 9

the language ai is defined as:

• a0 = ∅;

• ai = ai−1 · a.

Given a set of characters V and an integer i, the language V i is defined as:

• V 0 = {ε};

• V i = V i−1 · V

An important operation present in the literature and that can be introduced is the Kleene
Star. Presented by the computer scientist Stephen Kleene, it is a unary operator that
works on sets of characters or strings.

Definition 1.12 (Kleene Star). Given a set of strings (characters) V , its Kleene star is
the set of strings defined as V ∗ =

⋃
i∈N V

i.

So, if V is a set of characters, then V ∗ is the set of all possible strings containing only
characters of V; else if V is a language, V ∗ contains all the strings obtained by concate-
nating any number of times any element of V . It is trivial to extend the Kleene Star to
be applied over a string. For example, given the string s, the notation s∗ is considered to
be a short-cut for {s}∗.

Example 1.6. Consider the set of character {a, b}, then:
{a, b}∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, . . .}
Consider a string ab, then:
ab∗ = {ε, ab, abab, ababab, abababab, ababababab, . . .}
Consider a set of strings {ab, cd}, then:
{ab, cd}∗ = {ε, ab, cd, abab, abcd, cdab, cdcd, ababab, ababcd, abcdab, abcdcd, . . .}

The Kleene star operator relates to any set V a language containing the empty string.
To exclude the empty string from the language generated from the Kleene star, another
operator has been introduced: V + = V ∗ · V , which is equivalent to V + = V ∗ \ {ε}.

Given an alphabet Σ, Σ∗ is the same set as the free monoid over Σ with respect to the
concatenation. A language L is said to be defined on Σ if it is a subset of Σ∗: L ⊆ Σ∗.

Being languages defined as sets of strings, there can be extended also to them the opera-
tions proper of languages.

Definition 1.13 (Set/Boolean Operations). The set/boolean operation are defined as:

10 1| Background

Intersection Given two languages L1 and L2, we define L1 ∩ L2 as the set containing all the
strings belonging to both languages.

Union Given two languages L1 and L2, we define L1 ∪ L2 as the set containing all the
strings belonging either to L1 or L2.

Negation Given a language L we define as ¬L the set of strings not belonging to the language
L. 2

Later on, we will refer to set operations also as boolean operations. Please note that it is
valid the De Morgan theorem also for the languages:

Theorem 1.1 (De Morgan). Given any two languages L1, L2 ⊆ Σ∗, the following is true:
L1 ∩ L2 = ¬Σ(¬ΣL1) ∪ (¬ΣL2))

1.1.2. Grammar

Grammars are a way to represent languages in a simpler manner with respect to enu-
merating all the strings belonging to them. he idea behind grammar is to provide rules
guiding the construction of strings.

Definition 1.14 (Grammar). A (non restricted) Grammar G is a quadruple G = ⟨VT , VN , P, S⟩
where:

• VT is a finite set of terminal characters, called terminal alphabet;

• VN is a finite set of non terminal characters such that VT ∩ VN = ∅, and it is called
non terminal alphabet. We will indicate with V the set VT ∪ VN ;

• P is a finite subset of V +
N ×V ∗, called production set of G. An element p = ⟨α, β⟩ ∈ P

will be represented as α → β. The string α is the left part (lhs) of p while the string
β is the right part (rhs) of p. p is also called "rule";

• S is a particular character of VN , and is called axiom or initial character. 3

Grammars, thus, are composed of two alphabets, a language, and a character. Let us
present some examples of what is and what is not a grammar:

Example 1.7. Let us define two alphabets: VN = {S,A,B,C} VT = {a, b, c}. As stated
in definition 1.14 to define a grammar an initial character is also needed, and S will be

2The negation operation is usually used specifying also the alphabet on which the resulting language
will be defined, so, if we want the final language to be defined on Σ, ¬L = (¬L) ∩ Σ∗

3S can also be a set of characters, however, there is no substantial difference, as we will see.

1| Background 11

used, as well as a production set. Consider the following production sets:
P1 = {S → ASB, S → C, A→ a, B → b, C → c}
P2 = {S → ASB, c→ C, A→ a, B → b, C → c}
P3 = {S → ASB, ASB → C, A→ a, B → b, AB → C, ACB → c}
P4 = {S → ASB, aSB → C, A→ a, B → b, AB → C, ACB → c}
and then the four quadruples:
Q1 = ⟨VT , VN , P1, S⟩
Q2 = ⟨VT , VN , P2, S⟩
Q3 = ⟨VT , VN , P3, S⟩
Q4 = ⟨VT , VN , P4, S⟩
do they define grammars?
Consider them one by one.
Q1 is a grammar, because P1 ⊂ VN × V ∗. Its grammar will be called also G1.
Q2 is not a grammar, because there is the tuple ⟨c, C⟩ /∈ V +

N × V ∗.
P3 ⊂ V +

N × V ∗, thus Q3 is a grammar. Its grammar will be called also G3.
It is easy to see that ⟨aSB,C⟩ /∈ V +

N × V ∗, so neither Q4 is a grammar.

Please note that rules can have as a left part both a single non-terminal or a sequence of
non-terminals, and there can be more rules with the same left (or right) part.

In order to allow grammars to represent languages, there must be presented the way by
which rules can be combined together to produce the strings.

Definition 1.15 (Derivation). Given a grammar G = ⟨VT , VN , P, S⟩, it is defined as
immediate derivation a binary relation on V ∗ noted as =⇒

G
: α =⇒

G
β being α = α1γα2, iff

β = α1δα2, with α1, α2 and δ ∈ V ∗, γ ∈ V +
N , γ → δ ∈ P . As with the concatenation,

there is used the notation k
=⇒
G

,
+
=⇒
G

,
∗
=⇒
G

. When there is no risk of misunderstanding,
there is dropped the G inside the =⇒

G
.

With the concept of derivation there is a way to shape the strings; let us do an example:

Example 1.8. Let us see how to apply the derivation of the strings with the grammar G1

of example 1.7. There will be written over the arrow the rule used in the passage for the
sake of understandability:
SA

S→ASB
=====⇒

G1

ASBA
S→ASB
=====⇒

G1

AASBBA
ASB→C
=====⇒

G1

ACBA
A→a
===⇒
G1

aCBA
C→c
===⇒
G1

acBA
B→b
===⇒
G1

acbA
A→a
===⇒
G1

acba

This same sequence can be rewritten as SA 7
==⇒
G1

acba, SA +
==⇒
G1

acba or SA ∗
==⇒
G1

acba.

It is trivial to see that CBACBAAB ∗
==⇒
G1

cbacbaab.

12 1| Background

Definition 1.16. Given a grammar G = ⟨VT , VN , P, S⟩, it is said that it generates/recognizes
the language L(G) defined as:
L(G) = {x | S ∗

=⇒
G

x, x ∈ V ∗
T }. 4

As there can be seen, definition 1.16 restricts the language defined by grammars to be
defined only on the Terminal alphabet: L(G) ⊆ V ∗

T . Here are some examples on grammar
working:

Example 1.9. Consider the grammar
G5 = ⟨{0, 1}, {S}, P5, S⟩
where
P5 = {S → 0S, S → 1S, S → 1}.
And here are some possible derivations of G5 starting from S:
S ⇒ 1

S ⇒ 0S ⇒ 01

S ⇒ 1S ⇒ 11

S ⇒ 0S ⇒ 00S ⇒ 001

S ⇒ 0S ⇒ 01S ⇒ 011

S ⇒ 1S ⇒ 10S ⇒ 101

S ⇒ 1S ⇒ 11S ⇒ 111

It is trivial to see that the language L(G5) = {0, 1}∗ · 1, so the set of all the odd binary
numbers.
Please, note that S ∗

==⇒
G5

101 and 101 ∈ L(G5), and, even if S ∗
==⇒
G5

10S there is 10S /∈
L(G5) because 10S /∈ V ∗

T .

Example 1.10. Consider the grammar:
G6 = ⟨{a, b}, {S, T}, P6, S⟩
where
P6 = {S → aTb, S → ab, T → aSb}
Some examples of derivations are:
S ⇒ ab

T ⇒ aSb⇒ aabb

S ⇒ aTb⇒ aaSbb⇒ aaabbb

ST ⇒ abT ⇒ abaSb⇒ abaabb

The language defined by G6 is L(G6) = a2n+1b2n+1, for example aaabbb ∈ L(G6) because

4If S is a set, then L(G) = {x | X ∗
=⇒
G

x, x ∈ V ∗
T , X ∈ S}. Please note that there can be added rules

in P S −→ X fr each element X ∈ S, having a grammar recognizing the same language and having S as
a character and not as set.

1| Background 13

of S ∗
==⇒
G6

aaabbb, but aTb /∈ L(G6) because, even if S ∗
==⇒
G6

aTb aTb /∈ V ∗
T , and even

abaabb /∈ L(G6), because, even if abaabb ∈ V ∗
T and ST ∗

==⇒
G6

abaabb, but there is no way to

have S ∗
==⇒
G6

abaabb.

Example 1.11. Consider the grammar G1 of example 1.8: the language L(G1) is equiv-
alent to ancbn, n ≥ 0.

To conclude the discourse about grammars, there are a few concepts left to be introduced.
The new concepts and results, taken from the literature ([15], [21], [16]), will be used later,
but are reported here because they concern grammars.

Definition 1.17 (backward deterministic grammar). A grammar
G = ⟨VT , VN , P, S⟩ is defined backward deterministic (or BD-grammar) if for each
B → α,C → β ∈ P with α = β implies B = C.

Definition 1.18 (blank and context). A context over an alphabet Σ is a string in Σ∗ ·
{−} ·Σ∗, where the character ′−′ /∈ Σ and is called a blank. The context α, with its blank
replaced by the string x, is denoted by α[x].

Definition 1.19 (equivalent non-terminal). Two nonterminals B and C of a grammar
G are defined equivalent if, for every context, α, α[B] is derivable exactly in case α[c] is
derivable (not necessarily from the same axiom).

Definition 1.20 (useless nonterminal). A nonterminal B is useless if there is no context
α such that α[B] is derivable or B generates no terminal string.

Definition 1.21 (useless terminal). A terminal b is useless if does not occur in any string
of L(G).

Definition 1.22 (grammar clean, reduced, BDNF/BDR). A grammar is clean if has no
useless terminal or nonterminal.
A grammar is reduced if is clean and there are not two equivalent nonterminals.
A BDR grammar, o a grammar in BDNF (Backward Deterministic Normal Form), is a
grammar both backward deterministic and reduced.

Theorem 1.2. Any grammar can be rewritten as a BRD-grammar, and so in BDNF.

14 1| Background

1.1.3. Chomsky classification

In 1956, Noam Chomsky described in [4] a way to categorize languages. This classification
relies on 4 families of languages where the more expressive include the simplers. This
classification has been studied a lot and there are lots of results linking each family to the
equivalent representation via grammar, automata, and logic. As in the literature, also in
this work, there will be used Chomsky’s classification to relate languages between them.

The family of all non-restricted grammars (definition 1.14) corresponds to Chomsky’s
type-0, which includes all the possible languages; the family of languages recognized by
such grammars is called recursively enumerable.
By restricting the rules of the production set to be in the form αAβ → αγβ with α, β ∈
V ∗
N , γ ∈ V +, A ∈ VN , then there can be obtained the type-1 family of grammars, for which

the corresponding family of languages is called context-sensitive.
By further restricting the Production set to be contained in VN → (VT ∪ VN)

∗, it is
described the type-2 class of grammars.

Definition 1.23 (type-2 and Context-Free languages). Given a grammar
G = ⟨VT , VN , P, S⟩, if for each rule α → β ∈ P we have that |α| = 1 (so α ∈ VN),
then G will be a type-2 grammar, and the language that it recognizes will be classified as
context-free.

A notable result is that this class of languages corresponds to the one recognizable from
non-deterministic pushdown automata.
There can be one last restriction of expressiveness of grammar in order to define the
so-called type-3.

Definition 1.24 (type-3 and Regular languages). Given a grammar G = ⟨VT , VN , P, S⟩,
if for each rule α → β ∈ P we have that |α| = 1 (so α ∈ VN), and β = aB or β = a, with
a ∈ VT , and B ∈ VN , then G will be a type-3 grammar, and its language will be called
Regular Languages.

A trivial point is that the classes of languages are contained one in the other, so the type-0
family contains the type-1, that contains the type-2, that contains type-3, as illustrated in
fig. 1.1.
The relation between the family of grammars and the corresponding family of languages
is bidirectional, so there can be interchangeably referred to both of them, and the results
for one will be valid also for the other.

1| Background 15

type-3

type-2

type-1

type-0

Regular

context-free

context-sensitive

recursively-enum.

Figure 1.1: Venn diagram of Chomsky’s grammar and languages families

1.1.4. Logic characterization

Among the different characterizations that have been used for languages, the symbolic
logic description is both one of the first discovered and studied, and less explicit. The
Symbolic Logic Characterization is not exposing directly the structure of the strings rec-
ognized by the language, however, it expresses some of the features the recognized strings
must have. The main idea behind this type of characterization relies on providing a frame
over which to evaluate logical formulae by binding the predicates to the string in the
study. Given this frame, the evaluation of the logic formulae and their expressiveness
follows the known results of logic reported, for example, in [18]. Although the symbolic
logic characterization of languages may, at a first seen, seem a secondary appendix of
logic, thanks to the Church-Turing thesis, it plays a central role in defining what is and
what is not computable. In fact, if something is computable, it can be computed by
a Turing Machine (or via λ − calculus), which has the expressive power of Chomsky’s
type-0 family of languages; thus not only there is some interest in binding sets of logic
expressions and languages, but there exists a homomorphism mapping each computable
formalism into a language, and the problem solved by the formalism into the problem of
deciding whether or not a string belongs to a certain language.

Being symbolic logic a too vast field and being the goal of this section to give an overview
of the literature-studied tools to describe languages, there will be presented only how
First Order Logic can be used to represent languages, giving a hint on how the binding
from strings to logic formulae can be done.

In order to characterize languages using First-Order Logic (FOL), there must be defined
the concept of formula:

16 1| Background

Definition 1.25 (FOL formulae). Being P a unary predicate taken from a finite set of
atomic propositions and x, y, . . . variables representing positions in strings, are defined as
atomic formulae P (x) and x < y. Atomic formulae are formulae.

Given two FOL formulae ϕ, ψ, then:

• ¬ϕ is a valid FOL formula, which is true iff ϕ is not ture;

• ϕ ∨ ψ is a valid FOL formula, which is true iff ϕ or ψ (or both) is true;

• ∃xϕ is a valid FOL formula, which is true iff there exists a value for x such that ϕ
is true.

Nothing else is a valid FOL formula.

It is trivial from this definition to add the derived formulae:
x > y = y < x,
ϕ ∧ ψ = ¬((¬ϕ) ∨ (¬ψ)),
∀xϕ = ¬∃x¬ϕ and x = y = ¬((x < y) ∨ (y < x))5.

In the given definition, the only binding between a formula and a string is with the vari-
ables indicating the string’s positions. To add the expressiveness needed to differentiate
between characters present in a given position, there should be used the predicates, in
particular:

Definition 1.26 (unary predicates). Let Σ be a finite alphabet, then for each a ∈ Σ

and for each predicate P , then the truth-value P (a) must be well-defined. There will be
indicated as Pa a particular predicate such that Pa(b) is true iff a = b.
Given a string where at the x position there is the character a ∈ Σ, then P (x) in the
formula has the value of P (a).

Now there can be introduced the way by which there is binded to a Logic Representation
the corresponding Language:

Definition 1.27 (sentence). A sentence is a logic formula without free variables.

Definition 1.28 (language). A (First Order) sentence defines a subset of Σ∗, thus a
language.

Example 1.12 (a · Σ∗). Let us define the language of strings starting with a:
∃x∀yPa(x) ∧ x ≤ y

5this is valid because x, y ∈ N, which is an ordered set

1| Background 17

Example 1.13 (a followed by b). Let us define a language on which each occurrence of
a is immediately followed by an occurrence of b:
∀x¬Pa(x) ∨ ∃yx < y ∧ ∀z¬(x < z ∧ z < y)

Example 1.14 (Σ∗ · b). Let us define the language of strings ending with b:
∃x∀yPb(x) ∧ x ≥ y

Example 1.15 ((ab)+). Let us define the language (ab)+:
(∃x∀yPa(x) ∧ x ≤ y) ∧
(∀x¬Pa(x) ∨ ∃yx < y ∧ ∀z¬(x < z ∧ z < y)) ∧
(∃x(¬Pb(x) ∨ ¬(∃zx < z) ∨ ∃y(Pa(y) ∧ y > x ∧ ¬∃z(x < z ∧ z < y)))) ∧
(∃x∀yPb(x) ∧ x ≥ y)

More pieces of information about symbolic logic characterization can be found in most
theoretical computer science like [21], or, with particular attention to FO logic, on [9].

1.2. Regular Languages

In this section is presented the family of Regular Languages with its definition, properties,
characterizations, and major results. This family corresponds to Chomsky’s type-3, which
is the less expressive class of the classification. Because of the simplicity of the represen-
tation of this family and expressiveness sufficient to describe lots of real-world problems,
there have been lots of studies about this class, and thus there are lots of results.

In this section is also presented the class of Non-Counting (or Aperiodic) languages.

1.2.1. Regular Languages and Regular Expression

There have been many results in the literature about Regular Language expressiveness
and about ways o represent its languages. Previously the concept of grammar has been
defined, and via the definition 1.24 has been presented how to relate grammars to Regular
Languages. It is known that the family of Regular Languages corresponds to the class of
languages recognized by Finite State Automata. The representation of RL via Finite State
Automata, or FSA, is used for example to prove the Pumping Lemma and the results on
decidability that are presented later.

Among the different representations roposed, however, let us now introduce the Regular
Expression one.

Definition 1.29 (Regular Expression). Given an alphabet Σ of terminal characters, the

18 1| Background

Regular Expressions (RE) built on it are defined with the following rules:

1. ∅ is a Regular Expression with as recognized language the empty set ∅ = {};

2. ∀c ∈ Σ, c is a Regular Expression. The language denoted by the RE c is {c};

3. Being R1 and R2 two Regular Expressions, also R1 ∪ R2 is a Regular Expression,
indicated also as R1 +R2; its language is the union of the two languages denoted by
R1 and R2;

4. Being R1 and R2 two Regular Expressions, also R1 · R2 is a regular expression, in-
dicated also as R1R2; its language is the concatenation of the two languages denoted
by R1 and R2;

5. Being R a Regular Expression, also R∗ is a regular expression; the language denoted
by R∗ is the result of the Kleene star operator applied to the language R (so R0 = ∅
and R∗ =

⋃
i∈NR

i−1 ·R);

6. Nothing else is a Regular Expression.

Example 1.16. Given the alphabet Σ = {B,C, P, S}, let us define some Regular Expres-
sions and their languages:

1. Rb = B, with its language that is: {B};

2. Rc = C, with its language that is: {C};

3. Rp = P , with its language that is: {P};

4. Rs = S, with its language that is: {S};

5. Rb∗ = R∗
b = B∗, with its language that is: {ε, B,BB,

BBB, . . .};

6. Rb+ = Rb ·R∗
b = B ·B∗, with its language that is: {B,BB,BBB,

BBBB, . . .};

7. Rb+c = Rb+ ·Rc = B ·B∗ · C, with its language that is: {BC,BBC,
BBBC,BBBBC, . . .};

8. R(b+c)∗ = R∗
b+c = (B ·B∗ · C)∗, with its language that is: {ε, BC,

BCBC,BCBCBC,BBC,BBCBC,BCBBC, . . .};

9. Rp(b+c)∗ = Rp ·R(b+c)∗ = P · (B ·B∗ · C)∗, with its language that is:
{P, PBC, PBCBC,PBCBCBC,PBBC,PBBCBC,PBCBBC, . . .};

1| Background 19

10. Rp(b+c)∗s = Rp(b+c)∗ ·Rs = P · (B ·B∗ · C)∗ · S, with its language that is:
{PS, PBCS, PBCBCS, PBCBCBCS, PBBCS, PBBCBCS, PBCBBCS, . . .};

11. R(p(b+c)∗s)∗ = R∗
p(b+c)∗s = (P · (B ·B∗ · C)∗ · S)∗, with its language that is:

{ε, PS, PSPS, PSPSPS, PBCS, PSPBCS, PSPBCSPS, PBCBCS,
PBCBCSPS, PSPBCBCS, PSPBCBCSPS, . . .};

Given this definition, it is easy to extend it, without adding expressiveness to it, with the
use of the following operations: being R a Regular Expression, R+ = R ·R∗ and Rn such
that R0 = ∅ and Ri = R ·Ri−1.

Example 1.17. Please note that in example 1.16 the Regular Expression Rb+ can be
redefined as R+

b = B+ without impacting any language of the example.

definition 1.29 is the one presented by Kleene in 1956 [1], where he presented the Klee-
nee’s star operator (definition 1.24), and proposed the definition for the class of Regular
Languages. This class of languages, however, has been proven to coincide with the one
defined via the Chomsky’s type-3 family in [17]. In particular, one major result from the
equality of definition 1.29 and definition 1.24 is that the regular expressions are closed also
with respect to negation over the universe Σ∗. So there can be extended the definition
with the use of the addition:

• Being R a regular expression over Σ, also ¬ΣR is a regular expression. The language
denoted by ¬ΣR is the set of all strings s ∈ Σ∗ such that s /∈ R.

Please note that with addition, there can also be expressed inside the Regular Languages
the operation R1 ∩R2 = ¬(¬R1 ∪ ¬R2).

A peculiarity of complementation is that it is relative to the alphabet, so if R is a regular
expression over either alphabet Σ1 and Σ2 (so R ⊆ (Σ1 ∩Σ2)

∗), it is not always true that
¬Σ1R ⊆ Σ∗

2, in particular, it is true if Σ1 = Σ2.

Definition 1.30 (Regular Language). The class of Regular Languages (RL) is the small-
est class of languages containing all finite sets of strings and closed under the concatena-
tion, the star operator, and the boolean operations 6over its alphabet Σ.

This definition matches the one proposed in [20].

Example 1.18. Consider the alphabet Σ = {a, b} and the regular expressions:
R1 = a = {a}

6The closure under boolean operations is the part missing in definition 1.29 but is sufficient to add
the closure under the negation operation to have the closure under all boolean operations.

20 1| Background

R2 = b = {b}
R3 = R1 ∪R2 = a ∪ b = {a, b}
R4 = R∗

3 = (a ∪ b)∗ = (a+ b)∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, . . .}
R5 = R1·R4 = a·(a∪b)∗ = a(a+b)∗ = {a, aa, ab, aaa, aab, aba, abb, . . .} = Strings starting with a
R6 = R4·R1 = (a∪b)∗·a = (a+b)∗a = {a, aa, ba, aaa, aba, baa, bba, . . .} = Strings ending with a
R7 = R5 ∪R6 = ((a · (a ∪ b)∗) ∪ ((a ∪ b)∗ · a)) = a(a+ b)∗ + (a+ b)∗a =

{a, aa, ab, ba, aaa, aab, aba, abb, baa, bba, . . .} = Strings starting or ending with a
R8 = R5 ∩R6 = ((a · (a ∪ b)∗) ∩ ((a ∪ b)∗ · a)) = a(a+ b)∗ ∩ (a+ b)∗a =

{a, aa, aaa, aba, aaaa, aaba, abaa, abba, . . .} = Strings starting and ending with a

There is a particular subclass of RL: the Star Free. This family, presented here, will be
later recalled to prove its properties. It can be defined as a reshaping of the definition 1.30
to limit its expressive power.

Definition 1.31 (Star Free). The class of Star Free languages (SF) is the smallest class
of languages containing all finite sets of strings and closed under the concatenation and
the boolean operations.

The difference between definition 1.30 and definition 1.31 is that in the second case,
as the name suggests, there is no closure with respect to the Kleene’s operator ∗, and
thus neither+. Even if it may seem a small change with respect to the original RL
definition, there will be presented how this change in language closures impacts a lot also
the "structure" 7 of languages it will recognize. Let us do a few examples of SF languages
over the alphabet Σ = {a, b, c}.

Example 1.19 (∅). The language ∅ can be expressed is SF:
A = {a} ∈ SF

B = ¬A ∈ SF ;

∅ = A ∩B ∈ SF .

Example 1.20 (Σ∗). Given the previous example, then:
A = ∅ ∈ SF ;

B = ¬A ∈ SF ;

And thus, being B = ¬∅, it is trivial to see that B = Σ∗.

Example 1.21 (Not containing substring). Given a string s, there can be defined the SF
language of all the strings on Σ not having s as substring:

7Not to be intended in the strict sense because there isn’t the concept of structure.

1| Background 21

A = Σ∗ ∈ SF ;

B = {s} ∈ SF ;

C = A ·B · A ∈ SF ;

D = ¬C ∈ SF.

And it is trivial to see that D is the language of all the strings not containing s as a
substring.

Example 1.22 (Not containing language). Given an SF language η, there can be defined
an SF language of all the strings on Σ not having as a substring an element of η :A =

Σ∗ ∈ SF ;

B = A · η · A ∈ SF ;

C = ¬B ∈ SF.

It is trivial to see that the language C is the language we were searching for.

There are now reported different examples of languages that can be expressed using
Kleene’s Star and there will be discussed whether those languages are SF or not. The
languages presenter will be: a∗, (ab)∗, (aba)∗, (aa)∗ and (abab)∗.

Example 1.23 (a∗). As can be seen, a∗ corresponds to the language of all the strings not
containing b or c, so there can be expressed a∗ = neg(Σ∗{b, c}Σ∗), and, being {b, c} ∈ SF ,
then also a∗ is SF.
To uniform this example with the next ones, let us define α = {b, c}, which is an SF
language, and then:
a∗ = ¬(Σ∗αΣ∗) ∈ SF .

Example 1.24 ((ab)∗). As done in example 1.23, let us consider (ab)∗ as the set of all
the strings not containing any substring not accepted as a substring of (ab)∗. To do so,
the language will not recognize any string containing:
α = Σ2 \ {ab, ba} = {aa, ac, bb, bc, ca, cb, cc} which is SF.
Moreover, there is the needing to have the accepted string to start with ab and to end with
ab, not accepting, for example, baba, so:
(ab)∗ = ¬(Σ∗αΣ∗) ∩ ({ε} ∪ ({ab}Σ∗ ∩ Σ∗{ab})).

Example 1.25 ((aba)∗). Let us expand the idea of example 1.24 to also cover (aba)∗: the
language must accept only strings having all substrings in {aba, baa, aab}(∈ SF), thus it
will not accept any string with as substring any of
α = Σ3 \ {aba, baa, aab} =

{aaa, aac, abb, abc, aca, acb, acc, bab, bac, bba.bbb, bbc,

22 1| Background

bca, bcb, bcc, caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc} which is SF.
Moreover it has to accept the strings starting with aba, and ending with aba, so:
(aba)∗ = ¬(Σ∗αΣ∗) ∩ ({ε} ∪ (abaΣ∗ ∩ Σ∗aba)).

Example 1.26 ((aa)∗ and (abab)∗). In the previous examples, there has been seen how
to express the languages a∗, (ab)∗, (aba)∗ in a star free manner, and the way it has been
done, was quite always the same, however, there cannot be expressed (aa)∗ or (abab)∗ in
the same way, because there is no way to "count" the number of repetitions of a or ab.
For example, consider the language:
η = ¬(Σ∗{ab, ac, ba, bb, bc, ca, cb, cc}Σ∗) ∩ ({ε} ∪ ({aa} · Σ∗ ∩ Σ∗ · {aa}))
It is trivial to see that η is a language that recognizes a · (a+)∪ε, or, equivalently, a∗ \{a};
however it is the language built in the same way of the previous ones but over the language
"(aa)∗. There is no provided here a proof of the fact that this language is not Star Free,
however, there has been proved that the same method previously adopted is not suitable
for this case. Later in the work, there are reported results that will make the proof of this
language not to be Star Free trivial.

1.2.2. Decidability

Here are reported the main results regarding Regular Languages with respect to Decid-
ability. So there are reported problems that are known to be decidable. As the first thing,
however, the concept of decidable must be introduced.

Definition 1.32 (decidable). A problem is said to be decidable if it is computable.

Theorem 1.3. Given a regular language η ⊆ Σ∗ and a string s ∈ Σ∗, it’s decidable
whether or not s belongs to the language.

This result, however, can be further improved by another important result: the Pumping
Lemma

Theorem 1.4 (Pumping Lemma). Given a Regular Language η, there exists a number
k ∈ N such that for each x ∈ η and |x| ≥ k, then there exists y, w, z ∈ Σ∗ such that
1 ≤ |w| ≤ k and ywiz ∈ η for each i ≥ 0.

Corollary 1.1. Given an RL language η, there exists a finite set of strings S ⊆
⋃

0≤i≤k Σ
i

such that S ⊆ η. In particular, if S = ∅, then also η = ∅.

Proof. This is a corollary of theorem 1.4, and k has the same value it has in it.

