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Abstract

This thesis aims at designing an assistive control for physical Human-Robot Interaction
(pHRI) based on Differential Cooperative Game Theory (DCGT). In particular, a dis-
tributed Model Predictive Control (dMPC) is formulated based on the DCGT principles.
For proper implementation of the DCGT method, one crucial piece of information regards
human intention, defined as the desired trajectory that a human wants to follow by de-
forming online a nominal trajectory of a manipulator robot over a finite rolling prediction
horizon. The method used for human intention estimation is based on recurrent neural
networks (RNNs), which have the special feature of keeping track of historical informa-
tion that evolves over time to produce predictions about future evolution. Specifically, it
is planned to use information about a portion of the trajectory before the current state
to predict a future portion of the trajectory. The RNN model is composed of cascaded
Long-Short Term Memory (LSTM) and Fully Connected (FC) layers (RNN+FC). The
prediction of the RNN+FC model directly influences the control framework and robot
behavior, so iterative training is proposed to adapt the model. The iterative learning
procedure is time-consuming since it requires a relatively large amount of data and com-
putational time. It also learns a model of a specific user performing a specific task.
Therefore, Transfer Learning (TL) is proposed to quickly adapt the model to different
users and tasks.
The behavior of the dMPC framework proposed is thoroughly analyzed with simulations
to understand its applicability and parameters tuning to a pHRI assistive controller.
Moreover, real experiments were carried out on a UR5 robotic arm to which a force
sensor was installed. First, the RNN+FC model and the iterative training procedure
are validated with specific experiments on two dimensions (x–y plain). Then, the TL
technique is evaluated for the RNN+FC model adaptation to a new trajectory, different
users, and co-manipulation of a large object. Finally, an application scenario is proposed
for co-manipulating two different objects and comparing the obtained results with other
controllers typically used in the pHRI.

Keywords: Physical human-robot Interaction, Impedance Control, Cooperative Game
Theory, human intention prediction, MPC, RNN, Transfer Learning.



Abstract in lingua italiana

Questa tesi ha come obiettivo la progettazione di un controllo assistivo per l’interazione
fisica uomo-robot (pHRI) basato sulla teoria dei giochi cooperativi differenziali (DCGT),
attraverso l’implementazione di un controllo predittivo (dMPC). Per l’implementazione
del metodo DCGT, molta importanza viene data all’intenzione umana, definita come
la traiettoria che un uomo intende seguire modificando una traiettoria nominale di un
robot manipolatore, in un dato intervallo di tempo. Il metodo utilizzato per la stima
dell’intenzione umana si basa su reti neurali ricorrenti (RNN), che hanno la particolar-
ità di tenere traccia delle informazioni che evolvono nel tempo per produrre previsioni
sull’evoluzione futura. In particolare, si intende utilizzare le informazioni relative a una
porzione di traiettoria precedente allo stato corrente per formularne una su una porzione
futura di traiettoria. Il modello RNN è costituito da una parte di Long-Short Term
Memory (LSTM) e da una di Fully Connected (FC) connesse in cascata (RNN+FC). La
previsione fatta dal modello RNN+FC influenza direttamente il controllo e il comporta-
mento del robot, pertanto viene proposto un processo iterativo per adattare il modello al
meglio. Questa procedura viene svolta da uno specifico utente e richiede parecchio tempo
poiché deve gestire un’elevata quantità di dati. Pertanto, viene proposto il metodo di
Transfer Learning (TL) per adattare rapidamente il modello a utenti e oggetti diversi.
Il comportamento del dMPC è stato analizzato con alcune simulazioni e sono state sper-
imentate diverse soluzioni nella scelta dei parametri per un controllore assistivo pHRI.
Inoltre sono stati condotti esperimenti reali su un braccio robotico UR5 su cui è stato in-
stallato un sensore di forza. In primo luogo, il modello RNN+FC e la procedura iterativa
sono stati convalidati con esperimenti su due dimensioni. Successivamente, la tecnica TL
viene valutata per l’adattamento del modello RNN+FC su una nuova traiettoria, con di-
versi utenti e con un oggetto di grandi dimensioni. Infine, viene proposta un’applicazione
per la co-manipolazione di due oggetti diversi, confrontando i risultati con controllori
tipici del pHRI.

Parole chiave: Interazione fisica uomo-robot, teoria dei giochi cooperativa, controllo ad
impedenza, predizione dell’intenzione umana, MPC, RNN, Transfer Learning.



iii

Contents

Abstract i

Abstract in lingua italiana ii

Contents iii

1 Introduction 1
1.1 Game Theory approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Learning process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 State of the Art 9
2.1 Physical Human Robot Interaction Controllers . . . . . . . . . . . . . . . . 9
2.2 Control Techniques for pHRI . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Impedance/Admittance Controls techniques . . . . . . . . . . . . . 10
2.2.2 Game-Theory based controllers with human . . . . . . . . . . . . . 12

2.3 Human intention estimation/identification . . . . . . . . . . . . . . . . . . 14
2.3.1 Intent Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Neural Networks Models . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Transfer Learning with Neural Networks . . . . . . . . . . . . . . . 20

3 Cooperative Game-Theoretic formulation of the distrubuted Model Predi-
cive Control 22
3.1 System Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Dynamic Cooperative Game-Theoretic MPC . . . . . . . . . . . . . . . . . 24

4 Learning human intention for trajectory prediction 30
4.1 Human Intention Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 30



4.1.1 Iterative Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Experimental Results 37
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 dMPC performance analysis . . . . . . . . . . . . . . . . . . . . . . 39
5.2.2 Human Intention prediction evaluation . . . . . . . . . . . . . . . . 41
5.2.3 Application scenario with large/heavy objects co-manipulation . . . 47
5.2.4 Performance Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.1 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.2 TL Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.3 Human-Robot co-manipulation of large/heavy components . . . . . 63

6 Conclusions and future developments 69

Bibliography 71

List of Figures 79

List of Tables 81

List of Algorithms 82

Acknowledgements 83



1

1| Introduction

The application of robotics from industry to human environments is constantly growing
due to the requirement of automatizing tasks and the high cost of experienced human
resources. In this view, computers and machines are now taking place as assistive tools
for humans in order to reduce fatigue and stress and to increase safety conditions in areas
where robots are used, especially in modern factories. This need for collaborative man-
ufacturing tasks shared between humans and robots leads to the development of what is
called human-robot interaction (HRI). This interaction can be separated into two general
categories: Remote interaction and Proximate interaction. Remote interaction is often
referred to as teleoperation, supervisory control, or telemanipulation. Proximate interac-
tion takes the form of a robot assistant and social interaction includes social, emotive, and
cognitive aspects of interaction. Proximate interaction may also include physical interac-
tion. In the case of physical interaction, we refer to a physical Human-Robot Interaction
(pHRI).
The physical aspect is intended to improve the quality of life and human capabilities in
terms of strength, speed, and precision. In general, on the one hand, robots can support
the worker in terms of force and precision. On the other hand, humans have experience,
general knowledge, and versatility to perform different and new tasks. The combination
of these advantages has led to the growth of this branch of robotics.

One of the main objectives of pHRI is to make the robot’s motion smooth and natural for
the human interacting with it. In this context, new and possibly adaptive controllers are
needed to assist human operators in performing shared tasks. Currently, the standard of
industrial robot control is position/velocity commands at the joint level, and successful
execution can be obtained only if the tasks can be accurately planned.

On the other hand, in pHRI, force controls are widely used because they allow a compliant
behavior of the manipulator, leading to a more natural physical interaction. Two main
classes of force control strategies can be identified: indirect force control and direct force
control. The main difference between the two categories is that the former achieves force
control indirectly via a motion control loop; the latter offers the possibility of controlling
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directly the force and contact moment to a desired value. To the category of indirect force
control belongs impedance control, where the position error is related to the contact force
through a mechanical impedance of adjustable parameters.

1.1. Game Theory approach

Among the various control schemes, Game-Theory (GT) based controllers are nowadays
under investigation thanks to their capability to model the interaction between multiple
players. The Game-Theory (GT) approach provides valuable tools to analyze complex
interactive behaviors between rational players and provides mathematical models that
provide players with ”optimal” policies to minimize their objectives, taking interaction
into account.

Three aspects are the core of a dynamic game, as in [45] and in [10]: the mode of play, the
equilibrium type, and the information pattern. The mode of play, describes each player’s
attitude toward his/her own objective, as well as the other player’s interest in a game.
The mode play could be: Cooperative, where each player has a sense of collective and
attempts to enter into a binding agreement, or Non-Cooperative, where players consider
themselves individuals and concentrate on pursuing their own interests. The equilibrium
type concerns each player’s strategy adopted for pursuing his/her goal, as presented in
[63]. Therefore, an equilibrium strategy of a player is his/her strategy that constitutes
the equilibrium. The Nash Equilibria(NE) and Stackelberg equilibria(SE) are two typi-
cal equilibria solutions for the non-cooperative concept. In the NE, each player derives
his/her strategy by taking the others’ strategies into account, and all the players act si-
multaneously. In the SE, one player serves as the leader and the others serve as followers.
The leader derives his strategy by taking into account all the followers’ optimal responses,
while the followers react to the leader’s action by simply using their individual optimal
responses. Comparable to the Nash and Stackelberg equilibrium is the Pareto equilibrium,
a solution that emerges in a Cooperative Game and that is generated when there is no
other outcome that makes every player at least as well off and at least one player strictly
better off. Last, information pattern describes each player’s knowledge of the states of
the game system. The players are defined as possessing the "open-loop" information pat-
tern when only the initial state of the game is known to them, otherwise, the players are
considered as having the "closed-loop" information.

The robot and the human, in this context, adopt a cooperative scenario, working in "a
game of cooperation agreement". The cooperative game is focused on how to maximize
the interests of the participants in the game and how to distribute the benefits to each
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participant. In fact, the benefit of participants through the cooperative game is typically
higher than the one obtained by independent work, otherwise, participants will abandon
cooperation.

To better explain this concept, consider the example of the prisoners. In this problem,
there are two players, separated in different rooms, that are accused of a crime and
interrogated at the same time. The player who confesses the crime by accusing the other
gets immediate release while the accused player suffers the maximum penalty. If both
players avoid confessing, the two are given a very light penalty. Conversely, if both
confess, both are sentenced to the ordinary penalty.
According to Nash equilibrium, each player chooses his dominant strategy on the basis of
the opponent’s choice expectations. The end result is a stable NE but not optimal from
an individual point of view.
In order to achieve the best option, the two players should cooperate and thus should not
confess. In this latter Cooperative case, the outcome of the game is better if compared with
the NE for both players. Therefore Cooperation is convenient against Non-Cooperation.
This example makes clearer the choice of adopting a cooperative approach to describe
pHRI. The robot, in this case, assists the human in performing a task, and benefits are
gained when they cooperate.

One of the assumptions underlying the GT problem is that each player has knowledge of
the opponents’ goal. The goal of a human, in pHRI scenarios, can be described as the
human’s desire to move an object from a starting point to an endpoint, with the assistance
of a robot. In particular, it is assumed that the human wants to follow a trajectory, over
a finite rolling prediction horizon, and that the robot wants to assist in following it, with
the objective to reduce the human’s effort. The desired trajectory that the human wants
to follow, can be defined as human intention and requires a lot of attention as it has to
be detectable and interpretable by the robot and because it could be different depending
on the type of goal.

1.2. Learning process

To understand human intention two main approaches can be pursued: a model-based
and a learning-based approach. In the former, a physical model is obtained, and the
aim is to identify its physical parameters. Such parameters are typically specific and vary
according to the task and the different humans, making it complex to generalize the model.
The latter is the process of using data to derive a function that maps human dynamics
according to input-output relation, without any regard for the physical model. Such
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an approach is capable of generalizing, at the cost that requires many data to recover
a general function capable of modeling different input-output relationships. Regarding
the second approach, Neural Networks (NN) represent a universal approach that can be
applied to almost any field.

According to [77] and [1], a NN is a parallel distributed information processing structure
in the form of a directed graph. A directed graph is a geometrical object consisting of a
set of points called nodes connected through weights.

Let’s focus on the basic model, visible in fig 1.1, the feed forward neural network. The
additional intermediate layers (between input and output) are referred to as hidden layers
because the computations performed are not visible to the user. The default architecture
of feed-forward networks assumes that all nodes in one layer are connected to those of the
next layer. Therefore, the architecture of the neural network is almost fully defined once
the number of layers and the number/type of nodes in each layer have been defined

wij ¼ 0 if i ¼ j

wij ¼ 0 if layer i" layer j
ð3:11Þ

A network without all possible forward paths is known as sparsely connected
network, or a non-fully connected network. The percentage of available connec-
tions that are utilized is known as the connectivity of the network.

3.6.2 Recurrent Neural Networks

A recurrent network can have connections that go backward from output nodes to
input nodes and, in fact, can have arbitrary connections between any nodes. In this
way, a recurrent network’s internal state can alter as sets of input data are presented
to it, and it can be said to have a memory. This is particularly useful in solving
problems where the solution depends not just on the current inputs, but on all
previous inputs. When learning, the recurrent network feeds its inputs through the
network, including feeding data back from outputs to inputs through the network,
and repeats this process until the values of the outputs do not change. At this point
the network is said to be in a state of equilibrium or stability. A typical recurrent
neural network can be explained by Fig. 3.9.

Hence, a recurrent network can be used as an error-connecting network. If only a
few possible inputs are considered “valid”, the network can correct all other inputs
to the closest valid input.

