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Abstract

4D �ow MRI provides non-invasive measurements of blood velocity in the ascending aorta.

These velocity measurements enable patient-speci�c assessment of the wall shear stress

(WSS), a widely adopted biomarker for characterizing and comprehending cardiovascular

diseases. However, these recordings are usually a�ected by noise and do not have su�cient

resolution to accurately reconstruct derived quantities like WSS.

The objective of this thesis is to develop a deep learning framework based on physics-

informed neural networks (PINNs) to regularize and denoise 4D �ow MRI data, enabling

accurate WSS approximation. Well known physical laws can be considered as another

source of information, as they described the �ow evolution from a modelling point of

view. This balance can be controlled by PINNs as they give the possibility to encode

di�erential models into suitable terms of the loss function ensuring that the predicted

velocity and pressure �elds obey the prescribed physical laws.

An optimal con�guration in terms of velocity reconstruction is found by testing the neural

network on synthetic data that emulates real 4D �ow measurements. A computational

�uid dynamics (CFD) simulation is used to generate data and to evaluate the model

performances on di�erent synthetic test cases with an increasing noise level. The balance

between loss terms and the imposition of the no-slip condition are the main features

discussed when creating the models. Null wall velocity is obtained by adding one term

in the loss function or, otherwise, by emulating the lifting procedure with an analytic

function or with a further neural network representing the distance from the boundary.

In 3D test cases, we propose an estimate for wall shear stress starting from the predicted

super-resolved velocity �eld. This biomarker is in�uenced by velocity pro�les in the near

wall region, and an accurate reconstruction of the related high velocity gradients remains

one of the most challenging tasks in this work. We compared di�erent strategies to address

this complexity by forcing a steep velocity pro�le and by increasing the regularization of

the governing physical laws near the boundaries. Finally, this methodology is applied to

patient-speci�c 4D �ow in-vivo data to estimate wall shear stress.

Keywords: physics informed neural networks, super-resolution, 4D �ow MRI, wall shear

stress
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Abstract in lingua italiana

4D �ow MRI fornisce misurazioni non-invadenti della velocità del sangue in un volume di

interesse. Queste presentano dettagli speci�ci di un paziente che possono essere usati per

calcolare lo sforzo sulla parete del vaso (WSS), per caratterizzare e comprendere malattie

cardiovascolari. Tuttavia, queste misurazioni non hanno una risoluzione accettabile e, di

conseguenza, non possono essere usate per calcolare rilevanti biomarcatori.

L'obiettivo di questa tesi è quello di sviluppare un ambiente di deep learning basato sulle

reti neurali �sicamente informate (PINNs) per regolarizzare e rimuovere il rumore da dati

4D �ow MRI. Ben note leggi �siche possono essere considerate come un'altra sorgente di

informazioni, dato che descrivono l'evoluzione del �usso da un punto di vista modellistico.

Questo bilancio tra dati e teoria può essere controllato dalle PINNs in quanto hanno la

possibilità di codi�care modelli di�erenziali in alcuni dei termini della funzione obiettivo

assicurando che i campi di velocità e pressione predetti rispettino le leggi �siche prescritte.

La con�gurazione ottimale in termini di ricostruzione di velocità viene trovata testando

la rete neurale su dati sintetici che simulano reali misurazioni 4D �ow. Una simulazione

�uido-dinamica (CFD) è usata per generare questi dati e per valutare le prestazioni del

modello sui diversi casi sintetici che presentano un livello crescente di rumore. Il bilan-

cio tra i termini della funzione obiettivo e l'imposizione della condizione di non aderenza

sono le principali caratteristiche discusse durante la creazione dei modelli. Una velocità

nulla al bordo è ottenuta aggiungendo un termine nella funzione obiettivo o, altrimenti,

simulando l'operazione di rilevamento con una funzione analitica o con un'ulteriore rete

neurale rappresentante la distanza dal bordo.

Nei casi 3D, proponiamo una stima dello sforzo a parete partendo dalla ra�nata velocità

predetta. Questo biomarcatore è in�uenzato dai pro�li di velocità nella zona vicina al

bordo, e un'accurata ricostruzione dei gradienti di velocità rimane uno dei compiti più

di�cili. Confrontiamo diverse strategie per a�rontare questa complessità imponendo un

ripido pro�lo di velocità e aumentando la rilevanza delle leggi �siche vicino al bordo.

Parole chiave: reti neurali �sicamente informate, super risoluzione, 4D �ow MRI, sforzo

a parete
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1| Introduction

Over the past three decades, near-wall hemodynamics have received the utmost attention

in cardiovascular �uid mechanics research. Clinical studies demonstrate its correlation

with cardiovascular diseases [10, 39], and complex wall shear stress (WSS) patterns are

related to disturbed blood �ow dynamics in diseased arteries [1, 30].

In this work an accurate estimation of wall shear stress is carried out starting from blood

velocity measurements in the aorta recorded through 4D �ow MRI. These data are cor-

rupted by several noise sources and they are a�ected by low spatial and temporal reso-

lution, so they cannot be used to reliably compute precise biomarkers. Physics Informed

Neural Networks (PINNs) address this problem by combining actual measurements of

blood �ow velocities with a modelling knowledge that describes through physical laws the

blood behaviour. The resulting neural network proposes a super-resolved and regular ve-

locity �eld and permits an accurate computation of velocity gradients through automatic

di�erentiation, yielding to an estimate of wall shear stress.

The general structure and the main features of this analysis are reported in this introduc-

tion. Firstly, 4D �ow MRI technique is described highlighting the acquisition procedure

and the limitations encountered. PINNs recover these issues by proposing a super-resolved

velocity, and the optimal neural network con�guration is found working within a controlled

framework build upon synthetic data. The latter emulate real measurements and, as they

are generated from a CFD solution, there is a reference solution to evaluate performances.

Finally, this methodology is applied on in-vivo data.

As the main objectives of this work, velocity and pressure �elds are reconstructed improv-

ing the regularity and the resolution of the initial raw measurements and, in addition,

WSS is estimated starting from the predicted velocity �eld.

1.1. 4D �ow magnetic resonance imaging

4D �ow magnetic resonance imaging (MRI) is used to obtain non-invasive patient-speci�c

velocity measurements. However, they cannot be used to obtain reliable and accurate
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biomarkers, as they su�er from limitations that will be investigated in this section. These

data are, indeed, noisy and they do not have an adequate spatio-temporal resolution and

many details are not captured.

The acquisition principle of 4D �ow MRI is the same as the one for standard 2D PC-

MRI. PC-MRI takes advantage of the direct relationship between blood �ow velocity and

the phase of the MR signal that is acquired during an MRI measurement. To eliminate

unwanted background phase e�ects, two acquisitions with di�erent velocity-dependent

signal phase are typically needed to encode (using bipolar magnetic �eld gradients) and

measure blood �ow velocity along a single direction. Subtracting phase images from the

two acquisitions removes background phase e�ects. The signal intensities in the resulting

phase di�erence images are directly related to the blood �ow velocity and can thus be used

to visualize and quantify blood �ow (Phase Contrast (PC) principle). PC-MRI encodes

tissue velocity v(x, t) ∈ R3 at a spatial location x during cardiac phase t according to:

ρi(x, t) = ρ0(x, t)exp

(
jπ

(χv(x, t))i
VENC

)
, (1.1)

where VENC is a manually set parameter determining the maximum velocity that can be

recorded, ρi = 0, ..., 3 are the encoded magnitude and velocity components, and adopting

a four-point velocity encoding, χ is de�ned as:

χ =


0 0 0

1 0 0

0 1 0

0 0 1

 .

Hence, the measured tissue velocity component i is proportional to the phase shift of the

reconstructed images ρi. Considering ρit ∈ RNr×Nc×Ns a discretized complex PC image on

a Cartesian grid Nr×Nc×Ns corresponding to a cardiac phase t and velocity component

i, the reconstructed image H(ρit) ∈ RNr×Nc×Ns can be modeled as:

H(ρit) = F−1(M (F (ρit) + ε)),

where F is the Fourier transform, M ∈ {0, 1}Nr×Nc×Ns de�nes the undersampling mask

in k-space, and ϵ ∈ CNr×Nc×Ns is the additive complex noise [37].

For cardiovascular applications, the 2D PC data is acquired over multiple cardiac cycles

and measurements are synchronized with the cardiac cycle using ECG information. In 4D

�ow MRI, velocity is encoded along all three spatial dimensions throughout the cardiac

cycle, thus providing a time-resolved 3D velocity �eld. As described above, quantita-
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tive velocity measurements require two acquisitions and a subtraction for one-directional

velocity encoding. For each time frame, four 3D raw datasets are collected to measure

three-directional blood �ow velocities (vx, vy, vz) with a reference scan and three velocity-

encoded acquisitions.

Figure 1.1: Schematic illustration of Cartesian 4D �ow MRI of the thoracic aorta. For

each time frame, four 3D raw datasets are collected to measure three-directional blood

�ow velocities (vx, vy, vz) with a reference scan and three velocity-encoded acquisitions.

Navigator gating of the diaphragm motion can be used for image acquisition during free

breathing. The navigator pulse (NAV) is played out at the end of each cardiac cycle to

update the current respiration phase which is used for respiratory gating. For applications

in the aorta or pulmonary systems it is required an acquisition time of approximately 15-20

minutes with a temporal resolution of 40-50 msec. The image is taken from [25].

Scan times for 4D �ow MRI can become prohibitively long, especially when high spatial

resolution or large volumetric coverage are required. Studies involving compressed sensing

techniques have enabled shortening of 4D �ow MRI acquisition time [5, 36].

An alternative technique that is increasingly used to accelerate 4D �ow MRI is radial data

sampling. Radial acquisition schemes have been shown to permit 4D �ow imaging with
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improved scan time while providing large spherical volumetric coverage with high spatial

resolution. [25, 41, 45].

Moreover, there are two main sources of inaccuracies:

1. the measurements come with an acquisition noise: it is generally considered to be

zero-mean Gaussian in acquisition or frequency space. Since the inverse Fourier

transform is linear, the noise maintains its characteristic when the k-space data is

converted to complex image space data. However, converting the complex image

space data to phase and magnitude is a non-linear operation that changes the noise

characteristic [6, 12]. This can introduce a bias in the measured velocity that is

dependent on magnitude of the actual velocity;

2. velocity aliasing problems: VENC should represent the maximum physiological ve-

locity of the vessel of interest and when the velocity exceeds the VENC, velocity

aliasing can occur which is typically visible as a sudden change from high to low ve-

locity within a region of �ow. To �x it, VENC can be increased and the acquisition

is repeated to avoid aliasing. It is important to note that selecting a high VENC will

also increase the level of velocity noise in �ow velocity images because the spectrum

of velocities allowed is enlarged and both high true velocities and potential noises

present in the signal could be acquired. As a result, a compromise has to be found.

