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Abstract

The classification of road pavement is a fundamental step for the development of an
efficient and resilient transportation system. However, this aspect is often overlooked,
especially in developing countries.

As a consequence of this need, the goal of this work, in collaboration with the Safari
Njema project at Politecnico di Milano, is the design of algorithms capable of classifying
urban roads as either paved or unpaved based on publicly available information. This
information has a dual nature: polygons identified by spatial coordinates and satellite
images.

The first step is the creation of an innovative data structure capable of effectively rep-
resenting this pair of sources of information. The concept of Graphs of Objects (GoOs)
is introduced, where satellite images are represented as three-dimensional objects in the
RGB space, and polygon boundaries are converted into undirected edges of a graph.

Subsequently, two algorithms of different nature are selected, a κ-Nearest Neighbors and
a Graph Convolutional Network, and then adapted for the study of Graphs of Objects.
These modified versions outperform their original counterparts, based respectively on
objects and edges, demonstrating both the necessity of a GoO-based approach and the
ability of the final algorithms to take into account all available information.

This project focuses specifically on the Greater Maputo area, Mozambique, but is de-
signed to be extended to any other road network and potentially to Graphs of Objects of
completely different nature.

Keywords: road pavement; classification; object-oriented; graph theory; κ-nearest neigh-
bors; graph convolutional network





Abstract in lingua italiana

La classificazione del manto stradale è un passo fondamentale per lo sviluppo di un sistema
di trasporti che sia efficiente e sicuro. Tuttavia, questo aspetto viene spesso tralasciato,
specialmente in Paesi in via di sviluppo.

L’obiettivo di questo lavoro, in collaborazione col progetto Safari Njema del Politecnico di
Milano, è quindi il disegno di algoritmi in grado di classificare le strade di un centro urbano
in asfaltate e sterrate a partire da informazioni di pubblico dominio. Tali informazioni
sono di duplice natura: poligoni identificati da coordinate spaziali e immagini satellitari.

Il primo passo è la creazione di una struttura dati innovativa, capace di rappresentare
questa coppia di fonti di informazioni in maniera valida. Viene quindi presentato il con-
cetto di Grafi di Oggetti (Graphs of Objects, GoOs), dove le immagini satellitari vengono
rappresentate come oggetti tridimensionali nello spazio RGB e i confini tra poligoni sono
convertiti in archi adirezionati di un grafo.

In seguito, vengono selezionati due algoritmi di diversa natura, un κ-Nearest Neighbors
e una Graph Convolutional Network, i quali vengono poi adattati allo studio di Grafi di
Oggetti. Queste versioni modificate performano meglio delle loro controparti originali,
basate rispettivamente solo su oggetti e solo su archi, dimostrando sia la necessità di un
approccio basato sui GoOs, sia la capacità degli algoritmi finali di tenere conto di tutte
le informazioni disponibili.

Questo progetto si focalizza in particolare sulla provincia di Maputo, capitale del Mozam-
bico, ma è pensato per essere esteso a qualunque altra rete stradale e, potenzialmente,
anche a Grafi di Oggetti di natura completamente diversa.

Parole chiave: manto stradale; classificazione; object-oriented; teoria dei grafi; κ-nearest
neighbors; graph convolutional network
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Introduction

0.1. Context

In 2015, when the United Nations introduced the Sustainable Development Goals (SDGs,
[1]), they emphasized the critical role of efficient infrastructure systems in cities world-
wide. Two specific goals, Goal 9 ("Industry, Innovation, and Infrastructure") and Goal
11 ("Sustainable Cities and Communities"), center their attention on this aspect. One of
their key objectives is to establish a secure, resilient, and sustainable public transportation
system. While residents in developed nations should focus on adopting environmentally
friendly solutions in their everyday lives, the challenges in developing regions, such as
Sub-Saharan countries, are more deeply rooted.

To ensure the provision of a safe public transportation system for the population, the ini-
tial, often overlooked step is the collection of reliable data regarding the road infrastructure
in major cities. It is not uncommon for roads to be paved without proper documentation,
resulting in unreliable and incomplete data ([21]). This issue holds significant importance
since data serves as the foundational element required to optimize any type of service.
For this reason, the primary objective of this thesis was to design algorithms for the au-
tomatic pavement detection of the road network in Sub-Saharan cities, with a specific
focus on the Greater Maputo area in Mozambique. This work develops within the Safari
Njema project of Politecnico di Milano ([2]), which aims to optimize paratransit mobility
in developing countries and redesign existing transportation for greater efficiency.

Automatic analysis of road pavement is not new in literature, but it is essential to note that
most of the existing work focuses on issues such as crack detection ([33], [20]) or surface
condition assessment ([36]). The problem we aimed to tackle was broader: classifying
roads into two categories ("paved" and "unpaved"), in order to boost the efficiency of
future optimization studies. A fundamental reference for this type of analysis is [10], to
which this thesis serves as a spiritual sequel. The authors utilized Google Earth ([3])
satellite images and developed an advanced κ-Nearest Neighbors (κ-NN, [17]) algorithm
based on those images. In the following pages, we will build upon and enhance those
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Figure 0.1: Mismanaged public transport system (Source: Safari Njema)

results by incorporating other publicly available information, specifically the shape and
location of each road segment, available via OpenStreetMap (OSM, [4]).

Due to the bipartite nature of the data, encompassing both images and the network
structure, this thesis serves as a bridge between two highly prolific areas of Data Science:
Object-Oriented Data Analysis (OODA, [14]) and Graph Theory ([7]). We will design a
new type of data structure, called Graph of Objects (GoO), consisting of complex nodes,
referred to as objects, connected with each other by undirected and unweighted edges.

This innovative approach opens up exciting possibilities across various domains, extending
beyond our current application. Consider, for instance, environmental monitoring, where
Graphs of Objects could facilitate the assessment of intricate ecosystems, capturing the
interconnections between species and environmental factors. Similarly, in healthcare, this
data structure could be used to connect medical images to the often complicated patient
histories. The algorithms developed in this thesis serve as a first step toward harnessing
the potential of GoOs in these and many other fields, promising novel data-driven solutions
for complex challenges.

0.2. Content

The two algorithms that will be presented in this thesis are a κ-NN and a Graph Con-
volutional Network (GCN, [22]). Both represent an evolution of the work in [10], with
the former being more directly connected to the original work, while the latter exploits
important results to enhance the quality of a completely different approach. The aim is
to extend the capabilities of these already established classification algorithms to our new
bipartite type of data, thus showcasing the immense potential of GoOs.

These two algorithms originate from different domains, namely traditional Statistical
Learning and Deep Learning, and will address the classification task in distinct ways. Our

https://www.safari-njema.polimi.it
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objective extends beyond the mere design of these algorithms; we also aim to compare
and contrast their strengths and weaknesses, providing valuable insights into the two
approaches.

The structure of the thesis is outlined as follows, with each chapter serving a distinct
purpose and contributing to the overall narrative:

• Chapter 1, Data Extraction and Preprocessing: This chapter delves into
the initial stages of our research, presenting a comprehensive examination of the
available data regarding the city of Maputo, Mozambique. It provides insights into
the data extraction and preprocessing processes for the GoO, forming the basis of
our analysis.

• Chapter 2, Theoretical Foundations: This chapter provides a comprehensive re-
view of theories related to Supervised, Unsupervised and Semi-Supervised Learning,
emphasizing their relevance to our specific classification task. It sets the theoretical
basis common to the subsequent chapters.

• Chapter 3, κ-Nearest Neighbors: In this chapter, we conduct a detailed ex-
ploration of the first algorithm, κ-NN. Starting from its inception, we trace its
development and implementation, ultimately arriving at the results achieved when
applied to the GoO.

• Chapter 4, Graph Convolutional Network: Turning our attention to the sec-
ond algorithm, the GCN, this chapter explores its conceptualization and its practical
application to the GoO. We delve into the theoretical underpinnings and practical
aspects of this Deep Learning-based algorithm, unveiling its potential in our context.

• Chapter 5, Compared Approaches: This chapter critically compares and con-
trasts the outcomes of both algorithms, shedding light on their strengths and weak-
nesses. It examines key aspects such as performance, generalizability, computational
time, and visual result.

In the end, a brief concluding chapter summarises the findings of the entire thesis work
and an appendix presents the code related to the computations performed, so that the
reader may be able to reproduce our results and apply the algorithms to other GoOs.





5

1| Data Extraction and

Preprocessing

1.1. Data Sources

Following the approach presented in [10], the analysis relied on two primary data sources:
the OpenStreetMap (OSM) road network and Google Earth high-resolution satellite im-
ages. In [10], the OSM road network underwent segmentation, resulting in 53240 distinct
segments. Each segment represented a road stretch spanning a length between 50 m and
550 m. Paths shorter than this threshold were omitted from consideration, while longer
ones were divided into sub-sections. Throughout our research, we consistently employed
this segmentation to facilitate direct comparisons with the original work.

OSM provided various attributes for each street segment, including universally available
ones such as road length (length) and street type (osm_type). However, for the purposes
of our analysis, we exclusively focused on Graphs of Objects (GoOs). Consequently, most
of this available information was disregarded. The essential attributes that we retained
were the geometry of the network (geometry) and the road surface type (osm_surf).

The geometry attribute contained information about the shape and location of each road
segment in the network and was designed to be accessed using the sf R library ([30]),
specifically tailored for simple features. Roads were interpreted as polygons identified by
sequences of points forming a closed, non-self-intersecting ring. Each of these points was
associated with two-dimensional coordinates, enabling the study of the relative location
of each segment in relation to all others. The coordinate reference system used was the
World Geodetic System 1984 (WGS84, [26]), typically three-dimensional but projected
into two dimensions, X and Y, for this particular analysis. geometry will serve as the
primary data source for creating the final graph.

Meanwhile, osm_surf indicated whether a road was paved or unpaved. More specific
surface tags, such as "asphalt", were aggregated into the two primary classes. Notably,
fewer than 5% of the roads exhibited a well-defined pavement composition. To be precise,
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732 streets were classified as paved, while 1826 were designated as unpaved. osm_surf

will serve as the response variable for both our algorithms.

In Figure 1.1 it is possible to see the original OSM dataset. The scarce amount of colored
roads represents the labeled data, while everything else needed to be classified. It can be
noticed that some specific areas, like the coast in the eastern part of the map, present
an high concentration of labeled data points.This will be crucial for the first part of our
analysis, and we will revisit this aspect shortly.

Figure 1.1: Original osm_surf labeling
Paved Unpaved Unknown

Regarding the satellite images, these were acquired from Google Earth and covered the
entire Greater Maputo area, including not only the city of Maputo but also the neighboring
districts of Marracuene, Matola, and Boane. This extensive coverage encompassed a
total area of 1568 km2. To ensure precision in the subsequent analysis, the satellite data
underwent a clipping process, executed using QGIS software ([32]). Consequently, a grand
total of 53240 distinct raster images were generated, with each image aligning precisely
to a specific segment of the OSM road network.
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1.2. Objects

To conversion from satellite images to objects, was done according to what was presented
in [10]. We will not delve deeply in the entire pipeline producing such objects since it
was not the focus of our work and we advise the consultation of the original work. In
essence, every image, after being clipped to fit its related polygon in the OSM dataset, was
also filtered to remove unwanted areas (generally including vegetation or vehicles). This
filtering process consisted of the removal of the darkest pixels and the following application
of the DBSCAN ([16]) algorithm, which was proven to further improve results. Of the
remaining pixels, 150 were randomly sampled and interpreted as three-dimensional points
in the RGB space, identifying an object. RGB stands for Red, Green and Blue and it is a
model used in digital imaging and computer graphics to represent colors. In this model,
colors are created by combining different intensities of red, green and blue light. Each of
these three primary colors can have a range of values, typically from 0 to 255.

From now on, the set of all objects will be called Ω. Because of the paramount importance
of labeled data in every Supervised and Semi-Supervised Learning ([39]) algorithm, we
also gave a name to the subset of labeled objects: ΩL. Furthermore, we defined ΩP and
ΩU , subsets of known paved and unpaved roads, such as

ΩP ∪ ΩU = ΩL ⊂ Ω (1.1)

The cardinalities of these sets will be respectively referred to as N , NL, NP and NU . By
definition,

NP +NU = NL < N (1.2)

In Figure 1.2, we illustrate the entire image processing pipeline for a paved and an unpaved
road. In this particular case, the difference between pavement evidently reflects itself in
the shape of the final objects, hinting that this could be a successful strategy. In order to
mathematically demonstrate the effectiveness of this approach for discriminating objects,
it was necessary to define a measure of dissimilarity between two clouds in the RGB
space. After several trials, it was discovered in [10] that the best-performing dissimilarity
measure was the energy distance ([37]), defined as:

de(ωi, ωj) =
ninj

ni + nj

 2

ninj

∑
a∈ωi,b∈ωj

d(a, b)− 1

n2
i

∑
a,a′∈ωi

d(a, a′)− 1

n2
j

∑
b,b′∈ωj

d(b, b′)

 (1.3)
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Figure 1.2: Image processing pipeline (Source: [10])

where ωi, ωj ∈ Ω, and ni, nj are the numbers of pixels in each object (in our case, 150).
d is the so-called ground distance, and it was chosen to be the Euclidean distance in the
RGB space:

d(a, b) =
√

(Ra −Rb)2 + (Ga −Gb)2 + (Ba −Bb)2 (1.4)

where a and b are two pixels, and the variables on the right-hand side represent their
values of red, green, and blue.

In [10], the energy distance (1.3) was the metric used for the final κ-NN algorithm. In this
work, we will explore ways to incorporate this information about the objects into more
complex dissimilarity measures, taking into account the edges of the GoO as well.

What’s important to understand from the preprocessing presented in this paragraph is
that it was not necessary to include information on every single pixel of every road segment
in our analysis. What needed to be retained was the dissimilarity measure between
elements of Ω. Specifically, we computed:

Eij = de(ωi, ωj) (1.5)
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an N ×NL matrix, where ωi ∈ Ω and ωj ∈ ΩL.

