
Executive Summary of the Thesis

Exploring the Energy/Quality Trade-off of Non Volatile Memory in
Intermittent Computing

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Rei Barjami

Advisor: Prof. Luca Mottola

Co-advisor: Prof. Antonio Rosario Miele

Academic year: 2022-2023

1. Introduction
The rise of the Internet of Things (IoT) has re-
sulted in an increased demand for affordable and
compact embedded devices. IoT devices nor-
mally rely on batteries as their primary energy
source, which brings several challenges. Batter-
ies can be dangerous if not adequately protected,
they are expensive and bulky, they require high
maintenance costs, and have a detrimental envi-
ronmental impact. To address these issues, am-
bient energy harvesting provide a viable alter-
native. Energy harvested from the environment
is, however, unpredictable.
As a result, execution become intermittent : pe-
riods of active computing alternate with peri-
ods where the device is powered off, waiting to
harvest enough energy from the environment to
resume computing [1]. When an energy fail-
ure occurs, data stored in volatile memory is
lost. To allow the program to progress against
energy failures, systems preserve the program’s
state in Non Volatile Memory (NVM). When
the computation restarts, systems can continue
from where they left.
Saving the state onto NVM is an overhead since
the energy consumed by this operation does
not directly contribute to application progress.

Figure 1: An intermittent execution.

Moreover, NVM is less energy efficient than its
volatile counterpart: the energy penalty may
heavily impact the system’s efficiency. Emerging
types of NVM technologies may be used to re-
duce this overhead. Spin-Transfer Torque Mag-
netic Random-Access Memory (STT-MRAM)
technology allows systems to reduce the energy
consumed for write operations at the cost of in-
troducing stochastic errors in the written data.
This characteristic, however, can be turned
to one’s advantage by employing Approximate
Computing (AC) techniques [3].
In this thesis, we seize the opportunity and ex-
plore how AC can be used to reduce the over-
head of NVM writes in intermittent computing.
We specifically quantify the amount of energy
it allows to save and the degradation in the
Quality of Results (QoR) that it produces. AC is
a paradigm that sacrifices precise computations

1

Executive summary Rei Barjami

for faster performance or reduced energy con-
sumption. It involves exploiting the resilience of
certain applications to errors or noise.

2. Background
Our work intersects intermittent computing and
modern NVM technology.

2.1. Intermittent Computing
Figure 1 shows an intermittent execution, where
the device executes a computation until the en-
ergy stored in the capacitor reaches the turn-
off threshold. Upon reaching this threshold, the
device powers off. The capacitor begins recharg-
ing until it reaches the turn-on threshold, then
the computation resumes. The time that sep-
arates two consecutive execution periods is not
constant, as it depends on energy availability.
If partial results have not been saved to the
NVM, results produced until the power-off are
lost. Devices used in intermittent computing
are extremely resource-constrained and hence
unable to run full-fledged operating systems to
manage energy failures. Ad-hoc solutions exist
to persist the program’s state in NVM when run-
ning applications on bare hardware. Two classes
of such techniques are available: checkpoint-
based systems and task-based programming ab-
stractions.
Checkpoint-based systems save program state in
NVM at specific points in code, resuming execu-
tion from the last checkpoint in case of energy
failures. Task-based programming abstractions
require programmers to split the program into
smaller units called "tasks" that execute with
transactional semantics.

2.2. STT-MRAM
STT-MRAM is an emerging NVM technology.
It is more energy-efficient than flash mem-
ory and other NVM technologies like FeRAM
and MRAM. Devolder et al. [2] noted that
STT-MRAMs suffer from stochastic switching.
During a write operation, the applied signal may
be unable to switch the value of a cell, leading
to a write failure. The probability of the bit to
correctly switch depends on how much current
we apply for the write.
This means that by tuning the amount of current
used for writing in STT-MRAM, we can mod-
ify the energy it consumes to perform the write

while also altering the Write Error Rate (WER).
This property can be exploited to apply AC
techniques [3], opening an avenue to explore the
trade-off between energy efficiency and QoR of
the program running in the system.

