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1. Introduction
This thesis deals with numerical methods and
High Performance Computing (HPC) Tech-
niques for the computation of the electrostatic
potential at the surface of complex molecules
(typically proteins) in aqueous solutions.
The mathematical modeling tool we choose to
use for this purpose is the Poisson Boltzmann
Equation (PBE), which, in mathematical terms,
is a boundary value problem for a semi-linear el-
liptic operator with discontinuous coefficient and
point sources.
The introduction of such model dates back al-
most exactly one century ago to the seminal
work of Born [5], but its relevance for chemical
and biological applications, e.g. for drug discov-
ery, still holds [10], furthermore, when applied to
large and complex molecules, such as, e.g. the
SARS-CoV-2 spike protein [11], the solution of
the PBE is a challenging benchmark for state–
of–the–art HPC techniques. Among many pop-
ular open implementations of PBE solvers we
note APBS [8] and Delphi [13, 14, 16, 17], the
former implements both a Finite Element (FE)
discretization method on adaptive, conforming,
simplicial meshes [4, 9] (more accurate, less effi-
cient) and a Finite Differences (FD) scheme on

tensor product cartesian grids, while the latter
strongly relies on the benefits of FD difference
schemes on cartesian grids in terms of memory
efficiency and scalability. Here we focus on the
performance and scalability assessment of nu-
merical methods for the PBE based on hierarchi-
cally refined cartesian Oct-tree grids [1, 2], which
is a topic that received a growing interest in the
research community in recent years [6, 11, 15].
One aspect in the modeling of protein electro-
statics by means of the PBE that has been
shown to play an important role both in terms
of accuracy of the results and of computational
efficiency, is that of the geometrical description
of molecular surfaces in this study we consider
and compare different approaches for the sur-
face definition, ranging from those based on im-
plicit level-set representations to those based on
alpha-shapes [7, 18].

2. The Poisson–Boltzmann E-
quation

Figure 1 shows schematically the geometric rep-
resentation of the solvated molecule that is the
basis of the PBE modeling approach. In this
representation Ωm represents the interior of the
molecule which is treated as a linear dielectric
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continuum medium characterized by a relative
permittivity εm, while the solvent occupies the
region Ωs which is also modeled as a continuum
characterized by permittivity εs and by a vol-
ume density of charge ρs(φ(x)) and Γ denotes
the molecular surface. The points xi denote the
centers of the atoms composing the molecule,
where point charges qi are located.

Figure 1: Schematic representation of the prob-
lem domain.

The scalar electrostatic potential φ(x) obeys

−∇ · (ε0 ε(x) ∇φ(x)) = ρs(φ(x))

+
∑
i

qi δ(x− xi),
(1)

which must be complemented by suitable bound-
ary conditions on ∂Ω, the most common choice
being that of homogeneous Dirichlet conditions.
By assuming the charge density in the solvent
to obey a Maxwell-Boltzmann equilibrium dis-
tribution ad by performing a suitable adimen-
sionalization, (1) becomes

−∇̂ · (ε̂0 εr(x̂)∇φ̂(x̂))+

ε̂0 εr(x̂) κ
2(x̂) sinh (φ̂(x̂)) = ρ̂f (x̂),

(2)

where the symbol ·̂ indicates scaled nondimen-
sional quantities and will be dropped after this
section to simplify the notation.
ρ̂f in (2) represents the (scaled) fixed charge
density, which is a sum of point sources, while
ε̂0κ

2 is the (scaled) ionic strength.
When φ(x) is small, one can linearize (2) so that
it reduces to

−∇̂ ·
(
ε̂0 εr ∇̂φ̂

)
+ ε̂0 εr κ2 φ̂ = ρ̂f , (3)

where the dependency on x has been dropped
for sake of brevity.
Equation (3) is known as the linearized PBE
and is the object of the study carried out in the
present thesis.
At least two different values of εr are needed for
a decent description of the system physic. In-
deed, the solvent (in particular water) is more
sensitive to the presence of an electric field, so
that the corresponding εr will be higher than the
solute one. The ratio between relative permit-
tivity values in the solute and in the molecule is
often of about two orders of magnitude, there-
fore the problem can be considered one with high
contrast.
The most challenging issues to be dealt with in
solving (3) are

1. the very large size and complex structure of
the molecules being studied; which lead to
very large scale algebraic systems of equa-
tions and demand for state-of-the-art HPC
solver technology,

2. the complex geometry of the molecular sur-
face, across which coefficient discontinuities
occur;

3. the presence of point sources that lead to
singularities in the problem coefficients and
solutions.

We will briefly describe the approaches we adop-
ted in order to tackle each of such issues in the
following sections.