1.3. Edges between Objects

Until now, we only considered the images associated with each object ωi ∈ Ω, but the
bipartite nature of our data must not be forgotten. As previously stated, each road was
also associated with a polygon made of points, each point associated with two-dimensional
WGS84 coordinates. To make full use of this type of information, we identified all inter-
sections between different polygons and converted them into the edges of our final GoO.
The idea was that the presence of a border between two roads was likely related to an
equal type of pavement. We called the set of all edges H and each ηij ∈ H was defined as

ηij = 1{ωi ∩ ωj ̸= ∅} (1.6)

Clearly, ∀ωi ∈ Ω

ηii = 1 (1.7)

In practice, the intersection between polygons was analyzed using the st_intersects R
command, once again from the sf R library. During this process, it became evident that
almost the entire dataset could be represented in a single graph, but a limited number of
roads appeared disconnected from it. In Figure 1.3, it is possible to see a specific area
where this inaccuracy is evident.

Figure 1.3: Some unconnected roads
Main graph Unconnected roads

It seemed quite clear that some real roads in Maputo were never added to this dataset,



10 1| Data Extraction and Preprocessing

resulting in this unusual behavior of having some isolated roads. Since obviously the
original idea of this network was to be connected and only 0.54% of the roads were not
included in the main sub-graph, we thought that the most straightforward solution was
to simply delete this anomalies from the dataset and work with the remaining roads. As
a consequence of this, from now on N = 52953 and NL = 2535.

Being the edges we computed undirected and unweighted, they could be stored in an
adjacency matrix:

Aij = ηij (1.8)

We will see that for the correct functioning of our algorithms, it will be important to store
the entire N × N adjacency matrix A. Since this computation is significantly less time
consuming than the computation of the energy matrix E, this was not an issue.

1.4. Graphs of Objects

At this point, satellite images had been utilized for creating the objects Ω, while the
geometry attribute had been used to design the edges H. The next natural step was to
combine these elements to form our GoO:

Γ(Ω,H) (1.9)

In Figure 1.4, it is possible to observe a representation of six roads of Γ along with their
respective objects and edges. Each object is a 3D cloud of pixels in the RGB cube,
while the edges are simple undirected, unweighted connections formed by intersections
between polygons. To enhance the clarity of the image, edges of the type ηii have not
been visually represented, although they are indeed present, since by definition a node is
considered adjacent to itself.

It’s worth emphasizing that for our classification purposes, we won’t primarily rely on
Γ(Ω,H) itself, but on the matrices E and A computed in the previous sections and re-
spectively representing information hidden in Ω and H. However, we stress the GoO
structure to highlight that we won’t be using any synthetic index related to individual
road segments, but rather dissimilarity and similarity measures between complex multi-
dimensional objects.

During our study, we also considered representing data with a more traditional graph
structure: a simple node would have been assigned to each road segment and information
included in E would have been used to differently weigh the edges. However, we decided
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Figure 1.4: Six roads of Γ(Ω,H)

that having the nodes represent dissimilarity between images, while the edges only encap-
sulate information from the OSM network, was more coherent with our dual data sources
and therefore made more sense.

Ω and its subsets ΩL, ΩP and ΩU are characterized by the cardinalities in 1.1.

Variable Value
N 52953
NL 2535
NP 729
NU 1806

Table 1.1: Cardinalities in Γ(Ω,H)

Due to the substantial amount of available data and the complexity of handling a full
N × N adjacency matrix A, it became necessary, at least for the initial stages of our
analysis, to create a limited dataset covering only a specific area of the city. The region
selected corresponded to a coastal area of the center of Maputo, it will be referenced as

Γ′(Ω′,H′) (1.10)

and it can be seen in Figure 1.5.
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Figure 1.5: osm_surf labeling for the limited dataset Γ′

Paved Unpaved

Ω′ and its subsets Ω′
L, Ω′

P and Ω′
U are characterized by the cardinalities in 1.2.

Variable Value
N ′ 6065
N ′

L 1163
N ′

P 336
N ′

U 827

Table 1.2: Cardinalities in Γ′(Ω′,H′)

This area was selected for a dichotomy of reasons. Firstly, like we already mentioned when
analysing Figure 1.1, it offered a substantial amount of labeled data (19.17% of the entire
GoO, compared to the 4.80% of Γ), enabling effective training without being hindered
by an excessively large adjacency matrix. Secondly, the proportion N ′

P
N ′

U
= 0.406 was

nearly identical to the original NP
NU

= 0.401, indicating an almost perfect representation
of the entire dataset. Our algorithms will initially be tested using this limited amount of
information, and only in the final phase their generalizability to the Greater Maputo area
will be assessed.
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2| Theoretical Foundations

2.1. Learning Paradigms

The three fundamental learning paradigms in Statistics and Machine Learning are Super-
vised, Unsupervised, and Semi-Supervised Learning ([8], [25]). As these paradigms play
a crucial role in our subsequent analysis, it is essential to provide a theoretical overview,
emphasizing their relevance to our work.

2.1.1. Supervised Learning

Supervised Learning stands as the most widely embraced and well-established paradigm
among the three. This research centers on deciphering data generated by an unknown
function f that maps input X, commonly known as attributes or features, to a corre-
sponding output y, referred to as response or target:

f(X) = y (2.1)

The primary objective is to approximate the unknown function as closely as possible:

ŷ = f̂(X) ≃ f(X) = y (2.2)

To achieve this, the model is trained on a comprehensive dataset D = {(Xi, yi)}Ni=1, con-
sisting of input-output pairs. Each element in this dataset serves as a foundational block
for the model’s training process, facilitating the extraction of patterns and correlations.
Through a systematic analysis of this data, the model iteratively refines its parameters,
adjusting its internal mechanisms to enhance predictive capabilities. This iterative learn-
ing process aims to minimize the disparity between predicted output ŷ and actual output
y, resulting in a model that generalizes well to unseen data.

Generally, when the response y is continuous, the problem is termed regression; conversely,
when it is discrete, it is referred to as classification. The function f that needs to be
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approximated in a classification task is called a decision boundary or decision surface. In
Figure 2.1 an example of classification with a linear decision boundary is presented.

Figure 2.1: Classification on a toy problem (Source: Analytics Vidhia)

One prominent example of a classification problem to bear in mind while navigating this
thesis is outlined in [10]. In that particular context, input was represented by the set of ob-
jects Ω in the three-dimensional RGB cube. This departure from classical Data Analysis,
where features are typically structured in an N×F table (with F denoting the number of
features), yielded promising results and unveiled novel avenues for Object-Oriented Data
Analysis. Concerning the corresponding response, yi, it denoted the membership class of
the i-th element ωi within Ω, aligning more closely with the conventional concept of a
target variable.

The reader can now ascertain that the case presented in this thesis, involving the classifi-
cation of roads in Maputo based on a GoO-structured dataset, serves as a direct contin-
uation of the work in [10]. While one might instinctively categorize it within the domain
of Supervised Learning, the inclusion of edges ηij connecting ωi ∈ ΩL to ωj ∈ Ω \ ΩL

transforms it into an exemplary instance of Semi-Supervised Learning. This aspect will
be scrutinized more comprehensively in the ensuing sections.

https://www.analyticsvidhya.com/blog/2023/05/classification-vs-clustering/
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2.1.2. Unsupervised Learning

While Supervised Learning deals with labeled datasets and aims to predict a target vari-
able, Unsupervised Learning operates on unlabeled data with the primary goal of un-
covering hidden patterns and structures within the dataset. The absence of an explicit
output y for the given input variables X introduces a distinctive challenge and oppor-
tunity. Without predefined labels guiding the model, the algorithm must autonomously
discern inherent structures within the data.

One key task of Unsupervised Learning is clustering, also known as unsupervised classi-
fication. It involves grouping similar data points together, forming clusters or subgroups
based on shared characteristics. Figure 2.2 presents an example of clustering performed
over the same toy problem used for Figure 2.1.

Figure 2.2: Clustering on a toy problem (Source: Analytics Vidhia)

While a wide variety of clustering methods and algorithms exist and are widely used,
explaining all of them goes beyond the scope of our work. We will venture into the realm
of community detection ([28]), a process extremely akin to clustering specifically tailored
for graphs and networks. Such a process is capable of finding sub-graphs based solely on
the structure of the adjacency matrix and edges. Belonging to the same sub-graph will
adjust the similarity between two elements of Ω and prove fundamental for improving the
performance of the κ-NN algorithm. However, a more in-depth exploration of the concept
of community detection will be presented in Chapter 3.

https://www.analyticsvidhya.com/blog/2023/05/classification-vs-clustering/
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2.1.3. Semi-Supervised Learning

A pioneering paper that explores the potential of a semi-supervised approach to learning is
[35]. Intriguingly, the term "Semi-Supervised Learning" is conspicuously absent from the
paper. Instead, the author opts for the phrase "Supervised Learning aided by additional
unlabeled data". This encapsulates the essence of this learning paradigm perfectly. While
the goal of a semi-supervised problem aligns with that of a supervised one, the two
approaches diverge in the fact that the semi-supervised learner is supplied with both
labeled and unlabeled data. This scenario is common in situations where unlabeled data
is readily available, but obtaining labels proves costly. The optimism in this paradigm
lies in the belief that there exists information, not too expensive to extract, capable of
achieving superior performance compared to the one obtained in a supervised setting.

Graph Theory, especially node classification on graphs, is a domain where Semi-Supervised
Learning is frequently employed ([39]). In this context, it’s not unusual to be equipped
with an entire graph structure but only a limited number of known labels. Relying
solely on the characteristics of the labeled nodes is not practical; instead, it is assumed
that labeling can be propagated in a specific manner throughout the graph. Analyzing
the complete structure of the graph becomes paramount and extensive work has been
undertaken in the literature to devise optimal methods for modeling this propagation. The
initial methods explored were broadly categorized into two groups: those incorporating
some form of explicit graph Laplacian regularization ([39], [5]) and those based on graph
embeddings ([24], [38]). However, in recent years, the emergence of Artificial Neural
Networks (ANNs) has significantly broadened the horizons. An illustrative example is
provided by [22], the groundbreaking work that introduced Graph Convolutional Networks
and will serve as an essential element for constructing our second algorithm in Chapter 4.

By now, the reader likely perceives how the inclusion of edges ηij, connecting ωi ∈ ΩL to
ωj ∈ Ω \ ΩL, transforms our analysis into a Semi-Supervised version of the work in [10].
This enables the dissemination of labeling information across the entire GoO.

2.2. Learning Stages

In Chapter 1, we discussed the design and extraction of the dataset, D = (Γ, y), where Γ

was the GoO and y was the response represented by osm_surf, and the selection of the
algorithms, namely κ-NN and GCN. The lingering question is how an algorithm A can
effectively learn from data. To address this, we present a schematic overview of the stages
in a typical learning process, providing insights into how each step relates to the specific
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case at hand. [25] was of great inspiration for this paragraph.

1. Data Partitioning: Labeled data is divided into three subsets called training,
validation and test set.

• Training, as the name suggests, is the set actually used to train the learning
algorithm A and it is the only set of input-output pairs that can be used from
the beginning to predict f .

The algorithm A(Θ) depends on a set of so-called hyperparameters Θ. These
free parameters are distinct from the one learned by the algorithm because
they are given as inputs by the user.

• Validation is used to tune these hyperparameters Θ. This tuning is a form of
model selection, because it allows to find the optimal version of the algorithm,
A(Θ0).

It is crucial that this model selection is done on a set different from the training
one, to avoid an issue called overfitting. This behavior occurs when the model
gives accurate predictions for training data but not for new unseen data. It
is caused by the use of the same set of data for training and assessment and
it is generally characterized by the choice of a model that is too complex and
depends on too much parameters.

• Test is used to evaluate the performance on unseen data. This obviously can’t
be done on the training set for the reasons just mentioned, but it can’t be done
on the validation set either, in order not to overfit the selection of Θ0.

For the model, the test set is basically equivalent to any unlabeled data. The
only difference is that it can be used to compute accuracy, precision and many
other metrics useful to express the correctness of the provided results.

Typically, the training set is considerably larger than the other two sets, yet the
precise percentage hinges on the algorithm type and the available data size. The
volume of data in the validation set is primarily determined by the number of
hyperparameters. As for the test set, it encompasses the remaining data, and its
size must be substantial enough to provide an accurate assessment of performance
on unseen data. If the original data presents some unbalance between classes (e.g.
a binary problem with 80% of instances belonging to class 0 and 20% belonging to
class 1) such unbalance needs to be mirrored in the three sets. In this way, each of
them will be representative of the entire population, avoiding unwanted bias.
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2. Feature Selection: Moving forward, our attention turns to selecting relevant fea-
tures associated with the labeled data points. This stage underscores the pivotal
role of features in guiding the learning algorithm. The user’s prior knowledge comes
into play, influencing the choice of features. This selection process forms the base
for effective algorithmic learning.

The realm of feature selection is extensive and a perpetual subject of study. How-
ever, as emphasized in our thesis, features in our context significantly differ from
the conventional notion. In our case, the only selection required was deciding to
summarize the set Ω with the energy distance matrix E.

Had this not been a thesis focusing on Object-Oriented Data Analysis, an exhaus-
tive feature selection process would have been essential. This would have involved
deciding which synthetic indices to retain to describe each satellite image, leading
to a more traditional N × F feature table X. For instance, metrics like the mean
and variance of red, green and blue RGB values could have proven effective for
classifying a road as "paved" or "unpaved".

3. Algorithm Training: This constitutes the heart of the learning process. As pre-
viously mentioned, the chosen algorithm undergoes training on the training set,
considering all possible combinations of hyperparameters Θ. For each parameter
set, the algorithm selects a distinct hypothesis from the hypothesis set, which en-
compasses all possible f̂ . Subsequently, performance evaluation transpires on the
validation set to pinpoint the optimal Θ0. The assessment of performance can be
executed through various metrics. It may involve minimizing a loss function or an
error, or maximizing statistics such as accuracy and precision.