Fig. 3.8 A feed-forward network

3.6 Neural Network Architecture 25

Figure 1.1: Basic architecture of a two-layers Feed Forward Neural Network, from [77]

One of the main drawbacks is that Neural Networks are time-consuming, require a lot of
data, and may produce wrong outputs as they tend to overfit in low data regimes, making
it challenging to apply to actual robot manipulation.

To solve this problem, Transfer Learning (TL) is proposed. According to [69], Transfer
Learning is the improvement of learning in a new task through the transfer of knowledge
from a related task that has already been learned. The meaning of this and what the
TL process consists of is an attempt to be more efficient during the learning process and
collecting data, in particular when facing new situations. In fact, collecting new data is
typically an expensive and time-consuming activity, because of the necessity of creating
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a new dataset and re-training the NN model.

The benefits that transfer learning brings can be identified by three measures: Initial per-
formance, the initial performance achievable in the target task using only the transferred
knowledge, compared to the initial performance of an ignorant agent; the Improvement
rate, the amount of time it takes to fully learn the target task and the Final performance
level, achievable in the target task compared to the final level without transfer.

So the transfer learning work with a model pre-trained on a particular part of the knowl-
edge that can be transferred to the new domain. As presented in [48] different types of
Transfer learning methods exist, such as inductive transfer learning, transductive transfer
learning, unsupervised transfer learning.

In inductive transfer learning the objective is to induce a predictive model from a set
of training examples while in transductive transfer learning refers to the situation where
all test data are required to be seen at training time, and the learned model cannot be
reused for future data. Unsupervised transfer learning assumes that a reasonably sized
dataset exists in the target task, and the target-task learner requests labels for examples
only when necessary.

1.3. Motivation

Considering an industrial scenario, the mutual benefits that humans and robots can obtain
through cooperation are multiple. In particular, considering collaborative Robots, safe
interaction can be easily achieved, but they typically have a limited payload and workspace
and cannot handle too complicated tasks. On the other hand, humans can have beneficial
help from robots as they are more precise and do not suffer from fatigue that may arise
during repetitive tasks.

As an example, consider the case of co-carrying and precise positioning of a large and/or
deformable object. The robot, particularly if it is small-medium size as typical collabo-
rative robots, is likely to grasp it from one side. The human can safely grasp the same
object on the other side and they can both cooperatively transport it to the target pose.
In doing this, during the motion, the cognitive capabilities of the human allow him/her
to see and avoid possible obstacles that the robot might not know. On the other hand,
if the target position is known to the robot, the robot can help in positioning the object
with the required precision. This may occur in the case of strict tolerances imposed by
an assembly process, where the human grasping an object has difficulties in positioning
it precisely, and should be guided by the robot.
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Therefore, it appears clear that interaction and cooperation can provide both mutual
benefits, and the need to define a method for the robot to assist the human must be
defined.

Thanks to its capability of describing interactions at various levels, Game Theory comes
into play in this context. In particular, among the various types of solutions, the cooper-
ative approach shows better outcomes if an agreement is possible. In using this approach,
some assumptions must be considered. Is well known, one of the major assumptions be-
hind GT is that the players know the opponents’ objective. This is, in general, not true
for the robot. Therefore, recovering the human objective represents a challenge to be
solved. Defining the human objective as his/her intention to follow a desired trajectory
over a finite rolling prediction horizon, a method capable to predict such a trajectory is
required.

To do this, neural networks, and particularly RNNs provide a solution to the problem.
Being training an RNN time consuming as it requires collecting a lot of data, some
efficient method is required to adapt such an RNN model to new users or new situations
that may appear. This is done by using the concept of transfer learning, which helps with
time-saving and decreasing the size of the dataset.

To conclude, the motivation behind this work is to design a pHRI application capable to
handle the co-manipulation of large objects improving benefits to humans thanks to the
cooperation. To do this, different modules are deployed, to make the approach adaptable
to different users.

The thesis was carried out at CNR-STIIMA in Milano and, in particular, at the personal
robotics for manufacturing (PERFORM) laboratory.

1.4. Contribution

Before going through a literature review we analyze the thesis achievements. We can
express that the Game-Theoretic framework shows potential for being implemented in a
pHRI scenario. As one of the main hypotheses of GT is that the players have knowledge
of the opponent’s objective, a method to allow the robot to know the human intention
is required. In the literature, different studies investigate human intention with different
definitions. In the pHRI field, human intention is typically defined as the desired trajec-
tory that a human wants to follow. Learning techniques have been shown to provide a
good approximation to predict human intention.
Within this context, the main contributions of the proposed work are identified.
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The first contribution is the adoption of the dMPC method in a pHRI scenario. In the
literature, dMPC formulations are proposed for similar tasks as shared driving, but no
applications to the pHRI problem are proposed yet.
Second, GT is used to describe pHRI and derive role-arbitration laws, focusing on the
Non-Cooperative description of the interaction. Very little effort and only a few studies
investigate the Cooperative GT, which compared to the NC typically provides better out-
comes for all the players.
Finally, in the literature, different learning models are proposed, but the prediction is
limited to one step ahead. In this work, to implement the dMPC logic, the prediction is
made over a horizon of 0.4 seconds.
To summarize, the main contributions are:

1. adoption of the dMPC method in a pHRI scenario, with analysis of its behavior and
performance;

2. Game-Theoretical Cooperative description of the pHRI, and dMPC problem formu-
lation;

3. long-term human intention prediction based on RNN+FC model and its integration
with the dMPC control framework.

1.5. Organization of the thesis

The thesis is organized as follows.

The first section introduces the main concepts and the motivations behind this work.
Finally, the contribution of this thesis is analyzed.

The second chapter analyzes the background and the state of the art of pHRI methods
and applications. The first part is a collection of work on the interaction between humans
and robots and the various classification of the various control type used in pHRI. Then
it discusses the Game-Theoretical description of human-machine interaction, with a focus
on pHRI applications. In the end, are present the works on human intention estimation
and the way it could be solved, focusing on the neural network approach.

Chapters 3 and 4 will explain the core methods used in the thesis. In particular, chapter 3
derives the cooperative game-theoretic distributed Model Predictive Control formulation
of the pHRI problem. Chapter 4 presents the formulation of the human intention detection
problem and the proposed solution based on the learning process. The RNN+FC model
and the Transfer Learning technique are presented.
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Chapter 5 is dedicated to presenting and discussing the results and real experiments
conducted. At first, a section is dedicated to presenting the setup and the parameters
tuning. Then the validation of the model through the iterative procedure is discussed.
And a part of the application process is studied to check the goodness of the control In
the end, a section with a discussion of the results obtained is presented.

To finish, a conclusion part is treated to summarize the concept of the work done.
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2| State of the Art

This chapter analyzes previous works and offers useful insights for the work presented
in this thesis. The controllers typically used for the pHRI case are discussed. The use
of Game Theory to describe humans interacting with machines is analyzed. Then the
different techniques for learning human behavior interacting with A robot are analyzed
using neural networks.

2.1. Physical Human Robot Interaction Controllers

The subject of pHRI controllers is deeply analyzed as a research topic, due to the need
for smooth, safe, and natural interaction and it is a topic constantly developing in the
world of robotics.

The pHRI could be considered an advantage, as it looks at various ways the robot can
assist humans during different tasks. In [61], it is explained how the robot can provide
a force to support the human work that helps to perform more challenging tasks and
how, conversely, the human provides his knowledge to the robot to get the most out
of the interaction of the two. Another reason to include robots in manufacturing is to
lighten human physical and cognitive efforts. For this purpose, the operator’s activities
should be reorganized in order to assign more cognitive and control tasks to humans and
to assign repetitive tasks and all operations that require greater accuracy, speed, and
repeatability to robots. For example, in [51], a method for an industrial case focused
on assembly operations supported by collaborative robots, is adopted. It adopts a user
experience (UX)-oriented structured method to investigate the human-robot dialogue to
map the interaction with robots during the execution of shared tasks. Additionally, to
take full advantage of human skills, it is important that intuitive user interfaces (UI) are
appropriately designed, as discussed in [71], so that human operators can easily program
and interact with the robot, as it aims to be as intuitive as possible to be as efficient as
possible.

Moreover, given the wide application in the world of pHRI, there is not only one related
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to the industrial aspect. In the field of healthcare robotics, we find several applications.
The telerobotic devices in the operating room facilitate dexterous surgical procedures, as
present in [76], the exoskeletons in the rehabilitation domain as walking aids, and the
upper-limb movement assist devices, as discussed in [9].

These aspects are very interesting and open the discussion to various fields. Despite this,
this work focuses on the industrial aspects. There is more than one way in which the robot
can cooperate with humans in the industrial scenario, according to [24]. In fact, there can
be human-robot coexistence, cooperation, and collaboration. In the coexistence scenarios,
the robots and humans are in the same environment but generally do not interact with
each other. In cooperation and collaboration scenarios, as the case considered in this
work, robots and humans share the workspace. In particular, in the cooperative one, the
human operator and robot work in the same workspace at the same time, though each
focuses on separate tasks. In the collaboration one, they execute a task together and the
action of one has immediate consequences for the other.

This type of collaboration finds wide use in industries and factories and therefore assumes
high importance in how it can be inserted into an industrial scenario. In [51], this analysis
is discussed going to evaluate the actors involved, the cycle time, and the duration of the
various tasks.

2.2. Control Techniques for pHRI

In the vast universe of human-robot interaction, analyzing various controllers used in dif-
ferent works is interesting. This subsection focuses on the various type of Impedance/Ad-
mittance Control used in the field of robotics. Moreover, it analyzes a particular descrip-
tion of interaction given by the Game Theoretic modeling. An introduction to the game
theory approach is given, focusing on how a human-robot collaboration problem can be
reformulated as a multi-agent game.

2.2.1. Impedance/Admittance Controls techniques

Considering a classical pHRI scenario as in fig 2.1, humans and robots perform coor-
dinated operations. Robots can be industrial manipulators, and humans operate the
robot’s end-effector to perform some tasks collaboratively. One difficulty in such tasks
lies in controlling manipulators complying with the operator and constraining it simul-
taneously in the predefined task space. In order to solve issues of compliance in pHRI,
Impedance/Admittance Control is becoming one of the most efficient control methods.
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Fig. 1. Typical human–robot interactive scenario in the constrained task
space.

have been proposed. In [11], hybrid position/force control is
proposed first to achieve compliant interaction by controlling
the terminal position and contact force simultaneously. Then,
some studies have made extensions to this control scheme
for solving pHRI problems [12]–[14]. The impedance control
is proposed first by Hogan [15] to express the relation-
ships between the contact force and state in a prescribed
impedance model. Compared with hybrid force/position con-
trol, impedance control does not require control transitions
between contact and noncontact situations and has a better
performance in robustness. Depending on the causality of
the controller, there are two ways to implement impedance
control, which are often referred to as impedance control
and admittance control in the literature [16]. In recent years,
impedance control and admittance control have become two of
the most efficient control methods in pHRI [17]–[19]. In [20],
an adaptive admittance control is proposed to enable humans
to interact with a robot whose behavior is like a prescribed
admittance model under control design. In [21], an adaptive
admittance control method without external sensors is pro-
posed to enable pHRI for manipulators in the industrial envi-
ronment. In [22], a learning impedance controller is proposed
to control the robotic system following a given impedance
model and achieve interactive control objective for pHRI.
In [23], a unified torque–impedance controller is proposed for
the pneumatically actuated antagonistic manipulator joint. The
controller has good performance for both operations of trajec-
tory tracking and torque control and can handle the contact loss
fast and accurately in pHRI. In [24], a hybrid passivity-based
Cartesian force/impedance controller is proposed for robots to
realize the accurate force tracking, handle unexpected contact
loss, and avoid chattering behavior. Although admittance con-
trol can improve the performance in pHRI, such a method does
not guarantee operational security since admittance control
can only regulate interactive force without constraining the
position of manipulators. Emphatically, a major obstacle in
the field of application is that position constraints are not
considered in the abovementioned design. Therefore, position
constraints should be considered in the control design to ensure
security during pHRI.

Due to actual physical device limitations [25]–[28], system
performance, and safety requirements [29]–[32], output or
states in most systems should be constrained in practice
[33]–[37]. Therefore, it is considerably significant to maintain
system’s outputs in the desired constraints [38]–[41]. For a
nonlinear system of manipulators, output constraints can be
regarded as position constraints. In recent years, the barrier
Lyapunov function (BLF) is proposed for solving output
constrained issues in complex systems [42]. In [43], an asym-
metric time-varying BLF is employed in strict feedback non-
linear systems to ensure the time-varying output constraints.
In [44], an adaptive control scheme is developed for nonlinear
stochastic systems with unknown parameters. All the states of
the systems are required to be constrained in bounded compact
sets with log-type BLF. In [45], the output constraint problem
of uncertain nonstrict-feedback systems is handled by utilizing
a BLF. In [46], tan-type BLF is used to maintain the output in
constraints under systematic control design for strict-feedback
nonlinear systems. In [47], the tan-type BLF is incorporated
with a novel fault-tolerant leader–follower formation control
scheme to ensure the angle constraints. Compared with the
conventional log- and tan-type BLFs, controllers with a novel
integral BLF (IBLF) can constrain state signals directly, rather
than error signals [48]. From the engineering point of view, the
initial states of robots can be relaxed to the whole constrained
space. Therefore, in this article, IBLF is used to guarantee
the end-effector of the manipulator in the constrained task
space.