3. Research Question
Writes in NVM are energy-hungry operations,
consuming a relevant amount of the energy
stored by the device’s capacitor. In intermittent
computing, NVM writes might add up to 60%
run-time overhead [5]. This study investigates
the potential benefits of approximating writes in
NVM to reduce this overhead, in exchange of a
reduction in the quality of the generated output.
This thesis aims to answer the following research
questions:

1. What are the benefits of reducing the en-
ergy consumption of NVM writes?

2. How does this reduction impact the data
processing and QoR?

3. Can we obtain significant reductions in the
energy consumptions of NVM writes while
maintaining an acceptable QoR?

To examine the advantages and the drawbacks
that can be obtained by using AC to reduce the
cost of writes in NVM, we identify three poten-
tial settings:
• Setting 1, the capacitor is fixed, and a

checkpoint-based approach is used.
• Setting 2, the capacitor is fixed, and a

task-based approach is used.
• Setting 3, the capacitor is not fixed, but

the workload for each energy burst is fixed.
Our goal is to provide a comprehensive under-
standing of the trade-offs between energy effi-
ciency and results accuracy.

3.1. Benefits
The energy saved by reducing the energy re-
quired to perform writes in NVM can be in-
vested to obtain different benefits in an intermit-
tent computing system. For each of the above-
defined settings, we obtain different benefits.
We analyze them qualitatively next. The dis-
cussion here provides a stepping stone for the
quantiative assessment that follows.
Setting 1. The saved energy can be invested to
extend the computing phase, as shown in Fig-
ure 3. A longer computing phase allows the pro-
gram to make more progress in a single charge,

2

Executive summary Rei Barjami

Figure 2: Checkpoint-based intermittent com-
putation.

Figure 3: Increasing computing phase by reduc-
ing NVM write energy cost.

which reduces the number of energy cycles, and
so checkpoints needed to complete the execution
of the program. This improves system through-
put since energy failures are fewer, and the sys-
tem’s uptime increases, thus improving the sys-
tem’s availability. In Figure 3 we show how,
compared to the original case shown in Figure 2,
the computing phase length increases.
Setting 2. The programmer can exploit the en-
ergy saved to define longer tasks compared to the
original task-based scenario. Longer tasks en-
able the program to be completed in fewer tasks
[5], reducing energy failures. Similarly to Set-
ting 1, the system’s uptime increases, increasing
availability and throughput.
Setting 3. Here, the energy saved allows us-
ing a smaller capacitor to compute in an en-
ergy burst the same workload as in the orig-
inal checkpoint-based or task-based scenario.
Smaller capacitors provide various advantages.
They have less leakage power, recharge faster,
and occupy less area, making them well-suited
for embedded systems where space is often a
constraint.

3.2. No Free Lunches
By approximating NVM writes, we introduce er-
rors in the data we save. The introduced errors
can affect the QoR, making the output unus-

Figure 4: Mean Square Error increase with
higher approximation levels.

able. The higher the degree of approximation
used, the more errors are introduced, resulting
in a greater decrease in the QoR. We show an ex-
ample of this in Figure 4, where the write errors
cause a "salt and pepper" effect in the output
image. Therefore, tuning the level of approxi-
mation used in NVM writes is crucial.
In intermittent computing, the checkpoint writ-
ten in NVM or the output of a task may be
used as input in the next power cycle. This
also means that errors introduced in the early
power cycles have a greater impact on the fi-
nal result than errors introduced in later stages.
One approach to reduce this "snowball" effect
is to use an increasing level of approximation,
starting with a small approximation in the early
phases and gradually increasing to higher ap-
proximations in later phases.

3.3. Qualitative → Quantitative
In this thesis, we want to quantitatively explore
if the energy savings we can obtain by applying
this approximation are significant or if, in prac-
tice, the amount of energy saved is negligible,
making the benefits obtained minimal. At the
same time, we intend to quantitatively explore
how the QoR decreases by introducing errors in
the data saved in NVM.
Intersecting the two lines of investigation allows
us to ultimately conclude whether ad where us-
ing AC in intermittent computing is beneficial.

4. Methodology
We now discuss the approximation technique we
utilize, the evaluation platform, the evaluation
framework, and the benchmarks utilized to gen-
erate our experimental results.