For regression problems, a widely used loss function is the Sum of Squared Errors
(SSE):

LSSE =
N∑
i=1

(yi − ŷi)
2 (2.3)

Here, N represents the dimension of the validation set, and the loss is intuitively
smaller when the chosen hypothesis f̂ aligns well with the real function f . In
contrast, for classification problems, a common choice for the loss function is the
Cross-Entropy (CE). It’s essential to note that many classification algorithms (e.g.,
both κ-NN and GCN) don’t directly output a discrete class but a continuous prob-
ability Zi for each class. The class with the maximum probability is then chosen as
the prediction ŷi, defined as:

ŷi = max
c∈C

Zi,c (2.4)
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where C represents the set of possible classes. In this context, the cross-entropy loss
is defined as:

LCE = −
N∑
i=1

∑
c∈C

yi logZi,c (2.5)

which decreases as the certainty towards corrects predictions increases.

Conversely, if the user opts to maximize a statistic, such as accuracy, the process
solely considers the coherence between the predicted class ŷi and the true class yi.

In this work, multiple optimization criteria will be employed at different stages of
the two algorithms to ensure the most thorough assessment. A more context-specific
discussion of optimization will be presented in the following paragraphs.

4. Prediction and Evaluation: This is the final phase of the process and it is the
one applied on the test set. As mentioned, the test set represents unseen data and
it is kept to compute the quality of A(Θ0). The same assessment criteria presented
in the previous stage are applied to the test set ensuring a robust understanding of
the algorithm’s capabilities.

Figure 2.3 represents the learning stages in a schematic and more intuitive way.

Figure 2.3: Illustration of the typical stages of a learning process (Source: [25])

2.3. Cross-Validation

We have previously emphasized why hyperparameters should not be chosen based on
their performance on the training set. However, the availability of data may not always
be sufficient to create adequately sized training, validation, and test sets. Moreover, as
mentioned earlier, the validation set itself can be susceptible to overfitting, rendering the
optimal set of parameters Θ0 less reliable. In light of these considerations, the concept
of S-fold cross-validation comes into play. The premise is straightforward: the available
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data is initially split into a training set and a test set. Subsequently, the training data is
partitioned into S groups, usually of equal size. The model is then trained using S − 1

groups, and the results are evaluated on the remaining group. This process is repeated for
all S possible choices for the held-out group, and the performance scores from these runs
are averaged. This averaging helps significantly reduce variance. In cases of extremely
limited data, the choice is often S = N , where N is the total number of data samples,
leading to leave-one-out cross-validation.

The technique is illustrated schematically for S = 3 in Figure 2.4.

Figure 2.4: Dataset split for 3-fold cross-validation (Source: [15])

One drawback of cross-validation is the increasing number of training runs with the num-
ber of folds. If an algorithm is computationally expensive and there is a large number
of possible hyperparameter combinations, performing cross-validation might become un-
affordable. The user must find a suitable trade-off between accuracy and computational
time by selecting an appropriate value for the number of folds.

As we will demonstrate, we will employ cross-validation in the initial part of our analysis
when training the models on Γ′(Ω′,H′). This choice is not only driven by the limited
number of samples but also aims to minimize variance in the results. Subsequently, we will
use the optimized hyperparameters Θ0 in the much larger Γ(Ω,H), where performing cross-
validation becomes prohibitive due to significantly slower computational times resulting
from the vastly larger adjacency matrix.
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2.4. Assessment Criterion

We mentioned the fact that there exist multiple ways of assessing the quality of a model.
The maximization of the accuracy or other metrics was one of those, but also the mini-
mization of a loss or an error was a viable option. Throughout this thesis, we opted for
the last option and decided to define an error capable of summarizing the quality of our
performance. Once again, [10] was of great inspiration for the definition of such error.

Both our algorithms will produce as output an N×2 matrix Z, where each row Zi contains
the probabilities for data point i to belong to class 0 ("paved") and class 1 ("unpaved").
By definition we will have: Zi,1, Zi,2 ∈ [0, 1]

Zi,1 + Zi,2 = 1
(2.6)

At this point we will assign a predicted class to each data point i according to the following
rules:

ŷi =


0 if Zi,1 > θ2

1 if Zi,1 ≤ θ1

2 otherwise

(2.7)

where 2 corresponds to a third class referred to as "uncertain". We will investigate further
the role and the value of the thresholds θ1 and θ2 in the next chapters. For now, it is only
meaningful to understand how the continuous values of Z will be converted into classes.

From this classification, it will be possible to build the confusion matrix presented in
Table 2.1, indicating the quantity and entity of the mistakes made by the algorithms.
Coherently with the work in [10], the rows represent the true classes, while the columns
represent the predicted ones.

Predicted

Tr
ue

0 1 2
0 N00 N01 N02

1 N10 N11 N12

Table 2.1: Confusion matrix in the general case

Keeping this in mind, we decided to define an error based on the various types of misclas-
sification, giving to each one of those a different misclassification cost. The values chosen
are in Table 2.2. To assign meaningful values to these costs, certain considerations rooted
in the real-life scenario under investigation were imperative. The misclassification costs
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Misclassification Cost
yi = 0, ŷi = 1 2
yi = 0, ŷi = 2 1
yi = 1, ŷi = 0 2.5
yi = 1, ŷi = 2 1

Table 2.2: Misclassification costs

had to be asymmetrical, as intuitively, categorizing a road as "uncertain" was deemed
less problematic than completely misclassifying it. Moreover, a paved road misclassified
as unpaved could potentially cause less damage than an unpaved road misclassified as
paved. This is due to the fact that the entire public transport system, which we aimed
to optimize, would be adversely affected if an impassable road were mistakenly added to
its routes. All this reasoning lead to the definition of this error based on the confusion
matrix:

err = 2N01 +N02 + 2.5N10 +N12 (2.8)

An error defined like this posed two main concerns. The first one was that it strongly
depended on the total number of roads being tested. Of course this was not an option,
because we wanted to start with a limited dataset Γ′(Ω′,H′) and then extend our results
to the entire Greater Maputo area encapsulated in Γ(Ω,H). An error defined like this
was obviously going to be much bigger on Γ and it would have been really difficult to
compare the results. The second issue was that it was not possible to get an idea of how
well the models were performing simply looking at (2.8). We needed to set a benchmark
and check the ratio between our error and the one obtained in the worst case scenario.

To solve both these problems, we relied on the concept of dummy classifiers. These
classifiers consistently predict the same label, irrespective of the data point, and three
variations were possible due to the three potential values of the response. The confusion
matrices for these dummy classifiers are displayed in Tables 2.3, 2.4, and 2.5.

Predicted

Tr
ue

0 1 2
0 NP 0 0
1 NU 0 0

Table 2.3: Confusion matrix using the first dummy classifier

The error associated with the dummy scenario is the minimum achieved by any of these
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Predicted

Tr
ue

0 1 2
0 0 NP 0
1 0 NU 0

Table 2.4: Confusion matrix using the second dummy classifier

Predicted

Tr
ue

0 1 2
0 0 0 NP
1 0 0 NU

Table 2.5: Confusion matrix using the third dummy classifier

three classifiers:

errdummy = min{errdummy0, errdummy1, errdummy2}

= min{2.5NU , 2NP , N}

(2.9)

(2.10)

This allowed us to normalize our error, providing a clearer interpretation. The normalized
error, which the algorithms aim to minimize, is referred to as the pavement error and is
given by the equation:

E =
err

errdummy
· 100% (2.11)

2.5. Input and Output of the Algorithms

We conclude this chapter with a brief recap of what the κ-NN and GCN will get as input
and what the output will be. Everything was structured in order for the two algorithms
to have the same starting point and the same target, in order to be able to compare and
contrast their results in a second moment. For simplicity, here we present the names of
input and output data without the apostrophe, but, as previously stated, everything will
be first tried on Γ′ and then applied to Γ.

An in-depth guide to the code used will be presented in Appendix A.

Input

• A: N ×N matrix containing the edges H;

• E: N × NL matrix encapsulating the energy distance between pair of objects in
Ω× ΩL;
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• y: vector of N elements containing the true labels and defined as

yi =


0 if ωi is paved

1 if ωi is unpaved

2 if ωi is unknown

(2.12)

• Train - Test split: a random assignment of labeled data to the training set (80%)
and the test set (20%). In both sets the proportion NP

NU
will be the same as in the

entire ΩL. Every version of each algorithm will be performed on different splits for
consistency.

Output

• ŷ: vector of N elements containing the predicted labels and defined as

ŷi =


0 if ωi is predicted as paved

1 if ωi is predicted as unpaved

2 if ωi is predicted as uncertain

(2.13)

It is worth mentioning that this value will be computed for each data point in Ω,
but only the elements assigned to the test set will be used to compute the final error
and assess the quality of the model;

• C: confusion matrix associated with the prediction on the test set;

• E : pavement error associated with the prediction on the test set.
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3.1. Fundamentals of κ-NN

κ-Nearest Neighbors (κ-NN, [17]) is a straightforward algorithm applicable to both re-
gression and classification problems. It belongs to the category of instance-based learning
or lazy learning, where the model doesn’t explicitly learn during training. Instead, it
memorizes the training instances and makes predictions based on the proximity of new
data points to the existing ones. The advantage of a lazy approach lies in the flexibil-
ity to add data to the training set without re-training the model. However, this may
result in slower computational times during the predictive phase. Moreover, κ-NN is a
non-parametric method, implying that the algorithm doesn’t make assumptions about
the functional form of the underlying data distribution. In other words, it doesn’t assume
a specific mathematical model with a fixed number of parameters.

Here’s a more schematic presentation of the algorithm in the context of a classification
problem:

• Training:

– Store all the training samples D = {(Xi, yi)}Ntrain
i=1 .

• Prediction:

– Given a new data sample Xi, compute its distance from all the training points.

Technically speaking, the codomain of a distance function should be identified
by the entire R+ space. However, for the case at hand, we will see that the
use of a function with values in [0, 1] will be beneficial for the analysis. We
will refer to this type of function as dissimilarity. This does not hinder the
effectiveness of a κ-NN algorithm, and we will continue to refer to "nearest"
neighbors, even if a more accurate term would be "most similar".

– Find the κ nearest neighbors of Xi, i.e., the data points in the training set with
the minimum distance from Xi.
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– Predict ŷi according to some voting rule. One common rule is majority voting:
the class label that is most common among the neighbors is assigned to Xi.

As evident from the above outline, when defining a κ-NN model, careful consideration
must be given to the choice of the number of neighbors to take into account, the voting
rule to use and the distance. In the subsequent sections, we will elucidate the reasoning
behind the creation of our κ-NN model for GoOs, with a focus on the selection of these
three elements.

3.2. κ-NN for GoOs

3.2.1. Number of Neighbors

To emphasize the significance of an effective choice of the parameter κ, indicating the
number of nearest neighbors to take into account, we refer to Figure 3.1. This simple
example illustrates that when majority voting is employed as the voting rule, different
selections of κ lead to varying predictions for the outcome ŷi. To address this challenge,

Figure 3.1: Different values of κ resulting in different predictions on a toy problem (Source:
KDnuggets)

we carefully considered the selection of the number of neighbors for our specific problem.
κ was included as one of the hyperparameters to be fine-tuned through 5-fold cross-
validation during the training phase of our model. The chosen values for κ were 3, 5 and 7.

https://www.kdnuggets.com/2020/11/most-popular-distance-metrics-knn.html
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We specifically opted for odd values, as the majority voting rule requires an odd number of
neighbors to avoid situations where the two labels have an equal number of samples among
the κ nearest neighbors. It’s noteworthy that, even while exploring different voting rules,
we decided to retain only these three possible values for κ to streamline computational
time.

3.2.2. Voting Rule

After collecting the κ nearest labeled neighbors of a data point, it was necessary to find a
way to assign that data point to one of the two classes. We once again followed the work
in [10] to perform this task efficiently. Firstly, we defined two vectors called fP and fU ,
respectively indicating, for each object ωi, the frequency of paved and unpaved neighbors
out of the κ selected. Rigorously,

fU ,i =

∑
j∈Ni

yj

κ

fP,i = 1− fU ,i

(3.1)

(3.2)

where Ni is the set of indices of the neighbors of ωi, and y is defined according to (2.12).
At this point, we introduced two hyperparameters θ1 and θ2 called thresholds, such that

θ1, θ2 ∈ [0, 1]

θ1 ≤ θ2

(3.3)

(3.4)

We then defined the following classification rule:

ŷi =


0 if fP,i > θ2

1 if fP,i ≤ θ1

2 otherwise

(3.5)

representing the rule already anticipated in (2.7), with fP serving as the first column of
Z.

The reader will notice that setting θ1 = θ2 = 0.5 achieves the classical majority voting
rule. For the first part of our analysis, the set of possible values we chose to test for these
hyperparameters was the one proposed in [10]: 0, 0.2, 0.4, 0.6, 0.8, 1. This choice was
made for two reasons: to maintain consistency with the original work, thus allowing for
an easier comparison, and to include a wide variety of possible combinations within the
entire range [0, 1]. Initially, we considered including all values between 0 and 1 with a
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step of 0.1, but that led to significantly longer computations. We opted for this version
with a step of 0.2, with the idea that, in case of doubt between two successive values, for
example 0.4 and 0.6, the value in between, in this case 0.5, would also be tested.

3.2.3. Dissimilarity

The most intricate aspect of designing this algorithm was selecting an appropriate distance
metric. In this paragraph we will introduce multiple matrices used to store information
regarding distances and dissimilarities between data points. To simplify notation, we will
only present the full-size versions of these matrices, which generally have N rows and NL

columns. It is important to note that, in reality, the same computations were carried out
for Γ′ as well, resulting in N ′ × N ′

L matrices. When presenting results over the limited
dataset, we will not include all the apostrophes, but it is important for the reader to keep
in mind the actual dimensions of the dataset used.

