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Abstract

Railway induced vibration may lead to annoyance to lineside residents. Mitigation mea-
sures can be installed on the transmission path to reduce the ground motion generated
by the train passage.

This work studies the efficiency of a stiff in-filled trench for the attenuation of railway in-
duced ground vibration. The key mitigation mechanisms of this solution are investigated
to understand its physical behaviour and to improve its vibration attenuation performance
with practically applicable design guidelines. The trench effect is firstly determined by
in-situ measurements, which highlight a beneficial vibration reduction. The performance
is further examined by means of a 2.5D approach. The numerical tool reveals that the
stiffness difference between the trench material and the surrounding soil is the most im-
portant aspect to enhance the positive wave impeding effect. Indeed, an increase of the
Young’s modulus difference between the two media leads to a better vibration mitigation.
This shows how the wave propagation is hindered through the activation of the trench
free bending modes. The simulations with the 2.5D model include both homogeneous and
layered half-space models for the soil. The wave attenuation related to the stiffness differ-
ence between the stiff trench and the ground is verified with both cases. Comparing the
performance assessment carried out through the field measurements and numerical data,
a better match is experienced for the vertical vibration component, while contradictory
trends are visible for the horizontal direction.

The proposal of an innovative mitigation system for railway induced vibration is presented
as the second objective. Both 2D and 2.5D models are adopted in this study. The
metawedge countermeasure is suggested to divert the incoming waves deep into the soil
by exploiting its non-conventional dispersion properties. The proposed solution is able to
convert the surface waves into body ones, redirecting the approaching energy content far
from the surface. This mechanism is attained for the frequency range mainly excited by
the train passage, resulting in a successful vibration reduction at the surface level.

Keywords: In-filled Trench, Metawedge, Railroads, Ground Vibration, Soil Dynamics,
2.5D Approach





Sommario

La vibrazione derivante dal traffico ferroviario può comportare un fastidio per i residenti
delle zone limitrofe. Per ridurre la vibrazione del suolo generata dal passaggio del treno
è possibile installare delle misure di mitigazione lungo il percorso di propagazione.

L’obiettivo dell’elaborato consiste nello studiare l’efficienza di una trincea rigida piena
per la riduzione della vibrazione indotta dalla ferrovia. Al fine di comprenderne appieno
il comportamento fisico e per migliorarne le prestazioni proponendo delle linee guida di
design è di fondamentale importanza esaminare i principali meccanismi di mitigazione.
In primo luogo, l’effetto della trincea viene analizzato mediante delle misurazioni speri-
mentali che mostrano una positiva riduzione delle vibrazioni. La prestazione viene ulteri-
ormente esaminata con un modello 2.5D. Questo rivela come la differenza di rigidità tra
il materiale della trincea e il terreno circostante rappresenti l’aspetto più importante per
migliorare l’efficacia del sistema. Aumentando la differenza del modulo di Young tra i due
materiali si ottiene una migliore attenuazione. Ciò mostra come la propagazione dell’onda
sia ostacolata della rigidezza flessionale della trincea. Le simulazioni con il modello 2.5D
includono per il suolo sia un semispazio omogeneo che a strati. L’attenuazione dell’onda
basata sulla differenza di rigidezza tra la trincea rigida e il terreno viene verificata in en-
trambi i casi. Confrontando i dati sperimentali e numerici per valutare la prestazione della
trincea, un migliore risultato viene ottenuto per la componente verticale della vibrazione,
mentre tendenze contradditorie appaiono per la direzione orizzontale.

Il secondo obiettivo consiste nella proposta di un innovativo sistema di mitigazione per
l’applicazione ferroviaria. In questa parte, entrambi i modelli 2D e 2.5D vengono utilizzati.
Il sistema chiamato metawedge viene suggerito per deviare le onde in arrivo nel terreno
grazie alle sue proprietà di dispersione non convenzionali. La soluzione proposta è in grado
di convertire le onde superficiali in onde di volume, reindirizzando il contenuto energetico
lontano dalla superficie. Questo meccanismo si ottiene per le frequenze maggiormente
eccitate dal veicolo, dando così vita a una buona riduzione delle vibrazioni sulla superficie.

Parole chiave: Trincea Piena, Metawedge, Ferrovia, Vibrazione del Terreno, Dinamica
del Suolo, Approccio 2.5D
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1

Introduction

Background

Railway transport is environmentally friendly and offers many advantages for sustainable
development [1]. However, the ground vibration induced by the train passage is a widely
reported issue among the nearby residents [2]. Indeed, the vibration transmitted through
the ground can represent a source of disturbance and annoyance. The vibration is gen-
erated by the running vehicle at the interface between the wheel and the rail. Heavy
axle-load freight traffic, travelling at relatively low speed, causes high amplitude motion
at the track [3]. This type of source excites waves in the soil that propagate along the
ground surface (Rayleigh waves). The perturbation experienced at the receiver position
depends not only on the coupling effect between the vehicle and the track but also on the
soil properties. This vibration phenomenon is especially associated with soft soil condi-
tions, where significant levels of vibration may be propagated up to distances of the order
of 100m from the railway line [3]. In the Netherlands, this aspect can be particularly
problematic due to the typical ground structure, which is generally stratified with soft
upper layers [4]. In these cases, a considerable energy content can be detected at a very
low frequency (below 10Hz). These low frequency waves can be perceived by the human
body, leading to increased heart rates and reduced sleep quality [5, 6].

To limit these side effects of the railway traffic, mitigation measures can be adopted at
the source, on the transmission path or at the receiver. When the vibration attenua-
tion is required for already existing tracks and buildings, applying a countermeasure on
the transmission path represents the most attractive option. Concerning this solution,
different possibilities are available: open or soft trenches [7], stiff trenches [8], subgrade
stiffening [9, 10], wave impeding block [11], sheet pile walls [12, 13] and heavy mass next to
the track [14, 15]. Fig. 1 offers a schematic representation of the listed technologies. They
aim at hindering the wave propagation through the soil. The expected effectiveness must
be carefully considered when choosing the most appropriate mitigation measure for the
specific case. Apart from the vibration attenuation, the economical and environmental
factors must also be examined [16]. Numerical prediction tools can assess the performance
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of the system and have become crucial to determining the most appropriate design [17].

(a) Open trench. (b) In-filled trench. (c) Subgrade stiffening.

(d) Wave impeding block. (e) Sheet pile wall. (f) Heavy mass.

Figure 1: Mitigation measures on the transmission path.

Aim of the work

The growing interest in mitigation measures gives rise to numerous engineering challenges
that have been studied over the years [18]. Several works have been published to examine
the effects of different countermeasures, which are applied on the transmission path to
reduce railway induced vibration. The present thesis intends to contribute to this research
field by investigating the effect of a stiff in-filled trench and proposing an innovative
mitigation solution which is the metawedge.

The so-called stiff trench is an already existing mitigation measure, which is analysed in
detail in the current work to build a deep knowledge of its physical behaviour. A better
understanding of its mitigation mechanisms provides the opportunity to achieve improved
performance by means of more effective and practically oriented design guidelines, which
are usable in the engineering sector. The interest in enhancing the performance of the
stiff in-filled trench with respect to the existing designs has motivated the development
of this work.

The metawedge technology - inspired by seismic engineering applications - is introduced to
suggest and incite future projects related to an innovative vibration attenuation method.
Making use of its new mitigation strategy that is based on the divergence of the surface
waves into the deep soil, this system is considered a possible alternative to the usual
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vibration countermeasures. Indeed, its conception originates from the need of overcoming
the weak points of the other mitigation measures.

The goal of this thesis lies in the research of the answers to the following research questions:

• Which are the vibration mitigation mechanisms that dominate the stiff
trench behaviour? How can its performance and effectiveness be im-
proved?

By performing numerical simulations and analysing in-situ tests results, the effect
and the fundamental attenuation principles of the stiff trench are assessed. The role
of different model parameters is studied and discussed thoroughly to explore the
possible enhancement of the vibration mitigation.

• Can the metawedge be an effective mitigation measure for railway in-
duced ground vibration? How does it work and could it become a com-
petitive alternative to other commonly adopted mitigation measures?

The efficacy of a metawedge is numerically demonstrated for the excitation induced
by railway traffic. The key mitigation mechanism is studied to propose a practi-
cal solution that shows favourable attenuation performance. The influence on the
mitigation effect is studied for the most relevant model parameters.

In a few words, the current work aims at clarifying and resolving the theoretical and
practical aspects concerning the stiff in-filled trench and metawedge mitigation measures
for the railway application. Different models and approaches are embraced with this
purpose.

State of the art

In order to attenuate the railway traffic-induced ground vibration, the application of
mitigation measures on the transmission path can represent the most appealing answer
since it left unmodified the source and the receiver. Sometimes, modifying the source and
receiver is unfeasible, so adopting a countermeasure on the transmission path is the only
available solution for the ground vibration problem. This section provides a state of the
art of the two countermeasures analysed in this work: the stiff in-filled trench and the
metawedge.

Stiff in-filled trenches can be installed to hinder the propagation of railway induced waves
from the source to the receiver, as qualitatively depicted in Fig. 1b. Contrary to the open
trenches (see Fig. 1a), they do not suffer from stability problems and can be built deeper
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into the soil [19]. These side effects can be solved by filling the trench with a material that
is softer than the surrounding soil, a numerical and experimental analysis is available for
the soft in-filled trench in [20]. The reflection of the incoming wave guarantees a beneficial
vibration reduction for both open and soft trenches because the transmitted wave carries
less energy [7, 21–24]. Concerning the stiff in-filled trench, its material is stiffer than
soil. This feature represents a key aspect of its mitigation mechanism and behaviour
[8]. Design guidelines are formulated and proposed for the above-mentioned trenches
in [25]. Regarding the dimension of the trench, for the case of open or soft trenches,
only the depth is relevant, whereas also the width becomes important for stiff trenches.
Examples of stiff trenches made of concrete are found [25, 26], while the description of a jet
grouting one is available in [27]. The effect introduced by a stiffer material into the soil is
studied for a squared subgrade stiffening (see Fig. 1c) with a 2.5D approach in [9, 10, 28].
The Timoshenko’s beam is proposed to model the mitigation measure and the effect of its
bending mode is investigated. Similar attenuation phenomena and outcomes are observed
with 2D and 2.5D models in [17]. Some of these concepts are applied to a stiff trench
in [8]. The stiffness contrast effect and the bending stiffness role are further analysed
for a stiff sheet pile wall in [12, 13], a schematic representation of this countermeasure is
displayed in Fig. 1e. In these works, the results of an in-situ test related to the records of
train passages are also compared to the outcomes of a 2.5D model. The effectiveness of a
stiff trench is similarly assessed through a 2.5D approach and an experimental campaign
in [27], where the beneficial vibration attenuation appears particularly efficient in soft
soil sites. Inspired by building acoustics, the potential of using a double stiff trench in
reducing ground vibration transmission is investigated by means of a 2.5D procedure in
[8, 29].

The application of a metawedge mitigation measure for civil engineering problems has
been studied in literature over the past few years. Being a relatively new technology,
only a limited number of studies have been published to investigate its performance in
terms of vibration mitigation. Moreover, its application to ground vibration cases re-
gards the seismic field. The ability of this system to convert the incoming surface waves
into bulk ones is mainly exploited to protect the existing buildings or sensitive facilities
from far-field damages caused by possible earthquakes. Several systems characterized by
different levels of complexity have been proposed to achieve the vibration reduction at
the surface exploiting the redirection of the incoming energy deep into the ground. This
vibration mitigation mechanism is numerically and experimentally observed for an array
of randomly distributed trees in [30]. The behaviour and performance of a metawedge
composed of trees are analysed with a 2D model in [31]. This type of system is further
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investigated in [32]. The beneficial contribution of the bulky side branches connected with
the main stem is demonstrated in [33]. They are able to enhance the frequency range of
operation of the system, improving the resulting vibration attenuation. The procedure to
design a metawedge made of two-dimensional rectangular boards is examined in detail in
[34]. The influence of different design parameters on the attenuation effect is also consid-
ered. In [35, 36], the possibility to achieve the wave-mode conversion of surface waves into
body ones with more complex engineered systems is analysed. The author proposes single
or multi mass-spring compact solutions to achieve the wave-mode conversion mechanism.
This idea is promoted in [37], where the metawedge layout is designed and tested with 3D
FEM models. The seismic waves affect the frequency below 20Hz [38], this typical aspect
of earthquake problems has inspired the design of a metawedge for a railway application
in this work. Indeed, about the same interval of frequency is excited by the passage of
cargo trains [39].

Overview

The thesis is organised as follows. In Chapter 1, the fundamental knowledge of wave
propagation in elastic media is reviewed. After that, the analysis and discussion of the
stiff in-filled trench and of the metawedge are presented in four chapters, which belong to
three different parts. The stiff trench mitigation measure is investigated in Chapter 2 and
Chapter 3, which constitute Part A. The metawedge effect is assessed in Chapter 4, which
corresponds to Part B. The conclusions and the recommendations for further development
are addressed in Part C.

Chapter 1 proposes the theoretical background of wave propagation in elastic solids. This
chapter aims at providing the reader with basic knowledge to understand the following
analyses. The ground response to an arbitrary and uniformly distributed excitation source
is computed in the frequency domain with a 1D model. The perturbation generated by a
line load is also presented with a 2D model.

Part A - Chapter 2 illustrates the field measurement campaign that has been previously
performed to assess the mitigation effect of the stiff trench through in-situ tests. The site
and the set measurement setup for the tests are described. The recorded time histories
are processed to prove the trench effectiveness through the insertion loss parameter.

Part A - Chapter 3 investigates numerically the physical behaviour and the mitigation
mechanisms of a stiff trench. By means of a 2.5D model, the influence of different pa-
rameters is evaluated in order to define the design guidelines. The case of a stiff trench
embedded in a homogeneous half-space is firstly studied and the results are discussed in
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detail. Then, a layered half-space is analysed to prove the validity of the mitigation mech-
anisms in a more realistic dispersive medium. The outcomes of the numerical simulation
are compared to the in-situ test results.

Part B - Chapter 4 introduces the metawedge as a mitigation measure for surface
induced ground vibration. Its effect based on metamaterial and resonant unit cells is
explained and the key wave-mode conversion mechanism is discussed. Through this tech-
nology, the incoming surface wave is diverted into the deep soil reducing the vibration
amplitude at the surface. The development of a metawedge for the railway application is
discussed and the influence of several design variables is considered.

In Part C the main conclusions of the thesis and gives some recommendations for further
research are given.
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1| Wave propagation in soil

In this chapter, the fundamental knowledge related to wave propagation in elastic
solids is reviewed. The aim is to provide the reader with the basic theoretical background to
understand the analyses presented in the following chapters. The thesis topic mainly deals
with wave propagation in soil, therefore the discussed examples focus on this medium. In
Section 1.1 the equations of motion and the main existing waves are presented. Subse-
quently, in Section 1.2, the soil response to an arbitrary and uniformly distributed loading
is computed in the frequency domain with a 1D model. In Section 1.3 the level of com-
plexity is increased through the introduction of the 2D model, which gives the soil response
imposed a harmonic line load.

1.1. Equations of motion

The soil is an inhomogeneous medium with nonlinear and anisotropic behaviour when
loaded. For the case of traffic-induced vibration, the level of strain induced in the ground
is small and thus its behaviour can be idealized as linear and elastic [17]. Therefore,
the governing equations of the waves propagation in a homogeneous, isotropic and elastic
continuum are further discussed.

The following derivation adopts a Cartesian coordinate system (x, y, z) described by the
coordinate vector x = [x, y, z], where the vector u(x, t) = [ux, uy, uz] expresses the corre-
sponding displacements of a material point as functions of space and time. The constitu-
tive equations of the generalized Hooke’s law relate stresses and strains in the medium,
as shown by Eq. (1.1). Similarly, the kinematic equations express the strain-displacement
relations in Eq. (1.2).

σij = λεkkδij + 2µεij, (1.1)

εij =
1

2
(ui,j + uj,i). (1.2)

As suggested in [40], the index notation is employed with i and j that refer to the three
different directions in space (x, y, z). The subscript after the comma expresses the partial



8 1| Wave propagation in soil

derivative of the function with respect to that variable (e.g., ux,y = ∂ux
∂y

).

Referring to Eq. (1.1), εkk = εxx + εyy + εzz indicates the volumetric strain, while the
δij function denotes the Kronecker delta (with δij = 0 if i ̸= j and δij = 1 if i = j).
Consequently, the stress tensor results symmetric σij = σji. The Lamé constants µ and
λ describe the elastic properties of the material, the former is also known as the shear
modulus [41]. They can be expressed in terms of the Young’s modulus E and Poisson’s
ratio ν:

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
. (1.3)

Nevertheless, the internal energy dissipation of the material can be taken into account by
including hysteretic damping in the model. As described in [42] and [43], the Lamé pa-
rameters become complex, with the imaginary part depending on the hysteretic damping
coefficient ξd. In Eq. (1.4) they are labelled µ∗ and λ∗.

µ∗ = µ(1 + i ξd), λ∗ = λ(1 + i ξd). (1.4)

The stress equation of motion is shown on the left side of Eq. (1.5). This one can be
expressed in terms of displacements, substituting the strain-displacement relations into
the Hooke’s law and handling the resulting relation. The Navier’s equations for the
medium is obtained [41]:

σij,j + ρfi = ρüi ⇒ (λ+ µ)uj,ji + µui,jj + ρfi = ρüi, (1.5)

where ρ is the mass density and fi is the body force per unit mass of material [40].
The double dot is adopted to express the second partial derivative with respect to time.
Applying the vector form, Eq. (1.5) becomes

(λ+ µ)∇∇ · u+ µ∇2u+ ρf = ρü. (1.6)

The highly complex nature of the displacement equations of motion is highlighted in [40].
The system of equations has the disadvantageous feature of coupling the three displace-
ment components [41]. So, to avoid a cumbersome solving procedure, the equations are
decoupled applying the Helmholtz decomposition [44], as follows:

u = ∇φ+∇×ψψψ, with ∇ ·ψψψ = 0. (1.7)
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This procedure enables to write the u(x, t) vector as the gradient of a scalar and the curl
of a zero-divergence vector. The additional condition on the right side of Eq. (1.7) is
needed to uniquely determine the three components of u(x, t) from the four components
of φ(x, t) and ψψψ(x, t) [40].

The physical meaning is found in the theory of elasticity by realizing that the potentials
can also be expressed through the displacement vector as φ(x, t) = ∇·u(x, t) andψψψ(x, t) =
∇ × u(x, t) [45]. It becomes evident that φ(x, t) contains the compressional part and
ψψψ(x, t) the rotational part of the particle motion [46].

Substituting Eq. (1.7) into Eq. (1.6) and assuming the absence of body forces, the outcome
reads

(λ+ µ)∇∇ · (∇φ+∇×ψψψ) + µ∇2(∇φ+∇×ψψψ) = ρ(∇φ̈+∇× ψ̈ψψ). (1.8)

The previous equation can be rearranged1, obtaining

∇ (ρφ̈− (λ+ 2µ)∇2φ)︸ ︷︷ ︸
=0

+∇× (ρψ̈ψψ − µ∇2ψψψ)︸ ︷︷ ︸
=0

= 0. (1.9)

The ensuing expression is satisfied requiring the two terms highlighted by the horizontal
brackets to be zero. This is not the only available option but it is the most convenient one
[46]. A system of decoupled equations arises and the shape of the classical wave equation
is recognized, giving the opportunity to define the propagation velocities. It is concluded
that the compressional wave speed cP =

√
(λ+ 2µ)/ρ, whereas the shear ones travel with

cS =
√
µ/ρ. Introducing the velocities formulae, the system is rewritten:

∇2φ =
1

c2P
φ̈,

∇2ψψψ =
1

c2S
ψ̈ψψ.

(1.10)

It is demonstrated that two types of waves - classified as body waves - can propagate in
the infinite medium with two different speeds. The compressional waves are also named
P-waves or primary waves. If an excitation occurs, the compressional wave will always
reach a target point faster than the shear one because cP > cS. Indeed, they are called
S-waves or secondary. This is evident writing down the velocities ratio (see Eq. (1.11))

1Note that ∇ · ∇φ = ∇2φ, ∇2(∇φ) = ∇(∇2φ), ∇2(∇×ψψψ) = ∇× (∇2ψψψ) and ∇ · (∇×ψψψ) = 0 must
be used
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and remembering that the Poisson’s ratio is 0 ≤ ν ≤ 0.5.

cP
cS

=

√
λ+ 2µ

µ
=

√
2− 2ν

1− 2ν
. (1.11)

The P-wave is a longitudinal wave; this means that the particles oscillate in the same
direction of the wave propagation. On the other hand, the S-wave is a transverse wave,
showing the displacement of a particle orthogonal to the wave propagation direction. This
observation arises a distinction between shear waves moving in two perpendicular planes
can be made (eg., xy-plane and xz-plane). A difference is commonly identified between
the vertically polarized waves (SV-waves) and the horizontally polarized waves (SH-waves)
that travel in the vertical and horizontal plane, as depicted in Fig. 1.1. Introducing the two
wave types, it is worth specifying that φ and ψψψ are called P-wave and S-wave potentials
[47], respectively.