To summarize, 4D �ow MRI data have noises inherent to their nature coming from a

challenging acquisition in the k-space that can be negatively impacted by varying velocity

ranges and by the practical need of subsampling the frequencies recorded. Moreover,

the involvement of multiple cardiac cycles necessitates synchronization and an averaging

procedures, which further increase the margin of error.

1.2. Physics informed neural networks

PINNs have been �rstly introduced by Raissi et al. [33]. Such neural networks are

constrained to respect any symmetries, invariances, or conservation principles originat-

ing from the physical laws that govern the observed data, as modeled by general time-

dependent and nonlinear partial di�erential equations. This construction is capable of

tackling a wide range of problems in computational science and leads to the development

of new data-e�cient and physics-informed learning models, as well as new approaches

for model inversion and systems identi�cation. The e�ectiveness of their proposal has

been demonstrated over scienti�c applications in many areas [7, 24]. For instance, in

�uid applications, PINNs have been used for fast surrogate modeling of idealized vascular

�ow problems in a forward parametric setting without training labels [43]. Moreover,
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PINNs have also been formulated in an inverse modeling setting to extract unobservable

information (e.g., blood �ow velocity) from observable data (e.g., concentration data) in

cardiovascular problems [1, 19, 34].

First attempts in computational physics in learning solutions of deterministic PDEs with

neural networks in a space-time domain dates back at least to the early 1990s, e.g.

[20, 27, 31]. It is exploited the fact that neural networks are universal approximators

that can be used to approximate any continuous function and its derivatives [9, 17, 18, 21].

The central idea of PINNs is to take as input a set of points representing space-time co-

ordinates and to return the corresponding output �elds (e.g., velocity and pressure). The

training aims to reduce the residual loss of the di�erential equations for the model output,

over a set of collocation points sampled from the problem domain. This physics-informed

loss function constrains the PINN from violating the di�erential equations, ensuring that

its output obeys the governing physics. Together with this modelling knowledge, a data

�delity term is added in the loss de�nition and the distance between the neural net pre-

diction and the data is minimized. The general structure is represented in Figure 1.2.

To make PINN perform well, a balance between data-�delity and physics-informed terms

has to be found: data are needed as a starting guess and they propose some case-speci�c

details of the solution, then physics will regularize and correct the possible noise present.

The relevance of this trade-o� will be discussed and analyzed in this work.

Figure 1.2: Network and loss general structure.

In hemodynamics applications, let consider velocity and pressure as desired output �elds

and consider 4D �ow MRI as available measurements. The resulting net will be able to

evaluate the desired �elds in an arbitrary space-time point yielding to a super-resolved

(SR) output. This is one of the main application of PINNs, since they are able to denoise
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and to increase the regularity of noisy, low resolute measurements. This quality output

permits to investigate:

1. wall shear stress since its computation requires high resolute velocity �elds in the

near wall region;

2. pressure, that is not present in 4D �ow MRI measurements, and it is completely

given e�ortlessly alongside the regularization process of velocity �eld.

Moreover, leveraging on automatic di�erentiation does not introduce severe numerical

errors both in WSS and PDEs residual computation.

The activation function plays a relevant role in representing the output �elds. In this

work, it is always preferred a sinusoidal activation yielding to a SIREN model structure,

where SIREN refers to an MLP network combined with this non-linearity. Following

[37, 40] a sinusoidal activation function is always preferred and SIREN refers to an MLP

network combined with this activation function.

Periodic sinusoidal functions are employed in many applications to implicitly represent

complicated signals such as images or 3D shapes. They are used also to capture model

high-frequency information and higher-order derivatives in the context of solving di�eren-

tial equations. In contrast to conventional nonlinearities such as the hyperbolic tangent or

the ReLU, the sine is periodic and therefore, non-local. Intuitively, this provides SIREN

with a degree of shift invariance, as it may learn to apply the same function to di�erent

input coordinates. For example, velocity �eld has a similar behaviour in di�erent regions

of the geometry and this non-locality of the function used could help the learning speed

and accuracy.

From [40] a strategy is taken to accurately initialize weights, in order to preserve the

distribution of activations through the network so that the �nal output at initialization

does not depend on the number of layers. This initialization produces an e�cient and

direct minimization starting from the very �rst iterations, avoiding recurrent oscillations

in loss terms during the initial Adam epochs. Finally, each weight θ is initialized so that

θ ∼ U(−
√
6/c,

√
6/c), where c is the generic input feature size (c will be the number of

neurons of the previous layer).

This strategy is heavily pursued in the 3D cases together with a correction of the �rst

layer structure that is modi�ed as sin(ω0 ·Θx+ b), where ω0 is set to 30.

Despite the fascinating potential for a wide range of physic phenomena and applications,

training an accurate PINN model in complex 3D applications remains a challenge. PINNs

are computationally demanding and a large number of collocation points is required for
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matching the di�erential equations in order to train a good model. The physics introduced

in the loss function succeeds in regularizing damaged data but fails in reconstructing spe-

ci�c �ow details. Another crucial point that requires further development and research is

the customization of the personalization of this neural network. An ad hoc model must be

trained for each new patient since a new geometry and new speci�c data are prescribed.

Finally, PINNs are typically constructed as a multi-layer-perceptron (MLP) network but,

as an alternative, a convolutional neural network (CNN) could be considered [13, 14].

CNN has the capability to directly learn spatial relationship through kernels operations

and speci�c kernels could be used also to compute derivatives with �nite di�erences as

an alternative to AD. For instance, Zhu et al. [47] developed a physics-constrained con-

volutional encoder-decoder to solve high-dimensional elliptic PDEs, and Geneva et al.

[15] further extended this framework to dynamic hyperbolic PDEs with parametric initial

conditions.

To further explore an alternative to AD, in [8, 11] the authors propose numerical di�er-

entiation methods to reduce the number of collocation points required to mitigate the

computational resources used.

1.3. Synthetic data

Real patient speci�c 4D �ow MRI data cannot be used in the �rst phase of the creation

of an optimal strategy for regularizing data because there must be something true to

compare and evaluate the prediction. Thus, synthetic data are created from an accurate

CFD solution in a real geometry to simulate 4D �ow measurements.

The degradation consists in a coarse frequency sampling in the corresponding k-space

domain and in the addition of Gaussian noise. Moreover, 4D �ow MRI measurements

are usually taken with a frequency of about 40ms and to simulate this behavior a time

average procedure is performed. The goal is to obtain corrupted velocity �eld as can be

seen in Figure 1.3 where a synthetic data and a real measurement are visually compared.
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Figure 1.3: Visualization of velocity colormaps (foot-to-head component) on a sagittally

oriented 2D aortic slice. On the left there are synthetic data on a reference geometry,

while on the right real 4d �ow MRI data on a BAV patient are represented.

The procedure used to create synthetic data is thought to emulate the 4D �ow acquisition

procedure: after a temporal averaging and a mapping in the k-space, a radial subsampling

is performed, Gaussian zero-mean noise is added and �nally the image is converted back

from complex domain to real images. A more detailed description is provided in Section

4.2.

Organization of this work. The application, the mathematical models and methods

are described in Chapter 2. Before working on real in-vivo data (Chapter 5), a synthetic

2D benchmark is considered in Chapter 3, and the optimal strategy to deal with 3D

realistic data is found working on synthetic data in Chapter 4. Moreover, in the latter,

we compare methods to compute WSS in order to accurately recover velocity gradients

in the near wall region.

In Figure 1.4, it is presented a graphical summary of this thesis.
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Figure 1.4: Overview of this thesis. After de�ning the motivation and the main objectives,

there are represented the model structure and few results for velocity reconstruction and

WSS estimate.
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2| Methods

In this Chapter, there are presented the main features of the model used. PINNs are

characterized by the de�nition of the training strategies and, above all, by the structure

of the loss function with the description of all its terms. In Section 2.2, the methods

to compute wall shear stress are formalized. Moreover, it is reported a deep learning

approach involving the representation of a sign distance function to obtain the required

wall normals.

2.1. Problem setting

PINNs regularize and improve the spatio-temporal resolution of 4D �ow images within a

deep learning framework. The neural network takes as input spatio-temporal coordinates

and returns the velocity and pressure �elds at those points. During the training, the net is

led by a data-�delity term built on the acquired data and by physical laws that regularize

the output, forcing it to respect the governing PDEs. With this super resolute velocity

�eld is possible to compute accurate biomarkers such as WSS through the analysis of

velocity gradients near the wall.

In this applications one is only interested in analyzing the �ow evolution during the time-

interval [t1, t2] in a small region of the aorta that will be denoted by the bounded domain

Ω.

A sample X in Ω × [t1, t2] is taken as input of the neural network. Consider a point

(xi, ti), let the PINN output velocity �eld be vi (xi, ti) = (ui (xi, ti) , vi (xi, ti) , wi (xi, ti)),

where u, v, w stands as the x-, y-, z- component of the velocity and let pi (xi, ti) be the

PINN output pressure �eld. Finally, the complete output of the net stands in R4 with

the velocity components and pressure concatenated.

To summarize, the net has to learn a continuous function f : R4 → R4 that maps the

spatio-temporal coordinates in the velocity and pressure �elds. To approximate f an MLP

is used with weights Θ and as activation function a(·) it is always chosen sin(·).
In a generic layer k the input xk represents the spatio-temporal coordinates and the fol-
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lowing operation is performed:

xk+1 = a (Θkxk + bk)

where Θk and bk are the weights and biases of the kth-layer.

2.1.1. Governing PDEs

Blood is considered as a Newtonian �uid with constant density and its evolution is mod-

elled by the incompressible Navier-Stokes (NS) equation. This theory is enforced in some

of PINNs' loss terms forcing the predicted output to follow the Navier-Stokes equation

together with the incompressibility constraint.

ρ
∂u

∂t
− µ∆u+ ρ(u · ∇)u+∇p = f Ω× [t1, t2],

∇ · u = 0 Ω× [t1, t2],

u = 0 Γwall × [t1, t2],

u = uin Γin × [t1, t2],

µ∇u · n− pn = 0 Γout × [t1, t2]

(2.1)

The non-dimensionalized version of NS equation is also taken into account to generalize

the process to avoid a patient-speci�c choice of few hyperparameters. The Reynolds

number is de�ned as Re =
ρUL
µ .



∂u*

∂t
− 1

Re
∆u*+ (u* · ∇)u*+∇p∗ = f Ω× [t1, t2],

∇ · u* = 0 Ω× [t1, t2],

u* = 0 Γwall × [t1, t2],

u* = u*in Γin × [t1, t2],

νU

L
∇u* · n− ρU2p∗n = 0 Γout × [t1, t2]

(2.2)

2.1.2. Training

Data are non-dimensionalized to facilitate the training, and the characteristic length

L and velocity U are the same used in the non-dimensionalized Navier-Stokes equa-
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tions. Those parameters are taken looking only at training data, leaving a subset of

test data unseen to avoid any biases in the evaluation. L is taken as the maximum in

the �rst two space coordinates that represent the lengths of an axial plane; U is the

maximum velocity and T is de�ned as the ratio between L and U . Finally, the density

ρ, the dynamic viscosity µ and ν =
µ
ρ are taken accordingly to the typical blood behavior

in the aorta.