The uncertainty of manipulator dynamics cannot be ignored
in robot controller design [49]–[51]. To solve uncertainty
issues, neural networks (NNs) are widely used to estimate
unknown parameters of the system in the literature [52]–[55].
In [56], adaptive NNs are used to approximate uncertainties
in rehabilitation robot dynamics and adapt the interactions
between robot and patient. In [57], adaptive NN control is
used to research the multirate networked industrial process
control problem in double-layer architectures. In [58], a fuzzy
NN learning algorithm is proposed to identify the uncertain
plant model, and the tracking performance of the controller is
guaranteed. Compared with other NN control methods [59],
radial basis function NN (RBFNN) performs better in approx-
imating unknown model of a nonlinear function because it is
a local approximation network with simple structure and fast
convergence speed.

Based on the abovementioned discussion, in this article,
an IBLF and a soft saturation function are jointly designed to
guarantee the manipulator end-effector within the constrained
task space in two lines: controller design and path planning.
An admittance-based controller for pHRI, involving in IBLF
and RBFNN learning method, is designed for solving uncer-
tainties in dynamics. Meanwhile, the controller can guarantee
the end-effector of the manipulator in the constrained task
space and improve the compliance of interaction. Compared
with existing works, the main contributions of this article
include the following.

1) Compared with traditional admittance control [60], a
soft saturation function is employed to further shape
the tracking reference trajectory that generates from the
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Figure 2.1: Typical human-robot interactive scenario from [18]

The Impedance Control, proposed first by Hogan in [20], expresses the relationships be-
tween the contact force and state based on an impedance model. In particular, Impedance
control aims at ensuring that the manipulator, controlled in position and in interaction
with the environment, manifests the behavior of a mechanical impedance, described as a
generalized mass-spring-damping system.

An interesting evolution of impedance/admittance controls is adaptive impedance/admit-
tance control. It deserves attention because it integrates the strength and accuracy of the
robot with the human operator’s ability of task cognition in order to transfer the detected
force into the reference position and velocity of the robot. This controller is verified in
[18], on a robotic manipulator with seven flexible joints and with advanced sensors, in-
cluding position, velocity, and torque sensors. The admittance control ensures that the
end-effector motion of the manipulator complies with the human operation and avoids
collision with surroundings. The admittance control is also used in [78], where the damp-
ing is updated online in pHRI to reduce the contact force change and the contact force
and thus make pHRI easier and more natural, showing the effectiveness of the proposed
dynamic model and the adaptive control method.

A method that provides an application for impedance control is discussed in [11]. This
work presents an experimental study on human–robot co-manipulation in the presence
of kinematic redundancy. In particular, Cartesian impedance control is employed to
achieve a compliant behavior of the robot’s end effector in response to forces exerted
by the human operator. It proposes different impedance modulation strategies, which
take into account human behavior during the interaction and establish the most effective
redundancy resolution strategy. Although it gets good results, the application is different
and addresses problems far from what is proposed in this thesis.
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Impedance control is not only used in the robotics field, as presented in [68], where a
Pneumatically Actuated Antagonistic Robot Joint is analyzed to test a torque/impedance
controller that commands a desired torque to two cylinder-based force controllers.

Many other works present examples where impedance control is applied in different meth-
ods. In [33], a learning control has been proposed to govern a robot arm dynamics to
follow the target impedance model not requiring the knowledge of the robot structure. It
can be also combined with an algorithm for physically interactive trajectory deformations,
which allows the human to modulate both the actual and desired trajectories of the robot
as discussed in [37].

The impedance control is related to the use of a force sensor as in [8], where the variable
impedance control problem of commercial industrial robots is studied, to investigate the
uncertain contact impedance characteristics between the human palm and a robot end-
effector in the pHRI process. This approach is widely used in robotic arm applications,
with differences in each work. In particular, it finds a lot of efficiency in manual guidance
control with force tracking as in [56], or [58], giving good results in actively assisting
the human in the target task, compensating for the unknown part weight. In addition,
[59], studied the possibility to keep the learning of the human-robot interaction dynamics
active, allowing accounting for the adaptation of the human motor system.

An interesting approach is to use hybrid controllers that combine two different controllers
as the impedance set-point and adaptation of the mass-spring-damper parameters, as
in [57] and [60], where the operator guides the robot manually to manipulate heavy
components.

As demonstrated, impedance control is widely used specifically on robotic arm models
and human interaction and it has performed well in the applications where it has been
used.

2.2.2. Game-Theory based controllers with human

Among the various control schema, Game-Theory (GT) based controllers are widely used
in order to model the interaction between different users, as it offers a solution to the
problem of a multi-agent system.

Previous literature studied applications of GT models to the interaction between a hu-
man driver and an autonomous vehicle. The methodologies proposed in this field are
very interesting and also useful for pHRI applications as it shows the advantages of this
approach. In [45], GT is used for modeling a driver’s steering interaction with vehicle
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collision avoidance control in path-following scenarios through four different paradigms,
namely decentralized, Non-Cooperative Nash, Non-Cooperative Stackelberg, and Coop-
erative Pareto. For each strategy, are analyzed the optimization problems and their
resulting steering strategies. Then, two control approaches, applicable to these optimiza-
tion problems, namely the distributed Model Predictive Control (dMPC) and the Linear
Quadratic (LQ) dynamic optimization approaches, are described in detail. The solutions
obtained imply a variety of driver steering control behaviors that can be yielded by vary-
ing driver path-error weights. There are many choices that can incur depending on the
situation in which we are acting, for example in [46], a cooperative Pareto steering strat-
egy when a driver interacts with an automated steering, is discussed. Here the driver can
improve his/her performance in following a target path by increasing the effort in pursu-
ing his/her own interest under the driver-automation cooperative control goal. Another
choice is to choose a Nash approach as in [47]. Here six drivers are recorded while using
a driving simulator and compared with the “conventional” optimal-control driver model.
Their model fitting errors are analyzed, resulting in the game-theoretic driver model being
statistically significantly better than the conventional driver model for three out of six
individuals. Sometimes, is possible to actively switch between the Cooperative and the
Non-Cooperative scenario, as treated in [26]. The Game Theory formulation, here, allows
for lateral control tasks-lane keeping and obstacle avoidance where the shared control
strategy for this mixed driving authority is based on TTC (time to collision) and tracking
error. It is interesting because one application, which is not based on the robot model,
uses the game theoretic approach of distributed predictive model control.

An interesting comparison between non-cooperative and cooperative is done in [6], starting
from the human intent defined as cooperative and not. This work is very interesting
because it gives an example of a criterion of choice and choosing if one is better than the
other. The criterion is the knowledge of the players. In fact, if they can communicate and
trust each other, a cooperative solution is better. On the other hand, if this communication
doesn’t occur and no agreement exists, a non-cooperative approach is preferable.

In addition to this, Game Theory also finds much use in pHRI, an application of most
interest to this thesis.

A Non-Cooperative Nash equilibrium is studied in [34], where the robot is able to adjust
its own role according to the human’s intention detectable from the measured interaction
force. With no human interaction forces, the adaptive scheme allows the robot to take the
lead. Otherwise, when the human exerts strong forces, the robot becomes the follower.
Despite the approach addressing the Non-Cooperative case, it provides an example of how
human-robot interaction can take place even from this point of view.
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In [4], the GT is studied on an upper limb exoskeleton robot or in [35], where develops
an interactive robot controller able to understand the control strategy of the human user
and react optimally to their movements. It precisely identifies each other’s control law
and allows them to perform the task with minimum effort successfully. In [81], an online
estimation method to identify unknown humans’ control objectives is used to solve an
N-player linear quadratic differential game theoretic problem. Here, the effectiveness of
the proposed method is demonstrated by rigorous theoretical analysis and simulations
where the humans cooperate with the robot to transport the object back and forth along
the horizontal direction.

A work very similar to our approach is [12], which discusses the arbitration of the role be-
tween a robot and a human during physical Human-Robot Interaction, sharing a common
task. It is very valuable because formulates the problem following a Cooperative Differen-
tial scenario. It discusses the arbitration of the role between a robot and a human during
pHRI finding multiple solutions on the Pareto frontier. The tests are done on a robotic
arm that has to follow a planar circular trajectory, while the human has a different path
to follow, which partially overlaps with the robot one. The proposed method is capable of
managing the leader-follower transition continuously, but it addresses the problem using
an LQR controller and not with an MPC approach. It also does not address a solution
with shared reference tracking.

The GT finds many applications in pHRI and obtains promising results for each work. In
particular, the ones that use the cooperative scenario give a very efficient solution.

2.3. Human intention estimation/identification

As mentioned so far, human-robot interaction involves studies dedicated to understanding,
designing, and evaluating robotic systems for use with humans. A very important part is
the communication between the human and the robot and, in particular, what is called
human intent. This concept assumes a different meaning depending on the action that a
human takes, so is interesting to see a variety of cases of different definitions of human
intent.

In order to predict this human intent, we can classify the solution into different concepts.
The approaches can be classified as model-based and learning based or model free. The
model-based work with a physical model with the aim to identify its physical parameters.
It expresses a method to design a model based on the estimation of the motion intention of
the human partner. In fact, a general model to describe the dynamics of a human limb is
supposed to include its mass-damper-spring property. The damper and spring components
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usually dominate human limb mode, as explained in [31] or in[53]. The human partner
may change his limb impedance during the collaboration. This makes the estimation very
difficult. Indeed, it is conditioned by the interaction history and the robot’s future action
choices, but it works in short time horizons in nominal operating conditions, and it learns
only the relative likelihoods of future human actions and responses.

So a better option to solve the human intention issue is a learning-based approach. They
became popular in particular approaches such as deep learning with neural networks.
It requires a large amount of training data, but data acquisition better generalizes the
function that links input with output.

2.3.1. Intent Detection

Based on the literature, human intention can have multiple meanings, so the first part
will be devoted to its definition. After that, we will be able to concentrate on the aspects
more on the side of the robots, which aim to look at how they measure these intentions
and with what "channels" they do it, and how they then interpret that data. In figure
2.2, an easy representation of these three steps is visible.

fields. Finally, two case studies from the authors’ prior work are
described, showing in detail how the framework can be applied in
the design of two prototypical pHRI systems.

2 Overview

In this survey, we explore human–robot shared control over a
collaborative task for applications where the human is physically
coupled to, and cooperating with, the robotic device. While the
traditional pHRI framework focuses strictly on applications where
there is a direct physical contact between human and robot [9],
here we extend our survey to also consider applications where
physical interaction is mediated through a third object. This
allows us to consider additional relevant applications, such as
cooperative manipulation tasks, where an object is jointly manipu-
lated by a human and a robot to achieve a common goal. This
extension can also include bilateral teleoperation tasks where a
human remotely controls a robot, with a haptic feedback channel
conveying information to the human user regarding the physical
interactions that are occurring between the robot and the remote
environment. We present a general framework to describe the
interaction process, with the aim of organizing design procedures
from different subfields of pHRI.

We propose a framework for considering shared control
between humans and physically coupled robots that features three
key ideas. First, in each of our selected applications, the robot
requires some knowledge of the human’s goals and intents so that
the robot behavior can be controlled accordingly. We term this
intent detection, and will begin our survey by defining intent, and
then exploring methods for measuring and interpreting intent in
pHRI systems. Second, the interaction between human and robot
and the way each affects the environment are regulated by arbi-
tration, which we define as the mechanism that assigns control of
the task to either the human or the robot. Finally, we posit that it
is essential that the human be provided with information about the
task and environment characteristics, and, where appropriate, sug-
gested trajectories or task completion strategies that are developed
by the robotic partner. Therefore, feedback from the robot to
human is returned via some sensory channel, often haptic, so as to
leverage the physical coupling that already exists between human
and robot. We have illustrated this framework in Fig. 1. In this
schematic model, arbitration is represented as a knob: when con-
trol is assigned primarily to the robot (darker shaded arrow), its
energy exchange with the environment will be greater; con-
versely, if control is assigned primarily to the human, the energy
exchanged between human and environment will be greater. The
bilateral exchange between robot and human represents the robot
detection of human intent, and the provision of feedback to the
human.

These three elements (intent detection, arbitration, and feed-
back) can be used to model many applications of physical human
robot interaction. In Ref. [10], for example, a cooperative manipu-
lation task is presented where a human and a robot collaborate to
move a bulky table. Intent detection was performed by using
force/torque sensors and processing their measurements with a
mathematical model of the task; arbitration was realized by con-
trolling a role allocation parameter derived from task modeling;
and feedback to the user was provided haptically through the
cooperatively manipulated object. The framework can also be
applied to the pHRI task of myoelectric control of a robotic upper
limb prosthesis. Here, intent detection is achieved by monitoring
surface electromyography (sEMG) signals; arbitration can be real-
ized by directly mapping EMG activity to the actuators of the
prosthesis to control grip pose, while maintaining automated low-
level control of grip force to prevent an object from slipping from
the prosthetic gripper’s grasp [11]); and feedback can be provided
to the human using haptic devices on the residual limb or embed-
ded in the socket interface. In Secs. 3–5, we expand on each
framework element, providing examples and implementation
guidelines from the literature, and comparing approaches from
different fields of pHRI. In particular, while the framework pre-
sented is general, we will focus on the context of rehabilitation in
the rest of the paper.