Figure 1.1: Distinction among P-waves, SV-waves and SH-waves particle oscillation [48].

If a bounded domain is considered - as in the half-space case in Section 1.3 - another
type of wave may exist. This is known as Rayleigh waves, due to the first investigations
conducted by Lord Rayleigh in [49]. The Rayleigh wave solution is found imposing the
stress-free boundary condition at the surface level. Their effect is confined closely to the
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surface and it decreases exponentially with distance from the free surface. As proclaimed
in [46], the Rayleigh waves are given by a combination of evanescent compressional and
shear waves in the depth direction. The particle motion on the surface is characterized
by a retrograde elliptical motion with respect to the wave propagation direction, with
the vertical displacement component generally larger than the horizontal one. In the case
of a non-dispersive medium2, approximated expressions to compute the Rayleigh wave
propagation velocity are found in literature. From [40] and [50], the cR and cS correlation
reads

cR = cS
(0.87 + 1.12ν)

(1 + ν)
. (1.12)

Surface waves are essentially two dimensional. Thanks to the geometric damping phe-
nomenon, the energy associated with them does not spread as rapidly as the energy
associated with the three-dimensional body waves [40]. Considering for example the case
of a harmonic point load on a half-space, this is straightforward because the surface wave
moves with circular wavefront on a plane, while the body wave propagates with a half-
sphere one in the 3D medium. Indeed, the geometric damping and the shapes of the
generated wavefronts are generally different. This aspect is further investigated in Sec-
tion 1.3. The Rayleigh waves are widely studied for the railway research field, since they
interact with surface engineering applications.

1.2. Soil response to an arbitrary and uniformly dis-

tributed loading (1D model)

The 1D model is the most intuitive one when solving the wave propagation in an elastic
half-space. The medium response is derived through the imposition of a load at the
boundary surface, which is located at z = 0m. The stress is uniformly distributed over
the entire area, generating a plane wavefront invariant in the horizontal directions. This
is why the analysed half-space can be modelled through a one-dimensional model. The
ensuing behaviour is one-dimensional because the problem is essentially invariant along
with the two horizontal directions x and y. The excitation direction is such that either
compressional or shear waves appear, as visible in Fig. 1.2.

In the next sections, the receptance - defined as u(ω)/F (ω) - is computed for both homo-
geneous and layered soil. The soil is assumed to be at rest prior to the loading application.
This entails zero displacement and velocity at t = 0, which means ui(x, t = 0) = 0 and

2A medium is classified as non-dispersive when the phase velocity does not depend on frequency.
Inhomogeneous soil and the addition of damping in the system model give examples of dispersive media.
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∂ui(x,t)
∂t

|t=0 = 0 with i = x, y, z.

𝜎!! = 𝑓(𝑡)

𝑢! 𝑐"

𝑥

𝑧

(a) Normal stress.

𝜎!" = 𝑓(𝑡)

𝑢! 𝑐#

𝑥

𝑧

(b) Shear stress.

Figure 1.2: Homogeneous soil model with uniformly distributed loading.

1.2.1. Homogeneous soil

The first presented case takes into account a homogeneous soil excited by a normal stress
at the surface (see Fig. 1.2a). From the boundary condition point of view, this implies
that the stress is imposed at z = 0m:

σzz(z = 0, t) = f(t), (1.13)

where f(t) is an arbitrary function of time, with f(t < 0) = 0. The loading does not vary
along the horizontal directions. Thus, the response is independent of x and y coordinates,
providing ∂ux

∂x
= ∂uy

∂x
= 0 and ∂ux

∂y
= ∂uy

∂y
= 0. Thanks to symmetry considerations, it is

possible to affirm that ux(x, t) = uy(x, t) = 0 [46].

Eq. (1.5) reduces to a single equation for the displacement component along the z-axis,
that reads

(λ+ 2µ)uz,zz = ρüz. (1.14)

This partial differential equation is the well known 1D wave equation. It is solved by
passing to an ordinary differential equation by means of the forward Fourier transform
over time (see Eq. (1.15)). From now on, the variables in the Fourier domain are expressed
with capital letters.

Uz(z, ω) =

∫ +∞

−∞
uz(z, t)e−iωtdt. (1.15)

Eq. (1.14) is written in the Fourier domain and the double prime symbol is employed to
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express the second derivative with respect to z and reads

U ′′
z = − ω2

cP 2
Uz. (1.16)

The generated perturbation consists of a compressional wave that propagates at cP . The
general solution of Eq. (1.16) is given by a sum of two harmonic terms:

Uz(z, ω) = Ae−i ω
cP
z
+Be+i ω

cP
z
, (1.17)

where A and B are unknown constants that can be obtained by the imposition of two
boundary conditions. Only one condition has been explicitly discussed (cf. Eq. (1.13)) and
this means that another one is needed. From the physical point of view, it is important to
realise that the waves can only move from the source to the deep soil. The energy cannot be
reflected at z → +∞ and consequently no waves can reach the surface. This observation
is formalized by Sommerfeld’s radiation condition, which can be considered as the missing
boundary condition [46]. In Eq. (1.17), the right term is related to the harmonic regressive
waves, which propagate in z negative direction. It is concluded that B = 0. To find the
A constant the strain-displacement relation is substituted into Eq. (1.13) and the Fourier
transform applied. The outcome reads

A = − 1

iω

cP
λ+ 2µ

F (ω). (1.18)

The receptance - ratio of displacement to force - is found as a function of z and ω:

Uz(z, ω)

F (ω)
= − 1

iω
cP

λ+ 2µ
e−i ω

cP
z
. (1.19)

The receptance absolute value is evaluated at z = 0m and the resulting curve is displayed
with the solid line in Fig. 1.5. The described trajectory is a hyperbola that tends to
infinite at null frequency. This is clear from Eq. (1.19), where Uz(z=0,ω)

F (ω)
∼ 1

ω
. Hence, the

only "resonance" of a homogeneous half-space medium is located at ω = 0 rad/s. From
the physical point of view, it means that the undeformed soil is continuously shifted by
the stress in the space. Such a situation is given by the model definition, it does not take
into account any physical or spatial constraint at the bottom. To conclude, remind that
the only dissipation effect is provided by the radiation damping, which reveals stronger
and stronger increasing the frequency of excitation. This form of damping is associated
with the fact that the energy introduced in the system can only move away from the
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source and that cannot be reflected back to the origin.

If a shear stress is imposed at the surface level as displayed in Fig. 1.2b, the steps to
obtain the solution are the same. Nonetheless, the result in Eq. (1.19) would show cS and
µ instead of cP and λ+ 2µ and shear waves propagation would be experienced.

With a rigid bedrock inserted at a certain depth, no more a half-space is considered. The
so-called shallow layer on a rigid bedrock is taken into account. The mentioned model is
depicted in Fig. 1.3.

𝜎!! = 𝑓(𝑡)

𝑥

𝑧

𝐿

Figure 1.3: Shallow layer on a rigid bedrock model with uniformly distributed loading.

The receptance absolute value - depicted in Fig. 1.5 with a dotted line - experiences an
infinite number of undamped resonances. This phenomenon appears due to the lack of
a dissipation effect, the energy is entirely reflected at the bottom and it cannot travel
to z → +∞. The spikes represent the resonances of the finite length layer, whereas
the null values its antiresonances. The second boundary condition must be modified to
properly compute the receptance expression. Imposing null vertical displacement on the
rigid bedrock level is required. This means uz(z = L, t) = 0, with L that is the layer
depth value. The Sommerfeld’s radiation condition cannot be applied anymore: a perfect
wave reflection occurs by definition of the rigid bedrock. For the sake of completeness,
the receptance expression for a vertical stress is provided:

Uz(z, ω)

F (ω)
=

(e+i ω
cP

(z−2L) − e−i ω
cP
z
)

iω(1 + e−i ω
cP

2L
)

cP
λ+ 2µ

. (1.20)

The reader could note that an indeterminate solution occurs at the surface level if ω =

0 rad/s. To overcome this model limitation the limit as ω approaches 0 is solved, obtaining
that lim

ω→0

Uz(z=0,ω)
F (ω)

= − cP
2(λ+2µ)

. It becomes clear that with a rigid constrain at the bottom



1| Wave propagation in soil 15

the hyperbola shape disappears.

1.2.2. Layered soil

In this subsection, an inhomogeneous soil is analysed. This one consists of a half-space
with a layer of 10m at the top that has different material properties than the rest of the
half-space. A vertical harmonic excitation is imposed at the surface level.

𝜎!! = 𝑓(𝑡)

𝑥

𝑧

𝐿 𝑖 = 1

𝑖 = 2

Figure 1.4: Layered soil model with uniformly distributed loading.

With the same approach adopted in the previous section, an equation of motion for each
soil layer can be written in the Fourier domain, as presented in Eq. (1.21). The soil
response is independent of the horizontal coordinates and the same symmetry considera-
tions hold. Remember that the properties of the two materials differ, so the subscripts 1

and 2 are adopted to distinguish the two layers (cf. Fig. 1.4).

Uz,i
′′ = − ω2

cPi
2
Uz,i, with i = 1, 2. (1.21)

It follows that Uz,1(z, ω) = Ae
−i ω

cP1
z
+Be

+i ω
cP1

z
, 0 < z < L,

Uz,2(z, ω) = Ce
−i ω

cP2
z
+De

+i ω
cP2

z
, z ≥ L,

(1.22)

where L = 10m. Compared to the previous case, the system dimension increases and
four conditions must be imposed to find the four unknown constants A,B,C and D. The
same boundary conditions already described in Section 1.2.1 are still applicable. On the
other hand, the continuity of stress and displacement must be ensured at the interface.
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The following relations hold:{
uz,1(z = L, t) = uz,2(z = L, t),

σzz,1(z = L, t) = σzz,2(z = L, t).
(1.23)

Having the four conditions for the four unknowns, it is possible to solve the system of
equations and compute the receptance at z = 0m. The intermediate steps are not given
for brevity, but they can easily be obtained by hand or using a symbolic mathematical
software (e.g., Maple). The receptance reads

Uz,1(z, ω)

F (ω)
=
cP1(e

+i ω
cP1

z
− k̃ e

−i ω
cP1

z
)

iω(λ1 + 2µ1)(1 + k̃)
, with k̃ =

(λ2+2µ2)
cP2

+ (λ1+2µ1)
cP1

(λ2+2µ2)
cP2

− (λ1+2µ1)
cP1

e
+i ω

cP1
2L

(1.24)

The receptance is plotted as a function of frequency in Fig. 1.5. Realistic soil properties
are used to realise this figure, the values are summarized in Appendix C.
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Homogenous half-space
Shallow layer on a rigid bedrock
Layered half-space

Figure 1.5: Receptance at z = 0m for homogeneous half-space (solid line), shallow layer
on a rigid bedrock (dotted line) and layered half-space (dashed line).

From the physical point of view, the semi-infinite soil can be seen as a homogeneous half-
space with a different material layer placed on top. This is visible in the plot, too. The
dashed line describes the same asymptotic behaviour already given by Eq. (1.19). The
effect of the finite layer results in infinite spikes (associated with resonances) or truly zero
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values (associated with anti-resonances). However, due to the radiation damping effect
there are not infinite spikes or zero values. Increasing the frequency, this phenomenon is
clearly more pronounced, giving smaller local maxima.

1.3. Lamb’s problem (2D model)

A milestone in the classical theory of wave propagation is given by the so-called Lamb’s
problems. They get the name from Sir Horace Lamb, who significantly contributed to
the study of the wave propagation in elastic solids. His leading work [51] focuses on
the dynamic response of half-spaces subjected to a loading normal to the surface. Lamb
obtained far field approximations, whereas closed form solutions were carried out in the
last half century for very specific cases [52]. They are usefully compiled by Kausel in [53].

The Lamb’s problem is presented for the case of a harmonic line load, which is depicted in
Fig. 1.6. The excitation is applied on a half-space and the problem geometry is assumed
invariant with respect to the y direction (the same coordinate system of Section 1.2 is
selected). From the previous statement it becomes evident that the problem can be
studied with a 2D model.

𝑧

𝑥

𝑦

𝑓 𝑡 = 𝐹!𝑒"#$

Figure 1.6: Homogeneous soil model.

The steps to derive the solution already performed in Section 1.1 are repeated to decou-
ple the equations of motion with the Helmholtz decomposition. The line load generates a
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deformation in plane strain [40], leading to the displacement vector in the xz-plane and
consequently the vector potential ψψψ directed perpendicular to that plane. The displace-
ment components u(x, y, t) and w(x, y, t) are rewritten as u = ∂φ

∂x
− ∂ψ

∂z
and w = ∂φ

∂z
+ ∂ψ

∂x
.

Consequently, the obtained two-dimensional wave equations read
∂2φ

∂x2
+
∂2φ

∂z2
=

1

c2P
φ̈,

∂2ψ

∂x2
+
∂2ψ

∂z2
=

1

c2S
ψ̈.

(1.25)

The Fourier transform over time and space (x coordinate) is applied to the system. In
Eq. (1.26), the transform is defined for a generic function f(x, z, t).

F (kx, z, ω) =

∫ +∞

−∞

∫ +∞

−∞
f(x, z, t)e−i(ωt−kxx)dxdt. (1.26)

Knowing that ω = kP cP = kScS; system 1.25 becomes{
Φ′′ = α2Φ,

Ψ′′ = β2Ψ,
(1.27)

where α =
√
k2x − k2P and β =

√
k2x − k2S. The square roots α and β have two solu-

tions, but only the one with positive real part is taken. Some additional remarks on the
wavenumber definition may be found in [46]. The general solutions are written in Eq. 1.28
and Eq. 1.29 with the usual four unknown constants A, B, C and D (they are different
from the ones in the previous section).

Φ = Ae−αz +Be+αz. (1.28)

Ψ = Ce−βz +De+βz. (1.29)

At this stage, the four boundary conditions are introduced. Regarding the surface, it is
stated that {

σzz(x, z = 0, t) = f(t)δ(x),

σxz(x, z = 0, t) = 0.
(1.30)

The Sommerfeld’s radiation condition is applicable because the problem deals with a
half-space. Waves that travel from z → +∞ to the surface cannot exist. It follows that
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B = D = 0 because they are related to the terms of waves that propagate in negative
z direction. The same terms yield an exponentially increasing behaviour that is not
feasible. Therefore, the last two unknowns A and C can be easily found from the two
conditions 1.30, which must be transformed in the frequency-wavenumber domain. To
finally find the displacement components in the time-space domain the inverse Fourier
transform is performed. The load F (ω) is now introduced.

u(x, z, t) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
F (ω)U(kx, z, ω)e+i(ωt−kxx)dkxdω. (1.31)

w(x, z, t) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
F (ω)W (kx, z, ω)e+i(ωt−kxx)dkxdω. (1.32)

In this case a harmonic force is selected with f(t) = F0eiΩt, where F0 is its constant
amplitude. For this reason, it is possible to take advantage of the Delta function integral
representation [54]:

δ(ω) =
1

2π

∫ +∞

−∞
eiωtdt. (1.33)

It follows that

F (ω) =

∫ +∞

−∞
F0eiΩte−iωtdt = 2πF0δ(ω − Ω). (1.34)

Inserting Eq. (1.34) in Eq. (1.31) and Eq. (1.32), the final outcome reads

u(x, z, t) =
F0

2π

∫ +∞

−∞
U(kx, z,Ω)ei(Ωt−kxx)dkx. (1.35)

w(x, z, t) =
F0

2π

∫ +∞

−∞
W (kx, z,Ω)ei(Ωt−kxx)dkx. (1.36)

The integrals are evaluated numerically. In the case of no material damping, the pole re-
lated to the Rayleigh wave lies on the path of integration resulting in an infinite integrand.
To ease the numerical integration, a small amount of material damping is introduced, lead-
ing to a finite integrand for all wavenumber values and preventing numerical mistakes.
Moreover, it is not possible to numerically integrate from −∞ to +∞. Proper limit values
of kx must be selected.

At z = 0m the evaluation of the integrals was carried out by Lamb using contour inte-
gration and an expansion in the asymptotic form. After Lamb’s contribution, the same
problem has been studied and reproduced by several authors. The results provided in [55]
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are illustrated in Appendix C. Due to the approximation, this solution is only valid for
large x.

In the ensuing equations, the contribution of the three wave types is shown. The first
term is related to the Rayleigh wave while the other two to the shear and compressional
ones, respectively. From the x dependency, the body waves evidently present a rate of
attenuation proportional to x−

3
2 , while the surface wave is not affected by any geometric

damping. It appears clear thinking about the wavefront shape generated by the line load.
This is a cylinder for the body waves and a line on the surface for the Rayleigh ones.
Thus, the body waves give an increasing energy spreading when the distance from the
source increases, whereas the surface wave maintains the wavefront size unaltered along
its path.

From the above discussion is understood how Rayleigh waves have a relatively good
capability in travelling for a long distance on the surface and that they primarily exist
near the surface. The same is not true for the body waves because they show a better
performance in penetrating through the interior of the soil [50]. These observations solidify
the reason why the two families of waves take the name of body and surface ones.
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Part A

Assessment of a stiff in-filled trench:

a railway application
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2| In-situ tests

This chapter presents the measurement campaign that has been previously carried
out to assess through in-situ tests the mitigation performance of a stiff trench. Section 2.1
describes the test site, providing the needed data related to the soil and the in-filled trench.
In Section 2.2, the organization of the tests is explained and the excitation types are pre-
sented. The measurement setup with the location of the devices is illustrated, too. The
data processing and the analysis through the Power Spectral Density and coherence func-
tion are explained in Section 2.3. In Section 2.4, the stiff trench impact and its mitigation
effect assessment are evaluated by means of the insertion loss parameter, which compares
the vibration level before and after the construction of the vibration countermeasure.

2.1. Installation site

The in-filled trench under investigation is installed in the Dutch province of Gelderland,
alongside the railway line from Utrecht to Den Bosch. The line is a classical ballasted
track. Monitoring vibration campaigns have been performed due to the complaints of the
lineside residents about annoyance generated by railway traffic. Moreover, the addition
of an extra track and the increase of the cargo trains traffic are expected within 2030,
according to a future work plan. Taking the railway line as a reference, the highest
vibration amplitudes have been experienced in the northeast buildings.

For these reasons, adopting a mitigation measure has become essential to limit the unde-
sired vibration caused by cargo trains. They have been revealed to be the most annoying
source with the main energy content at low frequencies. The produced excitation is con-
centrated at frequencies below 15Hz, where 6Hz represents the dominant one [39]. This
aspect is extensively discussed in Section 2.3.

The soil structure of the site has been evaluated through the cone penetration test CPT,
which has confirmed the data provided by the DINOloket website [4]. The dynamic
properties of the layers and the related waves propagation velocities (computed with
the formulae presented in Chapter 1) are listed in Table 2.1. The soil profile is layered,
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consisting of softer upper layers overlying stiffer and heavier ones. This is a typical feature
of the ground structure in the Netherlands.

Table 2.1: Tricht site soil properties [39].

Layer Depth (m) ρ (kg/m3) E (MPa) ν cP (m/s) cS (m/s) cR (m/s)

1 3.60 1700 15 0.40 137.5 56.3 52.8
2 3.25 1900 20 0.40 150.2 61.3 57.7
3 4.00 2039 100 0.35 280.6 134.8 126.0
4 ∞ 2039 150 0.35 343.6 165.1 154.3

The most suitable solution to decrease the vibration level has been evaluated with the
support of numerical models and simulations in previous studies [39, 56]. The Cement
Bentonite trench has been determined as the best countermeasure choice, thanks to its
better effectiveness and more advantageous geometry control [39]. The in-filled trench
has been designed to be placed 5m far from the external track. It is characterized by a
depth of 10m, a width of 0.8m and a total length of 320m. Its construction phase was
completed at the end of 2019.

Figure 2.1: Cement Bentonite in-filled trench construction phase [56].
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Table 2.2 summarises the material and geometry properties of the constructed in-filled
trench. The trench material has a larger Young’s modulus E than any soil layer, so it is
called stiff in-filled trench.

Table 2.2: Cement Bentonite in-filled trench properties [39].