Energy

In [10], various established types of distances between objects were explored. The final
choice was the energy distance (1.3), leading to the computation of the N × NL energy
matrix E (1.5). This thesis aimed to generate an N × NL distance matrix, capturing
information from both the shape of the objects Ω and the structure of the edge net H,
to fully leverage the GoO structure of the dataset. With this goal in mind, we opted to
retain E as a source of information on the objects and shifted our focus to the edges.

Given that many matrices introduced in the subsequent subsections consist of values
in the range [0, 1], we opted to scale the energy matrix as well, resulting in an energy
dissimilarity measure ∆E with values defined as follows:

∆E,ij =
Eij −minE

maxE −minE
(3.6)

where minE and maxE respectively represent the minimum and maximum values in E.
The use of max and min was not the only one considered. Similar computations to the
ones we will present in the next sections were also performed with a different version of
∆E where the 0.05% and 0.95% percentiles were used for normalization. The results of
this alternative computation will not be reported as they were very similar and, in general,
slightly worse than the ones achieved with the normalization in (3.6).
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Adjacency

Recalling the construction of the edge set, we generated the adjacency matrix A (1.8), a
sparse structure containing the exact same information as H but in the form of an N ×N

matrix of zeros and ones. A played a dual role in the development of this κ-NN algorithm.
Firstly, it was utilized to compute an N ×NL adjacency dissimilarity matrix, assigning a
dissimilarity of 1 to pairs of roads not connected to each other and 0 otherwise:

∆A,ij = 1− Aij (3.7)

Clearly, this matrix was no longer sparse due to the majority of values being equal to
1. However, only NL columns were now necessary, as the dissimilarity between two
unlabeled data points is never useful in a κ-NN. This resulted in a matrix that was not
computationally prohibitive to store.

Secondly, the full sparse matrix A was also employed to execute various Graph Theory
algorithms, capable of extracting information about a network starting only from its
structure. The following two sections will present these algorithms and underscore their
use in the computation of other dissimilarity matrices.

Shortest Paths

One intriguing distance measure between two nodes in a graph is given by the so-called
shortest path. As the name suggests, this refers to the shortest route between two nodes
in a weighted graph. In our case, with unweighted edges, this path simply consisted of
the one selecting the minimum number of edges.

One of the most commonly used algorithms to compute the shortest paths from a subset
of nodes to another is Dijkstra’s algorithm ([13]). The simplest version of this algorithm
is presented in Algorithm 3.1, with pseudocode reported from [23]. In this version of the
algorithm, a single shortest path between a node source and a node target is computed.
More advanced versions of this algorithm could calculate all shortest paths connecting
the two nodes, but for the scope of this thesis, only one is necessary.

Dijkstra’s algorithm is implemented in the igraph ([12]) R library. We generated an
N × NL shortest paths matrix P , containing the outputs of the distances command
when applied to each possible pair of objects ωi ∈ Ω and ωj ∈ ΩL. After this, we
performed the same type of normalization applied to the energy matrix and computed
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Algorithm 3.1 Dijkstra’s Algorithm
S← empty sequence
u← target
if prev[u] is defined or u = source then

while u is defined do
insert u at the beginning of S
u← prev[u]

end while
end if

the shortest paths dissimilarity matrix:

∆P,ij =
Pij −minP

maxP −minP
(3.8)

Community Detection

As anticipated in Chapter 2, an exceptionally valuable analysis that can be applied to
graphs is the so-called community detection. This area of Graph Theory is remarkably
vast, and its applications have proven to be beneficial in various fields such as epidemi-
ology, metabolism and informatics. This paragraph provides a brief introduction to this
topic, primarily based on the works in [28] and [18], and then focuses on the utility of this
practice in the present case.

Intuitively, the goal of community detection is to identify small portions of a graph wherein
there is a dense network of connections among elements belonging to the same community,
and much sparser connections with the outside. These smaller portions are referred to as
communities, hence the name of the analysis. In Figure 3.2, an example of community
detection on a toy problem is presented. It is important to notice that the graph is sparse,
but all communities are connected with each other as well.

The rationale behind using community detection for our GoO lies in the likelihood of
a correlation between communities and neighborhoods of the city. Consequently, two
objects ωi and ωj might not be directly connected by an edge ηij while being in the same
neighborhood of the city. In this case, it is not unlikely that ωi and ωj would share the
same class of belonging.

Many different algorithms have been proposed for detecting communities in sparse graph
structures starting from an adjacency matrix A. Each one of these is based on a different
strategy and aims at finding a different type of hidden structure. Entering this wide world,
having to decide which of these algorithms is the most reliable is an almost impossible
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Figure 3.2: Community detection on a toy problem (Source: [28])

task. For this reason, we decided to select multiple algorithms already implemented in
the igraph R library and try and use this multiple views to get a more consistent result.

We relied heavily on the work in [6] for the selection of the algorithms to use. This work
defines an assessment criterion for community detection algorithms based on quality of the
output and computational time. Then, it compares and contrasts all the available algo-
rithms on different problems, both real and artificially created, providing a final ranking.
While it is quite intuitive what to consider for the computational time, finding a mea-
sure for the quality of a partition is less straightforward. A commonly used measure was
introduced in [11] and is called modularity :

Q =
1

2M

∑
ij

[
Aij −

kikj
2M

]
δ(ci, cj) (3.9)

where M is the number of edges, ki is the degree of node i (i.e. the number of other nodes
to which it is connected), ci is the assigned community and δ is a Dirac delta function
returning 1 if ci = cj. A network is considered to have a valid community structure if
Q ≥ 0.3.

[6] used this definition of modularity to compute two different performance measures, one
for the artificial networks (P (AN)) and one for the real ones (P (RN)):

P (AN)(Q, t) =
1− (Qd −Q)

sig(t)
(3.10)
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P (RN)(Q, t) =
Q

sig(t)
(3.11)

where Qd is the desired modularity, t is the computational time and

sig(t) =
1

1 + e−αt
(3.12)

α was empirically set to 0.1. The difference between the two performance measures lies
on the fact that it is not possible to compute a desired modularity Qd in a real world
scenario, but the intuition behind is the same.

We selected the four best performing algorithms according to the ranking in [6] and applied
them to our dataset. We decided to rely on the already established ranking, rather than
to apply (3.11) to Γ′, in order to avoid overfitting. Here we present a brief recap of the
chosen algorithms, their strategy and the output on Γ′.

Fast-Greedy Modularity Optimization ([11]): This is one of the earliest proposed
algorithms for community detection. It is hierarchical and aims at iteratively maximizing
the modularity measure Q. Moreover, it is specifically designed for achieving high perfor-
mance on sparse graphs, in contrast to [27], the other cornerstone of community detection.
This makes it a suitable candidate for the case at hand. In essence, the algorithm involves
identifying the changes in Q resulting from merging each pair of communities, selecting
the most significant change, and executing the corresponding amalgamation.

Results on Γ′:

• Number of groups: 55

• Modularity: 0.93

Multi-Level Modularity Optimization ([9]): This is another hierarchical approach
iteratively maximizing Q. The main difference with the one proposed in [11] is that
optimization is performed locally. Initially, individual nodes are designated as separate
communities. In each step, a local, greedy reassignment occurs: nodes migrate to the
community where they yield the highest contribution to modularity. Once no further
reassignments are feasible, communities are consolidated, treating each as a single node.
The process iterates until only one node remains or modularity can no longer be improved
in a step.

Results on Γ′:

• Number of groups: 59
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• Modularity: 0.94

Optimization based on Random Walks ([31]): A random walk process (or diffusion
process) on a graph is defined as follows: at each step, a walker on a node moves to a
connected node by choosing randomly and uniformly among the possible neighbors.

This algorithm, generally called Walktrap, is grounded in a simple intuition: short-length
random walks on a graph tend to become "trapped" within densely connected regions
corresponding to communities. The authors established a measure of similarity between
nodes and communities in terms of random walks of length τ , leading to the definition of
a distance. This distance served as the foundation for a hierarchical clustering algorithm,
where nodes are iteratively merged into progressively larger communities.

After some trials, we found that a suitable value for τ in our context was 10, resulting in
low computational times and a number of subgraphs useful for our analysis.

Results on Γ′:

• Number of groups: 106

• Modularity: 0.63

Optimization based on Maps of Information ([34]): This algorithm, commonly
referred to as Infomap, approaches the community detection problem from a different
perspective than the previous ones. Community detection is viewed as a form of data
compression. The idea is to find an efficient way to code information gathered while
randomly walking on a (possibly directed and weighted) graph to minimize an objective
function known as description length. Given a partition M of n nodes into m communities,
the description length is defined as

L(M) = q↷H(Q) +
m∑
i=1

pi⟳H(P i) (3.13)

where q↷ is the probability of changing communities during a walk, pi⟳ is the fraction
of within-community movements, and H(Q) and H(P i) represent the entropy associated
with such movements.

Delving deeper into the meaning of this formulation goes beyond the scope of this thesis
and would require the reader to have a deep knowledge of Coding Theory. What is
important to underline is that this approach, unlike the previous ones, never focuses
on modularity, and there might be cases in which an algorithm minimizing L and one
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maximizing Q lead to different optima. Two examples of this and reported in Figure 3.3.

Figure 3.3: Examples of different solutions when minimizing L or maximizing Q (Source:
[34])

We chose to incorporate this algorithm into our analysis to offer a more comprehensive
view of the possible approaches to community detection, and also because the results on
Γ′ demonstrated optimal outcomes in terms of Q too. The primary distinction that the
reader may observe is that the Infomap algorithm produces a considerably larger number
of communities than Q-based algorithms. Nevertheless, the number remains sufficiently
small, allowing the communities to be substantial enough to represent neighborhoods of
the city.

Results on Γ′:

• Number of groups: 399
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• Modularity: 0.88

Now that we have presented the four community detection algorithms applied to Γ′, let’s
explain how we incorporated this information into a dissimilarity matrix for the κ-NN.
Since the goal was to assign a value to each pair of objects ωi and ωj, we defined the
following value:

Cij =
∑
a∈A

δa(ωi, ωj) (3.14)

where A is a set consisting of the four algorithms, and δa is a Dirac function returning
1 if a ∈ A allocates the two objects ωi and ωj in the same community and 0 otherwise.
Intuitively, Cij is a simple indicator that expresses how many times two nodes have been
assigned to the same community. To ensure that it was a dissimilarity measure between
0 and 1, with low values when the two objects are part of the same community most of
the time, and high values otherwise, we performed the following normalization:

∆C,ij =
maxC − Cij

maxC −minC
(3.15)

Combined Dissimilarity

In the previous paragraphs, we designed four different dissimilarity matrices, ∆E,∆A,∆P ,
and ∆C , each encompassing values between 0 and 1 for each pair of objects (ωi ∈ Ω,
ωj ∈ ΩL). At this point, we needed to find a way to construct one final dissimilarity
matrix ∆, incorporating all or some of the information we just gathered, and capable of
achieving the best possible classification. Numerous potential combinations of products
and sums between the four original dissimilarities were possible, and we did not find
anything similar in literature. We opted to explore all the combinations that made the
most sense in our context, and in the next section, we will present the results for each
one of those.

3.3. Implementation and Results

3.3.1. Hyperparameter Tuning

At this point, we had identified reasonable values for the number of neighbors κ, the
dissimilarity ∆ and the thresholds θ1 and θ2. The following step was to finally test our
model to assess its performance. This was not a straightforward task due to the extreme
complexity of the model and the large number of possible hyperparameters and resulted
in two main issues. Firstly, even though we performed cross-validation, overfitting was
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always a risk when dealing with such a large number of possible values for the hyperpa-
rameters. Secondly, varying κ and ∆ in a κ-NN model meant that the entire prediction
part needed to be run for each possible combination of those parameters, leading to much
longer computational times.

For these reasons, the work towards a final model was performed in multiple steps, each
one refining the possible hyperparameters according to the previous results. The reader
will see that, at each step, the number of values will decrease towards an optimum, while
the number of possible train-test splits will be increased to ensure consistent results. The
objective was to create a final model with the best possible combination of κ, θ1, θ2, and
∆ and run that on the full dataset Γ. All the previous steps were only performed on the
limited GoO Γ′.

3.3.2. Summary of the Tested Models

We wanted to find the best possible model based only on the objects and the best one based
on the entire graph structure and compare the results. This would have demonstrated
how our GoO structure could effectively improve the results consistently compared to a
more classical Object-Oriented approach. In the following subsections, the reader will be
led through all the reasoning and trials made during this phase of our work. We will also
provide some insightful comments and try to explain all our choices from the coarsest
versions of our models to the final ones.

Before starting, we summarise the key points distinguishing the two models for an easier
understanding:

• Object-Oriented Model (Ωκ-NN): a κ-NN model using ∆E as dissimilarity
matrix;

• GoO-Oriented Model (Γκ-NN): a κ-NN model using the best combination of
∆E, ∆A, ∆P and ∆C as dissimilarity matrix.

3.3.3. Object-Oriented Model

We started with the full model and performed 5-fold cross-validation to tune the hyper-
parameters. We recall the possible values for such parameters:

• κ = [3, 5, 7]

• θ1 = [0, 0.2, 0.4, 0.6, 0.8, 1]

• θ2 = [0, 0.2, 0.4, 0.6, 0.8, 1] ∩ θ2 ≥ θ1
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• ∆ = ∆E

In Table 3.1, the pavement error E on the test set is reported together with the cho-
sen hyperparameters for 5 different train-test splits. We also summarize the results by
computing the sample mean and sample variance of the obtained errors.