The following non-dimensionalization operations are performed for both synthetic and

real data:

x∗
i =

xi
L
, t∗i =

ti
T
,

u∗
i =

ui
U
, p∗i =

pi
ρU2

.

The training consists in the minimization of the loss function L, that will be de�ned in

the next section, with respect to the PINN's weights Θ:

min
Θ

L(fΘ).

As optimization strategy it is used a combination of Adam and Limited-memory BFGS

(L-BFGS) [44] optimizers to try avoiding falling in local minima characterized by high-

values of the loss function. Usually, few epochs of Adam are performed, then the training

is concluded with the more accurate LBFGS optimizer [22]. The latter is a quasi-Newton

method that uses also the Hessian matrix in the algorithm. The estimation of the second-

order partial derivatives could be di�cult in the �rst iterations, thus an initial step with

a simpler �rst-order methods, such as Adam optimizer, is preferable.

Regarding the implementation of the neural networks and their training, it is used the

nisaba library [35] implemented at MOX - Department of Mathematics, Politecnico di

Milano.

2.1.3. Loss function

Building a meaningful loss function is the real and interesting challenge when dealing

with neural networks: all the information at disposal must be combined and balanced

at this stage. Hence, this function consists in terms combining data-�delity with respect
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to 4D �ow data and the imposition of Navier-Stokes equations together with boundary

conditions. A Tikhonov regularization term is also added to mitigate over�tting and to

help network training discouraging the formation of large weights.

As notation, fΘ stands for the PINN model used, ˜ stands for 4D �ow data and ˆ refers

to the model prediction. The comparison between two quantities is performed with mean

squared error.

With X is denoted a generic subset of points in the domain Ω× [t1, t2] suitably adimen-

sionalized. Two set of points with a potentially non-null intersection are usually used:

the �tting points denoted by Xfit in which 4D �ow measurements are available and the

collocation points Xcoll where the PDEs residual is evaluated. A generic subset X can be

subdivided in Xwall and Xout corresponding to points at the lateral wall boundary of the

geometry where a no-slip condition is imposed and corresponding to points at the out�ow

boundary respectively. Those two subset are used for boundary conditions imposition.

The complete loss can be written as:

L (Θ) = wfitLfit + wwallLwall + woutLneum + wmassLmass + wmomLmom + wregLreg

where:

� Lfit(Xfit) =
1

Nfit

∑
Xfit

∥v̂ − ṽ∥22,

� Lwall(Xwall) =
1

Nwall

∑
Xwall

∥v̂∥22,

� Lneum(Xout) =
1

Nout

∑
Xout

∥∥∥ ν

UL
∇v̂ · n− ρU2p̂n

∥∥∥2
2
,

� Lmass(Xcoll) =
1

Ncoll

∑
Xcoll

∥∥∥∥ 1L∇ · v̂
∥∥∥∥2
2

,

� Lmom(Xcoll) =
1

Ncoll

∑
Xcoll

∥∥∥∥∂v̂∂t − 1

Re
∆v̂ + (v̂ · ∇)v̂ +∇p̂

∥∥∥∥2
2

,

� Lreg =
∑

layers k

Θ2
k, where Θ are the network's weights,

and v̂ represent the �rst three component of fΘ
(
X(·)

)
.

There is a balance between the physics and data-�delity term, so the loss weights must be

chosen accordingly. It is not suitable to rely always on data, since the goal is to modify

them obtaining a more accurate and regular solution, on the other hand, the governing
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PDEs allow also a zero constant solution and the physics terms tend to smooth and re-

move all the details toward a constant value for every point. It is optimal for both terms

to collaborate e�ectively so that each can bring their advantages, in order to achieve the

best result during the trade-o�. A strategy could be to dynamically modify the weights

also relying on the gradient of each loss term [26], but this will lead to a heavier training

in terms of resources used and could be not optimal for all test cases. The general idea is

to weight more the data-�delity term at the beginning and then rely more on physics.

One strategy could be a more intense �rst step where the �t loss weight is about one

order of magnitude larger with respect to the momentum and mass weights and a small

second step, around 15% of the �rst round epochs, with the same magnitude between

data-�delity and physics terms. As an alternative, one can consider also to add an initial

step in which the model only interpolates 4D �ow data and thus without PDEs' residual

terms. In the latter the pressure cannot be correctly reconstructed since the only useful

information comes from the momentum equation, thus if many interpolation-only epochs

are performed it could happen that, once physics is added, the velocity �eld could be

wrongly modi�ed since the pressure has assumed unusual and random values. The classic

and more straightforward solution remains to use the same weights starting from the be-

ginning relying more on �t data. Moreover, those weights do not show evidence that one

term is more relevant with respect to the other since they cannot be equally compared:

a PDE's residual is di�erent from a measured distance from a data-�delity value.

The PDEs are imposed in an adimensionalized version to facilitate the generalization of

the whole process to di�erent patients and test cases. This is because, once the loss

weights are tuned in a reference adimensionalized framework, they are less likely to be

changed and they do not depend on test case speci�c features.

About boundary condition, we impose a no-slip condition in the wall boundary and a ho-

mogeneous Neumann boundary condition in the out�ow. This permits to �x a reference

value for the pressure that otherwise is de�ned up to a constant.

In addition to the main role of regularizing the 4D �ow data, the minimization of the

PDEs' residuals in the loss function is the only way to correctly reconstruct the pressure

�eld. This can be also a meaningful marker to check during the training in order to

understand whether physics is bringing an added value or the net is simply interpolating

data.

In this context, the physics loss terms have a crucial role and they must be built upon an

accurate computation of gradients with respect to the spatio-temporal coordinates. This

is usually not trivial in many applications but with PINNs it becomes extremely easy

thanks to automatic di�erentiation (AD) [2].
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2.1.4. Error quanti�cation

To quantify errors obtained in experiments and simulations, two metrics are used. Di�er-

ences between a reference vector �eld uref and another generic vector �eld u are evaluated

by computing magnitude and vector normalized-rootmean-squared-errors (mNRMSE and

vNRMSE, respectively). They are de�ned as follows:

mNRMSE =
1

max|uref |

√√√√ 1

K

K∑
k=1

(|u| − |uref |)2k,

vNRMSE =
1

max|uref |

√√√√ 1

K

K∑
k=1

(u− uref )2k,

where K is a generic number of points belonging to Ω × [t1, t2] where the two velocity

�elds are evaluated.

2.2. Wall Shear Stress analysis

Computing clinically relevant hemodynamic biomarkers, such as wall shear stress, is one

of the application of the regularization of 4D �ow data, which is especially relevant in

congenital vascular pathologies. It is de�ned as

WSS = µ

(
∂v

∂y

)
y=0

,

where µ is the dynamic viscosity, v is the component of the velocity vector that is locally

parallel to the wall, and y is the Euclidean distance from the wall.

This derivative can be computed following two approaches: �tting a parabolic pro�le on

three points near the wall and calculate the analytical derivative or through automatic

di�erentiation. In the �rst one, discrete normals coming from the mesh structure are

used, while in the second approach a continuous distance function is evaluated to obtain

the normals.

2.2.1. Normal computation through a signed distance function

An accurate computation of wall normals is essential for computing tangential velocity

and for identifying the correct direction in which calculate the derivative. This can be

done with a deep learning approach exploiting again automatic di�erentiation. Once the

distance from the nearest wall boundary is evaluated in each point of the domain Ω, nor-



2| Methods 17

mals n can be obtained from the norm of the gradient of this distance:

n =
|∇ϕ|
∥∇ϕ∥

where ϕ is the sign distance function.

ϕ is obtained through the neural network SDF that takes as input the spatial coordinates

of a generic point and returns the corresponding distance with sign from the wall,

ϕ = SDF(x), x ∈ Ω.

For all the geometries analyzed the same MLP network architecture is used: it has 5

hidden layers with 32 neurons each and sin(·) is always taken as activation function.

To create the training data, a point cloud sampling P is generated in a parallelepiped,

embedding the domain Ω plus an additional margin.

Figure 2.1: Sampling in the parallelepiped containing the reference aorta geometry. The

yellow points represent the boundary of Ω.

In P two subsets are de�ned: Pw is the set of points defying the wall boundary, they will

have a zero distance |ϕw|; the remaining points are contained in Ps and to de�ne their

distance from the wall a distance matrix M of size (|Ps| × |Pw|) is created, and Mij =

dist(Ps,i, Pw,j). The �nal distance |ϕs| is obtained taking the minimum in each row of M .
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SDF has to learn the sign distance function but it is trained only looking at the absolute

value of the distances. Indeed, the loss function is de�ned as:

∑
xi∈Ps

∥ |SDF(xi)| − |ϕs,i| ∥22.

It is not predictable if the net will approximate positive or negative distances inside the

geometry and this can be controlled a posteriori by changing the output sign. For normal

computation purposes, it is better to consider positives distances outside to end up with

outwards normals.

Inlet and outlet points are considered as zero wall distance points, even if they are not

wall points. This will create a more continuous distance in those boundary regions, im-

proving normals estimation. Then, when computing WSS, those points will be excluded

since they do not represent a real wall boundary.

Figure 2.2: Normals computed through a case-speci�c SDF net. The �rst one is the

reference geometry used for the CFD simulation and for synthetic data, the others are

geometries segmented from measuraments on real patients. They all represent a region of

the ascending aorta.

Following this procedure, normals can be easily computed thanks to a continuous repre-

sentation of a sign distance function. However, the net must be trained speci�cally for a

single geometry and this is not optimal when dealing with many patients or with di�erent

areas of the aorta. Following [28], it is possible to add a latent representation of the

geometry and train multiple instances together. The net will be able to quickly compute

sign distance values for a new geometry, furthermore it will be possible to explore the

latent space to discover and represent new possible geometries.
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2.2.2. WSS computation

Parabolic �tting. Let a wall point be pi0 and let the corresponding discrete normal

coming from the mesh be ni. On the normal direction, consider two further points pi1

and pi2 at distance dn and 2dn, respectively. Exploiting PINNs interpolation properties

we can evaluate velocity in those points and compute the tangential component as:

vi0, tan = vi0 − (vi0 · ni)ni,

vi1, tan = vi1 − (vi1 · ni)ni,

vi2, tan = vi2 − (vi2 · ni)ni.

The magnitudes of those vectors are computed and a parabolic function f = ay2+by+c is

�tted among those values. Finally, the derivative is calculated analytically as df
dx

= 2ay+b.