Rehabilitation can be thought of in two contexts. First, pHRI
applications in rehabilitation can be compensatory in nature,
where human intent is detected to control a robotic device that
replaces lost capabilities (e.g., myoelectric prostheses, or exoskel-
etons as mobility aids for paraplegics). In other scenarios, the
objective is to promote partial or complete recovery from neuro-
logical injury such as stroke or spinal cord injury. These applica-
tions clearly require a distinct set of design requirements, as the
objectives differ greatly. In the first case, we want to integrate a
robot with the human control system, while, in the second case,
we seek to promote neural recovery so that the participant can
function independent of the robot after treatment is complete.

3 Intent Detection

We will define the problem of intent detection as the need for
the robot to have knowledge of some aspect of the human’s
planned action in order for the robot to appropriately assist toward
achieving that action. Therefore, the robot’s ability to detect user
intent relies directly on some channel of communication existing
between the human and the robot. The structure of this section is
to look at the three aspects of the unidirectional channel of com-
munication of intent from user to robot (Fig. 2). First, the user’s
intention must be defined, and when referring to the many differ-
ent forms in which intent can be defined, we will use the phrase
intent information, or sometimes simply intent. Second, the
modality by which intent information is measured by the robot
must be decided, which we will refer to as the method of intent
measurement. Finally, once the information reaches the robot,
there is the more open-ended question of how this measurement is

Fig. 1 Conceptual representation of the proposed framework:
human and robot exchange information and interact with the
environment according to what is decided by the arbitration
(represented by the knob)

Fig. 2 The three steps for conveying of the human’s intent to
the robot: identification, measurement, and interpretation
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Figure 2.2: The three steps for conveying the human’s intent to the robot: identification,
measurement, and interpretation [38]

The human intention has several definitions. One is the ability of the robot to imitate the
human arm behavior, for example, during handshaking, as discussed in [74]. It models
the interaction through the handshake gesture between the two agents, relying on a large
amount of data collected from human-human handshake experiments. Intention can also
deal with recognizing a series of predefined motions. In [62], the robot has to identify
eight motions related to sitting, standing, or walking and control a wearable lower ex-
tremity assistive device intended to aid stroke patients during activities of daily living
or rehabilitation based on sensor readings from the limb attached to the assistive device.
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A more "clinical" definition is detectable in [41], where the human intent is defined as a
trigger to initiate motion, often ascertained from a brain-machine interface (BMI). These
reported works show how human intention detection is a very complicated aspect and
how important it is to define it.

In this thesis, human intention is defined as the desired trajectory that the human wants
to follow over a finite rolling prediction horizon.

A similar definition is discussed in [21], where the intent is defined as a predicted forward
path over a short time horizon in terms of a velocity or position trajectory. Also, in
[50], it is defined as the interaction force between the person and the wrist exoskeleton
at the handle or, in [28], as the effective torque about the user’s elbow within an elbow
exoskeleton.

Once this intention has been defined, the question arises as to how to measure and in-
terpret this. A large category of examples relates to the so-called Myography i.e., the
measurement of the activation of human muscles and their resulting contractile force.
The more common technique is electromyography (EMG) or Surface electromyography
(sEMG), which is less invasive as it is limited to measuring superficial muscles near the
surface of the skin that measures the changing electrical potential. An example of this is
seen in [52]. Recently also the force myography (FMG), also known as topographic force
mapping or muscle pressure mapping, used in [55], has received attention because it infers
muscle forces by detecting changes in muscle volume underneath tactile sensors placed on
the surface of the limb. Similar to myography, there is Sonomyography, a method used
in [2], based on ultrasound imaging. Examples of these are little used in human-robot
collaboration as we understand it but more in the medical aspect and, in particular, in
the manufacture of prostheses and technologies to support the movement of body parts.
Another method is called pattern recognition, used in [22]; an approach that maps pat-
terns of any number of signal features to desired prosthesis poses, grasps, or functions
and uses artificial neural networks to learn this mapping varies.

Hence, within this research, it is argued that the robot can only provide minimal assistance
to the human, specifically only on the part involved in the rehabilitation process. So
although it occupies a large set of cases, our discussion will move to a more industrial and
robot-oriented approach and through approaches that use methods to learn models from
data.

Great space is given to it based on motion capture with an RGB-D camera. Used in [43],
but also in [30], consists of a tool able to detect the colors and the distance of the point
from the cameras. The main drawback is that it requires specific hardware, and image
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data increase the duration of the training phase due to the high complexity.

A great method of measuring and interpreting the intent relies on the use of a 6DOF
force/torque sensor mounted on the robot to measure the dynamical forces during the
interaction, as in [74]. It aims to examine the use of force and position to estimate the
human impedance during the handshaking task. Particularly, it measures the relationship
between the position and orientation of the robot end-effector and the resulting forces
and torques at the end-effector, resulting from interaction with the human. The human is
then modeled as a linear impedance with three parameters (mass, damping, and stiffness).
Using the recursive least squares algorithm for online parameter estimation, the current
human impedance parameters are heuristically classified as being "low” or "high”. They
are then used as the inputs to a hidden Markov model (HMM) to decide if the person
intends to be “active" or “passive" in the handshake interaction with the robot.

Instead of measuring the robot position to estimate the interaction force, one can measure
the interaction force between the human and the robot at the end-effector and estimate
the desired human position. In [14], the user’s desired position is extracted by assuming
a model of the user’s control and is then assumed to be the equilibrium point of the
spring. Just as researchers have used interaction force measurements to estimate a desired
position of the human, the measured interaction force can be used to estimate other forms
of motion intention, as treated in [31]. For example, in [5], the interaction forces measured
in the handles of an intelligent walker are fed into a model of the nonholonomic walker
dynamics to predict the walker’s forward path over a short time horizon. Force/torque
sensing in the handle of an assistive cane is used in [72] to ascertain the hidden walking
state of the user.

2.3.2. Neural Networks Models

We have introduced arguments involving the computation of certain parameters useful for
estimating human and robot behavior. These parameters are time-varying and related to
impedance one and the model’s output strongly depends on these parameters expressed
in understanding and studying human intention. To overcome this complex modeling and
parameter estimations, Machine Learning is gaining popularity in addressing such prob-
lems. In particular Neural networks achieve excellent results in approximating complex
nonlinear systems.

One possible approach is to use the CNN (Convolutional Neural Networks) trained to
predict the existence of parts to be picked. It works well for applications, as discussed in
[49], where tries to perform, a pick operation autonomously. It uses the initial human data,
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to find the pixel position of an object from the obtained image and the estimated pose
of the object from physical space. Despite this, they are not suitable for predicting time
series. Wide use is based on Artificial Neural Networks (ANN) in predicting the intended
direction of human movement. In [65], is computed by utilizing electromyography (EMG)
signals acquired from human arm muscles. It proposes only motion classification to define
direction, and the robot assists in the detected directions only but does not predict future
motion intentions. Also, in [23], an Adaptive Neural Network estimates the next joint
coordinate of the human motion intention represented with the desired angle of the human
lower limb interacting with an exoskeleton for rehabilitation. Or the Deep Reinforcement
Learning, as in [15], where a human and a PR2 robot jointly control the ball position on
a plank based on vision and force/torque data. Unfortunately, they operate in a delayed-
return environment. A way to estimate human intention is with RBFNN (Radial Basis
Function Networks), as studied in [14], during and handshake act between a robot arm
and a human using interaction force, position, and velocity at the interaction point. Even
if the simulation result has shown the validity of the proposed method, it is just one step
ahead and so is not applicable to this thesis.

The examples presented gives an overview of possible existing neural networks and some
of their applications, but do not consider long-term prediction.

When dealing with sequence-to-sequence learning applications, Recurrent Neural Net-
works (RNN) turn out to be very effective. Finds much use in machine translation or
for predicting the next elements in a sequence. In a recurrent neural network, there is a
one-to-one correspondence between the layers in the network and the specific positions in
the sequence the network contains a variable number of layers, each with a single input
corresponding to that time stamp. A key point here is the presence of the self-loop, as
represented in 2.3, which will cause the hidden state of the neural network to change after
the input of each word in the sequence. The weight matrices in different temporal layers
are shared to ensure the same function at each time stamp.
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network to change after the input of each word in the sequence. In practice, one only works
with sequences of finite length, and it makes sense to unfold the loop into a “time-layered”
network that looks more like a feed-forward network. This network is shown in Figure 7.2(b).
Note that in this case, we have a different node for the hidden state at each time-stamp
and the self-loop has been unfurled into a feed-forward network. This representation is
mathematically equivalent to Figure 7.2(a), but is much easier to comprehend because of
its similarity to a traditional network. The weight matrices in different temporal layers are
shared to ensure that the same function is used at each time-stamp. The annotations Wxh,
Whh, and Why of the weight matrices in Figure 7.2(b) make the sharing evident.
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Figure 7.2: A recurrent neural network and its time-layered representation

It is noteworthy that Figure 7.2 shows a case in which each time-stamp has an input,
output, and hidden unit. In practice, it is possible for either the input or the output units
to be missing at any particular time-stamp. Examples of cases with missing inputs and
outputs are shown in Figure 7.3. The choice of missing inputs and outputs would depend
on the specific application at hand. For example, in a time-series forecasting application,
we might need outputs at each time-stamp in order to predict the next value in the time-
series. On the other hand, in a sequence-classification application, we might only need a
single output label at the end of the sequence corresponding to its class. In general, it
is possible for any subset of inputs or outputs to be missing in a particular application.
The following discussion will assume that all inputs and outputs are present, although it is
easy to generalize it to the case where some of them are missing by simply removing the
corresponding terms or equations.

The particular architecture shown in Figure 7.2 is suited to language modeling. A lan-
guage model is a well-known concept in natural language processing that predicts the next
word, given the previous history of words. Given a sequence of words, their one-hot en-
coding is fed one at a time to the neural network in Figure 7.2(a). This temporal process
is equivalent to feeding the individual words to the inputs at the relevant time-stamps in
Figure 7.2(b). A time-stamp corresponds to the position in the sequence, which starts at 0
(or 1), and increases by 1 by moving forward in the sequence by one unit. In the setting
of language modeling, the output is a vector of probabilities predicted for the next word in
the sequence. For example, consider the sentence:

The cat chased the mouse.

When the word “The” is input, the output will be a vector of probabilities of the entire
lexicon that includes the word “cat,” and when the word “cat” is input, we will again get a

Figure 2.3: Time-layered representation of an RNN with the encoded word and its pre-
dicted word likelihoods from [1]

A classic application of the RNNs is for Natural Language Processing(NLP) i.e. a way for
computers to analyze, understand, and derive meaning from human language in a smarter
way. In fact, they work very well in labelings sequence and sequence prediction tasks, such
as handwriting recognition, language modeling, machine translation, phonetic labeling of
acoustic frames and etc. In [67] and in [44], some experiments are conducted with a
small (short-term) spoken dialogues data set and a large (long-term) textual document
corpus showing that the proposed RNN reaches optimal performances in learning complex
internal structures to expose relevant information.

Thanks to the fact that they can handle time-series data, RNNs found their way also in
pHRI to predict human behavior during various tasks. In [80], is used to analyze visual
observations of human actions in an assembly setting and predict the human operator’s
motion future trajectory for online robot action planning and execution. This collabo-
rative assembly uses the pickup and handover of a screwdriver as an example. These
analyses are done through information taken from a camera to monitor the human posi-
tions and predict the next steps. The use of a camera is always a tough issue but it is
an interesting way to collect data. A camera is used also in [70] or in [43], to predict the
trajectory of a human who follows a haptic robotic guide. Here the experiment was car-
ried out in the way that the robotic guide was set to move along a random path for 20–30
s in each session. The participants were instructed to follow a randomly moving haptic
robotic guide while blindfolded and then apply a deep learning method based on RNN.
The robot could collaborate directly from demonstrations, as discussed in [75], without
pre-programming and shows a strong ability to adapt to movements with multiple time
scales.
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Furthermore, among the various types of RNNs, is now widely adopted the Long-Short-
Term Memory (LSTM) architecture that outperforms classical RNNs and is used to solve
various problems where the sequential data model can store important information. In
[39], the LSTM is used to predict the reference one time instant in the future, based on
the human limb dynamics and then an assistant controller is proposed to help humans
complete collaboration tasks. It validates the performance of this prediction algorithm
on a 7 d.o.f Franka Emika robot equipped with joint torque sensors. The goodness of the
approach is discussed in [19] while in [40], an interesting LSTM architecture is proposed to
predict the desired reference set-point at the next step but does not address any adaptation
to new users or objects. The problems, in this last work, are that they do not address the
problem of adapting the model to new users, so each new human has to record the full
dataset. The LSTM is used not only in the pHRI but finds wide usage in the automobile
environment, as proposed in [73]. This article it’s proposing a novel method for identifying
the driver’s braking intention. In order to improve the identification accuracy of driving
intention, a braking intention identification model based on Long Short-Term Memory
(LSTM) Network is constructed.

2.3.3. Transfer Learning with Neural Networks

One problem that has been identified in the use of neural networks is the lack of adaptabil-
ity for new users or objects with the goal of reducing computation time and facilitating
network training. For this reason, one approach that has been identified is transfer learn-
ing, which is already used in many areas and models. In [27], is used to automate domain
mapping for value function transfer and speed up reinforcement learning on variants of
previously played games. The approach detailed in this work transfers a learned value
function from a source task to initialize the value function of a target task, identified to
be similar through a graph-based method.