1| Background 23

The fact that S is finite derives from the fact that also
⋃

0≤i≤k Σ
i is finite.

Assume, for absurdum, that S is empty (so that η ∩
⋃

0≤i≤k Σ
i) = ∅) and that η ̸= ∅. In

that case, there exists s ∈ η with |s| ≥ k and s = ywz with |w| > 1. For the Pumping
Lemma, also yz ∈ η, and |yz| < s. From this it can be seen that the hypothesis of having
S = ∅ and η ̸= ∅ is absurdum because either |yz| < k or there can be iteratively applied
the Pumping Lemma to yz.

Corollary 1.2. It’s decidable if a regular language is empty or not.

Corollary 1.3. Given two regular languages η1, η2, then it is decidable whether or not
η1 ∩ η2 = ∅.

The last two results are trivial consequences of the previous ones.

All the information about decidability can be found in [21].

1.2.3. Non Counting

The family of Non-Counting languages naturally belongs to the class of Regular Lan-
guages. However, given its importance and the theoretical results that it has, the concept
of Non-Countingness (or Aperiodicity) has been expanded also to the other Chomsky’s
classification families. The feature of Non-Countingness can be found, for example, in nat-
ural languages, and for this reason, this family has been studied and used in the natural
and programming languages fields.

The concept of non-countability informally refers to the fact of counting the occurrences of
substrings, as hinted in example 1.26, thus there can be defined 2 ideas for "countability":

threshold A language accepts a string iff it contains more than n repetitions of a certain
substring s;

modulo A language accepts a string iff it contains a number i of repetitions of a certain
substring s such that i mod n = K, where n,K are fixed for the language.

Given the ideas of the 2 types of "countability", the class of Non-Counting languages only
refers to the second idea (the "modulo" one), ignoring the threshold ones. In particular,
the definition of this class is:

Definition 1.33 (Non Counting). Given a language η ⊆ Σ∗, η is called Non Counting if
there exists a number n such that for all x, y, z ∈ Σ∗, m ∈ N we have that x · yn · z ∈ η ⇔

24 1| Background

x · yn+m · z ∈ η.
If η is not Non-Counting, then it is Counting.

Here are reported some examples of either counting or non-counting languages:

Example 1.27. Consider the languages (aa)∗ and (abab)∗ discussed in example 1.26:
those languages are counting because they accept an even number of repetitions of a or ab.
Consider η = (aa)∗ and the string (aa)n ∈ η; we can easily see that (aa)n = anan, and,
setting x = ε, y = a, z = an, we can see that xynz ∈ η, but, for example, xyn+1z =

an+1an = a2n+1 /∈ η, so η is not NC, thus it is Counting. Similar reasoning can be done
for the language (abab)∗.

Example 1.28. Here is an example based on real life: Consider a coffee machine that
can be powered up and switched off, that has a button that can be pressed to require coffee,
and, most important, can deliver coffee.
We want to find a language describing the series of actions that bring the machine from
being switched off to being switched off again, assuming that it works properly, thus:

• it is possible to press the button and deliver coffee only when it is powered up;

• the machine will deliver coffee after one pressure of the button and will ignore all
the other pressures after the first one and before the corresponding delivery of coffee;

• the machine will not be switched off between the pressure of the button and the
delivery of coffee.

There will be used as alphabet Σ = {P, S,B,C} where

• P stands for power up;

• S stands for shut down;

• B stands for button pressed;

• C stands for coffee delivered.

This language will recognize all the strings that can be recognized by η = (P ((B)+C)∗S)∗.
For now, the fact that η is NC is left with no demonstration, and the reader can do some
tests with different strings to check it, however, in a few pages, there will be provided some
tools to make this proof in at least 2 different ways.

Consider x = P, y = BBBC, z = S, there can be seen that xynz ∈ η for each value of n.

Please note that this language is the same one described by the final Regular Expression
of example 1.16.

1| Background 25

Example 1.29. We want a language on alphabet Σ = {0, 1}, that accepts all the strings
that contain at least 3 occurrences of 1. It can be exemplified by η = Σ∗ ·1 ·Σ∗ ·1 ·Σ∗ ·1 ·Σ∗.
As can be trivially seen, this language is SF, even if the language is "counting" in the
threshold manner. It is trivial to see that this language is Non-Counting with the use of
3 as the value of n inside the definition 1.33.

The following result will expand the definition 1.33 making it easier to demonstrate
whether a language is counting or non-counting

Lemma 1.1. Given a language η ∈ ℘(Σ∗) and an integer n, the following statements are
equivalents:

A ∀m∈N, x,y,z∈Σ∗xynz ∈ η ⇔ xyn+mz ∈ η

B ∀x,y,z∈Σ∗xynz ∈ η ⇔ xyn+1z ∈ η

Proof. To prove the lemma, there will be firstly proven that A implies B.
It is trivial to see that if A is valid, then also B is valid as a special case of A.
Let us now prove that B implies A.
Suppose B is valid and consider 2 strings xynz, xyn+1z□η, where □ is either ∈ or /∈. Let
now p = xy, we have that pynz = xyn+1z□η, and, having B valid, it is also pyn+1z□η,
but pyn+1z = xn+2z, and with this same process, there can be proven that also xyn+3z□η,
and so on, till any m. Thus B implies A.

This lemma is helpful to limit the number of iterations needed to demonstrate whether a
language is Counting or not.

Another particular feature is that there are lots of results linking the family of NC lan-
guages to other families.

Theorem 1.5. The family of NC languages corresponds to the family of Star Free lan-
guages.

The previous result explains why there has been reported the family of Star Free languages.

Theorem 1.6. The family of NC languages corresponds to the family of languages recog-
nized by an automaton with finite and aperiodic transition monoid.

For further information about the topic, refer to [20].

There can be now provided the proof that the language expressed in example 1.28 is NC
by leveraging theorem 1.5:

26 1| Background

Example 1.30. The language to analyze is: η = (P ((B)+C)∗S)∗.

To prove that η is SF, we will proceed in a similar way as done in example 1.25, so enu-
merating all the tuples of 4 characters we will accept:
α = Σ4 \ {
BBBB,BBBC,BBCB,BBCS,BCBB,BCBC,BCSP,CBBB,CBBC,

CBCB,CBCS,CSPB,CSPS, PBBB,PBBC,PBCB,PBCS, PSPB,

PSPS, SPBB, SPBC, SPSP}
Now let us define the language in a SF manner: η = ¬(Σ∗ · α · Σ∗) ∩ ({SP} ∪ {S} · Σ ·
Σ∗ · Σ · {P}).

Please note that the examples of SF languages are also examples of NC languages.

From those examples, it can be noticed that there is somehow a correlation between Star
Freeness and the enumeration of substrings accepted or not. This concept is going to be
reinforced later in chapter 2 with the family of locally testable languages.

Another remarkable result is that the class of languages definable via First Order Logic
corresponds to the class of NC languages, so:

Theorem 1.7. The family of NC (without considering the ε string) languages corresponds
to the family of languages described by the First Oder Logic.

For more information on the relation between FO and NC refer to [9], or for more pieces
of information on NC in general, refer to [20].

27

2| Locally Testable Languages

In this chapter the Locally Testable family of languages is presented. This family has
been proven to be equivalent to the Non-Counting one, and for this reason it is presented
here. This class is predent in the literature, and more information can be found in [20],
however, this class of languages is not as widely known as the concepts presented so far.

The Locally Testable family of languages has been chosen as reference for the research
of a Non-ounting subclass of Operator PRecedence Languages, not only because of its
roperties, but also for the semplicity of its definition. There have been studies relating
this family with the Star Free one, the Non-Counting, . . . and can be found in [20].

The aim of this section is to introduce the LTO family of languages and to provide as
much knowledge about it as possible, in order to make it easier to enrich this family to
build the LTOP one. In order to achieve such a goal, there are presented some concepts
used in the definition of the class itself before presenting the main results.

2.1. Some Tools

Here are presented different ideas that will be used later to represent languages.

As the first thing, there are defined some special characters not belonging to a general
alphabet Σ. Each one of this characters has a specific role, that will be presented when
it will be used.

Definition 2.1 (Σ,#,Φ,−). Given any alphabet Σ, let # be a character such that # /∈ Σ.
With Σ# will be referred the set Σ ∪ {#}.
Given any alphabet Σ, let ⌊, ⌋ be two characters such that
{⌊, ⌋} ∩ Σ# = ∅.
There will be used Σpar = Σ ∪ {⌊, ⌋}.
There will be used Σ#,par = Σ# ∪ {⌊, ⌋}
Given any alphabet Σ, let Φ = {−1,−2, . . . ,−n}, Φ is defined as set of blanks for Σ if

28 2| Locally Testable Languages

Σ ∩ Φ = ∅, and the elements of Φ are called blanks 1.
There will be used ΣΦ = Σ ∪ Φ.
There will be used Σ#,Φ = Σ# ∪ Φ.
There will be used Σ#,Φ,par = Σ#,par ∪ Φ.
There will be used Σany ⊇ ΣΦ to indicate any set of characters in order to not limitate the
definitions.
There will be used ΣanyT = Σany\{#, ⌊, ⌋} to indicate the set of Σany without the characters
used to build the string.

With definition 2.1 there has been set a common agreement on which there are built, step
by step, all the models that are presented in this work from now on.
In this section are used only the # character, and, as done in lots of works, it is used to
represent the beginning and the ending of a string. So a string s ∈ Σ∗ will be represented,
using also #, as # · s ·# ∈ Σ∗

#.

In order to introduce the family of Locally Testable languages, it is useful to previously
define two other families:

Definition 2.2 (Finite Language). A language α ∈ ℘(Σ∗
any)

2 is finite if it consists of a
finite set of strings (of finite length).

Definition 2.3 (Definite Language). A language η ∈ ℘(Σ∗
any) is said to be definite if there

exist two finite languages α, β ∈ ℘(Σ∗
any) such that η = Σ∗

any · α ∪ β.

In other words, a language η is definite if there exists a number k such that for any string
it is sufficient to check the last k characters of it to check whether the string belongs or
not to the language. In particular, k depends on the length of the strings in the finite
languages (α and β in the definition 2.3) defining η. Let us do a few examples to clarify
those classes of languages:

Example 2.1. Nick and Raul play table football, knowing that at any time Valentina will
stop their game, they choose to apply the rule of "queen ball": the last to score a goal will
win the match. Knowing the sequence of goals, a definite language will be able to recognize
if the winner is Raul or Nick just by looking at the last goal.

Example 2.2. We want to define a language that recognizes strings that represent binary
numbers for which the modulo 4dec operation gives 3dec as result, or the modulo 64dec

1Please note that this definition can be seen somehow as an extension of definition 1.18.
2The ℘(X) notation is used to identify the "set of the parts of X": The set of all the possible subsets

of X∗.

2| Locally Testable Languages 29

operation gives 30dec as result, or that are exactly one between 1dec, 5dec and dec.
Translating the requests from the decimal world into the binary one, those are equivalent
to ask that:

1. The modulo 4dec operation gives 3dec as result ⇒ The binary representation of number
ends with 11;

2. The modulo 64dec operation gives 30dec as result ⇒ The binary representation of
number ends with 11110;

3. The number is 1dec ⇒ The binary representation of number is 1;

4. The number is 5dec ⇒ The binary representation of number is 101;

5. The number is 32dec ⇒ The binary representation of number is 1000.

So, over an alphabet Σ = {0, 1} we can define the 2 finite languages α = {11, 11110} and
β = {1, 101, 1000} to finally build our language η = Σ∗ · α ∪ β.
Let us analyze some strings and see if they belong to the language η or not:

• 101010111 ⇒it ends with 11 ∈ α ⇒ 101010111 ∈ η

• 0011011110 ⇒it ends with 11110 ∈ α ⇒ 0011011110 ∈ η

• 1101101101 ⇒it does not belong to β and does not end with any element of α ⇒
1101101101 /∈ η

• 101 ⇒it belongs to β ⇒ 101 ∈ η

• 100 ⇒it does not belong to β and does not terminate with any element of α ⇒ 100 /∈
η

2.2. Locally Testable Language and its Closure

Let us talk about the Locally Testable family of languages. The idea behind its languages,
is to expand the check of definite languages not only to the latest k characters of a string,
but to split the string into all possible substrings of length k and check directly them.
Formally, here is the definition of Locally Testable in the strict sense (LT) languages:

Definition 2.4 (Locally Testable in strict sense). A language η ∈ ℘(Σ∗
any) is defined

k -testable if there exists 4 sets
α, β, γ ∈ ℘(Σk

any),δ = {x ∈ ℘(Σ∗) | |x| < k} such that, for any string s ∈ Σ∗, s ∈ η iff:

• |s| ≥ k → Lk(s) ∈ α, Ik(s) ⊆ β, and Rk(s) ∈ γ;

30 2| Locally Testable Languages

• |s| < k → s ∈ δ.

Where Lk(s) is defined as the left-end segment of s of lenght k, Ik(s) as the set of interior
segments of s of lenght k, Rk(s) as the right-end segment of s of lenght k.
If η is k -testable, then also η is defined as Locally Testable in the strict sense (LT).

Example 2.3. Consider the alphabet Σ = {a, b, c, d}, k = 2, and the sets:
α = {ab, ad}
β = {cd, ad}
γ = {bc, cb}
δ = {c, b}
With these 4 sets, there can be defined the LT2 language η such that:

• c ∈ η, because |c| < 2 and c ∈ δ;

• ad ∈ η, because |ad| ≥ 2 and ad ∈ α and ad ∈ β;

• abcd ∈ η, because |abcd| ≥ 2 and ab ∈ α and cd ∈ β and {bc} ⊆ γ;

• abcbcd ∈ η, because |abcbcd| ≥ 2 and ab ∈ α and cd ∈ β and {bc, cb} ⊆ γ;

• abd /∈ η, because |abd| ≥ 2 and ab ∈ α but bd /∈ β;

• acd /∈ η, because |acd| ≥ 2 and ac ∈ β but ac /∈ α;

• abbcd ∈ η, because |abbcd| ≥ 2 and ab ∈ α and cd ∈ β but {bb, bc} ̸⊆ γ.

Although definition 2.4 is taken from the literature, for our purposes it is better to reshape
it in a way a bit more similar to the notation introduced in definition 2.1 to better relate
LT family with the OP on:

Definition 2.5. A language η ⊆ Σ∗
any is said to be k -testable if there exist a number k

and a set Y ⊆ ((
⋃

i∈N, i<k−1# ·Σi ·#)∪ (# ·Σk−1 ∪Σk−1 ·#)∪Σk) such that the language
η recognises the strings s ∈ Σ∗ iff:

• |s| ≤ k − 2 → # · s ·# ∈ Y ;

• |s| > k − 2 → each substring of length k of # · s ·# is in Y .

If the language η is k -testable, then it’s said also to be Locally Testable(LT) in the strict
sense.

It is trivial to see that the definition definition 2.5 and the definition definition 2.4 are
equivalent, and the sets of the beginning, ending, intermediate or complete substrings are
differentiated by the presence (or the position) of the # character.

2| Locally Testable Languages 31

Example 2.4. Take the language defined in example 2.3 and transform it into an equiv-
alent form, following definition 2.5, using k = 3 and as set defining it Y .
To "include" δ in Y , then it must be: {#c#,#b#} ⊆ Y .
To "include" α in Y , then it must be: {#ab,#ad} ⊆ Y .
To "include" β in Y , then it must be: {cd#, ad#} ⊆ Y .
To "include" γ in Y , then it must be: {bcb, cbc} ⊆ Y .
Finally, to include the mix of α, β, γ, then it must be {abc, bcd} ⊆ Y .

The language η = LT3(Y) is such that:

• c ∈ η, because |c| ≤ 1 and #c# ∈ Y ;

• ad ∈ η, because |ad| > 1 and {#ad, ad#} ⊆ Y ;

• abcd ∈ η, because |abcd| > 1 and {#ab, abc, bcd, cd#} ⊆ Y ;

• abcbcd ∈ η, because |abcbcd| > 1 and {#ab, abc, bcb, cbc, bcd, cd#} ⊆ Y ;

• abd /∈ η, because |abd| > 1 and {#ab, abd, bd#} ̸⊆ Y ;

• acd /∈ η, because |acd| > 1 and {#ac, acd, cd#} ̸⊆ Y ;

• abbcd ∈ η, because |abbcd| > 1 and {#ab, bbc, bcd, cd#} ̸⊆ Y .

There has been already presented a language that can be transformed in a LT shape: the
one of example 1.30.

Example 2.5. The language of example 1.30 is η = (P ((B)+C)∗S)∗. It can be defined in
an LT manner with k = 2 where the set Y is such that:

• ε ∈ η so ## ∈ Y ;

• The strings of η will start with P , so #P ∈ Y ;

• The strings of η will start with S, so S# ∈ Y ;

• In the strings of η, the character P can be followed by S or B, so PS, PB ∈ Y ;

• In the strings of η, the character B can be followed by B or C, so BB,BC ∈ Y ;

• In the strings of η, the character C can be followed by B or S, so CB,CS ∈ Y ;

• In the strings of η, the character S can be followed by P so SP ∈ Y .

Said that, the set Y = {##,#P, S#, PS, PB,BB,BC,CS,CB, SP} will define a lan-
guage such that LT2(Y) = η.

32 2| Locally Testable Languages

From the given definitions of LT languages, it is trivial to see that there can be multiple
sets describing the same language. A question may then arise: is there any way to
guarantee that the a language has always the same set representing it?

Example 2.6. Consider the alphabet Σ = {a, b, c}, k = 3 and the 2 sets:
A = {#ab, abb, bbb, bbc, abc, cbb, bc#}
B = {#ab, abb, bbb, bbc, abc, acb, bc#}
It is simple to verify that LT3(A) = LT3(B) and that it is the language recognized by the
Regular Expression ab+c.

Please note that the elements that differ in the two sets are cbb, acb and that they are not
substrings of any string recognized by LT3(A) or equivalently LT3(B).

To answer the question, the concept of cleanLT is introduced.

Definition 2.6 (cleanLT). Given a set S ⊆
⋃

i∈N, i≤k Σ
i
any, it is said to be cleanLT iff:

• Removing any element from S, the LT language generated by the new set is different
from the one generated by S;

• each element of S that contains #, contains it at the beginning and/or at the ending
of it.

Example 2.7. Consider the two sets of example 2.6; as stated also at the end of the
example, they are not cleanLT. Their cleaned version is:
Acleaned = A \ {cbb, acb} = {#ab, abb, bbb, bbc, abc, bc#}
Bcleaned = B \ {cbb, acb} = {#ab, abb, bbb, bbc, abc, bc#}
It is trivial, from the cleanLT definition, that given a set Y and its cleaned version Ycleaned,
then LTk(Y) = LTk(Ycleaned), and so LT3(Acleaned) = LT3(A) = LT3(B) = LT3(Bcleaned).

Note that the two sets Acleaned and Bcleaned are equivalent.

Lemma 2.1. If two sets S1, S2 ⊆
⋃

i∈N, i≤k Σ
i
any are such that S1 ∩Σk

any ̸= ∅, S2 ∩Σk
any ̸=

∅, LT (S1) = LT (S2) and are both cleanLT, then S1 = S2.

From the previous result, the following is trivial:

Corollary 2.1. Given any language η ⊆ Σ∗ such that there exists some k for which η is
LTk, there is only one set S ⊆

⋃
i∈N, i≤k Σ

i
any such that S is cleanLT .

The proof of this corollary is trivial.

2| Locally Testable Languages 33

The concept that enables to relate two elements belonging to a set defining an LT lan-
guage, is the following:

Definition 2.7 (connectable). In a set S defining an LT language, an element t ∈ S, t =

t1t2 . . . tm where tm ̸= # is said to be connectable to an element r ∈ S, r = r1 . . . rm if
∀1 ≤ i < m ri = ti+1.

Based on the concept of connectable, there can be stated the following reguarding cleanLT.

Corollary 2.2. In a set S that is cleanLT there does not exist an element t ∈ S such that
its first and last characters are not # and that is not connectable to any other element in
S.

For the sake of simplicity, from now on whenever the contrary is not stated, when refer-
encing to a set defining an LT language, it is implicitly considered to be cleanLT.

Let us introduce the LTO family of languages: an extension of LT that reserves lots of
interesting results.

Definition 2.8 (LTO). The class of LTO languages is defined as the smallest set of
languages containing all the LT languages and such that it is closed under the boolean
operations, and the concatenation.

Example 2.8. Here there are some examples of LTO languages over the alphabet Σ =

{a, b, c}:

• The language La = {a} is LT2 (with {#a#}as set defining it), so it is also LTO.

• The language Σ∗ \ La, being definable as ¬La, is LTO.

• The language Σ∗, being La ∪ ¬La, is LTO.

• The language ∅, being La ∩ ¬La, is LTO.

• The language La∗ is LT2 (with {##,#a, aa, a#} defining it), so it is also LTO.

These examples, however, fall all into the LT family too. Let us analyze something more
interesting:

• The language Lab+c is LT2 with {#a, ab, bb, bc, c#} defining it, thus it is also LTO.

• The language Lab+cab+c, definable via the Regular Expression ab+cab+c, is not LT ,
however it is LTO because it is the concatenation of the two LTO languages Lab+c ·
Lab+c.

34 2| Locally Testable Languages

• The language L(ab+c)+a∗, definable via the Regular Expression (ab+c)+a∗, is not LT
also if it is LTO being it definable as Lab+c ∪ La∗.

2.3. Results of Locally Testable Languages

The LTO family of languages, is one really interesting class, not only for its definition but
also because of its relation with the NC family which is in this section.

Theorem 2.1 (LTO ⊆ NC). The class of LTO languages is a subclass of NC languages.

The previous result implies that each language η that is a LTO language, is also a NC
language.

Proof. The proof consists of proving the following steps:

1. If α is LT, then α ∈ NC;

2. If α, β are NC, then α ∪ β ∈ NC

3. If α is NC, then ¬α ∈ NC

4. If α, β are NC, then α · β ∈ NC

Let us prove item 1. Suppose that there exists k such that α is k-testable, we want to
find the value of n such that ∀x,y,z∈Σ∗xynz ∈ α ⇔ xyn+1z ∈ α. It is trivial to see that if
y = ε then it is valid for any value of n; else we have that |y| ≥ 1, and choosing n = k+1

is trivial to see that the sets of substrings of length k of xyk+1z and xyk+2z are the same,
so also in this case it is valid. Thus the point item 1 is valid.

The item 3 is trivial.

For the point item 2, being α, β ∈ NC, we have that ∀x,y,z∈Σ∗xypz ∈ α ⇔ xyp+1z ∈ α

and xyqz ∈ β ⇔ xyq+1z ∈ β. Let us choose n = max(p, q). We want to prove that there
exists n such that xynz ∈ α ∪ β, which is so if and only if xynz is in α or in β, which is
so if and only if xyn+1z is in α or in β, which is so if and only if xyn+1z ∈ α ∪ β.

For the item 4, being α, β ∈ NC, we have that ∀x,y,z∈Σ∗xypz ∈ α ⇔ xyp+1z ∈ α and
xyqz ∈ β ⇔ xyq+1z ∈ β. Let us choose n = p + q + 1. We want to prove that xynz ∈
α · β ⇔ xyn+1z ∈ α · β. Let’s prove xynz ∈ α · β ⇒ xyn+1z ∈ α · β the cases:

• x = x1 · x2, x1 ∈ α, x2y
nz ∈ β, in this case x2yn+1z ∈ β, thus xyn+1z ∈ α · β;

• z = z1 · z2, z2 ∈ β, xynz1 ∈ α, in this case xyn+1z1 ∈ α, thus xyn+1z ∈ α · β;

2| Locally Testable Languages 35

• y = y1 · y2, xysy1 ∈ α, y2y
tz ∈ β where s + t = n = p + q + 1, thus either t ≥ q or

s ≥ p, thus either xys+1y1 ∈ α or y2yt+1z ∈ β, thus xyn+1z ∈ α · β.

Let us now prove the other way: xyn+1z ∈ α · β ⇒ xynz ∈ α · β

• x = x1 · x2, x1 ∈ α, x2y
n+1z ∈ β, in this case x2ynz ∈ β, thus xynz ∈ α · β;

• z = z1 · z2, z2 ∈ β, xyn+1z1 ∈ α, in this case xynz1 ∈ α, thus xynz ∈ α · β;

• y = y1 · y2, xysy1 ∈ α, y2y
tz ∈ β where s + t = n = p + q + 1, thus either t ≥ q or

s ≥ p, thus either xys+1y1 ∈ α or y2yt+1z ∈ β, thus xynz ∈ α · β.

In this way, we proved the theorem as will be done for theorem 6.3.

Leveraging this theorem, there can be proven that the language of example 1.28 is NC by
proving it is LTO, as it has already been done in example 2.4.

Example 2.9. Here is an example that apparently is trivial, but that will reserve not a
few problems. Consider the example 1.28, and extend its language recognized by:
REonce = (B)∗(P ((B)+C)∗S)∗

It is trivial to see that the new language is LTO:
being B∗ and (P ((B)+C)∗S)∗ both LT , then REonce characterizes a language that is the
concatenation of two LT ones.

Let us now complicate it a little more: consider the language recognized by:
REmore = ((B)∗(P ((B)+C)∗S)∗)∗

For this new language, which is the application of the Kleene operator on the preceding
one, is not trivial to say whether it is Counting or not. Try to prove it is not, and in
order to do so, let us do a step behind and think about the real-world phenomenon it is
describing.
The language REmore recognizes only the sequences of events that bring the coffee ma-
chine from being switched off to being switched off again, but in addition to REorig =

(P ((B)+C)∗S)∗ it also accepts that the button can be pressed while the machine is switched
off, and in that case, the machine doesn’t provide the coffee.

Let us reformulate this description in the opposite way: stating what the language does
not recognize.

1. The machine does not provide coffee if there has not been pressed the button in the
previous action;

2. The machine does not provide coffee if it has not been powered up;

36 2| Locally Testable Languages

3. The machine does not provide coffee if it has been switched off and has not been
powered on again;

4. The machine cannot be switched off before being powered up;

5. The machine cannot be switched off after having been switched off without having
been powered up again;

6. The machine cannot be powered up if it has been already powered up and it has not
been switched off;

7. The machine cannot be switched off if there has been pressed the button in the pre-
vious action;

8. the machine cannot be powered up without being switched off;

Let us now translate those requirements in a more formal way, using η to refer to the
language recognized by REmore:

1. η ∩ Σ∗(Σ \ {B})CΣ∗ = ∅

2. η ∩ (Σ \ {P})∗CΣ∗ = ∅

3. η ∩ Σ∗S(Σ \ {P})∗CΣ∗ = ∅

4. η ∩ (Σ \ {P})∗SΣ∗ = ∅

5. η ∩ Σ∗S(Σ \ {P})∗SΣ∗ = ∅

6. η ∩ Σ∗P (Σ \ {S})∗PΣ∗ = ∅

7. η ∩ Σ∗BSΣ∗ = ∅

8. η ∩ Σ∗P (Σ \ {S})∗ = ∅

The other sequences are accepted.

So the language recognized by REmore is:

η = ¬(Σ∗(Σ \ {B})CΣ∗) ∩ ¬((Σ \ {P})∗CΣ∗) ∩
¬(Σ∗S(Σ \ {P})∗CΣ∗) ∩ ¬((Σ \ {P})∗SΣ∗) ∩ ¬(Σ∗S(Σ \ {P})∗SΣ∗) ∩
¬(Σ∗P (Σ \ {S})∗PΣ∗) ∩ ¬(Σ∗BSΣ∗) ∩ ¬(Σ∗P (Σ \ {S})∗)

As proved in previous examples, the language Σ∗ is LTO, as any language containing
only a string of a single character or of two characters. It is trivial to see that, for any
character a ∈ Σ, the language (Σ\{a})∗ is LT , thus also LTO. With this in mind, looking
at the definition of η language, it is easy to see that it is a (complex) composition of LTO

2| Locally Testable Languages 37

languages via boolean operators, so also η is LTO, which turns out to demonstrate that
the language η is Non-Counting.

The most important result for the LTO class of languages, is:

Theorem 2.2. The class of LTO languages coincides with the class of NC languages.

This theorem adds to theorem 2.2 the fact that any NC language is also LTO. Although
the importance of this result, the proof is too long to be reported here, and it can be found
in [20] among lot of oter results and information about the LTO family of languages.

Given theorem 2.2, theorem 1.5, theorem 1.7 and theorem 1.6, there can be summarized:

Corollary 2.3. Those classes of languages are the same:

• the class of (Regular) Non-Counting languages;

• the LTO family of languages;

• the Star Free languages;

• the class of languages defined via First Order Logic;

• the class of languages recognizable by acyclic finite state automata.

Example 2.10. Here it is a quick example to give a hint about the corollary’s application:
The language of example 2.9 described by REmore = ((B)∗(P ((B)+C)∗S)∗)∗ can be trans-
lated in the automata of fig. 2.1 that recognizes the language. The construction of this
automaton from the Regular Expression is easier than what has been done in example 2.9
to prove that the language is LTO. Those two examples are a perfect example of the utility
of having many equivalent representations: it simplifies the study of languages and their
properties.