4.1. Hardware Platform
Our hardware platform comprises an
microcontroller (MCU) that uses STT-MRAM
as NVM. As explained before, writes in

3

Executive summary Rei Barjami

STT-MRAM are stochastic, and the probability
of a bit not switching value correctly, so the
WER, varies with the current used for the write
operation. By adjusting this parameter, we can
save energy, while increasing the WER.
To structure the analysis, we define five quality
levels, each with a different set current and WER
[3]. We call Q0 the baseline, with almost 100%
probability of the bit to switch. In fact, its WER
is 10-8. Quality levels progress from Q1 to Q4,
where Q4 provides the best energy efficiency but
with a higher WER of 10-3.
We consider MCUs from the TI MSP430 family,
widely used in intermittent computing. Specif-
ically, we chose three different MCUs, namely
the MSP430L092, MSP430G2x53, and a newly-
designed MSP430 core by Singhal et al. [4],
called MSP430Singhal. These MCUs have the
same RISC16 architecture with differerent en-
ergy consumption, amount of RAM and ROM,
and operating frequencies. We chose multiple
MCUs to explore the impact of AC w.r.t. the
overall system’s energy consumption and not
just the NVM operation. Even if we save en-
ergy in writing to the NVM, the overall energy
consumption may still be significant if the com-
puting core defeats the savings due to more effi-
cient NVM operations.

4.2. Framework
We build an evaluation framework that takes as
input the characterization of STT-MRAM cells,
the source code of a benchmark, the MCUs char-
acterization, and the benchmark-specific quality
metric. It returns the energy consumption of the
benchmark in different levels of approximation
and how the quality of the output of the bench-
mark degrades with different levels of approxi-
mation. This framework is composed of widely
used simulators NVSim and MSPSim.
NVSim is a simulator that allows to estimate
the characteristics of various NVM technologies,
such as flash memory, phase-change memory,
and STT-MRAM. The simulation is performed
under different conditions, including varying
temperature, voltage, and current for write/read
operations. NVSim outputs the latency, en-
durance, area, leakage power, and energy con-
sumption of the modeled NVM technology,
We utilize NVSim to emulate STT-MRAM. To
fully understand the behavior of the memory ar-

ray, it is necessary to accurately characterize the
electrical properties of each cell, such as the cur-
rent required for set and reset operations and
the voltage needed for reading the cell value.
By emulating STT-MRAM cells with different
write currents, NVSim allows us to compute the
energy cost of writes in STT-MRAMs with the
quality levels defined above.
MSPSim is an emulator for the MSP430 MCU
that accurately simulates the behavior of the
computing core, RAM, and peripherals, allow-
ing us to execute and debug programs in a sim-
ulated environment. One of the most relevant
features of MSPSim is the time-accurate emu-
lation of the computing core, including its in-
struction set, registers, and memory operations.
MSPSim allows us to run our code and accu-
rately measure performance as we would on the
physical hardware.
MSPSim does not emulate any NVM on its own.
We modify MSPSim to allow us to consider a
part of the address space as it is STT-MRAM.
This portion of the address space is divided into
sections; each assigned an approximation level.
This determines the probability of errors occur-
ring when values are written to that section.
Higher approximation levels result in more er-
rors. This way, we can simulate the approx-
imation technique for STT-MRAMs described
above. When running a program using MSP-
Sim, we can choose which data needs to be saved
in the simulated STT-MRAM portion of the ad-
dress space and in which section with what ap-
proximation level the data should be saved.

4.3. Benchmarks
There is no standard benchmark selection
for evaluating intermittent computing systems,
which have strict constraints on energy, memory,
and computation resources. Other works in lit-
erature [5] use benchmarks from the MiBench2
suite for evaluating intermittent systems.
For our evaluation, we also select benchmarks
from the MiBench2 suite. We chose a heteroge-
neous set of benchmarks to cover various aspects
relevant to the evaluation, while keeping into ac-
count resource constraints of the target platform
that may prevent certain benchmarks to run in
the first place, for example, because of memory
limitations. We consider the following aspects:
• Whether the benchmark is amenable to ap-

4

Executive summary Rei Barjami

Benchmark Pipeline Quality metric

FFT No Avg. Relative
Error (ARE)

PicoJpeg No RMSE
Susan Edge
Detection

Yes Precision and
recall

Only Writes No

Table 1: The benchmark we use for our experi-
mental evaluation and their properties.

Quality WER Curr. (µA) E. x bit (pJ)

Q0 10-8 1153 166

Q1 10-6 865 94

Q2 10-5 769 74

Q3 10-4 673 57

Q4 10-3 577 43

Table 2: Quality-energy map for a 32nm
STT-MRAM.

proximation or it requires 100% accurate
computing.