Material ρ (kg/m3) E (MPa) ν Depth (m) Width (m) Length (m)

Cement Bentonite 1400 1000 0.2 10 0.8 320

A qualitative representation of the system lateral view is provided in Fig. 2.2. The x and
y axes of the reference frame are taken horizontal; the former is orthogonal to the track,
while the latter is parallel to the rail. The vertical axis is perpendicular to the soil surface.
Note that its direction is opposite as compared to the convention adopted in Chapter 1
(see Fig. 1.6).

𝑥

𝑧

Figure 2.2: Lateral view of the in-filled trench in Tricht site (figure not to scale).

2.2. Test excitations and measurement setup

An extensive measurement campaign has been carried out to compare the level of vibra-
tions before and after the stiff trench installation. The efficiency and the performance
of the mitigation measure are assessed through two excitation types: train passage and
dropping load. In both cases, geophones have been placed to record the velocity of the
installation point along the three spatial axes x, y and z.

Train passage

In one case the vibration generated by the passage of cargo trains has been recorded at
least for one week. In particular, 4839 time histories were recorded in September 2019,
while there are 3704 records after the trench construction in January 2020. The geophones
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are not able to recognise the source that generates the vibration. Thus, only the records
really given by cargo trains passage must be identified, disregarding the ones generated
by other causes or malfunctioning (eg., truck passing by, people walking close to the
measurement instrument or geophone saturation). Note that no distinction is made for
the trains running on different tracks or directions.

𝑥

𝑦

𝑖𝑚𝑝𝑎𝑐𝑡
𝑝𝑜𝑖𝑛𝑡

17.4 𝑚 5.4 𝑚 5.1 𝑚 8.8 𝑚 9.6 𝑚 9.4 𝑚
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Figure 2.3: Measurement setup (figure not to scale) [56].

Only three geophones are taken into account during the train passage test. Two of them
have been installed on the right side of the track, in the area affected by the highest
vibration amplitude. One device is placed on the soil, while the other one is fixed to the
structure foundations. The output of the second geophone is not analysed because the
response is filtered by the unknown building dynamics, whose effect is not relevant for this
work. The measurement setup adopted during the in-situ tests is depicted in Fig. 2.3, the
ground device takes the name of geophone A. The third measurement instrument - called
geophone B - has been fastened to the building foundations on the west side of the railway
line. As further explained in Section 2.3, its records represent a reference point because
the filtering effect of the construction is no more significant for this case. Given the large
distance from the countermeasure (about 50m) and according to a previous study [56],
the trench effect on the vibration level of this location can be neglected. Indeed, the
amplitude of the vibration did not experience substantial differences after its installation.
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Dropping load

The measurements of the second excitation source are related to the ground surface re-
sponse due to a vertically dropping load. The test before the trench realisation was carried
out in September 2019, and in January 2020 after its completion. There are 16 and 11

available drops, respectively.

The procedure consists in a 80 kg load dropped from a 2m tall frame on an iron plate. The
mass impact point and the five employed devices are shown in Fig. 2.3. They are arranged
in a row that is perpendicular to the track. The different locations allow examining the
effect of the trench at increasing distances. Letting the weight drop directly on the ballast
is not possible, it could damage the infrastructure. Stopping the traffic on the line is not
admissible, too. The frame has been placed on the west side at 17.4m from the trench,
where the added track will appear in future. Note that geophone III coincides with the
geophone A employed in the train passage test described in Section 2.2. Furthermore,
not all the measurement instruments are inserted into the ground, the geophone IV and
geophone V are supported by concrete. Being also the farthest, they result in the least
reliable due to the expected lowest signal-to-noise ratio.

There is an extra measurement device that is placed close to the impact point, at a
distance of 6m. It is depicted with the name of geophone C in Fig. 2.3. Its time histories
ensure that the input nature does not significantly change before and after the stiff trench
installation. The dropping load effect should always be the same from the theoretical point
of view. Nevertheless, having exactly the same conditions is not possible and cannot be
practically guaranteed. This is true for both the tests, not depending only on human
control. For example, the different weather conditions or the wheel and rail roughness
change could play an important role. Unfortunately, taking into account the changing
conditions of vehicles, track and soil is unfeasible. These differences might be significant
as there was a five-month period between the measurements [27]. From the beginning,
remembering that this kind of measurement campaign is affected by several variables
becomes important, they cannot be entirely known or kept under control. A certain level
of uncertainty is always present, being aware of that becomes crucial while the data are
being interpreted.

2.3. Vibration measurements analysis

In this section, the data processing phase is presented for both the excitation types. This
allows investigating the stiff trench effect and behaviour through the in-situ tests. The
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Power Spectral Density analyses the signal power distribution as a function of frequency,
while the coherence function can be adopted to describe the correlation level between two
records.

Train passage

The number of available records is reduced, from 4839 and 3704 to 25 and 28, respectively.
Only the time histories surely related to cargo train passage are selected. The record of
the same train passage is also necessary for both the measurement instruments employed
during the test. Attention is paid to a reduced number of data to enhance the quality of
the final result.

Once the input data are selected, the Fourier transform is adopted to obtain the signal
in the frequency domain. A generic signal is called s(t) in the time domain, while its
spectrum is named S(ω) in the Fourier one. The Hanning window is applied to limit
the leakage effect, which is generated by the discontinuities at the extremities of the time
histories. An example of geophone output in both domains is shown in Fig. 2.4.
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Figure 2.4: Typical time history and spectrum before the trench construction acquired
by geophone A. It is associated to the passage of a cargo train in x (blue), y (orange) and
z (green) directions.
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Several observations concerning the effect of a cargo train passage come to light from
these plots. The time history can be separated into three parts: an increasing level
when the railway vehicle approaches the receiver position, an approximately stationary
level when the cargo train passes the device and a decrease when the coaches move away
[8]. The largest amplitudes are visible in the stationary part of the response, which
can be well approximated by a prediction characterized by the dynamic axle loads that
are applied at fixed positions [57]. Cargo trains generate a long disturbance with larger
amplitudes with respect to passenger ones, usually more than 25 s. From Fig. 2.4, the
vertical component appears as the most excited for both the domains. Indeed, when
the source is far away, the biggest contribution is provided by the Rayleigh wave that
generates the largest displacements in the vertical direction, as seen in Chapter 1. This
agrees with literature studies that present experimental measurements of passing trains
[12–14, 27, 58], where generally only the vertical direction is investigated. The three
spectra reveal that the largest amplitudes are in the range of 5− 10Hz for the z direction
and at slightly lower frequencies for the horizontal ones. The high frequency components
are especially attenuated due to material damping in the soil [27]. Therefore, analysing
the phenomenon at frequencies higher than 20Hz is out of the scope of this work. These
low frequencies are the most critical because they are the hardest to attenuate with
mitigation measures [3, 22, 59]. This specific spectrum shows a peak around 6Hz, which
is the dominant frequency excited by cargo trains, as concluded in [39]. For this reason,
the effort to mitigate vibration principally focuses on that frequency.

The field measurements are collected to better understand the excitation source nature
and to successively evaluate the in-filled trench effect comparing the measurements before
and after its construction. The power distribution is inspected as a function of frequency
through the single-sided Power Spectral Density (PSD). For a generic single signal s(t),
it reads

PSDs(ω) =
S∗(ω)S(ω)

∆f
, (2.1)

where S∗(ω) is the complex conjugate of S(ω) that is the spectrum amplitude and ∆f

is the frequency resolution. The latter is defined as the inverse of the acquisition time
T , which means ∆f = 1/T . From its definition, PSD is evidently a real function of
frequency because S∗(ω)S(ω) = Re(S(ω))2 + Im(S(ω))2. Note that the overline marks
the non averaged PSD.

To achieve a statistically correct estimation of the Power Spectral Density, the mean
function of the same group of signals is obtained with a final average. This step is repeated
for the two analysed cases (before and after the trench installation). Eq. (2.2) shows how
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working with more samples increases the outcome reliability from the statistical point of
view. Having ns records of the s(t) signal grouping, it follows:

PSDs(ω) =
1

ns

ns∑
i=1

Si
∗(ω)Si(ω)

∆fi
. (2.2)

The reduction of the power that is transmitted through the stiff in-filled trench is expected
to be frequency dependent. The main goal of the trench is the reduction of the energy
that reaches the building on the east side of the railway line, while it has no side effects
on the west edifices that experience negligible changes. The idea of using the geophone
B arises from these observations. Before starting to analyse what is happening in the
location monitored by the geophone A, ensuring almost the same power input before
and after the trench installation is important. This is done to compare the outcomes
generated by almost the same input, guaranteeing a proper assessment of the trench
impact. Following this reasoning, the PSD(ω) is computed for the reference geophone B
for the three direction components. The outcome is displayed in Fig. 2.5.

Figure 2.5: Averaged PSD in geophone B location associated with the passage of cargo
train before (blue) and after (orange) the trench construction.
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Concerning the case before the trench construction, the curves are derived from Eq. (2.2)
with ns = 25. They give the PSD(ω) before the trench construction. For the case after
the trench installation, the curves are computed with ns = 28. Despite having a perfect
overlap of the two curves would be the ideal situation, this is not practically feasible. The
other two curves display the related global trends, they are polynomials that best fit the
data in a least-square sense. A good agreement between the curves appears, especially
for the vertical direction where the higher fitting curve for the case before the trench
construction states a larger energy content from the beginning. This highlights how the
overall shape could help with the discussion of the final results. Note that the PSD(ω) in
the z direction are one order of magnitude larger than the ones in x and y, showing again
the bigger energy content for the vertical component.

Once the initial data check is performed through the geophone B, the mean PSD can be
computed for the geophone A location. The outcome is presented in Fig. 2.6, as similarly
done for the other receiver in Fig. 2.5.

Figure 2.6: Averaged PSD in geophone A location associated with the passage of cargo
train before (blue) and after (orange) the trench construction.

For the vibrations measured before the trench installation, the vertical direction appears
the most excited, showing the largest energy content among the three components. The
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excitation contribution is mainly evident in the frequency range of 5 − 10Hz. The hori-
zontal directions show the largest amplitudes at slightly lower frequencies with ten times
smaller peaks. Starting from the vertical direction, the in-filled trench presence ensures a
pronounced reduction of the vibration level. The energy content that reaches the build-
ing strongly decreases, especially for frequencies larger than 5Hz. The two curves seem
almost superimposed until that frequency, while a clear energy content decrease is experi-
enced above it. In Chapter 3, this phenomenon is explained though the critical frequency
parameter. Regarding the other two plots for the horizontal components of velocity, the
energy content seems to lightly increase after the trench construction. However, the peak
below the 4Hz for the outcome after the trench construction is also visible in Fig. 2.5.
Despite its presence, a weak increase appears also above the 4Hz. The in-situ test re-
sults after the trench installation show how the energy content in the horizontal directions
seems to be of the same order of magnitude as the z one. So, a beneficial decrease appears
in z, while x and y seem to experience a slight increase.

Dropping load

The same data processing procedure is implemented for the dropping load test, as de-
scribed in Section 2.3 for the train passage one. The time histories do not show any
particular property and their shapes resemble the usual peak generated by an impact
test. Before the analysis of the trench effect, recalling the role of the geophone installed
6m far from the impact point is important. This small distance between the impact and
the device guarantees that the recorded vibration approximate the input record, which is
generated by the mass into the soil. This information is not available for the train passage
test. Assuming that this signal is the input to the system, the average Power and Cross
Spectra can be computed to obtain the coherence function. This is a scalar function that
expresses the level of correlation between two signals; it turns into 0 in case of complete
lack of correlation, while it becomes equal to 1 when there is a perfect correlation. Taken
two signals A(ω) and B(ω), it is defined as γ2AB(ω) in Eq. (2.3), which reads

γ2AB(ω) =
|CSAB(ω)|2

PSAA(ω)PSBB(ω)
, (2.3)

where CSAB(ω) = A∗(ω)B(ω) is the Cross Spectrum and PSAA(ω) = A∗(ω)A(ω) is the
Power Spectrum of A(ω) (analogously for PSBB(ω) with B(ω)). The coherence is cal-
culated for the first three geophones and is displayed in Fig. 2.7 for frequencies smaller
than 15Hz. It is computed for both cases before and after the construction of the Cement
Bentonite trench.
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Figure 2.7: Coherence function of dropping load test computed before (blue) and after
(orange) the trench construction in the three directions for the first three geophones.

Important preliminary considerations emerge from Fig. 2.7. The vertical direction is
distinctly the most reliable because it shows the largest coherence values. This is perfectly
in agreement with the test typology: a vertical falling mass generates strong vibration
mainly in that direction, resulting in a large the signal-to-noise ratio. On the other hand,
the horizontal directions display lower values and worse quality. The y direction is the
poorest one, a vertical load generates null displacement in that direction along the x-axis.
Theoretically uy(x = 0, y, z, t) = 0 due to the symmetry of the problem. For this reason,
the y horizontal direction is not taken into account during the investigation of these test
results. The resulting functions in x are better but still less reliable than the z direction.
Due to the growing general trend of the function, the signals are definitely more reliable
at large frequencies than at small ones (below 5Hz). To conclude this figure comment,
moving from the left column to the right one means that the distance between the impact
point and the receiving device is increasing. As predictable, the coherence values are
lowering because the excitation effect generated by the mass decreases when the receiver
is moved away from the source. This is why the outcomes from geophones IV and V are
not depicted here and the focus is only on the first three measurement instruments of the
row. Refer to Appendix C for the outcomes of the other geophones. Remind that the last
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two devices are positioned on pavement and not on soil as the first three.

To determine the effect of the trench, the power distribution of the geophones at different
locations is studied through the averaged PSD. This is computed with Eq. (2.2) for both
x and z direction. The results are gathered in Fig. 2.8 for the first three geophones.
Consult Appendix C for the PSD in the geophone IV, geophone V and for the y direction.
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Figure 2.8: Averaged PSD for the first three geophones associated with the dropping load
test before (blue) and after (orange) the trench construction.

From Fig. 2.8, it follows that the curves are coherent with the expectations. This direction
is clearly the most excited before and after the trench construction (note the different
scales in x and z). The trench effectively mitigates the vibration but its effect seems to
become active around 5Hz. The curves are almost overlapped before this threshold, as
observed in Fig. 2.6. The curves on the bottom row of the figure reveal how the power
content of the signal decreases when moving away from the source, while the ones on the
top row do not. The effect of the trench in the x direction is not clear because contradictory
trends arise. The trench seems very effective as in the vertical direction for the second
geophone, while the other geophones do not provide a consistent performance. An increase
is experienced for some frequencies, whereas a decrease is revealed for others. The last two
geophones do not provide a clearer interpretation, displaying also unclear results. To state
that this test shows an increase of the vibration level after the in-filled trench assembly is
not possible, as slightly done for the train passage test (see Section 2.3). The beneficial
contribution of the trench in the vertical direction is clearly visible for frequencies above
the 5Hz.
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2.4. Mitigation effect assessment

The assessment of the mitigation performance of the stiff trench is presented through
the computation of the insertion loss parameter. The efficiency of a mitigation measure
can be quantified through the vertical insertion loss ILz [8–10, 28, 29]. This work pays
attention also to the horizontal directions given the results in Fig. 2.6, where the plots
related to the horizontal directions show a slight decrease. Generally, it is defined as

ILi(x, y, z, ω) = 20log10
|U ref

i (x, y, z, ω)|
|Ui(x, y, z, ω)|

, with i = x, y, z, (2.4)

where U ref (x, y, z, ω) is the displacement before and U(x, y, z, ω) the displacement after
the introduction of the considered vibration countermeasure in the soil. The countermea-
sure introduces a vibration mitigation at the receiver position if the resulting insertion
loss is positive, while an increase is experienced if this is negative. It can also be computed
in the space-wavenumber-frequency domain.

2.4.1. Train passage

The insertion loss is computed for geophone A records, this receiver implicates x = 36.7m
and y = z = 0m with the reference system origin that is positioned in the impact point
(see Fig. 2.3). The amplitudes of the mean spectra are inserted in Eq. (2.4) for the three
directions. The results in one-third-octave bands are plotted in Fig. 2.9. The bands lower
than 3.15Hz are not displayed because of lower amplitudes (see Appendix C).
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Figure 2.9: Insertion loss in geophone A location associated to the passages of cargo train
in x (blue circle), y (orange square) and z (green triangle) direction.

The mitigation performance of the trench for the vibration in the vertical direction appears
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evident in Fig. 2.9. Only two bands are negative (3.18Hz and 4.00Hz) and a positive
maximum is reached near 10Hz after a gradual growth. Despite the negative values for the
first five one-third-octave bands, almost the same behaviour is observed for the IL in the
horizontal directions x and y. Also in this case, the maximum is reached but with smaller
magnitudes and in the 12.5Hz band. Furthermore, the ILy curve is almost everywhere
below the other lines, expressing the least attenuation performance for frequencies above
the first one-third-octave band.

Recalling that the results strongly depend on the selected time histories and that they
are affected by several uncontrolled and unknown variables is important. Referring to the
meaningful case in [13], the insertion loss plots related to the cargo train passages show
wide 95% confidence interval estimates. Wide means that the insertion loss mean value
estimation could be positive or negative for a band, even ranging from −10 dB to 20 dB in
extreme cases. Moreover, the figures show wider uncertainty intervals at lower frequencies.
This study demonstrates the big variability and uncertainty that can characterize these
kinds of in-situ tests.

2.4.2. Dropping load

The insertion loss is computed for the dropping load test for the x and z directions with the
Eq. (2.4). The results are expressed in one-third-octave bands in Fig. 2.10. Appendix C
presents the results of the other two devices that are hidden in the following figure.
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Figure 2.10: Insertion loss for the first three geophones associated to the dropping load
test in x (blue circle) and z (green triangle) direction.

Starting from negative values - approximately below 5Hz - the ILz curves show growing
trends that reach the maximum value around 10Hz. There is a drop after the peak,
involving a slightly negative value for the second geophone. The three measurement
instruments give conflicting curves in the x direction. For example, the geophone II
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exhibits an increasing shape similar to the ones of the vertical direction, whereas the
geophone III is mostly negative. Neither the last two geophones - reported in Appendix C
- can support the research of a prevalent trend.

2.4.3. Summary

In this chapter, the trench mitigation performance is assessed from the field measurements.
Results of two distinct in-situ tests were available to examine the stiff trench effect. The
different vibration amplitudes at the same receiver position with and without the presence
of the stiff trench are compared and the insertion loss is computed. The results are
presented in one-third-octave bands to present the effect of the mitigation measure in the
frequency domain.

In Section 2.4.1 the outcomes originated by the passage of cargo trains are discussed.
A strong decrease of vibration cases is observed in the vertical direction, for frequency
above 5Hz. The resulting insertion loss curves for the horizontal directions show similar
behaviour, but positive values appear at higher frequencies. Despite these considerations,
recalling the high level of uncertainty related to these types of tests becomes important.

The dropping load test investigation is presented in Section 2.4.2. The y direction is not
considered due to the problem geometry and consequent symmetry. The ILz shows more
or less the same result as the train passages test: negative values for the first one-third-
octave bands (3.18Hz and 4.00Hz) and an increase that reaches the positive maximum
near 10Hz. The trench shows to be effective for frequencies higher than 5Hz. For the x
direction, no clear trend is found.
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3| Modelling, investigation of
mitigation mechanisms and
simulation

The effect and behaviour of a stiff in-filled trench are numerically studied in this
chapter. The software adopted for the analysis and the modelling procedure is presented
with an example case in Section 3.1.1. The model and solution approach are validated
through the comparison of results with a literature case in Section 3.1.2. In Section 3.2,
the investigation of the key mitigation mechanisms is presented. To support the physical
interpretation, a stiff trench embedded in a homogeneous half-space is initially proposed.
In the same section, the influence of excitation frequency and Young’s modulus parameter
is discussed. In Section 3.3, the performance of the vibration countermeasure is further
examined for a layered half-space to evaluate the effects in a dispersive medium. Concern-
ing the vibration attenuation assessment, the comparison of the numerical and in-situ test
results is provided.

3.1. Modelling

The model adopted for the simulations of this work is presented in the current section. An
example case is proposed to describe the modelling procedure for the different problem
entities: source, transmission path, mitigation measure and receiver. The approach is
validated by comparing the outcomes with a literature case. The good agreement of the
achieved results is verified.

3.1.1. Adopted 2.5D model

A numerical 2.5D model is used to predict the response to a generic load for a half-
space of soil that includes the in-filled trench. In this work, a 2.5D model is adopted for
this purpose. The procedure follows the modelling approach implemented by Barbosa in



40 3| Modelling, investigation of mitigation mechanisms and simulation

FEMIX software [17].