This is one among the approaches described in [29] that presents also linear interpolation

between the points on the inward wall normal and a Fourier Velocity Encoding method.

Figure 2.3: Parabolic pro�le �tted on three points.

Once the normal derivative is computed, WSS is obtained by evaluating the derivative at

the wall and multiply it by µ.

This procedure together with an interpolation scheme can be applied also for real 4D �ow

data or reference CFD solutions. In those cases it is not possible to evaluate any point

since only �xed mesh points are available and a nearest-neighbor interpolation is required

yielding to a potential noisy behaviour in WSS �eld.

Automatic di�erentation. One can evaluate WSS also by exploiting automatic dif-
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ferentiation to compute velocity gradients. In this case there is no need to choose an

optimal dn and derivatives are easily obtained through the network structure. Firstly, the

model is evaluated in boundary wall points, and the tangential velocity components are

calculated based on the wall normals obtained as described in Section 2.2.1. The gradient

of the tangential velocity with respect to x-, y-, z- coordinates is computed through AD,

and the �nal normal derivative is obtained by multiplying the gradient by n.

With the �rst approach, a parabolic pro�le is super-imposed in all regions, instead with

automatic di�erentiation the real output velocity pro�le is implicitly considered. From a

theoretical point of view, the second method is more accurate and realistic but it requires

a very precise reconstruction at boundaries. For example, if in the near wall region a

�at or a negative velocity pro�le is predicted, then the WSS estimate will be imprecise.

Fitting a parabola using points far away from the wall could �x this issue.

Figure 2.4: Example of a PINN and parabolic velocity pro�le �tted on three points. This

shows an over�tting behaviour due to the enforcing of no-slip condition that yields to an

inaccurate WSS calculation.

The no-slip condition heavily forces the PINN pro�le to the behaviour in Figure 2.4.

Moreover, even if the gradient sign does not change, it could be smoothed losing the

typical velocity slope at the boundaries. This is an over�tting behaviour, and it could

be balanced tuning the wall loss term weight. One can decide to reduce the force used

to impose the no-slip condition and, through AD, obtaining WSS that could be slightly

smoothed since velocity does not arrive at zero. Otherwise, the �tted parabola will avoid

over�tting problems and the no-slip condition could be heavily forced, but the parabolic
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pro�le obtained in this way could be unrealistic and, again, potentially too smoothed.

To further improve the estimate, a more re�ned sampling of collocations points near the

wall could yield to a better velocity pro�le since it will be guided by the momentum NS

equation. This balance is discussed in 3D test cases reported in Chapter 4 and Chapter 5,

as it is expected that automatic di�erentiation will provide a more accurate computation of

WSS, but requires a clear and realistic pro�le at the wall. The quality of the provided data

must be taken into consideration and 4D �ow measurements usually su�ers in accuracy

at boundaries, due to the acquisition and the segmentation procedures.
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3| Test Case 1: 2D �ow around a

cylinder

In this Chapter, it is analyzed a toy reference test case of a 2D �ow around a cylinder.

We consider this starting benchmark for its reduced computational complexity to con-

struct the computational pipeline for the more complex 3D patient speci�c case. In this

stage the implementation of the problem is veri�ed together with the procedure to gen-

erate synthetic data. In Section 3.2.1, it is reported a special method to enforce Dirichlet

boundary condition in PINNs that recalls the lifting procedure. The obtained results do

not show the �nal complexity that will be faced in the 3D cases where the �ow will be

extremely more detailed, and the applied strategies together with the net architecture

must be enriched with more complexity.

3.1. CFD simulation

The Navier-Stokes equation is considered with a no slip condition on the wall boundary

Γwall, a parabolic pro�le on inlet Γin and homogeneous Neumann boundary condition on

the outlet Γout. The channel has a size of 0.7 m × 0.4 m, and the cylinder has a radius of

0.05 m.

A CFD simulation in Fenics [23] is performed to have an accurate reference to evaluate

performances and to create synthetic data to emulate 4D �ow MRI measurements. For

the numerical simulation we exploit the incremental Chorin Themam projection method

of the �rst order. Physical parameter are set as follows: density ρ = 1000
kg
m3 , dynamic

viscosity µ = 0.1
kg
ms2

and Re ∼ 2000 with U = 0.29 m
s and L = 0.7m.



24 3| Test Case 1: 2D �ow around a cylinder

22.34 s 22.46 s 22.58 s

Figure 3.1: Visualization of velocity magnitude colormaps (�rst row) and pressure

(second row) in three di�erent timesteps for the CFD reference solution.

3.2. Model description

Complexity is slowly added in few steps: at �rst only CFD data are considered, then

pressure is removed from the dataset seen by the net and �nally synthetic noisy 4D �ow

data are used during training. The time dependency of the solution is the �nal element

to face: at the beginning, it is considered a time interval where the solution is almost

stationary and then, it is moved forward to reach the wake evolution stage. To emulate

what happens with real measurements that are typically recorded with a 40ms frequency,

also training data are sampled by a similar time length. In this test case 3 of those

timesteps are considered yielding to a time interval of 1.2 seconds.

The loss function is built with the data-�delity term and the physics terms (mass and

momentum NS equation) described in Section 2.1.3. About boundary conditions, the

Neumann homogeneous out�ow loss term is added only when pressure is not included in

the training data. The no-slip condition is not enforced in the loss term and an alternative

approach is followed to emulate the lifting procedure in CFD simulations. Moreover,

regularization and SIREN initialization are not applied.

3.2.1. Lifting method to enforce no slip condition

To enforce no slip condition, we implement a strategy based on multiplying the velocity

output of the net by a continuous function that is null on the wall boundaries and increases
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in proportion with the distance from the wall. In this way not only the no-slip condition is

automatically imposed, but also the net is forced to follow the typical increasing velocity

pro�le near the wall. The advantage of this solution is that the loss function is lightened:

it has one less term to take into account during the minimization procedure since the

no-slip condition is completely managed by the lifting operator.

Consider the PINN as fΘ (·), the net is evaluated in various space-time coordinates (x, t) ∈
XT = [X × [t1, t2]], and it returns the velocity and pressure �eld [v, p]. Let be Ψ(x) :

X → R the lifting operator, then, the �nal output will be:[
v

p

]
= fΘ (x, t)Ψ(x),

where Ψ(x) = [ψ, ψ, 1]T with ψ representing the distance from the wall boundary.

This multiplication can be alternatively seen as the �nal layer at the end of the original

architecture.

Moreover, the net is aware of the lifting's action since this operation is seen in the loss

gradients, and thus in the entire back-propagation procedure:

∇x,tL = ∇x,tfΘ(x, t)Ψ(x) + fΘ(x, t)∇xΨ(x).

There is a cooperation between the two, as they are not independent. This mean that,

potentially, the net could propose a wall velocity di�erent from zero if Ψ is not exactly

null. However, this will be not the case since it is reasonable to impose null velocity at

the wall, and it is not likely that �delity data will conduct to a very di�erent behaviour.

The distance from the wall Ψ(·) can be de�ned analytically or can be approximated by

a further neural network. Since the domain for this 2D test case is very simple, the wall

boundaries can be de�ned analytically as a set of di�erent edges. With this geometry

representation, the continuous distance can be easily computed as in [3, 4, 42]. In this

work the idea to enforce Dirichlet boundary condition is employed in a lifting fashion

within a PINN framework.

Let be d the signed distance function from x = (x, y) to the line de�ned by the segment

AB of length L with vertices A = (xA, yA) and B = (xB, yB):

d(x) =
(x− xA)(yB − yA)− (y − yA)(xB − xA)

L
.
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Then, let be (xc, yc) = ((xA + xB)/2, (yA + yB)/2) the center of AB and let de�ne tr as

the following trimming function:

tr(x) =
1

L

[(
L

2

)2

− ∥(x, y)− (xc, yc)∥2
]

Note that tr ≥ 0 de�nes a circle of center (xc, yc). Finally, the distance function ψ is

de�ned as:

Ψ(x) =

√√√√d2 +

(√
tr2 + d4 − tr

2

)2

. (3.1)

A graphical representation of d(x), tr(x) and ψ(x) for a generic segment is show in Figure

3.2.

Figure 3.2: Representation of the signed distance function d(x) to a straight line (left),

the trimming function tr(x) (middle) and the approximate distance function Ψ(x) to a

segment (right). The image is taken from [3].

Assuming that the wall boundary can be expressed ad the union of ns segments {s1, ..., sns},
then Ψ �nal distance from the wall, normalized up to order ≥ 1, is de�ned as:

Ψ =
1

m

√
1
ψm
1
+ 1

ψm
2
+ ...+ 1

ψm
ns

,

where ψi is the distance from the segment si. About the normalization, it guarantees that

for every regular point of the wall boundary, the following holds:

Ψ = 0,
∂Ψ

∂n
= 1,

∂kΨ

∂nk
= 0 (k = 2, 3, ...,m).
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3.2.2. Model parameters

The following parameters represent the model architecture and training strategy used in

2D test cases:

� model architecture: 4 hidden layers with 20 neurons each, and 3 neurons in both

input and output layers;

� sin(·) as activation function;

� lifting applied with an analytical closed function that de�nes the distance from the

wall (3.1);

� �rst minimization loop: 500 epochs with Adam optimizer (learning rate: 0.01);

� second minimization loop: 5000 epochs with L-BFGS optimizer;

� 5000 collocations points where the physics loss terms are evaluated and 3000 data-

�delity points both spread in the entire time interval are considered;

� loss weights are reported in Table 3.1:

wfit wmass wmom wneumann

weights 1 0.01 0.01 0.05

Table 3.1: Loss weights for 2D test case.

3.3. Results

CFD clean data are used to train an interpolation-only network in order to �x a reference

architecture that could represent the entire complexity of the �ow. Pressure must be in-

cluded in the �tting data since it cannot be otherwise reconstructed without the physics

loss terms. With 4 hidden layers composed by 20 neurons each, all velocity details are

correctly reconstructed as expected since the data are super accurate, and they brought

only very clear information.

In those tests, it is possible to verify the physics loss residual to understand if clean data

can satisfy the NS equations when gradients are computed through AD. Even if the solu-

tion �ts perfectly the CFD ground-truth, the PDEs residual is not null as PINNs cannot

reach accuracy of classic CFD solvers. However, the goal of this work is to regularize

existing data and, even if all details are not reconstructed, this is a way to extract infor-

mation from the available measurements.

When removing pressure from the data �delity loss term, physics starts to be relevant and
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crucial for its reconstruction. Momentum equation, together with the out�ow boundary

condition, reconstructs a relative pressure �eld with a �xed reference value in the out�ow

that comes from the homogeneous Neumann boundary condition.

The �nal step is to consider noisy and corrupted data to emulate 4D �ow measurements.