• Whether the benchmark may be considered
as a pipeline of subtasks or as a single task.

For each benchmark, we choose a quality met-
ric to assess the QoR of the approximate exe-
cution in comparison to the correct execution.
The choice of the quality metric is specific to
the benchmark. The benchmarks we select are
summarized in Table 1.

5. Experimental Evaluation
We now show the experimental results obtained
using the framework described previously.

5.1. STT-MRAM Characterization
This section presents experimental results on
the energy consumed when writing a bit in
STT-MRAM and how much this value can be
reduced with our approximation technique.
For each quality level, we show the energy con-
sumption of writing a bit cell obtained with
NVSim. Table 2 summarizes the energy con-
sumption results, showing that even with the
first level of approximation, the energy saved
is high, being 56% of the energy consumed in
the baseline. The energy consumption decreases

Figure 5: Energy consumption for different
benchmarks with various quality levels, normal-
ized to energy consumed with Q0.

further with stronger approximation, with Q4
consuming only 25% of the energy of the cor-
rect case. It is important to point out that the
decrease in energy consumption does not fol-
low a linear pattern, with the reduction being
more significant in the initial levels of approx-
imation. However, this reduction becomes less
pronounced with the strongest quality levels.

5.2. Total Energy Consumption
Figure 5 shows an excerpt of our results, includ-
ing the total energy consumed for each bench-
mark normalized to the same quantity con-
sumed by the benchmark executed with Q0 with
MSP430Singhal. We show that the reduction
in the energy consumed varies dramatically be-
tween benchmarks. For the "Only Writes" mi-
crobenchmark, which does nothing but write an
array of values in NVM and represents the base
case, the energy reduction with the maximum
approximation level Q4 is significant, being it
only 30% of the energy consumed with Q0.
We show that the PicoJpeg yields the highest
energy savings. With an approximation level
of Q4, the energy consumed is only half of the
energy consumed when running the benchmark
with Q0. However, in FFT, the energy sav-
ings are almost negligible, regardless of the qual-
ity level. In Susan Edge Detection, we observe
significant energy savings, with the energy con-
sumed with the Q4 quality level being only 0.62
times the energy consumed with Q0.
We note that energy consumption does not de-
crease linearly while increasing the approxima-
tion level. So, energy consumption decreases
more significantly from Q1 to Q2 than from Q3
to Q4. For this reason, pushing the approxima-
tion level too far is less effective.

5

Executive summary Rei Barjami

(a) PicoJeg trade-off. (b) FFT trade-off. (c) Susan trade-off. δ = 1

Figure 6: Trade-off energy reduction/QoR degradation.

5.3. Quality/Energy Trade-off
The price to pay for energy savings is a decrease
of QoR, whose results we summarize here.
PicoJpeg. This benchmark can be seen as a
single task, where the approximation happens
only at the end when writing the result in NVM.
Some pixels at random positions will be incor-
rect when a bit fails to switch. The only differ-
ence when increasing the approximation level is
that we introduce more wrong pixels in the im-
age. There is no correlation in the position of
failed pixels, but they are spread randomly.
Figure 6a demonstrates this benchmark’s en-
ergy/quality trade-off, showing how the RMSE
compared to the result of a correct execution in-
creases as the approximation level changes. The
RMSE almost linearly increases from Q1 to Q3
and experiences a significant increase when mov-
ing to Q4, with the RMSE increasing from 9.8 at
Q3 to 35 at Q4. On the other hand, the decrease
in energy consumption, shown on the right, is
more prominent for the first levels of approxi-
mation and mitigates in the last ones.
In summary, we observe that for Q3, the RMSE
is only 9.8. With that approximation level, we
can achieve a system-wide energy reduction of
45% and 27.8% with an MSP430Singhal and
MSP430L MCU, respectively. At the cost of
a small degradation in quality, we can achieve
significant energy savings.
FFT. We now evaluate the trade-off for the Fast
FFT benchmark. We observed that the approx-
imated outputs follow the same curve as the
correct execution, but various spikes are intro-
duced, and the more we increase the approxima-
tion level, the more spikes are introduced in the
result. Since this benchmark can be seen as a
single task, an error in the result saved in NVM