3. Treatment of Point Sources
The simplest approach to deal with the singu-
larities introduced by the point sources, is to
allow charges a finite volume, i.e. to modify the
fixed charge density by replacing the Dirac δ dis-
tributions appearing in (1) with suitable shape
functions with finite compact support

ρf (x) = qiui(x), where
∫

ui(x) dx
3 = 1 (4)

so that the total (net) amount of charge is pre-
served.
When (3) is to be solved in a space of Finite
Elements Vh = Span {vk}, usually the ui are ex-
pressed in terms of the vk so that

ui(x) =
∑
k

wikvk(x). (5)

In the thesis we discuss a simple choice for the
weights wik that preserves total charge, while
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minimizing dependence of numerical solutions
on mesh rotation an translation.
It is worth noting that point sources can also be
eliminated from the problem by using one of the
so-called regularized reformulations of the PBE
(see, e.g., [12] for a review on this topic).
To provide an example of the reformulation tech-
nique, consider decomposing φ(x) as φ(x) =
φs(x)+φm(x), where φm(x) is the contribution
to the electrostatic potential due only to point
sources, while φs(x) accounts for the correction
due to the surface polarization charge related to
the discontinuity in the permittivity.
By means of the latter decomposition, the lin-
earized PBE becomes

−∇ · (εs∇φs) =

=
1

4πε0εm
∇εs ·

∑
i

∇
( qi
|x− xi|

)
+

+
ρs
ε0

(
φs +

1

4πε0εm

∑
i

qi
|x− xi|

)
in Ωs

−∆φs = 0 in Ωm

[[−ε∇φs · n]]Γ = [[ε]]Γ∇φm · n on Γ

φs(x) =
1

4πε0εm

∑
i

qi
|x− xi|

on ∂Ω

The obtained system has no point sources, in-
deed their effect is now transferred to the third
and fourth equations, where the interface condi-
tion and the boundary conditions are imposed.
At the interface the equality between the jumps
[[·]]Γ of the given quantities across Γ is enforced.
Notice that such jums can be interpreted as a
distribution of surface charges on Γ.
The main advantage of this regularization tech-
nique is to avoid the need of using small mesh
sizes in Ωm.

4. Geometric Representation of
the Molecular Surface

The molecular surface is the 2D manifold across
which the relative permittivity ε has its discon-
tinuity.
A set of different approaches have been proposed
in the literature to construct the geometry of the
surface of a molecule, given the atomic centers
and radii.
In this thesis, we consider and compare three dif-
ferent surface definitions, schematically shown in
Figure 2, i.e. :

1. Blobby surface;
2. Skin surface;
3. Solvent Excluded Surface (SES), most com-

monly known as Connolly surface.

(a) 0.5 level-set, Blobby surface

(b) Skin surface

(c) Connolly surface

Figure 2: Different molecular surfaces [7].

The first one is based on an implicit level-set
representation while the latter two rely on alpha-
shapes. Alpha-shapes are a parametrized gener-
alization of the convex hull concept.
Figure 3 shows the electric potential on a cram-
bin protein simulated using the three different
approaches to describe the surface.
Efficiently constructing the surface and evaluat-
ing its interior and exterior region has a signifi-
cant impact on the overall simulation complex-
ity, for this reason much effort during the devel-
opment of the thesis has been put in construct-
ing an effective interface with the NanoShaper
library [7] to deal with this task.
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(a) Blobby with B = -2.5. (b) Skin with s = 0.45. (c) SES with probe radius 1.4Å.

Figure 3: Surface for a crambin molecule using different surface representations.

5. Oct-tree grids
The large size and complex structure of the ex-
amined molecules leads to very large scale al-
gebraic systems of equations, which necessitates
the usage HPC Techniques.
Most existing PBE solvers adopt two differ-
ent kind of grids, either tensor product carte-
sian grids, or adaptive, simplicial, conforming
meshes. Both these options have some advan-
tages and some limitations, in particular the first
is characterized by high memory efficiency, but
it is not so accurate because it uses simple nu-
merical methods, the second, since the resulting
mesh is composed of a very large number of de-
grees of freedom, is more accurate, but less ef-
ficient. The idea for our work was to choose a
sort of compromise between the two, solving the
linearized PBE with Finite Element method on
Oct-tree, which are hierarchically refined, non
conforming, cartesian grids.
In this way we obtained accurate results, given
by the adaptive refinement of the mesh, coupled
with efficiency, given by the lower number of
degrees of freedom in cartesian meshes.
The structure of an Oct-tree grid can be easily
represented as a tree, as the name suggests,
where each octant (i.e. each element of the
mesh) is a either a leaf or has 8 children, as the
Figure 4 shows.

Figure 4: Oct-tree mesh with the corresponding
tree.

A refining-coarsening iterative cycle is per-
formed, starting from a uniform grid, at the end
of which the resulting Oct-tree mesh has bene-
fits in terms of efficient parallel partitioning and
balancing. In particular, parallel partitioning
means redistribute the octants present inside the
mesh according to a given number of elements
per processor or according to some prescribed
weights associated to those elements. This op-
eration is performed in an efficient way because
the resulting element numbering limits commu-
nications among processors. For what concerns
balancing, it ensures at most 2:1 edge size rela-
tions between neighboring octants. This is done
in order to properly deal with the hanging nodes,
points belonging to an edge or a face which is re-
fined for two or four elements, but not for the
neighboring one. They have to be considered
in a different way because don’t belong to the
set of the degrees of freedom, but are identified
through their parents indices.
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Figure 5: SARS-CoV-2, spike protein, ectodomain structure open state (left), Omicron variant of con-
cern (right). One possible application of PBE simulations is that of identifying electrostatic potential
patterns that can be useful for automatic drug discovery driven by Artificial Intelligence.

6. Results and Conclusions
Even though it has a very long history, the use of
molecular electrostatics simulations in chemistry
and biology is still an important tool in research
today, especially as, by making use of cutting-
edge HPC techniques, it allows to simulate ever
larger structures.
During this thesis we have developed a parallel
solver for the linearized PBE on adaptive meshes
and have evaluated its parallel scalability (see
Figure 6) and its viability for simulating very
large structures of relevance, e.g., for biomedical
research (see Figure 5).
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