The model can compute the perturbation generated by an excitation source at a receiver
point, taking into account the presence of a countermeasure along the transmission path.
To explain how the solution is achieved and how the different entities are modelled, an
example problem is introduced with a schematic diagram in Fig. 3.1. This figure displays
a typical example for the model adopted in this study: the excitation point is imposed,
while the displacement output is calculated at the receiver location to assess and analyse
the effect of the stiff trench. In particular, the vertical harmonic unit force represents
the perturbation source and the system energy input. The half-space represents the wave
transmission path, while the in-filled trench represents the considered mitigation measure.
For this specific case, a layered ground is chosen but the modelling procedure would not
change for a homogeneous one. According to the imposed right-hand Cartesian frame,
the xz-plane and xy-plane are depicted in Fig. 3.1a and Fig. 3.1b, respectively.
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𝑧 𝑅cos Ω𝑡
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(a) Lateral view.
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cos Ω𝑡

(b) Top view.

Figure 3.1: Model example.

Different modelling strategies are used for the soil and the trench. The wave propagation
in soil is modelled with the Boundary Element Method (BEM), while the in-filled trench
is modelled with the Finite Element Method (FEM). Any other finite body in the xz-
plane would be modelled with finite elements, too. Note that the BEM relies on the
discretization of just the domain boundaries, whereas in the FEM also the interior of
the system domain is modelled. The motion of the soil is formulated through a finite
element approach namely Thin Layer Method (TLM). This concept is graphically shown in
Fig. 3.2. The two sub-domains are coupled by enforcing the compatibility of displacements
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and the equilibrium of forces at the interface.

Concerning the imposed system input, a non-moving vertical harmonic force of unitary
amplitude is given. The excitation source is split into two equal components to avoid a
punctual stress, which can cause numerical problems. These components are applied on
the top nodes of a square finite element at x = −0.1m and x = +0.1m, having imposed
the reference frame origin at the force application point. Once the perturbation source
is set, the soil response is computed at the receiver position. Only one output point is
shown in Fig. 3.1, but different ones can be generally taken to obtain the displacement
field at various locations.

The BEM uses Green’s functions to predict the vibration at the receiver point. They are
obtained with the TLM for the layered half-space auxiliary domain, which represents an
intermediate domain for the soil medium. The Green’s functions relate the response of
a receiver with a source located anywhere in the medium [60]. In this work, the layered
half-space is assumed as the auxiliary domain to keep the approach as general as possible.
This choice leads to the solely discretization of the surfaces of the soil that interact with
the FEM structures [17]. For the proposed example case, the boundary elements are only
placed along the trench profile (see Fig. 3.2).

The most common tools used to determine the Green’s functions are based on inte-
gral transformation techniques, in which the displacement field is reconstituted in the
wavenumber-frequency domain and the wave equations are solved [17]. The spatial dis-
placements can be transformed back to the space and time domain by evaluating the
integrals of the inverse Fourier transform. This is the basic working principle of the 2.5D
model, which can be adopted only if the problem geometry is assumed invariant in one
of the two horizontal directions. This means that the geometry does not change along
that direction. In this way, the reduction of the dimension of the problem by one is ob-
tained; passing from a generic 3D analysis to a summation of 2D independent cases. The
2.5D approach is more efficient than a full 3D approach, while avoiding the simplifications
present in a purely 2D model [1]. The computation time is also drastically lower [28], but
systems with finite dimensions cannot be modelled along the horizontal direction because
the constant geometry assumption holds. This applies to the xz-plane in Fig. 3.1a since
its geometry is considered invariant along the y-axis, as depicted from the surface top
view in Fig. 3.1b. The 2.5D methodology is often implemented for the study of railway
induced vibration, since in the majority of cases the track cross section geometry and the
soil profile do not significantly change in the longitudinal direction [61]. This procedure
has been widely applied by several authors to assess the mitigation effect of longitudinally
invariant mitigation measures. Some examples are offered in [7, 20, 23, 28, 62, 63].
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In FEMIX, the Green’s function for the auxiliary layered half-space is obtained in the
transformed wavenumber-frequency domain through the Thin-Layer Method (TLM). This
technique is based on the finite element discretization of the auxiliary domain in the direc-
tion of layering, which is the z-axis according to Fig. 3.2. The displacement field within
the discrete layers is approximated through interpolation functions along the vertical axis,
whereas analytical solutions determine the wave motion in the horizontal directions thanks
to the assumed constant and homogeneous properties. To adopt the semi-discrete charac-
ter of the TLM in an unbounded half-space domain, the Perfectly Matched Layer (PML)
technique is implemented in FEMIX [64]. A schematic representation of the coupling
between the PML and the TLM is proposed in Fig. 3.2. The PML numerical tool is used
for absorbing boundary purposes; in other words, it suppresses the unwanted reflection of
waves in infinite media modelled through discrete finite systems [17]. The implemented
PML is based on the coordinate stretching approach, which - as suggested by the name
- stretches the real space to a complex one. The wave decays exponentially within the
PML and no reflection can appear thanks to the absence of impedance contrast at the
boundary [65].

𝑥

𝑧

Finite 
elements

Soil defined 
by the TLM

PML
Input

𝑅
Output

cos Ω𝑡

Boundary
elements

Figure 3.2: Software modelling approach.

From the practical point, an input file is written by the user to define a model in the
FEMIX environment. This file is generated with a MATLAB script in the current work.
Its role essentially consists in the definition of the problem geometry and in the imposition
of frequency and longitudinal wavenumber at which the problem is solved. Referring to the
example case in Fig. 3.1, this information is set for the xz-plane, while the third dimension
along the y-axis is recovered through the computation of the inverse Fourier transform over
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the longitudinal wavenumber ky. The constant geometry is specified through the type and
position of the finite elements and consequent boundary ones. The force position and the
receiver points are expressed, too. Note that only square elements with four nodes are used
for the simulations of this work. Depending on the selected frequencies, the finite element
dimension must be adjusted to guarantee the presence of at least 10 elements per shear
wavelength λS,min at the largest frequency considered fmax [28]. Taking p as the distance
between two consecutive nodes belonging to the same square finite element, this means
λS,min ≥ 10 p with fmax λS,min = cS,Trench. As depicted in Fig. 3.2, the TLM discrete layers
must coincide with the nodes of the embedded finite elements. The outputs produced
by FEMIX are post-processed in MATLAB. Note that the solution computed at null
longitudinal wavenumber (ky = 0) implies the plane strain condition, which involves no
deformation and no displacement along the y-axis. In this way, a 2D model is considered,
this approach is adopted to obtain several results in Chapter 4.

The new contribution of the current work has been mainly carried out during the writing
phase of the software input file. This has been adapted to obtain the needed results from
the desired model. The post-processing phase of the simulation outputs has been entirely
developed by the author.

3.1.2. Model validation

Before analysing the trench effect on the soil response and its behaviour, the solution
method is validated by comparing the results with a literature case. The stiff trench
embedded in homogeneous soil considered in [8] is chosen as a reference. This study is
part of the set published by the research group of the Katholieke Universiteit Leuven
University, which is identified as a reference point for the investigation of the stiff trench
performance.

The same geometry of the proposed case is reproduced with identical proprieties of trench
and soil. The in-filled trench with a 7.5m depth and a 2m width is placed in between the
vertical harmonic excitation and the receiver, which are 15m distant. The properties of
the half-space and trench materials are summarised in Appendix C. The trench is called
stiff because it is stiffer than the surrounding soil.

Imposing the same convention of the previous section the vertical insertion loss - computed
with Eq. (2.4) - is plotted as a function of longitudinal slowness Ky = ky/ω and frequency
f = ω

2π
(i.e., ILz(x = 15, Ky, z = 0, ω)). Note that ky represents the wavenumber along

the horizontal y-axis. The inverse Fourier transform is applied to display the insertion
loss for the unit monoharmonic load in the three-dimensional space. The real part of the
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vertical displacement Re(uz) is shown for the original homogeneous half-space and the
one with the trench. In [8], the figures for f = 25Hz and f = 50Hz are available. For
brevity, just the latter case is compared in Fig. 3.3, although also the former one shows a
very good agreement.

(a) Results from FEMIX. (b) Results from [8].

Figure 3.3: Model validation through results comparison with [8]. ILz(x = 15, Ky, z =

0, ω) (first row), Re(uz(x, y, z,Ω = 2π× 50Hz)) without and with in-filled trench (second
row) and ILz(x, y, z,Ω = 2π × 50Hz) (third row).

Starting from the top plot of Fig. 3.3a and Fig. 3.3b, it appears evident that the insertion
loss is correctly computed because the colour pattern appears very similar. A good match
is also shown by the superimposed black curves. The black solid line is the Rayleigh wave
slowness that is KR = 1

cR
for the non-dispersive homogeneous soil, the black dashed line is

the Timoshenko’s beam bending mode around the x-axis and the black dotted lines show
the phase shift between wavefronts in the case with and without the trench. Despite the
slightly different plot sizes, the other plots are also experiencing a good matching. The
black band represents the in-filled trench.

From the good agreement of the outcomes in Fig. 3.3, the model is validated. It is adopted
in the coming sections to investigate the vibration mitigation mechanisms of a stiff in-filled
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trench.

3.2. Investigation of mitigation mechanisms and ef-

fect of modelling parameters

This section focuses on the analysis of the effect and performance of the stiff in-filled
trench. It aims to provide an overview of this vibration countermeasure, highlighting
the key mitigation mechanisms. The study of the trench embedded in a homogeneous
half-space is pursued. This is the simplest model to examine the stiff trench mitigation
mechanisms. The influence of different modelling parameters is also investigated. In par-
ticular, different excitation frequencies are studied and the effect of the Young’s modulus
variable is discussed for both soil and trench. The study presents the response in the
space-wavenumber-frequency domain as well as in the space-frequency one.

3.2.1. Case study: stiff trench embedded in a homogeneous half-
space

The mitigation mechanisms of a stiff in-filled trench embedded in a homogeneous half-
space are discussed in this section. The problem geometry is modelled using FEMIX soft-
ware with a 2.5D method, assuming a longitudinal invariant cross section. This method-
ology is described in Section 3.1.1. The track is disregarded and the half-space is assumed
homogeneous to facilitate the physical interpretation of the mitigation mechanisms, as
suggested in similar researches [8, 27].

The soil is characterized by density ρ = 2039 kg/m3, Young’s modulus E = 150MPa
and Poisson’s ratio ν = 0.35. The hysteretic damping coefficient ξd is set equal to 2.5%.
The medium has the same properties as the last semi-infinite layer of the Tricht site (cf.
Table 2.1). To keep a strong link with the Dutch application, the Cement Bentonite
material is chosen for the embedded trench, which has the same width and depth as the
constructed one in Tricht (cf. Table 2.2).

The ground is excited at the surface level by a unit vertical harmonic point force. The
right-hand Cartesian frame is placed with the origin at the loading position. The x-axis
is perpendicular to the trench, while the y one is parallel to it. The measurement setup
employed during the dropping load test (described in Chapter 2) is recalled by the position
of the source, vibration countermeasure and receiver. The trench is placed 17.4m far from
the frame origin and the receiver is located at the first geophone location, which implies
a distance 22.8m from the loading. The invariant geometry of the system in the xz-plane
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is depicted in Fig. 3.4.

The decision to investigate the wave field generated by the unit vertical harmonic force
is made to facilitate the physical interpretation. Indeed, any type of loading - including
moving loads - can be represented by a summation of harmonic components. Considering
a passing train in the model would increase the level of complexity [28]. In [57], the
author demonstrated how the stationary part of a time history generated by a moving
train can be well approximated by a simplified model involving dynamic axle loads applied
at fixed locations, as a series of incoherent vertical points. The designed model recalls
this aspect, too. Furthermore, the vertical harmonic excitation conveniently simulates the
dropping load test, making possible the comparison of experimental and numerical results.
The settled simulation allows observing the trench performance depending on materials
properties and excitation frequency, investigating how the different physical mechanisms
act. The effect of the incoming wave characterized by different incident angles can also
be observed.

cos Ω𝑡 𝑅

𝑥

Figure 3.4: Lateral view of the wave propagation problem in the homogeneous half-space
with stiff in-filled trench, the grey cube with the R letter indicates the receiver location.

The effect of a generic trench is essentially based on two key phenomena: the reflection ef-
fect and the stiffness effect [8]. These mitigation mechanisms are explained in Section 3.2.2
and Section 3.2.3, respectively. Depending on the trench nature, one effect prevails over
the other. The performance of open trenches is completely dominated by the reflection
of the incoming wave, while the behaviour of stiff trenches is mainly controlled by the
stiffness effect and just a limited contribution of the reflection effect could be experienced
[13].

Note that this work focuses on the analysis of a stiff trench. The idea is to refer the study
to the stiff Cement Bentonite trench installed along the railway line in the Tricht site.
This case study is extensively described and discussed in Chapter 2.
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3.2.2. Reflection effect

The reflection of incoming waves plays a fundamental role for open trenches while a
marginal one for stiff in-filled trenches. This mechanism is based on the reflection of a
significant part of the incoming waves, leading to less energy transmission beyond the
countermeasure. The reflected part guarantees that a beneficial vibration mitigation
is achieved behind the trench. The open trench mitigation measure poses realization
issues due to safety and stability reasons, these generally limit its depth to shallow ones
[28]. Another drawback is the rainwater filling the hole, which can negatively alter its
performance. The trench can be filled with soft materials to solve these side effects, finding
the best compromise for the final performance of the system. If this solution is adopted,
the behaviour of the soft in-filled trench resembles that of an open one [20]. Indeed, the
reflection effect becomes crucial for soft in-filled trenches, too.

The reflection effect beneficially reduces the vibration level when the depth of the mitiga-
tion measure is at least 0.6 times the Rayleigh wavelength λR in soil [27]. Thus, to ensure
a sufficient wave reflection, the following relation should hold d ≥ 0.6λR, where d is the
trench depth. This rule of thumb is demonstrated experimentally in [66] and numerically
in [21, 28]. This implies that for the considered trench with a depth of 10m, the reflection
effect acts for f > 9.3Hz. Above this frequency, the penetration depth of the approaching
Rayleigh waves is small compared to the trench depth, making the reflection contribu-
tion effective for the reduction of the transmitted waves [8]. This phenomenon does not
advantageously depend on the trace wavenumber ky, differently from the stiffness effect
[27].

From the engineering point of view, the simple relation between the trench depth d and
the Rayleigh wavelength λR has an important practical relevance. In the design phase of
a trench or for an existing one, it is possible to get an idea of the frequencies at which the
trench would start reflecting waves, ensuring an effective vibration attenuation thanks to
this effect.

3.2.3. Stiffness effect

When the in-filled trench material is stiffer than the surrounding soil, the key factor deter-
mining its effectiveness strongly depends on the stiffness contrast between the two media
[20]. Stiff in-filled trenches act as wave impeding barriers that result particularly efficient
at sites with soft soil. Increasing the stiffness of the mitigation measure is beneficial for
its mitigation effect [10]. In the following, the stiffness effect mitigation mechanism is in-
vestigated in the space-wavenumber-frequency domain and in the space-frequency one. A
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better understanding of the mechanism is presented to improve the vibration attenuation
performance of the stiff trench solution.

Analysis in the space-wavenumber-frequency domain

To highlight this physical mitigation mechanism, the trench performance is quantified by
the insertion loss parameter in the space-wavenumber-frequency domain. The outcome
of Eq. (2.4) is plotted in Fig. 3.5 for the vertical component. The figure displays the
vertical insertion loss at the receiver position (x = 22.8m and z = 0m) as a function of
longitudinal slowness Ky = ky/ω and frequency f . Remember that positive values of ILz
express the decrease of the vibration amplitude, whereas negative ones the increase.

Figure 3.5: Vertical insertion loss ILz(x = 22.8, Ky, z = 0, ω) for the reference stiff in-filled
trench embedded in homogeneous half-space. Superimposed are the dispersion curve for
Timoshenko’s beam bending mode around the x-axis (black dashed line) and z-axis (black
dashed-dotted line), the dispersion curve Rayleigh wave (solid line) and the frequency-
slowness curves that show the phase shift of compressional waves between wavefronts
in the case with and without the trench (dotted line). The stars represent the critical
frequency for bending mode around the x-axis (red) and z-axis (green). f = 25Hz (grey
dashed line) and f = 50Hz (grey dashed-dotted line).

The thick horizontal black line in Fig. 3.5 is the dispersion curve of a Rayleigh wave
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propagating in the y direction. Due to the non-dispersive nature of the homogeneous
half-space, the associated slowness is constant and equal to KR = 1/cR = 6.5 s/m. This
line delineates an important threshold because the lateral wavenumber kx =

√
k2R − k2y

becomes imaginary for ky > kR. This signifies that, above this line, the wave does not
propagate in the x direction because it becomes evanescent, resulting in a very limited
response of the free field [28]. For this reason, that area of the plot does not play a
significant role and can be disregarded.

Below the horizontal line, a clear portion of the plot shows significant insertion loss values.
As already observed in different studies [8–10, 12, 28, 29], it occurs when the longitudinal
slowness exceeds the dispersion curve corresponding to the bending mode around x-axis
of an infinitely long Timoshenko’s beam that models the trench. In other words, the
bending stiffness of the mitigation measure hinders the transmission of waves when the
longitudinal wavelength λy is smaller than the free bending wavelength λb = 2π

kb
, but

not shorter than the Rayleigh wavelength λR [17]. This means kb < ky < kR, which is
equivalent to λR < λy < λb.

The analytical model from the Timoshenko’s theory well approximates the bending modes
of the trench, as demonstrated for an in-filled trench in [8]. In the current work, attention
is also paid to the bending mode around the z-axis. In some cases, it seems to better mark
the high insertion loss zone. Its activation constructively contributes to the mitigation
effect of the stiff trench.

The colour map in Fig. 3.5 could be misleading because the ILz values are related to the
imposed colour legend. The set limit of 20 dB expresses a ten times amplitude reduction,
but all the values larger than 0 dB translate a favourable vibration decrease. To avoid this
graphic limitation, the same outcome is plotted in Fig. 3.6 along three axes to provide
a more objective result. This figure is not influenced by the colour interpretation since
the z-axis displays the vertical insertion loss value. For simplicity, only the dispersion
curves related to the bending modes are overlapped together with the horizontal line
1/cR. Values larger than KR are not reported on the horizontal axis Ky.

In accordance with the Timoshenko’s beam theory [67], the dispersion relation for the
bending waves in the wavenumber-frequency domain reads

EIk4y − ρI

(
1 +

E

κµ

)
ω2k2y +

[
−ρAω2 +

ρ2I

κµ
ω4

]
= 0, (3.1)

where I is the moment of inertia, E is the Young’s modulus, µ is the shear modulus, κ is
the shear coefficient and A is the cross sectional area of the beam. For the beams with a
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rectangular cross section, the shear coefficient can be computed as κ = 10(1+ν)/(12+11ν)

[68]. The expression in Eq. (3.1) provides the dispersion curve relation between the
bending wavenumber ky = kb and ω. An analogous expression of the dispersion curve is
available in [69].

Figure 3.6: Vertical insertion loss ILz(x = 22.8, Ky, z = 0, f) for the reference stiff in-filled
trench embedded in homogeneous half-space. Superimposed are the dispersion curve for
Timoshenko’s beam bending mode around the x-axis (dashed line) and z-axis (dashed-
dotted line), the dispersion curve Rayleigh wave (solid line).

A width b and a height h are assumed for the general beam cross section A = bh. The
dispersion curve corresponding to the bending mode around the x-axis is found replacing
in Eq. (3.1) the generic bending stiffness EI with EIx, where Ix = bh3/12. Analogously,
EIz is inserted in the equation to obtain the bending mode around the z-axis, where
Iz = hb3/12. The associated wave propagation modes are schematized in Fig. 3.7. Since
the load is vertical, the bending mode around the x-axis is expected to primarily determine
the mitigation mechanism of the in-filled trench [29].

If the rotatory inertia and the shear deformation are neglected, the Timoshenko’s beam
theory from [70] reduces to the Euler-Bernulli one. This simplification leads to the free

bending wavenumber kb = 4

√
ρAω2

EI
[10]. This expression makes clear that increasing

the bending stiffness of the beam EI has a beneficial impact on the bending stiffness
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effect. Indeed, the dispersion curves corresponding to the bending modes are shifted
down in Fig. 3.5, enlarging the area of high insertion loss. This effect is further examined
in Section 3.2.5, where the effect of a stiffer trench characterized by larger ETrench is
shown. The previous expression also explains why the dispersion curve of the bending
mode around the x-axis is below the one related to the bending mode around the z-axis in
Fig. 3.5. The analysed trench is characterized by Ix > Iz because b = 0.8m and h = 10m.

𝑥

𝑧

(a) Bending mode around the x-axis.

𝑥

𝑧

(b) Bending mode around the z-axis.

Figure 3.7: Timoshenko’s beam bending modes, the reference beam is drawn with dashed
lines.