OFF ON PC

P

B

S

B
B

C

Figure 2.1: FSM recognizing REmore = ((B)∗(P ((B)+C)∗S)∗)∗

39

3| Context Free Languages

As it has been stated earlier, the goal of this work is to find a class of languages that is a
sub-class of Operator Precedence Languages and such that the Non-Counting property is
valid for its languages. However, in definition 1.33 there has been given the definition of
Non-Countingness, and it has been proven that a language that is Non-Counting is also
a Regular Language, so how is it possible to relate the family of Operator Precedence
Languages (OPL) with the Non-Countingness concept?
The goal of this section is to provide an answer to that question. In order to define the
Non-Counting property (and the relative family of languages) for the Operator Precedence
languages, we will discuss how the Non-Countingness could be extended to the Context
Free Languages to which the Operator Precedence belongs.

Inside this section, there could be found the definition and main results for the class of
Context-Free Languages (CFL), corresponding to the type-2 of Chomsky’s classification,
then there will be presented the sub-class of Structured Context-Free Languages with its
properties and peculiarities, and finally, there will be discussed how to relate the Non-
Countingness with this family of languages.

Another topic presented in this section that plays a central role in CFL and OPL, is the
structure of the string. The main definitions and results presented in this section can be
found in books regarding formal languages, like [21], while the ones regarding Structured
Context-Free Languages can be found in [14].

3.1. Context Free Languages

Context-Free Languages, or CFLs, together with Regular Languages, constitute the widest
chapter in the formal language literature. In particular, CFL have been introduced by
Noam Chomsky in the 1950s in order to find a formalism capable of representing natural
languages, and they have been effectively used, for example, to describe the structure of
sentences.

Example 3.1 (CFL in NLP). In Natural Language Processing (NLP), CFL is used also

40 3| Context Free Languages

S

NP

Det

The

Nom

pen

VP

Verb

is

PP

Pre

on

NP

Det

the

Nom

table

Figure 3.1: Tree structure of the phrase "The pen is on the table"

to describe the relations holding between different words used to build sentences and give
them sense. In fig. 3.1 can be found an example of the structure of a sentence that can be
described via CFL. For more information about this field, referr to [12].

The CFL family expands the expressiveness of RL, introducing the possibility of effec-
tively expressing the structure of strings inside languages. This particular feature, which
is proper of CFL, enables an algorithm to extract a property of natural languages that may
not be immediately visible and that, somehow, contains the meaning of sentences1. For
this reason, the CFL family has been used to structure and describe high-level program-
ming languages. In honor of the chief scientist of the team that developed FORTRAN, one
of the first programming languages, one meta-syntax that can be used to express Contxt-
Free grammars, usually used to describe the programming languages’ syntax rules, is
called Backus-Naur Form or BNF.

Example 3.2 (BNF of C). Here is an example of how BNF can be used to describe a
(simplified) version of C’s syntax:

⟨program⟩ ::= ⟨declaration⟩ | ⟨function-definition⟩

⟨declaration⟩ ::= ⟨type-specifier⟩ ⟨declarator-list⟩ ;

⟨type-specifier⟩ ::= int | float | double | char

⟨declarator-list⟩ ::= ⟨declarator⟩ , ⟨declarator-list⟩ | ⟨declarator⟩

⟨declarator⟩ ::= ⟨identifier⟩ | ⟨identifier⟩ [⟨expression⟩]
1Or at least part of the meaning of the sentence. Unluckily there has not been found a formal way to

analyze natural languages that resolves ambiguity and can be practically used

3| Context Free Languages 41

⟨expression⟩ ::= ⟨identifier⟩ | ⟨number⟩ | ⟨expression⟩ + ⟨expression⟩ | ⟨expression⟩ -
⟨expression⟩

⟨logical-expression⟩ ::= ⟨expression⟩ == ⟨expression | <expression⟩ >= ⟨expression⟩ |
!⟨logical-expression⟩ | ⟨identifier⟩

⟨function-definition⟩ ::= ⟨type-specifier⟩ ⟨identifier⟩ (⟨parameter-list⟩) ⟨compound-statement⟩
| ⟨type-specifier⟩ ⟨identifier⟩ () ⟨compound-statement⟩

⟨parameter-list⟩ ::= ⟨parameter⟩ , ⟨parameter-list⟩ | ⟨parameter⟩

⟨parameter⟩ ::= ⟨type-specifier⟩ ⟨identifier⟩

⟨compound-statement⟩ ::= { ⟨declarator-list⟩ ⟨statement-list⟩ }

⟨statement-list⟩ ::= ⟨statement⟩ | ⟨statement⟩ ⟨statement-list⟩

⟨statement⟩ ::= ⟨expression⟩ ; | ⟨if-statement⟩ | ⟨while-statement⟩ | ⟨return-statement⟩

⟨if-statement⟩ ::= if (⟨logical-expression⟩) ⟨statement⟩ | if (⟨expression⟩) ⟨compound-statement⟩
else ⟨compound-statement⟩

⟨while-statement⟩ ::= while (⟨logical-expression⟩) ⟨compound-statement⟩

⟨return-statement⟩ ::= return ; | return ⟨expression⟩ ;

As stated in definition 1.23, the CFL family contains the RL family, which implies that
it is more expressive than RL. This implies that any Regular Language is also a Context
Free Language, but also that there exist some Context-Free Languages that recognize
a set of strings that is not recognizable by any Regular Language. In other words, by
augmenting the expressiveness, there is the possibility to be more precise on which sting to
accept and which not to accept, so there are more tools to restrict the language, which is
somehow counter-intuitive: the more expressive a family of language is, the fewer strings
each language of the family can be able to recognize.
To prove the fact that the CFL family strictly contains the RL one, there is provided an
example of a language that is CFL but not RL, which, combined with the fact that any
language that is RL that it is also CFL, suffices to prove that the CFL family strictly
contains the RL one, extending its expressiveness.

Example 3.3. Consider the alphabet Σ = {[,]} and the language η = [n]n, n ≥ 1. It is
trivial to see that it can be generated by the grammar:
S = []|[S]
that is a Context Free Grammar, and, using the pumping lemma, it is trivial to see that
the language is not a Regular Laguage.

This example, although simple, uses a subset of a known language, the Dyck Language,

42 3| Context Free Languages

that is presented in section 3.2 to discuss some of its features.

For the sake of completeness over the expressiveness of the CFL family, here is an example
of a language that is not Context-Free. There is not provided the proof of the following
example.

Example 3.4. Consider the alphabet Σ = {a, b, c} and the language η = anbncn, n ≥ 1.
It is trivial to see that it can be generated by the grammar:
S = aT |aST
aT = abC

CT = TC

bC = bc

cC = cc

This language is not CFL.

The previous example expressed a subset of the Bach languages that are discussed in [19],
hwere there can be found the proof for it.

The big feature that the CFL adds with respect to RL, is the possibility to nest a number
of (possibly infinite) strings in a hierarchical way. This nesting, provided by the Context-
Free grammar’s derivation, also enables to describe a "structure" of the strings recognized
by Context-Free Languages. Here are some examples about this concept:

Example 3.5 (arithmetic). Consider the CF grammar Garitm1 = ⟨VT , VN , P1, S⟩ with
VT = {e,+,×}, VN = {S,A,B} having as the production set P :
S → B

A→ A× A

A→ e

B → A+B

B → A

This grammar generates the correct strings of sums and multiplications of the element e.
For example, the strings e++e or e+ e+ e× e+ are not generated by Garitm1.

Consider the string e + e + e × e + e × e + e that is generated by Garitm1. There can
be defined a "structure" over this string relying on the grammar Garitm1; this structure,
which is the sequence of rules and derivations used to generate or, equivalently, recognize
the string, is reported in fig. 3.2.

In this way, there can be embedded in the grammar not only the generation (and accep-
tance) of the strings, but also the construction of a structure over them. In the previous

3| Context Free Languages 43

S

B

A

e

+ B

A

e

+ B

A

A

e

× A

e

+ B

A

A

e

× A

e

+ B

A

e

Figure 3.2: Structure of e+ e+ e× e+ e× e+ e with respect to Garitm1

example the structure is given only because of the grammar, not by the usual conventions.
Thus there can be defined a grammar that generates the same language, but that builds
structures that are the opposite of the ones built by the grammar of example 3.5.

Example 3.6 (opposite arithmetic). Consider Garitm2 = ⟨VT , VN , P2, S⟩ with all the ele-
ments as the ones of Garitm1 of example 3.5 except for P2 that will contains the rules:
S → A

B → B +B

B → e

A→ B × A

A→ B

which are the "opposite" of Garitm1. Also in this case this grammar generates the strings
of correct sums and multiplications of the element e. For example, the strings e + +e or
e+ e+ e× e+ are not accepted neither by Garitm2.

Consider the string of example example 3.5: e+ e+ e× e+ e× e+ e, it is accepted also
by Garitm2, but section 3.1 is one possible structure that Garitm2 defines over the string,
and comparing it with the one provided by Garitm1 and present in fig. 3.2, it is trivial to
see that Garitm1 defines a structure compatible with the usual precedence of operations, so
having (e + (e + ((e × e) + ((e × e) + e)))) while Garitm2 builds a structure that is the

44 3| Context Free Languages

S

A

B

B

B

e

+ B

e

+ B

e

× A

B

B

e

+ B

e

× A

B

B

e

+ B

e

Figure 3.3: Structure of e+ e+ e× e+ e× e+ e with respect to Garitm2

opposite of what is usually used, having (((e+ e) + e)× ((e+ e)× (e+ e))).

Moreover, there is also the possibility to have CF Grammars that can associate more than
one structure to the same string: those grammars are said to be ambiguous. The problem
of ambiguity is one of the bigger ones for the CFL family and the ones being more expres-
sive. There have been many attempts to solve it, but sometimes it is not possible because
of its intrinsic nature of the described phoenomena. However, although this topic is a
hot topic in computing science, it will not be furthermore discussed in this work, mainly
because the families that are presented here, are not affected by the ambiguity problem.
Operator Precedence Languages, as Structured Context Free Languages, have been stud-
ied in order to overcame this problem. Interestingly enough, the solution of ambiguity
brought some great results in those families, which means that ambiguity is not only a
pervasive problem, but it also causes some other properties, like closure under Boolean
operators, not to hold.

Example 3.7. Here is presented a simple attempt to build an ambiguous grammar ambigAritm

starting from Garitm1 and Garitm2 is:
GambigAritm = ⟨VT , VN , P3, S⟩ with P3 containing:
S → A | B
A→ B × A | B | A× A | e
B → A+B |A B +B | e
It is trivial to see that using the grammar GambigAritm the two structures in fig. 3.2 and

3| Context Free Languages 45

S

B

A

A

e

× A

A

e

× A

e

S

B

A

A

A

e

× A

e

× A

e

Figure 3.4: Structure of e× e× e with respect to Garitm1

section 3.1 relative to the string e+ e+ e× e+ e× e+ e can be built, having thus that the
same string has more than one structure.

However, ambiguity is also present in the two grammars Garitm1 and Garitm2 and it can be
proved by building the structure of e× e× e with Garitm1, which has been done in fig. 3.4,
and e+ e+ e with Garitm2, which has been done in fig. 3.5.

The activity of checking for a string appartenance to a CF language and the building of
the structure related to it, also referenced as its syntax tree, is called parsing.

One important result, taken from the literature, is the following:

Theorem 3.1 (CFL closure). CFL are closed under union, concatenation, Kleene∗, ho-
momorphism, and inverse homomorphism, but not under complement and intersection.

Thus, CFL enriches RL but loses some of the most important features as the closure over
all boolean operations. In the following section, itis presented how to restrict the CFL
family and gaining again those properties for the sub-family.

There must be stated a last known result: the extension of the Pumping Lemma also in
the word of Context-Free Languages, also known as the Bar-Hillel lemma, in honor of the
mathematician who proposed it in [2].

Theorem 3.2 (Bar-Hillel Lemma). Given a Context Free Language η ⊆ Σ∗, there exists
an integer p > 0 depending solely on η such that for each string z ∈ η with |z| ≥ p it can
be written as:

46 3| Context Free Languages

S

A

B

B

e

+ B

B

e

+ B

e

S

A

B

B

B

e

+ B

e

+ B

e

Figure 3.5: Structure of e+ e+ e with respect to Garitm2

z = uvwxy

In such a way that:

• |vwx| ≤ p;

• |vx| ≥ 1;

• uviwxiy ∈ η for any i ≥ 0.

3.2. Structured Context-Free Languages

In this section, is presented the concept of Structured Context-Free Languages, introduced
in 1967 by R. McNaughton in his work [16], where he proposed the idea of embedding
the structure inside the string itself. The aim of this idea is to make somehow explicit
the frontiers of the syntax tree, to remove the ambiguity problems and gain some of the
properties that the RL family has but the CFL one does not.
This property of languages is either called Structured CFL or visible structure CFL. There
are presented some of its major results with the reason behind each one of them. The
goal of the section, is to understand if and how those concepts can be used also in other
classes of languages, as in the Operator Precedence one. Here is a simple example of a
language that can be classified as structured CFL, which is the Dyck language:

Example 3.8 (Dyck language). Consider the alphabet Σ = {(,)}, the Dyck language is
defined via the grammar:

3| Context Free Languages 47

S

(S

ε

) S

(S

(S

ε

) S

(S

(S

ε

) S

ε

) S

ε

) S

ε

Figure 3.6: Structure of ()(()(())) with GDyck

GDyck = ⟨Σ, {S}, {S → ε , S → (S)S}, S⟩.

It is trivial to see that the language generated by such grammar is the language of the
well-parenthesized strings over Σ∗, and it is also easy to see that this grammar is not
ambiguous.

In fig. 3.6 is reported the structure of the string ()(()(()))

As the first definition of a structured CFL, R. McNaughton proposed the parenthesis lan-
guages one, where each sub-tree of the syntax tree is delimited by two paired parentheses.

Definition 3.1 (parenthesis grammar). A grammar
G̃ = ⟨VT ∪ {⌊, ⌋}, VN , P̃ , S⟩ is called parenthesis grammar (Par Gram) if the rhs of every
rule in P̃ is parenthesized, so if each rhs is in the form ⌊β⌋, β ∈ (VT ∪ VN)∗.

G̃ is called the parenthesized version of G, if P̃ consists of all rules B → ⌊β⌋ such that
B → β is in P .

The language generated by a parenthesis grammar (̃G), L(G̃), is called parenthesis lan-
guage and is defined over Σpar.

Here is an example changing the grammar of example 3.5 to be parenthesized, to see what
happens to its ambiguity:

Example 3.9. To transform

48 3| Context Free Languages

P1 P1Par

S → B ⇒ S → ⌊B⌋
A→ A× A ⇒ A→ ⌊A× A⌋
A→ e ⇒ A→ ⌊e⌋

B → A+B ⇒ B → ⌊A+B⌋
B → A ⇒ B → ⌊A⌋

Table 3.1: Parenthesizing the rules of P1 into P1Par

S

⌊ B

⌊ A

⌊ A

⌊ e ⌋

× A

⌊ A

⌊ e ⌋

× A

⌊ e ⌋

⌋

⌋

⌋

⌋

Figure 3.7: Structure of ⌊⌊⌊e⌋ × ⌊⌊e⌋ × ⌊e⌋⌋⌋⌋ with respect to Garitm1Par

Garitm1 = ⟨VT , VN , P1, S⟩ into
Garitm1Par = ⟨VT,Par, VN , P1Par, S⟩
it is needed to extend VT to VT,Par = VT ∪ {⌊, ⌋} and to change P1 to P1Par, and that is
done by changing each rule of P1 as done in table 3.1.

Let us now use Garitm1Par to generate the string using the same derivations used by Garitm1

in the first case of fig. 3.4. The generated string will be:
⌊⌊⌊e⌋ × ⌊⌊e⌋ × ⌊e⌋⌋⌋⌋.
It is trivial to see that the structure of the new string, with respect to Garitm1Par, is unique.
The structure is the one of fig. 3.7.

All the languages for which there is a visible structure inside the string are Structured
CFL, thus all the languages for which, given a string belonging to the language itself, it
is derivable the unique syntax tree corresponding to it.
There are some significant languages that are structured CFL, from the parenthesis ones
to the tree languages passing through the Operator Precedence Languages. Note that there
is no ambiguity for those languages because their strings’ structure is explicit.

3| Context Free Languages 49

The concept of well structured is a key concept for Structured Context-Free Languages,
and is applicable both on strings and on their substrings.

Definition 3.2 (well structured). Given a structured CFL η and a string s, s is well-
structured with respect to η if the syntax tree associated with s via η is complete.
Given a structured CFL η, a string s and a substring t of s, t is well structured on s with
respect to η if the part of the syntax tree of s that spans over t is a complete subtree.

Corollary 3.1. Given a structured CFL η and a string s, s is well-structured with respect
to η iff s ∈ η.

The just given definition of well-structured is generic for any language that is Structured
CFL, and it strongly relies on the concept of structure. As previously said, there exist
different families of languages that are structured CFL, thus there exists for eachone of
them a specific concept of structure, and then the definition of well-structured can be
tailored to suit the specific family. For example, there is reported how the well-structured
definition can be modified for parenthesis languages.

Definition 3.3. Given a parenthesis language η and a string s, s is well-structured with
respect to η if s is well-parenthesized.
Given a parenthesis language η, a string s and a substring t of s, t is well structured on
s with respect to η if t is well-(sub)parenthesized in s.

Later on, how to decline the well-structured property for Operator Precedence Languages
will be discussed.

Here there are some examples over parenthesis languages:

Example 3.10. Consider the parenthesized language Laritm1Par defined by the grammar
Garitm1Par of example 3.9. As said in the previous example, the string ⌊⌊⌊e⌋×⌊⌊e⌋×⌊e⌋⌋⌋⌋
is recognized by the grammar, which means that it is also well parenthesized.
Also the string ⌊⌊⌊e⌋⌋⌋ is well parenthesized and belongs to the language.
The string ⌊⌊⌊e⌋+ ⌊e⌋ is not well parenthesized on Laritm1Par.

Inside the string ⌊⌊⌊e⌋ × ⌊⌊e⌋ × ⌊e⌋⌋⌋⌋, the substring ⌊⌊e⌋ × ⌊e⌋⌋ is well parenthesized,
while the whole string is not well parenthesized, and neither the substring ⌊e⌋ × ⌊e⌋ and
neither ⌊⌊e⌋ × ⌊⌊e⌋ is. In fig. 3.8 are reported the syntax trees regarding those substrings.
Please note that the syntax tree of ⌊⌊e⌋ × ⌊e⌋⌋ is a complete subtree of fig. 3.7, while the
others are not, which is the reason why they are not well parenthesized.

A feature of Structured CFLs, is that they are closed under the intersection, which is not

50 3| Context Free Languages

A

⌊ A

⌊ e ⌋

× A

⌊ e ⌋

⌋

(a) Structure of ⌊⌊e⌋ × ⌊e⌋⌋

A

A

⌊ e ⌋

× A

⌊ e ⌋

(b) Structure of ⌊e⌋ × ⌊e⌋

A

⌊ A

⌊ e ⌋

× A

⌊ A

⌊ e ⌋

(c) Structure of ⌊⌊e⌋ × ⌊⌊e⌋

Figure 3.8: Structure of substrings using Laritm1Par

the case for generic CFLs.

In order to prove the closure with respect to negation, McNaughton relied on the following
milestones:

1. The possibility to apply all the operations within the structure universe instead of
the whole universe of strings. This can be possible thanks to the stencil concept:

Definition 3.4. A stencil of a terminal alphabet Σ is a string in (Σ∪{N})∗) -where
N /∈ Σ-. For any given CFG G a stencil grammar Gs is naturally derived therefrom
by projecting any nonterminal of G into the unique nonterminal N , possibly deleting
duplicated productions.

Given this definition, there can be now defined the structure universe

Definition 3.5. For any ParGram G the structure universe of G is the -parenthesis-
language L(Gs). For any set of PG, S, its structure universe is the union of the
structure universes of its members.

2. The possibility of building a normal form of any parenthesis grammar, the Backward
Deterministic Normal Form (BDNF) with no repeated rhs, as done in definition 1.22
and theorem 1.2.

Here is an example of how the structure universe can be computed:

Example 3.11. Consider the grammar Garitm1Par of example 3.9. To define its structure
universe we must before calculate its stencil version:
Garitm1ParS = ⟨VT,Par, {N}, P1ParS, N⟩,

3| Context Free Languages 51

P1Par ⇒ P1ParS

S → ⌊B⌋ ⇒ N → ⌊N⌋
A→ ⌊A× A⌋ ⇒ N → ⌊N ×N⌋
A→ ⌊e⌋ ⇒ N → ⌊e⌋

B → ⌊A+B⌋ ⇒ N → ⌊N +N⌋
B → ⌊A⌋ ⇒ N → ⌊N⌋

Table 3.2: Mapping P1Par to P1ParS

obtained by mapping P1Par to P1ParS, as done in table 3.2. 2

The structure universe of Garitm1Par is the language generated by
Garitm1ParS.

With those results, assuming, without loss of generality, that a ParGram G is in BDNF,
it is possible to define the complement of L(G) with respect to its structure universe by:

• Let Aerr /∈ Vn be a new nonterminal and let h be the homomorphism that maps each
element of Vn ∪ {Aerr} into N and every element of Σ into itself; then let’s add to
G’s production set P the productions Aerr → α for all α ∈ (Σ ∪ Vn ∪ {Aerr})∗ such
that h(α) is in the production set of Gs but α is not in P;

• The new (renaming) productions with S as the lhs have as rhs the complement
w.r.t. Vn of the original ones plus S → Aerr.

Here is an example of this procedure:

Example 3.12. Let us use the result o example 3.11, in particular, the production sets
P1Par and P1ParS. We want to build a new production set PA that contains some rules in
the form Aerr → α, where α is such that its stencil is in the rhs of P1ParS but α is not in
the rhs of P1Par.
To do so let us analyze the rhs of P1ParS and build from them the new rules:

• N → ⌊N⌋ enables to add Aerr → ⌊Aerror⌋;

• N → ⌊N ×N⌋ enables to add Aerr → ⌊A× Aerr⌋|⌊A×B⌋|
⌊Aerr × A⌋|⌊Aerr × Aerr⌋|⌊Aerr ×B⌋|⌊B × A⌋|⌊B × Aerr⌋|⌊B ×B⌋;

• N → ⌊N +N⌋ enables to add Aerr → ⌊A+ A⌋|⌊A+ Aerr⌋|
⌊Aerr + A⌋|⌊Aerr + Aerr⌋|⌊Aerr +B⌋|⌊B + A⌋|⌊B + Aerr⌋|⌊B +B⌋.

The language defined by the grammar with as production set PA containing the new gen-
2note that during mapping the rules S → ⌊B⌋ and B → ⌊A⌋ are transformed in the same rule, and

thus one of them can be eliminated

52 3| Context Free Languages

erated productions, S → ⌊Aerr⌋, and the rules of P1Par except for those with S as lhs
(s → ⌊B⌋) substituted by their complement w.r.t. VN (S → ⌊A⌋), is the grammar defin-
ing the complement language of Garitm1Par with respect to its structure universe.

At this point, there can be defined the intersection of two parenthesized languages using
DeMorgan’s rule:
A ∩B = ¬((¬A) ∪ (¬B)).
Note that this definition of intersection requires that the 2 initial languages share the same
structure universe. So, by making evident the universe structure on which the negation
operation works, the previous formula can be transformed into:
A ∩U B = ¬U((¬UA) ∪ (¬UB)).

3.3. Non-Counting for Structured Context-Free Lan-

guages

In this section, the Non-Countingness concept, described in definition 1.33, is expanded
from being contained inside the RL family, to define a subclass of Context-Free Languages.
To pursue this goal, the well-structured concept will be leveraged. For this reason, the
definition will rely on Structured CFL.

Definition 3.6 (NCS). A language η ⊆ ℘(Σ∗
any) that is structured CFL, is NCS (non

counting) iff ∃n > 1 such that, for all strings
x, u, w, v, y ∈ Σ∗

any, m ∈ N
where w and uwv are well structured on xunwvny with respect to η then
xunwvny ∈ η ⇔ xun+mwvn+my ∈ η.

As done also for Regular Languages, also in this case a language that is not Non-Counting
is said to be Counting.

This definition, relying on the concept of structure, can be tailored to better fit the
specific class of languages using it, as it has been done for the well-structured one. For
example, the class NCPar is the class of Non-Counting Parenthesized languages, that has
a particular definition specifying in the particular case what well-structured means. Here
is the definition:

Definition 3.7 (NCPar). A language η ⊆ ℘(Σ∗
any) that is a prenthesized language, is

NCpar (non counting) iff ∃n > 1 such that, for all strings
x, u, w, v, y ∈ Σ∗

any, m ∈ N
where w and uwv are well parenthesised on xunwvny w.r.t η then

3| Context Free Languages 53

xunwvny ∈ η ⇔ xun+mwvn+my ∈ η.

Example 3.13. Consider the parenthesized grammar
Gpar = ⟨{a, b}, {S, T}, P, S⟩ with P containing:
S → ⌊ε⌋
S → ⌊aTb⌋
T → ⌊aSb⌋
It is trivial to see that this grammar generates the language ⌊(a⌊)2n(⌋b)2n⌋, which, intu-
itively, is counting, however, let us prove it:
For any number n there can be choosen a string s = un · w · vn such that:

• If n ≡ 0 mod 2, then u = ⌊a, v = b⌋, w = ⌊⌋;

• If n ≡ 1 mod 2, then u = ⌊a, v = b⌋, w = ⌊a⌊⌋b⌋.

It is easy to see that s ∈ L(Gpar), but u+1n ·w ·vn+1 /∈ L(Gpar), which proves that L(Gpar)

is Counting.

Example 3.14. Let us reshape the grammar example 3.13 to be Non-Counting. To
achieve such a goal it is needed to modify only the production set of Gpar. So it will
be
GparNC = ⟨{a, b}, {S}, PNC , S⟩ with PNC containing:
S → ⌊ε⌋
S → ⌊aSb⌋
It is trivial to see that this language is NCPar.

For the sake of simplicity, there is proven the equivalence of definition 3.8 with another
easier formula that makes it easier to prove a language to be NCS. This result has been
inspired by Corollary 1 of [7]:

Theorem 3.3. The following statements are equivalent to a backward deterministic re-
duced grammar G. There exists n ≥ 0 such that for any x, v, w, u, y ∈ Σ∗ where w, vwu
are w.p., and for any integer m ≥ 0,

1. xunwvny ∈ L(G) ⇔ xun+mwvn+my ∈ L(G) (i.e. L(G) is non-counting),

2. xunwvny ∈ L(G) ⇒ xun+mwvn+my ∈ L(G),

3. xun+mwvn+my ∈ L(G) ⇒ xunwvny ∈ L(G).

This result can be further expanded with the following result, inspired by lemma 1.1:

54 3| Context Free Languages

Lemma 3.1. Given a language η ∈ ℘(Σ∗) and an integer n, the following statements are
equivalents:

A ∀m∈N, x,u,w,v,y∈Σ∗xunwvny ∈ η ⇒ xun+mwvn+my ∈ η

B ∀x,u,w,v,y∈Σ∗xunwvny ∈ η ⇒ xun+1wvn+1y ∈ η

Proof. It is trivial to see that point A implies B.
The fact that point B implies A is a bit sneaky: assuming that B is valid, there is
that for each xunwvny ∈ η implies xun+1wvn+1y ∈ η, but this is the same of saying that
(xu)unwvn(vy) ∈ η, which, having B that holds, implies that also (xu)un+1wvn+1(vy) ∈ η,
so xun+2wvn+2y ∈ η, and here can go on and on until reaching any number m, which
implies xun+mwvn+my ∈ η for any value of m, which corresponds to the initial thesis.

This result, together with the fact that for any grammar, there exists an equivalent
one in BDNF, enables us to formulate a newer definition of NCS that is equivalent to
definition 3.6.

Definition 3.8 (NCS). A language η ⊆ ℘(Σ∗
any) that is structured CFL, is also NCS

(non counting) iff ∃n > 1 such that, for all strings
x, u, w, v, y ∈ Σ∗

any, m ∈ N where w and uwv are well structured on xunwvny with respect
to η then
xunwvny ∈ η ⇒ xun+1wvn+1y ∈ η (i.e. L(G).

This definition, although it is simpler than definition 3.6, is also more versatile: it can be
used to demonstrate that a language is NCS requiring only one case to be studied.

Other results about Structured CFL that are worth to be reported are:

Theorem 3.4. It’s decidable whether a structured CFL is NC or not.

Theorem 3.5. A structured CFL is NC iff is BDR grammar has no counting derivation.

The main source of information for this section has been [7], where there is also reported
that NCS is closed under complement, from [15] there can be found that NCS is closed
under union, thus also under intersection. Moreover in [15] there is that NCOP

3 is closed
under concatenation.