Seed κ θ1 θ2 E
10 5 0.4 0.4 29.1%
20 5 0.4 0.4 39.3%
30 3 0.4 0.4 38.81%
40 3 0.4 0.4 42.54%
50 7 0.4 0.4 42.54%

Mean 38.46%
Var 30.43

Table 3.1: Results of the Object-Oriented κ-NN model on Γ′, tuning (step 1)

It was clear that the best value for the threshold was θ1 = θ2 = 0.4, consistently with the
results obtained in [10], so we fixed that. On the other hand, it was still not clear which
was the optimal κ. This led to the choice of this new set of possible hyperparameters:

• κ = [3, 5, 7]

• θ1 = 0.4

• θ2 = 0.4

• ∆ = ∆E

Results are reported in Table 3.2.

Seed κ E
60 3 39.55%
70 5 47.01%
80 3 31.72%
90 3 25%
100 5 44.03%

Mean 37.46%
Var 81.73

Table 3.2: Results of the Object-Oriented κ-NN model on Γ′, tuning (step 2)

The first thing we noticed from the results at the previous step was that 7 was never
chosen and even in Table 3.1 it was only chosen once. Moreover, even if 5 was selected
three out of five times, the respective values of E were the worst on the test set, leading us
to choose κ = 3. To sum up, these were the chosen hyperparameters for the final model:

• κ = 3
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• θ1 = 0.4

• θ2 = 0.4

• ∆ = ∆E

In Table 3.3, we report the results for this final model.

Seed E
110 41.79%
120 36.94%
130 34.7%
140 34.33%
150 36.19%

Mean 36.79%
Var 8.95

Table 3.3: Results of the optimal Object-Oriented κ-NN model on Γ′

It is important to note that throughout each step of this process, we modified the five
train-test splits. Readers are advised not to dwell on individual results but to focus on the
average E and its variance. Since both of these metrics decreased while consistently re-
ducing computational costs, we were satisfied and declared this our final Object-Oriented
κ-NN model.

In Figure 3.4 we report the map of the coastal area of Maputo represented by Γ′, together
with our predicted values. The seed used for the split is 0.

3.3.4. GoO-Oriented Model

The first step of the design and refinement of the GoO-Oriented κ-NN was the most
exploratory one. The aim was to find the best dissimilarity matrix ∆ as a combination
of ∆E,∆A,∆P , and ∆C . As previously mentioned, the possible combinations of sums
and element-wise products between these four matrices are an extremely large amount.
We decided to test 20 possible dissimilarities and reported their results in Table 3.4. For
the sake of clarity, for every dissimilarity matrix we only report the subscript. Moreover,
sums and products have to be intended as element-wise. For instance, the voice

E · A (3.16)

refers to a dissimilarity ∆ such that

∆ij = ∆E,ij ·∆A,ij (3.17)
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Figure 3.4: Object-Oriented κ-NN model on Γ′

Paved Unpaved

We then decided to retain the 5 best-performing ones for further evaluation. Because of
the large number of matrices, we decided to compute results on one single train-test split
(seed = 1). In the following steps, the number of splits will increase for consistency, but
for this one, we needed to limit computational time.

We recall that for all the possible dissimilarities we cross-validated and tuned the following
hyperparameters:

• κ = [3, 5, 7]

• θ1 = [0, 0.2, 0.4, 0.6, 0.8, 1]

• θ2 = [0, 0.2, 0.4, 0.6, 0.8, 1] ∩ θ2 ≥ θ1

We noticed that one of the best results did not even include the energy dissimilarity, which
was an unexpected behavior. Another good result included E as part of a product, which
was uncommon and interesting at the same time. On the other hand, the two absolute
bests included E in summations with one or more matrices based on edges.

At this point we wanted to find the absolute best dissimilarity. We did so by running the
algorithm again with five different train-test splits. Results are reported from Table 3.5
to Table 3.9.



40 3| κ-Nearest Neighbors

∆ κ θ1 θ2 E
A 3 0.8 0.8 40.67%
P 5 0.4 0.6 20.9%
C 5 0.6 0.6 22.39%

P + C 5 0.4 0.6 24.25%
A+ P + C 5 0.4 0.6 24.25%

P · C 5 0.4 0.4 26.49%
A · P · C 5 0.4 0.4 26.49%
E + A 3 0.4 0.4 19.4%
E + P 3 0.8 0.8 20.9%
E + C 3 0.8 0.8 24.25%

E + P + C 3 0.8 0.8 22.39%
E + A+ P + C 3 0.4 0.8 19.4%
E + (A · P · C) 3 0.8 0.8 25.75%

(E + A) · (P + C) 5 0.4 0.6 23.88%
E · A 5 0.4 0.4 27.61%
E · P 3 0.4 0.4 25.75%
E · C 5 0.4 0.6 21.64%

E · P · C 5 0.4 0.6 23.51%
E · A · P · C 5 0.4 0.6 23.51%

E · (A+ P + C) 5 0.4 0.4 26.12%

Table 3.4: Results of the GoO-Oriented κ-NN models with different dissimilarities

The best case was the one showed in Table 3.9, which defined the dissimilarity as

∆ij = ∆E,ij ·∆C,ij (3.18)

This result holds particular significance as it underscores the necessity for contributions
from both the elements of Ω′ and the elements from H′, highlighting the strength of a
GoO-based algorithm.

At this point, we knew that the most meaningful contributions were given by ∆E and ∆C .
Moreover, multiplying the two measures gave much better results than summing them.
In order to further refine our results, we added a new hyperparameter ζ that weighted
the two contributions:

∆ij = ∆ζ
E,ij ·∆

1−ζ
C,ij (3.19)

Now that we had the final GoO-Oriented model, we could start with the same simula-
tions applied for the Object-Oriented one and work towards the optimum. The starting
hyperparameters were:

• κ = [3, 5, 7]
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Seed κ θ1 θ2 E
2 3 0.4 0.8 30.6%
3 5 0.6 0.6 24.63%
4 3 0.4 0.8 26.49%
5 3 0.8 0.8 24.25%
6 5 0.6 0.6 24.63%

Mean 26.12%
Var 7.04

Table 3.5: Results of the GoO-Oriented κ-NN model with ∆ = P

Seed κ θ1 θ2 E
2 3 0.4 0.4 27.61%
3 3 0.4 0.4 24.63%
4 3 0.4 0.4 23.88%
5 3 0.4 0.4 25.37%
6 3 0.4 0.4 26.87%

Mean 25.67%
Var 2.39

Table 3.6: Results of the GoO-Oriented κ-NN model with ∆ = E + A

Seed κ θ1 θ2 E
2 3 0.8 0.8 30.6%
3 3 0.8 0.8 27.24%
4 3 0.4 0.8 24.25%
5 5 0.6 0.6 31.72%
6 3 0.4 0.8 25.75%

Mean 27.91%
Var 10.06

Table 3.7: Results of the GoO-Oriented κ-NN model with ∆ = E + P

Seed κ θ1 θ2 E
2 3 0.4 0.8 32.09%
3 3 0.8 0.8 23.88%
4 3 0.8 0.8 27.24%
5 3 0.4 0.4 17.91%
6 3 0.8 0.8 27.24%

Mean 25.67%
Var 27.39

Table 3.8: Results of the GoO-Oriented κ-NN model with ∆ = E + A+ P + C

Seed κ θ1 θ2 E
2 5 0.4 0.4 25.75%
3 7 0.4 0.4 23.88%
4 5 0.4 0.4 29.1%
5 5 0.4 0.4 23.88%
6 5 0.4 0.4 21.64%

Mean 24.85%
Var 7.76

Table 3.9: Results of the GoO-Oriented κ-NN model with ∆ = E · C
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• θ1 = [0, 0.2, 0.4, 0.6, 0.8, 1]

• θ2 = [0, 0.2, 0.4, 0.6, 0.8, 1] ∩ θ2 ≥ θ1

• ζ = [0.25, 0.5, 0.75]

In Table 3.10, the pavement error E on the test set is reported together with the chosen
hyperparameters for the same train-test splits we used while computing results in Ta-
ble 3.1. This was done to allow the comparison between the two models. In further steps,
we will always employ the splits tested for the Object-Oriented model.

Seed κ θ1 θ2 ζ E
10 5 0.4 0.4 0.25 23.88%
20 5 0.4 0.4 0.5 27.99%
30 5 0.4 0.4 0.5 20.52%
40 5 0.4 0.4 0.75 20.15%
50 5 0.4 0.4 0.25 23.13%

Mean 23.13%
Var 9.97

Table 3.10: Results of the GoO-Oriented κ-NN model on Γ′, tuning (step 1)

Similarly to what happened in the previous case, this first step of tuning highlighted how
the best thresholds hyperparameters were θ1 = θ2 = 0.4. Furthermore, this time the
number of neighbors κ = 5 was also already evidently the best. A second step of tuning
was still necessary in order to find the best value of ζ. The hyperparameters used were:

• κ = 5

• θ1 = 0.4

• θ2 = 0.4

• ζ = [0.25, 0.5, 0.75]

Results are reported in Table 3.11.

Seed ζ E
60 0.5 20.9%
70 0.5 15.3%
80 0.5 19.4%
90 0.25 20.15%
100 0.75 16.79%

Mean 18.51%
Var 5.61

Table 3.11: Results of the GoO-Oriented κ-NN model on Γ′, tuning (step 2)

Taking into account both Table 3.10 and 3.11 we decided to set the optimal ζ to 0.5. This
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meant that the results were optimal when objects and edges of the GoO were given the
same weight.

At this point, we had the final model, which used the following hyperparameters:

• κ = 5

• θ1 = 0.4

• θ2 = 0.4

• ζ = 0.5

The results on Γ′ are reported in Table 3.12:

Seed E
110 22.01%
120 25.75%
130 19.78%
140 15.67%
150 18.28%

Mean 20.3%
Var 14.61

Table 3.12: Results of the optimal GoO-Oriented κ-NN model on Γ′

The reader may notice that the mean and variance slightly increased in this final step,
but this was likely caused by the use of different seeds for the splits. Nevertheless, the
results remain incredibly positive, especially considering the decrease in computational
time achieved by not cross-validating any hyperparameter.

Finally, in Figure 3.5 we present the same coastal area of the city, as classified by our final
algorithm. The seed used is once again 0. The most evident difference with Figure 3.4 lies
on the main paved road starting from south-west and going upwards for the entire map.
This road is much better identified by this new approach, and some of its neighboring
minor roads are realistically classified as paved too, showing the presence of the adjacency
matrix in the input.

3.3.5. Choice of the Best Model

To highlight the improvement of our method with respect to the one presented in [10],
we recap in Table 3.13 the performances of the Object-Oriented model, Ωκ-NN, and the
GoO-Oriented one, Γκ-NN. The GoO-Oriented model dominates for every single train-
test split and, for this reason, we officially declare it our final κ-NN and apply it to the
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Figure 3.5: GoO-Oriented κ-NN model on Γ′

Paved Unpaved

Seed Ωκ-NN Γκ-NN
110 41.79% 22.01%
120 36.94% 25.75%
130 34.7% 19.78%
140 34.33% 15.67%
150 36.19% 18.28%

Table 3.13: Comparison in terms of E between Ωκ-NN and Γκ-NN

entire Greater Maputo area, represented by Γ(Ω,H). In Table 3.14, we present results on
various splits of the full dataset.

It is important to note that hyperparameters have been tuned on a small portion of the
city, so the errors are not expected to be as optimal as in the previous case. Nevertheless,
generalizing results to a larger scope allows for much shorter computational times. Further
efforts in improving computational efficiency could involve parallelizing the computation of
the previous sections, allowing for fine-tuning to be directly applied to the entire Greater
Maputo area. This optimization would be particularly beneficial for the computation
of the energy dissimilarity matrix E itself. The computation of this N ×NL matrix was
indeed time-consuming. Utilizing a computer equipped with a 10-core Intel Core i7-1265U
processor and 16GB of RAM, we divided the computation of E into 20 chunks, with each
chunk taking between 2.5 and 4 hours to complete.
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Seed E
100 25.34%
200 29.11%
300 30.48%
400 35.96%
500 25%

Table 3.14: Results of the optimal GoO-Oriented κ-NN model on Γ

Finally, in Figure 3.6 we present the entire Greater Maputo area as classified by the final
model. As usual, the seed used is 0.

Figure 3.6: Optimal GoO-Oriented κ-NN model on Γ

Paved Unpaved
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4.1. Fundamentals of GCNs

4.1.1. Artifcial Neural Networks

Artificial Neural Networks (ANNs, [19], [29]) are computational models inspired by the
structure and functioning of the human brain. They consist of interconnected nodes,
or artificial neurons, organized into layers, including input, hidden and output layers.
Neurons within these layers are connected by weights, which are adjusted during the
learning process. An example of ANN is presented in Figure 4.1.

Figure 4.1: Example of ANN, where input, hidden and output layers are highlighted

The idea is the same we explained in Subsection 2.1.1. During the training of a neural
network, the objective is to drive the network’s output, denoted as f̂(X), to closely match
a target function f(X). The input data consists of examples of X, each accompanied by
a label yi. The output layer corresponds to the predicted output, while the intermediary
layers, referred to as hidden layers, do not explicitly specify output values and their role
is mainly transitory. This obscure nature of the hidden layers is the reason why neural
networks are considered one of the most important examples of black-box models.
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As previously said, every layer is made of multiple artificial neurons, each of these oper-
ating as a simplified model of its biological counterpart. The job of an artificial neuron
involves processing inputs, applying weights and introducing non-linearity through an ac-
tivation function. In practice, a neuron computes the dot product of the input vector X

and the weight vector W , summed with a bias term b. The weights signify the strength
of the connections between neurons and are crucial parameters that the network adjusts
during the learning process. Following this linear combination, an activation function
a(x) is applied to introduce non-linearity. The Rectified Linear Unit (ReLU) is a popular
activation function, defined as f(x) = max(0, x). ReLU has become widely adopted due
to its simplicity and effectiveness in promoting faster convergence during training. Taking
all of this into account, the output H of a neuron is computed as

H = a

(
n∑

i=1

Xi ·Wi + b

)
(4.1)

Training is performed by feeding the network with the same labeled data for multiple iter-
ations, usually referred to as epochs. Then a process called backpropagation is performed.
It involves the iterative adjustment of weights throughout the network to minimize the
discrepancy between the predicted output f̂(X) and the actual target output f(X). This
discrepancy is typically quantified by a loss function. The most common example of loss
function in classification tasks, like the one at hand, is the cross-entropy loss (2.5).