The previous discussion shows how the interpretation of Fig. 3.5 is based on the inter-
action of the bending waves in the stiff trench and the Rayleigh ones in the soil. At
low frequencies, the bending slowness Kb is larger than KR and the waves propagate
through the trench. Above a certain frequency (i.e., critical frequency), the wave field
contains longitudinal slowness values Ky that are larger than Kb but smaller than KR.
The transmission of these waves is prevented by the stiff trench that offers positive values
of the insertion loss. The critical angular frequency is found by the intersection of the free
bending wave dispersion curve and Rayleigh one. The analytical expression is provided
in [9]:

ωc = c2R

√
ρA

EI

√
Eµκ

(E − ρc2R) (µκ− ρc2R)
. (3.2)

The above equation gives the values of the stars in Fig. 3.5. Concerning the bending mode



52 3| Modelling, investigation of mitigation mechanisms and simulation

around the x-axis, it results ωc,x = 2π × 1.6Hz, whereas the other critical frequency is
ωc,z = 2π × 20.5Hz.

Eq. (3.2) reinforces the concept that the performance of a stiff trench mainly depends on
the stiffness difference between the two materials. To obtain a small critical frequency
and so a good performance at low frequency, having a softer soil and a stiffer in-filled
trench is favourable. This leads to smaller cR and larger ETrench. A beneficial effect is
also achieved by increasing the moment of inertia I; if this is done through the depth
h the reflection effect (explained in Section 3.2.2) becomes more influential, too. From
the previous considerations, the stiff trench is evidently not able to mitigate vibration
below the ωc,x. In this region, its presence is completely negligible. Introducing the
Euler-Bernulli theory simplification, the critical angular frequency is approximated by
ωc ≃ c2R

√
ρA
EI

.

The critical frequency parameter represents a simple and practical tool to understand the
efficacy threshold of the stiff in-filled trench. It guarantees a smooth design guideline to
estimate the range of ground vibration reduction.

The stiffness effect, investigated above, resembles the so-called coincidence in acoustics
[10]. The sound wave incident on an infinite panel is freely transmitted at the coincidence
frequency fco, at this frequency value the panel bending wavenumber matches the trace
wavenumber (i.e., the projection of the acoustic wavenumber along the partition) [71]. For
f < fco, the wave transmission follows the so-called mass being dominated by the panel
mass, while it is controlled by the plate bending stiffness above this threshold (f > fco).
At the coincidence frequency, the maximum transmission occurs and a dip appears in
the transmission loss value [71]. In the soil wave problem, the vibration mitigation arises
above the coincidence frequency - here called critical frequency ωc - thanks to the bending
stiffness of the in-filled trench [9]. On the other hand, the inertia effect does not have any
role in vibration attenuation for ω < ωc.

On the right vertical axis of Fig. 3.5, the wave propagation angle θ is displayed. It can be
computed as θ = sin−1(Ky/KR) [9]. This angle links the insertion loss value to a point
in the three-dimensional space that lies on the x = 22.8m line, for this specific case. In
particular, θ = 0 deg corresponds to the frame x-axis, whereas θ = π/2 is reached for
Ky = KR independently of the frequency.

This angle can be employed to understand where the bending mode is activated in the
space domain for the Kb < Ky < KR region. Taking the name of critical angle, it is
computed as θc(ω) = sin−1(Kb/KR) for Ky = Kb. Note that Kb depends on ω. Depending
on the specific case, it can be more or less pronounced but a significant reduction of the
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vibration level is generally experienced for θ > θc(ω). The critical angle θc(ω) can be
obtained as a function of the soil and stiff trench material properties from the following
analytical expression [9]:

sin θc(ω) = cR

√√√√
ρ
E + µκ+

√
(E − µκ)2 + 4E(µκ)2A

ρIω2

2Eµκ
. (3.3)

At high frequencies, the critical angle can be approximated through a constant frequency
independent value as sin θc =

√
ρ
µκ

[10]. This simplification is valid when the dispersion
curve for the beam bending mode asymptotically approaches a constant value. The sim-
plified formula gives θc,x = 17.9 deg, finding a good agreement with the dashed line in
Fig. 3.5.

In Eq. (3.2) and Eq. (3.3) the Rayleigh wave velocity cR is not a function of ω. It is a
constant value because the non-dispersive homogeneous half-space is studied. It becomes
frequency dependent with a dispersive medium, such as the layered half-space analysed
in Section 3.3.

The dotted curves in Fig. 3.5 express the phase shift of the wavefronts for the compres-
sional waves. So, a faint regular pattern is visible for the small slowness values at higher
frequencies. The compressional waves travel faster through the stiff trench than in the
softer half-space, introducing into the system a phase delay between the two scenarios.
This phenomenon is expressed through the relation between longitudinal slowness Ky and
ω that follows [8, 9]:√(

ω

cR

)2

− (Kyω)
2 −

√(
ω

cP

)2

− (Kyω)
2

xR − ω
b

∆cP
= 2πn, with n ∈ N, (3.4)

where xR is the receiver location that for this specific case is xR = 22.8m and ∆cP is the
difference between the compression wave velocity in trench and soil. The compressional
wave velocity is computed for the trench and soil: cP,Trench = 497.4m/s and cP,Soil =

154.3m/s.

The horizontal insertion loss plot ILx(x = 22.8, Ky, z = 0, ω) is qualitatively similar to
the vertical one. The colour map in Fig. 3.8 highlights how the presented concepts apply
to the horizontal insertion loss plot, too. The biggest differences between ILx and ILz can
be observed in the bottom part, where the insertion loss is dominated by the wavefront
shift phenomenon.
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Figure 3.8: Horizontal insertion loss ILx(x = 22.8, Ky, z = 0, ω) for the reference stiff
in-filled trench embedded in homogeneous half-space. Refer to Fig. 3.5 for the description
of the superimposed curves.

Analysis in the space-frequency domain

The soil response is obtained in the space-frequency domain by numerically evaluating
the inverse Fourier transform, which allows moving from the longitudinal wavenumber ky
to the spatial coordinate y.

The left plot of Fig. 3.9 shows the real part of the vertical displacement component Re(uz)
in the half-space without any type of vibration countermeasure, whereas in the right one
the stiff trench is taken into account. The unit harmonic vertical point load excites the
medium with Ω = 2π × 25Hz at the origin of the coordinate system.

The horizontal components are not presented for brevity. The plots are collected in
Appendix C. Due to symmetry, they display the wave field that is rotated 90 deg one with
respect to the other. Independently from the frequency of excitation, along the axes the
following holds ux(x, y = 0, z, ω) = 0 and uy(x = 0, y, z, ω) = 0. These aspects should be
carefully contemplated if a field measurement setup is designed for a non-moving load.

Cylindrical wavefronts are exhibited at the surface level in Fig. 3.9a. Moving away from
the source, the vibration amplitude decreases because of geometric attenuation and mate-
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rial damping. The contribution of body waves is more evident close to the origin, while the
Rayleigh waves tend to travel farther and to remain closely attached to the free surface.

(a) (b)

Figure 3.9: Real part of the vertical displacement component Re(uz(x, y, z,Ω = 2π ×
25Hz)) generated by unit harmonic vertical point load. Homogeneous soil (a) and with
in-filled trench (b).

If the stiff trench is introduced into the soil, the wave propagation is altered. The resulting
wave field is presented in Fig. 3.9b. In these box-type plots, the mitigation measure is
depicted with a black band. The symmetrical feature does not appear anymore. The
incoming waves are partly reflected by the mitigation measure, giving constructive and
destructive interference at the source side (0m < y < 17.4m). This phenomenon is
particularly evident in the vertical component, which experiences the largest vibration
amplitudes.

To underline the effect of the stiff trench, the insertion loss is computed from the dis-
placement terms. The horizontal component y is disregarded because the very low
amplitudes located immediately behind the trench lower the interest for this direction.
The ILx(x, y, z,Ω = 2π × 25Hz) is presented in the left panel of Fig. 3.10, while the
ILz(x, y, z,Ω = 2π×25Hz) is allocated to the right one. Note that a wider domain is now
analysed. The smaller portion considered in Fig. 3.9 is underlined here by a thin black
line.

As observed in the previous section, a direct link between the longitudinal slowness Ky

and the position in space is expressed by θ. The insertion loss in the space-wavenumber-
frequency domain provides information on the mitigation measure performance at the
receiver position in the xz-plane and along its projection in the y direction. The x



56 3| Modelling, investigation of mitigation mechanisms and simulation

and z coordinates are imposed, while the result in the y direction is recovered by the
angle relation θ = sin−1(Ky/KR). The receiver position coincides with the geophone I
location, implying x = 22.8m and z = 0m (cf. Fig. 2.3). Fixing the excitation frequency
Ω = 2π × 25Hz and increasing the Ky value along the grey dashed line in Fig. 3.5 is
equivalent to proceeding along the corresponding line in Fig. 3.10b. The same can be
stated for Fig. 3.8 and Fig. 3.10a, respectively. The null angle value coincides with the
point that lies on the x-axis, while increasing θ generates the rotation in the anti-clockwise
direction (positive based on the z-axis direction).

(a) (b)

Figure 3.10: Insertion loss in the space-frequency domain: ILx(x, y, z,Ω = 2π × 25Hz)
(a) ILz(x, y, z,Ω = 2π × 25Hz) (b).

For small θ values, a poor shielding action of the stiff trench is generally presented for both
the components in Fig. 3.10. The bending modes are not activated and the trench seems
inefficient in mitigating vibration. The bending modes of the beam model are activated
increasing the longitudinal slowness value along the dashed grey line in Fig. 3.5 and
Fig. 3.8. They contribute to generating a greater insertion loss. This happens around the
crossing points between the vertical line and the dispersion curves, which are analytically
computed through Eq. (3.2). For this reference example, θc,x = 21.4 deg and θc,z =

66.5 deg. For x = 22.8m, ILx reaches the 20 dB at a larger θ than ILz. This appears clear
from Fig. 3.10, but it can be observed by the plots in the wavenumber domain as well.

The insertion loss is similar behind the mitigation measure for the horizontal and vertical
direction, as already observed in Ky−f plots. This is not true for the zone in front of the
trench for 0m < y < 17.4m. At this side, the horizontal insertion loss appears negative
close to the y-axis due to the reflection effect, while there is no vibration amplification
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for ILz there. In both directions, the constructive and destructive interference causes thin
strips of high insertion loss (see Fig. 3.10). Some differences arise for z < 0m, too.

This analysis demonstrates an important consequence of the stiffness effect that is dis-
tinctly identified in the space domain. Behind the trench, a green cone where the counter-
measure badly performs can be generated. The stiff trench solution reveals one of its weak
points, being inefficient in this region. For certain parameters, a satisfactory mitigation is
achieved even in that area thanks to the reflection effect, which is completely independent
of ky [8].

For the chosen case, it seems that below a limit angle θ̃ the waves are transmitted through
the trench almost undisturbed. If this threshold is exceeded, the incoming waves are
redirected and they start to flow along the trench following the bending modes (i.e., the
stiffness effect). This phenomenon causes nearly null IL inside the cone (green colour)
and a good performance outside (red colour), as shown in Fig. 3.11.
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(a) IL ≃ 0 for θ(ω) < θ̃(ω) (green)
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(b) Large IL > 0 for θ(ω) > θ̃(ω) (red)

Figure 3.11: Wave redirection effect in the space domain, efficient (a) and inefficient (b)
mitigation region. The reflected wave term is neglected.

The limit angle definition derives from the insertion loss value that is set to distinguish
the two zones. The following relation holds: θ̃ ≥ θ(ωc,x). It is possible to affirm that the
stiffness effect leads to a wave redirection phenomenon in the three-dimensional space. Its
nature - like the one of the stiffness effect - depends on the frequency of excitation. This
aspect is further investigated in Section 3.2.4.

Recalling that the excitation induced by a passing train can be approximated by a series
of dynamic axle loads, it is worth noting that the generated cone has significant practical
relevance. Each axle point can develop the conical region where the stiff trench is almost
ineffective. This reveals that the contribution to the vibration field of a large number of
axle loads is significantly reduced if a receiver location closer to the track is considered
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[9]. Moving away from the trench increases the possibility that the point is within various
cones spawned by several axles. On the other hand, the geometric and material damping
effects decrease the amplitude of the wave when the distance from the trench is increased.
Moreover, the vibration in the near field is dominated by the closest axle loads, while all
axle loads contribute almost equally to the response in the far field [10].

The above discussion combined with Fig. 3.5 proves that the stiff in-filled is typically
unable to attenuate vibration when Ω < ωc,x. In this case, no bending mode can be
activated and the insertion loss parameter is almost null for 0 < Ky < KR. This is
equivalent to a full cone, which extends from 0 deg to 90 deg. There, the only beneficial
contribution comes from the reflection effect. In Appendix C, this possibility is exemplified
through a simulation with Ω = 2π × 1Hz < ωc,x.

3.2.4. Influence of the excitation frequency

This section investigates how the stiff trench behaviour changes if the excitation frequency
of the harmonic force is modified. The previous analysed value of omega Ω1 = 2π× 25Hz
is doubled, exciting the medium at Ω2 = 2π × 50Hz.

(a) (b)

Figure 3.12: Real part of the vertical displacement component Re(uz(x, y, z,Ω = 2π ×
50Hz)) generated by unit harmonic vertical point load. Homogeneous soil (a) and with
in-filled trench (b).

From the displacement point of view, the influence of the excitation frequency can be
understood through the well-known relation ω = k c. Due to the non-dispersive nature of
the homogeneous soil, the velocity of the waves is constant and frequency independent.
An increase of the angular frequency ω implies a linear increase of the wavenumber k.
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This can be translated into a reduction of the wavelength λ.

The consequences in the space domain are displayed in Fig. 3.12, where the increased
frequency makes the resulting circular wavefronts smaller than the ones in Fig. 3.9. This
effect results in less penetration of the waves into the medium. The introduction of the
mitigation measure into the ground gives a more evident constructive and destructive in-
terference compared to Fig. 3.9b. The same strategy applies to the horizontal components
of the displacement that are presented in Appendix C.

As suggested by Fig. 3.5 and Fig. 3.6, the excitation frequency represents an important
parameter for the stiff in-filled trench performance. Choosing Ω > ωc,x, a better mitigation
is expected when the excitation frequency increases. This is deduced from the wider range
of longitudinal slowness values characterized by high insertion loss (red colour). This
occurs because the Kb < Ky < KR interval enlarges, given Kb ∼ 1/

√
ω. Fig. 3.5 and

Fig. 3.8 show this trend for the two values of frequency through the two vertical grey lines
at Ω1 and Ω2.

(a) (b)

Figure 3.13: Vertical insertion loss in the space-frequency domain: ILz(x, y, z = 0,Ω =

2π × 25Hz) (a) ILz(x, y, z = 0,Ω = 2π × 50Hz) (b).

Moving to the space-frequency domain, a narrower angle - characterized by low insertion
loss - is expected behind the trench. Indeed, for Ω2 the high insertion loss range starts
at smaller θ values than Ω1. The vertical insertion loss is depicted for the soil surface
in Fig. 3.13, where the first plot (Fig. 3.13a) presents the results for Ω1 = 2π × 25Hz
and the second one (Fig. 3.13b) for Ω2 = 2π × 50Hz. From their comparison, the better
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performance of the stiff trench is obvious at the larger frequency. The shielded region
broadens and the low insertion loss cone gets narrower. This is beneficial for the situation
of the train passage excitation, too. This figure directly exhibits the difficulty of shielding
waves at lower frequencies. The box-type figures are proposed in Appendix C.

3.2.5. Influence of the Young’s modulus for the trench and soil

material

The main mitigation mechanism of the stiff in-filled countermeasure is based on the stiff-
ness contrast between its material and the surrounding medium. This section presents
the consequences related to a soil softening and to a stiffening of the trench material.

For one case, the reference trench of the previous section is embedded in a homogeneous
half-space characterized by a softer ground, which has the same properties as the top
softest layer of the Tricht site (cf. Table 2.1). For the other analysis that examines the
stiffer trench effect, the reference soil is kept unvaried (same properties as the last layer
of Tricht ground) and the Young’s modulus of the trench material is set ten times larger
than the reference one (i.e., ETrench = 10 000MPa).

The vertical insertion loss is displayed in Fig. 3.14 in the space-wavenumber-frequency
domain. Fig. 3.14a refers to the softer soil case, while Fig. 3.14b show the outcome of
the stiffer trench study. The results show wider areas characterized by large insertion loss
(Kb < Ky < KR). The increase in the stiffness difference between the two media provides
a superior attenuation performance of the stiff trench.

In Fig. 3.14a the horizontal line KR = 1/cR moves up because the softer soil gives a
smaller Rayleigh wave velocity, as listed in Table 2.1. This shift beneficially lowers the
critical frequencies, which become ωc,x = 2π×0.2Hz and ωc,z = 2π×2.3Hz from Eq. (3.2).
Furthermore, the number of dotted curves that express the phase shift of compressional
waves increases in the frequency range 0−100Hz because the value of the wave velocities in
soil changes in Eq. (3.4). Their contribution is strengthened in this case, which experiences
high vertical insertion loss also for the smallest values of longitudinal slowness Ky. The
curves representing the bending modes are the same as the reference case, because the
trench is not subjected to any variation of the material properties.

A similar outcome is displayed in Fig. 3.14b, where the soil is kept unvaried and the in-
filled trench is stiffer than the reference one. This time the KR line does not move and the
Timoshenko’s beam dispersion curves lower. This shift has the same effect as the previous
one, leading to smaller critical frequencies ωc,x = 2π× 0.5Hz and ωc,z = 2π× 6.2Hz. The
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effect of the wavefront phase shift on the bottom part of the figures becomes again more
pronounced.

(a)

(b)

Figure 3.14: Vertical insertion loss ILz(x = 22.8, Ky, z = 0, ω) for softer soil and reference
trench (a) and for reference soil and stiffer trench (b). Refer to Fig. 3.5 for the description
of the superimposed curves.

The positive ILz in correspondence to low slowness values suggests that the low insertion
loss area behind the stiff trench is limited to small angles. It seems even to disappear for
certain excitation frequencies. The vertical insertion loss in the space-frequency domain
is presented for Ω = 2π × 25Hz in Fig. 3.15. At this excitation frequency, the light green
cone (ILz ≃ 0) behind the stiff trench disappears and the zone shows a positive mitigation
effect (ILz > 5 dB). An orange one remains visible, showing how the trench is still less
prone to mitigate vibration there with respect to the other surface parts. Outside this
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region, the 20 dB threshold is reached and the large insertion loss is experienced not only
at the surface level but also for the increasing soil depth (z < 0m).

(a) (b)

Figure 3.15: Vertical insertion loss ILz(x, y, z,Ω = 2π×25Hz) for softer soil and reference
trench (a) and for reference soil and stiffer trench (b).

For the softer soil and reference trench case - Fig. 3.15a - the constructive and destructive
interference phenomenon strongly arises at the surface on the source side. This pattern
is similar to the one shown in Fig. 3.13b, where the excitation frequency is double with
respect to the one imposed here. It happens because softening the soil and increasing the
excitation frequency have the same consequence of reducing the wavelength λ. Indeed, if
the excitation frequency is increased and the soil is equal to the reference one, the wave
propagation velocity is kept constant and λ decreases. On the other hand, the softer
soil leads to a lower velocity that introduces the wavelength decrease, if the excitation
frequency is fixed.

The horizontal insertion loss ILx is not presented here because it qualitatively reminds the
already discussed plots. Its representation in the space domain is available in Appendix C
with the three-dimensional version of the plots in Fig. 3.14 and the displacement fields.

To conclude this section, the increase in stiffness difference between trench and soil leads
to improved performance. The results show a better mitigation that appears clear in both
the considered domains and analysed cases. The conical region characterized by nearly
null insertion loss is replaced by ILz > 5 dB values.
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3.3. Simulation and assessment of vibration mitiga-

tion effect

The analysis approach of Section 3.2 is applied to the case of a stiff in-filled trench
embedded in layered half-space. For a dispersive medium, the feasibility of the previously
presented mitigation mechanisms is verified. The numerical model of the stiff trench
embedded in the Tricht site is presented. The numerical and in-situ test results are also
compared.

3.3.1. Case study: stiff trench embedded in a layered half-space

The stiff in-filled trench installed in the Tricht site is modelled with the 2.5D procedure
in FEMIX. The layered soil presents four layers characterized by the properties listed in
Table 2.1. Table 2.2 summarises the geometry and the material properties of the miti-
gation measure. The trench model and the excitation type are identical to the reference
ones already set in Section 3.2. The receivers are placed at the same positions as the mea-
surement instruments during the dropping load test because the final aim of this chapter
is the comparison of the numerical results with the ones computed with the geophones
data. The dropping load test and measurement setup data are available in Chapter 2.
The cross section in the xz-plane - assumed invariant along the y direction - is outlined
in Fig. 3.16.