In order to summarize, thus, it can be stated:

Theorem 3.6. Any NCS is closed under boolean operations.
3This class will be introduced later

3| Context Free Languages 55

The NCOP family is closed under boolean operations and concatenation.

57

4| Operator Precedence

Languages

The Operator Precedence Languages, or OPL, are presented in this chapter. OPLs are
structured CFL. OPLs have been introduced by R.Floyd in his work [10] in the ’60s, before
the presentation of R. Mc Naughton’s parenthesis languages. Floyd took inspiration from
arithmetic expressions and their way to uniquely bind structures to the corresponding
expressions based on the precedence of the operators. He understood that the concept of
operator precedence could be taken outside of the algebraic world, and could be brought
to the field of formal languages. In particular, in OPL, each character can be seen as a
mathematical operator, havinng precedence relations defining the order in which it has
to be computed. This is the main idea behind the OPL family.

Given a string belonging to an OPL, there is no explicit structure embedded in the string
itself, however, it can be parsed in a linear time, resulting in a unique structure associated
to the string. An other result concerning the OPL’s structures, is the Local Parsability
Property. This property ensures that the structure of any string belonging to an OPL, is
made from an appropriate combination of the structures of the substrings belonging to the
initial string. This feature is the one that can be leveraged to parallelize the computation
for OPLs.

In this section, the definition of Operator Precedence Languages is presented alongside
some of its major results. There is reported also the way Operator Precedence builds
structures for strings and the Non-Counting class of languages, together with the charac-
terization that have been proposed for this family in the literature.

4.1. Operator Precedence Languages Definition

In order to introduce the Operator Precedence Languages, there must be defined the
concept of Operator Precedence relations. The easiest, and most used, way to introduce
those relations is by using the grammars and their derivation rules. Thus, there are de-

58 4| Operator Precedence Languages

scribed the features requested to grammars in order to introduce the Operator Precedence
Relations.

Definition 4.1 (Operator Grammar). A grammar rule is said to be in operator form if
its rhs has no adjacent non-terminals.
A grammar with all the rules of its production set in operator form is an operator grammar
(OG).

A known result presented in [11] is that any CF grammar, which has been defined in
definition 1.23, can be recursively transformed into an equivalent OG. Here is an example
about Operator Grammar.

Example 4.1 (OG Grammar). Consider the grammars presented in example 3.5 and
example 3.7, the rules inside their production sets (P and P3 respectively) are in the
Operator form:
P :

S → B

A→ A× A | e
B → A+B | A
P3 :

S → A | B
A→ B × A | B | A× A | e
B → A+B |A B +B | e
Thus, both the grammars are Operator Grammars.

Another essential concept, together with Operator Grammar, for the definition of OP
relations, is the Left/Right non-terminal set.

Definition 4.2 (Left/Right non-terminal sets). For any OG
G = ⟨Σ, VN , P, S⟩, given a non-terminal A ∈ VN , the left and right terminal sets of A
with respect to G are:

• LG(A) = {a ∈ Σ | A⇒∗
G Baα}

• RG(A) = {a ∈ Σ | A⇒∗
G αaB}

where B ∈ VN ∪ {ε}, α ∈ (VN ∪ Σ)∗.
In the notation, the footer G will be omitted if there is no risk of confusion.

Corollary 4.1. LG(A),RG(A) ⊆ Σ∗

4| Operator Precedence Languages 59

Thus, collecting the previous definitions, there can be defined the Operator Precedence
Relations.

Definition 4.3 (Operator Precedence Relations). For any OG
G = ⟨Σ, VN , P, S⟩,
let α, β ∈ (VN ∪ Σ)∗, and a, b ∈ Σ,
there will be defined the three binary relations, called Operator Precedence Relations: equals
in precedence (.=), takes precedence (gtrdot), and yields precedence(⋖).
Those relations will be defined as follows:

equals in p.: a .
= b ⇐⇒ ∃A→ αaBbβ, B ∈ VN ∪ {ε}

takes p.: a⋗ b ⇐⇒ ∃A→ αDbβ, D ∈ VN and a ∈ RG(D)

yields p.: a⋖ b ⇐⇒ ∃A→ αaDβ, D ∈ VN and b ∈ LG(D).

Here there are some examples of how to extract the precedence relations from Operator
Grammars:

Example 4.2. Consider the OG
G = ⟨VT , VN , POG, S⟩ with VT = {e,+,×}, VN = {S,A,B,E} and with the production
set POG containing: S → B

A→ E × A | E
B → A+B | A
E → e

Note that this grammar is very similar to the grammar defined on example 3.5 with as
a minor modification the fact that the rule E → e is the only rule producing e. Let us
calculate the LG and RG sets:
LG(S) = {e,+,×}
LG(A) = {e,×}
LG(B) = {e,+,×}
LG(E) = {e}
RG(S) = {e,+,×}
RG(A) = {e,×}
RG(B) = {e,+,×}
RG(E) = {e}

Now there can be determined the Operator Precedence Relations of this grammar:

• Consider the relations between + and +. There is B → A+B as the only rule with
+. Being that it has only one +, there cannot be +

.
= +; being + /∈ RG(A), then

60 4| Operator Precedence Languages

there does not hold the +⋗+; being + ∈ LG(B), then +⋖+.

• Consider the relations between + and ×. We have B → A+B as the only rule with
+. Being that it has only + and not ×, there cannot be +

.
= ×; being × ∈ LG(B),

then there it holds +⋖×; being A→ E ×A the only production with ×, and being
+ /∈ RG(E), then it does not hold +⋗×.

• Consider the relations between + and e. There is B → A+B as the only rule with
+. Being that it has only + and not e, there cannot be +

.
= e; being e ∈ LG(B),

then there it holds +⋖ e; being E → e the only production with e, then it is trivial
to see that it does not hold +⋗ e.

• Consider the relations between × and +. There is A→ E×A as the only rule with
×. Being that it has only × and not +, there cannot be × .

= +; being + /∈ LG(A),
then there it does not hold ×⋖+; being B → A+B and being × ∈ RG(A), then it
holds ×⋗+.

• Consider the relations between × and ×. There is A → E × A as the only rule
with ×. Being that it has only one occurrence of ×, there cannot be × .

= ×; being
× ∈ LG(A), then it holds ×⋖×; being × /∈ RG(E), then it does not hold ×⋗×.

• Consider the relations between × and e. There is A→ E ×A as the only rule with
×. Being that it has only × and not e, there cannot be × .

= e; being e ∈ LG(A),
then there it holds ×⋖ e; being E → e the only production with e, then it is trivial
to see that it does not hold ×⋗ e.

• Consider the relations between e and +. There is B → A+B as the only rule with
+. Being e ∈ RG(B), it holds e⋗+.

• Consider the relations between e and ×. There is A→ E ×A as the only rule with
×. Being e ∈ RG(E), it holds e⋗×.

• Being that the e appears only in A→ e, then it has no other relations.

To summarize, there has been found the following Operator Precedence Relations:
⋖ = {++,+×,+e,××,×e}
⋗ = {×+, e+, e×}
.
= = ∅

Example 4.3. Consider the Operator Grammar defined on example 3.5 which has as
production set: P :

S → B

4| Operator Precedence Languages 61

A→ A× A | e
B → A+B | A

Calculate the LG and RG sets:
LG(S) = {e,+,×}
LG(A) = {e,×}
LG(B) = {e,+,×}
RG(S) = {e,+,×}
RG(A) = {e,×}
RG(B) = {e,+,×}

In order to determine the Operator Precedence relations for this grammar, then:

• Consider the relations between + and +. There is B → A+B as the only rule with
+. Being that it has only one +, there cannot be +

.
= +; being + /∈ RG(A), then

there does not hold the +⋗+; being + ∈ LG(B), then +⋖+.

• Consider the relations between + and ×. We have B → A+B as the only rule with
+. Being that it has only + and not ×, there cannot be +

.
= ×; being × ∈ LG(B),

then there it holds +⋖×; being A→ A× A the only production with ×, and being
+ /∈ RG(A), then it does not hold +⋗×.

• Consider the relations between + and e. There is B → A+B as the only rule with
+. Being that it has only + and not e, there cannot be +

.
= e; being e ∈ LG(B),

then there it holds +⋖ e; being A → e the only production with e, then it is trivial
to see that it does not hold +⋗ e.

• Consider the relations between × and +. There is A→ A×A as the only rule with
×. Being that it has only × and not +, there cannot be × .

= +; being + /∈ LG(A),
then there it does not hold ×⋖+; being B → A+B and being × ∈ RG(A), then it
holds ×⋗+.

• Consider the relations between × and ×. There is A → A × A as the only rule
with ×. Being that it has only one occurrence of ×, there cannot be × .

= ×; being
× ∈ LG(A), then it holds ×⋖×; being × ∈ RG(A), then it holds ×⋗×.

• Consider the relations between × and e. There is A→ A×A as the only rule with
×. Being that it has only × and not e, there cannot be × .

= e; being e ∈ LG(A),
then there it holds ×⋖ e; being A → e the only production with e, then it is trivial
to see that it doesn’t hold ×⋗ e.

• Consider the relations between e and +. We have B → A+B as the only rule with

62 4| Operator Precedence Languages

+. Being e ∈ RG(B), it holds e⋗+.

• Consider the relations between e and ×. There is A→ A×A as the only rule with
×. Being e ∈ RG(A), it holds e⋗×.

• Being that the e appears only in A→ e, then it has no other relations.

To summarize, there have been found the following Operator Precedence Relations:
⋖ = {++,+×,+e,××,×e}
⋗ = {×+,××, e+, e×}
.
= = ∅

In order to represent the OP relations in a more human-readable way, there has been
introduced the concept of Operator Precedence Matrix, or OPM:

Definition 4.4 (Operator Precedence Matrix). For an OG
G = ⟨Σ, VN , P, S⟩, its corresponding operator precedence matrix (OPM) M = OPM(G)

is a |Σ| × |Σ| array such that, for each ordered pair (a, b) ∈ (Σ× Σ), the element Mab is
the set of OP relations holding between a and b.

Example 4.4 (calculating OPM). Consider the previous examples example 4.2 and ex-
ample 4.3, here will be represented the OPMs relative to each grammar.
The OPM of the grammat of example 4.2 is:

+ × e

+ ⋖ ⋖ ⋖
× ⋖ ⋗ ⋗
e ⋗ ⋗

The OPM of the grammat of example 4.3 is:
+ × e

+ ⋖ ⋖ ⋖
× ⋖ ⋗⋖ ⋗
e ⋗ ⋗

There have been presented all the concept needed to introduce the definition of Operator
Precedence Grammar and Language.

Definition 4.5 (Operator Precedence Grammar and Language). An OG
G = ⟨Σ, VN , P, S⟩ is an Operator Precedence Grammar, or Floyd grammar, iff its Operator
Precedence Matrix, OPM(G), is a conflict-free matrix, i.e., ∀a,b∈Σ|Mab| ≤ 1.

An Operator Precedence Language (OPL) is a language generated by an OPG.

4| Operator Precedence Languages 63

Please note that in the previous examples, the grammar of example 4.2 satisfies the
OPG definition, while example 4.3 does not. This is evident in the OPMs extracted in
example 4.4, where it is trivial to see that for example 4.3 the OPM is not conflict free:
M×,× = {⋖,⋗}.

4.2. Operator Precedence Languages Structure

As previously said, OPLs are structured Context-Free Languages, which implies that there
must be a procedure that associates to each string belonging to an OPL its structure.
Moreover, as it has been done for Structured CFL, also for OPL the concept of universe
structure is defined.

The aim of this section is to define the structure and structure universe for OPL. However,
in order to achieve such a goal, there is needed to introduce also other concepts, like OP-
alphabet.

Definition 4.6 (OP-alphabet). An operator Precedence Alphabet is a pair (Σ,M) where
Σ is an alphabet and M is a conflict-free operator precedence matrix, i.e., a |Σ#| × |Σ#|
array that associates at most one of the operator precedence relations: .

=, ⋖ or ⋗ to each
ordered pair (a, b) ∈ Σ# × Σ#.

The # character, introduced in definition 2.1, is used as a delimiter of the string, so it
yields precedence to other terminals and takes precedence over them (with a special case
for #

.
= #).

As previously stated, there is a way to bind each string to its unique structure, and thus to
the sequence of derivations performed by an OPG to generate the string. This procedure,
for OPLs, relies on the concept of chain, which definition is the following:

Definition 4.7 (chain). Let (Σ,M) be an OP-alphabet.

• A simple chain is a word a0a1a2 · · · anan+1, written as a0⌊a1a2 · · · an⌋an+1, such that:
a0, an+1 ∈ Σ#, ai ∈ Σ for every i : 1 ≤ i ≤ n, Ma0an+1 ̸= 0, and a0 ⋖ a1

.
= a2

.
=

· · · .= an ⋗ an+1.

• A composed chain is a word a0x0a1x1a2 · · · anxnan+1, with xi ∈ Σ∗, where
a0⌊a1a2 · · · an⌋an+1 is a simple chain, and either xi = ε or ai⌊xi⌋ai+1 is a chain (either
simple or composed), for every i : 0 ≤ i ≤ n. Such a composed chain will be written
as a0⌊x0a1x1a2 · · · anxn⌋an+1.

• The body of a chain a⌊x⌋b, simple or composed, is the word x.

64 4| Operator Precedence Languages

Definition 4.8. Given an OP-alphabet (Σ,M) and a string s ∈ Σ∗, with M(s) is indicated
the chain (if exists) built on # · s ·# using the OP-alphabet (Σ,M ′), where M’ is M with
the addition of M ′

#a = {⋖} and M ′
b# = {⋗} for each a, b ∈ Σ |M#a = ∅ and Mb# = ∅.

The definitions given so far are sufficient to prove the following results:

Corollary 4.2. There cannot exists a chain similar to ⌊· · · ⌋⌊· · · ⌋ but there must be at
least one terminal between ⌋ and ⌊.

Proof. The proof of this corollary relies on definition 4.7 and definition 4.1:

Noticing that ⌊· · · ⌋⌊· · · ⌋ implies that there is a derivation with 2 consecutive non-terminals
in the rhs of the rule used, it is in contradiction with the requirement of the grammar to
be OG.

Noticing that a⌋⌊b implies that · · · a⌋b is a chain and a⌊b · · · is a chain, it is trivial that
in the OPM M , the set Mab contains both ⋖ and ⋗, which implies it is not conflict free,
so (Σ,M) isn’t an OP-alphabet.

For more information about Operator Precedence Language and chains, refer to [3].

Corollary 4.3. Given a OP-alphabet (Σ,M), 2 strings u, v ∈ Σ∗ and 2 terminals c0, cl ∈
Σ such that c0⌊u⌋cl and c0⌊v⌋cl are chains, and a chain s containing as substring c0ucl,
then also c0⌊u⌋cl is a chain inside s, and that the string z built replacing in s c0ucl with
c0vcl, is still a chain containing c0⌊v⌋cl in place of c0⌊u⌋cl.

Example 4.5. Consider the language defined in example 4.2 and let us extend its OPM
with the # character:

+ × e #

+ ⋖ ⋖ ⋖ ⋗
× ⋖ ⋗ ⋗ ⋗
e ⋗ ⋗ ⋗
⋖ ⋖ ⋖ .

=
Consider the string #e+ e× e+ e# on which there can be trivially built
#⋖ e⋗+⋖ e⋗×⋖ e⋗+⋖ e⋗#.
The first simple chain that can be seen is the ⌊e⌋;
Then it can be extended with the complex chain ⌊⌊e⌋ × ⌊e⌋⌋; Then there can be added the
first + obtaining ⌊⌊e⌋+ ⌊⌊e⌋ × ⌊e⌋⌋⌋;
Finally there can be built #⌊⌊⌊e⌋+ ⌊⌊e⌋ × ⌊e⌋⌋⌋+ ⌊e⌋⌋#

4| Operator Precedence Languages 65

Till now there has been provided only the concept of structure not yet the one of structure
universe. In the following the concept of MaxLanguage is presented, that defines the
structure universe for an Operator Precedence Language. Note the similarities in the
construction of Max Language with the construction of the universe structure presented
for structured CFL.

Definition 4.9. Given an OP-alphabet (Σ,M), a word w ∈ Σ∗ is said to be compatible
with M iff the two following conditions hold:

• For each pair of letters c, d, consecutive in w, Mcd ̸= 0.

• For each substring x of #w# such that x = a0x0a1x1a2 · · · anxnan+1, if
a0 ⋖ a1

.
= a2 · · · an−1

.
= an ⋗ an+1 and, for every0 ≤ i ≤ n, either xi = ε or

ai⌊xi⌋an+1 is a chain (simple or composed), then Ma0an+1 ̸= 0.

Definition 4.10 (MaxLanguage). Given an OP-alphabet (Σ,M), the set of all its com-
patible strings is called Max Language of M , or, MaxLangM .

Example 4.6. Given the alphabet Σ = {a, b} and the OPM M :
a b #

a ⋖ .
=

b ⋗ ⋗
⋖ .

=

The MaxLangage defined via the OP-Alphabet (Σ,M) is the set
{anbn | n ≥ 0}. For example:
M(ab) = #⌊a .

= b⌋# ⇒ ab ∈ML

M(aaabbb) = #⌊a⌊a⌊a .
= b⌋b⌋b⌋# ⇒ aaabbb ∈ML

M(aabbb) = is not defined ⇒ aabbb /∈ML.

As it has been done with languages, also with OPM there can be defined the set’s opera-
tions to work on them.

Definition 4.11. Given two conflict-free OPMs M1 and M2, there are defined the set
inclusion and union:
M1 ⊆M2 if ∀a,b∈Σ#

(M1)ab ⊆ (M2)ab

M =M1 ∪M2 iff ∀a,b∈Σ#
Mab = (M1)ab ∪ (M2)ab.

Two matrices are compatible if their union is conflict-free. 1

A matrix is total (or complete) if it contains no empty cell.

1If the matrices are not conflict-free, their union does not define an OPM.

66 4| Operator Precedence Languages

Definition 4.12. Given an OPL η and a OP-alphabet (Σ,M), then:

• If the OPM of η is contained in M , η is said to be contained or defined in the
OP-alphabet (Σ,M);

• If the OPM of η is compatible with M , η is said to be compatible with the OP-alphabet
(Σ,M).

Corollary 4.4. Given an OPL η and a OP-alphabet (Σ,M), if η is contained in the
OP-alphabet (Σ,M), then η ⊆MaxLangM .

Note that the chain definition does not depend on a particular language/grammar. This
is due to the fact that chaining relies only on the OPM, thus on the OP-alphabet. So,
consider any two OP languages η1, η2 ⊆ Σ∗ compatible with each other and having as
OPMs M1 and M2 respectively, and the OPM M =M1∪M2 that defines an OP-alphabet
(Σ,M). For any string s ∈MaxLangM , then:

• if s ∈ η1, than the structure of s with respect to M1 is the same built with respect
to M ;

• if s ∈ η2, than the structure of s with respect to M2 is the same built with respect
to M ;

• if s ∈ (η1 ∩ η2), than the structure of s with respect to M1 is the same built with
respect to M2 which is the same built with respect to M .

Corollary 4.5. Given an OP-alphabet (Σ,M) and a string s ∈ Σ∗, M(s), if exists, starts
with ⌊ and ends with ⌋.

To end the excursus over the MaxLanguage, there must be reported the following results
from [8], [7], [5], and [14]

Proposition 4.1. • If an OPM M is total, then MaxLangM = Σ∗.

• Let (Σ,M) be an OP-alphabet where M is .
=-acyclic. The class GM contains an

OPG, called the maxgrammar of M , denoted by Gmax,M , which generates the maxlan-
guage MaxLangM . For all grammars G ∈ GM , the inclusions L(G) ⊆ MaxLangM

and L(Gp) ⊆ L(Gp,max,M = Lp(M) hold, whereGp and Gp,max,M are the parenthesized
versions of G and Gmax,M , and Lp(M) is the parenthesized version of L(M).

• the closure properties of the family LM of (Σ,M)-compatible OPLs defined by a total
OPM are the following:

4| Operator Precedence Languages 67

– LM is closed under union, intersection, and set-difference, therefore also under
complement.

– LM is closed under concatenation.

– if matrix M is .
=-acyclic, LM is closed under Kleene star.

Corollary 4.6. The inclusion problem between OPL with compatible OPM is decidable.

4.3. Non-Countingness for Operator Precedence Lan-

guages

In this section, the concept of Non-Countingness is defined for the class of OPL languages.
Once the NCOP family has been presented, there are reported some results regarding it.
Note that the goal of the thesis is to find a particular subclass of this family of languages,
so the concepts of this section will play a relevant role later.

In order to tailor the NCS to become NCOP , there must be defined the concept of well
structured for OPL. There is presented the concept of well-chained that plays the role
of well structured, and there is then reported the definition of NCOP using the newly
introduced concept.

Definition 4.13 (Well chained). Given an OP- alphabet (Σ,M), a string w ∈MaxLangM ,
given a sub-string x of w and a, b ∈ Σ# such that the occurrence of x in #.w.# is preceded
by a and followed by b, we say that x is well-chained on w iff a⌊x⌋b is a chain.

The string w is well-chained if w ∈MaxLangM .

From now on, talking of OPL, there can be used interchangeably the concepts of well-
structured or well-chained features.

It is now trivial to mutate the definition 3.8 into the definition of NCOP by using well
chained instead of well-structured concept.

Definition 4.14 (NCOP). Given a OP-alphabet(Σ,M) and an OP language η ⊆ Σ∗
any, η

is NCOP (non counting) iff ∃n > 1 such that, for all strings
x, u, w, v, y ∈ Σ∗

any, m ∈ N where w and uwv are well chained on xunwvny w.r.t M then
xunwvny ∈ η ⇔ xun+mwvn+my ∈ η.

One remarkable result taken from [15] is:

Theorem 4.1. It is decidable whether an OPL is NCOP or not.

68 4| Operator Precedence Languages

One interesting and useful result that can be proven here regarding the well-chained
property is the following:

Theorem 4.2. Given an OP-alphabet (Σ,M) and a string
s ∈ MaxLangM such that s = x.u3.w.v3.y and in which w and u.w.v are well-chained in
s, then u2.w.v2 is well-chained on s.

Before giving the proof of the theorem, there is reported an example:

Example 4.7. Consider the OP-alphabet (Σ,M), where Σ = {a, b} and M :

a b #

a ⋖ .
= ⋗

b
.
= ⋗ ⋗

⋖ ⋖ .
=

Consider the string s = #baaaabbbba# belonging MaxLangM , and consider x = b, u =

a, w = ab, v = b, y = a.
M(a.w.b) =M(aabb) =a ⌊ab⌋b and
M(a.u.w.v.b) =M(aaabbb) =

a⌊a ⌊ab⌋b⌋b

thus w and u.w.v are well chained on s, so, the theorem says that also u2.w.v2 is well
chained on s. Let us see if it is true:
M(a.u2.w.v2.b) =M(aaaabbbb) =

a⌊a⌊a ⌊ab⌋b⌋b⌋
b

, which is well chained.
To conclude this example, the structure of s is:
M(s) = #⌊ba⌊a⌊a⌊ab⌋b⌋b⌋ba⌋#

Proof. Calling ul, v0 the last and the initial character of u and v respectively, by hypothesis
it is that ul⌊w⌋v0 is a chain and that ul⌊uwv⌋v0 is a chain. By the local parsability of OPLs,
it is that uwv contains the chain ul⌊w⌋v0 , which, for corollary 4.3, implies that substituting
the chain ul⌊w⌋v0 with ul⌊uwv⌋v0 there can be obtained ul⌊uuwvv⌋v0 which is a chain, and
in particular, being ul⌊u2.w.v2⌋v0 a chain, u2.w.v2 is well chained on s.

Please note that, in the previous theorem and proof, the assumption of having M total
has not be made.

Example 4.8. Modify the OPM M of example example 4.7 to become Minc :

a b #

a ⋖ .
=

b ⋗ ⋗
⋖ .

=
In this case Minc is not complete, which implies that its MaxLanguage does not con-

4| Operator Precedence Languages 69

tain all the strings built over Σ. One example is #baaaabbbba# that does not belong to
MaxLangMinc

.

Consider s = #aaaaaabbbbbb# ∈MaxLangMinc
and x = aa, u = a, w = ab, v = b,

y = bb, s = x.u3.w.v3.y.
Minc(a.w.b) =Minc(aabb) =

a ⌊ab⌋b

Minc(a.u.w.v.b) =Minc(aaabbb) =
a⌊a ⌊ab⌋b⌋bthus w and u.w.v are well chained on s, thus,

the theorem says that also u2.w.v2 is well chained on s. Let us check if it is true:
Minc(a.u

2.w.v2.b) =Minc(aaaabbbb) =
a⌊a⌊a ⌊ab⌋b⌋b⌋

b

so it is well chained.

To conclude this example, the structure of s is:
Minc(s) = #⌊a⌊a⌊a⌊a⌊a⌊ab⌋b⌋b⌋b⌋b⌋b⌋#

Given theorem 4.2, one trivial result is:

Corollary 4.7 (Structure of x.un.w.vn.y). Given an OP-alphabet (Σ,M) and a string s =
x.un.w.vn.y with w and u.w.v that are well-structured, there is that ∀i ∈ N, i < n ui.w.vi

is well chained on s.

Example 4.9. Consider example 4.8:
by choosing x = y = ε and keeping u = a, w = ab, v = b, the string
s = #aaaaaabbbbbb# could be seen as
s = x.u5.w.v5.y, on which w and u.w.v are well chained. From the structure of s, which
is
Minc(s) = #⌊a⌊a⌊a⌊a⌊a⌊ab⌋b⌋b⌋b⌋b⌋b⌋#, it is trivial to see that not only u2.w.v2 is well
chained on s, but also u3.w.v3 and u4.w.v5 are so. Also u5.w.v5 is well chained on s, but
it is so by relying not on the last character of u and the first of v, thus it is quite lucky
and this result cannot be generalized.

Lemma 4.1 (MaxLangM is NCOP). Given an OP-alphabet (Σ,M), the maxlanguage of
M is NCOP .

Proof. The proof of this theorem is done by leveraging the NCOP definition.
Given s = xunwvny ∈MaxLangM with
w, uwv well-structured on s and n ≥ 3, there can be considered
s = x′uwvy′ with x′ = xun−1y′ = vn−1y and
z = x′u2wv2y′.
For theorem 4.2 there is that, given ul⌊uwv⌋v0 , the chain on s of uwv, such that uwv is well-
structured, then also ul⌊uuwvv⌋v0 is a chain, and so, for corollary 4.3, there can be substi-
tuted in s the chain ul⌊w⌋v0 with ul⌊uwv⌋v0 still having a chain. The new string is equal

70 4| Operator Precedence Languages

to z, and, being z = xun+1wvn+1y, it has been proven that xunwvny ∈ MaLang(M) ⇒
xun+1wvn+1y ∈MaxLangM .

Said that, the following can be stated:

Corollary 4.8 (LTO∩MaxLangM ⊆ NCOP). Given an LTO η ∈ Σ∗ and a OP-alphabet
(Σ,M), then the language ξ = η ∩MaxLangM is NCOP .

Proof. Given a string
s = xunwvny ∈ ξ such that w, uwv are well-parenthesized over M , then also
s′ = xun+1wvn+1y ∈ ξ.

This is due to the fact that if s ∈MaxLangM , then also
s′ ∈MaxLangM , because MaxLngM is NCOP .
Being s ∈ η, and being η NC, then also
xun+1wvny ∈ η, and thus s′ = xun+1wvn+1y ∈ η.
Thus, being s′ recognized by η and MaxLangM , then s′ is recognized by the conjunction
of those 2 languages.

Example 4.10. Consider the alphabet Σ = {a, b, c, [,], .}, ad a grammar G on it that has
as production set:
S → [A(.E)+]

E → c|[B(.E)+]

A→ a

B → b

This grammar is OG, and we can build its OPM M :
a b c [] . #

a ⋗
b ⋗
c ⋗ ⋗
[⋖ ⋖ .

=

] ⋗ ⋗ ⋗
. ⋖ ⋖ .

=
.
=

⋖
Please note that L(G) ∈ MaxLangM , but L(G) ̸= MaxLangM , because, for instance,
[b.c] ∈MaxLangM ∩ (¬G), and, moreover, [.] ∈MaxLangM .
There is the possibility to write an LTO language to enforce the constraints that are miss-
ing over MaxLangM and that are present on G:
LTO1 : LT3({#[a, [a., a.c, a.[, .[b, [b., b.c, b.[, .c., c.c, c.[,

4| Operator Precedence Languages 71

.c], c]], c].,].c,].[,]]], c]#,]]#})
LTO1 will recognize all the strings of G, and will discard those that are malformed, for
instance [b.c] /∈ LTO1, [.] /∈ LTO1; However LTO1 will recognize some strings not recog-
nized by G, for example [a.[b.c.[b.c] ∈ LTO1 .
By mixing the features of LTO1 with the ones of MaxLangM , there can be built the lan-
guage MaxLangM ∩ LTO1, which is equivalent to the language defined by G. Although
this work may seem unnecessarily complex, please note that in this way the OPL part
will calculate the structure of the string and LT the semantic correctness, and both those
families of languages have good properties for parsing, making the parsing of long strings
not only fast but also possible to split the workload on different computers.