During the forward pass, the network generates predictions, and the loss is computed.
Subsequently, during the backward pass, the gradient of the loss with respect to each
weight is calculated. The weights are then updated in the opposite direction of the gra-
dient through an optimization algorithm. A common example of optimization algorithm
is gradient descent. It works by iteratively adjusting weights to minimize the loss. The
gradient represents the direction of the steepest ascent in the loss landscape, and gradient
descent takes steps in the opposite direction to reach a minimum. Mathematically, the
weight update in gradient descent is performed as:

Wnew = Wold − γ · ∇L(Wold) (4.2)

where γ is the learning rate, a hyperparameter that determines the size of the steps taken
in the weight space.
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4.1.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs, [19]) represent a specialized class of artificial
neural networks designed for processing structured grid data, such as time-series (1D
grids) or images (2D grids). While traditional ANNs are generally very effective, they
lack the ability to capture the spatial relationships present in this type of data. CNNs
address this limitation through the use of convolutional layers.

As the name suggests, the key innovation of CNNs lies in convolution operations. Unlike
fully connected layers in traditional ANNs, convolutional layers operate on local regions of
the input data using small matrices called filters or kernels. Each filter extracts features by
sliding over the input and performing element-wise multiplication, followed by summation.
This process is expressed mathematically as:

(X ∗K)ij =
∑
m

∑
n

Xm,nKi−m,i−n (4.3)

where X represents the input and K the filter. Being the filter much smaller than the
input data, the entire network acquires a sparse representation. This means that we need
to store fewer parameters with respect to the traditional ANN case, which both reduces
the memory requirements of the model and improves its efficiency.

Pooling layers are often combined with convolutional layers to further reduce spatial
dimensions and computational complexity. Max pooling is a common technique where
the maximum value within a local region is retained, effectively downsampling the feature
maps.

Similar to traditional ANNs, activation functions such as ReLU are applied to introduce
non-linearity within CNNs. Additionally, fully connected layers may follow convolutional
and pooling layers to capture global dependencies and enable high-level reasoning.

Training CNNs involves a process similar to traditional ANNs, including backpropagation
and gradient descent. However, CNNs often leverage specific optimization techniques,
such as stochastic gradient descent with momentum, to enhance convergence speed.

As previously stated, CNNs have found widespread application in computer vision tasks,
including image classification, object detection and segmentation. Nevertheless, in the
following we will mainly focus on CNNs applied to graphs for Semi-Supervised Learning.
This is a more uncommon use of CNNs and it is proof of the incredibly wide possibilities
of using convolutional operations within a neural network.
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4.1.3. Graph Convolutional Networks

A Graph Convolutional Network (GCN, [22]) is a neural network model designed for
Semi-Supervised Learning on graph-structured data. The key idea, as anticipated in
Subsection 2.1.3, is to leverage the graph structure to propagate information between
nodes and learn meaningful representations.

Graph-Convolutional Layers

The GCN model consists of multiple layers, each performing a graph convolution operation
to update the node representations. We are not going to delve deep into the steps leading
to the final convolution operation. Such steps rely on the normalized graph Laplacian,
Chebyshev polynomials, and multiple approximations to make the computation faster.
For an in-depth analysis of such steps, we advise reading the full work in [22]. What
is fundamental to report here is the final operation performed by neurons in a graph-
convolutional layer:

D− 1
2AD− 1

2XK = ÂXK (4.4)

where A is the adjacency matrix related to the graph, D is a diagonal matrix such that
Dii =

∑
j Aij, X is the input and K the filter.

The reader may notice that notation slightly deviates from that used in [22] because, in
our case, A is such that Aii = 1 ∀i, eliminating the need to add an identity matrix. This
decision was made to maintain coherence with the adjacency matrix A introduced for the
κ-NN algorithm.

The input data is represented as an N × F matrix of features, where F denotes the
number of features. Typically, this matrix comprises a set of one-hot encoded attributes.
However, achieving a featureless approach is straightforward by setting X = I, where I

is the N ×N identity matrix.

Two-Layer GCN Model

The model proposed is a two-layer GCN with only one graph-convolutional hidden layer
and one graph-convolutional output layer. Deeper models have been tried but performed
worse because of overfitting. The activation function used for the hidden layer is the ReLU
function. Since this model was invented for classifying nodes, a softmax transformation
is performed in order for the output values to be probabilities that sum to 1. Suppose v

is a vector in RC where C is the number of possible classes, the softmax transformation
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is the following:

softmax(v)i =
evi∑C
j=1 e

vj
(4.5)

Combining all elements, the ultimate Graph Convolutional Network (GCN) proposed by
[22] can be expressed mathematically as follows:

Z = softmax
(
Â ReLU

(
ÂXW (0)

)
W (1)

)
(4.6)

where W (0) and W (1) represent the weights fine-tuned by the neural network.

Similarly to what happens in a standard ANN, (4.6) is executed over multiple epochs on
the training data X and validated using a validation set. At each iteration, the cross-
entropy loss is calculated, and the weights undergo updates through gradient descent.
Upon completing the final epoch, the two columns of Z correspond to the probabilities
of belonging to class 0 and class 1 for the elements of the train set. Then, (4.6) with the
optimized W (0) and W (1) is applied to the test set. The maximum number of epochs is
capped at 200, but if the model’s performance on the validation set ceases to improve
for more than 5 consecutive epochs, the training phase halts automatically to prevent
overfitting.

4.2. GoO Convolutional Networks

Now that we have introduced the concept of Graph Convolutional Networks, it is time to
extend this idea to handle more intricate data, specifically our GoO-structured data. The
initial model exploits the adjacency matrix, establishing a direct correspondence with the
set of edges H; however, it lacks a mechanism for addressing objects Ω.

We devised two distinct approaches to address this challenge. The first approach sought to
include meaningful information inherent in the objects through the matrix X. In contrast,
the second approach dismissed X, replacing it with an identity matrix, and employed an
alternative activation function for the output layer. This new activation function aimed
to replace the original softmax and generate an object-adjusted Z at each epoch.

Both of these methods, which will be elucidated more comprehensively in the subsequent
subsections, will continue to build upon the findings expounded in [10] and Chapter 3 of
this thesis. Details about the intricate structures of the 3D objects will once again be
condensed using the energy distance matrix E. Both iterations of our GoO Convolutional
Networks (ΓGCNs) will endeavor to integrate this matrix into the conventional GCN
framework.
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4.2.1. Objects in the Input

This approach proved to be the most straightforward to implement, leveraging the in-
herent structure of the GCN (4.6). The primary challenge was to devise a method to
incorporate information regarding each ωi ∈ Ω within an N × F matrix without com-
promising the distinctive 3D structure characteristic of our dataset. Having thoroughly
explored the potential of a κ-NN approach involving distances between elements of Ω at
this juncture, the most logical choice was to employ it again.

Once again, we relied on E, the N × NL energy matrix, utilizing it to compute a new
N × (κ + 1) matrix X. This matrix was defined as the one-hot encoded version of fU .
To clarify, if κ = 5, the possible values for an element of fU would be [0, 0.2, 0.4, 0.6,
0.8, 1], and an object ωi with 3 of its nearest neighbors labeled as unpaved would result
in Xi = [0, 0, 0, 1, 0, 0]. The question may arise as to why we chose to employ E as
the distance matrix for this internal κ-NN, even though we demonstrated that a GoO-
based model generally yielded superior performance. This decision was influenced by the
fact that the GCN was already infused with information regarding the graph’s structure,
specifically in the form of Â in (4.6). Our intention was to avoid redundantly providing
the same information, allowing for a more effective examination of the impact of objects
in an edge-based algorithm. This approach marks a reversal from the strategy adopted
in Chapter 3.

4.2.2. Objects in the Output

For the second approach, we decided to keep the essence of the convolutional layer (4.4)
as straightforward as possible by replacing X with an identity matrix I. This choice
ensures the propagation of information solely contained in the edges of the Graph of
Objects. What we modified was the softmax function, which, in the original framework,
transformed the network’s output into a vector of probabilities. Although we aimed to
maintain the output as probabilities, our objective was to incorporate information from
both H and Ω. Let’s define

B =
[
b0, b1

]
= Â ReLU

(
ÂXW (0)

)
W (1) (4.7)

The novel function, termed oo-softmax (object-oriented softmax), was defined as follows:

oo-softmax (B) = softmax
([
α · b0 + (1− α) · fP , β · b1 + (1− β) · fU

])
(4.8)
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where, fP and fU were vectors encompassing, for each object, the frequency of paved and
unpaved neighbors in terms of energy. Additionally, α and β represented two hyperpa-
rameters with values in the set [0, 0.25, 0.5, 0.75, 1]. This formula combined the outcomes
of the computation in (4.6) and weighed their values with the results of the object-based
κ-NN introduced by [10]. The rationale for choosing the object-based model over the
GoO-based one remains consistent with the explanation provided in the preceding para-
graph.

An interesting observation to highlight is that there was no constraint imposing the values
of b0 and b1 to fall within the interval [0, 1]. Empirical investigations revealed that, in most
instances, they did lie within the desired interval, although not invariably. Conversely,
the frequencies fP and fU were, by definition, always confined to this interval. Since the
essence of the formula was to compute a weighted average of these values, this initially
posed a concern in our analysis. The first draft of our oo-softmax performed a sigmoid
transformation of b0 and b1 before computing the weighted mean. The sigmoid function
is defined as

σ(x) =
1

1 + e−x
(4.9)

and it is straightforward to see that the output of this function is always in the desired
interval. Nevertheless, as previously noted, the output values of our model were frequently
situated within the desired range. Applying a sigmoid function condensed these results
around 0.5, as depicted in the illustrative plot presented in Figure 4.2. This posed a more
pronounced issue than before, particularly in a classification task, where values around
0.5 are evidently the least informative.

Figure 4.2: Sigmoid function σ(x)

Firstly, we tried to add a third hyperparameter ξ > 1, and substituted the classical sigmoid
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function with a steeper one: σ(ξx). In Figure 4.3 we present a plot of the behavior of this
function when ξ = 5.

Figure 4.3: Steep sigmoid function σ(5x)

Although this second function yielded results consistent with our objectives, ultimately,
we observed that retaining the original values of b0 and b1 produced outcomes that were
not significantly inferior. Moreover, it allowed us to train a simpler model with one fewer
hyperparameter. Consequently, we chose the simplified version in (4.8). However, if a
GoO-based method were to be employed for different case studies in the future, it would
be reasonable to consider incorporating this modification.

Combining everything we introduced, the final GoO-Oriented GCN model according to
this second approach appears as:

Z = oo-softmax
(
Â ReLU

(
ÂW (0)

)
W (1)

)
(4.10)

Although the underlying intuition for this approach and the original one is the same, the
two neural networks yield different results at each epoch, leading to a distinct evolution
of the weights in W (0) and W (1).

4.2.3. Voting Rule

Both the original GCN and the two possible GoO-oriented modifications produce a matrix
Z where each row i is a vector in [0, 1]2 of two probabilities that sum to 1. Similarly to
what was done in Chapter 3 this lead to the possibility of trying multiple voting rules.
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We introduced once again two thresholds θ1 and θ2 such that

θ1, θ2 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}

θ1 ≤ θ2

(4.11)

(4.12)

We then defined the following classification rule:

ŷi =


0 if Zi,1 > θ2

1 if Zi,1 ≤ θ1

2 otherwise

(4.13)

a version of (2.7), where Z is the output of the network at the last epoch and the subscript
1 refers to the first column of Z, indicating the probability of being paved.

4.3. Implementation and Results

4.3.1. Hyperparameter Tuning

In addition to the five hyperparameters introduced in the preceding paragraphs (κ, α, β, θ1,
and θ2), various other hyperparameters, characteristic of every ANN and governing its
internal behavior, needed to be configured. To make the distinction between these two
sets of hyperparameters more clear, we will refer to them as, respectively, GoO and ANN
hyperparameters.

ANN Hyperparameters

Due to the complexity and time-consuming nature of validating all the ANN hyperpa-
rameters, we adopted the values proposed in [22] as a starting point and made empirical
adjustments to determine the optimal values for improved performance. These hyperpa-
rameters remain consistent across all the algorithms presented to ensure coherent results.
Several tests affirmed that the assumption of these values being optimal for all the algo-
rithms was not far from reality.

• Learning rate: Set to 0.1. This is the γ in (4.2) and, as already mentioned, it can
be seen as the length of the step made while updating the weights W (0) and W (1)

with gradient descent.

• Number of epochs : Set to 200. As stressed before, this value is only the maximum
number of epochs. It will be much more common for the algorithms to converge



56 4| Graph Convolutional Network

faster.

• Tolerance for early stopping : Set to 5. As already mentioned, this is the number
of epochs for which the performance on the validation set must remain constant for
convergence to be achieved.

• Number of neurons in hidden layer 1 : Set to 8. This is self-explanatory and is
needed by the algorithm to build the first (and in our case only) hidden layer.

• Dropout rate: Set to 0.5. This determines the probability that each node in the
GCN will be dropped out during training, which helps prevent overfitting.

• Weight decay : Set to 5 · 10−4. When computing the error, the algorithm does not
simply compute the cross-entropy loss, but also adds an L2 regularization penalty
in order to avoid overfitting. This parameter tunes the weight that is given to the
regularization term.