𝑅

𝑥

cos Ω𝑡

Figure 3.16: Lateral view of the wave propagation problem in the layered half-space, the
grey cube with the R letter indicates the first receiver location.

In a layered half-space the phase velocity depends on the frequency due to the dispersive
properties of the medium, as already highlighted in Chapter 1. Due to the variation of
the soil properties with depth, the dispersion curve of the Rayleigh wave is not anymore
a horizontal line in the slowness-frequency plot. Indeed, infinitely many modes exist.
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The propagation of Rayleigh waves becomes dispersive and the procedure to compute the
dispersion curves is described in detail in [72]. Note that the maximum phase velocity
coincides with the shear wave speed of the lower half-space that is the stiffest layer,
while the minimum one corresponds to the Rayleigh wave speed of the top layer that is
the softest one [17]. The dispersive medium implies that the critical frequency ωc must
be determined by an iterative solving procedure because the Rayleigh wave velocity is
frequency dependent in Eq. (3.2). For this work, this step is implemented in MATLAB.

3.3.2. Simulation results

Following the same approach adopted for the homogeneous soil case, the vertical insertion
loss ILz is computed at the first geophone position. The result is plotted in the space-
wavenumber-frequency domain for the 0− 30Hz frequency range in Fig. 3.17. Attention
is paid to the frequency values affected by the cargo train excitation.

Figure 3.17: Vertical insertion loss ILz(x = 22.8, Ky, z = 0, ω) for the reference stiff
in-filled trench embedded in layered half-space. Superimposed are the dispersion curve
for Timoshenko’s beam bending mode around the x-axis (black dashed line) and z-axis
(black dashed-dotted line), the dispersion curves Rayleigh wave (solid line). The stars
represent the critical frequency for bending mode around the x-axis (red) and z-axis
(green). f = 6Hz (grey dashed line).
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Note that above the top Rayleigh wave dispersion curve the wavenumber kx becomes
imaginary [9]. That region loses practical relevance because it describes evanescent waves
in the x direction, as already stated in Section 3.2.3. Moreover, the dotted curves that
express the phase shift of the wavefronts are not presented because an adequate match
between the insertion loss pattern and those curves obtained with Eq. (3.4) is not observed.

Fig. 3.17 reveals that the physical mitigation mechanism described in the previous sections
is also valid for the layered soil case. Indeed, the stiffness effect plays an important role
in vibration attenuation. The highest values of insertion loss are reached when both the
bending modes of the trench are activated. Especially below 15Hz, the activation of the
bending mode around the z-axis seems crucial to reaching large values of insertion loss.
The first critical frequency related to the bending mode around the x-axis (red star) does
not well indicate where the stiff trench starts to prevent the transmission of waves. The
other critical frequency - ωc,z = 2π × 4.5Hz - appears more reliable from this point of
view.

An interference pattern is observed at the highest frequencies and smallest slowness values
in Fig. 3.17. This pattern of the results is more complex than the homogeneous half-space
soil case due to the multiple reflections and refractions among the layer interfaces [9].
As already mentioned, neither the trends described by Eq. (3.4) seem able to describe
the complex nature of this phenomenon. Due to this effect, some regions show negative
insertion loss that expresses the amplification of vibration amplitude. For the horizontal
insertion loss, a wider region is characterized by negative values (below the 4Hz). The
trench presence would generate a vibration amplification at that point if the soil is excited
with that frequency value. See Appendix C for the ILx plot.

Applying the inverse Fourier transform, the insertion loss is computed in the space-
frequency for Ω = 2π × 6Hz, which is the dominant frequency excited by the cargo
train passages. The related real part of the vertical displacement component (without
and with the trench) is shown with the vertical insertion loss in Fig. 3.18. The different
layers are graphically separated by thin horizontal black lines. The corresponding plot for
the component in the horizontal directions and the three-dimensional version of Fig. 3.17
are depicted in Appendix C.

The wave field generated by the unit vertical point load is concentrated in the first layer
of soil, as shown in Fig. 3.18. This observation gives the opportunity to underline an
important concept: the insertion loss parameter effectively translates the performance of
the mitigation measure in the spatial zones affected by considerable displacement ampli-
tude. It is not interesting to analyse the insertion loss evolution in the areas where the
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displacement magnitude is small before and after the vibration countermeasure instal-
lation. Neglecting this consideration could lead to a wrong assessment and misleading
conclusions.

(a) (b)

(c)

Figure 3.18: Real part of the vertical displacement component for the layered half-space
(a), stiff in-filled trench (b) and vertical insertion loss (c) in the space domain for Ω =

2π × 6Hz.

The cone effect (see Section 3.2.3) appears also in the layered soil case for Ω = 2π× 6Hz
in Fig. 3.18c, even though inside this cone the insertion loss is not as small as in the
case of reference homogeneous soil. This feature proves that placing devices outside the
conical region is advantageous during a measurement campaign with a non-moving load.
At locations where the insertion loss is higher, assessing the mitigation measure efficiency
is simpler and more effective. If the devices are placed both inside and outside the cone
the redirection effect can be experimentally presented. This shows that arranging devices
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only in line with the loading point is not a good choice. The y component of the vibration
is also theoretically null along that line.

The effect of the stiff trench and its shielding ability can be evaluated through the Power
Spectral Density, as already demonstrated in Section 2.3 with the in-situ tests data. The
PSD is computed numerically for the five geophones positions with the outputs of the
simulations. The averaging step of Eq. (2.2) cannot be accomplished because there is
no variability related to the results. Fig. 3.19 shows the outcomes for the first three
measurement instruments locations for the x and z components.
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Figure 3.19: PSD obtained from numerical simulations for the first three geophones lo-
cations associated with the vertical harmonic load simulation in layered half-space (blue)
and with stiff in-filled trench (orange).

The vertical component of the vibration shows larger energy content than the horizontal
direction. Note the different scales on the vertical axis. The stiff in-filled trench is
undoubtedly efficient in attenuating the vibration for the considered frequency range
(0−15Hz). The power distribution with the trench is always smaller than the one without
the trench and very limited exceptions occur. Nevertheless, the two lines appear almost
overlapped for the very first frequencies (f < 4Hz). This range is the one characterized by
the lowest power content, too. Especially for the component in the vertical direction, this
phenomenon has been already observed in Fig. 2.8 with the results of the dropping load
test. There the activation threshold occurs slightly above 5Hz. These values correspond
to the critical frequency ωc,z = 2π × 4.5Hz, which is underlined by the green star in
Fig. 3.17. Moving away from the source the power content of the perturbation decreases
- as expected - due to geometric and material damping.

Concerning the field measurement data, the numerical results generate smoother trends
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without narrow peaks. The beneficial contribution of the stiff trench is shown also for the
horizontal direction. The numerical results do not show contradictory trends, differently
from the geophones data. An evident power content reduction for the component in the
x direction is shown in Fig. 3.19, contrary to Fig. 2.8. This discrepancy suggests to
carefully comment the experimental results in that direction. The experienced energy
content could be given by external factors that are not related to the dropping load test
and trench performance.

The outcomes at the last two device locations are in agreement with the formerly discussed
points. For brevity, they are given in Appendix C.

3.3.3. Mitigation effect assessment and comparison with in-situ
test result

The efficiency of the stiff trench is numerically assessed through the computation of ILx
and ILz with Eq. (2.4). The vertical point harmonic load scenario is adopted for the
model. Both numerical and dropping load test results are expressed in one-third-octave
bands in Fig. 3.20. The first row refers to the insertion loss evolution in the horizontal
direction x, while the second one presents the component along the z-axis. The results
for the other two devices locations are available in Appendix C.

The numerical insertion loss trend resembles the one in the PSD results of Fig. 3.19.
For the first two one-third-octave bands at lower frequencies, the smallest values are
experienced. For the horizontal direction even negative values are reached. This aspect
is originated from the inefficient performance of the mitigation measure in that frequency
range, as seen in Fig. 3.19. Above 5Hz, the insertion loss presents only positive values
that are translated into an effective mitigation effect of the stiff trench. Generally, the
curves grow until a local maximum with an increasing tendency. After that, a decrease is
typically observed.

Comparing the numerical and experimental results, the insertion loss for the two com-
ponents x and z is commented separately. Concerning the horizontal direction, the con-
flicting trends of the experimental results do not show a satisfactory agreement with the
numerical ones. This difference is evident from the PSD plots, too. A general benefi-
cial effect is shown by the numerical data, whereas contradictory information arises from
the experimental outcomes as commented in Section 2.4.2. A better matching occurs for
the insertion loss in the vertical direction, at least from the overall shape point of view.
The curves computed with numerical and experimental results show increasing trends
that generally reach the local maxima at close one-third-octave band values. The same
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comments can be applied to the plots of the other two receiver locations.
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Figure 3.20: Comparison numerical (blue) and experimental (green) insertion loss for the
first three geophones locations in x (circle) and z (triangle) direction.

Overall, the comparison of the experimental assessment with the numerical one is not
satisfactory, especially for the x direction. Although the numerical outcomes are coher-
ent with the theoretical stiff trench performance and behaviour, the experimental ones
generally do not show a good match. As already stressed, this kind of field measurement
campaign is affected by a certain uncertainty produced by several uncontrolled and un-
known variables. Furthermore, the numerical simulation does not perfectly model the real
test conditions, for example the track and the asphalt layers are disregarded. An addi-
tional potential cause of the discrepancy between the predictions and the measurements
might be a non-isotropic soil behaviour or a local alteration of the horizontally layered
medium profile [20]. The induced wave field could also be altered by the energy scattering
originated by local heterogeneities, such as embedded stone or piping that are commonly
found in populated areas.
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3.3.4. Summary

The layered half-space model is presented in this chapter. The validity of the mitigation
mechanisms is evaluated in the dispersive medium and the numerical trench performance
is assessed. The comparison with the dropping load test results also occurs.

The insertion loss plot in Fig. 3.17 proves the more complex physical interpretation of the
trench behaviour in a layered half-space. The wave reflection among the different ground
layers generates a complex pattern at small slowness values. Infinitely many Rayleigh
wave modes appear, too. The activation of the beam model bending mode around the z-
axis results more effective to achieve the largest insertion loss values. The corresponding
critical frequency is a good approximation for the trench effectiveness starting point.
Moving to the space-frequency domain, the wave propagation and insertion loss seem
similar to the ones of the homogeneous half-space case. The wave energy content remains
limited to the first and softest soil layer and the conical region behind the countermeasure
is still present but with insertion loss values larger than one. These aspects confirm that
the stiffness effect and the related wave redirection one still represent the key mitigation
mechanisms to explain and evaluate the stiff trench performance in a layered soil.

The stiff trench performance is assessed through the insertion loss parameter, which is
computed at different distances from the source. An effective vibration mitigation is expe-
rienced, especially for frequencies above 5Hz. However, the comparison of the numerical
and field measurement results does not produce a satisfactory outcome (see Fig. 3.20).
Not a good agreement is achieved by the horizontal insertion loss ILx at all. More sim-
ilar trends are experienced with the comparison of the vertical insertion loss ILz. This
discrepancy could be generated by relevant differences between the considered model and
the in-situ test. Furthermore, placing the geophones inside the conical region behind the
trench does not support the detection of its mitigation effect. The adopted measurement
setup with all the devices aligned with the load point is not recommended for measure-
ment campaigns with a non-moving load. Other non-aligned devices are necessary to
record the soil response outside the conical region, which is affected by a less evident
vibration attenuation.
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Part B

Assessment of a metawedge:

a railway application
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4| Mitigation mechanism, model

validation and simulation

The metawedge is introduced as a mitigation measure for surface induced ground
vibration. In Section 4.1, its effect based on metamaterial and resonant unit cells is
explained and the key wave-mode conversion mechanism is discussed. Thanks to this
mitigation mechanism, the vibration countermeasure can convert the incoming Rayleigh
waves into body ones, redirecting the energy content deep into the ground. The unit cell
of the metawedge and the related theoretical concepts are presented in Section 4.2. In
Section 4.3, the model and the solution approach are validated through a literature case.
Once correct implementation is demonstrated, the development of a metawedge for the
railway application is proposed in Section 4.4. For this system, the influence of the ma-
terial properties and resonator dimensions on its dispersion properties and attenuation
performance is also investigated.

4.1. Wave-mode conversion mechanism

In the past two decades, metamaterials in elastic media have become an active research
field for the study of wave propagation, solving complex vibration related engineering
problems [38]. The application of metamaterials allows guiding and controlling the wave
propagation direction through the wave-mode conversion mechanism. This concept -
derived from photonic and phononic crystals - leads to new possibilities for developing
innovative mitigation measures to attenuate the vibration level generated by the surface
waves in the far-field [31].

A metamaterial is constituted by a periodic arrangement of an infinite number of ele-
mentary units with a sub-wavelength spacing [30]. This elementary unit is commonly
called unit cell. A typical example is proposed in Fig. 4.1a, where the unit cell consists
of a rectangular cross section resonator partially embedded in a homogeneous medium.
In other words, the resonator is defined as an inclusion of another material in the main
homogeneous half-space. The unit cells, with the possibility of different design criteria,
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are intended to collectively induce non-conventional dispersion properties to the system.
For a non-dispersive homogeneous half-space without any resonators, the dispersion curve
for the surface wave is depicted in Fig. 4.1b. The slope of the straight line depends on
the material properties through the Rayleigh wave velocity cR. As shown in Fig. 4.1b, the
non-dispersive nature of the system guarantees the propagation of surface waves for any
excitation frequency. Introducing the infinite periodic array of resonators, the dispersion
curves displayed in Fig. 4.1c are obtained. The non-conventional dispersion properties
are expressed by the presence of the two horizontal grey bands, which indicate band gaps
(BG) of the system in Fig. 4.1c. In these frequency ranges, surface wave propagation is
not possible; the wavenumbers are imaginary-valued making the waves evanescent [33].
Indeed, the excitation of the system for a frequency inside a band gap does not produce
any propagating surface wave, as shown by the absence of corresponding real wavenum-
bers. Each band gap is opened by a natural frequency of the resonator. This alteration of
the dispersion curve is called mode hybridization phenomenon, which represents a crucial
aspect of locally-resonant metamaterials [36, 73].

(a) Generic unit
cell.
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Figure 4.1: Example of a generic unit cell (a) and dispersion curves for the surface wave
with a homogeneous half-space (b) and introducing the infinite array of partially embed-
ded resonators (c).

The metawedge is defined as a spatially graded arrangement of resonators applied on the
surface of an elastic half-space that appears effective in converting incoming Rayleigh
waves into body ones [32]. This solution is studied to investigate other mitigation mech-
anisms that can ensure a good vibration mitigation inside the conical region where the



4| Mitigation mechanism, model validation and simulation 75

stiff trench gives a bad attenuation performance (see Section 3.2.3). For the metawedge
technology, the wave-mode conversion mechanism proves to be the dominant one [37]. It
allows redirecting part of the approaching energy deep into the ground, attenuating the
induced ground motion at the surface. The wave-mode conversion mechanism has a strong
potential for vibration isolation purposes in different engineering fields. The metawedge
can be adopted for civil engineering applications to mitigate ground vibration.

The resonator can be generally modelled in the xz-plane with a rectangular cross section,
as illustrated in Fig. 4.1a. To obtain the metawedge, the height of the resonators is gradu-
ally changed and the wedge shape appears [31, 32, 37, 74]. Another solution is suggested in
[34], where only the embedded part of the resonators varies along the metawedge. In this
case, the metawedge can also be called partially embedded gradient metabarrier, where
the word metabarrier expresses the fact that it is a wave barrier based on metamaterials
theory. Its schematic representation is depicted in Fig. 4.2. This solution has inspired
the design suggested for the railway application in Section 4.4. The track represents the
excitation source, the building describes the receiver, while the metawedge is installed on
the transmission path. The coloured zones represent the propagating waves, of which flow
is diverted deep into the ground (becoming body waves from surface ones). The name
metawedge combines its theoretical root based on metamaterials and the wedge shape
obtained with the arrangement of resonators.

𝑥

Figure 4.2: Schematic representation of the wave-mode conversion mechanism.

Different resonators have been proposed to achieve the desired vibration attenuation for
a receiver at the surface. The concept of a resonant metawedge and a forest of trees as
seismic metamaterial is reported in [30, 31]. Similar systems based on resonant trees -
properly placed in the space - are proposed in [32, 33]. The wave-mode conversion effect
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can also be obtained by more complex metabarriers, these are made of single or multi
mass-spring resonators [35–37].

For most cases in literature, 2D models are adopted to investigate the efficiency of a
metawedge under the plane strain assumption. This work includes both 2D and 2.5D
models developed in FEMIX software (see Section 3.1.1). Following the same strategy
as described in Chapter 3; the resonators are modelled with finite elements, while the
soil is modelled through the boundary element method. Obtaining the three-dimensional
displacement field for the point load case, the effect of the metawedge can be investigated
for incoming waves with different incident angles. Its performance can be examined inside
the conical region where the stiff trench effect shows a less efficient vibration mitigation.

4.2. Unit cell and design principles

The first step in the design of a metawedge is the analysis and tuning of the unit cell
dynamics inside a structure composed of an infinite number of identical cells to predict
its behaviour at diverse excitation frequencies. Therefore, a periodic metabarrier made of
partially embedded resonators in a homogeneous semi-infinite soil is studied. Designing
the band gaps in the spectrum is the biggest challenge. It is also the most important step
for developing an effective mitigation measure for the target frequency range.

𝑥
…

(a) Overall view.
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(b) Unit cell.
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(c) FEM model.

Figure 4.3: Schematic representation of a generic periodic metabarrier with partially
embedded resonators (a), unit cell (b) and FEM model of the unit cell (c).

Fig. 4.3a displays the generic periodic array of rectangular cross section boards along the
x direction. In this figure, the three dots express the theoretically infinite number of
unit cells. This infinite periodic system takes the name of partially embedded periodic
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metabarrier [34].

The unit cell of the system is shown in Fig. 4.3b. The soil column is characterized by a
width a and a depth H. Although this is not the only possible option, the soil column is
considered as part of the metamaterial following the approach adopted in [34]. A different
strategy is pursued in [75], where the authors propose focusing only on the resonator
dynamics because this is the only well controlled part. The resonator is characterized by
a width t and a height h, of which hb part is embedded in the soil. If the system does
not have any embedded part, hb = 0. On the other hand, if h = hb, the resonator is fully
embedded in the ground and it becomes an in-filled trench.

The governing equations of elastic waves for a heterogeneous medium with isotropic ma-
terial properties are taken from [34]. They can be written as

ρ(x)ü(x, t) = ∇{[λ(x) + 2µ(x)](∇ · u(x, t))} − ∇× [µ(x)∇× u(x, t)]. (4.1)

For an inhomogeneous continuum, the Lamé constants are given as a function of the
coordinate vector x = [x, y, z]. The explanation of the other terms in Eq. (4.1) is available
in Chapter 1.

The system periodicity is introduced through the Floquet theorem [76, 77]. According to
this theory, the displacement in a periodic structure can be expressed as

u(x, t) = ei(kx−ωt)uk(x), (4.2)

where k is the Bloch wave vector in the first Brillouin zone and uk(x) is the displacement
modulation function. This function is characterized by the same spatial periodicity of the
structure, that means

uk(x+ a) = uk(x), (4.3)

where a is the is the unit cell horizontal periodic constant (see Fig. 4.3b). From Eq. (4.2)
and Eq. (4.3), it is possible to write

u(x+ a, t) = eikau(x, t). (4.4)

Combining Eq. (4.4) and Eq. (4.1), the dispersion relation problem of an infinite periodic
system can be transferred into an eigenvalue problem of a typical unit cell [78]. It can be
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expressed in the following matrix form:

(K(k)− ω2M)u = 0, (4.5)

where M is the mass matrix and K is the stiffness matrix, which is a function of the
wavenumber vector k. The dispersion curve of the periodic structure is determined by
the wave vector in the first Brillouin zone. Due to its symmetry, examining the wave
vector just along the boundary of the first irreducible Brillouin zone (0−π/a) is sufficient
[79].

In this work, the eigenvalue problem is solved numerically through a two-dimensional
FEM model of the unit cell. This is developed with COMSOL Multiphysics version 5.4.
An example is presented in Fig. 4.3c. The finite depth H of the soil column must be
large enough to accurately model the semi-infinite layer, assuring the convergence of the
numerical solutions. For Rayleigh waves the motion is localized near the surface in a
thin layer, which is about twice the wavelength of the surface waves [41]. Therefore, the
H value is taken larger than three maximum Rayleigh wavelengths (H > 3λR,max), as
imposed in [34]. The term λR,max corresponds to the minimum frequency value fmin,
which is set to 1Hz for all the presented simulations. Recalling the exponential decay of
surface waves with depth, the fixed boundary condition at the bottom of the unit cell is
acceptable [80]. This means u = 0 at z = −H. Stress-free boundary conditions are used
at the top free surface (z = 0), while the Floquet periodicity is imposed at the vertical
boundaries of the unit cell (see Fig. 4.3c). A detailed explanation of the corresponding
functions implemented in COMSOL Multiphysics is available in [81]. The triangular mesh
is exploited in this study, as depicted in Fig. 4.3c.