Let us now check if MaxLangM ∩LTO1 in NCOP or not. There will be done an example
giving an explanation on how can be intuitively seen that the language is NCOP .
Consider s = [a.[b.[b.[b.c]]]] and analyze if s ∈MaxLangM ∩ LTO1;
Then check if s′ = [a.[b.[b.[b.[b.c]]]]] is contained in MaxLangM ∩ LTO1.

Please note that s ∈ LTO1, which implies, being LTO1 NC, that also s′ ∈ LTO1.
Let us now analyze M(s) = #⌊[⌊a⌋.⌊[⌊b⌋.⌊[⌊b⌋.⌊[⌊b⌋.⌊c⌋]⌋]⌋]⌋]⌋#,
so s ∈MaxLangM .
Calling x = [a., y =], u = [b., v =], w = [b.c], there is
s = x.u2.w.v.y with w and u.w.v well chained on s.
M(s′) = #⌊[⌊a⌋.⌊[⌊b⌋.⌊[⌊b⌋.⌊[⌊b⌋.⌊[⌊b⌋.⌊c⌋]⌋]⌋]⌋]⌋]⌋#,
so s′ ∈MaxLangM , which is not surprising because MaxLangM is NCOP .

Thus s ∈MaxLangM ∩ LTO1 and s′ ∈MaxLangM ∩ LTO1.

This excursus over NCOP family can now terminate by reporting some other results
inspired by [15].

Theorem 4.3. Counting and non-counting parenthesis languages are closed with respect
to complement. Thus counting and non-counting OPLs are closed with respect to comple-
ment with respect to the MaxLanguage defined by OPM.

Theorem 4.4. Non-counting parenthesis languages and non-counting OPLs are closed
with respect to union and therefore with respect to intersection.

Theorem 4.5. NCOP is closed with respect to concatenation.

Please note that a NCOP language, strictly relies on the OPM:

Example 4.11. Given the OP-alphabet (Σ,M), where Σ = {a} and having M:

72 4| Operator Precedence Languages

a

#
.
= ⋖

a ⋗ .
=

The MaxLanguage defined over the OP-alphabet (Σ,M) is the language defined by a∗.
Although this language is NC with respect to Regular Languages, it is not NCOP because,
for each string s ∈ ML, s has only one substring that is well chained on it, that is the
string s itself.
Each string’s chain will be #⌊aa · · · a⌋#.

Example 4.12. Given the OP-alphabet (Σ,M), where Σ = {a} and having M:
a

#
.
= ⋖

a ⋗ ⋖
The MaxLanguage defined over the OP-alphabet (Σ,M) is the language defined by a∗ as
in the example 4.11; However, despite in the other example, this time the language is
NCOP , because, inside strings belonging to the language, there are substrings well-chained
and thus the definition definition 4.14 can be put in place.

4.4. Other Operator Precedence Languages Repre-

sentations

As it has been done for the families of languages belonging to Chomsky’s classification,
also for OPLs there have been studies providing different ways to characterize the lan-
guages and to investigate their properties. In particular, there have been works to provide
the characterization of automata recognizing OPLs, like [3], to generalize the concept of
Regular Expressions to describe also OPLs, like [14], to find a logical characterization of
OPLs, like [15], and to expand the results of OPLs to a more general class of languages,
like [6].

For all those new characterizations for OPLs, there have been studies to prove their
expressiveness and relate it with each other and with the Floyd’s defined OPL family.
The presence of all those representations provides a variety of equivalent notations useful
to prove some properties in a simpler way.

In this section, there is presented the definition of Operator Precedence Expressions and
Monadic Second Order Logic, how they relate with each other, and with the NCOP family.
To find more information about the characterizations here presented, refer to [15].

4| Operator Precedence Languages 73

4.4.1. Operator Precedence Expressions

As it has been done for Regular Languages with Regular Expressions, also for OPLs there
has been defined a way to represent languages with a series of expressions: the Operator
Precedence Expressions, or OPE. The idea is to describe a language in such a way that
hints at the form of strings belonging to that language. This is done using not only the
alphabet on which the language is defined but extending it with also a meta alphabet
used to express how to mix the different expressions together, in order to get a string
belonging to the desired language. This meta alphabet extends the one used by Regular
Expressions with the meta-characters [and], which are used to define the fence operation,
one concept that will inspire definition 6.1 for LTOP.

Definition 4.15 (OPE). Given an OP alphabet (Σ,M), where M is complete, an OPE
E and its language LM(E) ⊆ Σ∗ are defined as follows.
The meta-alphabet of OPE uses the same symbols as REs, together with the two symbols
’[’ and ’]’. Let E1 and E2 be two OPEs:

1. a ∈ Σ is an OPE with LM(a) = a.

2. ¬E1 is an OPE with LM(¬E) =MaxLang(M) \ LM(E).

3. a[E1]b, called the fence operation, i.e., we say E1 in the fence a, b, is an OPE with:
if a, b ∈ Σ: LM(a[E1]b) = a · {x ∈ LM(E1) |M(a · x · b) = ⌊a ·M(x) · b⌋} · b;
if a = #, b ∈ Σ: : LM(#[E1]b) = {x ∈ LM(E1) |M(x · b) = ⌊M(x) · b} · b;
if a ∈ Σ, b = #: LM(a[E1]#) = a · {x ∈ LM(E1) |M(a · x) = ⌊a ·M(x)⌋}.
Where E1 must not contain #.

4. E1 ∪ E2 is an OPE with LM(E1 ∪ E2) = LM(E1) ∪ LM(E2).

5. E1 · E2 is an OPE with LM(E1 · E2) = LM(E1) · LM(E2), where E1 doesn’t contain
a[E3]# and E2 does not contain #[E3]a, for some OPE E3 and a ∈ Σ.

6. E∗
1 is an OPE defined by E∗

1 =
⋃inf

n=0E
n
1 , where E0

1 = {ε}, E1
1 = E1, En

1 = En−1
1 ·E1;

E+
1 = E1 · E∗

1 .

Among the operations defining OPEs, concatenation has the maximum precedence; set-
theoretic operations have the usual precedence, and the fence operation is dealt with as a
normal parenthesis pair.
A Star Free OPE is one OPE that does not use ∗ or +.

A major result for the class of languages defining via OPE, is the following:

Theorem 4.6. The class of languages definable via OPEs coincides with the class of

74 4| Operator Precedence Languages

OPLs.
The class of languages definable via Star Free OPEs coincides with the class of NCOP .

There can be now introduced another result that will be helpful for a later proofs:

Lemma 4.2 (derived operations). There can be used the following derived operations
inside the OPEs:

• a△b := a[Σ+]b

• a▽b := ¬(a△b) ∩ a · Σ+ · b

It is trivial to see a[E]b = a△b∩ a ·E · b. Keeping in mind the fact that Σ+ is a Star Free
language, it can be proved the following:

Lemma 4.3 (Flat Normal Form). Any Star-Free OPE can be written in the following
form, called flat normal form:⋃

i

⋂
j ti,j

Where the elements ti,j have either the form Li,jai,j△bi,jRi,j, or Li,jai,j▽bi,jRi,j, or Hi,j,
for ai,j, bi,j ∈ Σ, and Li,j, Ri,j, Hi,j star-free regular expressions.

4.4.2. Monadic Second Order Logic

The Monadic Second Order Logic is now presented with its definition and results. As
the name suggests, this characterization stays to symbolic logic characterization as the
Operator Precedence Expression stays to Regular Expressions. To find more information
about this family, refer to [13].

Definition 4.16 (Monadic Second Order Logic for OPLs). Let (Σ,M) be an OP-alphabet,
V1 a set of firs-order variables, and V2 a set of second-order (or set) variables. The
MSO(Σ,M) (monadic second order logic over (Σ,M)) is defined by the the following syn-
tax (the OP-alphabet will be omitted unless necessary to prevent confusion):

θ := c(x)|x ∈ X|x < y|x↷ y|¬θ|θ1 ∨ θ2|∃x θ|∃X θ

Where c ∈ Σ#, x, y ∈ V1, and X ∈ V2.

A MSO formula is interpreted over a (Σ,M) string w compatible with M , with respect to
assignments v1 : V1 → {0, 1, . . . , |w|+1} and v2 : V2 → ℘({0, 1, . . . , |w|+1}), in this way:

• #w#,M, v1, v2 |= c(x) iff #w# = w1cw2 and |w1| = v1(x).

• #w#,M, v1, v2 |= x ∈ X iff v1(x) ∈ v2(X).

4| Operator Precedence Languages 75

• #w#,M, v1, v2 |= x < y iff v1(x) < v1(y).

• #w#,M, v1, v2 |= x↷ y iff #w# = w1aw2bw3, |w1| = v1(x), |w1aw2| = v1(y), and
w2 is the frontier of a subtree of the syntax tree of w.

• #w#,M, v1, v2 |= ¬θ iff #w#,M, v1, v2 ̸|= θ.

• #w#,M, v1, v2 |= θ1 ∨ θ2 iff #w#,M, v1, v2 |= θ1 or #w#,M, v1, v2 |= θ2.

• #w#,M, v1, v2 |= ∃x θ iff #w#,M, v′1, v2 |= θ for some v′1 with v′1(y) = v1(y) for
all y ∈ V1 − {x}.

• #w#,M, v1, v2 |= ∃X θ iff #w#,M, v1, v
′
2 |= θ for some v′2 with v′2(Y) = v2(Y) for

all Y ∈ V2 − {X}.

To improve readability there will be dropped M, v1, v2 and # from notation whenever there
is no risk of ambiguity; Furthermore there will be used standard abbreviations in formulae,
like ∧,∀,⊕(xor), x+ 1, x− 1, x = y, x ≤ y.
The language of a formula ψ without free variables is L(ψ) = {w ∈ L(M) | w |= ψ}.

As done for OPEs, also in this case there are some interesting results, in particular:

Theorem 4.7 (MSO = OPE). The class of languages defined via MSO corresponds to
the OPL class of languages.

The proof, given in [15], relies on lemma 4.3, and the idea of using the Flat Normal Form
to characterize OPEs will be used (also) later for the purpose to relate OPE with the new
family LTOP.

Another important result is the fact that by restricting MSO to formulae of First Order
(FO), then the class of languages defined corresponds to the class of NCOP languages.
To find more information about MSO, referr to [15].

Theorem 4.8 (FO ⊆ SFOPE). For every FO formula ψ on an OP-alphabet (Σ,M)

there is a star-free OPE E on (Σ,M) such that L(E) = L(ψ).

Theorem 4.9 (NCOP ⊆ FO). Non-Counting (Aperiodic) Operator Precedence languages
are FO-definable.

Theorem 4.10. The following classes of languages are equivalent:

• NCOP ;

• the family of languages definable via Star Free OPE;

76 4| Operator Precedence Languages

• the family of languages definable via FO.

77

5| Locally Testable Extended

Languages

The goal of this thesis is to find a family of languages that is both NCOP and definable
in an LTO-like manner. This is done in order to study if the properties of Non-Counting
Regular Languages can be transferred into the Operator Precedence word.

In this section, the LTEO family of languages is introduced. This class is useful to forge
the new operator, fence-subs that is presented in the next chapter, in fact here is discussed
how there can be applied substitution inside languages. This chapter and the LTEO family
will play a central role in the discussion about decidability.

5.1. Substitution

Here is presented the substitution. The scope of application of this concept is to substi-
tute inside strings generated by a certain language some particular characters with other
specified strings. The characters that will be substituted are the elements of Φ. Here
there is an example:

Example 5.1. The goal of the substitution is to give the possibility to reuse languages to
describe other languages, so, describing where and how to substitute other languages in
the target one.

Given a "meta language" ξ = aη1(aη1 + aη2)
∗a where

η1 = bc∗b, η2 = cb∗c, the substitution will be the tool to map ξ in Σ∗, without having the
fancy characcters η1 or η2 inside the strings of ξ. So:
ξ = {aη1a, aη1aη1a, aη1aη2a, aη1aη1aη1a, . . .}
η1 = {bb, bcb, bccb, bcccb, . . .}
η2 = {cc, cbc, cbbc, cbbbc, . . .}
subs(ξ) =

{abba, abcba, abccba, abcccba, . . . ,
abbabba, abbabcba, abbabccba, . . . , abcbabba, abccbabba, . . . , abcbabcba, abcbabccba, . . . ,

78 5| Locally Testable Extended Languages

abbacca, abbacbca, abbacbbca, abbacbbbca, . . . , abcbacca, abccbacca, . . . , }

To define substitution, there are some steps to be done:

• Defined how to identify blanks (defined in definition 2.1 as elements of Φ) inside a
string or inside a language;

• Defined the concept of substitution applicable over only one string;

• Defined how to apply the substitution over whole languages.

5.1.1. Finding used Blanks

In order to identify blanks inside strings, there is defined a function ϕ such that, given a
language η ⊆ Σ∗

Φ, or a string s ∈ Σ∗
Φ, it extracts the set of all and only the elements of Φ

that are present in the string itself or on any string of the language:

Definition 5.1 (ϕ). Given a string s ∈ Σ∗
Φ, there will be defined

ϕ(s) = {c ∈ Φ | s /∈ (ΣΦ \ {c})∗}.

Given a language η ⊆ Σ∗
Φ, there will be defined

ϕ(η) = {c ∈ Φ | η ̸⊆ (ΣΦ \ {c})∗}.

Please note that if η is such that η = LTk(S) ⊆ Σ∗
Φ and S is cleanLT, then ϕ(η) is the

smallest subset of Φ such that S ⊆ (Σ ∪ ϕ(η))∗.

Example 5.2. Analyze the languages η ⊆ Σ∗
Φ defined as

η = a−1 (a−1 +a−2)
∗a and

S1 = {#a−1, a−1 a,−1a−2,−1a−1, a−2 a,−2a−1,−2a−2,−1a#} with the language ξ1 =
LT3(S1) and
S2 = {#a−1, a −1 a,−1a−2,−1a−1, a −2 a,−2a−1,−2a−2,−1a#,−1a−3} with the lan-
guage ξ2 = LT3(S2).

Analyze the ϕ function on those languages:
ϕ(η) = {−1,−2}
ϕ(ξ1) = ϕ(LT3(S1)) = {−1,−2}
ϕ(ξ2) = ϕ(LT3(S2)) = {−1,−2}

Note that ξ1 = ξ2 and ϕ(ξ1) = ϕ(ξ2), however
S1 ̸= S2 and S2 ̸⊆ (Σ ∪ ϕ(LT3(S2)))

∗, that is because S2 is not cleanLT.

5| Locally Testable Extended Languages 79

5.1.2. Single String Substitution

Here is formulated the concept of substituting the elements of Φ inside a string. It is done
incrementally, starting from the simple case of substituting each occurrence of one same
blank with the same string, then substituting the occurrences of the same blank with a
string taken from a language, and, finally, extending it to substitute the occurrences of
different blanks each one with a string from a different language.

The following definition of the function stringSub(t,−, s), takes as input two strings
t, s ∈ Σ∗

Φ and a blank − ∈ Φ,− /∈ ϕ(s), and returns the string t′ that is equal to t where
of all the occurrences of − that are replaced with s. In the following definitions, for the
sake of simplicity, are used t that stands for "target", s stands for "substitution", and −
is the default representation of any blank belonging to Φ.

Definition 5.2 (Substitution of a blank with a string). stringSub : Σ∗
Φ × Φ× Σ∗

Φ → Σ∗
Φ

where there is z = stringSub(t,−, s) ⇔

1. If t does not contain −, then z = t;

2. Else there exist 2 strings w1 ∈ (ΣΦ \ {−})∗, w2 ∈ Σ∗
Φ such that t = w1 · − ·w2, then

z = w1 · s · stringSub(w2,−, s).

Example 5.3. Consider Σ = {a, b, c}, Φ = {−1,−2}, and the strings
t = a−1 a−2 a−2 −1a, s1 = bc and s2 = cb.
Let us use the stringSub to see how it works:
y = stringSub(t,−1, s1) = a · bc · stringSub(a−2 a−2 −1a,−1, s1) =

abc · a−2 −2 · bc · stringSub(a,−1, s1) = abca−2 −2bca

x = stringSub(y,−2, s2) = abca · cb · stringSub(−2bca,−2, s2) =

abcacb · cb · stringSub(bca,−2, s2) = abcacbcbbca

the previous concept is now extended in order to substitute inside the original string t

not always the same string s but an entire language. In this case, the stringSub function
returns not a single string but the language composed by all the strings produced by all
possible substitutions:

Definition 5.3 (Substitution of a blank with a language). stringSub : Σ∗
Φ×Φ×℘(Σ∗

Φ) →
℘(Σ∗

Φ) where there is z ∈ stringSub(t,−, η) ⇔

1. If t does not contains −, then z = t;

2. Else there exists 4 strings
w1 ∈ (ΣΦ \ {−})∗, w2 ∈ Σ∗

Φ, s ∈ η, z′ ∈ stringSub(w2,−, η) such that

80 5| Locally Testable Extended Languages

t = w1 · − · w2, then z = w1 · s · z′.

Example 5.4. Consider Σ = {a, b, c}, Φ = {−}, te string
t = a− a− a and the language η = b∗. Let us use the stringSub to see how it works:
stringSub(t,−, η) = {aε · stringSub(a− a,−, η), ab · stringSub(a− a,−, η),
abb · stringSub(a− a,−, η), abbb · stringSub(a− a,−, η), . . .};
stringSub(a− a,−, η) = {aε · stringSub(a,−, η), ab · stringSub(a,−, η),
abb · stringSub(a,−, η), abbb · stringSub(a,−, η), . . .}
stringSub(a,−, η) = {a}
stringSub(a− a,−, η) = {aa, aba, abba, abbba, . . .}
stringSub(t,−, η) = {aaa, aaba, aabba, aabbba, . . . , abaa, ababa, ababba,
ababbba, . . . , abbaa, abbaba, abbabba, abbabbba, . . .};

One last step to be done is to define how to substitute multiple blanks inside a string, as-
signing to each one of them a specific language from which extract the strings to substitute
in the target. Here is an example.

Example 5.5. Consider Σ = {a, b, c}, Φ = {−1,−2}, the string
t = a−1 b−2 −1 and the languages η1 = b∗ and η2 = c∗. The new definition of stringSub
will be the one that permits to substitute −1 with η1 and −2 with η2, so to define the
language aη1bη2η1 = ab∗bc∗b∗.

The function stringSub needs to have a way to map each blank of ϕ(s) to a target
language, from which take the string with which perform the substitution. In order to do
so, the stringSub takes as input a function map : Φ → ℘(Σ∗

Φ) instead of the blank and
the language to substitute.

Definition 5.4 (Substitution of blanks with a languages). stringSub : Σ∗
Φ × (Φ →

℘(Σ∗
Φ)) → ℘(Σ∗

Φ) where there is
z ∈ stringSub(t,map) ⇔

1. If |ϕ(t)| = 0, then z = t;

2. Else there exist 4 strings, w1 ∈ Σ∗, w2 ∈ Σ∗
Φ, s ∈ map(−i),

z′ ∈ stringSub(w2,−i), and the blank −i ∈ Φ, such that
t = w1 · −i · w2, then z = w1 · s · z′.

Please note that stringSub(t,−, η) = stringSub(t, {− → η}), so there can be used only
definition 5.4 to cover all the other definitions given for stringSub.

Here is an example:

5| Locally Testable Extended Languages 81

Example 5.6. Consider Σ = {a, b, c}, Φ = {−1,−2}, the string
t = a−1 b−2 −1, and the languages η1 = b∗ and η2 = c∗.
Let us see how to calculate stringSub(t, {−1 → η1; −2 → η2}):
stringSub(a−1 b−2 −1, {−1 → b∗; −2 → c∗}) = {
a · ε · stringSub(b−2 −1, {−1 → b∗; −2 → c∗}),
a · b · stringSub(b−2 −1, {−1 → b∗; −2 → c∗}),
a · bb · stringSub(b−2 −1, {−1 → b∗; −2 → c∗}), . . .}
stringSub(b−2 −1, {−1 → b∗; −2 → c∗}) = {
b · ε · stringSub(−1, {−1 → b∗; −2 → c∗}),
b · c · stringSub(−1, {−1 → b∗; −2 → c∗}),
b · ccc · stringSub(−1, {−1 → b∗; −2 → c∗}),
b · cccc · stringSub(−1, {−1 → b∗; −2 → c∗}), . . .}
stringSub(−1, {−1 → b∗; −2 → c∗}) = {ε, b, bb, bbb, . . .}
stringSub(b−2 −1, {−1 → b∗; −2 → c∗}) = {
b, bb, bbb, . . . , bc, bcb, bcbb, . . . , bcc, bccb, bccbb, . . .}
stringSub(a−1 b−2 −1, {−1 → b∗; −2 → c∗}) = {
ab, abb, abbb, abc, abcb, abcbb, abcc, abccb, abbc, abbbc, abbbcc, abbbbccccbb, . . .}

5.1.3. Substitution for Languages

Here is presented the definition of stringSub allowing it to work also over languages.

The case of Φ = {−} is the easiest one, thus there can be examined first:

Definition 5.5 (substitution over language with one only blank). Given a language η ⊆
Σ∗

Φ and a language ξ ∈ Σ∗, the language stringSub(η, ξ) is defined as:
stringSub(η, ξ) = {s ∈ Σ∗

Φ | ∃t ∈ η ∧ s ∈ stringSub(t,−, ξ)}

Example 5.7. Consider the alphabet Σ = {a, b},
Φ = {−}, η = a(−a)∗, ξ = b∗, then the language stringSub(η, ξ) =
{stringSub(a,−, ξ), stringSub(a− a,−, ξ), stringSub(a− a− a,−, ξ), . . .} =

{a, aa, aba, abba, abbba, aaa, aaba, abaa, ababa, . . .}.

In the more general case, with |Φ| > 1, another approach should be used. As it has been
done for definition 5.4, there must be defined a function that maps each (used) element
of Φ into a language. So the definition of the new substitution would be:

Definition 5.6 (substitution over language with more blanks). Given a language η ⊆ Σ∗
Φ

and a function

82 5| Locally Testable Extended Languages

map : Φ → ℘(Σ∗
Φ) with ∀−∈ϕ(η)ϕ(map(−)) ∩ ϕ(η) = ∅, the language stringSub(η,map) is

defined as:
stringSub(η,map) = {s ∈ Σ∗

Φ | ∃t ∈ η ∧ s ∈ stringSub(t,map)}.

Please note that when Φ = {−}, the two are equivalent:
stringSub(η, ξ) = stringSub(η, {− → ξ}).

Example 5.8. Consider the alphabet Σ = {a, b, c},
Φ = {−1,−2}, η = a(−1a+−2a)

∗, ξ1 = b∗, ξ2 = c∗, then the language
stringSub(η, {−1 → ξ1; −2 → ξ2) =

{stringSub(a, {−1 → ξ1; −2 → ξ2)),

stringSub(a−1 a, {−1 → ξ1; −2 → ξ2)),

stringSub(a−2 a, {−1 → ξ1; −2 → ξ2)),

stringSub(a−1 a−2 a, {−1 → ξ1; −2 → ξ2)) . . .} =

{a, aa, aba, abba, aca, acca, aaa, aba, aaca, acaba, . . .}.

5.2. Language Definition

The Locally Testable Extended (LTE) family of languages is here defined by leveraging
the stringSub concept presented before. The idea behind this family is to build a LT
language over ΣΦ and than apply substitution over the language in order to obtain a new
language over Σ∗. The goal behind this is to embed somehow the fence operator inside the
substitution, in order to bind LTOs with OPs, however, how it will be discussed later: by
simply applying the stringSub and then intersecting the obtained language with a Max
Language there is not obtained what we are looking for.

Definition 5.7 (LTE). The family of LTE languages is the smallest set containing a
language η ∈ Σ∗ such that:

1. η = ∅; or

2. η is a LT language; or

3. There exists a LT language ξ ⊆ Σ∗
Φ and a function map : Φ → LTE such that

η = stringSub(ξ,map).

Here there are a few quick examples:

Example 5.9. Consider the alphabet Σ = {a, b, c}, Φ = {−1,−2},
S = {#a−1, a−1 a,−1a−2,−1a−1, a−2 a,−2a−1,−2a−2,−1a#} and
η1 = b∗, η2 = c∗.

5| Locally Testable Extended Languages 83

Noticing that both η1 and η2 are LT, the language
stringSub(LT3(S), {−1 → η1; −2 → η2}) is LTE, and is defined as:
LT3(S) = a−1 (a−1 +a−2)

∗a

stringSub(LT3(S), {−1 → η1; −2 → η2}) = ab∗(ab∗ + ac∗)∗a

Example 5.10. Consider Σ = {a}, Φ = {−}, the language
η = {aaa} and ξ = LT (S), S = {#a, a−,−a, a#}.
It is trivial to see that η ∈ LTE.
Consider map = {− → η}, then the language defined as
stringSub(ξ,map) is LTE. In particular we have:
ξ = {a, a− a, a− a− a, a− a− a− a, ...} = a(−a)∗

stringSub(ξ, η) = {a, aaaaa, aaaaaaaaa, ...} = a(aaaa)∗

As it has been done for the LT languages with the definition of LTO, let us extend the
expressiveness of LTE with LTEO:

Definition 5.8 (LTEO). LTEO is the smallest set of languages such that:

1. LTEO contains LTE;

2. LTEO contains stringSub(ξ,map) with ξ that is LT on Σ∗
Φ and map : Φ → LTEO;

3. LTEO is closed under Boolean operators and concatenation.

5.3. Main Results

As it has been said at the beginning of this chapter, there are no particular results for this
family of languages, however, it represents a step that has been taken in the direction of
LTOP, and that will be useful for later proof of LTOP. Lots of the following results point
out features that are not present in this family and that are desirable in the LTOP one.

Please note that the substitution in the LTEO family works something like the concate-
nation inside Regular Expressions, with the difference that for LTEO the expressions are
generated by an LT language.

Example 5.11 (LTE and RegExp). Consider the Regular Expressions:
RE1 = (ab)+

RE2 = (b+.RE1.a
+)+

it is trivial to translate those regular expressions into LTE:
LTE1 = LT2({#a, ab, ba, b#}
LTEi = LT2({#b, bb, b−,−a, aa, ab, a#})

84 5| Locally Testable Extended Languages

LTE2 = stringSub(LTEi, LTE1)

With this construction, it is easier to translate Regular Expressions into LT-like format,
thus thanks to the fact that this new representation is more expressive than LTO.

Lemma 5.1 (LTO ⊆ LTEO). LTO family is contained in LETO.

Which implies

Corollary 5.1 (NC ⊆ LTEO). NC is contained in LTEO.

At this point, it may arise the question: "is it possible that LTEO defines NC?". To
answer this question, please note that if LTEO ⊆ NC, having LTO ⊆ LTEO and being
NC = LTO, then it would be LTEO = LTO, which seems unfeasible. However, here is
a result that will answer the question:

Theorem 5.1 (LTE ⊈ NC). Not all LTE languages are Non-Counting

Proof. The proof of this theorem consists of the constatation that a(aaa)∗ is not a NC
language but it is LTE, as proved in example 5.10.

So, LTEO ̸= LTO. This also enables to state the following:

Corollary 5.2 (NC ⊂ LTEO). NC is strictly contained in LTEO, but there are LTEO
languages that are not NC.

Let us now add some examples relating LTO with OPLs:

Example 5.12. Given the OP-alphabet (Σ,M), where Σ = {a} and having M:
a

#
.
= ⋖

a ⋗ .
=

Given η = LT2({#a, a−,−a,−#}), ξ = {a}, then the LTE language generated by
stringSub(η, ξ) = a2n, which, absurdely, is NCOP because no substring in s ∈ stringSub(η, ξ)

is well chained.

Example 5.13. Given the OP-alphabet (Σ,M), where Σ = {a} and having M:
a

#
.
= ⋖

a ⋗ ⋖

5| Locally Testable Extended Languages 85

Given η = LT2({#a, a−,−a,−#}), ξ = {a}, then the LTE language generated by
stringSub(η, ξ) = a2n, which trivially isn’t NCOP because, even if its substrings are well-
chained, if am ∈ stringSub(η, ξ), then am+1 /∈ stringSub(η, ξ).

Example 5.14. Given the OP-alphabet (Σ,M), where Σ = {a, b, c} and having M:
a b c

#
.
= ⋖

a ⋖
b ⋖
c ⋗ ⋖

Given η = LT4({#abc, abca, bca−, ca− c, a− ca,−cab, cabc, abc#}),
ξ = {b}, then the LTE language generated by stringSub(η, ξ) = (abc)2n, which trivially is
not NCOP because, even if its substrings are well-chained, if
(abc)m ∈ stringSub(η, ξ), then (abc)m+1 /∈ stringSub(η, ξ).