[54] makes use of the inductive transfer learning, where some labeled data are required in
the target domain to induce a predictive model or the unsupervised transfer learning used
in [7], to solve learning tasks in the target domain, such as clustering. The knowledge
could be transferred by pooling together the rating data from multiple rating matrices in
related domains. In [29], is used a model that can share rating knowledge in the form of a
latent cluster-level rating model, trained on the pooled rating data from multiple related
rating matrices.

There exist methods proposed to "fine-tune" all network parameters [16], tune only the
parameters of the last few layers [36], or just use the pre-trained model as a fixed feature
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extractor like in [17]. In particular, in this last work, it’s explained an approach of adaptive
fine-tuning called "SpotTune", which consists of taking an image from the target task and
using a network to make the decision on whether to pass the image through the fine-tuned
layers or the pre-trained layers.

It could be possible to use a pre-trained model as the starting point for the upcoming
training phase as in [79]. This application is suitable for those cases in which is possible
to train the model on a relatively large dataset. Differently, from freezing the last layers,
this algorithm may lead to an overfitted model, i.e. a model which fits extremely well on
the training dataset but achieves poor performance when generalized to different data.

An objective of this thesis is to reduce the time when the model is adapted to new
users or new situations, such as different trajectories or co-manipulated objects. And
so, looking at the various cases is used a pre-trained model for new trajectories, users,
and co-manipulated objects by freezing the LSTM layer and fine-tuning a cascaded Fully
Connected layer, which makes the procedure faster.
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3| Cooperative Game-Theoretic
formulation of the distrubuted
Model Predicive Control

This Chapter describes the cooperative controller used. At first, the motion of the robot
tip, described as a Cartesian Impedance control, is presented. Then the formulation of
the distributed Model Predictive Control (dMPC) and its implementation through the
Cooperative Game Theory (CGT) is studied.

3.1. System Modeling

This section presents the modeling of the robot motion subject to external forces. The
robot motion at the end effector is modeled as a Cartesian impedance, because more
natural for the human operator. The desired robot motion at the end-effector in fact, as
explained in [20], can be described by the equation of mechanic impedance implemented
in the Cartesian space:

Mi a(t) +Di v(t) +Ki∆x(t) = uh(t) + ur(t) (3.1)

where Mi, Di and Ki ∈ R6×6 are the desired inertia, damping, and stiffness matrices,
respectively; a(t), v(t) and ∆x(t) ∈ R6 are the Cartesian accelerations, velocities and
delta positions at the end-effector, with ∆x(t) = x(t) − x0(t) with x0(t) the equilibrium
position of the virtual spring, and uh(t) ∈ R6 and ur(t) ∈ R6 represent the measured
human and virtual robot effort applied to the system. The robot contribution ur can be
seen as an additional assistance that the robot provides to the human. The Cartesian
coordinates in x are defined according to [64], with the vector x = [pT θT ]T where pT are
the position coordinates and θT the set of Euler angles1 that defines the rotation matrix

1This choice assumes that the angular rotation maintains limited values in the target applications,
mainly along one rotation axis, as they work when taken far from the critical points.
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describing the end-effector orientation. Also, we can write the vector containing the linear
and angular velocities, as v = [ṗT ωT ]T with ṗ the linear velocity, ω angular velocity.

We start with the equation already mentioned and represent the system with the state-
space formulation. Starting from the equation 3.1 we can linearize the system around a
working point and write:

ż = Az +Bhuh +Brur

y = C z
(3.2)

where z = [∆xT vT ] ∈ R12 is the state space vector.

A is the state matrix

A12×12 =

[
06×6 I6×6

−M−1
i Ki −M−1

i Di

]
(3.3)

and B is the input matrix

B12×6
h = B12×6

r =

[
06×6

M−1
i

]
(3.4)

with 06×6 ∈ R6 denoting and I6×6 ∈ R6 the Identity matrix and C the output matrix of
the system that converts z to y.

Finally, since the robot controllers accept commands in discrete time, and also data are
collected in discrete time, we rewrite the system described in 3.2 in discrete time.

z(k + 1) = Ad z(k) +Bd,huh(k) +Bd,rur(k)

y(k) = Cd z(k)
(3.5)

with Ad, Bd,h and Bd,r indicating the discrete versions of the matrices A, Bh and Br, and
k indicating the current time instant, z(k + 1) the evolution of the system at the next
step, and Cd the output matrix of the system that converts z(k) to y(k).

It is worth noticing that it is more common to feed the robot with the reference position
in the joint space, rather than in Cartesian space. It is possible to obtain the reference
velocity in the joint space through the following transformation.

q̇ref (t) = J(q)+ẋ(t) (3.6)

where the q̇ref (t) ∈ Rn are the reference velocities in the joint space, n represents the
number of joints, and J(q)+ is the pseudoinverse of the analytical Jacobian matrix.
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Joint positions are then computed via a simple integration. Assume q̇ ≃ q̇ref (t) considering
that today’s robots have great tracking performance in the frequency range excitable by
the operator.

3.2. Dynamic Cooperative Game-Theoretic MPC

This subsection presents the GT-based control modeling proposed with Distributed Model
Predictive Control.

The Game Theory framework provides definitions and models to better understand how
rational decision makers (i.e. the two players), choose their strategy and predict the
results of their interaction. The GT framework is subject to dynamic equations that
describe the state variables evolution of both the players (also called agents).

We now describe the structure and the formulation of the dMPC, as expressed in [26],
using the cooperative scenario. To do this, we enlarge the system and augment it. The
system express in 3.5 became:

zgt(k + 1) = Agtzgt(k) +Bh,gtuh +Br,gtur

ygt(k) = Cgt zgt(k)
(3.7)

with zgt =

[
z

z

]
, Agt =

[
Ad 012×12

012×12 Ad

]
, Bh,gt =

[
Bh

Bh

]
, Br,gt =

[
Br

Br

]
and Cgt ∈ Rm×24 is

defined according to the desired output.

Having done all this we can formulate the MPC method: we define the predicted horizon
as Np and the control horizon as Nc and then we write the equation that predicts the
future steps:
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The output prediction in the future Np sampling times, calculated at time i is given by:

y(k + 1) = CgtAgtx(k) + CgtBhuh(k) + CgtBrur(k)

y(k + 2) = CgtA
2
gtx(k) + CgtAgtBhuh(k) + CgtAgtBrur(k) + CgtBhuh(k + 1) + CgtBrur(k + 1)

...

y(k +Np) = CgtA
Np

gt x(k) + · · ·+ CgtA
Np−Nc

gt Bhuh(k +Nc − 1) + CgtA
Np−Nc

gt Brur(k +Nc − 1)

(3.8)

(3.8) can be written in compact matrix form as

Y (k) = Fz(k) + ΦhUh(k) + ΦrUr(k) (3.9)

where Y ∈ RmNp is the predicted output and is equal to

Y (k) =


y(k + 1)

y(k + 2)
...

y(k +Np)

 (3.10)

F ∈ RmNp×24 is the free response matrix, equal to:

F =


CgtAgt

CgtA
2
gt

...
CgtA

Np

gt

 (3.11)

Φi ∈ RmNp×6Nc , with subscript i = h, r denoting the human and robot, are matrices
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representing the forced response, defined as

Φi =



CgtBi,gt 0m×6 . . . 0m×6

CgtAgtBi,gt CgtBi,gt . . . 0m×6

CgtA
2
gtBi,gt CgtAgtBi,gt . . . 0m×6

...
... . . .

CgtA
Np−1
gt Bi,gt CgtA

Np−2
gt Bi,gt CgtA

Np−Nc

gt Bi,gt


(3.12)

The two vectors Uh(k) ∈ R6Nc and Ur(k) ∈ Rx are the input vectors along the horizon

Uh(k) =


uh(k + 1)

uh(k + 2)
...

uh(k +Nc)

 (3.13) Ur(k) =


ur(k + 1)

ur(k + 2)
...

ur(k +Nc)

 (3.14)

To recall we are dealing with the interaction with a GT model approach. This implied the
presence of two players as in this case are human and a robot. A goal of these two players
is to minimize a cost function in order to resolve the GT problem. This cost function can
be defined as a quadratic cost function, as also studied in [45] and in [34], with respect to
the control state. So the two cost function applied to a 2-player game could be expressed
as:

Jh(k) =
N∑
i=1

eh(k + i)T Qh,h eh(k + i) + er(k + i)T Qh,r er(k + i)+

+ uh(k + i)T Rh uh(k + i)

=
N∑
i=1

[
eh(k + i)T er(k + i)T

] [Qh,h 0

0 Qh,r

][
eh(k + i)

er(k + i)

]
+

+ uh(k + i)T Rh uh(k + i)

=
N∑
i=1

egt(k + i)T Qh egt(k + i) + uh(k + i)T Rh uh(k + i)

(3.15)
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and

Jr(k) =
N∑
i=1

eh(k + i)T Qr,h eh(k + i) + er(k + i)T Qr,r er(k + i)+

+ ur(k + i)T Rr ur(k + i)

=
N∑
i=1

[
eh(k + i)T er(k + i)T

] [Qr,h 0

0 Qr,r

][
eh(k + i)

er(k + i)

]
+

+ ur(k + i)T Rr ur(k + i)

=
N∑
i=1

egt(k + i)T Qr egt(k + i) + ur(k + i)T Rr ur(k + i)

(3.16)

where Qh,r, defines the weight that the human assigns to their own and the robot’s
reference tracking, Qr,h, defines the weight that the robot assign to their own and the
human’s reference tracking, Qh,h, defines the weight that the human assigns to their
own and itself reference tracking, Qr,r, defines the weight that the human assigns to
their own and itself reference tracking, and eh(k + i) = y(k + i) − yref,h(k + i) and
er = y(k + i) − yref,r(k + i) refers to the tracking errors foreseen for the human and the

robot at time step k + i, with egt(k + i) =

[
eh(k + i)

er(k + i)

]
, and uh(k + i) and ur(k + i) are

the control inputs of the human and the robot at time step k + i. With yref,r and yref,h

we define the robot and the human trajectory that each one has to follow.

Now we formulate the equations of MPC in a cooperative control case. In fact in the
cooperative game players communicate with each other and share the common objective
as expressed by a set of parameters that is α, where

αi, i = 1 : Nplayers,

N∑
i=1

αi = 1, 0 < αi < 1

which weighs the contribution of each player. The common objective to be shared between
the players can be defined as a weighted summation of each cost function as follows:

Qgt = α Q̃h + (1− α) Q̃r,

Rgt,h = R̃h

Rgt,r = R̃r

(3.17)
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and writing,

Egt(k) =



y(k)− yref,h(k + 1)

y(k)− yref,r(k + 1)

y(k + 1)− yref,h(k + 2)

y(k + 1)− yref,r(k + 2)
...

y(k +N − 1)− yref,h(k +N)

y(k +N − 1)− yref,r(k +N)


(3.18)

To express the final cost function formula we first define the following matrices:

Q̃h(k) =


Qh

. . .

Qh

 (3.19) Q̃r(k) =


Qr

. . .

Qr

 (3.20)

and

R̃h(k) =


Rh

. . .

Rh

 (3.21) R̃r(k) =


Rr

. . .

Rr

 (3.22)

and Ur(k) and Uh(k) are as in 3.13 and 3.14

The two cost functions 3.15 and 3.16 can be finally written in compact form as:

Jh(k) = Egt(k)
T Q̃h Egt(k) + Uh(k)

T R̃h Uh(k)

= Egt(k)
T QgtEgt(k) + Uh(k)

T Rgt,h Uh(k)
(3.23)

Jr(k) = Egt(k)
T Q̃r Egt(k) + Ur(k)

T R̃r Ur(k)

= Egt(k)
T QgtEgt(k) + Ur(k)

T Rgt,r Ur(k)
(3.24)

So the Distributed Model Predictive Control (DMPC) problem for the Cooperative Game
Theoretic pHRI can then be summarized as:
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min
uh

Jh = Egt(k)
T QgtEgt(k) + Uh(k)

T Rgt,h Uh(k)

s.t. Y (k) = Fz(k) + ΦhUh(k) + ΦrUr(k)
(3.25)

min
ur

Jr = Egt(k)
T QgtEgt(k) + Ur(k)

T Rgt,r Ur(k)

s.t. Y (k) = Fz(k) + ΦhUh(k) + ΦrUr(k)
(3.26)

Following [26], the solution of problems (3.25) and (3.26) can be computed as

U∗ =

[
U∗
h

U∗
r

]
=

[
I Kh

Kr I

]−1 [
Lh 0

0 Lr

][
Zh

Zr

]
(3.27)

in which, defining
Sh = (ΦT

hQgtΦh +Rgt,h)
−1ΦT

hQgt

Sr = (ΦT
r QgtΦr +Rgt,r)

−1ΦT
r Qgt

(3.28)

the gains are computed as

Kh = ShΦh

Lh = [−ShFh Sh]
(3.29)

Kr = SrΦr

Lr = [−SrFr Sr]
(3.30)

and

Zh = Zr =



zgt(k)

yref,h(k + 1)

yref,r(k + 1)
...

yref,h(k +N)

yref,r(k +N)


(3.31)

Finally, to implement the receding horizon logic, only the components of U∗
h and U∗

r

relative to the next step are used, hence uh(k) = U∗(1) and ur(k) = U∗(1 +N). But the
human cannot be programmed, so a way of estimating zref is needed.
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4| Learning human intention for

trajectory prediction

In this Chapter, it is shown how the proposed RNN+FC model is applied. Starting from
the human intention identification we go through the iterative approach analysis. Finally,
Transfer learning of the proposed model to other users/objects is presented.