CFD ground-truth data are time-averaged within a time window of 40 ms, and a �nal

0.6s time interval is considered. In this period of time the solution is not stationary, and

it is possible to appreciate the wake evolution behind the cylinder.

A Cartesian grid with voxel size of 0.002×0.002 m2 is taken to sample data before moving

to the Fourier domain where the 98% of frequencies are radially sampled. Moreover, a

fully sampled calibration region of 5×5 in the center of k-space is maintained and no noise

is added in this test case. Finally, complex images were converted back to real images of

velocity �elds to obtain noisy synthetic measurements.

Figure 3.3: Visualization of synthetic velocity colormaps in a generic timestep. X- and

Y- components on the left and on the right, respectively.

These data are not a faithful representation of real 4D �ow MRI measurements, as they

usually present a more noisy behaviour, characterized by a speckled representation. Ob-

stacles have been encountered in the synthetic data creation process in 2D since the �ow

does not present many complex details: this does not permit to have a wide range where

noise level could vary. Slightly changing one parameter yields to unusable noisy data,

and thus it is challenging to �nd an optimal choice of the generation parameters. When

moving to 3D test cases this procedure will become more realistic and easier to apply.

3.3.1. Loss evolution

As it can be seen in Figure 3.4, the data-�delity term maintains a main role during the

entire training but it reaches a plateau after 1500 epochs. Physics terms, instead, keep
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Figure 3.4: Loss evolution for the model presented in this section. On the left are visual-

ized each loss term with their real magnitude before taking the square and loss' weights

are not considered. On the right, each term is multiplied by its corresponding weight and

here it can be seen their in�uence on the global loss value. PDE_MASS refers to the

residual of the incompressibility constraint and PDE_MOM refers to the momentum NS

equation.

decreasing. This means that, at a certain point, the net does not learn anymore from

synthetic data, but it continues the regularization process through the governing PDEs.

Starting from these results, we investigate the e�ect of increasing the relevance of physics

terms starting from the beginning, or as soon as the data-�delity term reaches a plateau.

Both strategies have been tested, but no better results were achieved. More relevant

physical terms lead to a �atter output since it is convenient for the net to propose a zero

constant value during the minimization process. Physics terms need to be accompanied

by another term that forces the presence of details in the velocity �eld. Even if those

details are not accurate, they are required to avoid a zero constant output and, later on,

accuracy will be taken care of by the action of the governing PDEs.

3.3.2. Visualization and performances evaluation

A further neural network is trained to only interpolate synthetic data and the physics is

completely switched-o� in the loss function. The PINN output is then compared to this

other prediction to evaluate the added value of PINNs that force velocity and pressure

�elds to follow speci�c physical laws.

vNRMSE is computed taking as reference the reference CFD solution for both the PINN
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and the interpolating network. The errors are reported in Table 3.2.

Vel. X Vel. Y Pressure

PINN 0.056 0.118 0.045

Interpolation 0.103 0.194 1.765

Table 3.2: vNRMSE velocity and pressure errors.

As expected, pressure cannot be reconstructed and it is completely random in the interpolation-

only model, as only velocities are seen by the data-�delity term. Moreover, velocity �elds

are regularized by the PINN, and the noises introduced by synthetic data are removed.

This is possible only relying on PDEs in the minimization process, as it is performed in

physics informed neural networks.

Finally, in the following �gures, the model prediction is visualized and compared with

CFD solution and with synthetic data used during the training stage:

22.34 s 22.46 s 22.58 s

Figure 3.5: X velocity component. In the �rst row there are synthetic data in

three timesteps, then there is the model prediction and the ground-truth CFD

solution in the last row.
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22.34 s 22.46 s 22.58 s

Figure 3.6: Y velocity component. In the �rst row there are synthetic data in

three timesteps, then there is the model prediction and the ground-truth CFD

solution in the last row.

22.34 s 22.46 s 22.58 s

Figure 3.7: Pressure. In the �rst row there is the model prediction in three

timesteps and the ground-truth CFD solution in the last row. No synthetic mea-

surements are available for pressure that is completely reconstructed through

the physics loss terms.
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4| Test Case 2: Synthetic data for

a 3D �ow in the aorta

In this Chapter, a real aorta geometry is taken into account to create a suitable model to

regularize data and to estimate WSS. This is done in a controlled framework, as synthetic

4D �ow data are used to train the model, and a CFD solution represents the reference

ground truth.

The process to generate synthetic data is described in Section 4.2, where they are also

compared to the CFD solution. The models used are characterized in Section 4.3 and

there are compared two strategies to impose the no-slip condition. Finally, in Section

4.5, the methods used to compute WSS are evaluated based on a reference �eld achieved

through an analysis on a smaller geometry of the domain.

4.1. CFD simulation

For the simulation we considere the ascending aorta of a subject with thoracic aorta

aneurysm (TAA) [37], whose geometry is segmented from 3DMRA images using ITK-SNAP

open-source software [46]. The segmented domain Ω is divided into 3 subdomains: inlet

Γin, outlet Γout and wall Γwall. A 3D tetrahedral mesh with a base size of 0.6 mm is

generated using vmtk library and the �nal volumetric mesh consisted of ≈ 800k nodes.

Time-varying 3-directional velocity pro�les are prescribed as inlet boundary condition,

enforcing a realistic TAA inlet velocity on Γin. A zero-pressure condition is enforced on

Γout and a homogeneous Dirichlet boundary condition (no-slip) is assumed on Γwall. Blood

is modeled as a Newtonian �uid with constant density ρ = 1060
kg
m3 and dynamic viscosity

µ = 0.0035 Pa·s. A �nite volume simulation is run at a �xed timestep of 0.001 s. Results

are exported at every timesteps within the interval (0.2 s - 0.26 s) [37].

From now on, the analyzed area is reduced: the new geometry takes into account only the

upper part of Ω, keeping only points with the foot-to-head coordinate ≥ 0.24 m. This is

done to reduce the computational complexity of the problem, to shorten the training time

of the model. Many tests with di�erent conditions must be run and this simpli�cation is



34 4| Test Case 2: Synthetic data for a 3D �ow in the aorta

needed to make it feasible. With this reduction the de�nition of Γin is lost, but it is not

required in PINN framework.

It is necessary to de�ne the orientation of the classical Cartesian axes X, Y, Z within the

aorta. The X axis refers to the posterior-to-anterior direction, the Y axis to the left-to-

right direction and the Z axis refers to the foot-to-head one. Finally, to give a glimpse

about the spatial dimensions, the reduced Ω could be contained in a cube with edge size

of 0.06 m and it is visualized in Figure 4.1.

Figure 4.1: Original computational domain for CFD simulation on the left, and reduced

geometry on the right.

4.2. Synthetic data creation

Three synthetic test cases with di�erent parameters are created from a CFD simulation

to evaluate the model performances with respect to the di�erent levels of degradation and

noise added. In all of them, not only there is a subsampling in the k-space, but additive

noise is always considered, unlike in the 2D case.

The following steps are applied on high resolution CFD velocity �elds:

1. data are temporally downsampled with a moving average to obtains measurements

each 40ms, as this frequency is typical in 4d �ow MRI measurements;

2. the velocity in each timestep is converted to an uniform Cartesian grid with voxel

size of V S × V S × V S mm3 using a linear interpolation scheme to assign velocity

vector values to grid cells. This procedure yields to a sequence of Cartesian grids

where each element belongs to RNr×Nc×Ns ;
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3. each velocity grid is converted to a complex tensor containing magnitude and phase

images using suitable VENC values, as formalized in (1.1). VENC components are

always chosen 10% larger than the maximum velocity recorded to avoid velocity

aliasing issues;

4. the fast Fourier transform is applied to obtain the corresponding k-space data;

5. 3D k-space data is truncated in the high frequencies to e�ectively decrease the

spatial resolution by a factor of 2;

6. a zero-mean Gaussian noise is added with standard deviation σ =

√
M/10

SNR
10 ,

where M is the square of the mean magnitude of the signal, and SNR is the pa-

rameter related to the level of the noise added. The noise decreases when SNR

increases;

7. a randomized radial sampling is performed to keep only S% percent of the k-space.

Moreover, a fully sampled calibration region of CR×CR×CR is kept in the center

of k-space to maintain the main features of the signal;

8. the inverse Fourier transform is applied to the undersampled, noise-corrupted k-

space, yielding a complex tensor of magnitude and phase images;

9. complex images are converted back to real images of velocity �elds using VENC

values consisted with step 3, obtaining a sequence of noisy synthetic velocity mea-

surements.

A synthetic dataset is thus characterized by voxel size V S, the level of noise SNR, the

sampled percentage S in the k-space and the size CR of the fully sampled center region.

V S SNR S CR

mild 0.3 40 99 5

medium 0.3 25 95 7

extreme 1 2 75 5

Table 4.1: Parameter description for each synthetic test case.

Two di�erent Cartesian grids are used to generate di�erent synthetic data: a very re�ned

one with voxel of size 0.3×0.3×0.3mm3 and a coarser grid with voxel of size 1×1×1mm3.

Data are sampled in those grids before moving to the Fourier domain. In the second

case, once synthetic data are created, a nearest-neighbours interpolation is performed to
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arbitrary sample points in every position inside the domain. Di�erent strategies are used

because, with the coarser grid, it is easier to vary the sampling percentage in the k-space

but an interpolation, that could �atten some details, is required to have a reasonable

sampling resolution. On the other hand, with a re�ned grid, it is di�cult to reduce

the sampling in the k-space in order to vary the quality of data and, consequently, tuning

optimal parameters is not trivial and results are often unusable. Moreover, it is interesting

also to di�erentiate visually the results: with the coarser grid the resulting data have the

typical speckled behavior of real 4D �ow data instead, the other data presents a di�erent

noise texture, more thin than the �rst one. The di�erence in resolution is also clear

between the two grids.

Moving from this rough assessment, a rigorous evaluation based on magnitude and vector

normalized-rootmean-squared-errors is performed using as reference the CFD solution,

and the errors are reported in Figure 4.2. As expected from the chosen parameters, there

are three di�erent levels of degradation in the three synthetic cases considered: indeed,

the NRMSE for the extreme case is 10 times larger than the mild one.

Figure 4.2: vNRMSE and mNRMSE are reported to quantify the level of degradation in

the proposed synthetic data for each velocity component.

CFD solution together with all the synthetic data generated are represented in di�erent

2D slices in Figures 4.3, 4.4 and 4.5. The �rst slice in each �gure represents a sagittally

oriented slice, the second a coronal oriented one and the last one an axially oriented slice.
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Figure 4.3: Velocity X component colormaps in di�erent 2D slices at the same timestep.

Figure 4.4: Velocity Y-component colormaps in di�erent 2D slices at the same timestep.
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Figure 4.5: Velocity Z-component colormaps in di�erent 2D slices at the same timestep.