Once the dispersion relations are found for the elementary cell, the surface modes must be
distinguished from the bulk ones. COMSOL Multiphysics cannot detect this difference.
The distinction is performed with the energy distribution parameter ξ, which is proposed
in [82]. It reflects the energy distribution of a mode through the computation of the ratio
expressed by Eq. (4.6).

ξ =

∫ 0

−2λ

∫ a
0
Wε dx dz∫ 0

−H

∫ a
0
Wε dx dz

, (4.6)

where Wε represents the elastic strain energy density (ESED). The surface integrals are
computed for the soil column of the unit cell for its width a along the x-axis and for the
depth values 2λ and H along the z-axis, as shown in Fig. 4.3b. This parameter - expressed
by Eq. (4.6) - has a clear physical meaning, since it represents the specific energy content
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located within two wavelengths for the examined wave mode. The surface modes are
identified for ξ > 90% [82]. Once the surface modes are found, the corresponding band
gaps can be obtained in the frequency domain by plotting the surface mode along the
first Brillouin zone (for an example case see Fig. 4.1c).

4.3. Model validation

Comparing the results with a literature case, the implemented model and solution tech-
nique are validated. The same strategy of Section 3.1.2 is adopted for this section. As
reference case, the study presented in [34] is chosen. The effect of a concrete metawedge
in a homogeneous half-space subjected to a vertical harmonic load is investigated. For
brevity, the properties of the materials are listed in Appendix C. The unit cell is charac-
terized by t = 0.5m, h = 3m and hb = 0.8m; while the soil column part has a = 2m and
H = 240m.

the	second	BG

the	fist	BG

(a) Current results.

the	second	BG

the	fist	BG

(b) Results from [34].

Figure 4.4: Model validation through dispersion curves comparison with [34].

Fig. 4.4 shows a good agreement of the dispersion curves. The first two surface wave
modes are plotted, while only the first bulk mode is reported. The other bulk modes
appear to be almost overlapped with the first one, so plotting only the first one is enough.
The first band gap is opened by the flexural mode shape of the resonator at its first
natural frequency ωn,1 = 2π × 6.3Hz. The longitudinal mode shape initiates the second
band gap at ωn,2 = 2π× 14.1Hz. Exactly the same values are reported in [34]. The band
gap terminates when the successive surface mode appears. From this agreement, the
procedures to identify the different modes and to recognise the band gaps are validated.

The displacement field - computed with the 2D model for ky = 0 - is compared to validate
the FEMIX input file and the processing phase of its outputs. The embedded depth of the
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boards linearly changes with a constant gradient ζ = tan( h
na
), where n is the number of

elementary cells. The model proposed in literature considers n = 30 sloped boards with
a thickness t = 0.8m. All the other parameters are maintained equal to the previously
presented ones. The first resonator met by the incoming wave does not have embedded
part (hb = 0m). Due to the imposed gradient, the structure ends with a completely
embedded board that assumes the shape of an in-filled trench (hb = h). Note that the
originally published plot is cropped to help the comparison in Fig. 4.5a.

(a) Results from author’s work with FEMIX.

(b) Results from [34].

Figure 4.5: Model validation through displacement field comparison with [34].

The vertical harmonic excitation is applied 60m far from the first unit cell, and is char-
acterized by a unit displacement amplitude. The excitation frequency is set equal to
15Hz. Modelling in FEMIX all the 30 resonators with finite elements is practically dif-
ficult due to an excessive request for memory allocation. Nevertheless, a similar out-
come is achieved with just the first five unit cells, as displayed in Fig. 4.5. The de-
picted displacement is generally computed with the real parts of the three components
as uRe =

√
(Re(ux)2 +Re(uy)2 +Re(uz)2). Another difference between the models lies

in the excitation form because a unit force is applied in FEMIX, instead of a unit dis-
placement. This incongruity generates different amplitudes in Fig. 4.5a and Fig. 4.5b.
The damping coefficient values are also different. To obtain Fig. 4.5b, null damping is
imposed. This is not possible in FEMIX due to numerical problems, so a small damping
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coefficient (ξd = 0.5%) is set to achieve a good match of the results.

From Fig. 4.4 and Fig. 4.5, the qualitative good agreement of the outcomes allows the
validation of the adopted model. Therefore, the model is used in the next sections to
further analyse the performance of the metawedge for a railway application.

4.4. Simulation and effect of modelling parameters

Inspired by metawedges for seismic application, the wave-mode conversion mechanism is
adopted for the attenuation of railway traffic-induced ground vibration. In the following,
the possibility to design the metawedge for a specific railway application is presented.
Developing a possible alternative to the stiff in-filled trench represents the main goal
of this section. Based on the cargo train induced vibration problem for the Tricht site
(see Chapter 2), a metawedge system with promising mitigation performances is proposed.
The step-by-step design is presented and the influence of different materials is investigated
together with the effect of the unit cell dimension.

4.4.1. Case study: metawedge in a homogeneous half-space

To present an innovative countermeasure as a practically feasible solution, some realistic
design constraints must be set. The current study treats the vibration problem generated
by the passages of cargo trains from Chapter 2. The primary objective of this section is to
propose a viable alternative to the usual mitigation measures, which has improved perfor-
mance, especially inside the conical region where the stiff trench shows a poorer vibration
mitigation (see Section 3.2.3). The metawedge must be able to shield the surrounding
buildings from the railway induced ground vibration.

The metawedge is embedded in a homogeneous half-space to support the physical in-
terpretation of the results, as similarly done for the stiff trench in Section 3.2. A unit
vertical point harmonic force - applied 60m far from the first unit cell - represents the
input excitation. The convention of the right-hand Cartesian coordinate system is the
same as Section 3.3.1. Fig. 4.6 displays the problem invariant geometry in the xz-plane.
The receiver points is located at the surface level for 120m < x < 160m.

The soil properties are chosen from the Tricht site and they are taken equal to those of
its first ground layer, they are listed in Table 2.1. For the ground, this means density ρ =
1700 kg/m3, Young’s modulus E = 15MPa and Poisson’s ratio ν = 0.40 (cf. Table 2.1).
The damping coefficient is set equal to 0.5%, focusing the reader’s attention on the
metawedge performance and not on the material damping effect. Similarly, large distances
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between the entities are imposed to guarantee a marginal role of the body waves at the
metawedge position.

𝑥

𝑅cos Ω𝑡

Figure 4.6: Lateral view of the wave propagation problem in the homogeneous half-space
with metawedge, the grey rectangle with the R letter indicates the receiver points location
(figure not to scale).

The metawedge should ideally be able to redirect the surface waves for the frequency
interval that is mostly excited by the passage of cargo trains. From the field measurements
presented in Chapter 2, it is found in 5−10Hz range. Particular attention is paid to 6Hz
because it is the most excited frequency by the running vehicle [39].

The designed solution should be as small as possible, in the ideal case the system should
be compact. The main idea consists in developing a practically feasible structure that is
not strongly intrusive in an urbanized area [35].

4.4.2. Proposed metawedge solution

The imposed constraints of the previous section guide the design of the metawedge. The
proposed solution shows partially embedded resonators. The system showing the best
achieved mitigation performance is presented. Starting from the unit cell, the selected
resonator board is characterized by a thickness t = 0.2m and a total height h = 3m. The
soil part of the unit cell has thickness a = 2m and total depth H = 240m. Steel has been
chosen for the resonator material. Steel has a density ρ = 7830 kg/m3, a Young’s modulus
E = 200GPa and a Poisson’s ratio ν = 0.26 [34]. Table 4.1 summarizes the properties.

Table 4.1: Metawedge properties.

Material ρ (kg/m3) E (GPa) ν Height (m) Thickness (m)

Steel 7830 200 0.26 3 0.2
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Following the design procedure described in Section 4.2, the dispersion curves of the
surface waves can be calculated. They are depicted in Fig. 4.7 for the hb = 0.4m unit
cell. The flexural and longitudinal modes also given in the right side of the figure. They
are associated with the eigenfrequencies at the lower edge of the band gaps. The related
colour bar indicates the displacement amplitude.

Flexural	mode
1.8	Hz

Longitudinal	mode
7.5	Hz

Figure 4.7: Dispersion curves of the surface wave (red star) for the hb = 0.4m unit cell.
Superimposed are the dispersion curves of compressional (dotted line), shear (dashed line)
and Rayleigh (dashed-dotted line) waves for the homogeneous soil.

The vibration mode of the unit cell manipulates the wave propagation in the medium
through the Rayleigh mode hybridization with the surface resonances [83]. Without the
boards, the dispersion curves are just those of bulk and surface Rayleigh waves, which
are described by the straight black lines in Fig. 4.7. Above the two natural frequencies
corresponding to the flexural and longitudinal modes, two distinct band gaps appear.
In these ranges, the Rayleigh wave cannot propagate. The solution becomes strongly
dispersive around the flexural and longitudinal natural frequencies. Outside the ω

k
< cS,Soil

cone, all the arising modes are guaranteed to be surface ones [84]. As observed, no surface
modes appear inside the cone or in the band gaps because the surface solutions become
radiation modes. The energy travelling at the surface with Rayleigh waves is diverted into
the bulk in the form of body waves [35]. This phenomenon generates the two separate
branches of "hybrid" Rayleigh waves that asymptotically approach the band gaps from
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the bottom with a phase velocity lower than cR [36]. The band gap closes when the upper
branch shows the phase velocity equal to cS,Soil. Surface modes with phase velocity larger
than cS,Soil cannot exist in the elastic medium. Although the elliptically Rayleigh wave
excites both modes of the metabarrier, only the longitudinal one is able to activate a
considerable band gap. Depending on the unit cell geometry and properties, the flexural
mode plays a more or less marginal role. It appears extremely narrow for this specific case
(about 1.8− 2Hz). Some authors directly neglect the contribution of the first resonance
[30, 32]. Above the longitudinal mode, the second band gap appears wider due to the
better wave and mode coupling with the vertical component of the Rayleigh wave [33].

The band gaps are tuned by adjusting the embedded depth of the board with the metawedge
along the x-axis. This layout guarantees that the mitigation mechanism of the counter-
measure is dominated by the wave-mode conversion of Rayleigh waves into bulk ones,
as demonstrated in [32]. In particular, the second band gap should be shifted to lower
frequencies to reach at least the target value of 6Hz. Surface waves should experience a
clear conversion when this excitation frequency is imposed at the surface.

The dispersion curves are computed for several unit cells with different embedded depth
values (0m ≤ hb ≤ 1.8m). The evolution of the first two band gaps is plotted as a
function of hb in Fig. 4.8. As indicated, the regions between the two equal curves express
the interval of the band gaps. With this metawedge setup, the Rayleigh waves travelling
from left to right experience an increasing hb trend.

the	second	BG

the	first	BG

Figure 4.8: Relations first band gap (red triangle) and second one (blue circle) with
embedded depth hb.

The figure suggests that the second band gap can reach smaller frequencies if hb is de-
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creased. Beginning with the first board with hb = 0, the first five barriers with the
embedded depth difference ∆hb = 0.1m are selected. This implies that the fifth barrier
has hb = 0.4m with the imposed slope ζ = 0.05. Fig. 4.9 offers a qualitative illustration
of the designed solution. The heavy resonators would need some foundations to keep
them straight and to prevent settling. In the models used for this study, their presence is
neglected for simplicity but note that they could affect the resulting mitigation effect.

𝑥

𝑅cos Ω𝑡

Figure 4.9: Lateral view of the designed metawedge for the railway application, the grey
rectangle with the R letter indicates the receiver points location (figure not to scale).

The mitigation performance of the designed system is firstly assessed with a 2D model in
the space-frequency domain under the plane strain assumption (ky = 0). The resonators
are modelled with finite elements, while boundary elements are used for the soil domain.
The vertical harmonic force represents the excitation input and the displacement output
at the receiver points is computed.

(a) ILz(x, ky = 0, z = 0, ω).
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(b) ILmax,x and ILmax,z.

Figure 4.10: Assessment of the proposed metawedge solution.

Fig. 4.10a shows the vertical insertion loss value - calculated with Eq. (2.4) - at the surface
level for different excitation frequencies and horizontal positions. The system appears
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clearly effective in mitigating the vibration for ω > Ω = 2π × 5Hz. Fig. 4.10b shows the
insertion loss computed with the maximum real part of the displacements occurring in
the receiver points. This is defined as ILmax. It depicts how the peak performance of the
metawedge is achieved around 6Hz, after a steep increase. A similar outcome is obtained
for the horizontal component of the soil response, it is available in Appendix C.

The outputs presented in Fig. 4.10 prove that the designed solution is able to mitigate
vibration following the design constraints previously recommended. To check that the
beneficial effect is realized through the wave-mode conversion mechanism, the displace-
ment distribution in space uRe(x, ky = 0, z,Ω) is computed using FEMIX for the target
excitation frequency Ω = 2π × 6Hz and presented at the bottom part of Fig. 4.11.

Figure 4.11: Real part of the vertical displacement component Re(uz(x, ky = 0, z,Ω =

2π× 6Hz)) generated by vertical harmonic load in homogeneous soil (first row) and with
metawedge (second row).

The wave-mode conversion mechanism is visible in Fig. 4.11. The surface wave is clearly
redirected into the deep soil when it passes the metawedge. This process attenuates the
motion amplitude at the surface level behind the barrier, as already indicated by Fig. 4.10.
The advantageous effect of the mitigation measure is even more evident when comparing
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the two plots in Fig. 4.11. The top plot represents the homogeneous soil case without
the metawedge. Similar results appear for the uRe and the real part of the horizontal
component Re(ux), the corresponding figures are collected in Appendix C.

The mitigation performance of the designed metawedge is evaluated with the 2.5D model
in the three-dimensional space. As already done for the stiff in-filled trench analysis,
the insertion loss is computed in the space-wavenumber-frequency domain. Fig. 4.12
represents the vertical insertion loss for a receiver point that is located at the surface level
with x = 120m.

Figure 4.12: Vertical insertion loss ILz(x = 120, Ky, z = 0, ω) for the designed metawedge
embedded in homogeneous half-space. Superimposed is the dispersion curve Rayleigh
wave (solid line).

In Fig. 4.12, the designed metawedge shows positive insertion loss values for a wide region.
The metawedge is ineffective below a certain frequency (1Hz). This feature recalls the
critical frequency that is generated by the stiffness effect, the key mitigation mechanism
of a stiff in-filled trench (Section 3.2.3). The metawedge is particularly effective at low
propagation angle θ. This means that the conical region characterized by nearly zero in-
sertion loss (see Section 3.2.3) is not present for frequency above 5Hz. The corresponding
plot for the insertion loss in the horizontal direction ILx is displayed in Appendix C.
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(a) Re(uz(x, y, z,Ω = 2π × 6Hz)).

(b) ILz(x, y, z,Ω = 2π × 6Hz).

Figure 4.13: Real part of the vertical displacement component (a) and vertical insertion
loss (b) generated by unit harmonic vertical point load.

Applying the inverse Fourier transform, the soil response is found in the space-frequency
domain. The displacement field of the vertical component and the vertical insertion loss
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are plotted for Ω = 2π × 6Hz in Fig. 4.13a and Fig. 4.13b, respectively. To avoid hidden
zones in the box-type plots, only the embedded parts of the resonators are shown in
Fig. 4.13b, they are indicated by black bands.

The metawedge appears particularly effective in mitigating the vibration along the x-
axis in the above-mentioned conical region behind the resonators. This aspect marks an
important difference from the stiff trench countermeasure, which generally shows poor
performance in that cone (cf. Section 3.2.3). For some specific θ values, the metawedge
seems unable to redirect the incoming wave deep into the ground. This is probably
given by the different resonator properties that the incoming waves experience reaching
the metawedge at θ > 0. On the other hand, the wave-mode conversion phenomenon is
clearly depicted in the xy-plane, where negative insertion loss zones appear for z < −10m.
These figures confirm that the metawedge is complementary to the stiff in-filled trench,
showing the potential of the metawedge mitigation measure. If properly designed, it
can represent a valid alternative to the stiff trench. Moreover, a very good attenuation
could be achieved through a combined system, which could be basically produced by a
metawedge ending with the last resonator that is a stiff trench, i.e., an entirely embedded
resonator.

4.4.3. Influence of the resonator dimension

Changing the dimension of the resonator modifies the band gap range in the frequency
spectrum and the dispersion relations.

the	second	BG

the	first	BG

(a) t = 0.5m and h = 3m.

the	second	BG

the	first	BG

(b) t = 0.8m and h = 3m.

Figure 4.14: Relations first band gap (red triangle) and second one (blue circle) with
embedded depth hb.
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The dimension variation is proportionally related to the resonator mass, which modifies
the natural frequencies of the unit cell. The relations of the first two band gaps with
the embedded depth hb are offered in Fig. 4.14 for resonators with a larger width. The
resonator thickness t increases to 0.5m and 0.8m. The other parameters are maintained
equal to the ones described in Section 4.4.2. The computed outcomes are presented in
Fig. 4.14a and Fig. 4.14b.

The overall shape of the plot remains almost unaltered (cf. Fig. 4.8). The flexural mode
effect is still too weak to open an effective band gap, it even disappears for some hb values.
Generally, the longitudinal natural frequency of the unit cell opens the second band gap
at lower frequencies. This trend implicates the activation of the wave-mode conversion
mechanism at a lower frequency in the spectrum. The drawback corresponding to a
thickness increment lies in a bigger system. More material is required and the structural
aspects can become critical due to the bigger mass involved.
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(a) t = 0.5m and h = 3m.
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(b) t = 0.8m and h = 3m.

Figure 4.15: ILmax with resonator thickness t increase.

Fig. 4.15 confirms the above-mentioned behaviour. The attenuation effect begins at lower
frequencies if the longitudinal resonance lowers due to a board thickness increase. After
the thickness, also the height effect is examined. Shorter resonators with h = 2m and
different widths are selected for the metawedge. Their vibration attenuation performance
is visible in Fig. 4.16. The resonator mass is diminished in this manner, inducing the
opposite effect of the already commented width growth. As expected, the resonator
height reduction leads to a delayed activation of the second band gap, which occurs at
higher frequency values. For the resonator with hb = 0.4m, the second eigenfrequency
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ωn,2 results larger than the corresponding cases with h = 3m. In particular, they result
in 8.7Hz for t = 0.2m and in 6.7Hz for t = 0.5m. Vice versa, ωn,2 becomes smaller when
the resonator mass is increased through a bigger resonator (see Fig. 4.14).
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(a) t = 0.2m and h = 2m.
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(b) t = 0.5m and h = 2m.

Figure 4.16: ILmax with resonator height h decrease.

The achieved results demonstrate how different dimensions can be tested to achieve the
mitigation of the target excitation frequencies. Indeed, changing the dimension of the
resonator modifies its mass, which allows adapting the longitudinal natural frequency to
the specific needs. However, these changes could involve critical aspects that must be
carefully considered to propose a plausible solution. Especially for the mitigation of small
excitation frequencies, a need for excessive mass could generate a practically unfeasible
solution.

4.4.4. Influence of the material properties for the resonator and

soil

This section investigates the effect of the material properties on the metawedge mitigation
performance. The initial Young’s modulus of the resonator steel and soil are decreased to
evaluate the importance of this variable on the two media. In particular, ESteel = 100GPa
and ESoil = 7.5MPa are taken. All the other parameters are kept constant and equal to
the ones of Section 4.4.2. The obtained ILmax plots are presented in Fig. 4.17. Fig. 4.17a
shows the outcome for the softer steel and reference soil, while Fig. 4.17b corresponds to
the reference steel and softer ground.
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The variation of the Young’s modulus for the steel of the resonators does not seem to
affect the result. The computed insertion loss shows almost the same values and trend as
the reference case (cf. Fig. 4.10b). Indeed, the curves appear almost overlapped. Other
scenarios with even smaller values of ESteel have been investigated (50GPa and 10GPa),
but the outcomes are both similar to the left plot of the figure. This means that a variation
of the resonator Young’s modulus is not able to significantly move the band gaps in the
frequency spectrum, i.e., the dispersion curves of the unit cells remain almost unvaried.
For example, the longitudinal eigenfrequency still occurs at 7.5Hz for the hb = 0.4m unit
cell. As observed, the Young’s modulus of the resonator has a marginal effect. It can
be stated if the resonator has a limited embedded part, while a much stronger influence
would be expected if the resonator assumes an in-filled trench aspect with most of the
height that is embedded in the soil.
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(a) ESteel = 100GPa and ESoil = 15MPa.
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(b) ESteel = 200GPa and ESoil = 7.5MPa.