4.1. Human Intention Estimation

In order to develop a suitable controller, it is very important to know the desired trajectory
of the human. This is because the robot must provide adequate assistance to the human
during the work it has to perform.

As also expressed in this work [31], we can collect in an equation the possibility of ex-
pressing the interaction between a robot and a human limb.

−Chẋ−Kh(xref,h − x) = uh (4.1)

with Ch and Kh damping and stiffness matrices. Assuming that Ch = Ch(x, ẋ) and
Kh = Kh(x), the desired human motion can be defined as

xref,h = F (x, ẋ, uh) (4.2)

The function F, being non-linear and time-varying, is quite complicated. In fact, it
depends on many factors such as the task to be performed, the user doing that particular
task, the user’s arm configuration, and many others. In addition, if we consider the
fact that this research intends to allow the robot to carry objects, it is not sufficiently
descriptive because it takes on meaning in correspondence with the contact between the
robot end-effector and the human.

To overcome this problem, the solution found is to develop a neural network because excel-
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lent at approximating complex non-linear systems with high uncertainties. In particular,
it is used the RNN cascaded with a fully connected(FC) part that learns human behavior
and provides the robot with the necessary information to assist the human. The main
advantage of RNNs is that they take into account previous events allowing information to
persist. Among the various RNN types, the LSTM (Long-Short Term Memory) is used
for this specific task as it performs better in solving problems involving long time series.

Therefore, the proposed method aims to identify and predict, over a finite rolling horizon,
the desired human trajectory, given the past history over a finite horizon. This means
that the system takes the last k instants of time as input and predicts N instant of time of
human’s trajectory. In particular, T is the current time, and the input data are collected
in an interval from T − k to T .

As input, we have the actual robot position and velocities:

x = [x, y, z, R, P, Y ]T (4.3)

v = [ẋ, ẏ, ż, ωx, ωy, ωz]
T , (4.4)

the force exerted by the human:

[fx, fy, fz, τx, τy, τz]
T (4.5)

and the nominal robot trajectory:

xref,r = [xref,r, yref,r, zref,r, Rref,r, Pref,r, Yref,r]
T (4.6)

The complete control framework is visible in figure 4.1. The estimated human position
and the robot reference are the two inputs in the MPC block. The robot reference comes
from a block called motion planner which is the system that provides the trajectories for
the robot to follow; while the human estimation is what we train from the RNN. The
two cost functions, that we imposed in the previous paragraph, also are part of the MPC
block, precisely the robotic cost function and human cost function. Finally, the output
we have from the MPC, as the virtual robot effort, with the measured human, became
the input for the impedance control. And through a kinematic inversion, we control the
robot.
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Figure 4.1: Structure of the system

4.1.1. Iterative Training

As we have seen in the section on Game Theory Control 3.2, and thanks to the equation
used in 3.31 we can formulate the control as expressed in 3.27 in a cooperative Game
Theory approach. We now know that to tune the parameter of the RNN, the machine
learning approach requires a procedure that trains the model in order to obtain the input-
output relationship as the function in 4.2. So before using the model we have to acquire
the data needed to train the model and to do this, we have to collect the data without
using the model. The dataset we create is called D0 and it is done assuming that this
equation applies:

x̂ref,h = xref,r (4.7)

where x̂ref,h stands for the predicted trajectory of the human and xref,r the actual trajec-
tory done by the robot. That means that with no model loaded the robot has no element
to predict the human trajectory. So, it assumes that the human predicted trajectory is
equal to the robot one.

With this data collected, we can train the model we called M0 where the "0" indicate
that it is the iteration done with no model loaded.
It depends on the first data set only:

M0 = M0(D0) (4.8)
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physical

This new model is used for collecting new data but the robot behavior is no more the
same as the 0 one. In fact, the assumption x̂ref,h = xref,r does not hold anymore because
the robot now can predict x̂ref,h. The new assumption follow this equation:

x̂ref,h ̸= xref,r (4.9)

Now the robot, due to the fact that we change the parameters of the model, starts to
predict the human trajectory, and so thanks to the new model the robot can assist better
the human during its task.

The process that is being created follows an iterative procedure where the first step is the
one already explained and so the next step is to collect a new data-set D1, and train a
second model on these data.

M1 = M1(M0, D0) (4.10)

.

This procedure is done to find the best model possible and this process can be done K

times:
MK = MK(Mk−1, Dk−1) (4.11)

The iteration process can be stopped by a stop criterion i.e. the law that indicates at
which iteration the model doesn’t improve itself. To express this with math formulation
we have to find a value that indicates the stopping criterion. An example of this could be
the average of the Root Mean Square Error (RMS), computed as

eRMS =
1

L

L∑
T=1

√√√√ 1

N

T+N∑
K=T

(∥x̂ref,h − xk∥2) (4.12)

The stopping criterion can be expressed with this assumption

∥ek+1
RMS − ekRMS∥ < toll (4.13)

We can summarize the procedure algorithm in this way:
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Algorithm 4.1 The iterative procedure proposed for the training
1: Data: Sample Records
2: Result: Trained Model M
3: Record data-set D0 without any model;
4: Train model M1 with data-set D0

5: while ||ek+1
RMS − ekRMS|| < tol do

6: Record data-set Dk with model Mk;
7: Train model Mk+1 with data-set Dk;
8: end while

4.1.2. Transfer Learning

In this part, we discuss how we can make the model as general as possible as soon as it
is trained because the equation written before in 4.1 depends on a human to human.

In addition to this, it describes the behavior of the human in the specific case we have
tried so far, i.e. in the situation where the man grabs the robot tip. The situation in
fact changes, as the values of the trained model change, when the person using the robot
is different or when it is no longer the human directly grasping the robot but the robot
assists the human in carrying large objects.
An example of this second case is the possibility of maneuvering an object in two in
particular where the object is held by the robot on one side and follows the movement of
the human holding it on the other side.

To do this, the model we trained in the process before, is no longer suitable and therefore
needs to be reformulated and requires further training. Doing all this, takes a lot of time,
as we have to collect new data, and re-train the model several times until the tolerance
we set in the stop criterion satisfies us.

The solution to improve this long model is therefore to use the theory of transfer learn-
ing, through a model, based on RNN+FC, for the new user/object. A representation is
expressed in the next figure 4.2
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Figure 4.2: Representation of RNN+FC inside the control scheme

This procedure, therefore, allows a considerable reduction in process time. This is because
we only perform a single iteration, due to the fact that we start from a model that has
already been trained and because we collect less data

As we saw in section 2.3.3 of the state of the art, there are various strategies that can
be adopted for transfer learning. The process adopted in this thesis falls into a widely
used case in NLP and computer vision, in which what we do is "freeze" some layers of the
model we are using and train only a few more layers, which we keep free to adjust their
parameter. In fact, by doing this, the training time is greatly reduced, because if before
we had to tune all the model’s parameters, now, in order to adapt our model to the new
user, we only have to re-tune a much smaller number of layers.

Specifically, in our case, we freeze the part of RNN, and the part we consider the fully
connected is the part we train again. It is reasonable to think that the RNN part learns
the pHRI features while the FC part is responsible for adapting to the new user/object.
The difference could be that the RNN learns that, when the human imposes a force in
a certain direction has a certain type of consequence. While the FC looks at how much
force the specific user imparts to the robot in order to personalize the model as much
as possible. The difference lies in the fact that the RNN part learns the pHRI features
while the FC part is responsible for adapting our user or the new object in order to learn
the new interaction with it. The RNN for example learns that the fact that the human
imposes a force in a certain direction has a certain type of consequence while the FC looks
at how much force the specific user imparts to the robot in order to personalize the model
as much as possible.
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So using the transfer learning approach, we define the MTL model equation as follows:

MTL = MTL(Mk, Dk) (4.14)

The algorithm in this case can be summarised in the following way:

Algorithm 4.2 The iterative procedure proposed for the training with Transfer Learning
1: Data: Sample Records
2: Result: Trained Model M
3: Record data-set DTL based on the model trained in Algorithm 4.1
4: Train model MTL with data-set DTL

It is interesting now to see the final structure of the proposed model as in fig 4.1.
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5| Experimental Results

The presented method is evaluated with simulations and real experiments. This chapter
analyzes the performance of the dMPC controller for the pHRI approach of the coop-
erative assistant. Then, the RNN+FC model is evaluated, showing its performance for
the iterative training and Transfer Learning procedures. Finally, a cooperative transport
application that uses the RNN+FC module and the dMPC is presented, compared with
a standard controller for pHRI.

5.1. Experimental Setup

The experimental setup is presented here. The robotic platform is a UR5 robot from Uni-
versal Robots, equipped with a Robotiq FT300 sensor mounted at the tip for measuring
the human interaction force. The robot has 6 degrees of freedom, and it is controlled by
an external computer at 125 Hz. The robot arm is mounted on a fixed base. It weighs
about 20 kg with a payload of up to 5 kg and 850 mm reach. It is a versatile and flexible
collaborative robotic arm that can combine very compact size and high performance

The collaboration and physical interaction with the human makes use of two different
tools. One visible in figure 5.1a, allows being grasped by the human directly at the end
effector of the robot. This tip is specifically made by a 3D printer, so it is made of resistant
but very lightweight plastic. It permits free movement for the robot as the human can
easily guide it according to his intentions. Collecting data for training the model results
easier and faster with this handle, if compared to the application scenario that involves
the grasping of a large object. The second tool is a suction cup, as shown in figure 5.1b,
used explicitly for carrying large/heavy objects. It is mounted at the end effector and
connected to an air generator to create the vacuum.

The user can stand or sit in front of the robot and handle it.

The robot’s nominal trajectory, defined by the motion planner, is defined offline by an
external computer.

An external monitor positioned near the robot displays the trajectory and the obstacle.
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This is used only for the validation procedure of the model as during the application case
no trajectory and no obstacles are shown on the monitor.

The setup with the two tools is visible in figure 5.8.

(a) Experimental setup used for data collection
and Iterative Training procedure.

(b) Experimental setup used for TL and object co-
manipulation.

Figure 5.1: The experimental setup in the two configurations. The UR5 equipped with
the FT sensor is visible. In the background, the monitor used to display the trajectory
and the virtual obstacle.

The control framework is based on ROS nodes [66]. Three different ROS nodes are used:
one to control the robot, one which implements the motion planner, and one where the
RNN+FC model runs to predict human intentions. The ROS nodes are written either with
python or C++. In particular, the controller node implementing the dMPC is written
in C++ code, while the RNN+FC and the motion planner are implemented in python
nodes. The analysis of the result is done using Matlab scripts. The Neural Network
is implemented with the PyTorch[42] library. All the computations are performed on a
standard ASUS laptop with an Intel i7 and with an Nvidia GeForce 1050 GPU running
on a Linux/Ubuntu system operator.
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5.2. Design of Experiments

For the evaluation of the RNN+FC model experiments are performed on the x–y plane,
involving only two dofs. The impedance control parameters in (3.1) are set as follows:

Mi =

[
10

10

]
Ci =

[
100

100

]
Ki =

[
0

0

]
(5.1)

The choice of setting Ki to zero is typical in manual guidance applications, as in [32].

The two cost functions parameters in (3.15) and (3.16) of the two players are set as:

Qh,h = Qr,r =


1

1

0.0001

0.0001


Qh,r = Qr,h = 02×2

Rh =

[
0.0005

0.0005

]
(5.2)

In particular, the human cost function parameters Qh,h,Qh,r andRh are recovered via In-
verse Optimal Control (IOC) as in[13], and an average value is used. The robot parameters
Qr,r and Qr,h are set equal to the human’s to mimic a person except for Rr.

The value of the parameter α and Rr, will be discussed in the next section, where an
analysis of the dMPC behavior is proposed by varying this value, according to (3.17) and
(3.22). Different values are selected for the evaluation of the RNN+FC model and for the

application scenario. In the first case, we set α = 0.8 and Rr =

[
0.0005

0.0005

]
while

in the second, we change a little based on the fact that more assistance can be provided,

as discussed in 5.2.1, by setting them equal to α = 0.9 and Rr =

[
0.0001

0.0001

]
.

5.2.1. dMPC performance analysis

This section analyzes, with simulations, the dMPC performances according to different
tuning parameters. Such an analysis allows for defining the parameters presented in the
method 3.2 that better suit the robotic assistance in pHRI tasks. This section focuses
on the dMPC performances varying those parameters that are free to choose in the pro-
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posed pHRI application. In particular, We analyze the system behavior according to the
variation of α, Rr, and the prediction horizon H. Indeed, these are the parameters that
can be tuned, while the other (Qh,h, Qh,r, Rh) depend on the human and cannot be set
arbitrarily. In particular, We simulate the system with α = {0.2, 0.5, 0.9}. Low values
of α correspond to the case where the shared cost approximates the robot’s cost. On
the contrary, high values of α correspond to the case where the shared cost approximates
the human cost. We also simulates for values of Rr = {0.01, 0.0005, 0.0001}. The lower
Rr is the higher the robot’s assistance. Finally, we simulate different values of the pre-
diction horizon as H = {0.04, 0.16, 0.4} seconds, or H = {5, 20, 50} samples, with a
sampling period of 0.008 seconds. This simulation is performed to check the reference
tracking capabilities of the dMPC framework, varying the prediction horizon. The test is
conducted assuming a sinusoidal signal as a reference. The two references are defined as
xref,h = sin(t) and xref,r = 0.5 sin(t).