87

6| Locally Testable Languages

over Operator Precedence

Here is presented the LTOP family of languages. In order to define it, there are used
some of the LTO’s features, and some of the OPE’s ones, to get a family that is NCOP .
After having defined it, there is presented the way it relates to the other characterizations
of OP, with particular attention to the ones already presented and their Non-Counting
versions, and, leveraging those comparisons, there will be proved that the LTOP family
is not only contained into NCOP , but it coincides with the NCOP family.

As previously hinted, the LTOP family is an evolution of the LTEO family, using the
substitution, but, because of the great expressiveness of stringSub, shown in corollary 5.2,
there is set a restriction on the way with which the substitutions are performed: the
substitutions are done in a fence-like manner. So, after having defined the new substitution
function, the fence-subs , there are presented the definition of LTOP, its results, and its
relationship with the families of MSO and OPE definable languages.

6.1. Fence Substitution

In order to define the LTOP family, it is needed to introduce a new operation that colli-
mates the peculiarities of stringSub and the fence operation of OPEs. The idea is to build
a stringSub that substitutes only substrings that constitute a complete subtree of the tree
structure of the final string, or, equivalently, if the part to be substituted is well-chained
over the final string.

Example 6.1. Given the OP-alphabet defined via Σ = {a, b, c} and the OPM M:
a b c #

a ⋖ ⋖ .
=

b
.
= ⋗

c ⋖ ⋗
⋖ .

=

88 6| Locally Testable Languages over Operator Precedence

-

a -

b

c -

a -

b

c

#

Figure 6.1: Structure of abcabc

The string s = abcabc, for which there is M(s) = #⌊a⌊b⌋c⌊a⌊b⌋c⌋⌋#, which means that
the structure of the string is the one reported in fig. 6.1.

In the figure there have been indicated with "-" the nodes for which there are the only
nodes for which there is the possibility to apply the fence-subs operation, because, even
if the substitution has no limitations, the fence requires to substitute substrings that are
well-chained on the final string, so substrings that in the structure tree, are part of a
complete subtree of it.

As it has been done for stringSub, the definition of fence-subs is given before operating
over a single string, and then it is expanded to operate over a whole language.

Definition 6.1 (fence-subs). Given an OP-alphabet (Σ,M), a string s ∈ ΣΦ and func-
tion map : Φ → Σ∗ that maps each element of ϕ(s) to one string xi ∈ Σ∗, the string
fence-subs(s,map), if exists, will be the string s in which each ocurrence of each element
of ϕ(s), −j, is substituted by map(−j) = xj, only if, given that −j in #·s·# is surrounded
by the characters a, b ∈ ΣΦ,#, then:

• if a, b ∈ Σ: M(a ·map(−j) · b) = ⌊a ·M(map(−j)) · b⌋;

• if a = #, b ∈ Σ: : M(map(−j) · b) = ⌊map(−j) · b⌋;

• if a ∈ Σ, b = #: M(a ·map(−j)) = ⌊a ·map(−j)⌋.

Example 6.2. Given the OP-alphabet defined via Σ = {a, b, c} and the OPM M:

6| Locally Testable Languages over Operator Precedence 89

a b c #

a ⋖ ⋖ .
=

b
.
= ⋗

c ⋖ ⋗
⋖ .

=

Given the string s = a− c, consider fence-subs(s, {− → b}):
M(abc) = ⌊a⌊b⌋c⌋, M(b) = ⌊b⌋, thus aca = fence-subs(s, {− → c}).

Consider fence-subs(s, {− → bcab}):
M(abcabc) = ⌊a⌊b⌋c⌊a⌊b⌋c⌋⌋, M(bcab) = ⌊⌊b⌋c⌊a⌊b⌋⌋⌋, and it is trivial to see that bcab is
not well-chained on abcabc, then fence-subs(s, {− → bcab}) is not defined.

definition 6.1 defines how fence-subs works t substitute a single string, however, it is
needed to extend this definition to work also with languages:

Definition 6.2. Given an OP-alphabet (Σ,M), a string s ∈ ΣΦ and a function map :

Φ → ℘(Σ∗) that maps each element of ϕ(s) to one language ηi ⊆ Σ∗, the language
fence-subs(s,map) will be the set of all the possible strings derived from s in which each
occurrence of each element of ϕ(s), −j, is substituted by xj ∈ ηj = map(−j), only if, given
that the occurrence of −j in # · s ·# is surrounded by the characters a, b ∈ ΣΦ,#, then:

• if a, b ∈ Σ: M(a · xj · b) = ⌊a ·M(xj) · b⌋;

• if a = #, b ∈ Σ: M(xj · b) = ⌊M(xj) · b⌋;

• if a ∈ Σ, b = #: M(a · xj) = ⌊a ·M(xj)⌋.

Example 6.3. Given the OP-alphabet defined via Σ = {a, b, c} and the OPM M:
a b c #

a ⋖ ⋖ .
=

b
.
= ⋗

c ⋖ ⋗
⋖ .

=

Given the string s = a−1 c−2 a and the languages η1 = {b, c},
η2 = (ab)∗ + c∗, then let us analyze the language fence-subs(s, {−1 → η1; −2 → η2}).
Please note that c cannot be fence-substituted in place of −1, because it will not be well-
chained, while b can, so:
fence-subs(s, {−1 → η1; −2 → η2}) = {
a · {b} · fence-subs(c−2 a, {−1 → η1; −2 → η2})}
By noticing that any repetition of c (exception given for ε) will not be well-chained in
place of −2 inside c−2 a, then c∗ will not be used to generate the language; however, any

90 6| Locally Testable Languages over Operator Precedence

any string belonging to (ab)∗ will be well-chained, so:
fence-subs(c−2 a, {−1 → η1; −2 → η2}) = {ca, caba, cababa, . . .}
Which implies that:
fence-subs(s, {−1 → η1; −2 → η2}) = {abca, abcaba, abcabcaba, . . .}

Lastly, the fence-subs can be extended to work not only on a single string s on which
perform the substitution but it can also be extended to accept an entire language ξ:

Definition 6.3 (fence-subs). Given an OP-alphabet (Σ,M), a language ξ ∈ ℘(ΣΦ) and a
function map : Φ → ℘(Σ∗) that maps each element of ϕ(ξ) to one language ηi ⊆ Σ∗, the
language fence-subs(ξ,map) is defined as:⋃

s∈ξ fence-subs(s,map)

Given those definitions and corollary 4.2, there can be seen that the operation fence-subs

does not apply to strings s such that −i−j is a substring of s.

Corollary 6.1. Given any OP-alphabet (Σ,M), a function map : Φ → ℘(Σ∗) and a string
s ∈ ΣΦ, then fence-subs(s,map) may contain at least a string only if there does not exist
any two (possibly equal) blanks −i,−j ∈ Φ such that −i−j is a substring of s.

Example 6.4. Consider the OP-alphabet used in example 6.3 and change it by adding
the relation c⋗ c, so having as alphabet Σ = {a, b, c} and the OPM M:

a b c #

a ⋖ ⋖ .
=

b
.
= ⋗

c ⋖ ⋗⋗⋗ ⋗
⋖ .

=

Consider the languages η1 = b∗, η2 = a+c+ and ξ = ((a −1 c)
∗(a −2 c)

∗)∗ and see how to
build fence-subs(ξ, {−1 → η1,−2 → η2}).
Please note that inside the string a−2 c ∈ ξ, the −2 character can be substituted only by
strings in the form of anbn.
η1 = {ε, b, bb, . . .}
η2 = {ac, aac, aaac, acc, accc, aacc, . . .}
ξ = {ε, a−1 c, a−1 ca−1 c, a−2 c, a−2 ca−2 c, a−1 ca−2 c, . . .}
To build fence-subs(ξ, {−1 → η1,−2 → η2}) we need to calculate the union of the fence-
substitution of all the strings recognized by ξ, so:
fence-subs(ε, {−1 → η1,−2 → η2}) = {ε}
fence-subs(a−1 c, {−1 → η1,−2 → η2}) = {ac, abc, abbc, abbbc, . . .}
fence-subs(a−1 ca−1 c, {−1 → η1,−2 → η2}) = {acac, abcac, acabc, abbcabbbbc, . . .}

6| Locally Testable Languages over Operator Precedence 91

x

u1

u2 . . .

un

w

vn

v2

v1

y

Figure 6.2: Structure of xu1u2 · · ·unwvnvn−1 · · · v1y

fence-subs(a−2 c, {−1 → η1,−2 → η2}) = {aacc, aaaccc, aaaacccc, . . .}
fence-subs(a−1 ca−2 c, {−1 → η1,−2 → η2}) = {acaacc, abbcaacc, abbbcaaaacccc, . . .}
By calculating the union of all those languages, there could be found the language
fence-subs(ξ, {−1 → η1,−2 → η2}).

Let us now analyze some results on the structure of fence-subs strings:

Corollary 6.2. Given an OP-alphabet (Σ,M), and a string
s = xunwvny = xu1u2 · · ·unwvnvn−1 · · · v1y such that w and uwv are well-chained, then
there do not exist any string o ∈ Σ∗

Φ and function map : Φ → ℘(Σ∗) such that s ∈
fence-subs(o,map) and such that there is a fence-subs between a ui (vi) and ul (resp. vl)
with i ̸= l in which either the last (beginning) part of ui (vi) and the beginning (last)
part of ul (vl) are parts of the same substitution or there is an entire ui+1 (vi−1) that is
contained in the substitution.

Proof. Thanks to corollary 4.7 it is that the structure of
xu1u2 · · ·unwvnvn−1 · · · v1y is similar to the one of fig. 6.2. Given this fact, it can be
easily seen that there is no possibility for a fence substitution to span over more than one
repetition of u (v) and to span only over un (vn).

Corollary 6.3. Given an OP-alphabet (Σ,M), and a string s = xunwvny such that w
and xwv are well-chained and having u, v ∈ Σ+ (so they cannot be ε), then if there exist
any strings o ∈ Σ∗

Φ, z, j, k ∈ Σ∗ such that un isn’t a substring of j and vn is not a substring

92 6| Locally Testable Languages over Operator Precedence

of k and s = fence-subs(o, {− → z}) and o = xj − ky then ulwvh is a substring of z, and
l = h ≥ 0.

Proof. Thanks to corollary 4.7 there is that the structure of
xu1u2 · · ·unwvnvn−1 · · · v1y is similar to the one of fig. 6.2. Given this, it is trivial to
see that the fence substitution, in order to span over an entire sub-tree, must start from
somewhere inside ui and end over vi. If this is not the case, then it will span over only
part of a subtree which is not acceptable.

Given an OP-alphabet (Σ,M), we can extend it to (ΣΦ,MΦ) by adding the relation −i⋗aj
and aj ⋖ −i for each element −i ∈ Φ and aj ∈ Σ#. In this case, it is useful to note that
given a string s ∈ ΣΦ it has the same structure of the string obtained via fence-subs on s.

Example 6.5. Consider the language used in example 6.4 and the string
s = abbcaaccaaacccabc built starting from s′ = a−1 ca−2 ca−2 ca−1 c; Extend the OPM
M in MΦ :

a b c −1 −2 #

a ⋖ ⋖ .
= ⋖ ⋖

b
.
= ⋗ ⋖ ⋖

c ⋖ ⋗⋗⋗ ⋖ ⋖ ⋗
−1 ⋗ ⋗ ⋗ ⋗
−2 ⋗ ⋗ ⋗ ⋗
⋖ ⋖ ⋖ .

=

Analyze the structure of s and s′ over the corresponding matrices (note that
M(s) =MΦ(s)):
MΦ(s) = #⌊a⌊bb⌋c⌊a⌊ac⌋c⌊a⌊a⌊ac⌋c⌋c⌊a⌊b⌋c⌋⌋⌋⌋#
MΦ(s

′) = #⌊a⌊−1⌋c⌊a⌊−2⌋c⌊a⌊−2⌋c⌊a⌊−1⌋c⌋⌋⌋⌋#

As can be seen also on fig. 6.3, the structure of s and s′ are equal without considering the
replaced parts.

Please note that in the substitution there have been used 2 different names to refer to the
function in the case it was applied to a string or to a language, while it has not been done
for the fence-subs function. This choice has been taken in order to not make the notation
heavier than it could be, and because there are no substantial differences between one
definition of fence-subs and the other. In particular, it can be seen that:

• fence-subs(s,maps = {−i → xi | − ∈ Φ, xi ∈ Σ∗}) =
fence-subs(s,mapl = {−i → ηi | −i ∈ Φ, ηi = {xi}};

6| Locally Testable Languages over Operator Precedence 93

#

a

b b

c

a

a c

c

a

a

a c

c

c

a

b

c

#

(a) Structure of MΦ(s)

#

a −1 c

a −2 c

a −2 c

a

−1

c

#

(b) Structure of MΦ(s
′)

Figure 6.3: Structure of s and s′

• fence-subs(s,mapl ⊆ (Φ× ℘(Σ∗))) = fence-subs({s},mapl)

Note also that this way of defining the stringSub and fence-subs is not much different
from the concept of concatenation or fence inside the expressions, with exception given for
the fact that expressions are defined somehow in a "static" way, while for stringSub and
fence-subs , it is like the expressions are built by a language, and then they are evaluated.

6.2. Fence Substitution Restriction

Now that the fence-subs function has been defined, there is one last topic to be introduced:
Is it sufficient to add the fence like "restriction" over the substitution in order to make
the language NCOP ?
In order to answer this question, let us recall some of the non NCOP examples done
with LTEO and see if they are recognizable using the fence-subs operation instead of the
stringSub one.

Example 6.6. Consider example 5.13, substituting the stringSub function with fence-subs.
Now fence-subs will recognize the language {aa}, because on any other string s ∈ η dif-
ferent from a−, the fence-subs function could not be applicable.

Example 6.7. Consider example 5.14, substituting the stringSub function with fence-subs.
Now fence-subs would not be applicable because there is no way to apply it on (abca− c)+

94 6| Locally Testable Languages over Operator Precedence

in order not to violate the fence restriction.

Given those examples, it may seem that it has been a success to introduce the fence
restriction, however, there will be reported another example that proves it is yet not
sufficient.

Example 6.8. Given the OP-alphabet (Σ,M), where Σ = {a, b, c} and having M:
a b c

#
.
= ⋖

a ⋖
b ⋗
c ⋗ ⋖

Given η = LT4({#abc, abca, bca−, ca − c, a − ca,−cab, cabc, abc#}), ξ = {b}, then the
language generated by fence-subs(η, ξ) is (abc)2n, which trivially is not NCOP .

From the previous example, it can be seen that fence-like restriction applied to the string
substitution is not yet strict enough to guarantee that a language, produced with the
application of fence-subs over NCOP languages, is NCOP too. For this reason, with the
goal to restrict the expressive power of the new class of languages, there can be introduced
another restriction: the Fence Substitution Restriction, or FSR.
This restriction has been built with particular attention to avoid the same cases of the
example 6.8, and to easily prove how LTOP languages relate to OPEs. Before presenting
FSR, however, it is useful to introduce the concept of SubString Language:

Definition 6.4 (SubString Language). Given a language η ∈ ℘(Σ∗
any), the SubString

Language of η is the language defined as:
SSL(η) = {x ∈ Σ∗

any | ∃w ∈ η such that x is a substring of w}.

So, given any language η, SSL(η) is the set of all the substrings of all the strings inside
the language η.

Example 6.9. For example,
SSL({abc, def}) = {a, b, c, ab, bc, abc, d, e, f, de, ef, def};
SSL(a∗) = a∗;
SSL(ab∗cd∗) = ab∗ ∪ cd∗ ∪ b∗cd∗ ∪ ab∗cd∗.

Given the definition of SSL, the Fence Substitution Restriction can be presented:

Definition 6.5 (Fence Substitution Restriction). Given an OP-alphabet (Σ,M) and τ =

fence-subs(ξ,map), it is said that τ is Fence Sub Restricted (FSR) iff, for each element

6| Locally Testable Languages over Operator Precedence 95

s ∈ SSL(τ)∩ (Σ3
·Σ∗) there exists at most one string o ∈ SSL(ξ)∩Σ3

#,Φ ·Σ∗
#,Φ such that

s = fence-subs(o,map).

Example 6.10. Consider the OP-alphabet (Σ,M), where Σ = {a, b, c} and M :

a b c #

a ⋖ ⋖ ⋗
b

.
= ⋗ ⋗

c ⋖ .
= ⋗

⋖ .
=

And the language ξ = (a− c)∗|(aac)∗|(abb)∗, then:

η1 = a∗, fence-subs(ξ, {− → η1}) does not satisfy FSR, because a− c, aac ∈ SSL(ξ) and
aac ∈ fence-subs(a− c, {− → η1}) and aac ∈ fence-subs(aac, {− → η1})

η2 = a∗b+, fence-subs(ξ, {− → η2}) does not satisfy FSR, because ca−, caab ∈ SSL(ξ)

and caab ∈ fence-subs(ca−, {− → η2}) and caab ∈ fence-subs(caab, {− → η2});

η3 = a+b+, fence-subs(ξ, {− → η3}) does satisfy FSR, because the substitution is inside
a− c and it will provide, at least aabc, but {abc, bbc, aaa, aab} ∩ SSL(ξ) = ∅.
Please note that, although ca− ∈ SSL(ξ) and caab ∈ fence-subs(ca−, {− → η3}), thus
caa ∈ SSL(fence-subs(ca−, {− → η3})), and caa ∈ SSL(ξ), however fence-subs(ξ, {− →
η3}) satisfies FSR because caa ̸∈ fence-subs(ca−, {− → η3}).

The main concept behind FSR is to add to the language via fence-subs only new strings
that cannot be expressed in other ways. Its concept can somehow remind the restriction
over BDNF rules for grammar.

The FSR restriction enables to state the following two theorems that will be the basis for
the main results of LTOP results:

Corollary 6.4. Given an OP-alphabet (Σ,M), a string s = xunwvny ∈ fence-subs(o,map),
if uwv and w are well-chained on s, then if in o there is a substring u′i being fence-
substituted into ui inside un in s, then if u = ε then u′i = ε, else u′i ∈ Σ∗

ΦΣ.

The same is valid for v, with v′i ∈ ΣΣ∗
Φ.

Proof. For the case of ui = ε, it’s trivial to see that there is not possible to have u′i = −
or u′i ∈ Σ+, thus u′i must beε.

In the other cases, if u′i would terminate with an element of Φ, there would be a chain
ending while the u ends, so u · u would be . . . ⌊. . .⌋⌊. . . which is not possible, so u′i must
be either empty or end with a character of Σ.

96 6| Locally Testable Languages over Operator Precedence

Theorem 6.1. Given an OP-alphabet (Σ,M), a string s = xunwvny ∈ fence-subs(o,map)

for which is valid FSR, if uwv and w are well-chained on s, then if in o there is a substring
u′1u

′
2 · · ·u′m being fence-substituted into u1u2 · · ·um inside un = u1u2 · · ·umum+1 · · ·un in

s, and being m ≥ 5, then u′1 = u′2 = u′3 = · · · = u′m.

Proof. Consider u′1u′2u′3u′4u′5, thanks to corollary 6.4,
u′1 = u′′1a, u′2 = u′′2a, u′3 = u′′3a, u′4 = u′′4a and u′5 = u′′5a, with a ∈ Σ and
u′′1, u

′′
2, u

′′
3, u

′′
4, u

′′
5 ∈ Σ∗

Φ. Consider o1 = u′1u
′
2u

′
3u

′
4 and o2 = u′2u

′
3u

′
4u

′
5.

It is trivial to see u4 ∈ fence-subs(o1,map) and u4 ∈ fence-subs(o2,map), thus, being FSR
valid, then o1 = o2, which implies that:

u′′1 a u′′2 a u′′3 a u′′4 a
u′′2 a u′′3 a u′′4 a u′′5 a

u′′1 = u′′2 = u′′3 = u′′4 = u′′5, which implies that u′1 = u′2 =

u′3 = u′4 = u′5.

It is now presented one of the major results regarding LTOP:

Theorem 6.2 (fence-subs , FSR and NCOP). Given an OP-alphabet (Σ,M), and τ =

fence-subs(ξ,map), ξ ∈ LTk,ΣΦ
, if ∀−i ∈ ϕ(ξ) map(−i) ∈ NCOP and τ is FSR, then

τ ∈ NCOP .

Proof. To prove the theorem, there will be hypothesized that exists
s = xunwvny ∈ fence-subsM(ξ,map) and we will verify that
z = xun+1wvn+1y ∈ fence-subsM(ξ,map).

Given the definition of fence-subs , it can be seen that s ∈ fence-subsM(ξ,map) implies
that exists o ∈ Σ∗

Φ such that o ∈ ξ and s = fence-subsM(o,map).

In this proof, there will be enumerated all the possibilities of the composition of o and
they will be analyzed one by one. The first classification that can be done is:

1. fence-subs is not used to produce s −→ o ∈ Σ∗, o = s;

2. fence-subs is used to produce s −→ o /∈ Σ∗, o ̸= s;

In the case of item 1 where fence-subs is not used, using the fact that ξ ∈ LTk,ΣΦ
, and

having s ∈ ξ ∈ NC, it is trivial to see that z ∈ ξ, thus z ∈ fence-subsM(ξ,map).

Let us now analyze the case of item 2, to study which, there will be examined different
cases. Let be x1, x2, y1, y2 ∈ Σ∗, x

′
1, y

′
2, w

′
e ∈ Σ∗

Φ such that x1 · x2 = x, y1 · y2 = y, x1 =

6| Locally Testable Languages over Operator Precedence 97

fence-subsM(x
′
1,map), y2 = fence-subsM(y

′
2,map), x

′
1 · w

′
e · y

′
2 = o, in this case we there

can be:

1. w′
e ∈ Σ∗ −→ x2u

nwvny1 = w
′
e;

2. w′
e = −i −→ x2u

nwvny1 ∈ ηi = map(−i);

3. w′
e /∈ (Σ∗ ∪ Φ).

Start from item 1. In this case there is x2unwvny1 = w
′
e, asking that n > k, hav-

ing ξ ∈ LTk,ΣΦ
, thanks to theorem 2.2 and corollary 4.8, then x

′
1x2u

nwvny1y
′
2 ∈ ξ ⇒

x
′
1x2u

n+1wvn+1y1y
′
2 ∈ ξ, which implies that:

z = x1x2u
n+1wvn+1y ∈ fence-subsM(x

′
1x2u

n+1wvn+1y1y
′
2, η1, · · · , ηm).

Discuss the item 2: in that case there is that ∃−i∈ϕ(o)x2u
nwvny1 ∈ ηi = map(−i), asking

that n ≥ ni
1 , there is that x2un+1wvn+1y1 ∈ ηi, which means that z = x1x2u

n+1wvn+1y ∈
fence-subsM(x

′
1w

′
ey

′
2,map).

Finally analyze the item 3. Please note that being unwvn well-chained, there ca not
be a fence-subs on part of x2 (or y1) that includes in its substitution also part of un

(or, respectively, vn) without including the whole unwvn, thus falling in case item 2.
For this reason, for the case in the study, there will be considered x2 = y1 = ε. So
unwvn ∈ fence-subs(w

′
e,map). For corollary 6.3 we have that if there exists a fence-

substitution on w
′
e such that its substitution contains ulwvk, then k = l. This means

that w′
e = u

′
ew

′
v

′
e. In this new writing, w′ is such that in its substitution it is contained

ul+1wvl+1 where l is the number of u (or v) in the substitution.

Thanks to corollary 6.4 we have that there cannot be present fence-substitutions between
one u (v) and another. This means that u′

e (v′
e) is the concatenation of n− l−1 substrings

that can be fence-subs to u (v). For FSR, we have that each one of these substrings in
u

′
e (v′

e) is equal to the other ones, so u′
e = u

′ n−l−1 (v′
e = v

′ n−l−1).

This means that w′
e = u

′ n−l−1w
′
v

′ n−l−1. If l > nηi , then ul+1wvl+1 is in the substitution of
w

′ , then ul+2wvl+2 ∈ SSL(fence-subs(w
′
,map)), and thus z ∈ fence-subs(o,map). Else,

if n− l−1 > nξ, then the string that adds one u′ and one v′ to o is contained in ξ, because
ξ ∈ NC, thus z ∈ fence-subs(ξ,map).

1Denoting with ni the the number n of NCOP definition with respect to the language ηi = map(−i),
that, being −i ∈ ϕ(o) ⊆ ϕ(ξ), then ηi must be NCOP .

98 6| Locally Testable Languages over Operator Precedence

In the end, due to the fact that there are no other possibilities to build o, it is sufficient to
choose ∀−i ∈ ϕ(ξ) n > nξ + nmap(−i) + 1 to have that the language fence-subs(ξ,map) ∈
NCOP .

Let us now analyze example 6.8. It is trivial that in that specific case, the FSR was vio-
lated, so we reached our goal of restricting the expressiveness of these languages, however,
it is sufficient to guarantee that any LTOP is NCOP ? Is this restriction too strict?Is the
FSR property decidable?
The following of this work will answer those questions.

6.3. Language Definition

How can LTOP family be defined?

definition 6.5 and theorem 6.2 gave a hint on it, however, how it has been done for LTOs,
there will be defined the LTOP family as the boolean operators and concatenation closure
on the family defined via those previous results:

Definition 6.6 (LTOP). Given an OP-alphabet (Σ,M) we define as LTOP family of
languages the smallest set of languages that contains:

1. the empty language: ∅

2. The language τ = fence-subs(ξ,map) where ξ is LTk,ΣΦ
and map : Φ → LTOP and

where there subsists the FSR on τ

And such that it is closed under Boolean operations and concatenation.

Corollary 6.5. The LTOP family contains the LTO family.

Proof. To prove this theorem, note that it is trivial to see LT ⊆ LTOP , thus, being LTOP
closed with respect to boolean operations and concatenation, then LTO ⊆ LTOP .

The main result that can now be stated is:

Theorem 6.3 (LTOP ⊆ NCOP). The family of languages defined by LTOP is a subset
of the NCOP family.

Proof. To prove this theorem we will take inspiration from section 5 of [15].

6| Locally Testable Languages over Operator Precedence 99

The goal is to prove that any language η ∈ LTOP implies that η ∈ NCOP . As the first
thing, it will be pointed out that if η ∈ LT , then η ∈ NC, and, thus, η ∈ NCOP .

Then, given η, ξ ∈ LT , then ¬η, η ∪ ξ, η ∩ ξ, η · ξ ∈ LTO, which implies that they are
also NCOP .

Lastly note that any language that is LTOP is built, via fence-subs , over other languages
that are either LTO or LTOP, but also those LTOP languages must be composed over
LTO or LTOP languages; however during this sequence of LTOP languages, there must
be present one last language only relying on a set of LTO languages on which map : Φ →
LTO, so, for theorem 6.2 the language defined via fence-subs using the function map
mapping Φ in NCOP is NCOP .

Being NCOP family closed with respect to boolean operators and concatenation, any
language that is derived as a boolean operation or the concatenation of more NCOP

languages, it is itself a NCOP language, which will end the proof.

So, there is LTOP ⊆ NCOP , which is a great result, however, in the following section
there is proved more amazing results from the comparison of LTOP with the other char-
acterization of OPLs given in the literature.

6.4. Relations with the Literature

Here is presented how the newly defined LTOP class of languages relates with the other
representations of NCOP , in particular with SF OPE and FO as presented in [15]. This
section, although its shortness, is very important because describes in which way the
newly defined class relates to the representations presented in the literature, and thus
how it can propose new tools for future research.

As a first thing, let us discuss how LTOP relates to SF OPE. For the following theorem,
it is used the characterization of SF OPE given in lemma 4.3.

Theorem 6.4 (SFOPE ⊆ LTOP). The family of languages defined by Star Free OPEs
is contained into LTOP family.

Proof. To prove this theorem, we can rely on lemma 4.3.
It is trivial to see that languages expressible via Regular Expressions are contained into
LTOP, thus the Li,j, Ri,j, Hi, j are also LTOP languages.

100 6| Locally Testable Languages over Operator Precedence

The language defined by a[Σ+]b = a△b is LTOP (and satisfies the FSR clause).
Being LTOP closed with respect to boolean operations and concatenation then also
¬(a[Σ+]b) ∩ a · E · b = a▽b is LTOP.
At this point it is trivial to see that any language defined via

⋃
i

⋂
j ti,j with ti,j =

Li,j · ai,j△bi,j ·Ri,j|Li,j · ai,j▽bi,j ·Ri,j|Hi,j is also LTOP.

Thanks to the previous result, also the following can be stated:

Theorem 6.5. The class of LTOP languages coincides with the class of Non-Counting
languages over OP.

Proof. To prove the theorem, it is used theorem 4.9 and theorem 4.8 to have NCOP ⊆
FO ⊆ SFOPE, from theorem 6.4 we have SFOPE ⊆ LTOP , and for theorem 6.3 it
is LTOP ⊆ NCOP which implies NCOP ⊆ FO ⊆ SFOPE ⊆ LTOP ⊆ NCOP , which
implies NCOP = FO = SFOPE = LTOP .

So, there has been proven that the LTOP family is not only contained in the NCOP one,
but it coincides with it. Moreover, thanks to theorem 6.4, there has been proven how this
new characterization relates to the other ones present in the literature.