4.3. Model description

To deal with the very detailed time dependent solution, the model for the 3D case is

extremely enriched with more parameters, with respect to the 2D case, in terms of layers

and neurons employed, while the model structure and loss terms remain similar.

4.3.1. Imposing the no-slip condition

The main di�erence with respect to the 2D case lies in the imposition of the no-slip

condition at the wall boundary. With a simpler geometry that could be described as

a set of edges, it was easier to follow the lifting approach with the continuous distance

function described in Section 3.2.1 and in [3]. Here, instead, the geometry complexity

forces to compute the distance from the wall with a distance matrix based approach. The

distance between every point and a subset of wall boundary points is calculated, then the

�nal distance from the wall, for a point pi, is taken as the minimum of all the distances

between pi and every wall points. Alternatively with respect to the normal computational

case, inlet and outlet points are not considered as zero wall distance points, as the no-slip



4| Test Case 2: Synthetic data for a 3D �ow in the aorta 39

condition is not imposed.

At this stage there are two alternatives to impose zero velocity at the wall boundary:

� train a further neural net to learn the distance from the wall ϕ starting from the

distance matrix, following the same procedure applied in the �rst step of normals

computation (Section 2.2.1). Then, multiply ϕ by the velocity output of the net

simulating the lifting procedure as done in Section 3.2.1;

� directly impose a zero wall velocity by adding a term in the loss function that forces

a zero output velocity for a subset of wall points.

The �rst method has the advantage to end up with a simpler loss function that could

help the minimization process. On the other hand, the loss' gradients with respect to

the lifting ϕ could lead the optimizer to a wrong direction. This is because there could

not be enough con�dence that the lifting neural network is continuous, and that it will

surely return an accurate distance from the wall. The tests performed shows that the

best strategies is to add a zero wall velocity term in the loss function. Even if the lifting

is correctly computed, and it assumes a near zero value at wall points, the velocity tends

not to be exactly null. The output of the main net before the lifting layer tends to be

very high and even if it is lowered by ϕ, it does not assume a zero value. This happens

since there is nothing that penalizes a non-zero wall velocity and ϕ does not assume an

exact null value. A possible solution could be to use both the ideas: the model could

be potentially helped by the lifting action because ϕ tends to lower wall velocity, and a

further term in the loss function could conduct the model to the �nal desired output. In

this chapter we consider only the wall loss term, reserving further investigation for future

studies.

4.3.2. Model parameters

A reference architecture is found by training an interpolation-only neural network with

CFD data, without any imposition of physical laws, and the goal is to obtain an ar-

chitecture that could represent the complexity of the velocity �eld. Eight hidden layers

composed by 32 neurons each are chosen, and altogether the model consists in 7684 pa-

rameters. A sinusoidal activation function is employed, weights are initialized as described

in Section 1.2 and there is the �rst layer adjustment.

The tuning procedure of loss terms weights yields to a general main role for the data-

�delity term, as happens in the 2D case. There remain two choices for the wall weight

that will be discussed during the WSS analysis, as the velocity pro�le near the wall is
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heavily in�uenced by the force used to impose a zero wall velocity. Finally, Neumann loss

weight is two order of magnitude smaller than the data �delity one. When its relevance

increases not only the out�ow points, but also the surrounding area tends to assume a

zero pressure value. This does not respect the physics behind the problem but follows the

typical behaviour of the network: it �attens out all details to a constant value that still

satis�es the PDEs.

To summarize, the typical model architecture and training strategy for this test case can

be completely characterized by those features:

� model architecture: 8 hidden layers with 32 neurons each, and 4 neurons in both

input and output layers;

� sin(·) as activation function;

� �rst minimization loop: 500 epochs with Adam optimizer (learning rate: 0.01);

� second minimization loop: 3000 epochs with L-BFGS optimizer;

� 20k collocations points where the physics loss terms are evaluated and 20k data-

�delity points both spread in the entire time interval are considered;

� loss weights are reported in Table 4.2:

wfit wmass wmom wneumann wwall wreg

weights 1 0.1 0.1 1 · 10−4 0.1 or 1 1 · 10−5

Table 4.2: Loss weights for 3D synthetic test cases.
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4.4. Results

In this Section we present the loss evolution for the best model and its velocity and

pressure reconstructions.

4.4.1. Loss evolution

Figure 4.6: Loss evolution for the model trained with medium synthetic data. On the left

are visualized each loss term with their real magnitude before taking the square and loss

weights are not considered. On the right, each term is multiplied by its corresponding

weight and here it can be seen their in�uence on the global loss value. PDE_MASS

refers to the residual of the incompressibility constraint and PDE_MOM refers to the

momentum NS equation.

The behaviour is very similar to the 2D case. Data-�delity maintains the main role

and the PDEs residual are kept low. All terms have not reached a plateau and the

minimization process could continue probably yielding to better results. Indeed, in all

the performed tests there is the possibility to further improve the performances, but due

to the computational time request, only 3000 L-BFGS epochs are carried out.

4.4.2. Velocity and pressure reconstruction from di�erent noisy

synthetic data

Di�erent models are trained for each synthetic case and, despite the clear di�erence be-

tween the three level of degradation, the predictions are similar, as PINNs succeed in



42 4| Test Case 2: Synthetic data for a 3D �ow in the aorta

regularizing the input data. Indeed, in the �rst row in Figure 4.7, there is a maximum

error di�erence of 4% between the three cases for each component.

To evaluate the performances, more independent training runs are performed for each

synthetic case since the net output is not deterministic.

Figure 4.7: Errors for models trained on di�erent synthetic cases. Three independent

training runs for each model are performed and it is represented the mean error with the

standard deviation (purple line above the bars). In the �rst row, there are the errors

between the model prediction and the reference solution, while on the bottom, there are

the errors with respect to �tting data (synthetic data).

As expected, slightly better performances (�rst row in Figure 4.7) can be detected for

the mild case in which the level of degradation is very limited. It is interesting to note

that the error with respect to the input synthetic data increases with the level of noise

considered (second row in Figure 4.7). The model moves further away from the �tting

data when they are very corrupted by noise. Even if the weight of the data-�delity term

is the same, the net learns to not focus on the degraded data. This result suggest to not

modify the data-�delity weight for cases in which input data are very noisy.

Another credit on PINNs is the correct pressure reconstruction: Navier-Stokes equations

permit to build the pressure �eld e�ortlessly in addition to the regularization process of

velocity �elds.
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In general, the model succeeds in reconstructing the main features of velocity and pressure

but details, such as vortices visible in the reference CFD solution, are lost. The net tends

to smooth the output as it is convenient for the physics loss terms in the minimization

process. This can be better seen when the degradation level increases (extreme synthetic

case): since the input data are very noisy, the net learns to rely more on physics terms

yielding to a �atter output. For pressure this is even more evident in all cases as the

reconstruction is based only on the governing PDEs.

In the following �gures the same 2D dimensional slices considered in Section 4.2 are used

to visualize the predicted output. In each row, corresponding to a di�erent slice, there are

presented the CFD ground-truth, the medium and the extreme synthetic cases. In the

CFD column there is the reference solution, in the medium and extreme columns there

are the synthetic input data used during training on the left and, alongside, there is the

model super-resolved prediction.

In Figures 4.8, 4.9, 4.10 there are visualized the X-, Y-, Z- velocity components. The

velocity reaches a maximum value of 1 m
s in the CFD simulation, while the PINN predic-

tion reaches a value 10% lower. The pressure drop between inlet and outlet is visualized

in Figure 4.11, and it decreases in the model reconstruction, as it cannot reach the CFD

value of 200 Pa.

Figure 4.8: X-component velocity colormaps in di�erent 2D slices at the same timestep.



44 4| Test Case 2: Synthetic data for a 3D �ow in the aorta

Figure 4.9: Y-component velocity colormaps in di�erent 2D slices at the same timestep.

Figure 4.10: Z-component velocity colormaps in di�erent 2D slices at the same timestep.
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Figure 4.11: Pressure reference and reconstructed colormaps in di�erent 2D slices at the

same timestep.

4.5. Wall Shear Stress analysis

In this section, we investigate di�erent strategies for computing wall shear stress. The

velocity pro�le in the near wall region could be in�uenced by how many collocations point

are sampled and by the wall loss term weight wwall. Moreover, WSS can be computed

through AD or with the parabolic �tting method. The latter introduces another hyperpa-

rameter dn that represents the distance from the wall of the �tting points. A ground-truth

WSS �eld is needed to evaluate the performances with respect to those parameters, and

this is obtained by considering a test case, reported in the following, that restricts the

investigation to a cube Λ of dimensions 1 cm3 embedded in the geometry (Figure 4.12).

4.5.1. WSS on a reference cube

A further interpolation-only neural network is trained with CFD data to represent the

velocity �eld in Λ. Since an intense training, in terms of epochs and data used, is carried

out, the net provides a very precise velocity �eld leading to an accurate WSS computa-

tion through AD. Λ has a contained size due to computational costs, indeed, in this small

region it is possible to perform such an accurate training in a feasible time.
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Figure 4.12: Λ represented together with the reduced reference CFD geometry.

Firstly, to test the network expressiveness, di�erent architectures are employed to under-

stand how many parameters are required, at least, for representing Λ's complexity. Four

architectures all composed by 5 hidden layers and, respectively, 5, 10, 20, 40 neurons each,

are considered, and they are all trained for 15k L-BFGS epochs. Their performances are

evaluated with respect to CFD ground-truth in Λ and they are reported in Figure 4.13. It

turns out that, except for the �rst case, all the architectures succeed in well representing

the velocity �eld, and thus, at least 10 neurons in 5 hidden layers are required. From now

on, it is chosen to continue the analysis with the bigger net (5 layers × 40 neurons).

With this optimal architecture, a �rst reference WSS �eld is already available as AD

accurately estimates WSS in Λ. Trough this ground-truth �eld it is possible to obtain

a second reference WSS: it is computed with the parabolic �tting method starting from

CFD data, and the optimal value for dn is tuned relying on the �rst WSS reference.

We compare three choices for dn (2 · 10−4 m, 5 · 10−4 m and 7 · 10−4 m) to use within the

parabolic �tting method. The velocity data come from the net prediction or the CFD

solution where a nearest neighbours interpolation is performed, since only mesh points

can be used. These two estimates are compared to the reference one computed through

AD, and they are visualized in Figure 4.15. The mNRMSE for the estimates provided are

reported in Figure 4.14.
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Figure 4.13: Velocity errors for the di�erent models architectures. In the second row,

there are represented 2D plots of velocity pro�les starting from a wall point and going

inward in the normal direction.

Figure 4.14: mNRMSE with respect to di�erent dn choices. About notation in this �gure:

A_B means that A and B are compared taking as reference B.
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Figure 4.15: On the left there is the reference WSS �eld computed with AD. In the

second column there are the ones calculated with the parabolic �tting method starting

from points evaluated by the net. In the last column there is the WSS �eld computed

with the parabola and the CFD solution. The rows refer to distinct dn choices.