does not affect the rest of the execution.
Figure 6b shows how energy consumption de-
creases with different approximation levels. In
the graph, we evaluate the percentage of outputs
with an Average Relative Error (ARE) bigger
than 3%, which we consider unacceptable. We
found that for Q1, only 1% of the obtained re-
sults have an ARE bigger than 3%, but this per-
centage increases to 35% already at Q2. Thus,
we argue that the maximum approximation level
we can apply is Q1. Furthermore, we observe
that even at the strongest approximation level,
the energy savings for this benchmark are lim-
ited, up to 4.5% with the MSP430Singhal. This
reinforces our conclusion that no benefits can be
obtained by applying our AC technique for sys-
tems running this kind of program.
Susan Edge Detection. The Susan algorithm
consists of a pipeline of tasks, and errors intro-
duced in the initial stages of the pipeline may
impact the subsequent computations, leading to
more complex errors compared to FFT or Pico-
Jpeg. The Susan edge detection benchmark is
divided into various well-defined stages. Every
stage ends with a write in NVM. This value is
then used as input for the next stage. The er-
rors introduced in the approximated execution
of this benchmark is that some edges are not
recognized, while some pixel that would not be
part of an edge are recognized as part of one, so
we have false positives and false negatives.
We observe from Figure 6c that also for this
benchmark, the decrease in precision and recall
is almost linear from Q0 to Q3, and it jumps for
Q4. Q3 seems the most promising approxima-
tion level. We can note that for Q3 we have a de-
crease in precision of only 4% and a decrease in
recall of 2%, while reducing the energy consump-

6

Executive summary Rei Barjami

tion, with the MSP430Singhal, of about 34% the
original energy consumption.

6. Conclusion
In this thesis, we explored the possibility of using
a hardware approximation technique involving
the stochastic switching of STT-MRAM to re-
duce the cost of NVM writes in an intermittent
computing system. We show that in particu-
lar cases, the energy saved is significant, halving
the energy consumed to run the program while
maintaining a low degradation in the QoR. In
other cases, even a minimal approximation that
reduces slightly the energy savings causes the
QoR to decrease drastically.
Future work could explore dynamically tuning
this technique in multi-state pipelined programs
given a final application requirements to meet.

7. Acknowledgements
I want to thank my advisor, Prof. Luca Mottola,
for his advice and all the support he gave me
throughout my research. Working with him was
inspiring, and I am genuinely grateful for the
opportunity to work under his supervision.
I would also like to thank my co-advisor, Prof.
Antonio Miele, for his invaluable help and con-
tribution to my research. His insightful feedback
has been critical in helping me face the chal-
lenges of my research.
Then, I want to thank my lab colleagues: An-
drea M., Matteo, Andrea P., and Mattia. They
made my time in the lab such a wonderful expe-
rience.
Finally, I would like to thank my family for
their encouragement and support throughout
my studies. Their faith in me has been a con-
stant source of inspiration and motivation.

References
[1] N. A. Bhatti and L. Mottola. HarvOS: Ef-

ficient code instrumentation for transiently-
powered embedded sensing. In IPSN, pages
209–219, 2017.

[2] T. Devolder et al. Single-shot time-
resolved measurements of nanosecond-scale
spin-transfer induced switching: Stochastic
versus deterministic aspects. Physical review
letters, 100(5):057206, 2008.

[3] A. Monazzah et al. CAST: content-aware
STT-MRAM cache write management for
different levels of approximation. TCAD,
39(12):4385–4398, 2020.

[4] V. K. Singhal et al. 8.3 A 10.5A/MHz at
16MHz single-cycle non-volatile memory ac-
cess microcontroller with full state retention
at 108nA in a 90nm process. In ISSCC, pages
1–3, 2015.

[5] Joel Van Der Woude et al. Intermittent
Computation without Hardware Support or
Programmer Intervention. In OSDI, pages
17–32, 2016.

7

	Introduction
	Background
	Intermittent Computing
	STT-MRAM

	Research Question
	Benefits
	No Free Lunches
	Qualitative Quantitative

	Methodology
	Hardware Platform
	Framework
	Benchmarks

	Experimental Evaluation
	STT-MRAM Characterization
	Total Energy Consumption
	Quality/Energy Trade-off

	Conclusion
	Acknowledgements