The figure in 5.2, 5.3, and 5.4 shows the result of this test.

(a) Prediction Horizon of 0.04s. (b) Prediction Horizon of 0.16s. (c) Prediction Horizon of 0.4s.

Figure 5.2: Evaluation of the dMPC tracking performances at different values of α with
Rr = 0.01 and on different prediction Horizon.

(a) Prediction Horizon of 0.04s. (b) Prediction Horizon of 0.16s. (c) Prediction Horizon of 0.4s.

Figure 5.3: Evaluation of the dMPC tracking performances at different values of α with
Rr = 0.0001 and on different prediction Horizon.
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(a) Prediction Horizon of 0.04s. (b) Prediction Horizon of 0.16s. (c) Prediction Horizon of 0.4s.

Figure 5.4: Evaluation of the dMPC tracking performances at different values of α with
Rr = 0.0005 and on different prediction Horizon.

As we see from the figure with α = 0, 9 the curve follows the human reference more, so
we have a more assistive controller that follows the human intention. With α = 0, 2,
according to GT, it should be the human who puts much effort to help the robot track
its reference. This is impossible for us because human does not know the reference of
the robot. Moreover, it is unnatural for the human to assist the robot, so low values of
α should not be chosen. Setting the Rr too high we have bad performance in every α

choice, while the difference between the Rr = 0.0001 and Rr = 0.0005 is that the lower
it is, the more responsive the robot behavior becomes, possibly leading to jerky motions
for too small values. Varying the prediction horizon, we see that we have better results
when we can predict as far ahead as possible in time.

5.2.2. Human Intention prediction evaluation

This section describes the procedure for data collection and RNN+FC model training both
for the iterative and the TL training. All the datasets contain data on the robot’s actual
poses, velocities, reference robot’s trajectory, and interactive force. The human force is
measured at the robot tip via the FT sensor. The robot’s nominal trajectory defined by
the motion planner is defined offline and commanded in real-time. The data collected
are sampled at 0.008 seconds, as this is the sampling time of the robot’s controller. To
evaluate the model’s performances, preliminary experiments are performed only on the
X-Y plane.

Three different nominal trajectories are computed, defined as linear, curved, and sinu-
soidal. They are represented in figure 5.5a, 5.5b, and 5.5c, respectively.
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(a) Linear Trajectory. (b) Curve Trajectory. (c) Sine Trajectory.

Figure 5.5: The three trajectories used in the collecting phase

A single trial consists of following the given trajectory that appears on a monitor, starting
from the initial point to the endpoint, while data are collected. The human has to avoid
a virtual obstacle (the red box in the figures) that appears randomly along the path. A
complete dataset, for the Iterative learning phase, is composed of 60 trials, 20 for each of
the three trajectories.
For this evaluation, the same person (the thesis author) performed four iterations to train
the model. For the RNN+FC iterative training procedure, 4 iterations are performed
despite the stop criterion defined in 4.1.1 being reached after the first iteration. This is
because we want to analyze if the model can produce some improvements and after how
many iterations these improvements stabilize.

The LSTM model used is composed of 3 layers with 250 hidden nodes, and the FC is
composed of two connected layers. Some of the parameters (optimizer, learning rate) of
the RNN+FC model are obtained with Optuna [3]. The model is trained for 25 epochs
with a size batch of 64 and a learning rate initially set at 0.001. The neural network used
works with 125 times instant precedent step as input. The model predicts 50 instant steps
ahead of the current state.

To evaluate the prediction model, we set the parameters with α = 0, 8 and Rr =

diag(0.0005)

α, in this case, is chosen to allow sufficient assistance but also to allow the robot to recover
the position of the robot set-point autonomously. The value of Rr, is set equal to the
human’s to mimic collaboration with another person.

The first dataset D0 is collected with no prediction model loaded on the robot controller,
assuming xref,h = xref,r. The robot moves along a path, and the human is grasping
the handle at the end-effector. The human has to impose a force to deviate from the
nominal path to avoid the obstacle. The robot doesn’t know where the obstacle is and its
dimension. For the user, the obstacle appears on the monitor along the path. It has the
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same dimensions every trial but it randomly changes the position.

The training setup is visible in figure 5.6.

Figure 5.6: Setup during the data collecting phase

A ROS node collects the data during the trial and stops recording at the moment it arrives
at the endpoint.

Figure 5.7 shows what is visible to the human during the execution of a task, regarding
the linear trajectory, in this case. The human knows the current position, the nominal
path, and the target pose. Moreover, human knows the obstacle and can avoid it.
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Figure 5.7: Monitor visualization of the trajectory to be followed with the obstacle and
the targets, during the collecting phase when no model is loaded.

The data collected give information about the current position, current velocity, human
wrench, and robot reference position. To be usable for our training, the data are rear-
ranged. We consider only the columns of our interest, cutting the superfluous ones, and
we align the data to set time equal for everyone. To make the training phase feasible, we
pass the data into a function that normalizes them in a range between 1 and -1.

For the training phase, we divide the data set into two parts, so that one part is dedicated
to testing and one to training.

We decided to dedicate 20% to the test part and the remaining 80% to the training part.
The RNN+FC model is then trained and its parameters are updated. The model is then
saved, indicating the specific iteration at which it was made.

For the first training, the weights of the neural network are initialized according to [25],
while in the following iterations, the new model’s parameters are initialized with the
previous model ones, so it is sufficient to initialize a network with the previous parame-
ters. This procedure is then repeated in succession several times to improve the model’s
capabilities and performance.

During the training phase we calculate, for each epoch, the loss function of the train
and the test so that we can compare the performance of the two. The loss function is
calculated as follows:

Loss = (y − f(x))2 (5.3)

Where y is the nominal part and f(x) is the predicted value.

Define the first model train as M0, and with D0 the dataset collected. With the subscript

0 we denote the model trained and the dataset collected with no model loaded. The
following takes the name of the iteration we proceeded. The new dataset collects DN+1

are created with the model MN loaded.
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The collection procedure is done in the same way as described in the first case. Differently
from the first data collection is that the assumption xref = xh does not hold anymore,
but the RNN+FC model now predicts the xh reference. In figure 5.8a is visible as a new
target in blue but also in the live simulation graph, figure 5.8b, we can see the predicted
horizon which represents each trajectory point’s real-time prediction.

(a) Trajectory to be followed with the obstacle and
the targets.

(b) Representation of the prediction horizon,
shown in real time during the collection.

Figure 5.8: Monitor visualization during the collecting phase when the model is loaded.

From now the train is done based on the model created in the previous step.

At the end of the iterative training, we expect that the model has improved the prediction
performance. Despite this, the iteration is done only by the same user and on three
trajectories.

To adapt the model quickly, TL performances are evaluated. The procedure of TL is done
on different users and adapts to a co-manipulated object and new trajectory.

The procedure to collect, clean the data, and train the model are the same. In all cases,
the first data are collected based on the last model trained by the author, which here we
called Mprev.

The difference is that only 15 trials are performed in total, 5 for each trajectory. The
training phase is done following the procedure defined in 4.1.2 and modifying only the
weight that corresponds to the FC layers. After that, we collect some new data to compare
the prediction of the model before and after TL.
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First of all, we evaluate the TL improvements for a new trajectory.
The data are collected like before, with the handle mounted at the end effector. We collect
data on 15 trials done on the new trajectory represented in the figure 5.9.

Figure 5.9: Z trajectory used in the application of TL.

After that, we tested the TL on 5 different users. The experiments are the same but
taken on the first three trajectories. In particular, we collected data from 5 trials for each
trajectory, and then we trained the model.

To expand the case of studies of the TL, we use a co-manipulated object, the wooden
board. In this case, the experiments take a different setup as we substituted the gripper
with the vacuum gripper able to support the object. In this case, we have some differences,
as the force given by the human is not more centered on the end effector, and we have
some additional Inertia. Also, here, we collect 15 trials divided into five each for the 3
trajectories. The collection procedure and setup are shown in the figure 5.10.
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Figure 5.10: Data Collection using the co-manipulated object

5.2.3. Application scenario with large/heavy objects co-manipulation

After validating the model, we applied it to a real case application. The application
consists of bringing two different objects to a target point. For this application, we use a
wooden board of 106 x 82 x 2 cm in length, and a lumped wights object of 18 x 15.5 x 5
cm in length.

The setup is represented in figures 5.11a and 5.11b. In this case, the target is not repre-
sented in a monitor but is present in the real setup.
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(a) Setup with the wooden board. (b) Setup with the lumped object.

Figure 5.11: The two setups used for the application scenario with the target point.

We define a start point and an end one, using the vacuum gripper to hold the object and
we keep the object on one side to try to reach the final point in a more precise way.

It is interesting to analyze both as the first has a bigger dimension but is lighter, while
the second one is heavier but more compact. The experiments are done avoiding a real
obstacle put between the two target points. The task is represented as a real case as
the movement of heavy/large objects to be positioned precisely at the target point. The
co-manipulation of heavy/bulky objects is selected to simulate industrial tasks that may
require co-manipulation.

The experiment was done by collecting at first 15 trials that are useful for the TL, and
after it, the model is adapted to the new object. The gripper used is the same one used
for the application of TL with an object, so a vacuum caption was applied at the end
effector. As the objects are very different in terms of weight and dimension, two different
TL training are done to better adapt the model to the object.

To see that the object co-transportation is better we compare the controller we have
implemented with the other two standard control.

The difference in these two control takes into consideration the equation in (3.1). In
particular, in Impedance Control (IMP) we take the equation and remove the robot
assistance as ur resulting in:

Mi a(t) +Di v(t) +Ki ∆x(t) = uh(t) (5.4)
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In the MG from the equation (3.1) we don’t have the ur and Ki and formula result as:

Mi a(t) +Di v(t) = uh(t) (5.5)

We will see the force applied during these two application types and the precision to
reach the final point. The experiments done are exactly the same, both using the vacuum
gripper.

5.2.4. Performance Indexes

To evaluate the performances, some indices are defined. To evaluate the method during
the Iteration done by the author the eRMS(Root Mean Square Error) and eMAX(Maximum
Expected Error) should be considered.

The eRMS is calculated as follows:

eRMS =
1

L

L∑
T=1

√√√√ 1

N

T+N∑
K=T

(∥x̂ref,h − xk∥2) (5.6)

where x̂ref,h is the predicted human intention, xk the measured poses, L is the length of
the trajectory, and N is the prediction horizon.

The eMAX , instead, is calculated as finding, first, the maximum value of the prediction
horizon in one point as:

eMAX,i = max
i∈L

{∥x̂ref,h − xk∥} (5.7)

where x̂ref,h is the predicted human intention and xk the measured poses. L is the length
of the trajectory. Then, the final value eMAX is obtained by finding the maximum from
all the values obtained before.

eMAX =
L∑
i=1

eMAX,i (5.8)

with L being the length of the trajectory

The evaluation of the TL is done with the same index of the iterative comparison. First,
we evaluate the model’s capability to predict human intent with a new trajectory. After
that, we propose TL to let the model learn the new trajectory and compare the errors.
As for the previous case, different prediction horizons are evaluated.

Finally, the time required for each iteration’s dataset collection and model training is
compared with the time needed for the TL.
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An interesting measure of the assistance provided is related to the force exchanged by
the human. To assist humans, the robot should allow reduced interaction forces while
collaborating. The indices fRMS is based on the force root means square, defined as:

fRMS =
√
(f 2

x + f 2
y ) (5.9)

where fx and fy are the force applied in each direction during all trials. The value of the
index is a mean value taken from three different trials.

Moreover, as the goal is to bring a co-manipulated object to a target point, it is interesting
to check the precision of reaching the target. We measure the current position with the
target point as:

σi = ∥xcurrent − xfinal∥ i ∈ L (5.10)

with σ that gives the deviation from the point, xcurrent the current value, xfinal the final
point, and L the length of the trajectory from starting point to the endpoint.

The final value we use to compare is calculated by taking the value of σ when it is in
around ± ε, arbitrarily decided and equal to 0.025cm, and finding the mean value over τ :

σ =

∑τ
i=1 σi

τ
(5.11)

with τ equal to 3 sec.

This index represents the distance variation in around ε of reaching and maintaining the
final point.

5.3. Results

This chapter analyzes and presents results regarding the performances of the prediction
model for the iterative process and the use of transfer learning. The performances are
measured by the indices presented in chapter 5.2.4. Finally, results regarding the appli-
cation scenario are presented with a comparison with two standard controllers for pHRI.

5.3.1. Model Evaluation

As during the training phase we have calculated the loss function of the test and of the
train, it is interesting to see the behavior of this function. In figure 5.12 it is present the
loss during each epoch for every 4 iterations. On the x-axis, we have the number of the
epoch while on the y-axis the value of the loss function.
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(a) Iteration 1 Loss Function.
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(b) Iteration 2 Loss Function.
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(c) Iteration 3 Loss Function.
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(d) Iteration 4 Loss Function.

Figure 5.12: Train and Test Loss Function

As we can see, the loss passes from a value of about 10−3 to a value of about 10−5. In
fact, with 25 epochs we can say that they are enough to lower the loss function and
attended an acceptable value that indicates to us the achievement of a good level of
training. Furthermore, we can notice that after about 20 epochs the value of the loss
function begins to stabilize. So for this case, we can assume that 25/30 epochs are
enough for training the model However, the value of the single loss function does not
allow a comparison between individual iterations. It tells us nothing about the quality of
the time predictions but only about the goodness of training.