The detailed velocity pro�les at the boundary are completely captured by the interpolat-

ing net and, consequently, WSS computed through AD represents a precise reference. A

very similar result is proposed by the parabolic methods that uses a large dn: relying more

on points far away from the boundary permits avoiding looking at inaccuracies present in

the near wall region, where the net su�ers in capturing high frequencies. Instead, when

using dn : 2 · 10−4 m, the parabola recreates a very steep pro�le, reaching too high values

for WSS and severe errors as reported in Figure 4.14.

In Figure 4.16, we represent the pro�les of the module of the tangential velocity that are

used by the parabolic methods. There is also the one obtained by the neural network's

prediction, and it must be noted that this is not the one used by AD, as it does not con-

sider the velocity module. Finally, the stars indicate the CFD reference points obtained

through interpolation when they are not available at that speci�c coordinate. If the mesh

points used for the interpolation are too far away from the required point, then a lower

color intensity is applied.

In Figure 4.17, there are the corresponding derivative pro�les for the �rst point chosen.

The blue pro�le represents the derivative computed through AD of the magnitude of the
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tangential velocity and, even if the WSS estimate through AD does not consider the mag-

nitude, the derivative at the wall is the same. Hence, it could be used to visually compare

what AD computes with the estimates obtained from the parabolic pro�les: there is more

accordance when using a large dn.

This analysis concludes that WSS could be exactly computed through AD only if the net

proposes an accurate velocity in the near wall region. Moreover, CFD reference data show

that the velocity does not present a clear parabolic pro�le, thus AD is preferable since it

does not super-impose a speci�c pro�le. However, with a large dn, very similar velocity

gradients are estimated.

In more challenging test cases, where the net has poor accuracy near the boundaries,

it will not be convenient to rely on AD. An acceptable result could be recovered with a

parabolic method that uses a large dn to avoid looking at the problematic near wall region.

This will be discussed in the next sections considering synthetic and real test cases.

Figure 4.16: In each row there are represented 2D velocity pro�les for di�erent wall points

in Λ. In each column there are di�erent choices for dn.
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Figure 4.17: Velocity derivative pro�les for the �rst wall point represented in Figure 4.16.

In each column there are di�erent choices for dn.

4.5.2. Analysis on synthetic data

Four di�erent models are now evaluated in terms of velocity and pressure reconstruction,

and in terms of WSS estimate. For the latter, there are used two references obtained in

the previous section: WSS computed with AD in Λ and WSS calculated in the entire

geometry starting from CFD solution with a parabolic �tting method with dn = 7 · 10−4

m. The proposed models are all trained with the same synthetic dataset, since this anal-

ysis wants to identify di�erences between them, then cleaner synthetic cases will provide

better performances.

The number of collocation points in the near wall region and the weight wwall in the loss

function are the two degrees of freedom that di�ers in the following models:

wwall More wall collocation points

W01 0.1 ×
W1 1 ×

W01coll 0.1 ✓

W1coll 1 ✓

Table 4.3: Models evaluated in this analysis. When more wall collocation points are

required, 15% of the total number of collocation points required are surely sampled in the

near wall region.

The neural network trained to learn wall distances for normals computation (Section
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2.2.1) is used to identify the near wall region. If a more intense sampling of collocation

points is needed, at least 15% of them are sampled within the near wall region (distance

ϕ ≤ 0.0035), and the remaining 85% points are randomly sampled in the whole domain.

mNRMSE and vNRMSE are calculated to evaluate the velocity and pressure reconstruc-

tion in the whole domain, and no signi�cant di�erences can be seen between the four

models, as can be seen in Figure 4.18.

Figure 4.18: Velocity and pressure errors. Three independent training runs for each model

are performed and it is represented the mean error with the standard deviation (purple

line above the bars).

The real discriminant among those models is WSS computation starting from the pre-

dicted velocity. For each model, �ve methods are exploited to compute the normal deriva-

tive:

� AD: automatic di�erentiation;

� PAR2, PAR7: parabolic �tting method with dn = 2 · 10−4 m and dn = 7 · 10−4 m,

respectively;

� PAR2 ZERO, PAR7 ZERO: parabolic �tting method with the two choices for dn,

but the �rst point used to �t the parabola is forced to be null.

Errors with respect to the two references for WSS are reported in Figure 4.19, together

with the velocity pro�le in an arbitrary point of the domain (Figure 4.20). For the latter,

it is taken a wall point and, going inward in the normal direction, the magnitude of the

tangential velocity is represented in a 2D plot. Moreover, in Figure 4.20, there are also

drawn the parabolic pro�les used in the described methods.
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Figure 4.19: Errors for di�erent methods exploited to compute WSS. Three independent

training runs for each model are performed and it is represented the mean error with the

standard deviation (purple line above the bars).

Figure 4.20: PINNs and parabolic pro�les for the proposed models starting from an

arbitrary wall point. In each row there is a di�erent choice for dn. In the second column,

there are represented the parabolic pro�les �tted starting from three points evaluated

in the corresponding models (only for W01 and W1). The dotted pro�les refer to the

parabola forced to start from zero.
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Before discussing the methods exploited, the di�erent models are analyzed. A more

intense sampling in the near wall region does not introduce any improvement and the

result is very similar to the standard case (W01). The pro�les for W01coll and W1coll

are lower and smoother: implicitly relying more on physics, with more collocation points,

ends up in a �atter pro�le, as a constant velocity is favored by the loss. About the no-slip

condition, increasing wwall succeeds in predicting a lower value at the wall boundary, but

it does not improve WSS estimate. This is because the velocity pro�le arrive at the wall

with a smoother pro�le and, in some cases, the concavity is inverted. The initial idea was

to force more the no-slip condition to end up with a steeper pro�le, but the results show

the opposite behaviour, yielding to severe errors in almost all the cases, as reported in

Figure 4.19. Hence, the baseline model (W01) remains the best one.

Great di�erences could be seen when computing WSS with AD or through the parabolic

�tting method. PINNs trained in the whole domain su�er in correctly reconstructing the

gradients in the near wall region. Di�erently from what is done in Λ in Section 4.5.1,

the predicted �at pro�les are not adequate to estimate WSS through AD. To recover the

high gradients at the boundary, it could be used a parabola forced to start from zero: this

strategy super-imposes a pro�le, but it relies also on the model prediction when taking

the inner �tting points. To con�rm the advantages of this approach, errors in PAR ZERO

are lower both in Λ and in the whole domain (Figure 4.19). However, when taking as

reference the CFD WSS in the whole domain, there is a bias in PAR7 ZERO since there

is the same choice for dn.

Finally, dn heavily in�uences the �tted parabolic pro�le, and thus, the WSS estimate.

Taking a larger lens with dn = 7 · 10−4 m permits considering innermost points that are

more reliable. They succeed also in recovering a steep velocity pro�le at the wall, since

the velocity magnitude is signi�cantly higher going inward in the domain. On the other

hand, with a lower dn, the estimates are extremely variable: small areas with very high

WSS value are surrounded by regions characterized with a lower magnitude. This noisy

behaviour is something unrealistic that is not expected.

In general, regions that present a high WSS �eld are always detected, but WSS is always

underestimated by all methods except for the noisy and variable PAR2 ZERO. However,

all of them succeed in extremely improving the result obtained from raw and unprocessed

4D �ow data. As a conclusion, the parabolic �tting method with dn = 7 · 10−4 m is the

more robust choice that could recover a precise estimate even when the prediction is not

accurate at the wall. Indeed, AD is not trustworthy in those situations. The result are

visualized in Figure 4.21 and in Figure 4.22.
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Figure 4.21: WSS estimate for mild synthetic case. There are represented the results

using all the described methods, with di�erent dn choices. In the last column, there is

the estimate starting from synthetic data, thus without the PINN's action. There is a

vectorial representation only for the WSS �eld computed through AD.

Figure 4.22: WSS estimate for medium synthetic case. There are represented the results

using all the described methods, with di�erent dn choices. In the last column, there is

the estimate starting from synthetic data, thus without the PINN's action. There is a

vectorial representation only for the WSS �eld computed through AD.
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5| Test Case 3: 4D �ow in-vivo

data in the aorta

In this Chapter, we apply the model structure, studied within the synthetic controlled

framework on real 4D �ow data. We analyzed also patients with bicuspid aortic valve: for

these subjects a WSS estimate could provide an added value in a risk strati�cation study.

In Section 5.3.2, velocity and pressure �elds are reconstructed and visualized. Finally, in

Section 5.3.4, it is proposed an estimate of wall shear stress for two di�erent patients.

5.1. In-vivo data preprocessing

We consider four measurements on di�erent patients with bicuspid (BAV) and tricuspid

(TAV) aortic valves.

ID Aortic valve Age M/F

T1026 TAV 33 M

B0001 BAV 31 F

B2000 BAV 28 M

B0003 BAV 26 M

Table 5.1: Patients characteristics.

Those data are fully deintenti�ed and provided by Weill Cornell Medicine, (NY, USA). A

thoracic 4D �ow MRI scan of a subject with ascending thoracic aortic aneurysm is retro-

spectively retrieved. A respiratory compensated technique is adopted with the following

settings: spatial resolution (voxel size) = 1.14 mm × 1.14 mm × 0.9 mm, �eld of view =

360 mm, �ip angle = 15°, VENC = 200 cm/s in all 3 directions, time between consecutive

frames = 30 ms, for a total of 20 frames per cardiac cycle [37].

DICOM images were processed using open-source code [38] to compute PCMRA image,
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and segmentation is performed with ITK-SNAP [46]. PCMRA is derived from the magni-

tude images M(·) and velocity components as [16]:

PCMRA =

√√√√ 1

N

N∑
t=1

M2(t)
(
v2x(t) + v2y(t) + v2z(t)

)
.

The use of both magnitude and velocities permits to easily identify the domain to be

segmented, as can be seen in Figure 5.1.

Figure 5.1: ITK-SNAP environment with a slice on each plane and the current segmented

object in the lower left section.

The resulting surface is then tagged to de�ne wall, inlet and outlet regions and a very

re�ned mesh (≈ 300k nodes) is created with vmtk. The mesh structure will be used

to sample points for the model training, as done with synthetic data. DICOM images

are visualized in Paraview and then sampled in the previously de�ned mesh, yielding to

vtk �les describing velocities at di�erent timesteps interspersed by 40 ms. The resulting

�les are visually analyzed to identify the systole peak: this step is needed since in data

acquisition there could be phases of completely useless noisy recordings, due to technical

problems and instrument calibration. Finally, four �les describing the blood activity form

a dataset with data spread in a 1.6 s time interval.
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5.2. Model description

The same model architecture and training strategy employed in Chapter 4 is used for real

test cases characterized by:

� model architecture: 8 hidden layers with 32 neurons each, and 4 neurons in both

input and output layers;

� sin(·) as activation function;

� weights are initialized as described in Section 1.2 and there is the �rst layer adjust-

ment;

� �rst minimization loop: 500 epochs with Adam optimizer (learning rate: 0.01);

� second minimization loop: 3000 epochs with L-BFGS optimizer;

� 20k collocations points where the physics loss terms are evaluated and 20k data-

�delity points both spread in the entire time interval are considered;

� loss weights are reported in Table 5.2:

wfit wmass wmom wneumann wwall wreg

weights 1 0.1 0.1 1 · 10−4 0.1 1 · 10−5

Table 5.2: Loss weights for real 4D �ow test cases.