101

7| Decidability

In this section, it is discussed if the problem of deciding if an LTOP language is FSR is
decidable or not. As an anticipation of the final result, the problem is decidable, but the
path there will be followed in order to reach this result is neither short nor simple. Before
proceeding on, please note that the goal of this section is only to prove that the problem
is decidable, not to provide a suitable way to solve the problem. There surely must be
other ways to prove this same result.

The steps that will be performed are:

• Find an equivalent notation for FSR such that the check for a language if respects
FSR consists in a finite number of set comparisons;

• Find a way to build languages equivalent to LTE languages, such that they are
regular languages;

• Find a way to build languages equivalent to LTEO languages, such that they are
regular languages;

• Find a way to build languages equivalent to LTOP languages (without the check for
FSR), such that they are regular languages;

• Prove that the problem of deciding whether or not a language satisfies the FSR is
a decidable problem because it is equivalent to the problem of deciding whether or
not a finite set of Regular Languages intersected with a Max Language are all empty
or not.

As already stated, please note that this proof provides to practically check if an LTOP
satisfies the FSR or not, however, the process described in the following pages is not
intended to be used, and thus there has been put no attention to the complexity of
computation or memory consumption.

102 7| Decidability

7.1. FSR Semplification

Here is discussed how to reformulate the FSR to be easier handled and make its condition
correspond to a check of the emptiness of a finite number of languages. In order to do so,
we can start with the following result describing the SSL language of an LT language:

Theorem 7.1 (SSL LT). Given an LT language η, its SSL is also an LT language.

Proof. Suppose that, as described in definition 2.4, η = LTk(α, β, γ, δ) for some sets of
strings α, β, γ ⊆ Σk, and δ ⊆

⋃k−1
i=0 Σ

i.
The language SSL(η) can be characterized as a LT language defined over α′, β′, γ′, δ′,
having:

• δ′ containing all the possible substrings shorter than k of all the elements of the sets
α, β, γ, δ;

• α′ containing all the elements of α, β, γ;

• β′ containing all the elements of β;

• γ′ containing all the elements of α, β, γ.

Thanks to this result, we are guaranteed not only that the SSL(ξ) language of defini-
tion 6.5 is a regular language, but also that it is an LT language, and thus, NC. However,
this result does not guarantee that the number of set comparisons to be done in order to
check the FSR property is finite. To overcome this issue, the following can be stated:

Theorem 7.2. Given an OP-alphabet (Σ,M) and
τ = fence-subs(ξ,map), with ξ that is LT, being
α = SSL(ξ) ∩ Σ3

#,Φ · Σ∗
#,Φ,

β = SSL(τ) ∩ Σ3
· Σ∗

#,
δ = SSL(ξ) ∩ Σ3

#,Φ,
the following are equivalent:

1. for each element s ∈ β there exists at most one string o ∈ α such that
s = fence-subs(o,map);

2. for each element o ∈ α the set
fence-subs(o,map) ∩ fence-subs(α \ {o},map) is empty;

7| Decidability 103

3. for each element o ∈ δ the set
fence-subs(o,map) ∩ fence-subs(α \ {o},map) is empty.

Proof. In order to prove this theorem, let us go step by step.
The equivalence of the first and second points is trivial.
Let us now analyze the second and the third ones, and in particular, let us prove that:

• the second point implies the third;

• the third point implies the second.

Being δ ⊆ α, it is trivial to see that the second point implies the third.

To prove that the third point implies the second, we will prove that if the second point
is not valid, then neither the third is. So, we want to prove that if there exist two strings
x, y ∈ α such that x ̸= y and
fence-subs(x,map)∩ fence-subs(y,map) ̸= ∅, then there also exists w ∈ δ, z ∈ α such that
w ̸= z and fence-subs(w,map ∩ fence-subs(z,map) ̸= ∅.

Obviously, if |x| = 3, |y| = 3 or x = y, the proof will become trivial.
Let us then suppose that |x| ≥ |y| > 3, and, that x ̸= y.

If x, y ∈ Σ∗, then it is trivial to see that their substrings of length 3 will provide the proof
we are searching.

Consider x /∈ Σ∗. In this case, if also y /∈ Σ∗, then note that there cannot be interposed
substitutions in x and y, i.e., it cannot be that there is the following situation:
x = x1 −x x4x5

y = y1y2 −y y5

∃s = s1s2s3s4s5 | s ∈ fence-subs(x,map) ∧ s ∈ fence-subs(y,map)

where s1 ∈ fence-subs(x1,map) ∧ s1 ∈ fence-subs(y1,map) ∧
s2 ∈ fence-subs(y2,map) ∧
s2s3 ∈ fence-subs(−x,map) ∧
s3s4 ∈ fence-subs(−y,map) ∧
s4 ∈ fence-subs(x4,map) ∧
s5 ∈ fence-subs(x5,map) ∧ s5 ∈ fence-subs(y5,map) ∧
s2 ̸= ε ∧ s4 ̸= ε.

This can be proved by relying on the definition of fence-subs and the fact that the
structure of a string over a fixed OP alphabet is unique, while in the case of interposed
fence-subs then they will be as in fig. 7.1. Please note that the previous holds also by
setting s3 = ε, leveraging corollary 4.2. So we proved that between 2 fence-subs over x

104 7| Decidability

x

M(s1) −x

M(s2 · s3)

M(s4) M(s5)

(a) Structure of x1 −x x4x5

y

M(s1) M(s2) −y

M(s3 · s4)

M(s5)

(b) Structure of y1y2 −y y5

Figure 7.1: Structure of x and y

and y not included one inside the other, there must be at least one character of offset
from where the first one ends and where the second one starts.

By also noting that:

• the first and last characters of x cannot belong to Φ because the fence-subs will not
be defined;

• there must be one character a belonging to x and such that a ∈ Φ and for which its
fence-subs can be mapped on a substring y′ of y such that y′ ̸= a

Then also for the substring x′ = a−1aa+1, where a−1, a+1 are the characters preceeding
and following a in x, there exists a substring y′′ of y such that y′′ ̸= x′, and ∃s′ | s′ ∈
fence-subs(x′,map) ∧ s′ ∈ fence-subs(y′′,map).

So, it has been proved that if there is x ∈ α such that there exists y ∈ α \ {x} such that
fence-subs(x,map)∩fence-subs(y,map) contains a string s, then there must also be x′ ∈ δ

such that there exists y′′ ∈ α \ {x′} such that fence-subs(x′,map) ∩ fence-subs(y′′,map)

contains a string; which proves that the third point of the theorem implies the second
one, which ends the proof.

From the previous result, it is trivial to state the following:

Corollary 7.1. There exists a finite number of strings of length 3 that are substrings of
any language η ⊆ Σ∗ if |Σ| is finite.

Corollary 7.2. There exists a finite number of set comparisons to be done to verify if the
FSR property holds for a certain LTOP.

Said that, our focus will now become to prove that the problem of deciding whether or
not fence-subs(o,map) ∩ fence-subs(α \ {o},map) = ∅ with o ∈ δ and α, δ defined as in

7| Decidability 105

theorem 7.2, is decidable.

7.2. Regularizing Locally Testable Extended Languages

The goal of this section is to provide a way to represent LTE languages by leveraging some
Regular Language. In order to achieve such a goal, there must be stated some results
over LT languages:

Definition 7.1 (once reliant). Given an LT η = LTk(S) ⊆ Σ∗
any and a character a ∈ Σ∗

any,
then, being x any element of S ∩ Σ∗

any · {a} · Σ∗
any, if LTk(S \ {x}) ⊆ (Σany \ {a})∗, the

language η is said to be once reliant on a.

Definition 7.2 (eclittic LT). Given a language η ⊆ Σ∗
any defined on a generic alphabet

Σ, and a character a ∈ Σ, we define ηã = η ∩ (Σ \ {a})∗.

Corollary 7.3. Given an LT language η and a character a, then ηã is also an LT language.

The proof of the previous corollary is trivial. Now there can be presented the following
result, upon which the whole section will rely:

Theorem 7.3. Given an alphabet Σ = Σ1 ∪ Σ2 with Σ1 ∩ Σ2 = ∅, then being η1, η2 two
LT languages such that η1 ⊆ (Σ1 ∪ {−})∗ and η2 ⊆ Σ∗

2, and being η1 once reliant on −,
then τ = stringSub(η1, {− → η2}) is also LT.

Proof. To prove this theorem, let us suppose, without loss of generality, that
η1 = LTk1(α1, β1, γ1, δ1), η2 = LTk2(α2, β2, γ2, δ2). It is trivial that there could be defined
k = k1 + k2 and that there can be built the sets
α′
1, α

′
2, β

′
1, β

′
2, γ

′
1, γ

′
2, δ

′
1, δ

′
2 such that

η1 = LTk(α
′
1, β

′
1, γ

′
1, δ

′
1), η2 = LTk(α

′
2, β

′
2, γ

′
2, δ

′
2). For corollary 7.3 there can be built also

η1,−̃ = LTk(α
′′
1, β

′′
1 , γ

′′
1 , δ

′′
1)

Let us now build the sets:

• α such that contains all the possible beginnings of length k of the strings belonging
to τ ;

• γ such that contains all the possible endings of length k of the strings belonging to
τ ;

• δ such that contains all the possible strings of length k belonging to τ ;

• β such that contains all the elements of β′′
1 , β

′
2, and, for each element el ∈ β′

1 \ β′′
1 :

106 7| Decidability

– β contains each substring of lenght k of stringSub(el, δ′2);

– β contains each substring i of lenght k of stringSub(el, α′
2) such that i ∈ Σ∗

1 ·σ∗
2;

– β contains each substring e of lenght k of stringSub(el, γ′2) such that i ∈ Σ∗
2 ·σ∗

1.

It is now trivial to see that τ = LTk(α, β, γ, δ).

Please note that the once reliant assumption guarantees that the substitution of strings
of η2 are always placed inside the "same context1", which enables τ to be LT.

In order to use the previous result, there are lots of limitations:

• |Φ| = 1;

• The language η1 must be once reliant on −;

• The languages η1 and η2 must be defined over different languages.

All those restrictions limit the applicability of the result. In order to use the theorem and
leverage it, there is presented how to overcome each one of those imitations. In particular,
there is analyzed how to overcome them in the opposite order with respect to the one
with which they have just been exposed.

7.2.1. Define Languages on Different Alphabets

In order to leverage the result of theorem 7.3 there must be found a way to translate a
language η2 ⊆ Σ∗ into another one defined over a different alphabet, and a way to do the
backward operation, so to translate a language from the newer alphabet to the older one.

In this section, there it is presented how to do such operations. In order to start, let us
define a way to generate new alphabets:

Definition 7.3 (melter). Given an alphabet Σ and a set E, E is said to be meltable with
respect to Σ if (Σ× E) ∩ Σ = ∅, where × indicates the cartesian product.

Given an alphabet Σ and a set E that is meltable with respect to Σ, the function melt is
defined as M(Σ, E) = Σ× E.
There can be used the notation M0(Σ, E) =M(Σ, E) ∪ Σ.

It is be used the function M(Σ, E) to define the new alphabets to be used. The concept
of meltable has been introduced to avoid having, for instance, M(M0(Σ, E), E). Please
note also that M(Σ, ∅) = ∅, M0(Σ, ∅) = Σ.

1defined in definition 1.18

7| Decidability 107

Corollary 7.4. Given an alphabet Σ and two sets E1 ⊆ E2that are both meltable with
respect to Σ, then M(E1,Σ) ⊆M(E2,Σ).

Here is defined a function that enables the translation of characters, strings, and languages
from being defined over M0(Σ, E) to be defined over Σ.

Definition 7.4 (flattener). Given an alphabet Σ,two sets Es and Et such that Es ⊆ Et,
the function flattener fΣ,Et is defined such that:

• Being c ∈ Σ, then fΣ,Et(c, Es) = c;

• Being c ∈M(Σ, Es), then
fΣ,Et(c, Es) = c′ | ∃e ∈ Es c = ⟨c, e⟩;

• Being c ∈M(Σ, Et \ Es), then
fΣ,Et(c, Es) = c;

• Being s = c0c1 . . . cn, ci ∈M0(Σ, Et), then
fΣ,Et(s, Es) = c′0c

′
1 . . . c

′
n | c′i ∈ fΣ,Et(ci, Es);

• Being η = {s1, s2, . . .} ⊆M0(Σ, Et)
∗, then

fΣ,Et(η, Es) = {s′1, s′2, . . .} | s′i ∈ fΣ,Et(si, Es)

Please note that definition 7.4, gives the possibility to translate a language from being
defined over M0(Σ, Et) to be defined over M0(Σ, (Et \ Ep)).

Another concept that can be introduced here is:

Definition 7.5 (f-equivalence). Given two languages η1 ⊆ Σ∗, η2 ⊆ M0(Σ, E) for some
Σ, E, then they are said to be f-equivalent if η1 = fΣ,E(η2, E).

Now there is presented a function that enables, with the other things, to map a language
from being defined over Σ to be defined over M(Σ, Ep).

Definition 7.6 (producer). Given an alphabet Σ, three sets Es, Ep and Et such that
Es ⊆ Et and a set S such that S = M(Σ, Es) or S = M0(Σ, Es), then we can define the
function producer P as:

• Being c /∈ S, then PΣ,Et(c, S, Ep) = {c};

• Being c ∈ (Σ ∩ S), then
PΣ,Et(c, S, Ep) = {c′ | ∃e ∈ Ep c

′ = ⟨c, e⟩ ∈M(Σ, Ep)};

• Being c ∈ (S \ Σ), then
PΣ,Et(c, S, Ep) = {c′ | ∃e ∈ Ep c

′ = ⟨fΣ,Et(c, Es), e⟩ ∈M(Σ, Ep)};

108 7| Decidability

• Being s = c0c1 . . . cn, ci ∈M0(Σ, Et), then
PΣ,Et(s, S, Ep) = {c′0c′1 . . . c′n | c′i ∈ PΣ,Et(ci, S, Ep)}

• Being η = {s1, s2, . . .}si ∈M0(Σ, Et)
∗, then

PΣ,Et(η, S, Ep) = {s′1, s′2, . . . | s′i ∈ PΣ,Et(si, S, Ep)}

So, in order to translate the language η ⊆ Σ∗ to a new f-equivalent language η′ defined
over E = {e}, it is sufficient to set η′ = PΣ,E(η,Σ, E).

Definition 7.7 (Language Producer). Given an alphabet Σ, three sets Et, Ep, Es such that
Ep, Es ⊆ Et, and a set S =M(Σ, Es) or S =M0(Σ, Es), then LΣ,Et(η, S, Ep) is defined as
the function returning the set of all the possible languages η′ such that η = fΣ,Et(η

′, Ep).

With those definitions, there can be expanded the theorem 7.3 to not rely on the languages
to be defined over separate alphabets:

Corollary 7.5. Given two LT languages η1 ⊆ Σ∗
Φ and η2 ⊆ Σ∗, with Φ = {−} and

η1 that is once reliant on −, then there exists a LT language that is f-equivalent to
stringSub(η1, {− → η2}).

7.2.2. Transform Languages to Once Reliant

Here is presented how an LT language η ⊆ Σ∗
Φ that is not Once Reliant on −i and a

function map : Φ → ℘(Σ∗), can be transformed into a language η′ that is Once Reliant
on −i and a function map′, such that stringSub(η,map) = stringSub(η′,map′).

Consider a language η = LTk(S) ⊆ Σ∗
Φ, −i ∈ ϕ(η) such that η is not once reliant on −i,

and a function map : ϕ(η) → ℘(Σ∗), and let S ′, R, T, U, V be sets, map′ be a function,
then:

1. Set T = S ∩ Σ∗ · −i · Σ∗, S ′ = S \ T , map′ = map, U = R = V = ∅;

2. Choose t = t1t2 . . . tl−1 −i tl+1tl+2 . . . tk ∈ T \ V such that

• t1 = # or

• tk = # or

• There is no m such that the number of elements e′ ∈ T \ V having as m-
th character −i is greater than the number of characters having −i as l-th
character.

3. Choose −j ∈ (Φ \ (ϕ(η) ∪ U));

7| Decidability 109

4. Select each element e = e1e2 . . . em−1 −i em+1em+2 . . . ek ∈ T such that:

l ≤ m ∀l−1
x=1tx = ex+m−l and ∀k−m+l

x=l+1 tx = ex+m−l

l > m ∀m−1
x=1 tx+l−m = ex and ∀k−l+m

x=l+1 tx+l−m = ex

and add it to V and add the new element
e1e2 . . . em−1 −j em+1em+2 . . . ek to R;

5. Add t to V , and −j to U ;

6. Repeat from point 2 until T \ V is not empty;

7. Add T to S ′;

8. For each element −j ∈ U , add to map′ the relation −j → map(−i)

The language η′ = LTk(S
′) is then LT, for each element −j of U , η′ is once reliant on −j,

and stringSub(η,map) = stringSub(η′,map′). So we can state:

Theorem 7.4. Given an LT language η ⊆ Σ∗
Φ and a function map : ϕ(η) → ℘(Σ∗),

there exist an LT language η′ ⊆ Σ∗
Φ and a function map′ : ϕ(η′) → ℘(Σ∗) such that η′ is

single reliant on every element of ϕ(η′), and stringSub(η,map) = stringSub(η′,map′).
Moreover there can be defined the function ip : Φ → Φ that associates to each element of
ϕ(η′) the corresponding element of ϕ(η).

This result solves the problem of once reliability, however, it needs to enlarge the dimension
of the set Φ.

7.2.3. Accept More Blanks

Here is discussed that the restriction of having |Φ| = 1 in theorem 7.3 can be avoided.

Theorem 7.5. Given an LT language η ⊆ Σ∗
Φ and a function map : Φ → ℘(Σ∗) such that

map maps each element of ϕ(η) into an LT language, then there exists an LT language
that is f-equivalent to stringSub(η,map).

Proof. Consider an LT language η ⊆ Σ∗
Φ and a function map : Φ → ℘(Σ∗) such that map

maps each element of ϕ(η) into an LT language, and take an element −i ∈ ϕ(η) and such
that for each element of − ∈ ϕ(η), η is once reliant on −. Even if there is not such a
condition, for theorem 7.4, there can be found the language and function that satisfies
such conditions and such that the language stringSub(η,map) is the same.

At this point, there can be demonstrated by induction that the theorem is valid.

110 7| Decidability

Let us suppose that |Φ| = 1, then, it is the case of theorem 7.3, so the theorem is true.

Let us suppose that |Φ| = n, and that the theorem is valid for n− 1.
Take − ∈ Φ, and consider Σ′ = Σ ∪ {−}, Φ′ = Φ \ {−}, and let us define map′ : Φ′ →
℘(Σ′∗) = map \ {− → map(−)}. It is trivial to see that η ⊆ (Σ′ ∪ Φ′)∗ and that, for
each element −′ ∈ Φ′, map(−′) ⊆ Σ′∗, thus, there exists, by the induction hypothesis,
an LT language η′ ⊆M0(Σ′, E)∗ such that it is f-equivalent to stringSub(η,map′). Now,
by applying theorem 7.3 over stringSub(η′, {− → map(−)}), it is trivial to see that we
obtain an f-equivalent language with respect to the initial stringSub(η,map).

Let us call Σ′ = ΣΦ \ {−i}, then η ∈ (Σ′ ∪ {−i})∗, but also for each − ∈ ϕ(η), map(−) ⊆
Σ′∗. Thus, we can apply to have tat there exists a

All those steps, together with the decidability results previously reported for Regular
Languages, allow to state the following:

Corollary 7.6. Given two LT languages η1, η2, it is decidable if stringSub(η1, {− → η2})
is empty or not.

Given an LTE language η, the problem of deciding if η = ∅ is decidable.

Given a string s and an LTE language η, the problem of deciding whether s ∈ η or not.

Given an LTE language, there exists a number n such that for all the strings s having
|s| > n, s ∈ η iff there exists w, y, z such that 1 ≤ |y| ≤ n, s = wyz, wz ∈ η and
∀i ∈ Nwyiz ∈ η.

7.3. Regularizing LTEO

In the previous section, it has been presented how LTE languages can be translated into
other f-equivalent LT languages, and thus which problems for them are decidable. Let us
proceed with this journey by discussing f-equivalent representations of LTEO languages.
In particular, being the LTEO family of languages the closure of the LTE one with respect
to boolean operations and concatenation, the following steps are now made:

1. Discussion of the concatenation;

2. Discussion of the negation operation;

3. Discussion of the intersection operation;

4. Definition of the LTR family of languages;

7| Decidability 111

5. Discussion over LTEO and LTR.

7.3.1. Concatenation

Let us start with the introduction of the concatenation operation. This operation is the
first one to be presented for mainly two reasons: it is the simplest and it does not change
with respect to the traditional definition. Thus, there can be omitted the definition of
concatenation.

Theorem 7.6 (concatenation). Given two LT languages η1, η2 and two sets E1, E2 such
that E1 ∩E2 = ∅ and η1 ⊆M(Σ, E1)

∗, η2 ⊆MΣ,E2(Σ, E2)
∗, then also the language η1 · η2

is LT.

The proof of the previous theorem is trivial considering that the two languages η1 and η2
are defined over different alphabets.

Theorem 7.7. Given two languages η1 ⊆M(Σ, E1)
∗, η2 ⊆M(Σ, E2)

∗ with E1 ∩ E2 = ∅,
the following languages are equivalent:

• fΣ,(E1∪E2)(η1 · η2, (E1 ∪ E2));

• fΣ,E1(η1, E1) · fΣ,E2(η2, E2).

Proof. To prove this theorem, note that being E1 ∩E2 = ∅, then for each element s1 ∈ η1

and s2 ∈ η2, then fΣ,(E1∪E2)(s1 · s2, (E1 ∪E2)) = fΣ,E1(s1, E1) · fΣ,E2(s2, E2) and there are
no other strings belonging to fΣ,(E1∪E2)(η1 ·η2, (E1∪E2)) or fΣ,E1(η1, E1)·fΣ,E2(η2, E2).

Corollary 7.7. Given two languages η1, η2 ⊆ Σ∗, there exist a f-equivalent representation
of η1 · η2.

7.3.2. Negation

Regarding the negation operation, note that usually, having as alphabet Σ, the ¬η is
equivalent to Σ∗ \ η, however, this concept cannot be applied for our purposes, because
the alphabet may change, and there can be the needing to express the negation concept
over a subset of the alphabet.

Definition 7.8 (Negation). Let η be a language defined over M(Σ, Et), and let Ep, Es, Et

be three sets such thatEs, Ep ⊆ Et, then:

112 7| Decidability

¬Et,Es,Epη = {s | s ∈M(Σ, Et) ∧ ∀s′ ∈ PΣ,Et(si, S, Ep)s
′ /∈ η}

Theorem 7.8. Given a language η ⊆ Σ∗, a set E, and being η′ ∈ LΣ,E(η,Σ, E), the
following languages are equivalent:

• ¬η

• fΣ,E(¬E,E,Eη
′, E)

Proof. To prove the theorem, we will proceed by proving the following steps:

• If s /∈ ¬η, then also s /∈ fΣ,E(¬E,E,Eη
′, E);

• If s /∈ fΣ,E(¬E,E,Eη
′, E), then also s /∈ ¬η

If s /∈ ¬η, then s ∈ η, thus for each s′ ∈ PΣ,E(s,Σ, E) it is valid s′ ∈ η′ which implies
s′ /∈ ¬E,E,Eη

′, which implies that s /∈ fΣ,E(¬E,E,Eη
′, E).

If s /∈ fΣ,E(¬E,E,Eη
′, E) then for each s′ ∈ PΣ,E(s,Σ, E), s

′ /∈ ¬E,E,Eη
′ which implies that

there exists at least one string s′′ ∈ PΣ,Et(s
′,M(Σ, E), E) then s′′ ∈ η′, which implies that

fΣ,E(s
′′, E) ∈ η, which implies fΣ,E(s

′′, E) /∈ ¬η and, by noticing that fΣ,E(s
′′, E) = s,

finally proves s /∈ ¬η.

Corollary 7.8. Given a language η ⊆M(Σ, E)∗, the following languages are equivalent:

• ¬η

• ¬E,E,Eη

7.3.3. Intersection

Another operation that can be introduced is the intersection. Please note that, because
we are working on a wider alphabet, as it has been done for the negation, the standard
definition must be adapted.

Definition 7.9 (intersection). Given two languages η1, η2 ⊆ M(Σ, Et), and five sets
Ep, E1, E2 ⊆ Et, S =M0(Σ, Ep), then:
η1

⋂
Et,Ep,E1,E2

η2 = {s | ∃s′ ∈ PΣ,Et(s, S, E1) s
′ ∈ η1 ∧ ∃s′′ ∈ PΣ,Et(s, S, E2) s

′′ ∈ η2}

As it has been done for both negation and concatenation, let us prove that the just stated
definition can be linked to the normal intersection:

Theorem 7.9. Given two languages η1, η2 ⊆ Σ∗, and two sets E1, E2 ∈ Et, being η′1 ∈
LΣ,Et , (η1,Σ, E1), η

′
2 ∈ LΣ,Et , (η2,Σ, E2), then the following two languages are equivalent:

7| Decidability 113

• η1 ∩ η2

• η′1
⋂

Et,∅,E1,E2
η′2

Proof. In order to prove the theorem, we will proceed by proving:

• If s ∈ η1 ∩ η2, then also s ∈ η′1
⋂

Et,∅,E1,E2,
η′2;

• If s ∈ η′1
⋂

Et,∅,E1,E2,
η′2, then also s ∈ η1 ∩ η2.

If s ∈ η1 ∩ η2, then s ∈ η1 and s ∈ η2, which means there exists s′ ∈ PΣ,Et(s,Σ, E1), s
′′ ∈

PΣ,Et(s,Σ, E2) such that s′ ∈ η′1 and s′′ ∈ η′2, which, by construction, implies that s ∈
η′1

⋂
Et,∅,E1,E2,

η′2.

If s ∈ η′1
⋂

Et,∅,E1,E2,
η′2 it means that there exist s′ ∈ PΣ,Et(s,Σ, E1), s

′′ ∈ PΣ,Et(s,Σ, E2)

such that s′ ∈ η′1 and s′′ ∈ η′2, which means that fΣ,Et(s
′, E1) ∈ η1, and fΣ,Et(s

′′, E2) ∈ η2,
but noticing that fΣ,Et(s

′, E1) = fΣ,Et(s
′′, E2) = s, then s ∈ η1 ∩ η2.

Corollary 7.9. Given two languages η1, η2 ⊆ M(Σ, E)∗, the following two languages are
equivalent:

• η1 ∩ η2

• η1
⋂

E,∅,∅,∅ η
′
2

Please note that also with this formulation of negation and intersection, the De Morgan
rule is valid:

Corollary 7.10. Given any two languages η1, η2 ⊆M0(Σ, E)∗, then:
η1 ∪ η2 = ¬E,E,E((¬E,E,Eη1)

⋂
E,∅,∅,∅(¬E,E,Eη2)).

7.3.4. LTR

Here is defined the LTR class of languages. In this definition, there are given only the
main features of LTR, and then the LTR expressiveness can be expanded thanks to later
theorems.

Definition 7.10 (LTR). The class of LTR languages contains all the languages η ⊆
M(Σ, E)∗ such that:

• η is LT;

• η = η1
⋂

E,Ep,E1,E2
η2 with η1 being η1 ∈ M(Σ, E)∗, η2 ∈ M(Σ, E)∗ two LTR lan-

guages, with and E1, E2, Ep ⊆ E;

114 7| Decidability

• η = ¬Et,Es,Etη1 with η1 ⊆M(Σ, E) an LTR language and with Es, Ep ⊆ Et.

Corollary 7.11. Given a LT language η ⊆ Σ∗, then also any language η′ ∈ LΣ,E(η,Σ, E)

is LT.

Corollary 7.12. Given an alphabet Σ and a set E, then the language M(Σ, E)∗ is LT,
and thus also LTR.

Proof. It is trivial to see that the LT language defined as LT2(α, β, γ, δ) with:
α = β = γ =M(Σ, E)2;

δ =M(Σ, E) ∪ {ε}
defines the language M(Σ, E)∗.

In the definition of LTR, there has not been reported the closure of the family with respect
to concatenation, however, with the following result, it will be clear that LTR is closed
also under it.

Theorem 7.10. Given two LTR η1 ⊆M(Σ, E1)
∗, η2 ⊆M(Σ, E2)

∗ with E1∩E2 = ∅, then
also η1 · η2 is LTR.

Proof. To prove this theorem, we will proceed by discussing case by case.

1. If η1, η2 are both LT, then, thanks to theorem 7.6, also η1 · η2 is LT and thus LTR;

2. If η1 = ¬E1,Ep1,Es1η
′
1 and η2, η′1 are LT such that η′1 · η2 is LTR, then:

• ¬(E1∪E2),Ep1,Es1η
′
1 · η2 is trivial to see it is LTR;

• ¬(E1∪E2),Ep1,Es1η
′
1 · η2 defines the same language of η1 · η2.