To analyze the improvements in the prediction during iteration we can start with a graph-
ical comparison. We show in the next figure the trajectory that the robot has manipulated
by the human and we represent for each point the prediction of the trajectory of the human
0.4 seconds ahead.
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(a) Prediction with the model M0. (b) Prediction with the model M1

(c) Prediction with the model M2 (d) Prediction with the model M3.

Figure 5.13: Comparison between the prediction at the various training iterations, with
the maximum prediction horizon considered (0.4sec)

It is easy to see that the first (fig 5.13a), shows a very pronounced profile, a clear sign
of the poor accuracy of the prediction. During the subsequent iterations, on the other
hand, the profile becomes much less pronounced, showing us how the prediction follows
the desired trend much more closely. Very clear in next as 5.13b, 5.13c and 5.13d

To give a value to this improvement we have introduced some indices in the section in
5.2.4. We start with eRMS, and we evaluated this value comparing it with different time
horizons to see its dependency.
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(a) The four models evaluation with predic-
tion horizon of 0.04s.

(b) The four models evaluation with predic-
tion horizon of 0.08

(c) The four models evaluation with prediction
horizon of 0.16

(d) The four models evaluation with predic-
tion horizon of 0.4

Figure 5.14: Comparison of the eRMS for the four iterations with different prediction
horizons.

The improvement is clear between the first iteration M0 and the subsequent one. In par-
ticular between the first and the second, the difference is huge while from the third, and
fourth, it’s stabilized. The fact that the third iteration and fourth one are minimal indi-
cates that another training iteration is not necessary, and the prediction model converges
quickly. Regarding the different time horizons, we can see that it is more complex to
predict long prediction horizons as the value of the error increases when we augment the
prediction horizon. This is mainly because it is very complex to predict human deviations
from the nominal trajectory in advance.

It is interesting to see also the value that the error of RMS, has on a single point. We
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analyze on the linear trajectory in one trial. In the next figure, we have the four iterations
during the time of trial, while on the y-axis we have the punctual value of the eRMS

Figure 5.15: Punctual prediction error for the four iterations on the linear trajectory.

As confirmed by the indices that calculate the sum of the values taken for each point
on the trajectory, we can see the improvement over the course of iterations, especially in
the first one. In particular, we can see that the highest values are found just before the
human starts the deviation from the nominal trajectory, and the robot cannot know it in
advance (around timestep 300 on the x-axis).

We also analyze the eMAX for the four iterations, as in figure 5.16, based on the different
prediction horizons.
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(a) The four models evaluation with predic-
tion horizon of 0.04s.

(b) The four models evaluation with predic-
tion horizon of 0.08

(c) The four models evaluation with prediction
horizon of 0.16

(d) The four models evaluation with predic-
tion horizon of 0.4

Figure 5.16: Comparison of the eMAX for the four iterations with different prediction
horizons.

The results, although with different values, confirm the improvement noted with the RMS
index. The eMAX , indeed, gives us some more information on the process. We can notice
that it reduces only after 3/4 iteration and not only just after one. So, this value said
that iterating the process multiple times can improve the model.

Also for this, we can see the value of each point on the linear trajectory:
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Figure 5.17: Punctual eMAX for the four iterations on the linear trajectory.

Also here, the value follows the same considerations given by the eRMS.

It is interesting to compare the time needed for all the processes, starting from the col-
lecting data and the training of the model. Such a comparison is shown in table 5.1

Collecting Data Train the model

Iteration 1 50 ± 10 min 50 ± 5 min

Iteration 2 60 ± 10 min 40 ± 5 min

Iteration 3 60 ± 10 min 40 ± 5 min

Iteration 4 60 ± 10 min 40 ± 5 min

Table 5.1: Comparison between the different times it takes to collect data during the
training phase on each iteration.

5.3.2. TL Evaluation

The same indices are used to analyze the improvements done using transfer learning.

The first study was on the new trajectory, represent in figure 5.9, always done by the
author. As before we start with a graphical comparison as in figure 5.18
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(a) Prediction with the model M3. (b) Prediction with the model MTL.

Figure 5.18: Comparison between the prediction at the two training iterations, of the z
trajectory, with prediction horizon as 0.4sec

The difference is less pronounced but still, an improvement in the prediction is visible.

To explain better this concept we can observe the eRMS and eMAX . Let us first look at the
values of the indices they take and also graph the trends of both errors along the single
trajectory. In this case, the trajectory is only the new one, and so the example shown in
figure 5.19, compares the trajectory on two iterations.
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(a) The two model evaluation based on eRMS

error.
(b) The two model evaluation based on eMAX

error.

(c) Punctual eRMS for the two iterations on the
fourth trajectory.

(d) Punctual eMAX for the two iterations on the
fourth trajectory.

Figure 5.19: Comparison done applying the TL approach on the new trajectory, analyzed
on eRMS and eMAX .

We also observe an improvement here. The value of the first iteration represented is
increased when compared with the last iteration collected during the training phase. This
is because the model faces for the first time a trajectory it has never seen. Despite this, we
can see that by using transfer learning we only need one iteration to reach performances
comparable to the results obtained using the full iterative training procedure.
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It is interesting to evaluate the TL approach on different users, we used 5 different peo-
ple. The 5.30 figure shows the comparison of a single user trajectory to give an idea of
the improvement that has occurred. The example trajectory is the one depicted in fig
5.5ccorresponding to the linear case.

(a) Prediction with the model M3. (b) Prediction with the model MTL.

Figure 5.20: Comparison between the prediction at the two training iterations, of one
different user, with prediction horizon as 0.4sec

While in the next eRMS and eMAX min indices are analyzed. In this case, having been
tested on 5 different people, the values were obtained by averaging across all the values
obtained from each person and represented in 5.21a and 5.21b

Indeed, for the cases of figures 5.21c and 5.21d, only one person along the linear trajectory
was taken.
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(a) The two model evaluation based on eRMS er-
ror.

(b) The two model evaluation based on eMAX

error.

(c) Punctual eRMS for the two iterations on the
linear trajectory.

(d) Punctual eMAX for the two iterations on
the linear trajectory.

Figure 5.21: Comparison done applying the TL approach on the different users, analyzed
on eRMS and eMAX .

The result obtained demonstrates the improvement of the model, even on different users
from the author. It is the result based on one user. The test is all done on 5 different
users and in every case, the error is better.
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Finally, we compare the result collected using the coo-manipulated object i. e. the
wooden board. Also in figure 5.22, we present first a graphical comparison based on the
linear trajectory.

(a) Prediction with the model M3. (b) Prediction with the model MTL.

Figure 5.22: Comparison between the prediction at the two training iterations, of the
coo-manipulated object, with prediction horizon as 0.4sec

And then we check the indices of eRMS and eMAX The punctual error is still represented
with the linear trajectory
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(a) The two model evaluation based on eRMS

error.
(b) The two model evaluation based on eMAX

error.

(c) Punctual eRMS for the two iterations on the
linear trajectory.

(d) Punctual eMAX for the two iterations on the
linear trajectory.

Figure 5.23: Comparison done applying the TL approach on the coo-manipulated object,
analyzed on eRMS and eMAX .

The improvement here is very visible as the presence of the object changes many param-
eters of the learning model. That is why in the case of the old model, the value is very
high but thanks to the TL we get very good results.

One of the main advantages of using the TL is saving time. The tables in 5.2, explain this
by comparing the time needed to collect data e train the model between the TL approach
and training the model for the first time. This allows us to use our model more easily on
different people and procedures.
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Iterations TL Trajectory TL subject TL Object

dataset collection 60 ± 10 min 5 ± 2 min 5 ± 2 min 5 ± 2 min

training 45 ± 5 min 4 ± 1 min 4 ± 1 min 4 ± 1min

Table 5.2: The time required for the data collection and model training at the various
steps.

As we can see the time for adapting the model to new users/objects dramatically decrease
compare to the iterative training phase.

5.3.3. Human-Robot co-manipulation of large/heavy components

We now analyze the result of the application scenarios. We will analyze the improvement
of the application of the TL through the precision of reaching a final point, and then
we compare this result with Manual Guidance and Impedance control. The analysis was
conducted taking into consideration the parameter defined in 5.2.4.

The first is the with a wooden board. As we already evaluated that the model improved its
assistance, in this application approach, we test the precision in arriving at the endpoint
and the interaction force required. To do this, the figure 5.24a represents the distance
taken for equal time from when the robot started moving to 3 seconds after the endpoint
is reached. This is because we want to analyze if the distance keeps its endpoint and
how difficult it is to stay there. The comparison here is just graphical as we want to see
the improvements of reaching the endpoint. On the x-axis, we see the time, while on the
y-axis, the distance value decrease approaching the endpoint. The test is conducted on a
single trial.



5| Experimental Results 64

(a) Trial before applied MTL. (b) Trial with MTL.

Figure 5.24: Comparison of the precision in arriving at an endpoint using the σ index

The improvements are significant as we can see how the model assists better after the
application of the TL. The fact that the distance is lower tells us that the variations of
distance, at the endpoint in particular, are less than the first case also in this task.

Then, we compare it with a different controller, as Manual Guidance and Impedance
Control.

First, we see the force involved:

Figure 5.25: Force comparison between MG, IMP and MTL using the wooden board.

We can see that the model with the MTL is better and the Impedance is the worst.

Then we analyze the precision to arrive in the case of MG and assistive controller after
TL using the graph of distance.
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(a) Trial with the model after
MTL.

(b) Trial using MG. (c) Trial using IMP.

Figure 5.26: σi representation of a single trial from the initial point to endpoint comparing
the model with TL, IMP and MG control on a wooden board.

To have a comparison we see the index described before in 5.2.4, between MG and MTL.

Figure 5.27: Precision index σ comparison between MG, IMP e MTL using the wooden
board

As we can see from the figure in 5.26 and 5.27 the precision is better when we have the
assistance of the controller we have studied and the error in reaching this point.

The application was done also with the lumped object.
The analysis is the same as with wooden board.
First, we check the precision distance between the model before the application of the TL
approach and after. The result is in fig 5.28.
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(a) Trial before applied MTL. (b) Trial with the model after MTL.

Figure 5.28: Comparison of the precision in arriving at an endpoint using distance graph
and σ index

After that, we compare the same experiments with Manual Guidance and Impedance
Control as before. First, we see the force involved in:

Figure 5.29: Force comparison between MG, IMP e MTL using the lumped object.

Also here force is bigger when using the MG, and the IMP is always the biggest. The
force involved is bigger than with the wooden board as the weight here is bigger.

Then we analyze the precision to arrive in the case of MG, IMP, and MTL.
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(a) Trial with the model after
MTL.

(b) Trial using MG. (c) Trial using IMP.

Figure 5.30: Comparison of the precision in arriving at an endpoint using the σ index

To have a comparison we see the index described in 5.2.4 between MG, IMP and MTL

Figure 5.31: Precision index σ comparison between MG, IMP, and MTL using the lumped
object.

Also here, the precision is better when using the model trained with TL, and the precision
index is better.

The final considerations are that the force in the Impedance control is bigger than the
other because the spring implementation of the control tends to bring the robot to the
nominal trajectory and not assist the human in the deviation, so the force is bigger. In the
manual guidance, the situation is better but bigger than the MTL, because the human has
to put force in every moment that depends on damping and velocity. Then our controller
is better because when it deviates from the trajectory doesn’t bring back to them but
assistive the human in the trajectory he wants to do.
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In the case of reaching the target point, we have difficulty in MG because the robot is
free to move but difficult to maintain in a single position, while impedance gives a force
that is difficult to contrast. So the model we train is better also for this task.
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6| Conclusions and future

developments

This work presents an assistive controller for pHRI. Two main components are inves-
tigated, namely the distributed Model Predictive Control (dMPC) formulation of the
interaction, and a learning method for predicting the desired human trajectory over a
finite time horizon. The interaction between humans and robots is described by Differ-
ential Cooperative Game Theory (DCGT). The dMPC control framework is simulated
to analyze its behavior according to different tunable parameters, in order to define the
values that better allow its applicability in pHRI.

The proposed approach is validated with real-world experiments done by the author on the
UR5 robotic arm. An iterative training procedure is defined for model training, allowing
the model’s adaptation to the interaction with the human. Four iterations are performed
even though it is observed that after just three, good results are obtained.

To make the model adaptive to new situations and users, Transfer Learning is applied.
The results obtained are satisfactory as starting from a model trained on a single subject
and on a specific task, it is possible to quickly adapt the model to new users and tasks
with comparable performances. This method allows to dramatically reduces the time
necessary for data collection and training the model compared to the iterative procedure.

Different prediction horizons are also evaluated to show the dependency of the error. On
the one hand, the longer the prediction horizon is, the more the error increases. On the
other hand, with longer prediction horizons the robot is able to better assist the human
with the dMPC formulation.

Finally, the superiority of the assistive controller enhanced by the RNN+FC model, com-
pared to standard controllers typically used in pHRI is shown by measuring the average
interaction force and the precision to reach a final point.

Future works will focus on implementing the model not only with force sensors but also
with cameras that detect the position of the human and impart a fictitious force to the



6| Conclusions and future developments 70

robot, allowing flexible material co-manipulation. Moreover, the update of the model
will be implemented online in order to reduce even more the data collection and training
time. The possibility of varying online the assistance level will be addressed by feeding the
RNN+FC with this additional time-varying parameter. Finally, a model that considers
the full 6 dofs will be investigated, with real applications involving co-manipulation of
deformable objects to fabricate composite materials.
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