GoO Hyperparameters

The original algorithm outlined in [22] partitioned its dataset into a training, a validation,
and a test set. As previously noted, the validation set served the purpose of monitoring
convergence to potentially halt training earlier, thereby preventing overfitting. This was
done by checking the value of the cross-entropy loss at every epoch.

Given the introduction of additional hyperparameters to the original code, an efficient
method for tuning them was required. To maintain a certain level of coherence with the
κ-NN presented in the preceding chapter, we opted for 5-fold cross-validation. In each
fold, 80% of the training data was utilized to fine-tune W (0) and W (1) for every conceivable
combination of hyperparameters. The remaining 20% served the dual purpose of checking
convergence and computing the pavement error E for each hyperparameter combination.
We originally thought that allocating two separate validation sets, one for the convergence
and the other for the assessment, was a better choice to avoid overfitting. However,
that made the code much more complex and excessively decreased the dimension of the
training set, without significantly improving the results. In the end, the best performing
combination of hyperparameters will be selected, the model trained one last time to find
the optimal W (0) and W (1) and finally used over the test set.

4.3.2. Summary of the Tested Models

We are now ready to unveil the results of the three convolutional networks. Similar to the
methodology employed in Chapter 3, we will determine the optimal set of hyperparameters
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for each network, this time focusing on the GoO hyperparameters. Subsequently, we will
conduct a comparative analysis, emphasizing the performance differences and highlighting
the superiority of a GoO-Oriented model over an Edge-Oriented one.

Differently from what was done for the κ-NN, this time we will present two distinct
GoO-based algorithms, as introduced in Section 4.2. In this manner, we will not only
demonstrate the necessity of including objects in the analysis but also elucidate the opti-
mal way to do so.

Before starting, we summarise the key points distinguishing the three models for an easier
understanding:

• Edge-Oriented Model (HGCN): a GCN performing (4.6) with X = I;

• First GoO-Oriented Model (ΓGCN1): a GCN performing (4.6) with X equal
to the one-hot encoded version of fU ;

• Second GoO-Oriented Model (ΓGCN2): a GCN performing (4.10).

4.3.3. Edge-Oriented Model

The first model we present is the original GCN proposed in [22] with X = I, so that
no information about the objects is given. The only hyperparameters to tune were the
thresholds and the possible values were:

• θ1 = [0, 0.2, 0.4, 0.6, 0.8, 1]

• θ2 = [0, 0.2, 0.4, 0.6, 0.8, 1] ∩ θ2 ≥ θ1

In Table 4.1, the pavement error E on the test set is reported together with the cho-
sen hyperparameters for 5 different train-test splits. We also summarize the results by
computing the sample mean and sample variance of the obtained errors.

Seed θ1 θ2 E
10 0.4 0.4 31.34%
20 0.4 0.4 22.01%
30 0.6 0.6 38.81%
40 0.4 0.4 49.25%
50 0.4 0.6 60.45%

Mean 40.37%
Var 225.78

Table 4.1: Results of the Edge-Oriented GCN model on Γ′, tuning (step 1)

It was clear that the variability of the results posed a main concern on the generalizability
of this approach. However, we noticed that, differently from what happened with the κ-
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NN, the best set of thresholds was not really clear. Both 0.4 and 0.6 were chosen multiple
times, so better results may have lied in the middle. We updated the set of possible
hyperparameters to:

• θ1 = [0.4, 0.5, 0.6]

• θ2 = [0.4, 0.5, 0.6] ∩ θ2 ≥ θ1

and simulated the problem again over five new splits. Results are in Table 4.2

Seed θ1 θ2 E
60 0.5 0.5 25.0%
70 0.5 0.5 23.88%
80 0.5 0.5 22.39%
90 0.5 0.6 23.88%
100 0.5 0.5 30.22%

Mean 25.07%
Var 9.13

Table 4.2: Results of the Edge-Oriented GCN model on Γ′, tuning (step 2)

The improvement achieved by this simple modification was dramatic so we decided to set
our optimal hyperparameters:

• θ1 = 0.5

• θ2 = 0.5

Results of some final simulations are reported in Table 4.3.

Seed E
110 24.63%
120 31.34%
130 28.36%
140 21.27%
150 21.64%

Mean 25.45%
Var 18.95

Table 4.3: Results of the optimal Edge-Oriented GCN model on Γ′

These results align with those obtained through cross-validation of the thresholds and
are highly satisfactory. This new algorithm proves to be significantly more efficient than
the Object-Oriented κ-NN, highlighting the impact of the edges of the GoO on the final
classification.

To conclude our work on the Edge-Oriented GCN model, in Figure 4.4 we present a plot
of our results over the coastal area of Maputo represented by Γ′. One again, the seed used
for the train-test split is 0.
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Figure 4.4: Edge-Oriented GCN model on Γ′

Paved Unpaved

4.3.4. First GoO-Oriented Model

We proceeded with the same approach for the first GoO-based model, this time using as
X the one-hot encoded version of fU . The initial possible values for the hyperparameters
were:

• κ = [3, 5, 7]

• θ1 = [0, 0.2, 0.4, 0.6, 0.8, 1]

• θ2 = [0, 0.2, 0.4, 0.6, 0.8, 1] ∩ θ2 ≥ θ1

Results are reported in Table 4.3.

Seed κ θ1 θ2 E
10 5 0.6 0.6 24.25%
20 3 0.8 0.8 24.25%
30 3 0.8 0.8 29.48%
40 5 0.6 0.6 35.82%
50 7 0.6 0.6 26.12%

Mean 27.98%
Var 23.75

Table 4.4: Results of the first GoO-Oriented GCN model on Γ′, tuning (step 1)

The obtained results did not directly lead to one single set of optimal hyperparameters, so
further tuning was needed. Nevertheless, we managed to understand that the best values
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for θ1 and θ2 lied between 0.6 and 0.8. We took this information into account and ran the
model again with the following possible parameters:

• κ = [3, 5, 7]

• θ1 ∈ [0.6, 0.7, 0.8]

• θ2 ∈ [0.6, 0.7, 0.8] ∩ θ2 ≥ θ1

The results are presented in Table 4.5.

Seed κ θ1 θ2 E
60 3 0.6 0.7 33.96%
70 5 0.6 0.6 16.04%
80 5 0.7 0.7 17.91%
90 3 0.6 0.6 18.66%
100 3 0.6 0.7 23.13%

Mean 21.94%
Var 51.93

Table 4.5: Results of the first GoO-Oriented GCN model on Γ′, tuning (step 2)

Once again, there was no clear optimal set of hyperparameters. However, by taking into
account both results in Table 4.4 and Table 4.5, we decided to set them to:

• κ = 5

• θ1 = 0.6

• θ2 = 0.6

At this point, we proceeded with the training of the optimal model over the same five
train-test splits we used for the best Edge-Oriented GCN, for later comparison. Results
are reported in Table 4.6.

Seed E
110 17.16%
120 30.97%
130 30.22%
140 20.9%
150 17.54%

Mean 23.36%
Var 45.83

Table 4.6: Results of the first optimal GoO-Oriented GCN model on Γ′

In Figure 4.5, the plot of the results over the coastal area of Maputo is presented. Notably,
some of the northern roads, which were curiously classified as paved in Figure 4.4, are
now categorized as unpaved, a result we deem more realistic.
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Figure 4.5: First GoO-Oriented GCN model on Γ′

Paved Unpaved

4.3.5. Second GoO-Oriented Model

At this point, the only thing left to do was to find the optimal hyperparameters for our
second proposed GoO-Oriented GCN. Schematically, the starting sets of values for these
parameters were:

• κ = [3, 5, 7]

• α = [0, 0.25, 0.5, 0.75, 1]

• β = [0, 0.25, 0.5, 0.75, 1]

• θ1 = [0, 0.2, 0.4, 0.6, 0.8, 1]

• θ2 = [0, 0.2, 0.4, 0.6, 0.8, 1] ∩ θ2 ≥ θ1

Computations at this stage of our work were obviously the longest of the entire work,
given the large amount of possible hyperparameters combinations. This was where the
use of a limited dataset Γ′(Ω′,H′) really proved to be a winning choice. Results of this
step are in Table 4.7.

From this we realised that once again the optimal thresholds were θ1 = θ2 = 0.6, while
the best number of neighbors was κ = 3. Unfortunately, the choice of α and β was not as
straightforward. However, we discovered that the best results were obtained when α < β
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Seed κ α β θ1 θ2 E
10 5 0 0.5 0.6 0.6 20.52%
20 3 0 0.5 0.6 0.6 18.28%
30 3 0.25 0.5 0.6 0.6 24.25%
40 3 0.25 0.5 0.6 0.6 32.46%
50 3 0 0.75 0.6 0.6 15.3%

Mean 22.16%
Var 43.81

Table 4.7: Results of the second GoO-Oriented GCN model on Γ′, tuning (step 1)

and β < 1. Keeping this in mind, we limited the range of possible values to:

• κ = 3

• α = [0, 0.25]

• β = [0.25, 0.5, 0.75]

• θ1 = 0.6

• θ2 = 0.6

New tests were made and their results are reported in Table 4.8.

Seed α β E
60 0 0.75 26.87%
70 0.25 0.75 16.79%
80 0 0.75 18.66%
90 0 0.5 19.03%
100 0 0.5 21.27%

Mean 20.52%
Var 15.12

Table 4.8: Results of the second GoO-Oriented GCN model on Γ′, tuning (step 2)

At this point, we immediately set α = 0, while for β a little more reasoning was needed.
Both 0.5 and 0.75 were chosen multiple times, but the worst result was obtained when
β = 0.75. For this reason, we opted for β = 0.5 as the final value. To recap:

• κ = 3

• α = 0

• β = 0.5

• θ1 = 0.6

• θ2 = 0.6

The results on Γ′ of the second optimal GoO-Oriented GCN are reported in Table 4.9,
while the usual plot with seed equal to 0 is in Figure 4.6. A visual inspection of the
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classified map reveals a results that is in between the two previous models. Some roads in
the northern part are classified as paved, differently from Figure 4.5, but their structure
appears to be less random and more realistic than the one visible in Figure 4.4.

Seed E
110 26.12%
120 25%
130 22.76%
140 15.67%
150 16.04%

Mean 21.64%
Var 18.66

Table 4.9: Results of the second optimal GoO-Oriented GCN model on Γ′

Figure 4.6: Second GoO-Oriented GCN model on Γ′

Paved Unpaved

4.3.6. Choice of the Best Model

Similarly to what was done in Chapter 3, we recap our findings and summarise the results
of our different GCNs in Table 4.10 for a final comparison.

On average, both our methods outperformed the original Edge-Oriented neural network,
highlighting not only the absolute superiority of a GoO-structured dataset, but also that
our models effectively exploited information coming both from Ω and H. The second
method generally demonstrated superior performance compared to the first one, present-
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Seed HGCN ΓGCN1 ΓGCN2

110 24.63% 17.16% 26.12%
120 31.34% 30.97% 25%
130 28.36% 30.22% 22.76%
140 21.27% 20.9% 15.67%
150 21.64% 17.54% 16.04%

Table 4.10: Comparison in terms of E between HGCN, ΓGCN1 and ΓGCN2

ing lower mean and variability. Nevertheless, it’s worth noting that one of the splits
produced an error even larger than that obtained by HGCN, so the choice for a final op-
timal model was not straightforward. However, to facilitate a comprehensive comparison
against the Γκ-NN presented at the end of Chapter 3, we wanted to choose one single
final model, so we opted for ΓGCN2 anyway.

To conclude the chapter, we present the performance of the chosen model over the entire
Greater Maputo area. In Table 4.11 results for 5 different train-test splits of Γ(Ω,H) can
be found.

Seed E
100 31.16%
200 38.7%
300 35.45%
400 34.93%
500 41.78%

Table 4.11: Results of the optimal GoO-Oriented GCN model on Γ

Similarly to what was said for the κ-NN, these results may appear disappointing with
respect to the ones obtained on the reduced GoO. It must not be forgotten that this is
the optimal model on Γ′ and the results in Table 4.11 must be simply seen as a way to
assess the level of generalizability of such specific model. In this perspective, results are
indeed satisfying, taking into account the extreme shrink in terms of computational time
this process allowed.

Figure 4.7 presents a plot of the area with the classification performed. As usual, the seed
used in this final case is 0.
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Figure 4.7: Optimal GoO-Oriented GCN model on Γ

Paved Unpaved





67

5| Compared Approaches

5.1. Comparison

The aim of this concluding chapter is to conduct a comparative analysis between the two
approaches presented in Chapter 3 and Chapter 4 to discern if one consistently outper-
forms the other. To achieve this, our focus will be solely on the two successful models,
Γκ-NN and ΓGCN2 (from now on, simply ΓGCN), executed with optimal hyperparam-
eters. We will refrain from conducting additional cross-validation or optimization. As a
reference, we will solely rely on the standard sets of five distinct train-test splits. It is
essential to reiterate that these splits were meticulously crafted to ensure that identical
training and test sets were employed for both the κ-NN and the neural network. This
approach facilitates a more impartial comparison of performance.

In the following subsections, we will analyze four key characteristics that we deemed
essential during our investigation:

• Performance: mean and variance of the pavement error E over the limited Graph
of Objects Γ′, utilizing the optimal set of hyperparameters;

• Generalizability: mean and variance of the pavement error E over the entire Graph
of Objects Γ, employing the optimal hyperparameters found for Γ′;

• Computational Time: time required by the algorithm to execute the classification
of all the roads in Γ′ and Γ once the optimal hyperparameters have been determined;

• Visual Result: a posteriori examination of the plot of the classified roads to iden-
tify any areas of the city exhibiting peculiar or unexpected behaviors. Additionally,
the actual structure of the city is taken into account.

Considering all of these aspects, we will ultimately determine whether one of the two
approaches objectively outperforms the other.
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5.1.1. Performance

For this first point we report in Table 5.1 the results computed in the previous chapters
for the optimal models over five different train-test splits, together with their mean and
variance. For a faster analysis, the best result for each seed is written in bold.