5.3. Results

In this Section we present the loss evolution for the best model and its velocity and

pressure reconstructions. To support the physical regularization process we verify the

imposition of the mass conservation principle. Finally, in Section 5.3.4 we propose an

estimate for WSS.

5.3.1. Loss evolution

The model training is very challenging when working with real data yielding to a di�cult

minimization process of loss terms represented in Figure 5.2. The data-�delity term

maintains the main role, while, physical terms are always kept low and there is not a clear

descent in their evolution. The same issues, encountered before, and related to the balance

between loss terms, are seen in those real cases: due to the high level of corruption of data,

the network does not �nd an optimal trade-o� between data �t and physics constraints.
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Relying more on data yields to unphysical outputs, while relying more on physics leads

to �atter velocity and pressure �elds.

Figure 5.2: Loss evolution for the model trained for patient B2000. On the left are

visualized each loss term with their real magnitude before taking the square and loss

weights are not considered. On the right, each term is multiplied by its corresponding

weight and here it can be seen their in�uence on the global loss value. PDE_MASS

refers to the residual of the incompressibility constraint and PDE_MOM refers to the

momentum NS equation.

5.3.2. Velocity and pressure reconstruction

Despite training di�culties, PINNs succeed in obtaining super-resolved and regular ve-

locity and pressure �elds, yielding to a signi�cant improvement with respect to initial 4D

�ow MRI recordings. Nevertheless, there remains some secondary limitations to note: the

predicted �ow does not show many details especially in wall boundaries where the no-slip

condition is not completely imposed, and high velocity gradients do not always appear at

the wall. This must be taken into consideration when computing WSS in Section 5.3.4.

The results for patients B0031 and B2000, in three di�erent slices at the same timestep,

are shown in the following �gures. In Figures 5.3, 5.4, 5.5 we represent the velocity

for patient B003: looking at the Z-component, there is clear vertical �ux that reaches a

maximum velocity of 0.40 m
s . In Figure 5.6, it is represented the pressure �eld with a

pressure drop between inlet and outlet of about 100 Pa. The velocity reconstruction for

patient B2000 is reported in Figures 5.7, 5.8, 5.9: lower values are obtained with respect
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to the other patient and the no-slip condition is not correctly imposed. Finally, in Figure

5.10, we can appreciate an inner region with lower pressure values as in the synthetic test

cases.

Figure 5.3: B003. X velocity component colormaps in di�erent slices at the same timestep.

On the top there are 4D �ow MRI data and, on the bottom, the model prediction.

Figure 5.4: B003. Y velocity component colormaps in di�erent slices at the same timestep.

On the top there are 4D �ow MRI data and, on the bottom, the model prediction.
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Figure 5.5: B003. Z velocity component colormaps in di�erent slices at the same timestep.

On the top there are 4D �ow MRI data and, on the bottom, the model prediction.

Figure 5.6: B003. Pressure reconstruction in di�erent slices at the same timestep.
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Figure 5.7: B2000. X velocity component colormaps in di�erent slices at the same

timestep. On the top there are 4D �ow MRI data and, on the bottom, the model predic-

tion.

Figure 5.8: B2000. Y velocity component colormaps in di�erent slices at the same

timestep. On the top there are 4D �ow MRI data and, on the bottom, the model predic-

tion.
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Figure 5.9: B2000. Z velocity component colormaps in di�erent slices at the same

timestep. On the top there are 4D �ow MRI data and, on the bottom, the model predic-

tion.

Figure 5.10: B2000. Pressure reconstruction in di�erent slices at the same timestep.

5.3.3. Mass conservation

As a further indicator of the regularization process conducted by the model, it is possible

to verify the mass conservation principle in an arbitrary volume K inside the domain.

The outward velocity �ux over ∂K is computed with Paraview in two cubes, starting

from both the predicted velocity �eld and the 4D �ow measurements. PINNs succeed in

enforcing the mass conservation principle, indeed the computed value is approximately

two orders of magnitude lower. The fact that it always decreases with the model action

highlights the correct enforcing of the governing PDEs. The �uxes are reported in Table

5.3.
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PATIENT Edge length [m] Cube center [m] PINN result 4D FLOW result

B2000 0.005 (0.040, 0.150, 0.260) 2.79 · 10−8 2.84 · 10−7

B2000 0.01 (0.040, 0.140, 0.260) 2.02 · 10−7 3.25 · 10−7

B003 0.005 (0.030, 0.140, 0.225) 1.35 · 10−7 3.58 · 10−6

B003 0.01 (0.022, 0.13, 0.240) 6.59 · 10−7 1.09 · 10−5

Table 5.3: The outward velocity �ux over ∂K for di�erent cubes K.

5.3.4. Wall Shear Stress estimation

The reconstruction of realistic velocity pro�les in the near wall region is extremely di�cult

starting from in-vivo data. The pro�les are �atter and no help is provided from the

measurements. Indeed, the main sources of inaccuracies at the boundaries come from

intrinsic limitations in acquisition and segmentation procedures.

The same methods described in the previous section are employed to recover a realistic

pro�le at the wall. They all provide a regular WSS �eld with a signi�cant improvement

with respect to the estimate from raw 4D �ow data. Obviously there cannot be a reference

�eld to compare the prediction with, but it is reasonable to conclude that the results are

underestimated. All methods identify the same regions with a higher stress and only PAR

ZERO recover larger values, as expected from its nature.

As in Section 4.5.2, the parabolic �tting method equipped with dn = 7 · 10−4 m and with

the parabola that starts from zero (PAR7 ZERO) is the preferred method. This is because

it is more robust with respect to potential inaccuracies present in the near wall region

and it could recover high velocity gradients.

The results for a single timestep can be seen in Figures 5.11 and 5.12, where a di�erent

colorbar is required to represent the higher WSS values computed through PAR2 ZERO

and PAR7 ZERO.
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Figure 5.11: WSS computed with di�erent methods for patient B003, and there is a

vectorial representation only for the WSS �eld computed through AD. In the last column,

there is a di�erent colorbar since the values are very high.

Figure 5.12: WSS computed with di�erent methods for patient B2000, and there is a

vectorial representation only for the WSS �eld computed through AD. In the last column,

there is a di�erent colorbar since the values are very high.
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6| Conclusion

In this work physics informed neural networks are employed to improve the quality of 4D

�ow MRI measurements. Within a deep learning framework, it is possible to combine

available data with a modelling knowledge that describes the blood behaviour through

physical laws: the measurements provide patient-speci�c information to guide the train-

ing of the MLP, whose output is regularized by neural network interpolation properties

together with the physics loss terms. After the training process, the neural network is ca-

pable of approximating pressure and velocity �elds of a patient in a restricted space-time

domain. Within this domain, arbitrary points could be evaluated yielding to a super res-

olute output. This regular representation constraint to physical laws, enable to estimate

crucial biomarkers, such as wall shear stress to comprehend cardiovascular diseases.

To �nd an optimal training strategy, we analyze a test case starting from a ground-truth

solution, as it is possible to evaluate the performances. Thus, synthetic data are generated

from a CFD reference simulation to emulate real measurements. In this controlled envi-

ronment, di�erent strategies to balance loss terms are tested together with the imposition

of boundary condition. Relying more on �tting data permits to avoid a �atter output,

moreover, enforcing the no-slip condition with an additional term in the loss function

improves the performances with respect to the imposition of null velocity with the lifting

procedure.

Side tasks, such as wall normal computation, are also faced exploiting deep learning

techniques: additional neural networks are used to represent the distance from the wall

boundary together with automatic di�erentiation.

A reference ground-truth for wall shear stress is obtained looking only in a small region

of the domain in Chapter 4. This permits to reconstruct accurate velocity gradients in

the near wall region, and optimal normal derivatives are easily computed through AD.

Starting from this reference, WSS is estimated in the whole domain exploiting di�erent

methods that consider various velocity pro�les near the boundary. Numerical results show

that PINNs su�er from the spectral bias [32], and they cannot correctly recover mean-

ingful velocity pro�le at the wall. AD cannot be used in challenging cases since the �at

and unrealistic pro�le predicted by it cannot be considered and, thus, there is the need
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to force a parabolic pro�le to recover the typical high velocity gradients.

In Chapter 5, this methodology is then applied on in-vivo data recorded on BAV and TAV

patients. In particular, BAV patients are characterized by evident alterations of WSS dis-

tribution and peak values in the ascending aorta, thus, an accurate WSS estimate could

provide an added value in a risk strati�cation study about aortopathies. WSS is obtained

starting from the velocity �eld and great improvements in velocity and pressure repre-

sentation, with respect to unprocessed 4D �ow data, are obtained through the action of

PINNs. In this case, high frequencies with speci�c �ow details are lost, but the patient

blood �ow behaviour is correctly reconstructed together with the pressure �eld that was

not recorded in the initial 4D �ow measurements. Moreover, we highlight the e�ectiveness

of the physical regularization by verifying the mass conservation principle in a small cube

embedded in the domain. Finally, a WSS estimate is proposed: the model accuracy is

limited since the model fails in predicting precise velocity pro�les at the wall boundary

but, the imposition of a parabolic pro�le that starts from a null velocity together with the

use of the net to evaluate the innermost points, succeed in proposing a realistic WSS �eld.

This work highlights the potential of PINNs to denoise and to make super-resolute 4D

�ow measurements, but the computational resources required make this methodology not

yet feasible in real applications, as they require results in a very concise time. The net

training is heavy, and, even if the model structure and the weights used in the loss are

designed to remain unchanged, the training must be patient-speci�c. Moreover, it could

be improved the capability of the model to capture high frequencies and �ow details that

are typically lost. The physical knowledge that is enforced in the training favors smoother

output �elds, as even a constant null prediction is accepted by the physics loss terms.

Further developments could go in the direction of exploiting transfer learning techniques

to reuse the information discovered when analyzing a speci�c patient. Following [28],

a possible improvement could be a latent representation of each patient's environment

considering both their geometry and their speci�c �ow-details. Then a global neural

network could be trained on several patients and it could learn the relations between

the outputs and the latent space representations. To conclude, future improvements in

the performances and in the training strategies will permit to e�ectively exploit these

techniques in clinical application.
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