Figure 4.17: ILmax for softer steel and reference soil (a) and for reference steel and softer
soil (b).

The strong effect of the soil Young’s modulus is proven by Fig. 4.17b. A unit cell with
softer soil presents the longitudinal natural mode at a lower frequency than the reference
case (ωn,2 = 2π × 5.1Hz for the fifth unit cell). Indeed, the second band gap opens at a
lower frequency for a softer soil compared to a stiffer one [37]. This aspect - qualitatively
equivalent to a resonator mass increase - induces a better vibration mitigation for smaller
excitation frequency.

A concrete metawedge with t = 0.5m resonators is examined to complete the analysis of
the material properties. The concrete is characterized by mass density ρ = 2500 kg/m3,
Young’s modulus E = 30GPa and Poisson’s ratio ν = 0.2 [85]. The material choice and
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the increased width t are the only differences compared to the reference steel metawedge,
which is presented in Section 4.4.2.

Longitudinal	mode
9.0 Hz

Flexural	mode
1.8	Hz

Longitudinal	mode
7.5	Hz

Flexural	mode
1.8	Hz

Longitudinal	mode
7.5	Hz

Flexural	mode
2.7	Hz

Figure 4.18: Dispersion curves of the surface wave (red star) for the hb = 0.4m concrete
unit cell. Refer to Fig. 4.7 for the description of the superimposed curves.
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(a) Relations first band gaps with embedded
depth hb.
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(b) ILmax,x and ILmax,z.

Figure 4.19: Concrete metawedge.

Although a thicker cross section is set, the new resonators are characterized by a smaller
mass due to the reduced ρ. According to the previous results, this should lead to an



94 4| Mitigation mechanism, model validation and simulation

upward shift of the second band gap in the spectrum, activating the wave-mode conversion
mechanism at higher frequencies. The dispersion curves for the fifth unit cell in Fig. 4.18
confirm the above-stated statement. The second band gap is activated by the longitudinal
mode at 9.0Hz, while the flexural one appears at 2.7Hz. This effect clearly emerges from
Fig. 4.19a, where the band gaps result raised up with respect to the analogous steel case,
which is depicted in Fig. 4.14a. Despite the wider first band, it does not contribute to
the wave attenuation. Indeed, Fig. 4.19b does not display relevant performance for its
activation range.

In this section, the importance of the material properties is shown. A softer soil appears
beneficial to obtain an improved vibration mitigation effect at lower frequencies. On the
other hand, increasing the stiffness difference between the two media through an increase
of the resonator Young’s modulus does not produce significant effects. Thus, differently
from the stiff trench, having a larger stiffness difference does not always give a better
mitigation performance. Furthermore, the relevance of the resonator mass is again pointed
out by the concrete metawedge. Due to a lower density, a concrete resonator results in
lower mass compared to a steel one. Therefore, the second band gap is activated at higher
frequencies.
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Conclusions

The first objective of this thesis is the investigation of the stiff trench mitigation mech-
anisms and behaviour to improve the existing design guidelines. Its effect and vibration
attenuation performance are firstly assessed through field measurements, which were pre-
viously acquired during in-situ tests. The recorded signals show how the stiff trench
effectively decreases the transmitted waves at the surface level. The energy content is
strongly reduced for the vertical component of velocity, while inconsistent results are
obtained for the horizontal direction (perpendicular to the railway track).

The performance of the stiff trench and the influence of the most relevant design pa-
rameters are analysed with a 2.5D model. The countermeasure is firstly embedded in a
non-dispersive homogeneous half-space to facilitate the physical interpretation and under-
standing of the results. The simulation outputs demonstrate that the stiffness contrast
between soil and trench materials is the most important feature to obtain a beneficial
vibration mitigation, which can be achieved by increasing this stiffness difference between
the two media. The described effect - namely the stiffness effect - is well illustrated by
the analysis in the space-wavenumber-frequency domain. The bending modes obtained
with the beam model of the trench turn out to be a crucial aspect for the vibration mit-
igation of the stiff trench. The mitigation mechanism leads to the definition of a critical
frequency. Above this frequency value, the stiff trench effectively attenuates the ground
vibration. A critical angle can also be defined, it corresponds to the activation point for
the bending mode, becoming important for the vibration mitigation. The results in the
space-frequency domain show that the stiffness effect generates a conical area where the
countermeasure has almost no effect. Within this cone region, the incoming waves are
transmitted practically undisturbed. The excitation frequency value plays another impor-
tant role because the trench provides a more effective vibration attenuation at increasing
frequencies.

The outlined physical mechanisms are also identified for the case of a layered half-space,
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even though the interpretation of the results appears more complex due to the multiple
wave reflections among the different ground layers. To guarantee the best possible vibra-
tion attenuation with a stiff trench, the ideal situation would involve a stiffer trench in a
softer soil that is excited at a higher frequency.

Comparing the in-situ measurement results for the non-moving source with the results of
the numerical simulation, they do not show a good agreement. This is mainly observed for
the horizontal direction. Concerning the vertical component, a better match is obtained.
The computed soil response demonstrates that the device should measure the ground
motion outside of the low insertion loss cone to improve the comparison of the results,
where both bending modes are activated and the trench effect is more evident.

The second part of the thesis focuses on the development and assessment of the metawedge
for railway induced ground vibrations. Both 2D and 2.5D models are adopted for the
study. By means of the so-called wave-mode conversion mechanism, the proposed mitiga-
tion measure is able to convert the incoming surface waves into body waves exploiting the
non-conventional dispersion properties of the resonators array. This wave redirection phe-
nomenon generates at the surface level a successful vibration reduction for the frequency
range mainly excited by the cargo train passage (5− 10Hz). Concerning the metawedge
performance in the three-dimensional space, it generates positive insertion loss values in
the above-mentioned conical region where the stiff trench does not.

The influence of the resonator dimensions and materials on the dispersion relations is
investigated. An increase in width or height leads to a larger mass that lowers the longi-
tudinal natural frequency of the resonator. This results in a better mitigation performance
of the metawedge at lower frequencies. The same result is achieved if the metawedge is
embedded in softer soil, i.e., smaller Young’s modulus for the elastic medium. On the
other hand, the Young’s modulus of the resonator material does not significantly affect
the dispersion curves.

The metawedge solution represents a possible alternative to the usual mitigation measures
that are typically adopted on the transmission path. However, further research should be
carried out to develop competitive solutions with a practical engineering relevance, the
effort should focus on the design of feasible and compact systems.

The complementary performance of the two different mitigation measures highlights how a
hybrid solution could lead to nearly complete vibration mitigation at the surface. Indeed,
the stiffness effect could act where the wave-mode conversion mechanism does not appear
effective.
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Further development

The following recommendations for further development come to light from the analyses
and discussions presented in this work.

Concerning the in-situ test with a non-moving excitation source, an additional measure-
ment setup is recommended when the performance of a stiff trench must be detected. The
available devices should be arranged in parallel to the trench, in order to measure the soil
response where the trench effect is more evident. This means measuring the response
outside of the conical region, so where the stiff trench appears more effective. In this way,
the ground motion is recorded behind the trench at different longitudinal distances from
the point load. Furthermore, the developed model should be as detailed as possible to
reach a better match with the field measurements, being more similar to the in-situ test
scenario.

With respect to the numerical simulation, the implementation of a moving cargo train
in the 2.5D model would allow an interesting assessment of the countermeasures perfor-
mance. The track should also be considered, to evaluate the possible effects generated
by its presence. A better understanding and interpretation of the mitigation mechanisms
could be achieved with this type of simulation. The contribution of all the incoming
waves with different incident angles is considered through the introduction of a moving
load. For the metawedge, the investigation of the influence of different propagation angles
is particularly interesting because its vibration mitigation seems to strongly depend on
this variable.

The results obtained with the metawedge for the railway application suggest that this
mitigation measure could represent an effective alternative to the usually installed ones.
Further research is recommended to design more compact and practically feasible solu-
tions. To keep the resonators straight and to prevent settling, the presence of foundations
- neglected in the considered analysis - should also be implemented in the model. More
complex resonators could also be evaluated to combine the advantageous effects of the
stiff trench and metawedge. Their complementary performances could merge into a single
system that is able to combine both the mitigation mechanisms (stiffness effect and wave-
mode conversion). For this purpose, a metawedge composed of resonating stiff trenches
could guarantee an effective mitigation result. Moreover, the possibility to attenuate both
ground vibration and noise emission could be taken into account during the study. In this
way, the annoyance of nearby residents would be alleviated from both noise and vibration
transmission.
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The effect of the wave-mode conversion mechanism in a layered half-space should be anal-
ysed. The waves could reach the surface behind the metawedge from the bottom, being
reflected back by the stratified ground. This phenomenon should be carefully considered
for a real application since the wave reflection could badly affect the obtained beneficial
vibration attenuation at the surface level.
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Soil properties - Chapter 1

The soil properties employed in Chapter 1 are provided in Table 1. For the homogeneous
case analysed in Section 1.2.1 the second layer is selected, while for the single layer case
the first layer is settled. The depth L is always chosen equal to 10m.

Table 1: Soil properties

Layer ρ (kg/m3) λ (N/m2) µ (N/m2) Depth (m)

1 1622 2.24 · 108 1.12 · 108 10
2 1827 2.24 · 109 1.12 · 109 ∞

Lamb’s problem ground displacements

The displacements of the surface that result from the Lamb’s problem discussed in Sec-
tion 1.2 are taken by [55] and rewritten in the following. It is reminded that a homogeneous
half-space is investigated and that this is a non-dispersive medium characterized by con-
stant cP , cS and cR. As already mentioned, this implies that the wavenumbers are linear
functions of ω, with kP = ω/cP , kS = ω/cS and kR = ω/cR.
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w =

{
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where ... represents the higher order terms, which can be neglected for farther distance x
[50].

Mean spectra train passage test

The mean spectra for the train passage in geophone A location before and after the trench
construction are computed and depicted in Fig. A.1.

Figure A.1: Mean spectra in in geophone A location associated to the passages of cargo
train before (blue) and after (orange) the trench construction.
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It is evident that the amplitudes at very low frequencies (smaller than 2.5Hz) are negligible
with respect to the others. Moreover, to calculate the mean spectra amplitude Eq. (3) is
used. Here, it is written for a generic group of signals S(ω), with ns members.

|S(ω)| = | 1
ns

ns∑
i=1

Si(ω)|. (3)

Dropping load test further results

In this section are provided additional results that are originated by the dropping load
test. Fig. A.2 has the same outcomes as Fig. 2.7 plus the geophones IV and V.

Figure A.2: Coherence computed in the dropping load test before (blue) and after (orange)
the trench construction in the three directions for the five geophones placed in row.

Fig. A.3 has the same results as Fig. 2.8 plus the horizontal direction y and the geophones
IV and V.
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Figure A.3: Averaged PSD computed for the five geophones in the dropping load case
before (blue) and after (orange) the trench construction.

The ILx and ILz are given for all the five measurement instruments in Fig. A.4.
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Figure A.4: Averaged PSD computed for the five geophones in the dropping load case
before (blue) and after (orange) the trench construction.
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Trench and soil properties - Section 3.1.2

The wave in-filled trench and soil properties from [8] and adopted in Section 3.1.2 are
listed in Table 2. Note that the trench is stiffer than the homogeneous half-space.

Table 2: In-filled trench and soil properties [8].

ρ (kg/m3) E (MPa) ν cP (m/s) cS (m/s) ξd (%)

Trench 2000 1510 0.248 950 550 2.5
Soil 2000 213 0.333 400 200 2.5

Homogeneous soil - Section 3.2

(a) (b)

(c) (d)

Figure A.5: Real part of horizontal displacement components generated by unit harmonic
vertical point load with Ω = 2π × 25Hz, x direction (first row) y one (second row).
Homogeneous soil (first column) and stiff in-filled trench (second column).
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The horizontal component of displacement is provided in Fig. A.5 for the case without
(left column) and with (right column) the stiff in-filled trench. The first row refers to the
x direction, whereas the second one to the y one.

If the excitation frequency is smaller than the critical one, the stiff in-filled trench results
completely useless. It is not able to mitigate vibration. Computing the IL, it is nearly
zero everywhere in the space. The case with Ω = 2π × 1Hz is shown in Fig. A.6 where
green box plots arise.

(a) (b)

Figure A.6: Insertion loss in the space-frequency domain: ILx(x, y, z,Ω = 2π × 1Hz) (a)
and ILz(x, y, z,Ω = 2π × 1Hz) (b), where Ω = 2π × 1Hz < ωc,x.
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The Re(ux(x, y, z,Ω = 2π × 50Hz)) is depicted in Fig. A.7, while the insertion loss for
Ω = 2π× 50Hz computed with the displacement components along x and z are shown in
Fig. A.8a and Fig. A.8b, respectively.

(a) (b)

Figure A.7: Real part of the horizontal displacement component Re(ux(x, y, z,Ω = 2π ×
50Hz)) generated by unit harmonic vertical point load. Homogeneous soil (a) and with
in-filled trench (b).

(a) (b)

Figure A.8: Insertion loss in the space-frequency domain: ILx(x, y, z,Ω = 2π× 50Hz) (a)
and ILz(x, y, z,Ω = 2π × 50Hz) (b).

The three-dimensional plot of the vertical insertion loss in the space-wavenumber-frequency
domain is given in Fig. A.9a for the softer soil case presented in Section 3.2.5. The anal-
ysed case with the stiffer in-filled trench is instead displayed in Fig. A.9b.
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(a)

(b)

Figure A.9: Vertical insertion loss ILz(x = 22.8, Ky, z = 0, ω) for softer soil and reference
trench (a) and for reference soil and stiffer trench (b). Refer to Fig. 3.6 for the description
of the superimposed curves.
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The ILx for the softer soil and stiffer trench case is shown in Fig. A.10a and Fig. A.10b,
respectively. The comments in Section 3.2.5 apply to them.

(a)

(b)

Figure A.10: Horizontal insertion loss ILx(x = 22.8, Ky, z = 0, ω) for softer soil and
reference trench (a) and for reference soil and stiffer trench (b). Refer to Fig. 3.5 for the
description of the superimposed curves.
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The real part of the displacement field is displayed in Fig. A.11 for the softer soil case,
while for the stiffer in-filled trench one in Fig. A.12. In this simulation Ω = 2π × 25Hz.

(a) (b)

(c) (d)

Figure A.11: Real part of displacement components generated by unit harmonic vertical
point load with Ω = 2π × 25Hz for the softer soil case ad reference trench, x direction
(first row) z one (second row). Homogeneous soil (first column) and stiff in-filled trench
(second column).
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(a) (b)

Figure A.12: Real part of displacement components generated by unit harmonic vertical
point load with Ω = 2π × 25Hz for the reference soil and stiffer trench case, x direction
(a) z one (b).

(a) (b)

Figure A.13: Horizontal insertion loss ILx(x, y, z,Ω = 2π×25Hz) softer soil and reference
trench (a) and for reference soil and stiffer trench (b).

The horizontal insertion loss ILx is plotted in the space domain for the softer soil and
stiffer in-filler trench case in Fig. A.13, one next to the other. The set frequency is imposed
equal to 25Hz.

Layered soil - Section 3.3

The three-dimensional plot of the vertical insertion loss in the space-wavenumber-frequency
domain is provided in Fig. A.14 for the non-dispersive layered half-space.
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Figure A.14: Vertical insertion loss ILz(x = 22.8, Ky, z = 0, ω) for the reference stiff in-
filled trench embedded in layered half-space. Refer to Fig. 3.6 for the description of the
superimposed curves.

Figure A.15: Horizontal insertion loss ILz(x = 22.8, Ky, z = 0, ω) for the reference stiff
in-filled trench embedded in layered half-space. Refer to Fig. 3.17 for the description of
the superimposed curves.
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The horizontal insertion loss ILx for the layered half-space in the space-wavenumber-
frequency (x = 22.8m and z = 0m) is given in the underlying figure.

(a) (b)

(c) (d)

(e)

Figure A.16: Real part of horizontal displacement components generated by unit harmonic
vertical point load with Ω = 2π × 6Hz, x direction (column) y one (second column).
Homogeneous soil (first row) and stiff in-filled trench (second row). ILx (third row).
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The real part of the horizontal components and the ILx are reported in the space domain
for Ω = 2π × 6Hz in Fig. A.16.

The PSD for the five geophones locations in the x and z directions is depicted in Fig. A.17.
The results are not reported in the y direction because that displacement component is
null due to symmetry reasons.
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Figure A.17: Numerical PSD for the five geophones locations associated with the vertical
harmonic load simulation in layered half-space (blue) and with stiff in-filled trench (or-
ange).

The comparison of the numerical and experimental insertion loss for all the available
geophones positions is provided in Fig. A.18. The numerical outcomes derive from the
vertical harmonic point simulation, while the experimental ones from the dropping load
test that is described in Section 2.2.
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Figure A.18: Comparison numerical (blue) and experimental (green) insertion loss for the
five geophones locations in x (circle) and z (triangle) direction.

Trench and soil properties - Section 4.3

The properties of the homogeneous half-space and concrete resonator from [34] are re-
ported in Table 3. Note that zero damping is imposed in the literature example, while
ξd = 0.1% for the exact operation of FEMIX simulations.

Table 3: Unit cell and soil properties [34].

ρ (kg/m3) E (MPa) ν cP (m/s) cS (m/s) cR (m/s)

Resonator 2500 30000 0.2 2472 1179 1074
Soil 1800 30 0.3 150 80 74

Metawedge for railway application

Fig. A.19 shows the horizontal insertion loss ILx value at the surface level for different
excitation frequency and position values. The analogous plot for the insertion loss in the
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vertical direction is offered in Fig. 4.10a.

Figure A.19: ILx(x, ky = 0, z = 0, f) with 120m < x < 160m.

Figure A.20: Real part of the horizontal displacement component Re(ux(x, ky = 0, z,Ω =

2π× 6Hz)) generated by vertical harmonic load in homogeneous soil (first row) and with
metawedge (second row).
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In Fig. A.20 and Fig. A.21, the real part of the horizontal and vertical components of the
displacement are plotted. The vertical harmonic force - located at x = 0m and z = 0m -
is characterized by Ω = 2π×6Hz , which is the dominant frequency value elicited by cargo
trains [39]. The wave-mode conversion mechanism occurs when the incoming surface wave
passes through the metawedge becoming shear bulk wave that is directed into the soil.

Figure A.21: uRe(x, ky = 0, z,Ω = 2π × 6Hz) generated by vertical harmonic load in
homogeneous soil (first row) and with metawedge (second row).

Fig. A.22 depicts the horizontal insertion loss plot for the designed metawedge. It is
computed in the space-wavenumber-frequency domain for a receiver located at the surface
level for x = 120m.
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Figure A.22: Horizontal insertion loss ILx(x = 120, Ky, z = 0, ω) for the designed
metawedge embedded in homogeneous half-space. Superimposed is the dispersion curve
Rayleigh wave (solid line).

The effects related to a change of the dimensions of the resonator cross section are visible
in Fig. A.23 and Fig. A.24. They depict the outcomes for a thicker board and smaller
height, respectively. The discussion presented in Section 4.4.3 applies to them.

(a) t = 0.5m and h = 3m. (b) t = 0.8m and h = 3m.

Figure A.23: ILz(x, ky = 0m−1, z = 0m, ω) with resonator thickness t increase.
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(a) t = 0.2m and h = 2m. (b) t = 0.5m and h = 2m.

Figure A.24: ILz(x, ky = 0, z = 0, ω) with resonator height h decrease.

The performance of the metawedge with different board dimensions are displayed in
Fig. A.25a and Fig. A.25b, while Fig. A.25c depicts the performance of the concrete
metawedge. The discussion presented in Section 4.4.4 is valid for them.

(a) ESteel = 100GPa. (b) ESoil = 7.5MPa.

(c) Concrete metawedge.

Figure A.25: ILz(x, ky = 0, z = 0, ω) for softer steel and reference soil (a), for reference
steel and softer soil (b) and for concrete metawedge and reference soil (c).

The displacement field of the horizontal component and the horizontal insertion loss are



130 | Appendix

plotted in Fig. A.26a and Fig. A.26b for Ω = 2π × 6Hz, respectively.

(a) Re(ux(x, y, z,Ω = 2π × 6Hz)).

(b) ILx(x, y, z,Ω = 2π × 6Hz).

Figure A.26: Real part of the horizontal displacement component (a) and horizontal
insertion loss (b) generated by unit harmonic vertical point load.
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