3. If η2 = ¬E2,Ep2,Es2η
′
2 and η1, η

′
2 are LT such that η1 · η′2 is LTR, it can be proven in

a similar way of how it has been done for the previous point;

4. If η1 = ¬E1,Ep1,Es1η
′
1, η2 = ¬E2,Ep2,Es2η

′
2 and η′1, η′2 are LT for which the concatenation

with an other LTR generates a LTR language, then:

• ¬(E1∪E2),Ep1,Es1(η
′
1 ·M(Σ, E2)

∗)
⋂

(E1∪E2),∅,∅,∅

¬(E1∪E2),Ep2,Es2(M(Σ, E1)
∗ · η′2) is LTR, because M(Σ, E)∗ is an LTR, for hy-

pothesis, both η′1 ·M(Σ, E2)
∗ and M(Σ, E1)

∗ · η′2 are LTR, thus also η1 · η2 is
LTR.

• ¬(E1∪E2),Ep1,Es1(η
′
1 ·M(Σ, E2)

∗)
⋂

(E1∪E2),∅,∅,∅

¬(E1∪E2),Ep2,Es2(M(Σ, E1)
∗ · η′2) defines the same language of η1 · η2. This point

7| Decidability 115

is quite trivial after noticing that the
⋂

Et,∅,∅,∅ coincides to use the standard
boolean operator ∩ over two languages defined over M(Σ, Et).

5. If η1 = η′1
⋂

E1,E1,s,E1,1,E1,2
η′′1 where E1,s, E1,1, E1,2 ⊆ E1, and η′1, η

′′
1 , η2 are LT such

that η′1 · η2 and η′′1 · η2 are both LTR, then:

• (η′1 · η2)
⋂

(E1∪E2),E1,s,E1,1,E1,2
(η′′1 · η2), being (η′1 · η2) and (η′′1 · η2) LTR, is LTR

too;

• (η′1 ·η2)
⋂

(E1∪E2),E1,s,E1,1,E1,2
(η′′1 ·η2) defines the same language of η1 ·η2. For the

sake of simplicity, let us call ξ = (η′1 · η2)
⋂

(E1∪E2),E1,s,E1,1,E1,2
(η′′1 · η2). To prove

ξ = η1 · η2, we will firstly prove that ξ ⊆ η1 · η2 and then that η1 · η2 ⊆ ξ.
To prove the first step, let us suppose that there exists s ∈ ξ, thus
∃s′ ∈ PΣ,(E1∪E2)(s,M(Σ, E1,s), E1,1) ∧ s′ ∈ (η′1 · η2), and
∃s′′ ∈ PΣ,(E1∪E2)(s,M(Σ, E1,s), E1,2) ∧ s′′ ∈ (η′′1 · η2). Moreover, being
E1 ∩ E2 = ∅, there must be s = s1 · s2 with s1 ∈ M(Σ, E1)

∗, s2 ∈ M(Σ, E2)
∗,

and being E1,s ⊆ E1, then PΣ,(E1∪E2)(s2,M(Σ, E1,s), E1,1) =

PΣ,(E1∪E2)(s2,M(Σ, E1,s), E1,2) = s2, thus also s′ = s′1 · s2 and s′′ = s′′1 · s2,
with s′1 ∈ PΣ,(E1∪E2)(s1,M(Σ, E1,s), E1,1) ⊆ M(Σ, E1), thus s′1 ∈ η′1, and s′′1 ∈
PΣ,(E1∪E2)(s1,M(Σ, E1,s), E1,2) ⊆ M(Σ, E1), thus s′′1 ∈ η′′1 , which implies that
s1 ∈ η1, which proves that if s ∈ ξ then s ∈ η1 · η2.
To prove the second step, instead, we want to prove that if s ∈ η1·η2, then s ∈ ξ.
If s ∈ η1 · η2, then s = s1 · s2 | s1 ∈ M(Σ, E1)

∗ ∧ s1 ∈ η1 ∧ s2 ∈ M(Σ, E2)
∗ ∧

s2 ∈ η2, which implies that there exist s′1 ∈ PΣ,E1(s1,M(Σ, E1,s), E1,1) and
s′′1 ∈ PΣ,E1(s1,M(Σ, E1,s), E1,2) such that s′1 ∈ η′1 and s′′1 ∈ η′′1 . Now, being
E1∩E2 = ∅, then it is trivial to see that s′1 · s2 ∈ PΣ,(E1∪E2)(s,M(Σ, E1,s), E1,1)

and s′′1 · s2 ∈ PΣ,(E1∪E2)(s,M(Σ, E1,s), E1,2), which implies that s ∈ ξ, which
was what we were searching for.

6. If η2 = η′2
⋂

E2,E2,s,E2,1,E2,2
η′′2 where E2,s, E2,1, E2,2 ⊆ E2, and η′2, η

′′
2 , η1 are LT such

that η1 · η′2 and η1 · η′′2 are both LTR, then the proof that η1 · η2 is LTR is the same
of the previous point by changing the order of the concatenation;

7. If η1 = η′1
⋂

E1,E1,s,E1,1,E1,2
η′′1 where E1,s, E1,1, E1,2 ⊆ E1 and η2 = η′2

⋂
E2,E2,s,E2,1,E2,2

η′′2

where E2,s, E2,1, E2,2 ⊆ E2 where η′1, η′′1 , η′2, η′′2 are LT, then:

• (η1 ·M(Σ, E2)
∗)
⋂

(E1∪E2),∅,∅,∅(M(Σ, E1)
∗ · η2) is LTR, because M(Σ, E2)

∗ and
M(Σ, E1)

∗ are LT, thus also (η1 ·M(Σ, E2)
∗) and (M(Σ, E1)

∗ · η2) are LTR,
and the intersection of two LTR languages is LTR;

• (η1 · M(Σ, E2)
∗)
⋂

(E1∪E2),∅,∅,∅(M(Σ, E1)
∗ · η2) is trivially equivalent to η1 · η2

116 7| Decidability

because each string it recognizes can be split in two, so s = s1 · s2 where
s1 ∈ M(Σ, E1)

∗ and s2 ∈ M(Σ, E2)
∗, with s1 ∈ η1 and s2 ∈ η2, thus the string

also belongs to η1 ·η2, and the same can be stated for the other side: each string
of s ∈ η1 · η2 is composed of two parts s = s1 · s2 such that s1 ∈ η1 and s2 ∈ η2,
and thus s1 ∈ M(Σ, E1)

∗ and s2 ∈ M(Σ, E2)
∗ which implies it is recognizable

by (η1 ·M(Σ, E2)
∗)
⋂

(E1∪E2),∅,∅,∅(M(Σ, E1)
∗ · η2).

8. If η1 = η′1
⋂

E1,E1,s,E1,1,E1,2
η′′1 where E1,s, E1,1, E1,2 ⊆ E1 and η2 = ¬E2,Ep2,Es2η

′
2, and

η′2, η
′
1, η

′′
1 are LT, then:

• (η1 ·M(Σ, E1)
∗)
⋂

(E1∪E2),∅,∅,∅(M(Σ, E2)
∗ · η2) is LTR;

• (η1 ·M(Σ, E1)
∗)
⋂

(E1∪E2),∅,∅,∅(M(Σ, E2)
∗ · η2) is equivalent to η1 · η2. To prove

it, there can be noticed that in the proof of item 7, where the same result is
reported, there is no restriction on the fact that η1 or η2 are intersections of
LTR and not other LTR languages.

9. If η1 = ¬E1,Ep1,Es1η
′
1 and η2 = η′2

⋂
E2,E2,s,E2,1,E2,2

η′′2 where E2,s, E2,1, E2,2 ⊆ E2, and
η′1, η

′
2, η

′′
2 are LT, then the same reasoning of the previous point can be applied by

switching the order of languages.

With the previous results, there can be stated:

Theorem 7.11. Given an LTO language η, there can be built an LTR language η′ that
is f-equivalent to η.

Proof. The proof consists of noticing that:

• Given an LT language, there can be built an f-equivalent language;

• Given two languages eta1, η2 and two f-equivalents η′1 ⊆M(Σ, E1)
∗, η′2 ⊆M(Σ, E2)

∗,
with E1∩E2 = ∅, E1∪E2 ⊆ E, then are also f-equivalent ¬η1 and ¬E1,E1,E1η1, η1∩η2
and η′1

⋂
E,E,E1,E2

η′2, η1 · η2 and η′1 · η′2;

7.3.5. LTEO

Here is discussed how to relate LTEO and LTR

7| Decidability 117

Theorem 7.12. Given an LTOE language η, there can be built an LTR language η′ that
is f-equivalent to η.

Proof. To prove the theorem we can proceed by proving that there exists a language f-
equivalent to stringSub(τ,map) with τ LT over ΣΦ, with the function map that maps
each element of ϕ(τ) into a language over Σ∗ for which there exists a f-equivalent LTR. If
this holds, being LTR closed under concatenation, intersection, and negation, then there
can be described in LTR form all the possible LTEO languages.

There will be considered |Φ| = 1 and τ once reliant over −, as done in theorem 7.3,
without loss of generality.

By definition, an LT τ can be rewritten in LTR form as τ ′ ∈ LΣ,E(η,Σ, E), so if ϕ(τ) = ∅,
the theorem is valid.

Let us consider the language θ = stringSub(τ, {− → η}):

• If η is LT, then, thanks to theorem 7.3, there can be built an f-equivalent LTR to θ
that is also LT;

• If η = ¬ξ such that
stringSub(τ, {− → ξ}) = fΣ,E(stringSub(τ

′, {− → ξ′}), E) where
stringSub(τ ′, {− → ξ′}) is LTR and
ξ′ ∈M(Σ, E ′)∗, E ′ ∈ E, τ ′ ∈M(ΣΦ, (E \ E ′)), then
fΣ,E((stringSub(τ

′, {− →M(Σ, E ′)∗})
⋂

E,E′,E′ stringSub(τ ′, {− → ξ′})) ∪ τ−̃, E)
is LTR and it is f-equivalent to θ;

• If η = ξ1 ∩ ξ2 such that
stringSub(τ, {− → ξ1}) = fΣ,E(stringSub(τ

′, {− → ξ′1}), E) and
stringSub(τ, {− → ξ2}) = fΣ,E(stringSub(τ

′, {− → ξ′2}), E) are LTR with
ξ′1 ∈M(Σ, E1)

∗, ξ′2 ∈M(Σ, E2)
∗, Ep = E1 ∪ E2, then also

stringSub(τ ′, {− → ξ′1})
⋂

Et,Ep,E1,E2
stringSub(τ ′, {− → ξ′2}) is LTR, and it is f-

equivalent to θ;

• If η = η1 · η2 with η1, η2 for which there exist two corresponding f-equivalent LTR
languages, then also for stringSub(τ, {− → η}) there is an f-equivalent LTR.

7.3.6. Regularizing LTOP

Here is discussed how the concept of fence-subs can be merged with the one of LTR.

118 7| Decidability

As a first thing, let us take a look at the just stated theorem 7.12. From it, there can
be seen that for the substring that is substituted inside the f-equivalent LTR language,
this substring has a unique alphabet, used only for the other substrings taken from the
same language mapped by the function map, that can be used in other substitutions.
This means that, in the LTR language, it is clear which parts of a string have been
substituted, from which language they came, and so on. And all that is possible because
those substrings are defined over an alphabet that is different from time to time.

At this point, consider an OP-alphabet (Σ,M). Obviously, it defines structure over strings
belonging to Σ∗, but we need to expand this domain, to work with strings belonging to
the generic M0(Σ, E)∗ in order to identify stings for which each substring that does not
belongs to Σ is well chained in the string. To achieve such a goal, let us call M ′ the OPM
that defines the OP-alphabet (M0(Σ, E),M ′).
It is trivial that M must be contained in M ′, and that for each element e ∈ E, the
elements of M ′ relative to M(Σ, {e})2, must coincide with the ones of the f-equivalent
elements of M .
At this point, by leveraging the fact that we can consider the LT language on which
fence-subs is applied, as once reliant on each element of Φ, then there is trivial to see that
each element − ∈ Φ, and thus each substitution, will be preceded and followed always by
the same characters a, b ∈ Σ. Thus, leveraging this fact, we can define the elements of M ′

connecting the alphabet M(Σ, E1) to an other alphabet, by leveraging the fact that each
substring containing characters of M(Σ, E1), will be included in the two characters a, b.

At this point is trivial to see that the way to define an f-equivalent language of an LTOP
one, is to find the LTR language f-equivalent to the LTEO version of the LTOP language,
and intersect the LTR language with the Max Language pf the newly built M ′, which will
in turn guarantee that the substrings produced by substitutions are well chained over the
string.

So, to summarize, the following can be stated:

Theorem 7.13. Given a language η that is LTOP (without the constraint on FSR), there
exist a max language MLM ′ a language LTR η′ such that η′ ∩MaxLangM ′ is f-equivalent
to η.

7.4. Decidability

In this section, it is discussed the decidability problem. In order to do so, there are
presented two sections: one discussing the decidable problems of LTR, and one describing

7| Decidability 119

the decidability problem of FSR.

7.4.1. Decidability for LTR

The LTR definition is done in such a way to guarantee the following results. Please note
that the proof of theorem 7.14 will become trivial after the theorem 7.15.

Theorem 7.14 (decidability of string belonging to LTR). The problem of deciding whether
or not a certain string s belongs to an LTR language η, is decidable.

Proof. To prove the theorem, we will proceed with the following steps:

• We will discuss the problem for the base case of LTR;

• We will prove that, given a string s, the set PΣ,Et(s, S, Ep) is finite;

• Assuming that the problem is decidable for two generic LTR languages ξ1ξ2, we will
prove it is decidable also for the negation of ξ1 or the intersection of ξ1, ξ2.

As the first thing, we want to prove that for the simplest LTR, the problem of deciding
whether or not a string belongs to the language, is decidable. Given that the simplest
case of an LTR language is a language that is LT, and being LT regular languages, we
can rely on theorem 1.3 that says that this problem is decidable for Regular languages.

As a second thing, we need to prove the following:

Corollary 7.13. Given three sets Ep ⊆ Et and S, and a string s ∈ M0(Σ, Et)
∗, the set

PΣ,Et(s, S, Ep) is finite.

Proof. There may be many ways to prove this corollary, however, one consists of noticing
that the elements of PΣ,Et(s, S, Ep) have the same, finite, length of s. This, together
with the fact that they are defined over an alphabet, M0(Σ, Et), with a finite number
of elements, will enable us to calculate the maximum number of elements of the set, so
having
|PΣ,Et(s, S, Ep)| ≤M0(Σ, Et)| × |s|.

Now, the final steps left to end the proof, are to prove that, given two LTR languages
for which it is decidable if a string s belongs to them or not, it is decidable if a string s
belongs to the negation of one of the languages or to the intersection of them. Let us say
that the two LTR languages are ξ1, ξ2, then:

120 7| Decidability

• The solution of deciding if a string s belongs to the ¬Et,Es,Epξ1 can be computed
by checking, for each element of PΣ,Et(s, S, Ep), if it belongs to ξ1 or not. By
hypothesis, this problem is decidable, and thus deciding if s ∈ ¬Et,Es,Epξ1 relies on
a finite number of decidable problems, so the problem is decidable;

• The solution of deciding if a string s belongs to the ξ1
⋂

Et,Ep,E1,E2
ξ2 can be computed

by checking for each element of PΣ,Et(s, S, E1), if it belongs to ξ1, and for each
element of PΣ,Et(s, S, E2), if it belongs to ξ2. Being those two decidable problems
per hypothesis, then the original problem can be solved by checking a finite number
of times a decidable problem; thus it is decidable.

In this way, we proved that the problem of belonging is decidable for the LTR family of
languages.

Although the previous result may appear a good result, we need something stronger: we
want the problem of deciding whether or not an LTR is empty, to be decidable.

Let us now introduce one really important result:

Theorem 7.15 (LTR ⊆ RL). LTR is a subfamily of Regular Languages.

Proof. The proof of this theorem consists of 3 parts:

1. Prove the base case of LTR is RL;

2. Prove that if a LTR η is RL, then also ¬Et,Es,Epη is RL;

3. Prove that if two LTR η1, η2 are RL, then also η1
⋂

Et,Ep,E1,E2
η2 is RL;

Let us start with the first point. Being the base case of LTR an LT language, then it is
known that it is also RL.

For the second step, let us take for granted that η is RL; thus there exists a Finite State
Automata recognizing η.
It is trivial to see that there can be built a non-deterministic Finite Step Automata that,
given as input a string s, writes on the output a string inside PΣ,Et(s,M(Σ, Es), Ep). Thus
the language recognized by ¬Et,Es,Epη is the same not recognized by the composition of
the two automata.
It is known that the composition of two Finite State Automata has the same expressive
power of one single Finite State Automata, and that for any non-deterministic Finite
State Automata, there exists an equivalent one that is deterministic.
Thus in this case we proved that there exists a (deterministic) Finite State Automata

7| Decidability 121

recognizing the language ¬Et,Es,Epη, however, being the class of languages recognized by
Finite State Automata corresponding to the class of Regular Languages, then ¬Et,Es,Epη

is a Regular Language.

To prove the intersection, the process is quite equivalent to the one we followed for the
negation.

The previous result makes it trivial the following one:

Theorem 7.16 (f-equivalent of LTR is Regular). If a given language η is f-equivalent to
any LTR language ξ, then η is a Regular Language

Proof. Notice that, given any alphabet Σ such that η ⊆ Σ∗, and any set E such that
ξ ⊆ M0(Σ, E)∗, there can be built a (non-deterministic) Finite State Automaton that is
able to "translate" any string s ∈ Σ∗ into any f-eqivalent string s′ ∈ M0(Σ, E)∗. This,
combined with the fact that there exists a Finite State Automaton that recognizes the
LTR ξ, implies that there exists a non-deterministic Finite State Automaton that ends
the computation in a final state if receives as input a string s ∈ Σ that is f-equivalent to
a string s′ ∈M0(Σ, E)∗ and such that s′ ∈ ξ.

It is notorious that for any non-deterministic Finite State Automaton, there is an equiv-
alent deterministic one. Thus there exists a deterministic Finite State Automaton that
defines the same language of η. Given that the class of languages recognizable with de-
terministic Finite State Automaton coincides with the class of Regular Languages, it is
trivial to see that also η is a Regular Language.

Corollary 7.14 (LTEO ⊆ RL). Given any LTEO language η, it is also a Regular Lan-
guage.

With the previous results, we are guaranteed that not only the problem of deciding
whether or not an LTR is empty is decidable, but we also gain the fact that all the
results of Regular Languages are also valid for LTR, in particular the pumping lemma.

7.4.2. FSR decidability

Here is discussed the decidability of the problem of recognizing whether or not a LTOP
language satisfies the FSR.

Theorem 7.17. The problem of deciding whether or not a language satisfies the FSR
property corresponds to decide whether or not there exists a not empty language in a finite

122 7| Decidability

set of LTR languages intersected with a MaxLanguage.

Proof. The proof of this theorem relies on the fact that for corollary 7.2 the FSR property
relies on a finite number of comparisons of languages, and for theorem 7.13 those languages
are empty only if are empty also the intersections of two languages that are LTOE using
fence-subs instead of stringSubs, and a MaxLanguage.

Theorem 7.18. Given a LTR η and a MaxLanguageM ′, it is decidable whether η∩MLM ′

is empty or not.

Proof. To prove this theorem, let us consider η. From theorem 7.15, η is a Regular
language, thus it is also a Context Free Language, which means that it can be defined by
a suitable Context Free Grammar G, such that it is an Operator Grammar.

Let us now calculate the Operator Precedence Relations holding over G, and let us remove
all those rules that will provide relations not contained in M ′. The resulting grammar G′

is a Context Free Grammar that generates the language resulting from the intersection
of η and MaxLanguageM ′ .

Now, by applying theorem 3.2, the problem of deciding whether or not L(G′) is empty, is
decidable, because it relies on the checking if there exists at least one string z of length
shorter than p, such that z ∈ L(G′). Thus there is a finite number of strings to be checked,
and, being the problem of deciding whether or not a particular string s belongs to a CFL
decidable, then the initial problem relies on a finite number of decidable problems.

And, thus, finally:

Theorem 7.19. The problem of deciding whether or not a given LTOP language η satis-
fies FSR is decidable.

Proof. The proof relies on theorem 7.17 and theorem 7.18, making this problem decidable
because composed by a finite set of finite problems.

So, there has been proved that the problem of recognizing whether or not a given LTOP
language satisfies the FSR, is decidable.

123

Conclusions

The goal of this work was to find a class of Operator Precedence Non-Counting languages
starting from LTO over RL, by trying to mimic its definition, and to relate it with the other
representation present in the literature; However, the final result, which was somehow
unexpected, showed that not only the found LTOP is a subclass of NCOP , but it coincides
with NCOP itself. This unexpected result could be explained by the lots of ideas that
were abandoned because not enough expressive (someone turned out to be less expressive
than LTO ∩ML), or too expressive. The idea of LTOP took place from a previous one
that was more expressive than NCOP , recognizing the language of example 6.8. Then,
with the introduction of FSR, things became more complex, but in the end, it was worth
it because it limited the expressiveness enough to guarantee LTOP to be contained in
NCOP , but not too much, ensuring NCOP is contained in LTOP. It has been also studied
the decidability problem of FSR, proving that it is decidable whether or not a language
is LTOP.

The work has been done by reading the materials, studying the more important parts,
and researching the things that were left unclear or on which there could be useful deeper
knowledge. During this work, there has been a flight over lots of concepts and ideas in the
field of computer science, and each one of them has been just hinted at because there are
really a lot of works and researches on each one of them, however this gave the possibility
to go deeper in concepts that during courses have been presented.

125

Bibliography

[1] REPRESENTATION OF EVENTS IN NERVE NETS AND FINITE AUTOMATA,
pages 3–42. Princeton University Press, 1956. ISBN 9780691079165. URL http:

//www.jstor.org/stable/j.ctt1bgzb3s.4.

[2] Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple phrase
structure grammars. Z. Phonetik Sprachwiss. Kommunikationsforsch., 14:143–172,
1961. ISSN 0044-331X.

[3] M. Chiari, D. Mandrioli, and M. Pradella. Model-checking structured context-free
languages. In A. Silva and K. R. M. Leino, editors, CAV ’21, volume 12760 of LNCS,
pages 387––410. Springer, 2021. doi: 10.1007/978-3-030-81688-9_18.

[4] N. Chomsky. Three models for the description of language. IRE Transactions on
Information Theory, 2(3):113–124, 1956. doi: 10.1109/TIT.1956.1056813.

[5] S. Crespi Reghizzi and D. Mandrioli. Operator Precedence and the Visibly Pushdown
Property. J. Comput. Syst. Sci., 78(6):1837–1867, 2012.

[6] S. Crespi Reghizzi and M. Pradella. Beyond operator-precedence grammars and
languages. Journal of Computer and System Sciences, 113:18–41, 2020. doi: 10.
1016/j.jcss.2020.04.006.

[7] S. Crespi Reghizzi, G. Guida, and D. Mandrioli. Noncounting Context-Free Lan-
guages. J. ACM, 25:571–580, 1978.

[8] S. Crespi Reghizzi, D. Mandrioli, and D. F. Martin. Algebraic Properties of Operator
Precedence Languages. Information and Control, 37(2):115–133, May 1978.

[9] V. Diekert and P. Gastin. First-order definable languages. In Logic and Automata:
History and Perspectives, Texts in Logic and Games, pages 261–306. Amsterdam
University Press, 2008.

[10] R. W. Floyd. Syntactic Analysis and Operator Precedence. J. ACM, 10(3):316–333,
1963.

http://www.jstor.org/stable/j.ctt1bgzb3s.4
http://www.jstor.org/stable/j.ctt1bgzb3s.4

126 | Conclusions

[11] M. A. Harrison. Introduction to Formal Language Theory. Addison Wesley, 1978.

[12] D. Jurafsky and J. H. Martin. Speech and Language Processing. 3rd draft edition,
2023.

[13] V. Lonati, D. Mandrioli, F. Panella, and M. Pradella. Operator precedence languages:
Their automata-theoretic and logic characterization. SIAM J. Comput., 44(4):1026–
1088, 2015.

[14] D. Mandrioli and M. Pradella. Generalizing input-driven languages: Theoretical and
practical benefits. Computer Science Review, 27:61–87, 2018. doi: 10.1016/j.cosrev.
2017.12.001.

[15] D. Mandrioli, M. Pradella, and S. Crespi Reghizzi. Star-freeness, first-order definabil-
ity and aperiodicity of structured context-free languages. In Proceedings of ICTAC
2020, Lecture Notes in Computer Science. Springer, 2020.

[16] R. McNaughton. Parenthesis Grammars. J. ACM, 14(3):490–500, 1967.

[17] R. McNaughton and H. Yamada. Regular expressions and state graphs for automata.
IRE Transactions on Electronic Computers, EC-9(1):39–47, 1960. doi: 10.1109/TEC.
1960.5221603.

[18] E. Mendelson. Introduction to Mathematical Logic. D. Van Nostrand Company,
Princeton, New Jersey, 1964.

[19] G. K. Pullum. Context-freeness and the computer processing of human languages.
In 21st Annual Meeting of the Association for Computational Linguistics, pages 1–6,
Cambridge, Massachusetts, USA, June 1983. Association for Computational Linguis-
tics. doi: 10.3115/981311.981313. URL https://aclanthology.org/P83-1001.

[20] S. P. Robert McNaughton. Counter-Free Automata. The MIT Press, 1971. ISBN
9780198520115.

[21] A. K. Salomaa. Formal Languages. Academic Press, New York, NY, 1973.

https://aclanthology.org/P83-1001

127

List of Figures

1.1 Venn diagram of Chomsky’s grammar and languages families 15

2.1 FSM recognizing REmore = ((B)∗(P ((B)+C)∗S)∗)∗ 37

3.1 Tree structure of the phrase "The pen is on the table" 40
3.2 Structure of e+ e+ e× e+ e× e+ e with respect to Garitm1 43
3.3 Structure of e+ e+ e× e+ e× e+ e with respect to Garitm2 44
3.4 Structure of e× e× e with respect to Garitm1 45
3.5 Structure of e+ e+ e with respect to Garitm2 46
3.6 Structure of ()(()(())) with GDyck . 47
3.7 Structure of ⌊⌊⌊e⌋ × ⌊⌊e⌋ × ⌊e⌋⌋⌋⌋ with respect to Garitm1Par 48
3.8 Structure of substrings using Laritm1Par . 50

6.1 Structure of abcabc . 88
6.2 Structure of xu1u2 · · ·unwvnvn−1 · · · v1y . 91
6.3 Structure of s and s′ . 93

7.1 Structure of x and y . 104

129

List of Tables

3.1 Parenthesizing the rules of P1 into P1Par 48
3.2 Mapping P1Par to P1ParS . 51

131

Acknowledgements

I would like to express my deepest appreciation to prof. Matteo Pradella, who gave me
the possibility to end my university path with a theoretical thesis, thus giving me the
possibility to see a field that maybe there will be not many opportunities to dive into.

I am also grateful to Pay Reply, which gave me the possibility to conclude my university
career while starting the working one. In particular, I’m very grateful to all my colleagues.

Thanks also should go to my friends for supporting me on this path; to my classmates
that inspired me to do better; to the CEO of GRM IT; to all the people with whom I had
the honor to work with because each one of them has something to teach me. Particularly
Niccolo F., Fabrizio M., Gabriele B., Davide S., and many others.

Lastly, I would be remiss in not mentioning my family for everything they did. In par-
ticular, I would thank my mother, who gave me the possibility to achieve this goal in
life.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Background
	Language Characterization
	From Alphabet to Languages
	Grammar
	Chomsky classification
	Logic characterization

	Regular Languages
	Regular Languages and Regular Expression
	Decidability
	Non Counting

	Locally Testable Languages
	Some Tools
	Locally Testable Language and its Closure
	Results of Locally Testable Languages

	Context Free Languages
	Context Free Languages
	Structured Context-Free Languages
	Non-Counting for Structured Context-Free Languages

	Operator Precedence Languages
	Operator Precedence Languages Definition
	Operator Precedence Languages Structure
	Non-Countingness for Operator Precedence Languages
	Other Operator Precedence Languages Representations
	Operator Precedence Expressions
	Monadic Second Order Logic

	Locally Testable Extended Languages
	Substitution
	Finding used Blanks
	Single String Substitution
	Substitution for Languages

	Language Definition
	Main Results

	Locally Testable Languages over Operator Precedence
	Fence Substitution
	Fence Substitution Restriction
	Language Definition
	Relations with the Literature

	Decidability
	FSR Semplification
	Regularizing Locally Testable Extended Languages
	Define Languages on Different Alphabets
	Transform Languages to Once Reliant
	Accept More Blanks

	Regularizing LTEO
	Concatenation
	Negation
	Intersection
	LTR
	LTEO
	Regularizing LTOP

	Decidability
	Decidability for LTR
	FSR decidability

	Conclusions
	Bibliography
	List of Figures
	List of Tables
	Acknowledgements