Seed Γκ-NN ΓGCN
110 22.01% 26.12%
120 25.75% 25%
130 19.78% 22.76%
140 15.67% 15.67%
150 18.28% 16.04%

Mean 20.3% 21.64%
Var 14.61 18.66

Table 5.1: Compared performance of the two best models

Out of the five train-test splits, both algorithms outperformed each other twice, while for
seed equal to 140, they had the exact same performance. The mean and variance of the
Γκ-NN are slightly lower, but the difference was not significant enough to be considered
statistically significant. Hence, it was not possible to definitively determine a best model
between the two.

From a practical standpoint, having two competitive algorithms provides practitioners
and decision-makers with valuable flexibility. Depending on the specific requirements of a
task or the nature of the dataset, they can choose between Γκ-NN and ΓGCN, confident
in the knowledge that both options are capable and dependable.

5.1.2. Generalizability

Now we report the results obtained over Γ by Γκ-NN and ΓGCN, to see if the two
algorithms scale with the same efficiency as well. In Table 5.2 the pavement error over
five splits can be found, along with mean and variance for the two algorithms.

It is clear that the situation is different from the one presented in the previous subsection.
In this case, Γκ-NN outperforms ΓGCN four out of five times, with a mean pavement
error E that is around 7% inferior. Variance of the second method is slightly lower, but
this is not enough to make it a better model. It appears that, even if the two models are
basically equivalent at classifying roads in the limited dataset, the first one scales much
better. One possible reason for such a discrepancy might simply be that the optimal
hyperparameters found for the limited coastal area of the city are significantly different
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Seed Γκ-NN ΓGCN
100 25.34% 31.16%
200 29.11% 38.7%
300 30.48% 35.45%
400 35.96% 34.93%
500 25% 41.78%

Mean 29.18% 36.4%
Var 19.97 16.17

Table 5.2: Compared generalizability of the two best models

than the best ones over the entire Greater Maputo area. On the other hand, the issue
might be in the algorithm itself, performing worse with an increasing size of the dataset.
This unforeseen aspect enriches our exploration, opening avenues for further investigation
into the underlying mechanisms that contribute to the scalability of statistical models in
this context.

5.1.3. Computational Time

For this third point, we focused on the computational time needed for the two algorithms
to perform the classifications in Table 5.1 and Table 5.2. The time interval taken into
account for this analysis was from the computation of fU (from ∆ for Γκ-NN and from E

for ΓGCN) to the final calculation of E over the test set. The time for the computation
of A, E and C was not considered, since it was enough to do it once a priori. Still, it
should be taken into account that the computation of C was not needed for the neural
network, making it more efficient from that point of view. The time for the upload of
such matrices (which was significant especially for the prediction over the entire Γ) was
also not considered, as it was not depending on the algorithms but on the language used.
Since R was used to write the κ-NN and Python was used for the GCN, taking this part of
the computation into account would have biased the results. The simulations where run
on a laptop equipped with a 10-core Intel Core i7-1265U processor and 16GB of RAM.

In Table 5.3 and Table 5.4 the computational times over Γ′ and Γ are reported for ev-
ery train-test split. It is crucial to emphasize that, in contrast to the pavement errors
computed in the previous subsections, the computational times may vary slightly each
time an algorithm is executed. Therefore, the best performing mean was written in bold,
rather than the best value for each seed.

Undoubtedly, for a limited dataset, the κ-NN outperforms the ΓGCN, requiring, on aver-
age, less than half the time for classification. However, as the number of data points in-
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Seed Γκ-NN ΓGCN
110 0.86 s 2.07 s
120 0.86 s 2.59 s
130 0.83 s 2.15 s
140 0.86 s 2.08 s
150 0.83 s 2.62 s

Mean 0.85 s 2.3 s

Table 5.3: Compared computational time of the two best models over Γ′

Seed Γκ-NN ΓGCN
100 28.72 s 20.75 s
200 37.91 s 19.35 s
300 38.53 s 19.79 s
400 41.59 s 25.81 s
500 49.23 s 19.41 s

Mean 39.2 s 21.02 s

Table 5.4: Compared computational time of the two best models over Γ

creases, the neural network demonstrates significantly faster performance. Consequently,
the second approach exhibits less favorable scalability in terms of performance but fares
considerably better in terms of computational time.

Given that, when focusing on the limited dataset, the choice is between an algorithm that
takes slightly less than a second and one that takes around two seconds (both incredibly
low time intervals) we deemed it more meaningful to prioritize the results over the entire
GoO. Therefore, in terms of computational times, the neural network emerges as a much
more efficient approach.

5.1.4. Visual Result

As the primary objective of this thesis was to address a classification task in a real-world
scenario, we deemed it essential to conclude our work with an exploratory analysis of
the results within this context. In practice, this entailed a comprehensive study of the
plot and a visual examination of areas where the behavior of paved and unpaved roads
appeared unexpected or unusual. This analysis will be specifically conducted over Γ′,
primarily due to the impracticality of visually scrutinizing the entire road network, which
comprises over 53000 data points. In Figure 5.1, the plots of the results over Γ′ with seed
equal to 0 are once again presented.
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Figure 5.1: Visual results over Γ′ for Γκ-NN (top) and ΓGCN (bottom)

It is not surprising to observe that the overall characteristics of the two predicted road
networks are quite similar. Both algorithms have demonstrated remarkable reliability and
exhibited strong performances in this specific area of the city. In both cases, the region
immediately adjacent to the coast (southeastern part of the map) features a substantial
number of paved roads, indicative of a densely populated and vibrant neighborhood. As
one moves away from this area, the prevalence of short unpaved roads increases exponen-
tially, pointing towards the suburbs.
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Some minor differences are present. For instance, the primary paved road originating from
the south-west and traversing the suburbs was better identified by the κ-NN. Conversely,
the region in the north-east exhibits a more coherent structure in the second picture.
Nevertheless, these slight discrepancies are certainly not substantial enough to declare
one of the two algorithms superior to the other.

5.2. Discussion

Taking into account all aspects analyzed in this chapter, the selection of a single best
algorithm is not straightforward, and perhaps even impossible. We emphasized how the
two models yield remarkably similar results when applied to the limited dataset with tuned
hyperparameters. These results are highly satisfying in terms of accuracy and pavement
error. Either of the two algorithms could be confidently reused if a similar analysis had to
be conducted in the future with other Graphs of Objects of comparable dimensions. The
quality of this performance was not only assessed mathematically but was also confirmed
through visual analysis of the results. On the other hand, as the dimension of the dataset
increases exponentially, the first algorithm begins to outperform the second one, albeit at
a progressively slower pace. The choice between these two characteristics (performance
and computational speed) will ultimately depend on the user’s priorities for their analysis.

In light of the various considerations we have enumerated, it becomes evident that a sin-
gular, optimal algorithm for the comprehensive analysis of GoOs cannot be conclusively
determined. This holds true not only for the broader context of GoO-based analysis but
also specifically in the context of our current research. Within the scope of our investiga-
tion, we have presented two distinct models, each exhibiting commendable performance
metrics, yet accompanied by its own set of strengths and limitations. Consequently, the
ultimate decision on which model to employ rests upon a nuanced evaluation of the unique
demands and objectives of the analytical task at hand.
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Conclusion

The issues related to unreliable and unsafe road networks, especially in developing coun-
tries, are vast and still widely open. Nevertheless, the work presented in this thesis
represents one step further towards the accomplishment of the Sustainable Development
Goals, designed by the United Nations in 2015.

We have explained the need for an accurate classification of the pavement status of roads
in big cities, with a specific focus on the Greater Maputo area in Mozambique. After
having visualised this goal, we focused on a way to efficiently represent data in this
context. Working with satellite images of a road network is indeed a really difficult task,
that could be faced in a vast variety of ways. In our case, we decided to represent these
images as 3D objects in the RGB space and to interconnect such objects in a graph, where
each border between roads assumed the role of an edge. We called this new data structure
Graph of Objects.

Afterwards, we needed to prove that this type of representation was actually useful for
the classification. We decided to start from two extremely different already existing algo-
rithms, a κ-NN and a Graph Convolutional Network. The former was originally designed
to work with an object-oriented dataset, while the latter was designed to gain information
from the edge structure of a graph. Our objective was to evolve these algorithms so that
they might work on our Graph of Objects, combing the realms of Object-Oriented Data
Analysis and Graph Theory. The two final algorithms we produced proved to perform
much better than their original counterparts, confirming the big step forward represented
by GoO-structured information.

In a final chapter, we compared our two models according to multiple performance metrics,
concluding that none of them is better than the other, but the choice should depend on the
dimension of the dataset at hand and the available time. This analysis also represented
a contrast between the worlds of traditional Statistical Learning and Deep Learning,
showcasing how both approaches may be able to utilize this new type of data structure
in different, but always well-performing, ways.

Future work may focus on Graphs of Objects in completely different contexts, varying
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from medicine to world wide web analysis. It is quite common to find problems where
data cannot be represented in the most traditional ways and a GoO structure may be
useful every time data points are complex and connected with each other. New algorithms
may be developed and placed side by side with our Γκ-NN and ΓGCN. This is just the
beginning for GoO-Oriented analysis.
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A| Guide to the Code

In this appendix, we provide a guide to the code that was implemented for the computa-
tions carried out throughout the thesis. For a comprehensive understanding, it is recom-
mended to download the code available at https://github.com/bertrandpouget/goo.

Data

The dataset is supposed to be added by the user in a folder called data and should
contain the input presented in Section 2.5. More specifically, the folder should contain
two subfolders, python and r composed like this:

• python

– e: .txt file containing the N×NL energy matrix after the normalization (3.6);

– a: .mtx file containing the full N × N adjacency matrix encoded as a sparse
matrix;

– y: .txt file containing the one-hot-encoded N × 2 response variable defined
according to

yi =


[1 0] if ωi is paved

[0 1] if ωi is unpaved

[0 0] if ωi is unknown

(A.1)

We opted for this one-hot-encoded version of (2.12) to maintain coherence with
the code associated to [22].

• r

– data: .Rdata file consisting of:

∗ e: N ×NL matrix defined according to (3.6);

∗ a: N ×NL matrix defined according to (3.7);

∗ c: N ×NL matrix defined according to (3.15);

https://github.com/bertrandpouget/goo


76 A| Guide to the Code

∗ p: N ×NL matrix defined according to (3.8);

∗ y: N × 2 matrix defined according to (A.1).

– geo: four files (.shp, .shx, .prj and .dbf) containing the set of polygons
representing the roads. This will only be used for the visual results, so it may
not be necessary if the algorithms are used for other GoOs, unrelated to the
world of road pavement detection.

A couple of final specifications are necessary. For the code to work correctly, it is important
that data points are stored in the same order in all data structures. Furthermore, the
first NL lines are supposed to refer to the labeled data points, while the following N −NL

lines have to be dedicated to the unlabeled ones.

Split

The first code available in the repository is split.R. Its role is to produce a train-test
split assigning 80% of the data points to a training set and the remaining 20% to the test
set. The user can change the split simply changing the seed at the beginning of the code.

The split is then transferred both to the python folder as a couple of .txt files, called
train_mask and test_mask, and to the data.Rdata file in the r folder. In this way, we
ensure that the split is the same for both algorithms, even if the language used is different.

κ-NN

In the knn folder, four different .R files can be found:

• knn_obj_cv: this code refers to Subsection 3.3.3. It performs cross-validation among
all possible hyperparameters and then computes confusion matrix and pavement
error over the test set.

• knn_obj_test: this code refers to Subsection 3.3.3 too. It computes confusion
matrix and pavement error over the test set using the best hyperparameters.

• knn_goo_cv: this code refers to Subsection 3.3.4. It performs cross-validation among
all possible hyperparameters and then computes confusion matrix and pavement
error over the test set.

• knn_goo_test: this code refers to Subsection 3.3.4 too. It computes confusion
matrix and pavement error over the test set using the best hyperparameters.
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The user can also modify the dissimilarity matrix for the GoO-Oriented model by simply
changing a line of code. In order for the most wide choice to be available, p and a have
been added to data.Rdata even if we did not choose to use them in our final model.

GCN

The gcn folder contains everything necessary for the implementation of our Graph Con-
volutional Networks. This part of the code was written in Python, unlike the rest, which
is in R, because the tensorflow package was required to train neural networks. Con-
cerning this, all the required Python packages are listed in the requirements.txt file.
Since version 1.15 of tensorflow was used, it is necessary for this code to be executed
on Python 3.7 or an earlier version.

Together with some supporting code, mainly taken from [22] and then modified to address
our situation, the main .py files to reproduce our results are:

• gcn_edge_cv: this code refers to Subsection 4.3.3. It performs cross-validation
among all possible hyperparameters and then computes confusion matrix and pave-
ment error over the test set.

• gcn_edge_test: this code refers to Subsection 4.3.3 too. It computes confusion
matrix and pavement error over the test set using the best hyperparameters.

• gcn_goo1_cv: this code refers to Subsection 4.3.4. It performs cross-validation
among all possible hyperparameters and then computes confusion matrix and pave-
ment error over the test set.

• gcn_goo1_test: this code refers to Subsection 4.3.4 too. It computes confusion
matrix and pavement error over the test set using the best hyperparameters.

• gcn_goo2_cv: this code refers to Subsection 4.3.5. It performs cross-validation
among all possible hyperparameters and then computes confusion matrix and pave-
ment error over the test set.

• gcn_goo2_test: this code refers to Subsection 4.3.5 too. It computes confusion
matrix and pavement error over the test set using the best hyperparameters.

Plot

The final available file is plot.R. This is not strictly necessary for the classification itself,
but it can be useful for the visual inspection of the results. It produces the plot of the
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results achieved by the algorithm that was ran last. The output is similar to the ones
that we presented throughout the work: a map of the area of interest where roads are
colored according to their predicted class. Paved roads are blue, unpaved roads are red
and uncertain ones are purple.
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